
y

Read in files for sPecializinS Seneral cubic to z form

(•:JGl.J.:;~t.e,

r:.• T"(JtJ~"?.-

J ❖

% new method called from Pols_method
% non_tero Patch
;t r,€~i~<tJ rriet-t,oci
% call of Seneral cubic

____,,~* eGuat.e
Specialize Seneral Polynomial
Alan Bunds 31.3.81 */

/* specialize Seneral PDlYnomial by removins coefficients*/

sPecialize(GenBas,X,SPecBas,Y,NewCoeffs>
desree(GenBas,N), Nl is N-1,
-~?r~,:= (i\!, i\!1 ,-Ger1E~as:: f;'pecB.s~, Net-\iC:oe·ff·s.),
s,~rfS!::!rn (~ !: ·r:·) ❖

/* sPecialize bas*/

sPec<N,Nl,[J,[J,[J) :- !.

sPec(N,Nl,[Pair(N,C)lGBasJ,[pair(N,1)1SBasJ,NCs) :- ,,
spec(N,Nl,GBas,SBas,NCs).

% leadins coeff set tc

'{ _r-~
~ sPec(N,N1,[Pair(N1,C)lGBaSJ,SBas,NCs)

sPecCN,Nl,GBas,SBas,NCs).

sPec(N,Nl,[PairCM,GC)IGBasJ,[pair(M,SC)ISBasJ,[SClNCsJ) :- !,
ser,·=: .. ~ra .(c~, E)-C:) ~

specCN,Nl,GBas,SBas,NCs).

/* Desree of Polsnomial

desree([PairCNl,C>lBasJ,N>
desree(Bas,N2>, max(N1,N2,N),

/* maximum of two numbers*/

/* EGuate coefficients of two PDlYnomials */

emuate_coeffs(SNF,SUnk,TNF,TUnk,Subst,EGns) :
make_Pols(TUnk,TNF,TEGn),
subst_mess(Subst,TEan,TEan1),
PDlY_norm(SUnk,TEan1,TNF1),
Pair_off(SNF,TNFl,Eans).

/* Form eauations by eauatin~ coefficients*/

Pair_off(CJ,[J,[J) :- !.

% other terms retainec

- ,,-A
~'Y

Pair_off([J,TNF,Eans) :- !,
maPlist(eo_zero,TNF,Eans).

Pair_off([Pair(N,SC)lSNFlJ, TNF, [SC=TCIEonsJ) :
select (pa:i. r· C N, TC>, Ti'-!F, TNF 1 >, ! r

Pair_offCSNF1,TNF1,Eans).

Pair_off([Pair(N,SC)lSNFJ, TNF, [SC=OlEansJ) :- !,
Pair_off(SNF,TNF,Eans>.

/* set coefficient eaual to zero
ea_zero(PairtN,TC), TC=O).

/:: ·r~ a j_ r- r.:i ·f· f
~! rei..: .. t1 rse

i~ r1c, p.si r
;t re1=·tf rE.t::!

.i~]~ F"C.1L ~t f:4 i 1 e 1? 1 ~'" ❖ ~~ ·} f; 1 *:/·
~J·i: >.~ ~! :t: }1'< ;¾~ ;t~ it~* *:;t;:;f:: ;f~ *·* ;f~}{~: * * * * ::t:: ;i(* ~~ *: :$: }f~ * ;f! ;{< * ;$: * }f{ ;f:: * ;f(;f~* :* ./

/* ROUTINES FOR POLYNOMIAL EQUATIONS*/

/* Identities and unsatisfiable eouations */

Pols_method(_, [J, true> :- !.
Pols_method(_, [Pair(O,A>J, false) :- !.

/* Linear Emuation */

Poly_method(X,Plist, X=Ans> :
subset(Plist,[pair(l,A),pair(O,B>J>,
not. \.•'ar-(A), ! ;-
default (B),

/* Quadratic Emuation */

!*--------------------*/
Pols_method(X,Plist, X=Ans1 • X=Ans2) :

subset(Plist,[PairC2,A),Pair(1,B),Pair(O,C)J),
not var(A), ! "
default(B), default(C),
tidy((B~2+ -4*A*C>-<2- -1),Smrt>,
tidy((-1*B+Sor-t>*<2*A>- -1,Ans1>,
tidy((-1*B+C-1*Sor-t>>*<2*A>~ -1,Ans2).

/* Default unbound coefficient to zero*/

def;:.n1lt(C) :-•· vaP(C>, ! " C=O.
c!e·f~tJl t. ((:) i -- ! ❖

~ /* Polynomial with Nesative Powers*/

Polw_method<X,Plist,Ans) :
member(PairCN,_),Plist>, N<O, !,
N:t. is --N,
trace('MultiPls throush by %t to set a Polynomial\n',[X-N1J,1),
maPlist(add_n(Nl),Plist,NPlist),
PDl~_method(X,NPlist,Ans).

/* HultiPlY throush Pairs list by N */

add_n(N,Pair(M,Coeff),pair(MN,Coeff)) :- !,
MN :i.s rH-N.

/* Solve seneral eauation by eliminatins coefficients*/
/•--,1
PDlY_method(X,GenBas,Ans) :-· q

'~ ~L,,ar•,~1-,·ct.,.--t.nm r-o-,~~--~.~r,P.~.d·1q' J ~ i~- • ----· ~-o -..i1·r- s::: 11- .. ,.:, _ _ ,~ ..

~ sPecislize(GenBas,X,SPecBas,Y,NewCoeffs>,
SeriSYfft (a, A) , Sers~ .. :-::!IT1 (b, B) r

eauste_coeffsCGenBas,X,SPecBas,Y,Y=A*X+B,EanList),
dottoand(Eanlist,Eans>,
simsolve(Eans,[A,BlNewCoeffsJ,Solns>,
ffi~~P polwCY~~PPrR~d.qpp~Pn]wl~ ;~ i ~; < s;.;,;i==·~ i ?{t: A;;~;:->~~-. -· • -· --
subst_mess(Y=A*X+B & Solns, Ansl, Ans2>,
solve(Ans2,X,Ans).

coefficient is an atom*/
atom_coeff(Pair(N,C>) :-

POLYNOMIAL NORMAL FORM

******************************'

I* Use Polynomial form for simPlification (always succeeds) *I

Poly_form(true,true).
Poly_formCfalse,false).

Poly_form(ExP,Pols) :- !,
~oly_forml(ExP,New>,
tidsCN,2i,1,Poli~,>.

for terms t,:J s:i.mPl i -fy

ExP= •• [SYmlArssJ, isPred(Sym), !,
maPlist(Poly_forml,Arss,PArss),

Pols_formlCExP,PolY) :- !,
wordsin(ExP,Vars>,
sublist(mult_occCExPl,Vars,Varsl),

Predicate or losical connective

:i-. SF· r!?(.°! (&) ❖

isf~red()·) ❖

i .sP rer..i (=) ❖

ts~··r-edt: .. ;::) ❖

I* Put term in PDlYnomial normal form with respect to list of variables*/

Poly_form([VarlVarsJ,ExP,Polw) :- !,
PolwCVar,ExP,Ebasl,simP>,
maPlist(half_PolY(Vars>,Ebas1,Ebas2>,
make_PolY(Var,Ebas2,PolY).

half_polY(Vars,Pair(N,El), PairCN,E2)) :- !,
PDlY_form(Vars,El,E2).

/* Put Polwnomials in normal form (succeeds only for Polsnomials) *'

Pols(X,PolY,PbaS,Pols),

/* Tids coefficients*/
p POlY_form_coeff(Pair(N,E),Pair(N,El)) :- Poly_form(E,El).

/* Forms bas of coefficients*/

PolYCX,X~N,[PairCN,1)1,Poly) :
intese1' (N) , ! .

Pols<x,x-N,[PairtN,l>J,simP> ;
:i.nteser· (N > , ! ,.

POlY(X,(X-N)-(-1),[pair(Nl,l)J,Flas) :
j_ nt,":?S,:;.:, r (N) , ! ,.,
Nl is -··N.

PDlYCX,E,CPairCO,E)J,Flas> :
~ r-;:~etJf· (:x ~ E) , ~ -:-

add(Sbas,Tbas,Ebas>.

POlY(X,S*T,EbaS,FlaS) :- !,
POlY(X,S,Sbas,Flas), PDlY(X,T,Tbas,FlaS),
times<Sbas,Tbas,Ebas>.

PDlY(X,s-N,EbaS,FlaS) :
inteSei'(N) ,N > (h ! ,
~OlY(X,S,Sbas,FlaS),
binomial(Sbas,N,Ebas>.

PDlY(X,E,[Pair<O,El)l,simP) :- !,
F~= ❖ -:- [f)=!ITr : 1~ r·Ss J ,
maPlistCPoly_form1,Arss,Arss1>,
E1= •• [SYmlArss1J.

/* Add two coefficients bass - coae in POLPAK */

hult:i.PlY two coefficient bass - code in POLPAK

/* Binomial enPon~ion of coefficient bas*/

binomial(Bas, O, [Pair(0,1)J) :- !.

binomial(Bas, 1, Bas) :- !.

binomialCSbas, N, EbaS) :- !,
N1 is- N--j_ :•
binomial(Sbas,N1,EbaS1),
times(SbaS,Ebasl,Ebas>.

/* Reconstitute bas of coefficients 1n~o Pol~nomial */

make_Pol~(X,Bas1,Po1Y) :- !,
maPlist(reifY(X),Bas1,Bas2>,

recomP(PolY,[+IBas2J).
,,.

reify coefficient and Power into Product*/

reify(X,Pair(O,E),E) :- !.

CURRENT PROBLEMS*/

I

QClQQCW uu uu AAAAAA [I [ID [ID D [ID ssssssss 000000 LL
QQQQQQ UL.I uu AAAAAA [l[l[l[l[l[l[l[I ssssssss 000000 LL

crn QQ uu uu AA AA [l[I [l[I SS 00 _, LL
'-- QQ CW uu uu AA AA [I [I [l[I SS 00 LL

LW QQ uu uu AA AA [l[I [l[I SS 00 LL
CW QQ uu uu AA AA [l[I [l[I SS 00 l.L
LW QQ uu uu AA AA [l[I [I [I ssssss 00 Ll.
,rn QQ LJU LJU AA AA [l[I [l[I ssssss 00 LL
QQ QQ QQ uu uu AAAAAAAAAA [l[I [l[I SS 00 Ll.
crn QQ QQ uu uu AAAAAAAAAA DD [l[I SS 00 LL
crn QQ ULJ uu AA AA [l[I [l[I SS 00 LL
QQ QQ uu LJU AA AA [l[I [l[I SS 00 LL

QQQQ QQ UUUUULJUUUU AA AA [I [I [I [I [I [I [I [I ssssssss 000000 LLLLLLLLLL
QCWQ QQ uuuuuuuuuu AA AA [I [I [I [I [I [I [I [I ssssssss 000000 LLLLLLLLLL

I
44 44 000000 000000 44 44 000000 55555555J5

44 44 000000 000000 44 44 000000 55555555~'5

44 44 00 00 00 00 44 44 00 00 "'"' ..,_,
44 44 00 00 00 00 44 44 00 00 "'"' J.J

44 44 00 0000 00 0000 44 44 00 0000 C'.C'C'C"C'C'
J._1,_l;J.J.J

44 44 00 0000 00 0000 44 44 00 0000 555555

4444444444 00 00 00 00 00 00 4444444444 00 00 00 55

4444444444 00 00 00 00 00 00 4444444444 00 00 00 "'"' ..,,,

44 0000 00 0000 00 44 0000 00

)

5

44 0000 00 0000 00 44 0000 00 5

44 00 00 00 00 , ' ' , 44 00 00 55 ;
44 00 00 00 00 ' ' ' , 44 00 00 55 .J

44 000000 000000 ' ' 44 000000 5~5555

44 000000 000000 ' ' 44 000000 555555

DBBB u u N N [l[l[l[I y y H H F'PF'F' ssss

B B u u N N [I [I y y H H p F' s
B B u u NN N [I [I y y H H F' F' s
BB!<B u LJ N N N [I [I y HHHHH PF'F'P SSS

B B u u N NN [I D y H H F' s
)

B B u u N N [I [I y H H F' s
J

BBBB uuuuu N N [l[l[ID y H H F' ssss

•s-APT* U r BUNDY HPS [400,405] Job QUAD Sea, 6472 Date 20-Maw-81 11:59!5~ Monitor ERCC ICF DECIO 7,01(0471 *START*
F. l 1 , 'r rTA ~~UAD c;QL <005> [400,405, MYPRES, CUBIC, SF"ECJ Created! 20-Maw-81 11: 58 ! 33 F]t'i nted ! 20-Maw-81 12 ! 00: 10
Q~E~i ~:;t~hes! •-/FILE!ASCII /COPIES!! /SPACING!! /l.IMIT!56 /FORMS!NORMAL

PRESS - PRolog Eauation Solving System
Dept. Artificial Intelligence, University of Edinbur9h

l Version of 19 maw 81

Prolo9-l0 version 3,2
CoPwri9ht (Cl 1981 bw D, Warren, F, Pereira and L, Bwrd

?- [specJ.

Poly reconsulted 390 words

s1mea reconsulted 326 words

eauate consulted 552 words

Probs consulted 168 words

sPec consulted 1448 words

Yes
?- auadratic(AI,

0,24 sec,

0,25 sec,

0,23 sec,

0,06 sec.

0,90 sec,

Solving a* x - 2 + b * x + c = 0 for x
TrY1n9 to specialize POlYnom1al to eliminate x-1
term and reduce coefficient of x-2 to 1

Formed eauation cl + 1 * Yl - 2

nPP1Yin9 substitution
YI al* x + bi

to
cl+ 1 * YI - 2

gives:
cl + (al* x + bl) - 2

Simultaneously solvin9
a al - 2
b =al* bl * 2
c =cl+ bl - 2

For [al, bl, clJ,
Solvin9 a= al - 2 for al
I assume al Positive.

al a - (1/2)
(by Isolation)

Answer is
Xl

where :
Xl = al= a - (1/2)

APP1Yin9 substitution
al a - (1/2)

to
b al * bl * 2

cl + b1 - 2

et·, vr=s
b ~ a - (1/2) * bl * 2
c = cl t bi - 2

Solving b = a - (1/2) *bi* 2 for bl

a - (1/2) * bl = b * (1/2)
(bw Isolation)

l assuffie a positive,

bl b * (1/2) * a - (-1/2)
(bw Isolation)

Answer is
X1

where :
X1 = bl = b * a - (-1/2) * (1/2)

APPlwins substitution
bl b * a - (-1/2) * (1/2)

to
c = cl t bl - 2

sives
c = cl t (b * a - (-1/2) * (1/2)) - 2

Solvin• c =cl+ (b * a - (-1/2) * (1/2)) - 2 for cl

cl= c + -1 * (b * a - (-1/2) * (1/2)) - 2
Cb\aJ Isolation)

Answer is
X1

where :
Xl = cl= c t (b * a - (-1/2) * (1/2)) - 2 * -1

APPlwins substitution
cl = c t (b * a - (-1/2) * (1/2)) ·~ 2 * -1

) to

si.ves

Substi.tutins back in cl solution ,
APPlwins substitution

to ')
c \. = c + (b * a - (-1 /2) * (1 /2)) - 2 * -1

sives : ,
cl = c t (b * a - (-1/2) * (1/2)) - 2 * -1

Substitutins back in bl solution
APPlwins substitution

true
cl = c + (b * a - (-1/2) * (1/2)) - 2 * -1

to l

b1 = b * a ' (-1/2) * (1/2)

s1ves :
bl = b * a - (-1/2) * (1/2)

Substituting back in al solution
APPl~ing substitution

true & cl= c + (b * a - (-1/2) * (1/2)) - 2 * -1
bl = b * a - (-1/2) * (1/2)

to
al= a - (1/2)

sives :
al= a - (1/2)

Final Answers are :
< < Xl & X2 > & X3

where . .
C + (b * a - (-1/2) * Xl. cl

X2 = bl. b * a - (-1/2) * (1/2)

X3 = al a - (1/2)

Solvins cl + 1 * <,/1 - 2

~1 - 2 0 + -1 * cl
(b<,1 Isolation)

= 0 for <,/l

<,/l = <O + -1 * cl) - (1/2) * <,/l
(b<,/ Isolation)

Answer is
(Xl ii' X2

where :~
X1 <,/1
X2 = <,/l

(cl* -1) - (1/2)
(cl* -1) - (1/2) * -1

< 1/2)) - 2 * -1

-1 * (0 + -1 * cl) - (1/2)

APPlwins substitution
<,/l a1>1<:-:+b1 cl c + (b >I< a - (-1/2) * (1/2)) - 2)/(-1 & bi = b * a - (-·1/2) * (1/2)

al a - (l/2)

to
wl = Ccl * -1) - (1/2) * <,/l

(C 1 * -1) - (1 /2) * -1

a - (1/2) * x + b * a - (-1/2) * (1/2) = ((c + (b * a - (-1/2) * (1/2))

- x t b * a - (-1/2) * -1 > * -1 > - (1/2 > t a ·~ (1 /?) *
9ives :

* (1/2) = ((c + (b * a - (-1/2) * (l./2)) - 2 * -1) * -1) - (1/2) * -1 * -1) * -1) " (i/2) I a - (1/2) * x + b * a - (-
Solvine a - (1/2) * x + b * a - (-1/2) * (1/2) = ((c + (b * a - (-1/2) * (1/2)) - 2
1/2) * (1/2) = ((c + (b * a - <-1/2) * (l/2)) - 2 * -1) * -1) - (1/2) * -1 for:-:

a" (1/2) * :-: = ((c + (b * a - (-1/2) * (1/2)) - 2 * -1) * -1) - (1/2) t -1 * (b * a - (-1/2) * (1/2))

(bw Isolation>
:-: (((c + (b * a - (-l/2) * (1/2)) - 2 * -1) * -1) - (1/2) + -1 * (b * a - (-1/2) * (1/2))) * a - (-1/2)

(b<,/ Isolation)
a - (l/2) * :-: = ((c t (b * a - (-1/2) * (1/2)) - 2 * -1) * -1) - (1/2) * -1 + -1 * (b * a - (-1/2) * (1/2))

(b'3 Isolation)

l((c + (b * a - 1-1/2) * (1/2)) - 2 * -1) * -1) - (1/2) * -1 + -1 * (b * a - (-1/2) * (1/21)) * a - (-1/21
lbw Isolation)

,~nswer is
Xl I X2
where :

Xl x = <<c + (b * a - (-1/2) * (1/2)1 - 2 * -1) * -1) - (1/2) * a - (-1/2) + a - (-1/21 * a - (-1/2) * b * (-1/21
X2 = x <<c + (b * a - (-1/21 * (1/2)1 - 2 * -11 * -1) - (1/2) * a - (-1/2) * -1 + a - (-1/2) * a - (-1/21 * b * <-1/2)

v = <<c + lb* a - (-1/2) * (1/2)1 - 2 * -1) * -1) - (1/21 * a - (-1/2) ta - <-1/2) * a - (-1/2) * b * (-1/21 * x = ((c + (b * a -
<-1/2) * 11/2)1 - 2 * -11 * -11 - (1/2) * a - (-1/21 * -1 ta - (-1/2) * a - (-1/2) * b * (-1/2) is a solution

Answer is
< Xl * X2

where :
(Cc+ (b * a - (-1/2) * 11/2)1 - 2 * -1) * -1) - (1/2) * a - (-1/21 t? - (-1/2) * a - (-1/2) * b * 1-1/2) Xl x

X2 = x ((c + (b * a - (-1/2) * (1/2)) - 2 * -1) * -1) - (1/2) * a - (-1/21 * -1 + a - (-1/2) * a - <-1/2) * b * (-1/21

A x = ((c + (b * a - (-1/21 * (1/21) - 2 * -ll * -11 - (1/21 * a - <-1/2) + a - (-1/2) * a - (-1/2) * b * <-1/21 * x
a - (-1/2) * (1/2)) - 2 * -1) * -11 - (1/21 * a - (-1/2) * -1 + a - (-1/2) * a - (-1/21 * b * (-1/2)

wes
: ?- core 97280 (68096 lo-seg + 29184 hi-seg)
heap 62976 60926 in use+ 2050 free
global 1187 16 in use+ 1171 free
local 1024 16 in use+ 1008 free
trail 511 0 in use+ 511 free

0,02 sec, for 1 GCs saining 312 words
1,00 sec, for 37 local shifts and 41 trail shifts
7,81 sec, runtime

<<c + (b *

•

)

cccccccc uu uu BBBBBBBB IIIIII cccccccc ssssssss 000000 LL cccccccc uu uu BBBBBBBB IIIIII cccccccc ssssssss 000000 LL cc uu uu BB BB II cc SS 00 00 LL cc uu uu BB BB I I cc SS 00 00 LL cc uu uu BB BB II cc SS 00 00 LL cc uu uu BB BB II cc SS 00 00 LL cc uu uu BBBBBBBB II cc ssssss 00 00 LL cc uu uu BBBBBBBB II cc ssssss 00 00 LL cc uu uu BB BB II cc SS 00 00 LL cc uu uu BB BB II cc SS 00 00 LL cc uu uu BB BB II cc .. '. SS 00 00 LL cc uu uu BB BB II cc SS 00 00 LL cccccccc uuuuuuuuuu BBBBBBBB II II II cccccccc ssssssss (.100000 LLLLLLLLLL cccccccc uuuuuuuuuu BBBBBBBB III III cccccccc ssssssss 000000 LLLLLLLLLL

44 44 000000 000000 44 44 000000 55555555~;5 44 44 000000 000000 44 44 000000 5555555555 44 44 00 00 00 00 44 44 00 00 55 44 44 00 00 00 00 44 44 00 00 55 44 44 00 0000 00 0000 44 44 00 0000 555555 44 44 00 0000 00 0000 44 44 00 0000 555555 4444444444 00 00 00 00 00 00 4444444444 00 00 00 55 4444444444 00 00 00 00 00 00 4444444444 00 00 00 55 44 0000 00 0000 00 44 0000 00 55 44 0000 00 0000 00 44 0000 00 "'"' J-• 44 00 00 00 00 ' ' ' , 44 00 00 55 c.-c.-
.J-• 44 00 00 00 00 44 00 00 "'"' "'"' ' , , , .._J._I ,._,

44 000000 000000 , , 44 000000 555555 44 000000 000000 , ' 44 000000 5:~5555

BBBB u u N N DDDD y y H H F'F'F'F' ssss
B B u u N N [I D y y H H F' F' s
B B u u NN N D [I y y H H F' F' s
BBBB u u N N N D D y HHHHH F'F'F'F' SSS
B B u u N NN D D y H H F' s
B B u u N N D D y H H F' s
BBBB uuuuu N N DDDD y H H F' ssss

START User BUNDY HF'S [400,405] Job CUBIC Se8, 6486 Date 20-Maw-81 13:29:36 Monitor ERCC ICF DECIO 7,01(047) *START*
File: DSKAlCUBIC,SOL<005>[400,405,MYF'RES,CUBIC,SF'ECJ Created: 20-Maw-81 13l2ll41 Printed: 20-Maw-81 13l29:53
QUEUE Switches: /FILE:ASCII /COF'IESll /SF'ACINGll /LIMITl56 /FORMSlNORMAL

.,

')

~•ps

r- cub1c<Al,
Solving a* x - 3 + b * x - 2 + c * x + d = 0 for x
Trw1ng to specialize Polwnomial to eliminate x-2
term and reduce coefficient of x-3 to 1

Formed eouation c2 +cl* Yl + 1 * Yl - 3

APPlYing substitution
Y1 al*}:+bl

to
c2 t cl* Yl + 1 * Yl - 3

sives :
c2 +cl* (al* x + bl) + (al* x + bl) - 3

Eauatins coefficients of x

Simultaneously solving :
a al - 3
b bl *al" 2 * 3
c cl* al+ al* bl - 2 * 3
d c2 +cl* bl + bl ~ 3

For Cal, bl, cl, c2J,
Solving a= al - 3 for al

al= a~ (1/3)
(by Isolation)

Answer is
Xl

where :
X1 = al= a - (1/3)

APPlY1ng substitution
al a" (1/3)

to
b
C

d

sives
b =
C

d

b1 * al - 2 * 3
cl* al+ a1 * bl - 2 * 3
c2 +cl* bi+ bl - 3

bl * a - (2/3) * 3
cl *a~ (1/3) + a - (1/3) * bl "2
c2 +cl* bl + bl - 3

Solving b = bl * a - (2/3) * 3 for bl

bl *a~ (2/3) b * (1/3)
(by Isolation)

1 assume a Positive,

bl b * (1/3) * a - <-2/3)
(by Isolation)

Answer 1s :
Xl

* 3

"l

C)

.,
1

1Jhere :
Xl = bi= b * a - (-2/3) * (1/3)

APPlYins substitution
bl b * a - (-2/3) * (1/3)

to
c cl* a - (1/3) ta - (1/3) * bl - 2 * 3
d c2 t cl* bl t bl - 3

sives
C c 1 * a - (1 /3) + a - (1 /3) * (b * a - (-2/3) * (1 /3 l l - 2 * 3
d = c2 +cl* b * a - (-2/3) * (1/3) + (b * a - (-2/3) * (1/3)) - 3

Solvir,s c = cl * a - (1/3) + a - (1/3) * (b * a - (-2/3) * (1/·3ll - 2 * 3 for cl

cl * a - (1/3) c + -1 * (a - (1/3) * (b * a - (-2/3) * (1/3)) - 2 * 3)
(by Isolation)

cl = (c + -1 * (a - (1/3) * (b * a - (-2/3) * (1/3)) - 2 * 3)) * a - (-1/3)
(by Isolation)

rcinswer is
XJ.

where :
Xl = cl= (c + a - (1/3l * b * a - (-2/3) * b * a - (-2/3) * (-1/3)) * a - (-1/3)

APPlYing substitution
cl (c + a - (1/3) * b * a - (-2/3) * b *a~ (-2/3) * (-1/3ll * a - (-1/3)

to
d c2 + c1 * b * a - (-2/3) * (1/3) + (b * a - (-2/3) * (1/3)) - 3

gives
d = c2 + (c + a - (1/3) * b * a - (-2/3) * b * a - (-2/3) * (-1/3)) * a - (-1/3) * b * a - (-2/3) * (1/3) + (b * a - (-2/3) * (1

/3 l l - 3

Solving d = c2 + (c + a - (1/3) * b * a - (-2/3) * b * a - (-2/3) * (-1/3)) * a - (-1/3) * b * a - (-2/3) * (1/3) + (b * a - (-2/3)
* (1/3)) - 3 for c2

c2 + (c + a - (1/3) * b * a - (-2/3) * b * a - (-2/3) * (-1/3)) * a - C-1/3) * b * a - (-2/3) * (1/3)
* (1/3)) - 3

(b!cl Isolation)

d + -1 * <b * a - <-2/31

c2 = d + -1 * (b * a - (-2/3) * (1/3)) - 3 + -1 * ((c + a - (1/3) * b * a - (-2/3) * b * a - (-2/3) * (-1/3)) * a - (-1/3) * b *
a - (-2/3) * (1./3)) -,

(by Isolation)

Answer is
Xl

where :
Xl c2 = d + c * a - (-1/3) * a - (-2/3) * b * (-1/3) + (a - C-2/3) * a - (-2/3) * a - (-2/3) * (-1/27) + a - (1/3) * a - (-2/ ,

3) * a - (-2/3) * a - (-1/3) * a - (-2/3) * (1/9)) * b - 3

APPlwing substitution
c2 = d + c * a - (-1/3) * a - <-2/3) * b * (-1/3) + (a - (-2/3) * a - (-2/3) * a - (-2/3) * (-1/27) + a - (1/3) * a - (-2/3) * a

- (-2/3) * a - (-1/3) * a - (-2/3) * (1/9)) * b - 3

to

SlYes :

Substitutins back in c2 solution
APPlwins substitution

to
c2 = d + c * a - (-1/3) * a - (-2/3) * b * (-1/3) + (a - (-2/3) * a - (-2/3) * a - (-2/3) * (-1/27) + a - (1/3) * a - (-2/3) * a

- (-2/3) * a - (-1/3) * a - (-2/3) * (1/9)) * b - 3

s1ves :

c2 = d + c * a - (-1/3) * a - (-2/3) * b * (-1/3) + (a - (-2/3) * a - (-2/3) * a - (-2/3) * (-1/27) + a - (1/3) * a - (-2/3) * a
- (-2/3) * a - (-1/3) * a - (-2/3) * (1/9)) * b - 3

Substitutins back in cl solution
APPlwins substitution

true
c2 = d + c * a - (-1/3) * a - (-2/3) * b * (-1/3) + (a - (-2/3) * a - (-2/3) * a - (-2/3) * (-1/27) + a - (1/3) * a - (-2/3) * a

- C-2/3) * a - (-1/3) * a - (-2/3) * (1/9)) * b - 3

to
cl= Cc+ a - (1/3) * b * a - (-2/3) * b * a - (-2/3) * (-1/3)) * a - (-1/3)

91ves !
cl= Cc+ a - (1/3) * b * a - C-2/3) * b * a - (-2/3) * (-1/3)) * a - (-1/3)

Substitutins back in bl solution
APPlwins substitution

true & c2 = d + c * a - C-1/3) * a - (-2/3) * b * (-1/3) + Ca - (-2/3) * a - C-2/3) * a - (-2/3) * C-1/27) + a - (1/3) * a - C-2
/3) * a - (-2/3) * a - (-1/3) * a - (-2/3) * (1/9)) * b - 3

cl= Cc+ a - (1/3) * b * a - (-2/3) * b * a - C-2/3) * C-1/3)) * a - (-1/3)

to
bl = b * a - (-2/3) * (1/3)

9ives :
bi= b * a - C-2/3) * C1/3l

Substitutins back in al solution
APPlwins substitution

(true & c2 = d + c * a - (-1/3) * a - C-2/3) * b * C-1/3) + (a - (-2/3) * a - (-2/3) * a - (-2/3) * (-1/27) + a - (1/3) * a - (-
2/3) * a - (-2/3) * a - (-1/3) * a - (-2/3) * Cl/9)) * b - 3) & cl Cc+ a - (1/3) * b * a - C-2/3) * b * a - <-2/3) * (-1/3)) * a
- (-1/3)

bl b * a - (-2/3) * (1/3)

to
al = a - (1/3)

s1ves :
al = a - (1/3)

Final Answers are
< C C Xl & X2 > & X3 & X4 >

where :
Xl c2 = d + c * a - (-1/3) * a - (-2/3) * b * (-1/3) + Ca - C-2/3) * a - C-2/3) * a - <-2/3) * (-1/27) + a - (1/3) * a - C-2/

3) * a - (-2/3) * a - (-1/3) * a - C-2/3) * (1/9)) * b - 3
X2 cl (c + a - Cl/3) * b * a - C-2/3) * b * a - <-2/3) * (-1/3)) * a - C-1/3)
X3 bl = b * a - (-2/3) * (1/3)
X4 = al= a - (1/3)

Salvins c2 + cl * w1 + 1 * wl - 3 = 0 for ~1

)

no
core 97280 (68096 lo-seg + 29184 hi-seg)

heap
global
local
t1·a1 l

0.02
1.33
7.80

62976 60936 in use+ 2040 free
1187 16 in use+ 1171 free
1024 = 16 in U$e + 1008 free

511 O in use+ 511 free
sec, for 1 GCs gaining 938 words
sec. for 36 local shifts and 42 trail shifts
sec. runtime

)

)

LlfJQlJ()U uu uu AAAAAA RRRRRRRR TTTTTTTTTT III III ssssssss 000000 LL

L'llQQL1Q uu uu AAAAAA RRRRRRRR TTTTTTTTTT II II II ssssssss 000000 LL

QQ QQ uu uu AA AA RR RR TT II SS 00 00 LL

QQ QQ uu uu AA AA RR RR TT II SS 00 00 LL

(l Q QQ uu uu AA AA RR RR TT I I SS 00 00 LL

Clll QQ uu uu AA AA RR RR TT II SS 00 00 LL

L1Q QQ uu uu AA AA RRRRRRRR TT II ssssss 00 00 LL

na Q0 uu uu AA AA RRRRRRRR TT II ssssss 00 00 LL

QQ QQ QQ uu uu AAAAAAAAAA RR RR TT II SS 00 00 LL

QQ cw QQ LIU uu AAAAAAAAAA RR RR TT II SS 00 00 LL

QQ QQ uu uu AA AA RR RR TT II . '.' SS 00 00 LL

Q(l ()Q uu uu AA AA RR RR TT II . '.' SS 00 00 LL

QQQQ QQ uuuuuuuuuu AA AA RR RR TT IIIIII ssssssss 000000 LLLLLLLLLL

QQQ(I (IQ uuuuuuuuuu AA AA RR RR TT II III I ... ' ssssssss 000000 LLLLLLLLLL

l-1 44 000000 000000 44 44 000000 555555555~;

44 44 000000 000000 44 44 000000 5555555555

44 44 00 00 00 00 44 44 00 00 c·c-..,..,

44 44 00 00 00 00 44 44 00 00 55

44 44 00 0000 00 0000 44 44 00 0000 555555

44 44 00 0000 00 0000 44 44 00 0000 5:_;5555

4444444444 00 00 00 00 00 00 4444444444 00 00 00 c·c-..,..,

4444444444 00 00 00 00 00 00 4444444444 00 00 00 55

44 0000 00 0000 00 44 0000 00 55

44 0000 00 0000 00 44 0000 00 55

44 00 00 00 00 , ' , , 44 00 00 55 55

44 00 00 00 00 ' , , , 44 00 00 55 55

44 000000 000000 ' ' 44 000000 555555

44 000000 000000 44 000000 C'.c:"C°C"C'.C'

' '
;_J,J,.JJ~ ... •

BBBB u u N N [l[l[l[I y '(H H F'F'F'F' ssss

B B u u N N [I [I y y H H F' F' s

B f(u u NN N [I [I y y H H F' F' s

BBf<f(u u N N N [I [I y HHHHH F'F'F'F' SSS

B B u u N NN [I [I y H H F· s

B B u u N N [I [I y H H F' s

BBBB uuuuu N N [l[l[l[I y H H F' ssss

START User BUNDY HPS [400,405] Job QUART! Sea, 6475 Date 20-Maw-81 12:07l46 Monitor ERCC ICF DECIO 7,01(0471 *START*
File: DSKA:OUARTI,SOL<005>[400,405,MYF'RES,CUBIC,SF'ECJ Created! 20-May-81 12:00:29 F'rinted: 20-May-81 12:oe:01
QUEUE Switches: /FILE!ASCII /C0F'IES:1 /SF'ACING!l /LIMIT!62 /FORMS!NORMAL

'

f- auart1c(A),
~olvins a* x - 4 + b * x - 3 t c * x - 2 + d * x + e = 0 for x
Trw1ns to sPec1alize Polwnomial to eliminate H-3
term and reduce coefficient of x-4 to 1

Formed eauation c3 + c2 * wl +cl* wl - 2 + 1 * w1 - 4

~PPlYing substitution
wl al * >: + bl

to
c3 + c2 * Yl +cl* Yi - 2 + 1 * Yl - 4

gives :
c3 + c2 * (al* x + bl) +cl* (al* v + b1) - 2 +(al* x + bi) - 4

Eauating coefficients of x

Simultaneouslw solving :
a al - 4
b bl * al - 3 * 4
c (cl+ bl - 2 * 6) * al - 2
d c2 * al t cl* al* bl * 2 t al* bl - 3 * 4
e c3 t c2 * bl t cl* bl - 2 t bl - 4

For [al, bl, cl, c2, c3J,
Solving a= al - 4 for al

? I assume al Positive,

al a ~ (1/41
(bw Isolation)

Answer is
Xl

where !
Xl = al= a - (1/4)

APPlwing substitution
al a - (1/4)

to
b
C

d
e =

s1.ves

bl * al - 3 * 4
(cl t bl - 2 * 6) * al
c2 *al+ cl* al* bl
c3 + c2 * bl t cl* bl

b bl * a - (3/4) * 4

- 2

* 2 + - 2 +

c (cl t bl - 2 * 6) * a - (1/2)

al* bl
bl - 4

d c2 * a - (1/4) +cl* a - (1/4) * bl * 2
e = c3 t c2 * bl + cl * bl - 2 + bl - 4

Solv1ns b = bl * a - (3/4) * 4 for bl

bl * a - (3/41 b * (1/4)
(b·,; Isolati.on)

9 1 assume a positive,

bl = b * (1/4) *a~ (-3/4)

* 4

+ a - Cl/41 * bl - 3 * 4

)

)

2

(bw Isolation>

Answer 1s
Xl

where :
X1 = b1 = b * a - (-3/4) * (1/4)

APPlwing substitution
b1 b * a - (-3/4) * (1/4)

to
c (cl t b1 - 2 * 6) * a - (1/2)
d c2 * a - (1/4) +cl* a - (1/4) * bl * 2 + a - (1/4) * b1 - 3 * 4
e = c3 + c2 * b1 +cl* b1 - 2 + b1 - 4

gives
c (c1 + (b * a - (-3/4) * (1/4)) - 2 * 6) * a - (1/2)
d c2 * a - (1/4) + cl * a - (1/4) * b * a - (-3/4) * (1/2) + a - (1/4) * (b * a - (-3/4) * (1/4)) - 3 * 4
e = c3 + c2 * b * a - (-3/4) * (1/4) + cl * (b * a - (-3/4) * (1/4)) - 2 + (b * a - (-3/4) * (1/4)) - 4

Solving c = (cl+ (b * a - (-3/4) * (1/4)) - 2 * 6) * a - (1/2) for cl

cl+ (b * a - (-3/4) * (1/4)) - 2 * 6 = c * a - (-1/2)
(bw Isolation>

cl= c * a - (-1/2) + -1 * ((b * a - <-3/4) * (1/4)) - 2 * 6)
(bw Isolation>

Answer is
Xl

where :
Xl = cl = c * a - (-1/2) t b * a - (-3/4) * b * a - (-3/4) * (-3/8)

APPlwing substitution
cl c * a - (-1/2) + b * a - (-3/4) * b * a - (-3/4) * (-3/8)

to
d = c2 * a - (1/4) +cl* a - (1/4) * b * a - (-3/4) * (1/2) + a - (1/4) * (b * a - (-3/4) * (1/4)) - 3 * 4
e = c3 + c2 * b * a - (-3/4) * (1/4) +cl* (b * a - (-3/4) * (1/4)) - 2 + (b * a - (-3/4) * (1/4)) - 4

gives
d = c2 * a - (1/4)

* (b * a - (-3/4) *
e = c3 + c2 * b *

+ (b * a - (-3/4) *

+ (c * a
(1/4)) - 3
a - (-3/4)
(1/4)) - 4

- (-1/2)

* 4
* (1/4)

+

+

b * a - (-3/4) * b * a - (-3/4) * (-3/8)) * a - (1/4) * b * a - (-3/4) * (1/2) + a - (1/4

Cc* a - (-1/2) + b * a - (-3/41 * b * a - (-3/4) * (-3/8)) * (b * a - (-3/4) * (1/4)) -

Solving d = c2 * a - (1/4) + (c * a - (-1/2) + b * a - (-3/4) * b * a - (-3/4) * (-3/8)) * a - (1/4) * b * a - (-3/4) * (1/2) + a -
(1/4) * (b * a - (-3/4) * (1/4)) - 3 * 4 for c2

c2 * a - (1/4) + (c * a - (-1/2) + b * a - (-3/4) * b * a - (-3/4) * (-3/8)) * a - (1/4) * b * a - (-3/4) * (1/2) = d + -1 * (a
- (1/4) * (b * a - C-3/4) * (1/4)) - 3 * 4)

Cbw Isolation)

c2 * a - (1/4) = d + -1 * <a - (1/4) * (b * a - (-3/4) * (1/4)) - 3 * 4) + -1 * ((c * a - (-1/2) + b * a - (-3/4) * b * a - (-3/
4) * C-3/8)) * a - (1/4) * b * a - (-3/4) * (1/2))

(bw Isolation)

c2 = (d + -1 * (a - (1/4) * (b * a - (-3/4) * (1/4)) - 3 * 4) + -1 * ((c * a - (-1/2) + b * a - (-3/4) * b * a - (-3/4) * (-3/8)
) * a - (1/4) * b * a - (-3/41 * (1/2))) * a - (-1/4)

(bw Isolation)

nnswer lS

X1
where :

Xl c2 = d * a - (-1/4) + c * a - C-1/2) * a - (1/41 * a - (-3/41 * a - <-!/4) * b * (-1/21 + (a - (1/4) * a - (-3/4) * a - <-
3/41 * a - (-3/4) * (-1/16) + a - (-3/4) * a - (-3/4) * a - (1/4) * a - (-3/4 1 * (3/16)) ta - (-1/4) * b - 3

APPlw1ng substitution
c2 = d * a - (-1/4) + c * a - (-1/2) * a '(1/4) * a - (-3/4) * a - (-1/4) * b * (-1/2) + (a - (1/4) * a - (-3/4) * a - (-3/4) *

3 - <-3/41 * (-1/16) + a - <-3/4) * a - <-3/4) * a - (1/4) * a - (-3/41 * (3/161) * a - (-1/4) * b - 3

to
e c3 + c2 * b * a - (-3/4) * (1/4) + Cc* a - <-1/21 + b * a - (-3/41 * b * a - <-3/4) * (-3/8)) * (b * a - (-3/4) * (1/411 -

-, + (b * a - (-3/41 * (1/411 - 4

gives
e = c3 + (d * a - (-1/4) + c * a - (-1/21 * a - (1/4) * a - (-3/4) * a - (-1/4) * b * (-1/21 + <a - (1/4) * a - <-3/41 * a - (-3

/4) * a - (-3/4) * (-1/16) + a - (-3/4) * a - (-3/4) * a - (1/41 * a - (-3/4) * (3/16)) * a - f-J/4) * b - 3) * b * a - (-3/4) * (1/
41 + (c * a - (-1/2) + b * a - (-3/4) * b * a - (-3/4) * (-3/8)) * (b * a - (-3/4) * (1/4)) - 2 + (b * a - (-3/4) * (1/4)) - 4

Solving e c3 + (d * a - (-1/4) + c * a - (-1/2) * a - (1/4) * a - (-3/4) * a - (-1/4) * b * c-1/21 + (a - (1/4) * a - (-3/4) * a -
(-3/4) * a - (-3/4) * (-1/16) + a - (-3/41 * a - (-3/4) * a - (1/4) * a - (-3/4) * (3/161) * a - f-1/4) * b - 3) * b * a - (-3/4) *
(1/4) + Cc* a - (-1/2) + b * a - (-3/4) * b * a - <-3/41 * <-3/811 * (b * a - <-3/41 * (1/411 - 2 + <b * a - <-3/4) * (1/4)) - 4 f

or c3

c3 + (d * a - (-1/41 + c * a - (-1/2) * a - (1/4) * a - (-3/4) * a - (-1/4) * b * (-1/2) + (a - (l/41 * a - (-3/4) * a - (-3/41
* a - (-3/4) * (-1/16) + a - (-3/4) * a - (-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - (-1/4) * b - 3) * b * a - (-3/4) * (1/4) +

Cc* a - <-1/2) + b * a - (-3/41 * b * a - (-3/41 * (-3/8)) * (b * a - (-3/4) * (1/411 - 2 = e + -1 * (b * a - (-3/41 * (1/411 - 4
(bw Isolation)

c3 + (d * a - (-1/4) + c * a - (-1/2) * a - (1/4) * a - (-3/41 * a - (-1/4) * b * (-1/2) + Ca - (1/4) * a - (-3/41 * a - (-3/4)
* a - (-3/4) * (-1/16) + a - (-3/4) * a - (-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - (-1/4) * b - 3) * b * a - (-3/4) * (1/4) =

e + -1 * (b * a - (-3/4) * (1/4)) - 4 + -1 * ((c * a - (-1/2) + b * a - (-3/4) * b * a - (-3/4) * (-3/8)) * (b * a - (-3/4) * (1/4)
) - 2)

(by Isolation)

c3 = e + -1 * (b * a - (-3/4) * (1/4)) - 4 + -1 * (Cc* a - (-1/2) + b * a - (-3/4) * b * a - <-3/4) * (-3/8)) * (b * a - C-3/4)
* (1/4)1 - 21 + -1 * ((d * a - (-1/4) + c * a - (-1/21 * a - Cl/4) * a - <-3/41 * a - (-1/4) * b * (-1/2) + Ca - (1/4) * a - <-3/4)
* a - (-3/4) * a - (-3/4) * (-1/16) + a - <-3/4) * a - (-3/4) * a - (1/4) * a - (-3/41 * (3/1611 * a - (-1/4) * b - 31 * b * a - (-

3/4) * (1/4))
(by Isolation)

Answer 1s
Xl

where :
Xl = c3 = e + d * a - (-1/4) * a - (-3/4) * b * (-1/4) + (a - '-1/2) * a - (-3/4) * a - (-3/4) * (-1/161 + a - (-1/2) * a - (1/

4) * a - (-3/4) * a - (-1/41 * a - (-3/41 * (1/8)) * c * b - 2 + (a - C-3/41 * a - (-3/41 * a - (-3/4) * a - (-3/4) * (-1/2561 + a -
(-3/4) * a - (-3/4) * a - (-3/4) * a - (-3/4) * (3/128) + (a - (1/4) * a - (-3/41 * a - (-3/41 * a - (-3/41 * (-1/16) + a - <-3/4)

* a - (-3/4) * a - (1/4) * a - (-3/41 * (3/16)) * a - (-1/4) * a - (-3/4) * (-1/4)) * b - 4

APPlwing substitution
c3 = e + d * a - (-1/4) * a - (-3/41 * b * (-1/41 + (a - (-1/21 * a - (-3/4) * a - (-3/4) * (-1/16) + a - (-1/2) * a - (1/41 * a

- (-3/41 * a - (-1/4) * a - (-3/4) * (1/8)) * c * b - 2 + Ca - (-3/4) * a - (-3/4) * a - <-3/4) * a - (-3/4) * (-1/256) + a - (-3/4
> * a - c-3/4) * a - (-3/4) * a - (-3/4) * (3/1281 + (a - (1/4) * a - (-3/4) * a - (-3/4) * a - (-3/4) * (-1/16) + a - (-3/41 * a -
(-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - (-1/4) * a - <-3/4) * (-1/4)) * b - 4

to

gives

)

'
J

)

S 11tisti.tut1ng back. in c3 sol1Jtion
APPlsi.ns substitution

to
c3 = e t d * a - (-1/4) * a - (-3/4) * b * (-1/4) + (a - (--1/2) * a - r-3/4) * a - (-3/4) * (-·1/16) + a - (-1/2) * a - (1/4) * a

- (-3/4) * a - (-1/4) * a - (-3/4) * (1/8)) * c * b - 2 + (a - (-3/ 4) *, - (-3/4) * a - (-3/4) * a - (-3/4) * (-1/256) + a - (-3/4 ,
> * a - (-3/4) * a - (-3/4) * a - (-3/4) * (3/128) + (a - (1/4) * a - <-314) * a - 1-3/4) * a - (-3/4) * (-1/16) + a - (-3/4) * a - ••
(-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - (-1/4) * a - (-3/4) * <-·!14)) * b - 4

91ves :

c3 = e + d * a - (-1/4) * a - (-3/4) * b * (-1/4) + (a - (-1/2) * a - (-3/4) * a - (-3/4) * (-1/16) + a - (-1/2) * a - (1/4) * a
- (-3/4) * a - (-1/4) * a - (-3/4) * (1/8)) * c * b - 2 + (a - (-3/4) * ~ - (-3/4) * a - (-3/4) * a - (-3/4) * (-1/256) + a - (-3/4

> * a - (-3/4) * a - (-3/4) * a - (-3/4) * (3/128) + (a - (1/4) * a - <-314) * a - (-3/4) * a - (-3/4) * (-1/16) + a - (-3/4) * a -
(-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - (-1/4) * a - (-3/4) * (-l/4)) * b - 4

Substituting back in c2 solution
APPl~1ns substitution

true
c3 = e + d * a - (-1/4) * a - (-3/4) * b * (-1/4) + (a - (-1/2) * a - !-3/4) * a - (-3/4) * (-1/16) + a - (-1/2) * a - (1/4) * a ~

- (-3/4) * a - (-1/4) * a - (-3/4) * (1/8)) * c * b - 2 + (a - (-3/4) * a - (-3/4) * a - (-3/4) * a - (-3/4) * (-1/256) + a - (-3/4
> * a - (-3/4) * a - (-3/4) * a - (-3/4) * (3/128) + (a - (1/4) * a - (-3/4) * a - (-3/4) * a - (-3/4) * (-1/16) + a - (-3/4) * a -
(-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - (-1/4) * a - (-3/4) * (-1/4)) * b - 4

to
c2 = d * a - (-1/4) + c * a - (-1/2) * a - (1/4) * a - (-3/4) * a - (-1/4) * b * (-1/2) + (a - (1/4) * a - (-3/4) * a - (-3/4) *

a - <-3/4) * (-1/16) + a - (-3/4) * a - (-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - (-1/4) * b - 3

gives :
c2 = d * a - (-1/4) + c * a - (-1/2) * a - (1/4) * a - (-3/4) * a - 1-1/4) * b * (-1/2) t (a - (1/4) * a - (-3/4) * a - (-3/4) *

a - (-3/4) * (-1/16) + a - (-3/4) * a - (-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - (-1/4) * b - 3

Substituting back in cl solution
APPl~ins substitution

true & c3 = e + d * a - (-1/4) * a - (-3/4) * b * (-1/4) + (a - (-1/2) * a - (-3/4) * a - (-3/4) * (-1/16) + a - (-1/2) * a - (1
/4) * a - (-3/4) * a - (-1/4) * a - (-3/4) * (1/8)) * c * b - 2 + (a - (-3/4) * a - (-3/4) * a - 1-3/4) * a - (-3/4) * (-1/256) + a
- (-3/4) * a - (-3/4) * a - (-3/4) * a - (-3/4) * (3/128) + (a - (1/4) * a - (-3/4) * a - (-3/4) * a - (-3/4) * (-1/16) + a - (-3/4)
* a - (-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - (-1/4) * a - (-3/4) * (-1/4)) * b - 4

c2 = d * a - (-1/4) + c * a - (-1/2) * a - 11/4) * a - (-3/4) * a - (-1/4) * b * (-1/2) + Ca - (1/4) * a - (-3/4) * a - (-3/4) *
a - (-3/4) * (-1/16) + a - (-3/4) * a - (-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - 1-1/4) * b - 3

to
cl= c * a - (-1/2) + b * a - (-3/4) * b * a - (-3/4) * (-3/8)

sives :
cl= c * a - (-1/2) + b * a - (-3/4) * b * a - (-3/4) * (-3/8)

Substituting back in bl solution
APPlsir,g substitution

(true & c3 = e + d * a - (-1/4) * a - (-3/4) * b * (-1/4) t (a - (-1/2) * a - (-3/4) * a - (-3/4) * (-1/16) + a - (-1/2) * a - (
1/4) * a - (-3/4) * a - (-1/4) * a - (-3/4) * (1/8)) * c * b - 2 + (a - (-3/4) * a - (-3/4) * a - (-3/4) * a - (-3/4) * (-1/256) + a

- (-3/4) * a - (-3/4) * a - (-3/4) * a - (-3/4) * (3/128) + (a - (1/4) * a - (-3/4) * a - (-3/4) * a - <-3/4) * (-1/16) + a - (-3/4
) * a - (-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - (-1/4) * a - (-3/41 * (-1/4)) * b - 4) & c2 = d * a - (-1/4) + c * a - (-1/2
) * a - (1/4) * a - (-3/4) * a - (-1/4) * b * (-1/2) + Ca - (1/4) * a - (-3/4) * a - (-3/4) * a - (-3/4) * (-1/16) + a - (-3/4) * a
- (-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - (-1/4) * b - 3

cl= c * a - (-1/2) + b * a - (-3/4) * b * a - (-3/4) * (-3/8)

to
bl = b * a - (-3/4) * (1/4)

91ves !

1

bl = b * a - (-3/4) * (1/4)

Substituting back 1n al solution
APPlw1ng substitution

((true & c3 = e + d * a - (-1/4) * a - (-3/4) * b * (-1/4) + (a - 1-1/21 * a - (-3/4) * a - 1-3/4> * (-1/161 + a - (rl/2) * a -
(1/4) * a - (-3/4) * a - (-1/4) * a - (-3/4) * (1/8)) * c * b - 2 + (a - (-3/4) * a - (-3/4) * a - <-3/4) * a - 1-3/4) * (-1/256) +
a - (-3/4) * a - (-3/4) * a - <-3/41 * a - (-3/4) * (3/128) + (a - (1/4) * a - 1-3/41 * a - <-3/4) * a - <-3/4) * <-1/16) + a - <-3/
4) * a - (-3/4) * a - (1/4) * a - 1-3/4) * (3/16)1 * a - <-1/4) * a - (-3/4) * <-1/4)1 * b - 41 & c2 = d * a - (-1/4) + c * a - (-1/
21 * a - (1/4) * a - (-3/4) * a - (-1/4) * b * <-1/21 t (a - (1/41 * a - (-3/4) * a - (-3/4) * a - (-3/4) * (-1/16) + a - (-3/41 * a

- (-3/4) * a - (1/4) * a - (-3/41 * (3/16)) * a - (-1/41 * b - 3) & cl= c * a - (-1/21 + b * a - (-3/41 * b * a - (-3/4) * (-3/8)
bl = b * a - (-3/4) * (1/4)

to
al= a - (1/4)

~1ves :
al= a - (1/4)

Final Answers are
C < C C Xl & X2 l & X3) & X4) & XS >

where :
Xl = c3 = e + d * a - (-1/4) * a - (-3/4) * b * (-1/41 + (a - (-1/2) * a - (-3/4) * a - (-3/4) * (-1/16) + a - (-1/2) * a - (1/

4l * a - (-3/4) * a - (-1/41 * a - (-3/41 * (1/8)) * c * b - 2 t (a - (-3/4) * a - (-3/4) * a - (-3/4) * a - (-3/4) * (-1/256) + a -
(-3/4) * a - (-3/4) * a - (-3/4) * a - (-3/4) * (3/128) + <a - (1/4) * a - (-3/4) * a - (-3/41 * a - (-3/4) * (-1/16) + a - (-3/4)

* a - (-3/4) * a - (1/4) * a - (-3/4) * (3/16)) * a - (-1/4) * a - (-3/4) * (-1/4)) * b ~ 4

X2 = c2 = d * a - (-1/4) + c * a - (-1/2) * a - (1/4) * a - (-3/4) * a - (-1/4) * b * (-1/2) + (a - (1/4) * a - (-3/4) * a - (-
3/4) * a - (-3/4) * (-1/16) + a - (-3/4) * a - (-3/4) * a - (1/4) * a - (-3/4) * (3/161) * a - (-1/4) * b - 3

X3 cl= c * a - (-1/21 t b * a - (-3/41 * b * a - (-3/4) t (-3/8)
X4 bl = b * a - (-3/41 * (1/41
X5 al= a - (1/4)

Solving c3 t c2 * Yl t cl * Yl - 2 t 1 * Yl - 4 = 0 for Yl

no
: ?- core 97280 (68096 lo-seg + 29184 hi-sesl
heap 62976 60938 in use+ 2038 free
slobal 1187 16 in use+ 1171 free
local 1024 16 in use+ 1008 free
trail 511 0 in use+ 511 free

2,76 sec, for 2 GCs gainins 84917 words
1,81 sec, for 56 local shifts and 72 trail shifts

23,56 sec, runtime

.l~ ::f:: n-1 1::~ rn .2= t~ c~ ,.:,.
FILE IN POWERFUL MATCHER *I

consult(match: 'match.PI'),
consult(match: 'hard.PI'>,
consult(match: 'bass.Pl'>,
consult(match: 'exPr.pl'),
consult(match: 'memo,Pl'),
consult(match: 'Pick.PI'>,
consult(match: 'fuzzs,Pl'),
consult(match: 'trform.Pl'),
consult(match: 'Portra.Pl'>,
consult(match: 'misc.PI'>,
consultCmatch: 'featur,Pl'),
consult(match: 'inst,Pl'),
consult('test,Pl').·

I* additions to PRESS *I
:- consult('collec,Pl'),

consult(match: 'tidY,Pl'>,
consult(match: 'isolax,Pl'),
consult(match: 'smrt,Pl').

Patches to PRESS *I
reconsult('collax.Pat'),
reconsult(match: 'decomPoPat'>,
reconsult(match: 'interv,Pat').

~ . t \.
-,

COLLECTION ROUTINE TO INVOKE POl.a.lE~~L MATCHER

collectCX,Old,Newl> :
least_domCX,Old), *I

'
"-,._

---~,.

flaS(trY_hard,true,true>, ~

trace('\ntrYins to use Powerful matcher to collect
[X,,OldJ,3),

features(Old,X,FExPr),
I* select a collection axiom *I
trace('features of expression are %P\n',EFExPrJ,4>,
trace('lookins for a collection rule with matchins features\n\n',4),
collax(Us,LHS,RHS>,
I* bind all rule variables to random atoms *I
instantiate(LHS,PatternVars>,
I* chose a collection variable in rule and work out features wrt it *I
wordsin(Us,Ul>, member(U,Ul),
features(LHS,U,FRule>,
I* make sure the features of the expression and the rule match *I
match_cut(FExPr,FRule,X,U,Subst,NewPVars>, !,
aPPend(NewPVars,PatternVars,PatternVarsl>,

~ I* aPPlY resultins substitution to rule and Put in Pnf *I
subst(Subst,LHS,LHSl>, subst(Subst,RHS,RHSl>,
Poly_form([XJ,LHS1,LHS2),
I* PrePare for and aPPlY rule *I
make_descriPtion(Old,X,[J,Old_D),
11-,;:1ke .. ~de,-,..:;.cr:i.Ption (LHS2, X, PatternVat•sl, LHS_D) '}
make_descriPtion(RHSl,X,PatternVarsl,RHS_D),
aPPlY_rule(Old_D , rule(LHS_D,RHS_D) , New_D),
exPr(New_D,New>,
t.idY(Net-J,Ne1..-J1),
trace('%P collected in%? eives %c\n 1 ,[X,Old,New1J,2J.

try_hard_to_solve(Ean,Unknown,Ans) :-
I* solve the eauation usine Powerful matcher *I
flas(try_hard,Old,true>,
solve(Ean,Unknown,Ans>,
flae(try_hard,_,Old).

Match features of exPr and rule and return substitution *I

I* FExPr are identical except for the difference in variable *I
match_cut(FExPr, FRule, X, U, U=X, [J) 1-

subst(U=X, FRule, FExPr).

I* Special hack for cubic *I
match_cut(FExPr, FRule, X, U, cos(UJ=X*Q~(-1) I U=arccosCX*Q-(-1))y [QJ) :-

eensYm (c~, Q > ,
subst(cos(U)=X, FRule, FExPr>.

6ollax(U, sin(U>*cos(U) , sin<2*U>*2- (-1) > ,

collax(U&V, sin(U>*cos(V>+ -l*(cos(U)*sin(V)) , sin(U+ (-l*V>>) •

collax(U, cos<U>*cos<V>+ -l*<sin<U>*sin(V)) , cos(UtV)) ,

collax(U, cos<U>*cos<V>+sin(U>*sin(V) , cos<U+ (-l*V>>) •

collax< U, casCU>*sin(U)~(-1) , cot<U>).

collax(U, u-3 + 3*U-2*V + 3*U*U~2 + v-3, <U+V>~3),
r,-'~

t ~

/* tests ?or Power?ul matcher*/

dis,tr·ib1. : .. _ try_hard_to_solve(a*~•~t}{ = }{·-2, }-~, Ans) •

distr·j_b2 :- try_hard_to_solve(a%}-~-!-, = >!·--2,. ~{, Ans) •

dj_strib3 :- trY_hard_to_solve(>t+}·{ = ~-f-2, }♦::, Ans.) •

/* the ?ollowina two examples are ~rom McArthur I Keith,
Intermediate Alsebra */

MM MM MM MM MM MM AAAAAA SSSSSSSE;
MM. MM MM MM MM MM AAAAAf'~ sE=ssssss
MMMM MMMM MMMM MMMM MMMM MMMM AA AA SS
MMMM MMMM MMMM MMMM MMMM MMMM AA AA SS
MM MM MM MM MM MM MM MM MM AA AA SS
MM MM MM MM MM MM MM MM MM AA AA C:-C· -··-'
MM MM MM MM MM MM AA AA S~;SSE;S
MM MM MM MM MM , MM AA AA E=SSf)SS
MM MM MM MM MM MM AAAAAAAAAA C'C

-.J.•-'

MM MM MM MM MM MM AAAAAAAAAA r-c• ·=>-·
MM MM MM MM ❖ ❖ ❖ "Jo MM MM AA AA SS
MM MM MM MM ❖ ❖ ❖ ❖ MM MM AA AA 8-c-

--·
MM MM MM MM ❖ t ❖ ❖ MM MM AA AA ssss~=sss
MM MM MM MM ❖ ❖ ❖ ❖ MM MM AA AA ssssssss

44 44 000000 000000 44 44 000000 555555~;~
44 44 000000 000000 44 44 000000 C-" c- c-c·~ c· c· 1

-.J-..J._t..,. .. rJ._.1~1~

44 44 00 00 00 00 44 44 00 00 55
i 44 00 00 00 00 44 44 00 00 c-i::-._,._,

., ~4 44 00 0000 00 0000 44 44 00 0000 c· c- c:· c:· c:· c:"'
._t .J ._t:.::, ·-' ._,

44 44 00 0000 00 0000· 44 44 00 0000 I: c:· c:· C'.' c- C"' ._, ._, . ___, .J

4444444444 00 00 00 00 00 00 4444444444 00 00 00 .,,., ... , ~
4444444444 00 00 00 00 00 00 4444444444 00 00 00 c·,

'J,

44 0000 00 0000 00 44 0000 00
44 0000 00 0000 00 44 0000 00
44 00 00 00 00 f ' !' SJ 44 00 00 c:·c·

,._f;J

44 00 00 00 00 , , , , 44 00 00 c:·c:·
._I,_}

44 000000 000000 SJ , 44 000000 ~C:- J::"' C" C- l
~-' ._I ~:;J. ~-•' ._1.

44 000000 000000 ' ' 44 000000 c-c·~t:·C".1
._f ._t , .. J -..,J . ._t.

BBBB u U-N N DDDD y y H H pppp ssss
B B u u N N D D y y H H p p s
B B LI u NN N D D y y H H p p C --·
llBBB u u N N N D D "'(HHHHH pppp SSS

B u LI N NN n D ':(H H p s
~r: B IJ u N N D D y H H p ~ ·-

BBBB l!IJUUU N N DDDD y H H C• ssss I

START User BUNDY HPS [400,405] Job MM SeG. 3069 Date 05-Feb-81 14:37:09
File: DSKA:MM.MAS<005>[400,421,MATCHJ Created: 26-Jan-81 10119105 Printed: 05-F
QUEUE Swilches: /FILEIASCII /COPIESl1 /SPACINGi1 /LIMITIB1 /FORMSINORMAL

SUBFILE: MM.SUB @18:47 5-AUG-1980 <005> (55)
mm.sub
fiiin
match,Pl
hard,Pl
bass,Pl
exPr,Pl
memo.PI
Pick.PI
fUZZY+Pl
trform,Pl
Portra.Pl
misc.PI
featur.Pl
inst.PI
test.Pl
learn.PI
ltest,Pl
collec.Pl
chanae.Pl
tidYePl

solax.Pl
sGrt,Pl
collax,Pat
decomP,Pat
interv,Pat
PolY+Pat
IoS,Pl
Paths.PI

SUBFILE: FILIN. @1315 21-APR-1980 <005> (163)
I* FILE IN POWERFUL MATCHER *I

I* new Procedures *I
:- consult('match1Pl'>,

consult('hard.pl'),
consult('ba•s.Pl'),
consult('exPr.Pl'),
consult('memo.pl'),
consult('Pick.Pl'),
consult('fuzzw.Pl'),
consult('trform.Pl'>,
consult('portra.Pl'>,
consult('misc,Pl'>,
consult('featur.Pl'),
consult('inst.Pl'),
consult('test.Pl'),

I* stuff to learn how to solve specialized kinds of emuations *'
:- consult('learn.Pl'>,

consult('ltest.Pl').

I* additions to PRESS *I
:- consult('collec.Pl'>~

consult('chanse.Pl'>,
consult('tidY1Pl'>,
consultC'isolax,Pl'>,
consult('smrt.Pl').

I* Patches to PRESS *I
:- reconsult('collax.pat'),

recpnsult('decomP.Pat'>,
reconsult('·interv,Pat'),
reconsult('PolY1Pat').

J

- 1/l ------ •

SUBFILES MATCH.PL 118:9 23-APR-1980 (005> (338)
/* POWERFUL ALGEBRAIC MATCHER*/

/* The ar•uments to 0 aPPlY_ruleu are as follows:

ExPr - the expression beins transformed
Rule - the rewrite rule beins aPPlied
New_ExPr - the result of aPPlYins the rule to ExPr

The swmbolic Guantities in the expression and the rule are assumed
to be standardized apart.*/

aPPlY_rule(ExPr, rule(Pattern,RePlacement) , New_ExPr) :
exPr(ExPr,EE>, exPr(Pattern,EP), exPr(RePlacement,ER>,
trace('trwin• to aPPlY rule %P -> %P\n
match(ExPr,Pattern,Transform>,
aPPlY_transform(Transform,RePlacement,New_Expr),
! ❖

/* match is called as follows:
match(ExPr,Pattern,Transform)

where
ExPr is the expression or subexPression bein• matched
Pattern is the left hand side of the rule (or a subpart of it)
Transform is returned - it is a transformation (functions to be aPPlied,

substitutions, and Possibly chanse of unknown)
that makes ExPr=Pattern */

/* SIMPLE CASES -- IMMEDIATE MATCH OR SIMPLE SUBSTITUTION*/
match(ExPr,Pattern,Transform> :-

expr(ExPr,E>, exPr(Pattern,E>,
null_transform(Transform),
trace('triviallY matchins %P and %P\n',CE,EJ,4>,
! ❖

datch(ExPr,Pattern,Transform) :
expr(Pattern,Var>,
atom(Var),
Pattern_vars(Pattern,PatternVars>,
member(Uar,PatternVars>,
exPr(ExPr,E>,
make_substitution_transform(Var=E,Transform>,
trace('matchins %P and %P bw usins substitution\nreturnins %P\n',

CE,Uar,TransformJ,4>,

/* HARD MATCH - USE MEMO*/
match(ExPr,Pattern,Transform> :-

memo(hard_match(ExPr,Pattern,Transform> >,
! ❖

\\\\\

SUBFILE: HARD.PL @16:45 30-APR-1980 <005> (652)
/* PROCEDURES FOR NON-TRIVIAL MATCHES*/

/* There are two ways of accomPlishins a hard match:
by matchins subexPressions (0 matchl 9) -- this maY involve

bas matches, and aPPlYins functions to the RHS of the rule;
or bY solving for a variable in the rule (umatch2°).

The subsoals matchl and match2 are used to Prevent backtrackins
amons the cases of matchl. */

hard_match(ExPr,Pattern,Transform) :
matchl(ExPr,Pattern,Transform>,
exPr(ExPr,E), exPr(Pattern,P>,
trace('match succeeded on expression %P and Pattern %P\nreturnins %P\n\n',

[E,P,TransformJ,4>+

hard_match(ExPr,Pattern,Transform) :
exPr(ExPr,E>, exPr(Pattern,P>,
trace('match failed on %P and %P\n',[E,PJ,4>,
match2(ExPr,Pattern,Transform>,
trace('solvins for a variable succeeded in matchins expression %P\n',

EEJ,4>,
trace('

/* matchl procedures to convert to bass for+ and* *I

match1(ExPr,Pattern,Transform) :-
exPr(ExPr,E>, expr(Pattern,P>,
(E=_+_; P=_+_ >,
! I'

convert_and_match(t,ExPr,Pattern,Transform>.

match1<ExPr,Pattern,Transform> :-
exPr(ExPr,E>, exPr(Pattern,P>,
< E=-*-; P=-*- >,
! ,.
convert_and_match<*,ExPr,Pattern,Transform).

/* MATCHING OTHER KINDS OF FUNCTIONS *I

match1(ExPr,Pattern,Transform) :
exPr(ExPr,E>, exPr(Pattern,P>,
trace('trYinS to match expression %P and Pattern %P\n',

EE,P:t,4>,
/* ExPr and Pattern must have the same functor *I
functor(E,F,N>, functor(P,F,N>,
match_parts<ExPr,Pattern,1,N,Transform>.

match_Parts<ExPr,Pattern,J,N,Transform> :
J>N,

null_transform(Transform>,
! ,;

match_Parts(ExPr,Pattern,J,N,T3> z-
subPart<ExPr,J,E1>, subPart(Pattern,J,Pl>,
match(E1.,P1,T1),
aPPlw_transform(T1,Pattern,P2>,
,..11 i =· ~.H· 1 ,
match_Parts<ExPr,P2,J1,N,T2>,
concat_transforms(T1,T2,T3>.

/* nMATCH2° -- SOLVING FOR A VARIABLE IN THE RULE*/

match2<ExPr,Pattern,_) :-
/* don't allow solvins for a variable at toP level*/
o~mers (E~{Pr·, [J >,
! !I

f•ai 1.

match2(ExPr,Pattern,Transform> :
pattern_var(Pattern,V>,
exPr(ExPr,E>, exPr(Pattern,P>,
contains(V,P>,
trace('\ntrwins to solve for a variable\n',4>,
trace('callins eauation solver to solve for %Pin %P\n\n',[V,E=PJ,4),
/* assert that a Particular rather than a Seneral solution

for Vis desired*/
assert(Particular_solution(V)>,
solve<E=P,V,SS>,
or_to_list(SS,SList>,
seJ.ect(U=SoJ.n,SList,_),
make_substitution_transform(V=Soln,T1>,
/* If the unknown in Pattern is the same as the unknown in ExPr (i.e.

there is no new unknown>, then the solution must be free of the
unknown; if solvins for the new unknown then the solution must
contain the unknown; otherwise, the solution must be free of both
the unknown and the new unknown*/

unknown<ExPr,UExPr>, unknown(Pattern,UPattern>,
<UPattern=UExPr -> freeof(UExpr,Soln>, Transform=T1.;

V=UPattern -> contains(UExPr,Soln), chanse_unknown(UExPr,Tl,Tran~form> ;
freeof(UExPr,Soln>, freeof(UPattern,Soln>, Transform=T1 >,

trace('usin• solution %P\n',CV=SolnJ,4>.

SUBFILE: BAGS.PL @14140 13-MAY-1980 <005> (659>
/* BAG PROCEDURES FOR POWERFUL ALGEBRAIC MATCHER*/

convert_and_match(OP,ExPr,Pattern,Transform> :
to_bas(OP,ExPr,ExPrBa•>,
to_bas(OP,Pattern,PatternBas>,
bas_match(ExPrBa•,PatternBas,Transform>.

/* TRIVIAL CASE - EMPTY BAGS*/
b~•-match(ExPr,Pattern,Transform> 1-

exPr(ExPr, bas(_,[J) >,
exPr(Pattern, bas(_,[]) >,
null_transform(Transform>,
! .

/* USE MEMO FOR OTHER CASES*/
~a•_match<ExPr,Pattern,Transform> :

expr(ExPr,E>, expr(Pattern,P>,
E=baS(Op,_),
(Op=+-> Name=Plus; DP=*-> Name=times >,
trace('trYins to match %t bass for expression %P\n',[Name,EJ,4),
trace(' and Pattern %P\n',[PJ,4),
memo(bas_match1(ExPr,Pattern,Transform> >.

/* TRY PICKING A TERM FROM EACH BAG AND MATCHING THESE TERMS*/
bas_match1(£xPr,Pattern,Transform> 1-

Pick_terms(ExPr,Pattern,E,P,ERest,PRest>,
trace(

'Pickins terms from expression I Pattern bass and trYins to match them\n',4),
matchCE,P,T1>,
aPPlY_transform(T1,PRest,PR1),
Cnull_transform(Tl) ->true;
exPr(PRl,RR>,
tra~e('aPPlYins transform to remainins terms in Pattern bas\n',4),
trace(' wieldins %P\n\n',CRRJ,4) >,

bas_match<ERest,PR1,T2>,
concat_transforms<T1,T2,Transform>.

/* IF THERE IS JUST A VARIABLE LEFT, TRY MAKING IT THE IDENTITY ELEMENT FOR
THE BAG. This may not work, so be Prepared to backtrack. */

bas_matchl(ExPr,Pattern,Transform> :
exPr(ExPr,bas(OP,CJ>>, exPr(Pattern,bas(OP,[VJ>>,
atom(V>,
Pattern_vars(Pattern,PatternVars>, member(V,PatternVars>,
unknown(Pattern,PUnknown>, U\==PUnknown,
identitY(OPrident),
make_substitution_transform(V=Ident,Transform>,
trace(1 trwina makins %P the baa identitw element %P\n',EV,Identl,4).

/* SEE IF THERE'S JUST A PATTERN VARIABLE IN THE PATTERN, AND RANDOM
JUNK LEFT IN THE EXPRESSION THAT'S FREE OF THE UNKNOWN*/

bas_match1(ExPr,Pattern,Transform) :
exPr(ExPr,Bas>, exPr(Pattern,bas(Op,[UJ>>,
Pattern_var(Pattern,V>, not unknown(Pattern,U>,
unknown(ExPr,EUnknown>, freeof(EUnknown,Bas>,
from_baS(ExPr,Junk>, expr(Junk,J>,
make_substitution_transform<V=J,Transform),
trace('substitutins %P for %P,n',CJ,VJ,4),

/* TRY ELIMINATING A TERM FROM EITHER THE EXPRESSION OR THE RULE BY MOVING
IT OR ITS INVERSE TO THE OTHER SIDE OF THE RULE *I

bas_matchl(ExPr,Pattern,Transform> ;
Perm2(ExPr,Pattern,Trs,_),
select_term(TrY,T,Rest>,
oP_distributes<T>,
e~•tPr(T,TT),
unknown<ExPr,EUnknown>, freeof(EUnknown,TT>,
unknown(Pattern,PUnknown), freeof(PUnknown,TT),
trace(1 dealin~ with term %P,n', ETTJ,4>,
trace(' by aPPlYins a function to each side of the rule,n',4),
exPr(TrY,baS(Op,_)),
(TrY=E~-~Pr ->

make_function_transform(OP,TT,T1>, !, bas_match(Rest,Pattern,T2> ;
make_inv_function_transform(OP,TT,Tl>, !, bas_match(ExPr,Rest,T2> >,

concat_transforms(T1,T2,Transform),

/* TRY INVOKING SOLVE-FOR-VARIABLE MATCH*/
bae_match1<ExPr,Pattern,Transform> :

from_bas(ExPr,E>, from_bas(Pattern,P>,
memo(match2(El'P,Transform> >,

/* FAILURE - OUTPUT A MESSAGE *I
bae_match1 (E~{Pr, Pat.tern,, Transform) t

exPr (ExPr, E >, exPr(Pattern,P>,
trace('bas mat.eh failed on %P and %P,n'l'CE,PJ,4>,
fail,

\ .. ,\.\\

SUBFILE: EXPR.PL @14145 13-MAY-1980 <005> (799)
I* EXPRESSION DESCRIPTIONS

An expression descriPtion is a data structure for describins expressions
and subexPressions for the Powerful matcher, alona with some associated
access Procedures.

data structure format:
expr_descriPtion<ExPr,Root,Unknown,PatternVars,Owners)

where
ExPr is the current expression
Root is the root of the expression tree, of which ExPr is a subexPression
Unknown is the current unknown
PatternVars is a list of the Pattern variables in Root
Owners is a list of owners of ExPr <sort of like a Path from the root>

I* ACCESS TO PARTS *I

exPr(exPr_descriPtion(ExPr,Root,Unknown,PatternVars,Owners) , ExPr) :- !.

root(exPr_descriPtion(ExPr,Root,Unknown,PatternVars,Owners> , Root> :- !.

unknown(exPr_descriPtion(ExPr,Root,Unknown,PatternUars,Owners> ,
Unknown> :- !.

swmbols(exPr_descriPtion(ExPr,Root,Unknown,PatternVars,Owners) , Swmbols) :
wordsin(Root,Swmbols>,
! •

Pattern_vars(exPr_descriPtion(ExPr,Root,Unknown,PatternVars,Owners) ,
PatternVars> :- !.

owners< expr_descriPtion(ExPr,Root,Unknown,PatternVars,Owners> , Owners> :- !.

I* REPLACING PARTS *I

new_expr(exPr_descriPtion(ExPr,Root,Unknown,PatternVars,Owners) ,
New_ExPr ,
expr_descriPtion(New_ExPr,Root,Unknown,PatternVars,Owners) > :- !.

new_owners(expr_descriPtion(ExPr,Root,Unknown,PatternVars,Owners) ,
New_Owners,
exPr_descriPtion(ExPr,Root,Unknown,PatternUars,New_Owners> > I- !.

new_unknown(expr_descriPtion<ExPr,Root,Unknown,PatternVars,Owners> ,
New_Unknown,
exPr_descriPtion(ExPr,Root,New_Unknown,PatternUars,Owners>) :- !.

new_Pattern_vars(exPr_descriPtion(ExPr,Root,Unknown,PatternVars,Owners> ,
New_PatternVars,
exPr_descriPtion(ExPr,Root,Unknown,New_PatternUars,Owners> > :- !.

/* TEST IF SOMETHING'S A PATTERN VARIABLE,
OR RETURN ONE NONDETERMINISTICALLY */

Pattern_var(expr_descriPtionCEhPr,Root,Unknown,PatternVars,Owners> , V > :
memberCV,PatternVars>.

TEST FOR EXPR THAT'S AN EMPTY BAG*/
empty(expr_descriPtion(basC_,[J),Root,Unknown,PatternVars,Owners) >.

/* MAKE A DESCRIPTION GIVEN AN EXPRESSION AND AN UNKNOWN*/

make_descriPtion< ExPr, Unknown, PatternVars,
expr_descriPtion(ExPr,ExPr,Unknown,PatternVars,[J) > :- !.

subpart(expr_descriPtion(ExPr,Root,Unknown,PatternVars,Owners) , N,
expr_descriPtion(SubExPr,Root,Unknown,PatternVars,NewOwners)) :

arsCN,ExPr,SubExPr),
add_owner(Owners,ExPr,NewOwners>,
! •

/* SELECT NONDETERMINISTICALLY A TERM FROM A BAG*/

select_termCExPr,T,Rest) :-
ExPr = expr_descriPtion(E, Root,Unknown,PatternVars,Owners>,
E = bas<OP,Arss),
select<A,Arss,ARest>,
add_owner<Owners,E,New_Owners),
T = expr_descriPtion(A, Root,Unknown,PatternVars,New_Owners>,
Rest= exPr_descriPtion(bas(OP,ARest>,

Root,Unknown,PatternVars,New_Owners).

/* ROUTINES TO KEEP TRACK OF OWNERS
~s the matcher is recursivelw called on expressions, it keeps track
of the enclosins expressions in a list of owners. Each item in the list
is a Pair such as Pair(first,t), Pair(other,+>, or Pair(first,sin). 9 firsta
or 0 other" indicates whether the term beins considered is the first element
of a baa beina matched.*/

/* Procedures for bass*/
add_owner([Pair(_,Op)!RestJ, bas(Op,_), [Pair(other,OP>lRestJ > :- !.
add_owner(Owners, bas(Op,_), [Pair(first,OP>IOwnersJ > I- !,

/* Procedures for other expressions*/
add_owher(Owners, ExPr, [Pair(first,OP)lOwners] > :

ExPr=.,[Opl_J,
! .

op_distributesCExPr) :
owners(ExPr,Owners>,
distributes_over_owners(Owners),

! ❖

distributes_over_owners([J) :- !.

distributes_over_owners([PJ) :- !.

distributes_over_owners([P1,P2/RestJ) :
dist1(P1,P2),
distributes_over_owners(CP2lRestJ).

distl(Pair(_,Qpl) , Pair(~irst,OP2) > :
distributes(OP1,0P2).

distributes<*,+>.

L1
~
~ SUBFILEI MEMO.PL 118118 11-AUG-1980 <005> (198)
r /* PROCEDURE THAT REMEMBERS PREVIOUSLY COMPUTED RESULTS

memo(Pred)
Pred is the predicate beins evaluated*/

memo(Pred) 1-
recorded(Pred,memo(Pred,Result),_),
< Result=fail ->

trace('lookins UP failure for\n XP\n',[Predl,4>, !, fail ;
trace('lookins UP result for\n XP\n',[PredJ,4)).

memo(Pred) :
call(Pred>,
/* Record result in data base if not there already.

If it is already there, fail and trY for another answer,
This check is necessary -- the Predicate maY have been called
Previously without all Possible results (includins the final fail> beins
senerated and recorded •. In this case, the Previously recorded results
will be re-senerated before new ones, Humble mumble,*/

< recorded(Pred,memo(Pred,Result),_) -> fail ;
recordz(Pred,memo(Pred,true),_)).

memo<Pred) 1-
/* all calls have failed -- record failure*/
recordz(Pred,memo(Pred,fail),_),
!, fail.

SUBFILE: PICK.PL @14149 13-MAY-1980 <005> (484)
/* AUXILIARY PROCEDURES FOR POWERFUL MATCHER

SELECT BEST TERMS TO MATCH FROM BAGS*/

Pick_terms(ExPr,Pattern,E,P,ERest,PRest) :
Pick_term(ExPr,E,ERest>,
features(E,EFeatures>,
select_term(Pattern,P,PRest>,
?eatures<P,PFeatures),
unknown<ExPr,EUnknown>, unknown(Pattern,PUnknown>,
fuzzy_match(EFeatures,PFeatures,EUnknown,PUnknown>,
/* extra check for Polwnomials -- check that powers are the same*/
exPr(E,EE>, exPr(P,PP>,
PowerCEE,EUnknown,Nl>,
Power(PP,PUnknown,N2>,
(EUnknown=PUnknown, inteser(Nl), inteser(N2> -> N1=N2; true>,
/* reJect if the match is non-trivial and

movins t.he terms to t.he other side would succeed */
<PFeatures=mumble, op_distributes<E>, not(match(EE,PP>> -> fail ; true).

/* PICK THE BEST TERM FROM A BAG TO TRY MATCHING NEXT*/

Pick_term<ExPr,T,Rest) :-
exPr(ExPr,E>, unknown(ExPr,Unknown>,
Picki(E,Unknown,TT,RR>,
owners<ExPr,Owners>,
add_owner(Owners,E,New_Owners),
new_exPr(Expr,TT,Tl>, new_owners(Tl,New_Owners,T>,
new_exPr(ExPr,RR,R1>, new_owners(Rl,New_Owners,Rest>.

--ickl(baS(OP,[TermJ) , Unknown, Term, baS(Op,[J) > :- !.

Pickl(bas(OP,[T1,T2lOthersJ) , Unknown, Term, bas(OP,[TBadlRestJ> > I
Pick_from_pair(T1,T2,Unknown,TGood,TBad),
Pickl(ba•<OP,[TGoodlOthersl) , Unknown, Term , baS(OP,Rest)),

/* Crock to handle Polwnomials - Just Pick term with unknown
to hi•hest Power. This also ha~dles terms free o? the unknown,*/

Pick_from_Pair(T1,T2,Unknown,TGood,TBad) :
Power(T1,Unknown,P1>,
Power(T2,Unknown,P2>,
(inteser(P1>, inte•er<P2>, Pl<P2 ->

TGood=T2, TBad=Tlf TGood=Ti, TBad=T2>,

/* Power(Term,Unknown,N) unifies N with the hiShest Power to which
unknown occurs in term if the unknown is to an inteser Power, or
to umumble 0 if to a non-inteser Power.

All the cuts and Junk are to Prevent unwanted backtrackin•• */

Power(Unknown,Unknown,N) :
! ,
N=l.

Power<X,Unknown,N> :
atomic(X>,
! ,
N=O.

Power(Unknown-N,Unknown,Nl> :
! ,
(inte•er(N) -> N1=N; Nl=mumble),

power([J,Unknown,N) :
! ,
N=O,

Power([HlTJ,Unknown,N> :
! '
Power(H,Unknown,Pl),
Power(T,Unknown,P2>,
(Pl=mumble -> N=mumble; P2=mumble -> N=mumble;

P1>P2 -> N=Pl; N=P2>,

Power<ExPr,Unknown,N> I-
! ,
ExPr=,.[OPIArasl,
Power(Arss,Unknown,N>+

'-...\.\\\

SUBFILE: FUZZY.PL @14:40 14-MAY-1980 <005> (169)
I* FUZZY MATCHER FOR USE WITH 8 FEATURE• STUFF *I

fuzzy_match(ExPr1,ExPr2,Unknown,New_Unknown) :
New_Unknown=false,
I ' • '
match(ExPr1,ExPr2),
! •

fuzzy_match(ExPr1,ExPr2,Unknown,New_Unknown> :
freeof(New_Unknown,ExPri),
freeof < New_Unknown, E;-~Pr2),
! '
match<ExPr1,ExPr2),
! .

fuzzy_match(ExPri,ExPr2,Unknown,New_Unknown> :-
I* At this Point, one and onlw one of the expr's should contain

New_Unknown, For fuzzy match, Just see that the other
expression contains Unknown *I

Perm2(ExPr1,ExPr2,E1,E2),
contains(New_Unknown,E2>,
contains<Unknown,E1>,
! •

I* ufeatures 0 will retain inteser Powers -- make sure that the match
umumbleu *I

❖
❖- asserts((match(I,M>
:- asserts((match<M,I>

:- inteser(I>, atom<M>, M=mumble >>.
:- inteser<I>, atom<M>, M=mumble)),

SUBFILE: TRFORM.PL @17127 23-APR-1980 <005> (669)
/*TRANSFORMS*/

/* Transforms are data structures that represent functions, substitutions,
and Possibly a chanse of unknown to be aPPlied to an expression.
Format:

transform(FunctionList,SubstitutionList,New_Unknown>
New_Unknown is 8 falsea if the unknown isn't beinS chansed */

/* CREATING TRANSFORMS*/

null-transform(transform(CJ,[J,false> >.

make_substitution_transform(S, transform([J,[SJ,false)).

make_function_transform(OP, ExPr,
transform(Efunction(OP,ExPr)J , [J , false> >.

-ake_inv_function_transform< +, ExPr,
transform([function<+,NExPr>J , EJ , false> > :

tidw<-1*ExPr,NExPr>.

make_inv_function_tr~nsform(* , ExPr,
transform([function<*,InvExPr)J , [J , false)) :

tidw(ExPr- -1,InvExPr).

chanse_unknown(New_Unknown, transform<FList,SList,false) ,
transform(FList,SList,New_Unknown>).

aPPlw_transform(transform(FList,SList,New_Unknown> , Descr1 , Descr6) :
e~{Pr(Descr1, El),
aPPlY_functions<FList,E1,E2>,
new_exPr(Descr1,E2,Descr2>,
/*remove Pattern vars that have been substituted for*/
s1Jbst_vars(SList.,SVar1::.), Pattern_vars(Descr2,PVars.),
subtract(PUars,SVars,New_PVars>,
BPPlY_substitutions(SList,Descr2,Descr3),
new_Pattern_vars(Descr3,New_PVars,Descr4>,
e>~Pr (Descr4? E4),
tidw(E4,E5),
new_exPr(Descr4,E5,Descr5),
<New_Unknown=false -> Descr6=Descr5;

new_unknown(Descr5,New_Unknown,Descr6) >,

concat_transforms(transform(F1,S1,U1) , transform(F2,S2,U2) ,
transform<F3,S3,U3>) :

BPPend(F1,F2,F3>, aPPend(Sl,S2,S3>,
(Ul=false -> U3=U2; U2=false -> U3=U1 ; fail),
! ❖

/* aPPlY_functions(Functions,ExPr,New>
takes a list of functions 9 Functions 2 and an expression nExPr 9 •

Returns the result of aPPlYins the functions to the ePxression in
The functions are of the form function<+,Ar~> or'function<*•Ars>.

aPPlY_functions([J,ExPr,ExPr) =~ !.

aPPlY_functions([HlTJ,ExPr,New) :
aPPlY_function(H,ExPr,E1>,
aPPlY_functions(T,E1,New>.

/* These clauses handle bass. If the function has the same operator as the
bas, Just add the new ar~ument to the bas. If the function 1 s operator
distributes over the bas, aPPlY the function to each element,
Otherwise fail. */

aPPlY_function(function(OP,Func_Ars>, baS(OP,Arss>,
bas(OP,[Func_ArslArssJ) > :- !.

aPPlY_function(function(Func_OP,Func_Ars>, bas(Bas_Op,[J>,
bas<Bas_OP,CJ> > 1-

distributes<Func_OP,Bas_OP),
~ I

aPPlY_function< F, bas(Bas_OP,EArsi!ArssJ>,
bas<Bas_Op,[New_ArsllNew_ArssJ>) :

F=function(Func_Op,_),
!, /* fail completely if Func_Qp doesn 1 t distribute*/
distributes(Func_Qp,Bas_OP),
aPPlY_function(F,Arsl,New_Arsl>,
aPPlY_function<F,bas(Bas_OP,Arss>,bas(Bas_OP,New_Arss>>,

/* now clauses to handle expressions not in bas form*/

aPPlY_function(function<*,Ars>, ExPr, ExPr*Ars).

aPPlY_substitutions(CJ,X,X> :- !,

aPPlY_substitutions([HITJ,XyZ) :
subst(H,X,Y),
aPPlY_substitutions(T,Y,Z),
! .

/* return a list of the variables from a substitution list*/

subst_vars([J , [J),
subst_vars([V=_lRestJ, [U:UListl > :-

subst_vars(Rest,VList).

SUBFILE: PORTRA.PL @16157 23-APR-1980 (005> (176>
/*PORTRAY*/

Portray(bas(OP,[AJ)) :
write(A>,
! •

portray(bas(OP,[A!Rest])) t,
write(A),
write(Op),
Portray(bas(OP,Rest> >,
l •

Portray(bas(Op,[J)) 1-
write('<emPtY bas> 1 >,
! +

~ortraY(transform(FList,SList,New_Unknown) > :
writef(1 transform:\n 1 >,
Portray_functions<FList),
PortraY_subst(SList>,
(New_Unknown=false ->true;
writef('

! •
chanse unknown to %t\n',CNew_UnknownJ> >,

PortraY_functions([J) I- !.
PDrtray_functions(Cfunction<*,A>ITLJ > :

writef(' * %P\n',CAJ>,
Portray_functions<TL>,
! ❖

Portray_functions([function<+,A>ITLJ > :
writef(' + %P\n',CAJ>,
Portray_functions(TL>,
! .

·ortray_subst([J) :- !,
~ortray_subst(CVar=ElTLJ > 1-

writef(' %P -> %p\n',[Var,EJ>,
portray_sub~t(TL>,
! .

PDrtraY(X) :
write(X),
! ❖

\\\\\

SUBFILE: MISC.PL @17:15 21-APR-1980 (005> (128)
/* MISCELLANEOUS ROUTINES FOR POWERFUL ALGEBRAIC MATCHER*/

:i.dent.:i. t.y (+, 0).
:i.dent:i.ty(*, 1).

to_bas(OP,Descr1,Desc:r2> :
expr(Descrl,ExPr),
decomP(ExPr,[0PIA1J>,
rev (All' Ar·ss),
new_expr(Descr1,bas(OP~Arss>,Descr2),
! ❖

to_baS(OP,Descr1,Descr2) :
exPr(Descrl,ExPr),
new_exPr(Descr1,bas(OP,[ExPrJ>,Descr2>,
! .

from_bas(Descr1,Descr2> :
exPr(Descr1,bas(OP,A1>>,
rev(Al,Arss),
recomP(ExPr,COPIArssJ>,
new_exPr(Descr1,ExPr,Descr2),
! ❖

matc:h(A,B>,
! •

! ¥

or_to_l:i.stCT,TT>.

SUBFILEI FEATUR,PL @11:24 18-APR-1980 <005> (189)
/* PROCEDURES FOR EXTRACTING FEAURES FROM EXPRESSIONS

callins Protocol:
features(ExPr,Features>

features(ExPr,Features) 1-
exPr(ExPr,E>, unknown(ExPr,U>,
features(E,U,Features>,
! •

features([J,U,CJ) :- !,

features(CHITJ,U,CFHIFTJ) :
features<H,U,FH>,
features<T,U,FT>,
! .

features<U,U,U) :- !.

features<ExPr,U,mumble> :
freeof<U,ExPr),
! •

features(E-N,u,F-N> :
inteser<N>,
features<E,U,F>,
! •

features(El+E2,U,Features) :
features(El,U,F1>,
features(E2,U,F2),
(Fl=mumble -> Features=F2,
F2=mumble -> Features=Fl ;
Features=F1+F2>,

! •

features(E1*E2,U,Features) :
features(El,U,Fl),
features(E2,U,F2),
(F1=mumble -> Features=F2;

F2=mumble -> Features=Fl ;
Features=Fl*F2>,

! .

features(ExPr,U,Features) :
ExPr= •• [OPIArSsJ,
features(Arss,U,FArss>,
Features= •• COPlFArssJ,
! I

'\\\.'\\

\

SUBFILEI INST.PL @16123 23-APR-1980 <005> (59)
f* kludse to instantiate all the variables in a rule

senerated names'are of the form s1, s2, etc *I

-~---:tr,st..ar-,tj.ate (E~{Pr, Vars) :-
variables (ExPr, Vars>,
bind_list(Vars,1>,
! .

binr.Llist([J, N).

bind_list([HITJ,N) :-
c-oncat. (s,. N, H >,
N1 is N+l.,
bind __ l:i.st(T,N:l.) •

\

SUBFILE: TEST.Pl @10:0 21-APR-1980 (005> (169)
I* tests for Powerful matcher *I

:- tlim(5),,

distrib1 : -- trY_hard_to_solve(a*~d}~ = }-f--2, ~-,,
distrib2 : _ .. try_hard_to_solve(a*~-~->{ = ol"'"."'")

.. •-.. L? ~{,

Ans)

Ans)

distrib3 :- try_hard_to_solve(}{f}-~ =,.-~~) ~·-.. ~,, }•::, Ans) •

•

•

tris1 :- trY_hard_to_solve(a*sin(x)+b*cos<x>=c, x, Ans),

chansel : -- try_hard_to_solve(5 (2*y) + ,::•.--.
'-• H + 5 = O, y,

'~hanse2 • try_hard_to_solve(5·--(2*!::! > - 5 (yf1) + 6 = O,

chanse3 • try_hard_to_solve(3 (2*y) - 2*3.-. (:?-~2) + 81 -.-
I* the followins two examples are from McArthur I Keith,

Intermediate Algebra *I

Ans)

:! '

O,

•

Ans.) , .

=!, An-~> •

SUBFILE: LEARN.PL @12:52 21-APR-1980 (005> (576)
I* PROCEDURE FOR LEARNING TO SOLVE PARTICULAR FORMS OF EQUATIONS *I

learn_to_solve<Form,Unknown,Ean,Conditions> 1-
trace('trYins to learn to solve %P for %P\n\n',[Ean,UnknownJ,1>,

I* solve the eauation usins powerful matcher *I
trw_hard_to_solve(Ean,Unknown,A1>,

I* convert Ean to the normal form *I
C=.,[Form,Unknown,Ean,Norm_EanJ,
call(C),

I* chanse sYmbols in eauation etc+ to variables*'
wordsin(Al,SYmbols),
variablize([Ean,Norm_Ean,Unknown,A1,Swmbols,ConditionsJ ,

[EanUar,NormUar,UnknownVar,AnsVar,SwmVars,CondVarsJ >,
I* make UP a conversioD command to execute when the new method is run *I

Convert= •• [Form,UnknownVar,El,E2J,
I* assert the new method*'

trace('assertins new method for solvins %P for %P\n\n',[Ean,UnknownJ,1>,
asserts((

! .

.solvel(E1,UnknownUar,Ans> :
Convert,
match(E2,NormUar>,
trace(

'usins learned method for solvins eauations of the form %P\n\n',
[EanJ,1),

CondUars,
tidY(AnsUar,Ans>,
!

variablize(A,Bl :
wordsin(A,W>,
variablize(A,W,B>,
! .

variablize<A,EJ,A) I- !,

variablize<A,CHITJ,B> :-
I* crock - don't variablize arbitrary intesers
(intesral(H) -> Al=A ; var_subst(_=H, A, Al> >,
variablize(A1,i,B>,
! •

I* SUBSTITUTE THAi DOESN'T BIND OLD VARS *I
var_subst(Var=Const,Old,Old) :-

variOld>,
! •

var_subst(Uar=Const,Const,Uar) :- I,

var_subst(Uar=Const,X,X) :
atomic(X),

var_subst(Uar=Const,[J,[J) :- !.

var_subst(Uar=Const,[H!TJ,[H1lT1J) l
var_subst(Var=Const,H,H1>,
var_subst(Uar=Const,T,T1>,
! •

var_subst(Var=Const,Old,New) :
Old= •• [OP!ArssJ,
var_subst(Var=Const,Arss,NArss>,
New= •• [OPlNArSsJ,
! •

PolYnomial(X, L=R, PDlY_eGn(X,PList)) :
PDlY_norm<X, Lt -l*R, Pl>,
Poly_sort(P1,P2>,
tidw<P2,PList), I* kludse - clean UP after normalization *I
! •

I* bubble sort for PolYnomial coefficients *I
Poly_sort(P1,P3> :-

PDlY_sort1CP1,P2>,
(P1=P2 -> P3=P2; POlY_sort1(P2,P3)).

Poly_sortl([A,BIRestJ , [XlSJ) :
Perm2(A,B,X,Y),
X=Pair(NX,_), Y=Pair(NY,_),
NX>NY,
Polw_sort1< [Y!Restl , S >,
! •

Poly_sortl(Pl,Pl) :- !.

'* seneral class doesn't chanse the expression *I
Seneral(X,ExP,EXP) :- !.

I* add a clause for matchins stuff in Polynomial normal form *I
t- asserts((
match(Poly_eGn(X,L1),Poly_ean(X,L2>> I-

!, PDlY_match(L1,L2>, !

Poly_match([pair(N1,C1)1R1J, [pair(N2,C2)!R2J) :
(Nl=N2 -> !, C1=C2, Poly_match(R1,R2) ;

N1>N2 -> !, Cl=O, PDlY_match(R1,[Pair(N2,C2)!R2J) ;
I* N1<N2 *I !, C2=0, Poly_match([pair(N1,C1)1R1J,R2)),

! .

\\\\\

SUBFILE: LTEST.PL @1011 21-APR-1980 <005> (81)
learn_Guad :- learn_to_solve< Polynomial, x, a*x-2+b*x+c=O ,·non_zero(a)).

GtE•st1 :- solve(~·{.-.. 2=9 , }·{' Ans) •

Gtest2 :- solve(~·{~-·2•-}<-6=0, }·{, Ans) •

Gtest3 :- solve((::d3) * (}{f2 > = 6, ~·i, Ans) •

learn_triS I- learn_to_solve(seneral, x, s*sin(x)+b*cos<x>=c ,
non_zero(a)).

ttest1 :- solve< l*sin(x)+O*cos(x)=l , x, .Ans > •

. \\\\

SUBFILE: COLLEC.PL @16:26 23-APR-1980 (005> (262)
/* COLLECTION ROUTINE TO INVOKE POWERFUL MATCHER*/

collect(X,Old,Newl> :-
/* least_domCX,Old>, */

flas(trw_hard,true,true>,
trace('\ntrwins to use Powerful matcher to collect %Pin %c\n',

[X,Old],3),,
features(Old,X,FExPr),
/* select a collection axiom*/
trace('features of expression are %P\n',CFExPr],4),
trace('lookins for a collection rule with matchins features\n\n',4),
coll.a!•{ (Us, LHS, RHS),
/* take one of the v~riables it collects and bind it to the unknown*/
l#"W :i. .. , ,b:;;-,;Q:~ Li., t.) ~

S:&-¾d£2i,_. L (P:: ,·Li M . -) ,
/* bind all other variables to
instantiate(LH~-ternVars>,
f·eat.1_1res C LHS ,f, FRuJ:e,·;-,-- U.

random atoms. */
&8 L ·- I C '

~(Ll,U.s:)

/* make sure the features of the expression and the rule match*/
lik: t e:e = t1 t 0:.51:e .r-.,, E fi'u J.£t. h ~ .kl C ~~ , ~ e,..a....) ,$ ~) ,, s. ::I; (i +If .
mak€L.descriPt-ion (Old, X, [J, Old_D h >(Ll • ~(s;..,t /J.,,~> J.;fs.l)
make .. descrii:-,t.ion(LHS,X,PatternVars,LHS_D),, ~ (SA..)RllsJ f,JIJi)
make_descriPtion(RHS,X,PatternVars,RHS_D),
appJ.y_rule(Old_D, rule(LHS_D,RHS_D) , New_D>,
e>~Pr (New_.D, Ne1.e1),
cor,tair,s(}<,LI), ! r tid:?(t1'e~1,New1), .. -t •
trace('%P collected in %P sives %c\n',CX,Old,New1J,2>.

trw_hard_to_iolve(EGn,Unknown,Ans) I-
I* solve the eGuation usins Powerful matcher*/
flas(trw_hard,Old,true),
solve(Eon,Unknown,Ans),
flas(trw_hsrd,_,Old).

:- flas<trw_hard,_,false),

\\\\\

SUBFILEI CHANGE,PL @14147 14-MAY-1980 <005> (363)
/* CH~NGE OF UNKNOWN ROUTINE USING POWERFUL MATCHER

tries to chanse eGuation to a GUadratic */

solve1(LHS=RHS,Unknown,Ans) 1-
/* move everYthinS in eGuation to LHS and Put in PDlY form*/
Poly_form(LHS+ -1*RHS,ExPr>,
I* cheap test to see if chanse of unknown is aPProPriate */
Guad_test<ExPr,Unknown>,
trace('trYins chanse of unknown to make eGuation into a muadratic\n',CJ,4>,
/* match asainst the seneral Guadratic eGuation

The s_zzz 0 Junk is to ensure that the names in the exPr and
the rule are standardized aPart, */

make_descriPtion<ExPr,Unknown,CJ,EDescr>,

match(EDescr,G,Transform>,
/* substitute for a,b,c,x in solution to seneral Guadratic */
SGrt = (b_zzz-2+ -4*a_zzz*c_zzz>-c2- -1>,
Sol1 = (x_zzz=<-1*b_zzz+Smrt>*<2*a_zzz)- -1>,
So12 = (x_zzz=(-1*b_zzz+<-1*Sart>>*<2*a_zzz>- -1),
make_descriPtion(Soll , x_zzz, [J, So11Descr >,
make_descriPtion(So12, x_zzz, [J, So12Descr >,
aPPlY_transform(Transform,So11Descr,New1Descr>,
aPPlY_transform(Transform,So12Descr,New2Descr>,
expr(New1Descr,New1>, expr(New2Descr,New2),
trace(

'\naPPlYins transform to solution to Guadratic emuation Yieldins %e\n',
[Newl•New2J,4),

try_hard_to_solve(New11New2,Unknown,Ans),

/* Test if the expression could be made into a muadratic with
a chanse of unknown. This test consists of seeins if the
expression is a sum, with two terms containins the unknown,
and one of them involvins exponentiation. *I

muad_test(ExPr,Unknown) :
decomPCExPr,C+ITermsJ),
select(Tl,Terms,Rest>,
contains(Unknown,Tl>,
subterm(A-B,Tl>,
select(T2,Rest,_>,
contains(Unknown,T2)?
! ❖

SUBFILE: TIDY.PL @9:42 11-HAR-1980 <005> (79)
/* ADDITIONS TO TIDY*/

/* additional tidy axioms*/

/* new baa flushina Procedure to combine like items to Powers -
Put in before other Procedures*/

; asserta((
f12C[*ILJ,New> :- twofrom(L,X1-A,X2-B,R>, match(X1,X2>, tidY(A+B,C>,

!, t12cc,,x1~c1RJ,New>
)) .

SUBFILEI ISOLAX.PL @16:40 20-APR-1980 <005> (138>
I* ISOLATION AXIOMS THAT RETURN PARTICULAR SOLUTIONS

When solvine for a variable in a rule usins the Powerful matcher,
Particular rather than eeneral solutions are desired. *I

:- asserts((
isolax(1 , sin(U)=V, U=arcsin<V> , Particular_solution(U) >
)) .
I- asserts((
isolax(1 , cos(U)=V, U=arccos(V) , Particular_solution(U) >
)) .
I- asserts((
isolax(1 , tan<U>=V , U=arctan<V> , Particular_solution(U) >
)) .
:- asserta((
isolax(1 , cosec(U)=V , U=arccosec(V) , Particular_solution(U) >
)) .
:- asserta((
isolax(1 , sec(U)=V, U=arcsec(V) , Particular_solution(U) >
)) .
:- asserts<<
isolax< 1 , cot(U>=V, U=arccot<V> , Particular_solution(U) >

SUBFILE: SQRT.PL @11151 20-MAR-1980 <005> (163)
/* SQUARE ROOT EVALUATION*/

/* Put the new eval before the old ones*/
:- as:.er·t.a ((
eval< x-cN- -1>, Ans> :

eval(X,Xi)?
evaJ. (N,rH >,
inteser(Xl)?
inteser(N1>,

! '
OH=O ··> Ans=X ;
Ni<O -> N2 is -Ni, eva1cx-cN2- -1>,Al>, eval(Al- -1,Ans> ;
/* Nl > 0 >IV
remove_powers(Xl,Nl,2,IPart,Residue>,
<Residue=l -> Ans=IPart;

IPart=i -> Ans=Residue-(Nl- -l) ;
Ans=IPart*Residue-(Nl- -l) >>,

remove_powers<X,Power,J,l,X) 1-
intexp(J,Power,A>,
A>X,
! •

remove_powers(X,Power,J,IPart,Residue) :
intexp(J,Power,A>,
0 is X mod A,
Xl is X/A?
remove_powers(Xl,Power,J,IP1,Residue>,
IPart. is IP1*J,
! ¼

remove_Powers(X,Power,J,IPart,Residue) :
.Ji is ~Jt1.,

- remove_Powers<X,Power,Jl,IPart~Residue>,

SUBFILE: COLLAX.PAT @10:35 16-APR-1980 <005> (175)
cOllax(W, U*W+V*W, <U+V>*W) •

/* collax(W, W+V*W, <Vtl>*W > • *I

__ collax< U, cos<u>-2+ -l•<sin(U)-2) , cos<2*U> > •

~~~olla}~( U , sin(ll)*cos(V)tcos(U)*sin(V) , si.n<U+V> ) . 
collax( UIV, sin<U>*cos<V>+ -1•<cos<U>*sin(V>> , sin(Ut <-l*V>> > • 

collax< U, cos(U)*cos(V>+ -1*(sin<U>*sin<V>> , cos(U+V> ) • 

collax( U, cos(U>*cos<V>+sin(U)*sin(U) , cos<U+ (-l*V>> > • 

collax( U, cos<U>*sin(U)-(-1) , cot(U) >. 

\\\\\ 



SUBFILE: DECOMP.PAT @1718 21-APR-1980 <005> (101) 
decomPCAt(BtC),L) :- !, decomP(AtB+C,L). 
decomP(AtBtC,Et,CIL~) :- !, decomP(AtB,[tlLJ). 
decomp(A+B,Ct,B,AJ) :- !. 

decomP(A*<B*C>,L> :- !, decomP<A*B*C,L). 
decomP<A*B*C,C*,ClLJ) I- !, decomp(A*B,E*ILJ). 
decomP(A*B,E*,B,AJ) :- !. 

decomP(A&(B&C),L) :- !, decomP(A&B&C,L>. 
decomp(A&B&C,[1,CILJ) I- !, decomP<A&B,CllLJ). 
decomp(AIB,[l,B,AJ) :- !+ 

decomP(Al(BIC),L) :- !, decomP(AIBIC,L), 
decomP(AIBIC,El,ClLJ) :- !, decomPCAIB,CllLJ>. 
decomP(AIB,[l,B,Al) :- !. 

DecomPCE,F) :- E= •• F, ! • 

\\\\\ 



SUBFILE: INTERV.PAT @17148 10-APR-1980 <005> (33) 
/* KLUDGES! interval stuff is screwina UP - Just b~Pass it*/ 

non_zero<X> :- !. 

acute<X> :- !' fail. 

non_reflex(X) I- !, fail, 

non_nea(X) :- !r fail, 

\\\\\ 



SUBFILE: POLY+PAT @10:39 18-MAR-1980 <005> (33) 
I* disable existing method ~or linear and auadratic eauations so that 

the Pro•ram can try to learn them *I 

POlY_method(X,Plist., X=Ans)· :-
! ' 

\\\\\ 



~ 

SUBFILE: LOG.PL @10:B 21-MAR-1980 <005> <171> 
/* LOGARITHM EVALUATION*/ 

:- asserta(( 
evall(los(Base,X>,Ans) :

loseval(Base,X,IPart,Fraction>, 
<IPart=O -> Ans=Fraction; 
Fraction=O -> Ans=IPart; 

! 
) ) ❖ 

/* return an imProPer fraction*/ 
Fraction=Denominator- -1, 
Numerator is IPart*Denominatortl, 
Ans=Numerator*Deno~inator- -1)? 

/* loseval will succeed if the loSarithm can be expressed as an inteser 
Plus 1 over an inteser */ 

logeval(Base,1,0,0> :- !. 

loseval(Base,X,IPart,Fraction> :-
0 is X mod Base, 
Xl is X/Base, 
loseval(Base,Xl,Il,Fraction>, 
IPart is 11+1, 
! . 

loseval(Base,X,O,Power- -1) :
X<Base, 
findPower<X,Base,2,Power>, 
! ❖ 

findPower(X,Base,Test,Power) 1-
intexP(X,Test,K>, 
<K<Base -> Tl is Test+l, findPower(X,Base,Tl,Power), 

K=Base -> Power=Test, ; 
!, fail). 



SUBFILE: PATHS.PL @18150 26-HAR-1980 <005> (106) 
l* PATHS *l 
l* Paths are a way of describins subparts of thinss. 

A Path consists of a list of Part-extractinS functions to be aPPlied to 
some obJect. The functions are either inteaers Cara numbers>, or lists 
consistina of a functor Plus n-1 arauments. The last arsument is suPPlied 
by aPPlY-Path, and is a variable to hold the result*/ 

aPPlY_Path([HITJ,E1,E3> 1-
(inteaer(H) -> ars<H,E1,E2> ; 

aPPend(H,CE2J,L>, C= •• L, call(C) >, 
aPP1Y-Path(T,E2,E3>, 
! • 

\\\\\ 



I 

/* cardan. 
Files for solvins cubic, etc by Cardan 1 s method 
Alan Bunds 13.5.81 */ 

:- [ 

-decomP, 
-frmean, 
Packax, 
probs 
] ❖ 

% RePlace old decomP and recomP 
% Form Auxiliary Eauation, usinS Pack and Unpack 
% rewrite rules for Packins and unPackins 
% test problems 



7 

rm€~Gn., 
m Auxiliary Eouations for Cardan method 

/* New Polynomial method clause*/ 
PDlY_method(Z,PolYBas,Ans) :

make_PolY(Z,Pol~Bas,ZPolY), 
sen_term(PQTerm,NewUnks), 
subst_mess<Z=PQTerm,ZPolY,Chansed), 
sensYm(cardan,Name>, / 
·fo I'n-1.. .. e,:;m (Name, Net,.JUnk s, Chansedc.::O, I mP roved, A1.D{ i :Vi i'J rY) 1 

·;;;.j.msc>lv1?(Au~-t:i.J.:i.ar·•=: §. Improved, NewUnks;- ,;.)"t~ 

sens i b 1 e ( ,::1n·;;; l ) " \..SL,:C=_:_..,..-,' 
subst_mesS(Ansl,Z=PGTerm,Ans). 

/* Generate a suitabJ.e chanse of unknown substitution*/ 
Sen_term(pfa,[p,o]). % Chanse this when other thinss work 

~ Is answer sensible?*/ 
~,;ensibJ.e ( r:':ins) t 

writef('sensible calJ.ed on %t\n\n',[AnsJ), 
% add extra bits as they occur 

/* Form AuxiJ.iars eouations */ 
/*--------------------------*/ 

/* Suitable factor exists*/ 
form_ean(Name, NewUnks, Chansed=O, ImProved=O, AuxiJ.iarY=O) 

decomP(Chansed, [flSummandsJ>, 
seJ.ect(Distinsuished,Summands,Rest>, 
decomP(Distinsuished,E*lFactorsJ>, 
member(Auxiliars,Factors>, 
is_new(Name,aux,AuxiliarY), 
testCNewUnks,AuxiliarY), 
recomP(ImProved,[flRestJ>, 
testCNewUnks,ImProved>. 

~*Try Packins Summands */ 
form_ean(Name, NewUnks, Chansed=O, Improved, Auxiliar~) :

decomP(Chansed,[+lSummandsJ), 
select(X,Summands,Restl), select<Y,Rest1,Rest>, 
rewrite(Packax,X+Y,Z>, 
recomP(New,C+,ZIRestJ>, 
is_new(Name,chansed,New), 
form_ean(Name,NewUnks,New=O,ImProved,Auxiliars). 

/* Try Unpackins Summands */ 
form_ean(Name, NewUnks, Chansed=O, Improved, Auxiliars) : 

decomP(Chansed,[+:summandsJ), 
select<X,Summands,Rest>, 
rewrite(unPackax,X,Y), 
decomP(Y,[+IBasl>, 
aPPend(B~s,Rest,NewBas>, 
recomp( ·,_.t,.1, [f; Ne;,,1BaS]), 
i~_new ame,chansed,New>, 
form_, an(Name,NewUnks,New=O,ImProved,Auxiliars>, 



/* Test that new eauations are 
t~st([PlQsJ, Ean) :

contains<P,Ean>, !. 
"----

testC[PtQsJ, Ean> :-
t,2st <(ls-, Ecm > , ! . 

/* New eauation, really is new*/ 
is_new(Name, TYPe, Ean1) :- !, 

not (store(Name, TYPe, Ean2) & match(Ean1,Ean2)), 
assert<store(Name, TYPe, Emn1)). 



PackinS and UnPackinS Rewrite Rules 
Alan Blmd~ 13,5.81 */ 

unPackax<4*U, U + U + U + U>. 

/* Pack is UnPack backwards*/ 
Packax(X,Y) :- !, unPackax(Y,X). 



~/ ?i< ci e c:· t:f in F.-❖ 

Decomposition and recomPosition - experimental version for Cardan 
Alan Br..md'::!, 13. ;:L H:I. :tV 

decomp((-(-E)),L) :- !, decomP(E,L>. 
decomp(-··CEtF),L.) :-- !, dec,::rn1PCC-E)+C-F),L), 
decomPC-CE-F),L) :- !, decomp((-E>tF,L>. 

decomP(Et(X+Y>,L> :- !, decomP(EfXfY,L). 
decomP(EfX+Y,[+,Yll..J) :- !, decomP(EfX,[flLJ). 
decomP(EfX,[t,X,EJ) :- !, 

d,:.:;,crnTiP ( X* ( Y*E), L) t ! , dec0Ti1P ( X*Y*E, L)., 
-comPCE*X*Y,[*,YIL.J) :- !, decomP(E*X,E*:LJ), 

-dCOffiP(E*Y,[*,Y,EJ) :- !, 

decomp((E&X>&Y,L> :- !, decomPCE&X&Y,L), 
decomPCY&E&X,[&,YILJ) :- !, decomP(EIX,[&ILJ). 
decomp(X&E,[&,X,EJ) :- !, 

decomp((E+X)IY,L) :- !, decomp(EtXIY,L>. 
decomPCYIEIX,[l,YllJ) :- !, decomP(EIX,[tlLl>, 
decomP(XIE,[l,X,EJ) ;- !, 

,::lecomP C E, F) 

recomP<E,E+,EJ) :- !. 
recomP(E,[f,[JILJ> :- !,recomP(E,[flLJ), 
recomP(E+X,[+,XlLl) :- !, recomP(E,CtlLJ>. 
r·ecomP ( 0;, [ + J ) : - ! • 

,ecomP(E,[*,EJ) :- !, 
recomP(E*X,C*,XlLJ) :- !, recomP(E,[*lLJ), 
recomP(:l.,[*J> :- !. 

recomPCE,[l,EJ) :- !, 
recomPCX&E,[&,XlLJ) ;- !, recomp(E,[&lLJ), 
recomP(true,[IJ) :- ! , 

recomP(E,c•,EJ> :- !. 
recomP(X.E,C+,XILJl :- !, recomPCE,[llLJ), 
recomp(false,[+J> :- !, 



Test Problems for Cardan Method 
Alan Bundy 13.5.81 *I 

testl<ImP,Aux) :
sensym(cubic,Name>, 

test.2 ( f4n~;;.) : --
solve ( z-3 + h*z + s - 0, z, Ans). 



/* Sugar for old tYPe simsolve - assume that seneral solution reauirprl */ 
simsolveCEans,Unks,Ans) :- simsolveCEans,Unks,Ans,sen>. 

/*simultaneous solution with messases*/ 
simsolve(Eans,Us,Ans,TYPe) 

trac&('SimultaneouslY solvins: %cFor %t.,n',[Eans,UsJ,1), 
simsolvel(Eans,Us,Ansl,TsPe), tidY(Ansl,Ans>, 
traceC',nFinal Answers are: %e', [Ansl,1). 

/* Solve conJunction of eauations for set of unknowns*/ 
simsolve1(Eans, [J, Eans,TsPe). % no unknowns to solve for. 

lmsolvelCEans, [XlUnksJ, Ansl,Tspe) 
Pick_xeanCEans,X,XEan,Rest>, 
solveCXEan,X,Ans>, 
distributeCAns,Rest,Eansl>, 
simsolve2CEansl,Unks,Ans1,TwPe). 

/*Pick eauation to solve for x, 
Pick_xean(EanC,X,XEan,RestC> :-

andtodot(EanC,EanL), 
sublist(containsCX),EanL,XEanL), 
<XEanL=[J -> fail_mes(X)i true), 
subtract(EanL,XEanL,NonXRestL), 
select(XEan,XEanL,XRestL), 
aPPend(XRestL,NonXRestL,RestL), 
dottoand(RestL,RestC), !. 

/* Distribute Or over And*/ 
f.":i i ~~ t. r i i::r 1-1 t~ e .( t~ tJ i::, l =H= f.) 1..1 i:! ~~ , F.::~{ r:.-~ r=1 r1 -::. :f. :ff: !:~f 1-1 ~:. :~2 ) ,, i 

distribute(Sub1,ExP,Ansl), 
distribute(Sub2,ExP,Ans2). 

distributeCSub, ExP, Sub & Ans) :- 1~ 
subst_mess(Sub,ExP,AnsJ. 

/* Call simsolvel recurs1ve1s and substitute back*/ 
% Solve disJunction 
simsolve2(Eansl + Eans2, Unks, Ansl + Ans2,sen) ;- !, 

simsolve2(Eansl,Unks,Ans1,sen), 
simsolve2(Ean52,Unks,Ans2,Sen). 

% Particular solution wanted 

% particular solution wanted 

simsolve2(X=Ans1 & Fon~, Unks, Ans3,TsPe) :- !, % Discount alread~ solved eauatj 



simsolvel(Eans, Unks, Ans2,TYPe>, 
trace('SubstitutinS back in %t solution\n',[XJ,1), 
distribute(Ans2,X=Ansl,Ans3l. 

/* Failure messase */ 
fail_mess(X) :- !, 

trace('No eauations containinS %t\n',CXJ,l>, fail, 

I* Problems 
4. ReJect silly answers as reauired bY Cardan, (??) 



/* Probs. 
Problems ~or Simultaneous Eouation Solvins 
Alan Bundy 15.5.81 */ 

PblCAns) :- simsolve<x=4 I y=x+1, [y,xJ, Ans,sen>. 

Pb2(Ans) :- simsolve(x-2=4 I y=x+l, [x,YJ, Ans,sen). 

Pb4(Ans) :- simsolvecx-2=4 I Y=x+l, [x,YJ, Ans,Part). 



: ?- test2(A), 
Solvins z - 3 t h * z + g 
APPlw~ng substitution 

0 for z 

z p + Q 

lo 
g + h * z t 1 * z - 3 

gives 
g + h * (pt a) t (pt a) - 3 

Trsins 
TrYing 
TrYins 
Tr~1ng 
Tryir,g 
TrYins 
TrYi.ng 
rrsins 
TrYins 
Trying 
Trying 

( 1 ) 

( - ) 

( - ) 

( - ) 

p 
h 
g 
a 
p 
3 
a 

+ a as new aUldliarY ea1Jation ;J-:.-o 
as new au:dliary eauation n=· 
+ h * (p + a) + P - 3 t 3 * P - 2 *at 3 
- 2 as new auxiliary eauation 
as new auxiliarw eauation 
as new auxiliary eauation 
as new auxiliary eauation 

·~.-~ 

P - 2 as new auxiliary eauation 
g + h * (p + a> + P - 3 ta - 3 t 3 *a*~*, 
g + P 3 + a - 3 + (at P) * (3 *a* pt as 
3 *a* P +has new auxiliary eauation 
17 Call : match(a - 3, g t h *(pt a) t p - 3) 

0 
1 
2 

Ancestor list 

test2(_24) 
solve(z - 3 t h * z t g = 0, z, _24) 
solve1(z - 3 t h * z t g = 0, z, _84) 

+ p) 
new 

+ a -, 3 as new rhansed eauation 

as new chansed eauation 
chansed eouation 

( - ) 3 Pol!Lsolve(z, [Pair(3, 1), Pair(l, h), Pair(0, g)J, __ 84) 
(-) 
( - ) 

4 
"'" '"' 

POlY_method<z, [pair(3, 1), Pair(1, h), Pair<0, g)J, _84) 
form_ean(cardanl, (p, aJ, g t h * (p + a) t (p + a) - 3 0, _1447, _1448) 

( - ) 

(-) 
( - ) 

6 
7 
8 

form_ean(cardan1, (p, aJ, g + h * (p + a) + P - 3 + 3 * P - 2 *a+ 3 * P * a - 2 + a - 3 = 0, _1447, _1448) 
form_ean(cardan1, (p, aJ, g + h * (p + o) t P - 3 + a - 3 + 3 *a* P * 'at p) = 0, _1447, _1448) 
form_ean(cardanl, (p, aJ, g + P - 3 + a - 3 +(a+ P) * (3 *a* P + h) 0, _1447, _1448) 

( - ) 9 is_new(cardanl, chansed, g + P - 3 + a - 3 t Cat P) * (p * 3 * a) +(at p) * h) 
( - ) 

(G + 
1.0 

p) * 
not (store(cardan1, changed, g + h * (p + a) + P - 3 + 3 * P - 2 *a+ 3 * P * a - 2 + a - 3) & match(g + p - 3 + a - 3 + 
(p * 3 * a) + (a+ PI * h, g + h * (p + a) + P - 3 + 3 * P - 2 *a+ 3 * P * a - 2 + o - 3)) 
call(store(cardan1, changed, s + h * (p + al + P - 3 + 3 * P - 2 *a+ 3 * P * a - 2 ta - 3) & match(g + p - 3 + a - 3 + 

(a+ p) * (p * 3 * al + (a+ p) * h, g + h * (p + a) + P - 3 + 3 * P - 2 *a+ 3 * p * a - 2 + a - 3)) 
(-) 1l. 

(-) 12 store(cardan1, changed, g + h * (p + a) + P - 3 t 3 * P - 2 *at 3 * p * a - 2 + a - 3) & match(g t p - 3 ta - 3 + (a+ 
p) * (p * 3 * a) t Ca+ P) * h, g + h * (p + a) + P - 3 t 3 * P - 2 *a+ 3 * p * a - 2 ta - 3) 

(-) 13 call(match(g + P - 3 + a - 3 + (a+ p) * (p * 3 * al + (a+ P) * h, g t h * (p + a) + P - 3 t 3 * p - 2 *a+ 3 * p * a -
2 + a - 3)) 

(-) 14 match(s + P - 3 + a - 3 + Ca+ p) * (p * 3 * a) + Ca+ PI * h, g + h * (p +a)+ P - 3 + 3 * P - 2 *a+ 3 * P * a - 2 + 
a - 3) 

(-) 15 
(- I 16 

match(s ta - 3 + Ca+ PI* (p * 3 * a) t (at p) * h, s + h * (p + a) + p - 3 + 3 * P 
match(a - 3 + (a+ P) * (p * 3 *a)+ (a+ p) * h, g + h * (p + a) + p - 3 + 3 * P - 2 * a) 

(1) 17 CalJ : match(a - 3, g + h * (p + a) + P - 3) ? Action (h for help) ? C Execution aborted J 
?- core 97280 (68096 lo-ses + 29184 hi-ses) 

heap 62976 60938 in use+ 2038 free 
global 1187 = 16 in use+ 1171 free 
local 1024 16 in use+ 1008 free 
trail 511 0 in use + 511 free 

0,02 sec, for 1 GCs sainins 348 words 
0,12 sec, for 6 local shifts and 14 trail shifts 

55,34 sec, runtime 

*a+ 3 * P * a - 2) 



Note 84 

SPECIALIZING THE·GENERAL CUBIC 

1. The Implemented Method 

Alan Bundy 
11 May 1981 

This note reports the implementation of the Specialization Method described 
in note 69 for preprocessing the general cubic 

ax3 + bx2 +ex+ d = O 

to the special form 

z3 + hz + g = 0 

The method is called as the last poly method clause in a version of file POLY 
in my area [400,405,rnypres,cubic]. 

\;_ '<''ff;,~· 
".,, poly method gets 3 argument$: the unkn9wn, X; a polynomial in bag form, 

( 

( 

GenBag;- and a variable to bind the answer to, Ans .. The new clause works as 
' follows: 

/ 

1. GenBag is checked to see that it is a general polynomial. This test 
is currently crude in that it succeeds iff each coefficient• is an 
atom. Without the test the method loops. 

2. Next a new polynomial in bag form, SpecBag, is made. This is like 
GenBag except that it has a new unknown, Y; the leading coefficient 
is l; the next coefficient is O; and the remaining coefficients are 
all new constants created by gensym, NeWCoeffs. 

3. Y is related to X by the linear substitution, Y=A*X+B, where A and B 
are newly created constants. SpecBag is reified into a regular 
polynomial, the substitution applied, the resulting polynomial put 
back into bag form and its coefficients paired off with those of 
GenBag to form a conjunction of simultaneous equations. 

• 4. These equations are solved for A, B and NewCoeffs to produce the 
solutions, Solns. 

5. SpecBag is reified into a regular polynomial and solved for Y with 
solution Ansl. 

6. Y=A*X+B & Solns are substituted in Ansl to produce Ans2 and Ans2 is 
solved for X to produce Ans. 

All the above steps, except steps 2 and 3: the specialization of GenBag and 
the equating of coefficients; only require standard PRESS and UTIL procedures. 
The procedures for steps 2 and 3 are in file EQUATE [400,405,mypres,cubic]. 
Both are very straightforward. 

The specialization of the leading coefficient to 1 seems reasonable as does 
the speciali:zotion vf one of the remaining coefficents to O. This is currently 
constrained to be the next to leading term, which seems rather arbitrary. I 
plan to libacate this constraint and do a little search on which term to 
eliminate. 



'.) 

) 

) 

..,.i 

' j 

) 

) 

) 

) 

2 

I improved the poly norm procedure so that it poly forms the coefficients of 
its bag members. Thiswas an efficient and powerful-simplification technique. 
I-suggest it be adopted in regular PRESS. 

The specialization method has been applied to the quadratic, cubic and 
quartic. The quadratic is reduced to a polynomial with only a squared and 
constant term, which is then Isolated. Thus the specialization technique 
effectively solves the quadratic. The cubic is successfully Specialized, so 
that Collection+ the Borning Matcher could then solve it as per note 74. The 
quartic blows up due to an intermediate expression explosion when the equated 
coefficient equations are being simultaneously- solved. Some of the equations 
are quadratics. PRESS looks for general solutions (when only particular ones 
are required} and gets bogged down in the resulting disjunctions. There seems 

~ some hope here if the simultanous equation solvjng could b~ cleaned up. 

2. An Alternative Method 
At the Mecho meeting of 8.5.81, Leon suggested applying Cardan's method (see 

note 83) to the problem of Specializing the cubic. This section records that 
idea. 

Suppose, for sake of simplicity, that the leading coefficient h3s been 
simplified to 1, giving the equation 

y3 + b'y2-+ c'y + d' = 0 

Apply the change of unkno\<m substitution 

y=z+e 

to yield the changed equation 

(z+e)3 + b' (z+e)2 + c'(z+e} + d' = O 

Unpack this to 

z3 + 3z2e + 3ze2 + e3 + b'z2 + 2b'ze + b'e2 + c'z + c'e + d' = 0 

) Collect coefficients of powers of z by Packing to get 

z3 + (3e+b')z2 + {3e2+2b'e+c')z + e3 + b'e2 + c'e + d' = 0 

) and form auxiliary equation 

3e + b' = 0 

-to get improved equation 

z3 + (3e2+2b'e+c')z + e3 + b'e2 + c'e + d' = 0 

The fact that Cardan's method is applicable to this rather different problem 
gives support to its generality, i.e. tends to suggest that it is not just an 
ad hoe patch to solve the cubic. 

The obvious next question which arises is: can the method of section 1 above 
be applied to the problem of solving the special cubic? I hove looked at this 
briefly, but without much success. The specialization could be a quadratic, 
but to make the method work, the substitution has to be something aw~ul. Thus 
Cardan's method currently seems more general than Specialization. 



Note 33 

CARDAN'S METHOD 

Alan Bundy 
8 May 1981 

This note is a sequel to note 69: it goes into mo~e detail about how one of 
the methods of solving the general C"!..lbic described there, Cardan' s Method, 
might be implemented in PRESS. The first observation to make is th~t the 
method in :-iote 69 headed 'Sterling's Method', is actually a simplified version 
of Cardan's Method, and it is this version we will actually consider here, 

1. A Worked Example 
Ae ~ starting point W9 take the problem to solve 

z3 + 3hz + g = 0 

for z. The first step, which still remains rather 'magic' is to consider the 
change of unknown substitution 

z = p + q (i) 

waere p and q are new unknowns. Cardan uses z = 3.JP + 3 [q here, but we can make 
do with ( i), and it is simpler and hence less magic, so we will use it in , 
preference. 

A change of unknown, where an atom (z) is replaced by a term which contains 
2 new unknowns (p and q), is non-standard on both counts. However, the 
replacement of 2 unknowns for 1 means that we have introduced redundancy,-which 
can be cancelled at any stage by introducing an auxiliary equation connecting p 
and q. And indeed this is what we will do. The only question that r6mains is: 
can we find an equation which simplifies the problem from finding a cubic 
solution to finding a quadratic solution or simpler, 

The change of unknovm yields the changed equation 

(p+q)3 + 3h(p+q) + g = 0 

which can be rewritten as 

p3 + q3 + 3(pq+h)(p+q) + g = O 

(ii) 

(iii) 

, what basis this transformation can be affecte9 I am not sure. Trying to 
\noctel it is my immediate goal. The binomial expansion of (p+q)3 may be 

understood as fairly straightforward simplification/normal-forming, but the 
applications of the distributive law, to remove the common factor of 3pq from 
3p2q and 3pq2 and to rP-move the common factor of 3(p+q) from 3pq(p+q) and 
3h(p+q), is less obvious. And how are we to avoid the expansion of 3h(p+q) to 
3hp and 3hq: or is this step to be made and then undone? 

Step ( iii) is highly suggestive of what auxiliary equation to introduce 
between p and q to simplify matters. Either equation 

pq + h = 0 (iv) 
or 

p + q = 0 (v) 

would simplify (iii) to 

p3 + q3 + g = 0 (vi) 



" 
2 

We call this the improved equation. However, (v) would make z=0, so that is no 
good: it has to be (iv). Why is the improved equation, (vi), any better than 
( iii) , apart from being syntactically simpler? It is still a cubic. Card an 7 s 
change of unknown substitution is - better here, since ( vi) would by now be a 

, linear equation in p and q, However, early stages of the solution would have 
:;:, been·:,;harder, ancP in particular, ( iv) would be full of cube roots. ;;;-

~ ~ ~: ,: 
i' 

( vi) and ( iv) form a pair of simultaneous equations in p and q, which 
rapidly deteriorate into a quadratic. How long can we wait to discover this 
news? Should we search ahead for different ways of simplifying ( iii) ( indeed 
(ii)) and hope for the best, or is there some cheap test we could apply to (vi) 
and ,(iv) t9 see 111that they are a disguised quadratic? 

f 
Solving (iv) ·,for CJ yields 

'!, = -hip. 

and substituting this in (vi) yields 

p3 + (-h/p)3 + g = 0 

.ich would be recognised b!' Poly Method as a disguised quadratic in p3. The 
solution to this will give a value for z. 

2. Overview of the Method 
This note reflects coffee room discussions with Leon and Bernard, as a 

result of which I feel that I now have a much better understanding of Cardan's 
Method. I hope this better understanding is reflected above and that the magic 
bits have been further isolated form the routine. ThE::se magic bits now seem 
localised enough that they could be tackled by search, and that is the line I 
propose to take. The basic framework is: "·,, 

1. The application of the novel change of unknown technique, with 
different substitutions for z being attempted and backtracked on. 
Among these substitutions would be p+q. The number of new unknowns 
in the substitution would determine how many auxiliary equations 
connecting them could be introduced, to improve the changed 
equation. 

2. A non-deterministic simplification with a view to gaining 
suggestions on introducing the auxiliary equation(s). This is 
probably the most ambitious part of the program, and will be my 
first goal (as stated above). 

3. The introduction of the auxiliary equation( s) and the solution of 
the resulting simultaneous set. This is straightforward. 

Search is involved at steps 1 and 2: the trying of different substitutions, 
the trying of different simplifications and the introduction of auxiliary 
equations. Back up would be forced if step 3 were not easier than the original 
problem. (Does this require a difficulty measure?) I am anxious to find 
additional tests to suggest back up. 



3 

3. Non-Deterministic Simplification 
In this section we explore some ideas abcut how the 2nd step above: the 

•mm-determisistic'<' simplification of the changed ec;.uation: could be 
implemented; ·"Th:i.s ~step i:ould. be h:1ndlect by three SJlb-method s: an auxiliary 
8quation forming m~thod; a surmnand packer; and a·· eumm'3.nd u~packer. We 
described these in turn, 

The ,job of the auxiliary equation forming submethod, Form-Eqn, is to 3Xamine 
the form of the changed equation and use it tc suggest auxiliary eq'!lations 

'"'relating p and q ( e .g, ( ::.v) and ( v) above). A ger1eralizatior. of the, technique 
U8ed in the worked example above ~s to look for the following prtttern: a sum of 
a few terms, all but on€ of whio:1 a!"e syntactically simple. The distinguished 
s:.umn'3.nd is a product of tertas at least one of whicr1 is a sum, e.g. pq+h or p+q. 
If cne of these sums is set equal to zero then the distinguised summand will 
rtisappear from the changed equation, so they are the C:3.r.didate auxiliary 
equatioas. 

They ar~ subjected to ~he following test. The three simultaneous equ~tions: 
the improved equation, the auxiliary equation and the change of unknown 
substitution, should not i~ply a value for any 0f the original ~onstants (z, g 
and h), whicn is incependant of the new unknowns (p and~). 

Conside~ how thie works on our running example. The original changed 
equation is 

(p+q)3 + 3h(p+q) ~ g = 0 

This fi·ts the pat tern we are 3earching for, with ( p+q) 3 as the distinguished 
summand, oeing a product of terrus of the forlli p+q. Thus t.here is only one 
candidate auxiliary equation, 

p + q = 0 

Solving this simultaneous:!.y with the change of unknown substitution, 

z = p + q 

;11 yield z=O as the solution for z. But this does not contain p or q, so the 
_c:ndidate is rejected and the attempt to fcrm an equat:.o:i. faHs. It could also 
be rejected on the ground5 that the impf'oved equation is g=O: a value for g 
which does not contain p or q. If 3h(p+q) is tried as a distinguished summand 
then it will be rejected on similar grounds. 

When the first submethod fails, we drop down to the second and third 
submethods, whose job is to shake ~p the changed equation to produce some more 
candidates. In particular, we want to apply variants of the distributive law to 
pack more summands into one big distinguished summand. This w::.11 be done by 
the second submethod, which we will call Pack. Appying Pack above would yield 

(p+q){(p+q) 2 + 3hpq} + g ~ 0 

with 

p + q = 0 and (p+q) 2 + 3hpq = 0 

as candidate auxiliary equations. However the improved equation is g = 0, 
which is a solution for g independant of the new unknowns, so both candidates 
are rejected. 



ll 

4 

Tc, find more candidates, more shaking is requir~d. If no further Pa<:king of 
the current equationt is possible then progress may be nade by Unpacking and 
re-Packing. Unpack i3 the third sub~ethod, It works by applyi~g var·iants of the 
distributive law i~ rever3e, so that Pack ruay work on a diffe~ent grouptng of 
summands, Tr.e bino~ial expansion is such a variant of the distributive law. 
It would Unpack (ii) to 

p3 + 3p2q + 3pq2 + q3 + 3h(p+q) + g ~ 0 

?ack could then 6 roup the 2nd and 3rd summands 1.:;o form 

p3 + 3pq(p+q) + 3h(p+q) + g = 0 

cincl. again to for;n 

p3 + 3(p+q)(pq+h) + q3 + g = 0 

as required. 

If the first submethod, Form-Eqn, is applied -to this 
3{p+q)(pq+h) a.s the <iist-inguished summand and (p .;- q = 0 and 
candidate auxiliary equations. We have already seen that the 
will be rejected and that the second leads to success. 

it will pick 
pq + h = 0 e.S 

first of these 

A list of rearrangaments needs to be kept to prevent looping, as also does a 
list of candid&ta auxiliary equaticns tried and failed. I am still considering 
the ordering of these submeth0ds. Is it best to try Form-Eqn first, followed 
by Pack and Unpack, as Isolat~, Collection :md Attraction are ordered, or 
should onP. Unpack completely; form all rePaci~ings a11d then Form-Eqn each of 
these? 



Note 74 Alan Bundy 
15 December 1981 

.ADAPTING THE BORNING MATCHER TO HANDLE THE CUBIC 
/' 

This note is a sequel to note 69. In that note we pointed out that for Press 
to be able to solve the cubic it was sufficient to Borning-match the Collection 
rule, 

cos3u - 3/4 cos u :> 1/4 cos 3u 

to the term 

z3 + 3hz 

generating the substitution 

z = 2(-h cos u 

'Sa side effect. In this note we speculate as to how this might be done. 

The norm.al first step of the Borning matcher when matching a rule, e.g. 

u2 + 2•.1v + v2 => ( u+-v) 2 

to a term, e.g. 

ax2 + bx 

(i) 

(ii) 

is to instantiate one of the variables in the rule, e.g. u to the unknown in 
the term, e.g. x, in such a way tnat the lhs of the rule and the term have the 
same features, e.g. x2 + x if 11 is instantiated to x~ and hence that they will 
pass the fuzzy match test . 

. Instantiating u to z is not a sensible procedure in the case of the cubic 
match above. The instantiatec rule, 

cos3z - 3/4 cos z => 1/4 cos 3z 

does not have the same features as the term, (ii), it is to be matched to and 
i~ will not match that term. The question that arises is: 'Can the Borning 
~atcher be adapted to recognise that 

cos3u - 3/4 cos u 
and 

z3 + 3hz 

can be made to have the same features, namely z3 + z, provided that u is 
instantiated not to z, but to arccos z/v, i.e. such that 

Z = V COS U ?' 

The status of v is the same as in the quadratic example: it is a variable 
remaining to be instantiated during the course of the match. In fact it will 
receive the instantiation of 2,FFi during the matching of the linear terms. 

The simplest i~stantiation which would give both lhs side of rule~ (i), and 
the term, (ii), the same features is z = cos u. One reason for preferring 
z = v cos u is that the range of cos 11 is only -1 to 1 and the v factor ~an 
bring this up to -oo to oo. 

The matching will proceed as follows. 

,. 



! 

2 

match z3/v3 - 3/4 z/v => 1/4 cos 3.arccos z/v 
to z3 + 3hz 

matching cubic terms produces multiplicative factor v3 

matching linear term -3/4 v2z to 3hz 
generates an e_9!!ation for v whose solution 

v = 2./-h 
is 

The match succeeds and the rewritten term is 
zJ-h3 cos 3.arccos z/2.f=h. 

as required. 



.. ........ 

- Note 69 

SOLVING THE GENERAL CUBIC 

Alan Bundy 
12 September 1980 

In response to a chnllcr.ge by Woody Bledsoe to prove the idea of Meta-Level 
Inference by r solving hard problems', I have been looking at the solution to 
the general cubic. This was a milestone in the history of algebra and equation 
solving and is a hard problem - I was unable to solve it myself unaided. 

AJ together I have found 5 independant solutions to the cubic - 3 in 
£Burnside and Panton 8i]i 1 in [Barnard and Child 36] and 1 communi~ated to me 
by Leon Sterling. In this note I describe all 5 solutions together with 
annotations discussing the diffi.:mlties of getting Press to produce these 
solutions. So far Press has managed to do a crucial bit of the solution in 
IBarnard and Child 36] and I also describe this. My goal is to enrich- Press 
with new methods until it is capabl€: of finding all 5 solt1tions and then to 
test Press on the general quadratic, quartic and other problems to be found in 
the references below. 

The discussion in [Burnsids and Panton 81] is particularly valuable and I 
commend it to you. They show how each of the 3 nie'Lhods of solving the cubic can 
also be applied to the quadratic arid the q'..rnrtic. In fact, they start by 
illustrating the methods on the quadratic and then apply them to the other 
problems. 

All 5 methods contain some element of 'magic', i.e. some step in which an 
unmotivated expression is conjured out of the air. I have some hope that 
'meta-level inference' can help here: because: 

- in one c.ase at least. the use of an identity in the [Barnard and 
Child 36] solution, the magi.c is reduced by recognising the identity 
as a Collection rule; 

- if the magic bits are seen as evidence of random search then the 
search space is hopeless at the object level, but not unreasonable a~ 
the meta-level. 

Preprocessing - Reducing the Equation 

All t!,ree solution methods start the same way. by the reduction of the 
general form 

ax3 + 3bx2 + 3cx + d = 0 

by eliminating the quadratic term anct speciali~ing 
1. to the ~pecial form 

z3 + 3hz + g = 0 

This is don~ by linear substitution, e.g. by putting 

z =Ex-+ F 

( 1,) 

the leading coefficient to 
""-,<.~\.a-J =: v- 7L-l bl1J (2) 

-:;:. <>-

substituting this in equation 2 and equating coefficj_ents with equation 1 t,o 
-find the values 0f E and F wbich will do the trick. These ~~rn out to be a and 
b~ respec~ively. (The neatness of this substitution turns, in part, on the '3~ 
~oefficients in 1 and 2 above. If they were omitted theo the method would work 
but more messily.) 



This method of 'linear substitution' and 'equating coefficients' turns up 
again and again in these methods. It should certainly be part of Press. It 
seems ~2rticularly easy to i~plement. 

The magic part of the above is deciding to aim for the form 2. It is not too 
bad if we a~sume that preprocessing any polynomial by specializing its leading 
coefficient and eliminating one or n:ore of its terms is always a good first 
move. Leading coefficients can always be specialized to 1. but only some terms 
can be eliminated. In the case of the cubic, the elimination of the cubic or 
constant term are impossible. since that would reduce the cubic to the 
quadratic. However, either the quadratic or the linear term can be eliminated. 
It ,rould be interesting to explore the application of the methods below to the 
second of these special forms. 

Method 1 - Guessing the Format 

We now explore methods of solving equation 2. The first of these can be 
found in both [Burnside and Panton 81] and [Barnard and Child J6] and is due to 
Cardan ( see [ Cardan 68 ]) . The key step is to guess the form of the answer. 
This is the 'magic' part. This guess is then used to form a new cubic similar 
to 2 then the two equations have their coefficients equated in order to put 

·more flesh on the original guess. 

Cardan's guess is that the final answer has the form 

z = 3[P + s{Q (3) 

I don't know what was going on in Cardan 15 mind 1 when he came up with this 
particular form. Presumably the 3fs are suggested by the cubes and the analogy 
with the quadratic case where the format is 

z=P+rQ 

By cubing 3 we get the cubic 

z3 =-3.{p3 + 3f p2fo +· 3~fQ2 + 1Jo3 

which can be manipulated by simplification and resubstitution of 3 into the 
forrr: 

z3 - 3fPfQz - (P+Q) = O 

This is now closely analcgous to 2. Why this particular simplification and 
resubstitution is done is one of the magic part~ of this method. Note that 
there are an infinjte number of ways cf forming cubics analogous to 2, but this 

~~ one yields nice values for P and Q after the equating of coefficients, that is 
equating linear and constant terms procuces the equations 

fi /fQ = -h and 
P+Q = -g 

These define a quadratic in P (or Q) which car. be solved in terms of g and h. 
namely 

l>~ 

1or rather Tartaglia~. See [Cardan 68] for an interesting discussion of the 
attribution of the general solution. 



T 

L 

r • .,.,_ 
• .. 

p2 + gP - h3 = o2 

and substituting these values back in 3 gives the answer to 2. 

Despite the two magic bits, this solution looks one of the most promising 
for mechanisation because it is so short. 

Method 2 - Sterling's Method 

The next method I will consider is the one communicated to me by Leon 
Sterling, because it bears some similarity to the method outlined above. It 
starts by guessing the format of the answe~, but in this case a slightly less 
specific format, namely 

z = p + Q 

Instead of using this to form another cubic, it is substituted directly into 2, 
yielding 

p3 + Q3 + 3PQ(P+Q) + 3h(P+Q) + g = 0 (5) 

The second piece of magic in this method involves spotting that a further 
specilization of P and Q, by letting 

PQ = -h 

will simplify 5 consideraLly to 

p3 + Q3 + g = o 
In fact this is a disguised quadratic in P3, namely 

basically the same quadratic as 4 in the ffrst method. Solving this yields 
values for P and Q which can be substituted back in the original substitution 
for z. 

I do not have any feel for how general this method is and thus how hard it 
would be to implement. A ge:neral digression :- It is always possible to write 
code which will lead Press through a particulcr solution. 7his is only worth 
doing if the code implements a general method, i.e. if the same code wi]l solve 
several problems. If you have several such solutions in mind you can seperate: 
the common element from !:hem. Getting PrE.ss to produce the correct uncommon 
elements in each case then becomes the challenge. In this case it is not at all 

1 ,v clear ~hat the common and uncommon parts are. 

Method 3 - Factorization 

The third method we will consider can be found in both [Burns;.;_de and Panton 
81] and [Barnard and Child 36]. It involves trying to factorize the equatio~ 
and splitting into two simpler equations; one fo~ each factor. A first step to 
update Press to deal with this method would be to impl~ment a Factorization 
method in which the equation were put in the form s = 0 and rewrite rules of 
the form 

2This quadratic turns up in 4 of the methods in some form or oth~r. {4} 



' 

lhs => r1.r2 

~re then applied to s. 

Such a rewrite rule with a fuzzy match to 2 is 

u3 - v3 => (u-v).(u 2 + uv + v2 ) 

This method consists of the attempt to apply this rule. The hard bit is to 
rewrite 2 into the difference of two cubes so the rule will really match. The 
method works by guessing (magic) a more complex format than the difference of 
two cubes, then multiplying out and equating coeffici1:=nts to flesh out the 
format completP-ly. The solution in [Barnard and Child 36] puts less structure 
on the magic expression, so we will follow that. 

We assume that we can find A, B, Kand L such that z3 + 3hz + g can be put 
in the form 

A(z-K)3 - B(z-L)3 (6) 

Multiplying out. equating coefficients with 2. and solv1ng the resulting four 
simultaneous equations for A, B, Kand Lin terms of hand g will yield the 
appropriate transformation of 2. (Incidently, the solution of the simultaneous 
equations generates the quadratic 4 as a byproduct.) 

Where does tbe magic exp1·ession 6 come from? The situation is not as 
hopeless as it looks. The expressions to be matched against u and v must be at 
worst linear or the two resulting equations will not be simpler than the 

_ original: A{z-K)3 is a trivial transformation of the cube of a general linear 
expression. A further check is that the equating of coefficients can be 
expected to yield four simultaneous equations, so the magic expression should 
introduce at most four variables to be solved for. 

Method 4 - Symmetric functions of the Roots 

If 1, m and n are the roots of 2 then they are connected to the coefficient3 . 
3h and g by the symmetric root equations: 

l+m+n = 0 
lm + mn + nl = 3h 
lmn = -g 

Trying to solve these equation~ for 1, m and n will do no good: it will yield 
the original equation 2 with 1, m .and n substituted for z. ¥.ethod 4 consists of 
manipulating the above equations into 3 linear simultan~ous e~uations in 1, m 
and n and then solving these (which does work!)~ • 

We already have one linear equation, namely 

l + m + n = 0 

The trick is to find another 2. The first piece of magic here is to pick the 
linear equations 

l + wm + w2n = P 
1 + w2m + wn = Q 

where w ls a cube root of unity and P and Qare expressior.s in hand g to be 
determined. \-IPere this particular choice comes from I hav~ no idea, except t~at 
the combination of the 3 equations is particularly easy to solve 



simultaneously. 

Solving for P and Q is another piece of magic, which can be handwaved if we 
start from the assumption that we are going to end up solving a q~adratic in 
P. In this case, if P and Qare the roots of the quadratic then -(P+Q) and PQ 
will be the linear and constant coefficients respectively. In fact, PQ is 
independant of w, but P+Q is not. However. P3+Q3 is independant, so we can get 
a quadratic in p3. The actual equations are 

p3 + Q3 = -27g/13 
PQ = -9h/1 2 

Hence, p3 and o3 are the roots of the quadratic 

t 2 + (3/1)3gt - (9h/1 2 )3 = 0 

which is essentially 4. These values can be substituted back in the linear 
simultaneous equations above and these in turn solved for 1, m and n. 

This seems the most.mysterious of the 5 methods, and I hold no hope of ever 
automating it. -Method ,6 - Collection 

We finish with the method in [Barnard and Child 36], which I have not found 
elsewhere. This is our big success story. On careful examination I discovered 
that it was essentially an application of Collection requiring some heavy 
pattern matching. So I tried Alan Borning's pattern matcher on it and succeeded 
modulo a magic substitution. What follows is the Press versicn of events. 

Since 2 contains two occurrences of z we will try to collect them into one. 
A suitable Collection rewrite rule is 

cos3u - 3/4.cos u => ~os 3u 

Apart from the coses, this has a strong resemblance to 2. The cos signs would 
almost certainly make it fail the fuzzy match and neither will it B0rning match 
to 2 as it stands. What is needed is the magic substitution 

V: W.COS U 

into the rule.3 This produces the new rule 
l /-1. 

v3;w3 - 3v/4w => cos 3.arccos v/w 

This rule both fuzzy matches aod Borning matches 2 and armed with it Press€) 
selects it as thP first thing to try; Collects successfully and goes on to 
Isolate the resulting equation. Traces on !"'equest. 

[Barnard and Child 36] say that this only produces solutione for the cuses 
when all three roots of the cubic are real. This is true provided you stick to 
defining cos only on the reals, but if you extend this definition in the 
obvious way to the complex numbers then the method yields solutions for all 
types of roots. 

3[Barnard and Child 36] make the substit.ut-ion z = w.cos u into 2 and this 
possibility also needs exploring. 



6 

As for eliminating the magic substitution I am open to suggestions. One 
obvious route would be to try to extend the Borning matcher so that it can use 
the rule in its original trigonometric form. This might happen 011 a second 
pass after the original rule had floped the fuzzy match (mumble test) on the 
first pass. 

Conclusion 

The next step seems to be to implement equating coefficients and the 
preprocessing reduction. Following this I will worry about the magic part of 
the Collection method and implement one of the other methods, e.g.the 
Factorization one. After such a good start I am optimisitic about final 
victory. 



".;1.,. .... .,1...: ,i. * 

~ • ' 
J 

C 

C 

REFERENCES 
ff,._ ~nard and Child 36] 

Barnard and Child. 
Higher Algebra. 
~acMillan. 1936. 

[Bur~side and Panton 81] 

[Ca::-dan 68] 

Burnside, W.S. and Pantoni A.W. 
The theory of equations. 
Longmans, Green & Co., 1881. 

Cardano G. 
The Great Art or the rules of Algebra. 
The MIT Press,-1968. -
Translated from the Italian (Ars Mc}gna 1545) by Witmer 1 



ne-+ 
~Qt 

~ Hi Alan, 

1Q wp¾:e>t- a 
ye:s~ , lvt 
~ 0\ 

I got your net message, and also your letter along with a copy 
have mailed a draft of the IJCAI paper off to you on the 13th. 

of Note 74; and 

I've been thinking about how to get PRESS to discover the magic substitution 
needed to solve the cubic using the trig collection rule. One idea is 
to allow a change of unknown during fuzzy matching. This will result in a 
guesss as to the form of the substitution, the details to be filled in during 
the full match. This idea is still half baked, but seems worth looking into. 

The computation might proceed as follows. Let PRESS first try to solve the 
equation using the regular matcher, and then using fuzzy matching and the 
powerful matcher. If these fail, then try fuzzy matching the expression in 
question against each collection rule, allowing a change of unknown in either 
the expression or the pattern (at the fuzzy match level!). Suppose that 
the cubic has already been reduced to zA3 + 3hz + g = O. The features term 
of the LHS is zA3 + z. Let 'PRESS try a fuzzy match against the trig rule 
cosA3 u - 3/4 c.os u -> 1/4 cos. 3u, whose features term is cosA3 u + cos u, 
with a change of unknown allowed. Find each proper subexpression of the 
trig expression such that the subexpression has a single occurence of u 
and such that there is more than one occurence of the subexpression 
in the pattern. Try substituting the subexpression for the unknown 
in the original expression, and see if the features match. One such· 
subexpression of the pattern is cos u. If we substitute z=cos u 
into the cubic expression, then it fuzzy matches the pattern part of the rule. 

The next step is to find the actual substitution. The features extraction 
algorithm drops "mumble" factors and terms from products and sums. 
Therefore, let us allow for these by postulating the substitution ~. 

z = c*cos(a*u+b) + d. /4◊ RECEIVED ~ 
, 'b \) 

(The program should be able to leave out some of these pattern variables. _f~• \ 2 4 FE!a 198\ '. 
see below.) Substitute this into the original equation, resulting in ,,o~ ,rt 

(c*cos(a*u+b)+d)A3 + 3*h*(c*cos(a*u+b)+d). 4 " 1u=tc1AL 1N~i~"-

After normalization this is 
cA3*cosA3(a~u+b) + 3*cA2*cosA2(a*u+b)*d + (3*c*dA2+3*h*c)*cos(a*u+b) 

+ 3*h*d + dA3. 
Using the powerful matcher to match this against the LHS of the collection 
rule, first match the two terms involving cosA3. Divide both sides of the rule 
by cA3, and substitute a=l and b=O. Since there is no cosA2 term in the rule, 

..._ set d=O to handle the second term. By this time the third term is 
(3*h*c/cA3)*cos(u). Match this and -3/4 cos u by solving algebraically 
ror c, resulting in c = 2*sqrt(-h). This completes tne match. 

It would be better not to introduce superfluous pattern variables in the 
change of unknown. Of the four new variables in z = c*cos(a*u+b) + d, 
the program might reason that "a" and "b" are unnecessary, since 
the cos terms in the pattern are both of the form cos u. 
Or, the features extraction algorithm could be changed so that it didn't 
drop "mumble" terms and factors inside of other functions, since thes·e will 
in general not be easy to dispose of. If this is done, then the program 
wouldn't introduce the additional variables a and b. 

In the above solution, the change of unknown is applied 
to the expression rather than to the pattern. This could be done 
the other way as well, but more simplification would be needed, in that 
the arccos(cos(u)) terms would need to be simplified before the match 
would work. Also, more care would be needed in avoiding the introduction 
of superfluous pattern variables (otherwise the simplification doesn't go 

.. 



The most dubious part of the solution is the random search for possible 
substitutions ..• a mitigating factor is that the search takes 
place at the fuzzy level, where the expressions are simpler and hence 
the combinatorics are not as bad. 

An alternative way of approaching this might be to expand the definition of 
"features", allowing an expression to have several possible features terms. 
The program could check for possible changes of unknown in computing different 
features terms. In the case at hand, the LHS of the collection rule 
might have as its features cosA3 u + cos u, and also 

zA3 + z where z=cos u. 

Something I neglected to mention in the cover letter with the IJCAI paper 
draft •.. there is an inconsistency in regard to pattern variables. 
In the normal PRESS matcher, these are PROLOG variables; but in the 
powerful matcher, they are instantiated to generated symbols (e.g. gl) 
so that the matcher can solve algebraically for the value of a pattern 
variable.--- I thought it better not to burden the reader with a description 
of this hack, and therefore talked about even the regular PRESS matcher in 
terms of substitution, ignoring the use of PROLOG variables and unification. 
The alternatives are to describe the system as it is (which is harder to 
understand), or to always use PROLOG variables for pattern variables (in which 
case it's hard to see how to solve for them algebraically). I am not 
completely satisfied with any of these alternatives -- what do you think? 

Best regards, 
Alan 

@ 



t 

'Author: • 

Abstract.' 

DEPARTMENT ·o.F • Al{TIFfctAL INT;r.:LLIGfil1CE 
• JJ:rHV¥.RSIT.Y OF- EDINB~H 

·nAI ··Working.--Raper No._. _f,7 
·nat~--: May. ~980 • 

A Powerful :M...atchE;?r .for Algebraic Eq-Uq.tiop. Solving-
' 

Alari Borni'ng 

\ 

.... . . ~ 

i- ;\. :i'( :~ 

This: P?-I>,e--r • d~cribes a''.'pow~rful a1·gebraic ~tch~r for applying rewrite 
rules in eq~!:ion s9-lving,y: Tl:ie--@at'cher. knows 'about the --C9filll1Utativity· 
and associativity - of addition and multiplication, - , will provide 
defaults for missing summands and factors, and if necessary will solve 
algebraically for the value of pattern variables. 

Keywords 

equation solving, symboli~ manipulation, matching., rewrite rules 

Acknc>wledgements 

The -author would' like }=O t-har1k~·a11 the member:s of _the Mecho group for 
help an4 encouragement with.this research. Computing ·resources were 
provided by SRC grant number ~R/A 57954. The author is supported by a· 
NATO Postdoctoral Fellowship from the National,. S-c-:tence Foundat;i.on, 
USA&, . ..-, • 

Any '.opintons, findi,1Jgs., an9 conclusions o.r recommendations expressed 
in this • publication are those of the author and do not necessarily 
reflect the views o~ the National Science Foundation. 

\ 
I 





Table of Contents 

1. Introduction 3 
2. Two Examples 4 

2.1. Deriving the Solution for the General Quadratic 4 
Equation 

2.2. Solving a Trigonometric Equation 9 
3. Objects used by the Matcher 14 

3.1. Expression Descriptions 14 
3.2. Transforms 15 

4. Search Control 15 
4.1. Reducing Search -- Some Unanswered Questions 16 

5. The Matching Algorithm 17 
5.1. Preserving the Properties of the Rule 17 
5.2. Recursively Matching Parts of Expressions 17 
5.3. Paths 18 
5.4. Algebraically Solving for the Value of a Pattern 19 

Variable 
6. The Fuzzy Matcher 
7. Applications of the Matcher 

7.1. Compiling Specialized Methods for Solving Equations 
7.2~ Problems Involving a Change of Unknown 
7.3. A Change of Unknown Example 

·,.8, •.. _~~~19-p~d Work 

20 
21 
21 
22 
23 
26 



'If 

.. 



"-

3 

1. Introduction 

This paper describes a powerful matcher for use in algebraic equation ~ 
solving. 

The matcher is an extension to the PRESS algebra system, 
program for solving equations and inequalities and for 
expressions [Bundy and Welham 79], [Bundy and Welham ng]. 
well as the mat~her described here, are written in PROLOG 
al 78]. PRESS uses multiple sets of rewrite rules, 
applied. Some of the important rewrite rule sets are: 

a computer 
simplifying 

PRESS, as 
{Pereira et 
selectively 

isolation 

collec't:ion 

attraction 

PRESS tries· applying isolation rules when there is a 
single occurence of the' unknown in the equation. 
Isolation rules are applied to strip away surrounding 
functions and operators from the unknown, finally 
resulting in an equation with the unknown on one side 
by itself, and some expr~ssion (free of the unknown) 
on the other. A typical isolation rule is 

arcsin(X)=E -> • X=sin(E). 

Collection rules serve to 
occurences of ,the unknown, so 
applied. A typical collection 

U*W + V*W -> (U+V)*W 
which collects relative tow. 

reduce the number 
that isolation can 

rule is " 

of 
be 

Attraction rules move occurences of the unknown closer 
together in the expression tree, so -that perhaps a 
collection rule can be applied. A sample rule is 

log(B,U)+log(B,V) -) log(B,U*V). 

a matcher that 
commutativity and 

example, to apply 

To_,apply a rewrite rule to an expression, PRESS uses 
extends PROLOG unification by building in the 
associativity of addition and multiplication .. For 
the collection rule 

U*W + V*W -> (U+V)*W 
to the expression 

x*y + z*(3*x) 
in order to collect the two occurences of x, the PRESS matcher would 
unify W with x, U with y, and V with 3*z. The result of applying the 
rule would be 

(y+3*z)*x. 
The matcher used the commutativity and associativity of multiplication 
in accomplishing the match. (Note: following the standard PROLOG 
convention, names beginning with a capital letter represent variables, 
while those starting with a lower case letter represent atoms.) 



4 

An application of collection is the crucial step in-the solution of 
some equations. Reflecting this, human mathematicians will try quite 
hard to find and apply a collection rule to an expression. For 
example, the standard solution of the general quadratic equation 

a*xA2 + b*x +·c = 0 
uses the collection rule 

UA2 + 2*U*V + V,..2 -> (U+vr2.' 
All the other steps of the solution are either preparations for 
applying the rule, or subsequent isolation steps. (However, a 
different terminology is usually used -- rather than talking about 
rewrite rules, mathematicians usually talk about identities. Also, 
the process of applying the above collection rule is often presented 
in "compiled form" as the operation of completing the square.) 
-Similarly, the,standard solution of the trigonomtric equation 

a*sin(x) + b*cos(x) = c • 
depends critically on the use of the rule 

cos(U)*sin(V) + sin(U)*cos(V) -> sin(U+V). 
(Descriptions of the solutions of these equations may be found in 
[Tranter 70].) 

I 

However, the gpplication of these rules-~ matching the left hand side 
of a rule with an expression -- cannot be accomplished simply by using 
pattern matching and information about associativity and 
commutativity. What additional techniques are required? As part of 
an investigation of this question, an experimental matcher has been 
embedded in PRESS that can, among other things, solve both of the 
above equations. 

2. Two Examples 

Before plunging into the details of the matcher, its operation will be 
illustrated by two examples. Annotations to the program trace added 
by the author are preceeded by five asterisks. 

2.1. Deriving the Solution for the General Quadratic Equation 

?- try_hard_to_solve( a*x ... 2+b*x+c=O, x, Ans). 

***** The user asks the program to solve the general quadratic 
***** equation. The "try_hard_:_to_solve" command informs the program 
***** that it can use the powerful matcher in the solution process. 

Solving a*x ... 2+b*x+c=O for x 

trying to use powerful matcher to collect x in 
a*x ... 2+b*x+c 



e 

~ 

5 

***** PRESS .notices that there are two occurences of the unknown in 
***** the equation. It tries to collect the ·two occurences of x. 

features of expression are xA2+x 
looking for a collection rule with matching features 

***** 
·***** 
***** 
***** 
***** 

The program looks for an applicable collection rule. It ·first 
does a cheap "fuzzy. match" between lthe expression and the 
pattern part of a potentially applicable collection rule. To do 
this, it extracts some features from the expr~ssion, and 
searches for a rule with matching features. 

trying to apply rule xA2+2*x*gl+glA2 -> (x+gl)A2 
to a*xA2+b*x+c 

***** One of the collection rules is 
***** UA2 + 2*U*V + VA2 -> (U+V)A2 
***** which collects relative to U. When U is unified with the unknown 
***** x, and V with the generated symbol gl, the features of the rule 
***** are also 
***** xA2+x. 
***** The program selects this rule and tries to apply it to the left 
***** hand side of the equation. Note: the symbol gl was generated by 
***** the program. V can't be left as a PROLOG variable, since the 
***** matcher may have to solve algebraically for gl, and the equation 
***** solver wouldn't work with a non-ground expression. This is a 
*****hack ... 

trying to match plus bags for expression a*xA2+b*x+c 
and pattern xA2+2*x*gl+glA2 

picking terms from expression & pattern bags and trying to match them 

***** 0 The powerful matcher is invoked to match the pattern part of the 
***** rule with the quadratic expression. Since the principal 
***** operator of both the expression and pattern is +, the matcher 
***** converts to a_bag representation. There are a number of ways in 
***** which two bags can be matched. The matcher tries one of these 
***** methods: picking a term from each bag and matching those two 
***** terms. To pick the pair of terms to try matching, the matcher 
***** first uses a simple complexity metric to choose the most complex 
***** term from the expression. It finds the features of this tern, 
***** and then chooses a term with matching features from the rule. 

trying to match times bags for expression a*xA2 
and pattern xA2 

***** The matcher has now been called recursively on the first terns 
***** in each sum. Since the principal operator of a*xA2 is times, 
***** the matcher converts both terms to a bag representation. (The 
***** xA2 term is converted to a times bag with one element.) 

picking terms from expression & pattern bags and trying to match them 



6 

trivially matching x-2 and x-2 
trying to match times bags for expression a 

and pattern (empty bag) 
dealing with term a 

by applying a function to each side of the ~ul~ 
match succeeded on expression a*x-2 and pattern x-2 

. f ,.,. returning trans orm: 
* a 

• 

***** The matcher picks the x-2 terms from each bag, and matche~ them 
***** trivially. Afte~ that, however, it must match the. expression 
***** bag, which still has the "a" left in it, with the now empty 
***** pattern bag. The previously used strategy of picking a term 
***** from each product is no longer applicable. Instead, the matcher 
***** decides that the "a" should be dealt.with by multiplying both 
***** sides of the rule by 
***** transform. 

II tt 

a • This result is returned as · a 

applying transform to remaining terms in pattern bag 
yielding 2*x*gl*a+gl-~*a 

***** Th~ two remaining terms in the pattern bag 
***** .... The matcher is now called recursively a/~ 

of ·1:ti'.~ . ::;.,· ... aria--..1;rute. 
.,,. 

***** parts expression 

trying to match plus bags for expression b*x+c 
and pattern 2*x*gl*a+gl-2*a 

are,.multiplied by 
on the remaining 

picking terms from expression & p~ttern bags and trying to match them 
trying to match times bags for expression b*x , 

and pattern 2*x*gl*a 

***** The matcher now tries matching the two terms containing x. 

picking terms from expression & pattern bags 
trivially matching x and x 
trying to match times bags for expression b 

and pattern 2*gl*a 

and.trying to match them 

... 

***** The two x's have been trivially matched. The matcher will now ,,_, 
***** make several unsuccessful attempts to match b with a term from 
***** the pattern, before-trying the method of solving algebraically 
***** for the value of g~. (See section 4.1 for a discussion of this 
***** search.) The strategy previously employed of multiplying both 
***** sides of the rule by some expression can no longer be used, 
***** since doing so would invalidate· the. previously established match 
***** of the x-2 terms. 

picking terms from expression & pattern bags and trying to match them 
trying to match expression band pattern 2 
match failed on band 2 
picking terms from expression & pattern bag~ and trying to match them 

~ 

"'2•·· 



e 

r 

matching band gl by using substitution 
returning transform: 

gl -> b 

applying transform to remaining terms in pattern bag 
yielding 2*a 

trying to match times bags for expression (empty bag)_ 
and pattern 2*a 

bag match failed on (empty bag) and 2*a 
picking terms from expression & pattern bags and trying to match them 
trying to match expression band pattern a 
match failed· on band a 

' trying to solve for a variable 
calling equation solver to solve for gl in b=2*gl*~ 

Solving b=2*gl*a for gl 

2*gl=b*a""'-l 
·(by Isolation) 

gl=b*a""'-1*2""'-l 
(by Isolation) 

Answer is 
Xl 

where: 
Xl = gl=b*a""'-1*2""'-l 

using solution gl=b*a""'-1*2""'-l 
match succeeded on expression b*x and pattern 2*x*gl*a 
returning transform: 

gl -> b*a""'-1*2""'-l 

-
***** 
***** 
***** 
***** 

The matcher has used the other principal.matching strategy, 
algebraically solving for the value of a pattern variable. The 
transform indicates a substitution for gl. Now the first two 
terms in the bags have been matched. 

applying transform to remaining terms in pattern bag 
yielding (b*a--1*2""'-1)""'2*a 

trying to match plus bags for expression c 
and pattern (b*a""'-1*2""'-1)""'2*a 

dealing with term c 
by ,a pply%ng a func ti~n to -;i=ach si];de 0J1:,-the rule -;\, 

trying to match plus bags for expression <empty bag> 
and pattern (b*a""'-1*2""'-1)""'2*a 

dealing with term (b*a""'-1*2""'-1)""'2*a 
by applying a function to each side of the rule 



~~~ 

8

***** The last two terms don't mateh. each other. However, the match~r
***** can complete the match by adding the c term in the expression to
***** each side o·f the rule, and subtracting the (b*a"-1*2"-1)"2*a
***** term.

match succeeded on expression a*x"2+b*x+c and pattern x"2+2*x*gl+gl"2
returning transform:

* a
+ C

-+ -l*(b*a"-1*2"-1)"2*a
gl -> b*a"-1*2"-1-

,
:1

The match is now complete. The pattern will match the
expression if the transform listed is applied to it (multiply
each side of the rule by a, -ad4 c to each side, add the term
-l*(b*a"-1*2"-1)"2*a to each side, and substitute b*a"-1*2"-l
for gl). The rule remains a valid collection rule after the
transform has been applied to each side of it. So the transform
is applied to the replacement part of the rule, and the result
is substituted for the expression

~~x--z+b!x+c .•
After this• substitution, there will be only one occurence of .. x"
in t~~ _«;.quat~~, ~pich may therefore be solved_ by isolation.

x collected in a*x"2+b*x+c gives
(x+b*a"-1*2"-1)"2*a+c+-l*(b*a"-1*2"-1)"2*a

(x+b*a"-1*2"-1)"2*a+c=O+-l*(-l*(b*a"-1*2 ... -1)"2*a)
(by Isolation)

(x+b*aA~l*2 ... -1)"2*a=O+-l*(-l*(b*a"-1*2 ... -1)"2*a)+-l*c
(by Isolation) -

(x+b*a"-1*2"-1)"2={0+-l*(-l*(b*a"-1*2"-1)"2*a)+-l*c)*a"-l
(by Isolation) •

x+b*a"-1*2 ... -l=((O+-l*(-l*(b*a"-1*2"-l) ... 2*a)+-l*c)*a"-1)"2 ... -l#
'x+b*a ... -1*2 ... -l=-l*((O+:.l*(-l*(b*a"-1*2 ... ~1)"2*a)+-l*c)*a ... -1)"2 ... -l

(by Isolation) '

x=((O+-l*(-l*(b*a ... -1*2"-1)"2*a)+-l*c)*a"-1)"2"-1+-l*(b*a"-1*2"-1).
(by Isolation)

.
x=-l*((O+-l*(-l*{b*a"-1*2"-1)"2*a)+-l*c)*a"-1)"2 ... -l

+-l*(b*a"-1*2"-l) ' :
(by Isolation)

Answer is :

(Xl II X2)
where:

9

Xl =
X2 =

x=2A-1*-l*aA-l*b+(aA-2*bA2*2A-2+-~*c*aA-l)A2--1
x=2A-1*-l*aA-l*b+-l*(aA-2*bA2*2A-2+-l*c*aA-l}A2--1

[END OF TRACE]

The program has now solved the equation. The two roots, written in
two-dimensional notation, are:

·,

b
X = +

2a

..
or

b
x=

2a

\I

I
I

I

I 2
I b

2 2
2 a

I 2
/ b

/ 2 2
\/ 2 a

C

a

C

a

If the fractions in the root are put over a common demoninator, the
answers simplify to the usual expressions. (The current program
doesn't siraplify fractions in this way, because nobody has gotten
around to writing the necessary paekage.)

2.2,'Solving a.Trigonometric Equation

Another example will now be presented. Since there are many
similarities to the previous one, there are only a few annotations,
pointing out. some interesting features pf the solution.

I ?- try_hard_to_solve(a*sin(x)+b*cos(x)=c, x, Ans).

Solving a*sin(x)+b*cos(x)=c for x
Trying to collect x in

a*sin(x)+b*cos(x)

10

trying to use powerful matcher to collect x in
a*sin(x)+b*cos(x)

features of expression are sin(x)+cos(x)
looking for a collection rule with matching features

trying to apply. rule sin(x)*cos(gl)+cos(x)*sin(gl) -> sin(x+gl}
to a*sin(x)+b*cos(x)

trying to match plus bags for expression a*sin(x)+b*cos(x}
and pattern sin(x)*cos(gl)+cos(x)*sin(gl)

picking terms from expression & pattern bags and trying to match them
trying to match times bags for expression a*sin(x)

and pattern sin(x)*cos(gl)
picking terms from expression & pattern bags and trying to match them
trivially matching sin(x) and sin(x)
trying to match times bags for expression a

,.-, f:,~d ~~~t,~_!;_i. .~o.st?i~•).:_ -.:···.~ ~ ·--,,, .-:-,.;~
dealing with•· tersm-. a·· • ' • .. "' .

by applying a function to each ·side bf the rule
trying to -match·- times bags for eipression (empt:r bag)

and pattern cos(gl)
dealing with term cos(gl)

by applying a function to each side of the rule
match succeeded on expression a*sin(x} and pattern sin(x}*cos(gl}
returning transform:

* a
* cos(gl) -1

***** The first term from the expression has been matched with the
***** first term from the pattern in much the same fashion as in the
***** quadratic example.

applying transform to remaining terms in pattern bag
yielding cos(x)*sin(gl)*a*cos(gl) -1

trying to match plus bags for expression b*cos(x)
and pattern cos(x)*sin(gl)*a*cos(gl) -1

picking terms from expression & pattern bags and trying to match them
trying to match times bags for expression b*cos(x)

and pattern cos(x)*sin(gl)*a*cos(gl) -1
picking terms from expression & pattern bags and trying to match them
trivially matching cos(x) and cos(x)
trying to match times bags for expressio~ b

and pattern sin(gl)*a*cos(gl) -1

The co~s(x) fae·tors have been matched trivially.
be several unsuccessful attempts to match b with a
the pattern, before solving b;sin(gl)*a*cos(gl) -1

There will now
factor from

for gl.

11

picking terms from expression & pattern bags and trying to match them
trying to match expression band pattern sin(gl)
match failed on band sin(gl)

trying to solve for a variable
calling equation solver to solve for gl. in_ b=sin(gl)

Solving b=sin(gl) for gl

gl=a£csin(b)
(by Isolation)

Answer is:
Xl

where:
Xl = gl=arcsin(b)

• <

using solution gl=arcsin(b)
solving for a variable succeeded in matching expression b

and pattern sin(gl)
returning transform:

~L -? arcsin(b) ~

applying transform to remaining terms in pattern bag
yielding a*cos{arcsin(b))A-1

trying to match times bags for expression (empty bag)
and pattern a*cos(arcsin(b))"-1

bag match failed on (empty bag) and a*cos(arcsin(b))A-1
picking terms from expression & pattern bags and trying to match them
trying to match expression band pattern a
~atch failed on band a
picking terms from expression & pattern bags and trying to match them

,.-;. trying -to match expression b and pattern cos(gl)"-1
match failed on band cos(gl)--1

< •

trying to solve for a variable
calling equation solver to_ solve.for gl in b=cos(gl)--1

Solying b=cos(gl)~-1 for gl

cos(gl)=b"-1--1
,. . (by Isolation).

gl=arccos(b"-1--1)
(by Isolation)

. Answer is -:
Xl .t

where :, --:. __
Xl = gl=arccos(bA-1}

12

using solution gl=arccos(bA-1)
solving for a variable succeeded in matching expression b

and pattern cos(gl)A-1
returning transform:

. gl -> arccos(b--1)

applying transform to remaining terms in pattern bag
yielding sin(arccos(bA-l))*a

trying to match times bags for expression (empty bag)
and pattern sin(arccos(bA-l))*a

bag match failed on (empty bag) and- sin(arccos(bA-l))*a

***** A successful attempt finally begin~.

trying to solve for a variable
calling equation solver to solve for gl in b=sin(gl)*a*cos(gl)--1

Solving b=sin(gl)*a*cos(gl)A-1 for gi
Trying to collect gl in

sin(gl)*a*cos(gl)A-1

gl collected in sin(gl)*a*cos(gl)A-1 gives
a*tan(gl)

b=a*tan(gl)

tan(gl)=b*aA-1
(by Isolation)

gl=arctan(b*aA-1)
(by Isolation)

Answer is
Xl

where:
Xl = gl=arctan(b*aA-1)

using solution gl=arctan(b*aA-1)
match succeeded on expression b*cos(x)

and pattern cos(x)*sin(gl)*a*cos(gl)A-1
returning transform.:

gl -> arctan(b*aA-1)
.

***** The two cos(x) terms have now been matched by solving for the
***** value of gl. The equation solver used collection in the
***** process! Note that the matcher used a particular ra~h~r than a
***** general solution for gl (see section 5.4).

.,

13

applying transform to remaining terms in pattern bag
yielding (empty bag)

match succeeded on expression a*sin(x)+b*cos(x)
sin(x)*cos(gl)+cos(x)*sin(gl)

returning transform:
* a
* cos(gl)"'-1·
gl -> arctan(b*a"'-1)

and pattern

x collected in a*sin(x)+b*cos(x) gives
sin(x+arctan(b*a"'-l))*a*cos(arctan(b*a"'-1))"'-1

sin(x+arctan(b*a"'-1 H*a=c*(cos(arctan(b*a"'-1))"'-,l)"'-1
(by Isolation)

sin(x+arctan(b*a"'-l))=c*(cos(arctan(b*a"'-1))"'-1)"'-l*a"'-l
(by Isolation)
where nl denotes an arbitrary integer.

x+arctan(b*a"'-l)=nl*l80+-l"'nl*
arcsin(c*(cos(arctan(b*a"'-1))"'-l)"'-l*a"'-l)

(by Isolation)

x=n1*180+-l"'nl*arcsin(c*(cos(arctan(b*a"'-1))"'-1)"'-l*a"'-l)+
-l*arctan(b*a"'-1)

(by Isolation)

Answer is·
Xl

where:
Xl = x=-l"'nl*arcsin(c*cos(arctan(b*a"'-l))*a"'-1)+

-l*arctan(b*a"'-1)+180*nl

[END OF TRACE]

The equation has now been solved. As often occurs, the solution gives
spurious v~ues for x, as well the correct values. Thus the solutions
to a specific equation would need to be checked by substituting them
back into the original equation.

-These spurious solutions were introduced in the collection step
sin(gl)*cos(gl)"'-1 -> tan(gl)

14

when solving for the value of gl. The standard textbook derivation
avoids this. In the standard solution, one simultaneously finds k and
theta such that

a= k*cos(theta) & b = k*sin(theta).
Suitable (particular!)

k = sqrt(a-2+bA2)
Thus

values are
~ theta= arctan(b/a).

a*sin(x)+b*cos(x) = k*cos(theta)*sin(x)+k*sin(theta)*cos(x)
· = k*sin(x+theta) . .,.... ,.,.._.

The equation
k*sin(x:+theta) = c

may now be solved by isolation.

For the matcher to do this would require that it b~ extended to solve
simultaneously for the values of several pattern variables. Only a
few modifications to the existing parts of the matcher would be
required. However, it might be rather difficult to write methods for
finding simple, particular solutions for simultaneous equations
this requires more investigation.

3, Objects used by the Matcher

kinds of objects (i.e. data
Other parts of the program
the procedure~, thus providing

The matcher makes use of several
structures and associated procedures.)
create and access these objects through
a degree of data abstraction.

3,1, Expression Descriptions

An @xpr11sion description consists of an algebraic
with some other descriptive information. The data
expression· description has the fo.llowi.ng fo.rmat:

expression, along
structure fot an

expr description(Expr,Root,Unknown,PatternVars,Path)
where •

Expr is the expression being considered
Root is the root of the expression tree"of which Expr

is a subexpression
Unknown is the unknown
PatternVars is a list of the pattern variables in Root
Path describes the path from Root to Expr

It is used to decide when it is permissible to add
or multiply each side of the rule by a term.

For example, the description
expr description(x-2 , a*xA2+b*x:+c, x,

[] , [pair(first,*),pair(first,+)])

15

represents the subexpression xA2 of the expression a*x-2+b*x+c in the
unknown x. There are no pattern variables. The path indicates that
the subexpression was the first term selected from a product, which
was in turn the first term selected from a sum. (See section 5.3.)

Along with the data structure, pro~edures have been defined for
accessing the parts of an expression description, creating new
descriptions, returning copies of existing descriptions modified in
various ways, and·so forth. ..,. '-

3.2. Transforms

A transform is an object that represents functions, substitutions, and
possibly a change of unknown to be applied to an expression
description. Its data structure format is:

transform(FunctionList,SubstitutionList,New Unknown)
where -

FunctionList is a list of functions ~o be applied
to the expression

SubstutitionList is a list of substitutions to be applied
to the expression

New Unknown is the new unknown if the transform includes
a change of unknown, and is otherwise "false"

Again, procedures have been defined for accessing the parts of a
transform, creating new ones, copying existing transforms,
concatenating two transforms to form a third, and applying transforns
to expression descriptions to yield a new description. (The
operations within the transform are performed left to right.)

4, Search Control

The matcher has available a considerable range of strategies for
accomplishing a match; some of these strategies, such as algebraically
solving for the value of a pattern variable, can be expensive to use.
Therefore, it is important that the search involved in accomplishing a
match be tightly controlled. The main technique for doing this is the
use of the fuzzy match~r to perform a preliminary check before
invoking _the ·full matcher. Fuzzy matching is used both for the
initial selection of a collection rule, and for the selection of a
pair of terms to match from two bags. Another technique for
controlling search.is the complexity he~ristic for deciding which term
in a bag to look at next. These techniques have proven to be quite
powerful.- As illustrated by the preceeding examples, most spurious
matches are rejected during fuzzy matching, and little search is done
using the full matcher. •

16

To handle the search that does occur, the matcher uses the depth-first
search provided by the built-in PROLOG backtracking mechanism, along
with a memo procedure to save the results of matches in case they are
needed again .

. The current search control methods are for the most part adequate for
matches that are eventually successful, and for_ matches that can't
succeed (and are detected as such by the fuzzy matcher). The matcher
takes considerably longer on matches that pass the fuzzy matcher, but
eventually fail. For example, if one asks the system to.find the
solution to the general·cubic equation

a*xA3 + b*x-2 + c*x + d = O,
it will (reasonably enough) attempt to apply the collection rule

u-3 + 3*U-2*V +3*U*v-2 + v-3 -> (U+v)-3.
This match eventually fails, but only after considerable backtracking.

A direction for future research with the matcher would be to explore
other search control strategies, e.g. agendas and resource allocation
mechanisms. The need for such strategies would become more acute if
more alte~nativ~s for matching. two 1 expressions were added to the
matcher, such as the method of simul~aneously solving for the value o.t.,~,
several pattern variables .

.
4,l, hducing Search -- Some Unanswered Questions

One might argue that, at least in the two examples presented so far,
no search at all involving the full matcher was really needed. In the
quadratic example, such search took place when trying to match b with
2*gl*a. Matching b with gl was obviously silly, since the natcher
would in any case be unable to deal with the remaining 2*a. At one
point the program was in fact modified to take this into account. In
picking a pair of terms from two bags, the matcher insisted that not
only did the pair of terms match fuzzily, but the remainder of the two
bags match fuzzily as well. With this modification,. the search in
question was eliminated, since the fuzzy match between <empty bag) and
2*a failed. The problem with this was that a great deal of additional
information had to be built into the fuzzy matcher, since for exam~le
an empty bag would match a non-empty bag if each side of the rule
could be multiplied by the appropriate terms, or if the non-emtpy bag
contained~ pattern variable. This information duplicated that in the
bag matching procedures, making things very unmodular. Also, it was
contrary to the goal of keeping the fuzzy matcher comparatively
simple. So this modification was removed.

The au·thor is unsure as to what ought to be' done • about this, if
anything. One idea is to do more re-ordering of subgoals (in this
case, to try matching (empty bag) with 2*a before matching b with gl). "

17

5, The Matching Algorithm

The arguments to the matcher are as follows:
match(Expression Description, Pattern Description, Transform)

Expression Description and Pattern Description are descriptions of the
expression and pattern to be matched. If the match is successful,
Transform is unified with a transform that, if applied to the pattern,
would_make it algebraically equal to the expression.

When called, the matcher first checks for simple cases. If the
expression and pattern are identical, the match succeeds trivially,
and the null transform is returned. If the pattern consists solely of
a pattern variable, the match succeeds again, and a transform
consisting of the single substitution "variable-> expr" is returned.

Otherwise, the
accomplishing
corresponding
algebraically

matcher must try harder. The matcher has two ways of
a non-trivial match: by recursively matching
parts of the expression and the pattern, or by

solving for the value of a pattern variable.

S,1, Pr@1@rving the Properties of the Rule

The matcher should preserve the properties of the rule whose pattern
is being matched. This is handled in a somewhat ad hoe way at present

the matcher always leaves the same number of occurences of the
unknown on each side o·f the rule. Thus, in particular, callee tion
rules will always remain valid collection rules after being matched
(i.e. after the transform returned from a match has been applied to
both sides).

5,2, Recursively Matching Parts of Expressions

·In- general, .to match two complex expressions, the matcher will first
check that 'the principal operators or functions are the sa~e, and.will
then match the corresponding arguments. For example, consider
matching the expression log(e,a), i.e. the log of a to the base e;
with the pattern log(e,g2), where g2 is a pattern variable. The
matcher first checks that the functions log are the same, and then
calls itself recursively to match e with e, and a with g2.

The matcher. knows about the commutativity and associativity of
addition and multiplication. When matching two sums or products, the
matcher puts all the terms in each sum or product into an unordered
bag. It then has available the following alternatives in matching the
two bags:

.,_ .,.f;j .. ~ ~~pt~

If both bags are empty, the match succeeds trivially.

The matcher can pick an term from each bag and call itself

18

recursively to match the two terms. In using this
alternative, the matcher will pick the most complex term
from one bag (using a simple compl~ity metric), and then
will pick an appropriate term from the other bag. This
other term is selected by performing a fuzzy match between
the term from the first bag and candidate terms from the
other bag.

If there is just a pattern variable left in the pattern, and
the expression bag is empty, then the matcher can try
setting the variable to the identity element for the bag (0
for plus bags, 1 for times bags). This option is logically
redundant, as the alternative of solving for a pattern
variable would accomplish the same end. It is included at
this point, however, as a cheap option to be tried before
others such as adding or multiplying each side of the rule
by some term.

If there is just a pattern variable left in the pattern, and
the express°ion hag contains_some random terms, all fre~. of
the unknown, then the matcher can try substitut:J.ng the
expression's terms for the pattern variable. Again, this
alternatfve is logically redundant, but is included here so
that it will be tried before the others that follow.

If the term in either the expression or the pattern is free
of the unknown, the matcher can permit the match to succeed
by adding or multiplying each side of the rule by a term, if
applying the operation will not invalidate . previously
matched parts of the expression and pattern. This strategy
was used, for example, to match the a*x-2 and x-2 terms in
the quadratic. Whether or not this option can be used is
determined by inspecting the path from the root to the
expression. (See section 5.3.)

If the pattern contains a pattern variable, the matcher can
try to solve for its value algebraically. (See section 5.4
for more details.)

,

When matching a sum against any other, expression (including .. a
product), the matcher will convert the other expression into a plus
bag with just the one element. Matching a-product against any other
expression (except a sum) is .handled analogously. , .

5.3. Paths

A preliminary word of warning: this was one
parts of the matcher to design an~ debug,
use ne-thinking.· It is only with reluc;anc~
its current kludgiferous state.

of the most difficult
and the whole ,.thing could
that the author describes . . .

(

19

As described in section 3.1, one of the parts of an expression
description is a path from the root to the current expression. The
path is represented as a list of pairs, each pair consisting of
"first" or "other", followed by the expression's principal operator or
function. As each new subexpression is considered, another pair is
put on the front of the list from the previous description. One of
the peculiarites of these paths is that they reflect the order in
which terms are selected from bags by the matcher, rather than the
order in which they occur in the original expression. In the
quadratic example, the path to the root expression a*x-2+b*x+c is of
course[]. The path to a*x-2 is [pair(first,+)J, since this is the
first term selected from a plus bag. -Similarly, the path to x-2 is
[pair(first,*),pair(first,+)J, since this is the first term selected
from a times bag, which was the first term from a plus bag. The path
to b*x is [pair(other,+)J, because this was not the first term
selected. Finally, the path to the x in b*x is
[pair(first,*),pair(other,+)].

To decide whether a term can be added to both sides of the rule, or if
both sides can be multiplied by something, the matcher looks at the
path., The addition o'r multiplication is allowed if each operator on
the path dis"Lributes over it's successor on the path. (Naturally,
multiplication distributes over addition.)

There was an attempt (probably misguided) to make this design general
-- for example, the whole thing should work with logical operators
"and" and "or".

5,4. Algebraically Solving for the Value of a Pattern Variable

The other principal technique for accomplishing a match is to solve
algebraically f9r the value of a pattern variable. An equation is
constructed whose two sides are the epxression and pattern to be
matched.

In solving equations of this kind, a particular rather than a general
solution is wanted. The equation solver is told about this by adding
the assertion

particular solution(PVar)
to the data base, where PVar is the pattern variable being solved for.
An instance of this was seen in the trigonometic example given in
section 2.2. There, when solving b=sin(gl)*a*cos(gl)--1 for gl, the
particular solution gl=arctan(b*a~-1) was used, rather• than the
general solution gl=nl*l8o+arctan(b*a--l).

As mentioned previously, the unknown is given a special status, and
this is reflected in some restrictions on this method. If no change
of unknown is involved, the expression to be substituted for the
pattern variable must be free of the unknown. (Otherwise, the rule
would probably no longer serve as e.g. a valid collection rule.) On
the other hand, if a change of unknown is involved, the variable being

20

s-0lved for must be· the 'new unknown, and the
, substituted for it must contain the new unknown.

unknown example in section 7.3 will illustrate this.)

6, The Fuzzy Matcher

expression to be
{The change of

The fuzzy matcher is used to perform an inexpensive preliminary check
on whether an expression and pattern may match. Thus, it must always
succeed if the expression and pattern can be matched by the full
matcher, and should fail on cases on which the full matcher would
"obviously" fail. The fuzzy matcher computes the features terms of
the expression and pattern, and then matcqes these using the normal
PRESS matcher (which is comparatively in~xpensive).

The algorithm used for extracting a feature term is as follows.

If the expression is the unknown itself, then its featur~_
term is the unknown as well.

If the expression is free of the unknown, its feature term
is the expression "mumble".

To compute the feature term of a sum or product bag, the
features of each term in the bag are found. Al_l "mumbles"
are discarded; the feature term is then a bag consisting of
the remaining feature terms.

Integer exponents of expressions not free of the unknown
remain themselves. (Otherwise a fuzzy match of e.g. x""'3+x
and x""'2+x would succeed, since the feature terms of both
would be x""'mumble+x. This was not desired.)

The features of any ether c·omplex term are found by
computing the features of each argument, and returning a new
term with the arguments replaced by their corresponding
features.

Here are some examples. In all cases the unknown is x.

Expression Features
X

3*sin(b)+cos(a)
3*a~b*x""'2 + 5
2*sin(x)+cos(x)""'2

X

mumble
x""'2
sin(x)+cos(x) ""2

The algorithm for extracting a features term reflects the fact that

"

..

~ 21

the matcher can often deal with miscellaneous expressions that are
free of the unknown.

7, Applications of the Matcher

Several applications of tlte matcher have been programmed. Two are
described in this section: compiling specialized methods for solving
equations, and solving equations using a change of unknown.

The matcher has also been tried as the standard matcher in PRESS for
applying collection rules. When run on a set of standard problems,
the program solved them all, but ran at 1/3 the speed of the regular
program. €Huch of this is due to a kludgey interface between the
matcher and the rest of PRESS, and could be reduced considerably.) In
any case, the matcher is probably more powerful than necessary for
most equation solving applications.

i .'1. Compiling Specialized Methods for Solving Equations

The first of these applications is a procedure that compiles
specialized methods for solving certain kinds of equations. The user
gives the program the general form of an equation. The program solves
the equation using the powerful matcher, and then asserts a new PROLOG
procedure for solving instances of that equation .

. The following command is used:

learn to solve(Normal Form, Unknown, Equation, Conditions)
where - -

Normal Form is the name of the normal form of the equation
Unknown is the unknown
Equation is the equation
Conditions is a list of conditions on the symbols

of the equation

The new procedure asserted by the program will execute as follows.
First, the incoming equation will be put into the specified norEal
form. The normalized equation will then be matched against the
normalized general equation using the standard PRESS matcher, and the
conditions will be evaluated. If all this is successful, then the
procedure simply tidies the solution to the general equation and
returns it. (The versions of the general equation and .its solution
included in the asserted procedure have all symbolic quantities
replaced by PROLOG variables, so that the matching and substitution
into the solution are accomplished using PROLOG unification.)

For example, suppose the user issues the command

:;.

\

22

learn to solve(polynomial , x, a*xA2+b*x:+c=O, non zero(a))
The program - will solve the equation as previously described, ~,.r,d will
then assert a new procedure for solving quadratic equations. '!he use
of polynomial normal form (rather than general normal form) ensures
that equations such as

(x-3)*(x-4)=0
are recognized as quadratics, and also provides correct defaults for
missing coefficients.

7,2. Problems Involving a Change of Unknown

Another application uses the matcher in solving equations using a
change of unknown. In this method, the equation is matched against
another equation whose solution is known. The match will involve a
change of unknown. The method currently tries only to match against
quadratics, but there should be no particular problem in extending it
to try other kinds of equations.

First, an expression is constructed by subtracting the right hand side
of the equation from its left hand side, and distributing products
over sums. An inexpensive test~is then performed to see if the match
aga~~t the general quadratic might be successful, to weed out
obviously losing attempts. The tesf·consists of checking that the
expression is a sum, with two terms containing the unknown, and one of
them involving exponentiation. If the expression passes the test, it
is then mat~hed against the quadratic expression

a*xA2 + b*x +c
using the powerful matcher. The transform returned by the matcher can
use only substitution and a change of unknown, but not function
application. If the match is successful, the same transform is
applied to the two solutions to the quadratic equation. Each of the
resulting pair,of equations will then have only one occurence of the
original unknown, and is then solved by isolation.

This method is currently programmed in a rather counterintuitive
fashion,. in that the transform returned by the matcher will take the
quadratic pattern and make it equal to the original expression.
Humans, on the other hand, usually do it the other way round they
take an equation and transform it into a quadratic. However, t~¥ end
result is similar. Modelling the human behaviour would require that
the matcher be able to return transforms that apply to the expression
(if it's an equation), as well as to the pattern.

This change of unknown method is complementary to the change of
unknown method used in the standard PRESS program. In that method,
the program searches for a proper subexpression of the equation being
solved such that there is more than one occurence of the subexpression
in the equation, and such that all occurences of the unknown are
contained within these subexpressions. If these conditions hold, the
program will generate a new unknown, substitute it for each occurence
of the subexpression, solve the new equation, and finally use this

23

solution to solve for the original unknowrr. Thus, the method makes no
presuppositions about the form of the new equation. However, the
subexpressions containing the unknown must each be exactly the same.
(Thus the problem presented in section 7.3 could not be handled by
this method.) Conversely, the method using the powerful matcher will
only match the original equation against one of a particular form, but
is more flexible in the transformations it can use.

7,3, A Change of Unknown Example

I ?- solve(5A(2*y)-5A(y+l)+6=0, y, Ans).

trying to use powerful matcher to collect yin
5A(2*y)+-1*5A(y+l)+6

features of expression are mumbleAy+mumbleAy
looking for a collection rule with matching features

***** The program has just unsuccessfully attempted to find a suitable
***** collection rule.

trying change of unknown to make equation into a quadratic
trying to match plus bags for expression 5A(2*y)+-1*5A(y+l)+6

and pattern a zzz*x zzzA2+b zzz*x zzz+c zzz
picking terms from expression & pattern bags and trying to match them

• trying to match times bags for expression 5A(2*y)
and pattern a_zzz*x_zzzA2

***** The matcher has selected the first term from each plus bag.
***** When a change of unknown is involved, the fuzzy
***** are relaxed: two expressions match fuzzily

·*****expression contains the unknown and the pattern
***** or neither contain the unknown or new unknown.

matcher's checks
if either the

the new unknown,

picking terms from expression & pattern bags and trying to match them
trying to match expression 5A(2*y) and pattern x zzzA2
matching 5 and x zzz by using substitution
r~turning transform:

X ZZZ -) 5

trying to solve for a variable
calling equation solver to solve for x zzz in 5A(2*y)=x_zzzA2

(

(by Isolation)

Answer is :
(Xl If X2)

where:
Xl =
X2 =

x_zzz=5''y
x_zzz=-1*5"y

using solution x-=.zzz=S"y

24

solving for a variable succeeded in matching expression 5"(2*y)
and pattern x_zzz"2

returning transform.:
X ZZZ -) 5"y
change unknown toy

applying transform. to remaining terms in pattern bag
yielding a_zzz

trying to match times bags. for expression (empty bag>
and pattern a_zzz

trying making a zzz the bag identity element 1
match succeeded-on ~ression 5"(2*y) and pattern a zzz*x zzz"2
returning transform:

X ZZZ -) 5"y
a zzz -> 1
change unknown toy

***** The first terms have now been matched. The unknown in the
***** pattern is changed from x zzz toy.

applying transform to remaining terms in pattern bag
yielding b_zzz*5"y+c_zzz

trying to match plus bags for expression -1*5"(y+l)+6
and pattern b_zzz*5"y+c_zzz

picking terms from expression & pattern bags and trying to match them
trying to match times bags for expression -1*5"(y+l)

and pattern b_zzz*5"y
picking terms from expression & pattern bags and trying to match~them
trying to match expression 5"(y+l) and pattern 5"y
trivially matching 5 and 5
trying to match plus bags for expression y+l

and pattern y
picking terms from expression & pattern bags and trying to match them
trivially matching y and y
trying to match plus bags for expression 1

and pattern (empty bag>
bag match failed on 1 and <empty bag)
bag match failed on y+l and y
match failed on y+l and y
match failed on 5"(y+l) and 5"y

25

trying to solve for a variable
calling equation solver to solve for b zzz in -1*5A(y+l)=b_zzz*5Ay

b zzz=-1*5A(y+1)*(5Ay)A-1
- (by Isolation)

Answer is:
Xl

where:
Xl = b zzz=-5

using solution b_zzz=-5
match succeeded on expression -1*5-(y+l) and pattern b_zzz*5-y
returning transform:

b zzz -> -5

***** The second terms have now been matched.

applying transform to remaining terms in pattern bag
yielding c_zzz

trying to match plus bags for expression 6
and pattern c zzz

substituting 6 for c zzz
mateh succeeded on expression s-(2*y)+-1*5-(y+1)+6 and pattern

a zzz*x zzzA2+b zzz*x zzz+c zzz
returning transform:

X ZZZ -> 5Ay
a zzz -> 1
b zzz -> -5
C ZZZ -> 6
change unknown toy

applying transform to solution to quadratic equation yielding
(Xl II X2)

where:
Xl =
X2 =

Solving 5-y=2#s-y=3 for y

y=log(S,2)
(by Isolation)

y=.log(5,3)
(by Isolation)

Answer is
(Xl II X2)

where:
Xl =
X2 =

y=log(S,3)
y=log(5,2)

[END OF TRACE]

r
8. Related Work

26

To the best of the author's knowledge, no other algebraic matcher has
been implemented that compares in power to the one described here.

A powerful matcher, upon which the present work is based, is proposed
in [Bundy 75]. (This paper also describes many of the basic ideas in
the PRESS program.) The PRESS program as currently implemented
includes a matcher that knows about the commutativity and
associativity of addition and multiplication. The matcher in MACSYMA
([Fateman 72], [Mathlab 77]) knows about commutativity and
associativity. It also provides defaults for missing summands,
factors, and exponents; and will distribute products over sums to
accomplish a match. However, in the author's opinion, the normal form
mechanisms of PRESS provide a cleaner way of specifying these
additional features. For efficiency, the MACSYMA matcher compiles
patterns into LISP programs, rather than using an interpreter.

A survey of the state of the art in matching and unification problems
is in [Raulefs et al 78]. An algorithm for matching under
commutativity that improves over the naive solution is presented in
[Siekmann 79], along with some formal discussion.

,J. •

27

REFERENCES

[Bundy and Welham 79]
Bundy, A. and Welham, B.
Using meta-level descriptions for selective application

of multiple rewrite rules in algebraic manipulation.
Working Paper 55, Dept. of· Artificial Intelligence,

. Edinburgh, May, 1979.

[Bundy and Welham ng]

[Bundy 75J

[Fateman 72]

[Mathlab 77]

Bundy, A. and Welham, B. ·
Using meta-level inference for selective application of

multiple rewrite rules in algebraic manipulation.
Artificial Intelligence, forthcoming.

Bundy, A.
Analysing Mathematical Proofs (or reading between the

lines).
In Winston, P., editor, Procs of the fourth. IJCAI,

Georgia, 1975.
An expanded version is available from Edinburgh as DAI

Research Report No. 2.

Fateman, R.J.
Essays in Algebraic Simplification.
PhD thesis, MIT, April, 1972.
also available as MAC TR-95.

Mathlab Group.
MACSYMA Reference Manual.
Technical Report, MIT, 1977.

[Pereira et al 78]

[Raulefs et al

Pereira, L.M., Pereira, F.C.N. and Warren, D.H.D.
User's guide to DECsystem-10 PROLOG.
Internal Memo-;-Dept. of Artificial Intelligence,

Edinburgh, 1978.

78]
Raulefs, P.,Siekmann, J.,Szabo, P. and Unvericht, E.
A short survey on the state of the art in matching and

unification problems.
AISB Quarterly issue 32:ppl7-21, December, 1978.

[Siekmann 79]

[Tranter 70]

28

Siekmann, J.
Unification of Commutative Terms.
In Ng, E.W., editor, Symbolic and Algebraic

Computation, pages 531-545.~pringer-Verlag, 1979.

Tranter, C.J.
Aavanced Level Pure Hathematics.
English Universities Press, 1970.

	Specialize
	Read in files
	Specialize general polynomial
	Polynomial methods
	Polynomial simplification
	Current problems

	Collection method
	Read in powerful matcher
	Collection routine
	Tests

	Borning matcher
	MM.SUB
	Read in files
	Powerful algebraic matcher
	Nontrivial matches
	Bags
	Expression descriptions
	Memoization
	Select best terms to match
	Fuzzy matcher
	Transforms
	Portray
	Miscellaneous
	Feature extraction
	Instantiation kludge
	Tests
	Learning
	Learning tests
	Collect
	Change of unknown
	Tidy additions
	Isolation axioms
	Square root
	COLLAX.PAT
	DECOMP.PAT
	INTERV.PAT
	POLY.PAT
	Logarithm
	Paths

	Cardan method
	Read in files
	Form auxiliary equations
	Pack and unpack rewrite rules
	Untitled
	Tests
	Simultaneous equations
	Problems
	test2

	Notes and letters
	Note 84: Specializing the general cubic
	Note 83: Cardan’s method
	Note 74: Adapting the Borning Matcher to handle the cubic
	Note 69: Solving the general cubic
	Borning to Bundy 1981 02 24
	Note 67: A Powerful Matcher for Algebraic Equation Solving

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

