
PROGRAMMING FOR PERFORMANCE IN APL\3000

Dave Elliott
Development Engineer

General Systems Division
Hewlett-Packard Company

INTRODUCTION

The dynamic incremental compiler of APL\3000 uses sev
eral advanced techniques for optimizing the evaluation of
APL expressions. These include the sharing of data by mult
iple variables, the evaluation techniques of 'dragalong'
and 'beating' and the use of arithmetic progression vectors.
A discussion of each of these features will be presented.
The APL\3000 user can also enhance performance by proper
tuning of the virtual memory paging scheme using the system
variable []VM. A number of general and specific internal
optimizations have been introduced starting with version
01.03. Programming techniques to take advantage of these
improvements will be presented. There have also been sev
eral significant enhancements including six new system
functions and two system commands. Use of these features
will be discussed.

COMPILER OPTIMIZATIONS

The APL\3000 subsystem was designed to minimize the run
time accessing, movement and creation of data items. This
was done by having variables share their data areas when
possible, decreasing the number of temporary variables cre
ated during expression evaluation, and examining each APL
operation within the context of the surrounding expression.
Also, those APL operators whose execution change not the
value of variables, but the order in which variables are ac
cessed, are implemented as operations on the data descriptors
rather than manipulating the actual data. This last tech
nique is referred to as 'beating J

•

Beating and Arithmetic Progression Vectors (APVs)

There are five operators in APL that are eligible for im
plementation by beating. They are take, drop, reversal,
transposition and some forms of indexing. Before discussing
how beating is done, we must examine how data is stored and
accessed in APL\3000. Each variable that contains more than
one element is allocated a block of the virtual memory array
which contains the data. The first word in this data area
is a reference count of how many variables share the area.
Data sharing will be discussed later. In the symbol table,
which also resides in virtual memory, each variable is rep-

SECTION 2-1

resented by a pointer to its data area and a number of ac
cessing parameters. The system command)SHOW (see New En
hancements section) lets us look at the symbol table entry.
Suppose MAT is a newly created 10 by 15 element integer
matrix. Then)SHOW MAT would cause the following display:

TYPE:
REP:
RANK:
SHAPE:
DEL:
OFFSET:
VIRTUAL

****** MAT ******
MATRIX
INTEGER
2
10 15
15 1
o

ADDRESS OF DATA BLOCK:
BLOCK LENGTH (WORDS) :
NON-SHARED DATA BLOCK

000000 010137
301

The meanings of most of these attributes are obvious.
The variable is a matrix, as opposed to a scalar, vector,
unit or array. It is an integer item, as opposed to a real,
character, or boolean item. It has two dimensions and its
shape is 10 by 15. The SHAPE, DEL and OFFSET. attributes are
the keys to the accessing of data. The del values specify
how to step through the data area when accessing more than
one element of the variable. There is a del value for each
dimension of the variable. In the above example, the first
value (15) tells us that if we are looking at a particular
element in the matrix's data area, then to look at the ele
ment in the next row of the same column, we would have to
step over 15 elements to find it. The second value (1) in
dicates that to move from one element to the next in a par
ticular row, we merely have to look at the next element in
the data area. The offset value specifies the point within
this data area which contains the first element of the var
iable.

Reversal is one of the operations that can be beaten in
APL\3000. Instead of creating a new data area and copying
the elements of the argument one by one in reverse order,
we can simply change the del and offset values in the sym
bol table. Assume that RMAT has been specified as the
reversal of MAT. Then·) SHOW RMAT produces

TYPE:
REP:
RANK:
SHAPE:
DEL:
OFFSET:
VIRTUAL

****** RMAT ******
MATRIX
INTEGER
2
10 15
15 -1
14

ADDRESS OF DATA BLOCK:
BLOCK LENGTH (WORDS) :

DATA BLOCK SHARED WITH:

000000 010137
301
MAT

SECTION 2-2

The only values changed from MAT are the second del value
and the offset. Now, when looking at a particular element,
we know that to find the next element in that row we dec
rement the index into the data area by one. The first ele
ment of RMAT is at the 14th position in the data area.

The other beaten operations are take (changes only the
shape values), drop (changes shape and offset), transpos
ition (changes dels and offset), using indexing to access an
entire dimension (rows, columns, planes, etc.) of an array,
and indexing using APVs.

An arithmetic progression vector, or APV, is a special
data item in APL\3000. Generated by using the monadic iota
or index generator, an APV assumes the existence of an data
area containing all the integers in ascending order. The
symbol table entry for an APV looks just like that for a
regular vector except that there is no data block address.
The values of an APV can be generated directly from the del,
offset and shape values. The offset of an APV is the value
of the first element in that vector. For example, assume
AVEC is created as '3 plus 5 times iota 10'. The symbol
table entry for AVEC would be

TYPE:
REP:
RANK:
SHAPE:
DEL:
OFFSET:

****** AVEC ******
VECTOR
APV
1
10
5
8

Thus, the first element of AVEC is 8 (the offset) and
each successive element can be generated by incremented the
previous one by 5 (the del value). When using an APV as an
index into another vector, the new vector simply shares the
data area of the old vector and uses the data descriptor of
the APV.

Dragalong

The process of deferring evaluation of operations in an
APL statement as long as possible is called dragalong. The
advantages include minimizing the number of temporary vari
ables and avoiding unnecessary computations.

The most basic example of dragalong occurs when several
variables of identical shape are operated on by dyadic arith
metic operators. Assume that A, Band Care 3 by 5 integer
matrices. Then in the expression A + B - C, an interpreter
using dragalong would not evaluate the B - C until it had
examined what was to the left of B. In this case, the oper
ation of adding A can be included in the loop that subtracts
C from B, thus avoiding the use of a temporary variable.

Often dragalong can be used to avoid unnecessary comp
utation. Assume that X and Yare lOOO-element vectors. The

SECTION 2-3

expression 3 A X nDV Y (3 take X divided by Y) would not
divide each of the 1000 elements of X by the corresponding
elements of Y. Instead, the interpreter would realize that
the user only cares about the first three elements of this
result and would therefore only do three divisions. Some
controversy about dragalong arises here in the case that one
of the 4th through 1000th elements of Y is a zero. Most
other APL systems will return a DOMAIN ERROR after attempt
ing to divide by zero. APL\3000 never looks at the 4th
through lOOOth elements of Y or X, so the expression is
evaluated without error unless one of the first three ele
ments of Y is zero.

VIRTUAL MEMORY PARAMETER TUNING

The []VM system function provides the APL\3000 user with
the ability to dynamically change the page size and number
of pages in the virtual memory algorithms. Because []VM can
be a local variable, its value can be tailored to the needs
of specific functions. Section X of the APL\3000 Reference
Manual contains a thorough explanation of how to set the
virtual memory parameters to minimize page faulting and thus
maximize performance. The default value for the page size
has been changed in version 01.03 to reflect the increase in
the average main memory size of our installed systems. The
page size in a clear workspace is now 1024 bytes instead of
512 bytes. This will only affect those users who do not
explicitly change this parameter.

NEW ENHANCEMENTS

Verify Input and Format Input System Functions

The []VI and []FI system functions work together to con
vert character data to numeric data. []VI takes as its arg
ument a character vector and returns a boolean vector as its
result. The length of the result is equal to the number of
non-blank character groups in the argument. For each' group
of non-blanks, the corresponding element of the result is
set to 1 if and only if the non-blank characters form a
valid APL numeric constant. []FI takes the same argument as
[lVI, returns a result of the same length as that of [lVI,
but the result is numeric. For each group of non-blank
characters in the argument, the corresponding element of the
result is set to 0 if the group does not form a valid num
eric constant. Otherwise, it is set to the constant itself.
Therefore, it is similar to the execute operator except that
is does not return a syntax error for characters that cannot
be converted to numbers. Also, the execute operator has a
limit of 8188 numeric constants in its argument. []FI and
[]VI are limited only by the maximum size of APL\3000 data

SECTION 2-4

r
items. []VI and []FI are most useful to verify that data
entered by a user to a quote-quad input is numeric. If C is
a character vector entered by the user, then ([]VI C)/[]FI C
will return a numeric vector containing all the valid num
eric constants in C.

[]PRINT System Function

The []PRINT system function provides a quick and easy way
to send APL data to the line printer or to a disc file from
within an APL session or function. []PRINT takes as its
right argument any APL variable or expression that has a
value. The optional left argument is a character vector rep
resenting the termtype of the receiving file or device. The
default value is 'ASCII'. []PRINT takes the right argument,
formats it in the same manner as monadic format, and sends
the result to a file whose formal designator is APLLP. This
creates a spool file which is printed immediately. Suppose
that you wanted each successive call to []PRINT to append
its results to a disc file. The following MPE commands, en
tered before invoking APL, or during the APL session using
the)MPE system command or shared variables, would produce
the desired results:

:BUILD filenameiREC=recsize,blockfactor,F,ASCII
:FILE APLLP=filename,OLDiDEV=DISCiACC=APPEND

It is important to note that []PRINT will not return an
error message even if you are attempting to append records
past the end of the disc file. Before invoking []PRINT,
it is advisable to set the value of []PW (print width) to
the record size of the APLLP file.

Character String System Functions

In order to simplify and optimize the manipulation of
character strings in APL\3000 and thereby increase its
suitability in a commercial environment, three new system
functions have been implemented.

[]CSLOC Character String Locator

The left argument of []CSLOC is a character scalar or
vector. The right argument is a character scalar, vector,
or matrix. If the right argument is a scalar or vector,
then the result of []CSLOC is an integer vector containing
the starting indices of each occurrence of the left arg
ument in the right. If the right argument is a matrix, then
the result is an integer vector containing the row numbers
for which the left argument appears, left-justified, in the
right. In either case, an empty vector is returned if there

SECTION 2-5

are no occurrences of the left argument in the right.
[]CSLOC is particularly useful in table searching and text
processing.

[]CSMOD Character String Modifier

This system function takes as its right argument a char
acter vector to be modified. The left argument is a char
acter vector of the form

<delimiter> <stringl> <delimiter> <string2> <delimiter>.

Execution of []CSMOD causes all occurrences of stringl in
the right argument to be replaced by string2. The delimiter
may be any character. The modified character vector is re
turned as the result.

Examples:

'/COW/BUFFALO/' []CSMOD 'HOW NOW, BROWN COW?'
HOW NOW, BROWN BUFFALO?

'*BE**' []CSMOD 'TO BE OR NOT TO BE'
TO OR NOT TO

The second example demonstrates that []CSMOD can be used
to delete occurrences of one string within another.

[]CSD Character String Delimiter

The []CSD system function. takes a character vector as its
right argument and a character scalar (the delimiter) as its
left. The explicit result is a character matrix formed by
scanning the right argument (left-to-right) and starting a
new row of the result at each occurrence of the delimiter
character. Consecutive, leading, or trailing delimiters
cause empty rows to be formed. The delimiter characters do
not appear in the result. If there are no occurrences of
the delimiter in the right argument, then a one-row matrix
is returned.

)SHOW System Command

This system command allows the user to see how variables
are stored in the workspace. The command is optionally fol
lowed by a list of variable names. For each name, a d~splay

of the symbol table information for that name is produced.
For example:

)SHOW XXX

SECTION 2-6

r ***** xxx *****
TYPE: MATRIX
REP: BYTE
RANK: 2
SHAPE: 21 6
DEL: 6 1
OFFSET: 0
VIRTUAL ADDRESS OF DATA BLOCK: 000000 005716

BLOCK LENGTH (WORDS) 64
NON-SHARED DATA BLOCK

If the data block for the requested variable is shared,
then the names of the variables sharing the block are dis
played. If no list of names follows the)SHOW command, then
all the variables in the workspace are displayed.

)* System Command

This command speeds up the process of correcting func
tions. Its invocation causes the APL editor to be entered
with the function currently on the top of the state indic
ator stack. The line containing the last error is dis
played and the editor is placed in modify mode.

r· NEW OPTIMIZATIONS

It has been recognized that several of the internal al
gorithms for operators in APL\3000 could be optimized con
siderably. The most serious offenders have been dyadic
iota (indexing) and dyadic epsilon (membership). It was
also felt that the grading algorithm needed some improve
ment. These optimizations have been implemented in
APL\3000 starting with version 01.03. Some knowledge of
how the improvements were made will probably help the user
to take advantage of them.

Dyadic Epsilon (Membership)

r

In the expression M "EP N ("EP is the ASCII represent
ation of epsilon), assume that m is the length of M and
n is the length of N. The old algorithm took the brute
force approach of taking each individual element of M and
comparing it to each element of N until either a match was
found or there were no more elements in N. This was par
ticularly inefficient if there were several identical
elements in M or if M had considerably more unique elements
than N. This brute-force method resulted in m passes
through N and an average of (m x n)/2 comparisons.

The information gathered during the repeated passes
through N can, in fact, be gathered in only one pass if a

SECTION 2-7

table is set up to indicate what values are in N. The size
of this table is determined by the range of values in N.
If N is character data, then the table need only be as
long as []AV (256 elements). Other data types present
more of a problem. The number of possible values in real
data is not only infinite but, since real numbers can be
irrational, we could not possibly make a one-to-one cor
respondence between real numbers and discrete table ele
ments. The range for integers in APL\3000 is over four
billion, therefore we can use a table only if the values
in N are relatively close together. The new algorithm
for dyadic epsilon uses a table of 4096 bits packed into
a logical array of length 256. This array is on the stack
and not in virtual memory. An initial pass is made through
N to determine the minimum and maximum elements and there
fore the range. If the range is not greater than 4096,
then a second pass is made through N to set the appropriate
bits in the table. Finally, the elements of M are examined.
If an element of M is outside the predetermined subrange
of values for N, then, of course, it cannot be a member of
N and the corresponding element of the result is set to O.
Otherwise, the element of the result is set to the value
of the table bit corresponding to that element of M.
This algorithm requires only 2 passes though N and, after
the table is set up, exactly m comparisons.

The performance improvements gained by the implementation
of this method have been substantial. For example, a dyadic
epsilon on two 500-element integer vectors which formerly
took 34.38 CPU seconds now takes only 0.23 CPU seconds.
Using two 250-element character vectors, the execution time
has been cut from 8.11 CPU seconds to only 0.04 CPU seconds.

In summation, CPU times for dyadic epsilon will be re
duced up to 99% if the data is character, or if both
arguments are integer and the range of the right argument
is not greater than 4096. Even if these restrictions are
not met, improvements in the way the brute-force method
accesses virtual memory will result in up to a 60% improve
ment over previous versions of APL\3000.

Dyadic Iota (Indexing)

This algorithm also took the brute-force approach. Each
element of the right argument was individually checked
against each element of the left. If the element was found,
then its position in the left arguments was returned as the
result.

The table method outlined above could not be used for
integer data. The table would not only have to indicate the
presence or absence of elements of the right argument, but
would also have to indicate the position of each element.
Therefore, each table entry would have to be a double word
and the table would have to be impractically small to fit
on the stack. The only e~ception is in character data for

SECTION 2-8

which we can have a table of 256 double word entries.
Using the table approach, CPU times for dyadic iota on

character arguments have been reduced up to 99%. Again, the
brute-force method has also been optimized providing an
improvement of about 60-65% on all other types of arguments.

Grading

When investigating grading algorithms for APL, there are
three important considerations. First, by definition a
grade in APL must be a stable grade. This means that the
relative order of equal elements of a vector must be main
tained. For example, if A is the vector 6 9 4 9 5 2 ,
the the correct result for "GU A ("GU is the ASCII repre
sentation for 'grade up') would be 6 3 5 1 2 4 , even
though 6 351 4 2 would give the same value for A["GU A].
This requirement for stability eliminates some of the faster
sorting and grading algorithms. The second consideration is
that during grading, the data is never moved. All swapping
is done on elements of an index vector through which the
actual data is accessed. This index vector becomes the re
sult of the grade operation. This makes each data reference
indirect and therefore very costly. The third factor in APL
grading is that in many cases the argument to the grade op
erator is already sorted or nearly sorted. For example, a
program may catenate a few elements to a long sorted vector
and then use the grade operator to properly position those
new elements.

The algorithm implemented in version 01.02 is the natural
list-merge sort. This method meets the stability require
ment and is also very fast for sorted, nearly sorted, or
reversed data. Additional optimization was done for version
01.03 involving the accessing of virtual memory.

Meaningful CPU time comparisons are difficult to produce
but it is estimated that the performance of the grade op
erator has been improved by about 40% for random data and
about 75% for nearly sorted data between versions 01.01 and
01.03.

Miscellaneous Optimizations

Reshape on Character Data
Initialization of a 100 by 100 element character matrix

to blanks has been improved from 9.32 CPU seconds to 0.15
CPU seconds.

Monadic and Default Format on Integers
Improved about 30%.

Absolute Value
Improved about 20%.

SECTION 2-9

CONCLUSION

The fact that APL is such a full and powerful language
can often cause the user to forget about the actual internal
algorithms used in its implementation. Rather than present
ing APL\3000 as a 'black box' that operates in exotic and
mysterious ways, we choose to let the user know as much as
necessary about its methods and techniques. This will en
able the user to program knowledgably and efficiently.

The efforts to enhance and optimize the APL\3000 system
are continuing. Our most valuable resources for these
efforts are the suggestions and needs of our users.

SECTION 2-10

	Section 2—Language Use
	Programming for Performance in APL\3000

