Idioms and Problem Solving Techniques in APL2

March 25th, 1988

Alan Graham

IBM APL Development
Dept M30/BIdg B231
555 Bailey Avenue,
San Jose, CA 95141
GRAHAM at STLVM20
8-543-3679, 408-463-3679

Introduction

Idioms form an intermediate language, higher level than individual primitives but lower level than subfunctions. When a common task arises (such as sorting a vector of strings), and the programmer knows the idiom that performs that task, ($V S[D A V \Delta \supset V S]$), the task is immediately solved using the idiom. $\Lambda \mathrm{n}$ order of magnitude gain in programmer productivity is not uncommon. The use of idioms increases readability, while allowing $\Lambda \mathrm{PI}^{\prime}$, implementers to optimize through idiom recognition.

Since API, is written symbolically, a pattern recognition mode of reading evolves. Like a theme in music, an idiom may contain variations. Idioms are generally written in line, rather than appearing as subfunctions. Λ single idiom may vary slightly according to context. When a programmer recognizes an idiom, it is inspected for variations. Sometimes the idiom is extended to handle the scalar case, or the empty case, or the case of arhitrary rank. Other times it is specialized.

The more you know about your data the simpler the idiom becomes. For example, starting with the most general form of a phrase and simplifying, the phrase $c[(0 \neq \rho \rho A) / / / \imath \rho \rho A] A$ will take an array of any rank and make an array of vectors, putting items along the last dimension. This idiom works in any origin and for arrays of any rank including scalars. If the scalar case can be eliminated, the phrase becomes $c[\Gamma / 1 \rho \rho A] A$. Furthermore, if origin 1 is assumed, $\subset[\rho \rho A] A$ can be written. Finally, if the array is always a matrix (rank2) the idiom collapeses to $\subset[2] A$. The particular form depends on context.
$\Lambda \mathrm{PI} 2$ is a relatively new programming language. New idioms are constantly heing discovered and old ones are heing refined as progress is made up the learning curve. It is expected that some of these initial idioms will seem naive in light of future progress.

These idioms have been collected together because of their benefits in programmer productivity. Although, machine efficiency was ignored while inventing these idioms, the author has not found any of them to be particularly wasteful in either space or time.

Mini-Applications

Several small problems are posed and solved using the idioms found in the appendix.

Problem 1 - Manipulating Name Lists

When a utility package processes all objects in a workspace, it is desirable to remove its own names from the name list of work apace objects before procceding.

If a name list is manipulated as a simple character matrix, care must be taken to get the number of columns right. The names that are to be removed from the name list must be reshaped into a matrix where the shorter names are padded to the length of the longest name. This is sometimes performed by a utility function, but then the name of the utility function must also be included in the name list and the function carried around with the overall package. More often, the names to be removed are reshaped in line where the programmer carefully counts spaces. When comparing the two matrices the number of columns of each must be forced to the same size by overtaking. In Al'I 1 you could code

```
A All object names as a matrix
NL*DNL 2 3 4
A Matrix of names to be removed
RL&4 8\rho'FUNCTIONDATA F1 . F2 '
A Width of largest matrix
N+(1+\rhoNL)\Gamma \ +\rhoRL
a Force to the same width
NL+((1\uparrow\rhoNL),N)\uparrowNL
RL+((1\uparrow\rhoRL),N)&RL
A Compare and Remove
NL+(NL\vee, = QRL)fNL
```

There is considerable simplification if the name lists are manipulated as vectors of strings. If each vector is foreed to contain strings without hlanks, then direct comparisons can be performed without worrying about lengths. For example:

```
A All object names as a matrix
NL&DNL 2 3 4
a Vector of strings with no blanks
NL+(c[1+\squareIO]NL)~"',
a Remove private names from list
NL&NL~'FUNCTION' 'DATA' 'F1' 'F2'
```

Not only is there less code, hut it is easier to understand. The vector of vectors form of the name list is retained in preference to the simple character matrix form. The idiom $N L \leftrightarrow \supset N L$ can be used to foree the vector of vectors back into a matrix.

Problem 2 - Iteration with Each

When a program is written that solves a single case of a problem, it is often necessary to iterate with the program over a range of eases. Consider the problem of timing a vector algorithm over a range of random vectors of various lengths.

The skeleton of a timing function that times a single vector case of length N could be as follows.

```
[0] T+TIME1 N;V;T1;T2
[1] A Time operation on N-Item rector
[2] V ?No1000 A Random vector
[3] T1&^1+D\LambdaI A Start Time
[4] ( statement that uses vector V )
[5] T2+41+\square^I A End Time
[6] T+T2-T1 A Elapsed Time
```

Therefore, to time line [4] for a single 100 item vector you would execute TIME1 100 which would return the Cl'l time in milliseconds. There is a slight overhead used in the timing mechanism itself. It is assumed that the statement being timed is non-trivial so that the timing overhead is small in comparison.

You would want to time the statement over various values of N and repeatedly for the same value of N, to observe the effect of ("Pl load and different random vectors. A natural data structure is a table where one dimension varies and the other dimension does not. An example of such a table is,
$N+(1000 \times 17) ? .+4 \rho 0$
N
$1000 \quad 1000 \quad 1000 \quad 1000$
$2000 \quad 2000 \quad 2000 \quad 2000$
$30003000 \quad 3000 \quad 3000$
$400040004000 \quad 4000$
$50005000 \quad 5000 \quad 5000$
6000600060006000
7000700070007000

This matrix could not be given to the timing function directly because TIME 1 expects a single scalar N to generatean N -item random vector. The Each (${ }^{*}$) operator can be used to automatically apply TIME1 to the input array.
$T I M E 1$ will be called a total of $\times / \rho N$ times.

All of the details of iteration are subsumed by the Iach operator. The program is unaware that it is being called multiple times. The structure of the input array controls the function application process and defines the shape of the result. The emphasis is shifted away from explicit program control through loops and toward creating the appropriate data structure to control application.

Problem 3－Gencralizing for Rank
Often it is possible to solve a problem for a given rank array，but difficult to generalize the code for a higher rank array．Prohlems naturally fall into working with arrays of a set rank．Iverson（ IVERSON［2］）has assigned primitive functions a＂function rank＂and suggested a rank operator whereby a specific function rank can be assigned to any function．In＂Principles of $\Lambda P I, 2$＂ （ $B R O W N[1]$ ），Brown defines a rank operator implemented as a defined APL 2 operator．

Consider the problem of replacing all occurrences of one string with a new string． This is naturally a vector problem because the lengths of the new and old strings may be of different length requiring stretching or shrinking of the target vector． Given an $\Lambda \mathrm{PI}, 2$ function called $R E P L A C E V$ that takes a left argument of a two－item vector of old and new strings and a right argument of the vector in which to do the replacement．The result is a vector with the replacements made． How can this be gencralized to replace strings in the rows of a matrix or higher rank array？The function $R F F L A C E$ below is one solution．

```
[0] Z &OLD_NEH REFLACE A;LAST
[1] A Replace OLD with NEW along last axis
[2] L^ST+(0\not=\rho\rho^)/「/1\rho\rho^
[3] Z↔つ(cOLD_NE!) REPLACEV' c[LAST]A
```

It is possible that the lengths of the items resulting from $R E P L A C E V^{\circ *}$ will vary． The Disclose（ \supset ）function in REPLACE［3］handles this by padding the shorter vectors to the leneth of the longest．REPLACE can be rewritten to handle both the vector case and the higher－rank case as a single function as follows：

```
[0] Z&OLD_NEW REPLACE A;OLD;NEW;B;I
[1] a Replace OLD with NEW along last
[2] }->(1<\rho\rho\wedge)/HIRAN
[3] a Vector (Lorank) case
[4] (OLD NEW) +, 'OLD_NEW'
[5] B&OLD\subseteqA n Find the old string
    (...añd so nn...)
[10] HIRANK:
[11] LAST+(0\not=\rho\rho\Lambda)/\/1\rho\rho\Lambda
[12] Z↔((cOLD_NE!) REPLACE* с[LAST]A
```

The technique used in REFLACE can be made into a general－purpose defined operator that will apply any vector function to vectors along the last dimension． This operator is a special case of Iverson＇s proposed Rank operator （IVERSON［2］）．

```
[0] Z&L (F last) R;V
[1] a Mpply FN along last dimenaion
[2] A Build enclose last FN (V)
[3] Z*'Z+V A', 'Z&c[(0\geq\rho\rhoA)/r/i\rho\rhoA]A'
[4] DES(0=40\rhoDFY Z)/1 2 A.FIX OK?
[5] A Z +F*(VR) Or Z ( V (V L)F*'(VR)
[6] Z+'Z&工',(0\not=\squareNC''L')/'(VL}\mp@subsup{L}{}{\prime
[7] Z&Z,'F'(苜 R)'
[8] ค (Do-or-Die idiom)
[9] 'DES DET' \FA Z
```

（Note：My naming convention is to name defined operators using only lower case letters．）

Problem 4 - Gencralizing for Depth

Nesting is a natural way of making collections of arrays, especially when the arrays may vary in shape. Some operations may apply to the items (cells) and not to the collections (frames). Consider the problem of deleting leading blanks on a string. How can we generalize this to collections of strings?

The solution for a single string is simply

```
[0] Z+DLB V
[1] A Delete Leading Blanks
[2] Z+(+/^\' '=V) +V.
```

As we have secn, the liach operator can be used to apply $D L B$ to all items but it is tedious for the user always to be aware of whether the array is the atomic item of interest or a collection of such items. The problem gets worse when considering collections of collections, collections of those, or when some items are atomic and some are collections. The general solution emerges as follows: When can we use the above $D L B$ solution?. When we have a simple string, that is, its depth is less than or equal to one ($1 \geq \equiv A$). If not, the function is recursively applied with the Each operator until a simple string occurs. This general form of $D L R$ (called $D L B T^{\prime}$) is

```
[0] Z & DLBT A
[1] A Delete Leading Blanks throughout
[2] }->(1<\equiv\Lambda)/RECU|
[3] Z+(+/^\' '=A) + ^+.A
[4] ->0
[5] RECUR:
[6] Z+DLBT* A
```

This is such a common structure that it can be generalized with a defined operator "depth."

```
[0] Z+(F depth N) A
[1] a Apply monadic function at Depth N
[2] }->(N<\equiv\Lambda)/RECH
[3] Z<F \Lambda
[4] }->
[5] RECUR:
[6] Z+(F depth N)* A
```

With the dept hoperator the original $D L B$ function can be applied to arrays of any depth by writing ($D L R$ depth 1) ARRAY. (Note: Redundant parentheses are used to help clarify what is the derived function produced by depth.)

Operators in API 2 apply universally to any function; primitive, system, derived, or defined. Quite often, an operator must be applied to a phrase composed of more than one function. The phrase can be put into a defined function and then the operator applied to it, hut this interruption distracts the programmer from the problem at hand.
Λ defined operator can be made that will take a character string expression and produce a derived function representing that expression. The representation that is used here is a simple expression form of direct definition (IVERSON [2]). Implementation of the Ilse-If-Then forms and other elaborations are left as an exercise to the reader. Alpha and omega characters represent the left and right arguments respectively. The importance of the derived function is that it can be used as an operand to another operator. For example, given an array of numeric vectors, each vector can he sorted by:

$$
' \omega[\phi \omega] \text { ' } d d^{\prime} A V
$$

Where ' $d d$ ' is a direct definition operator. The derived function is ' $\omega[\Delta \omega]$ ' $d d$, which is applied to each item of $A V$. The direct definition operator is surprisingly casy to code.

```
[0] Z&L(F dd )R
[1] A Apply Direct Definition to args
[2] (('\omega'=F)/F)+C' R'A '\omega'with'R '
[3] F&\epsilonF A Simple string
[4] (('\alpha'=F)/F)+C'L L'A '\alpha'WITH' L',
[5] F&\epsilonF A Simple String
[6] F*'Z*',F a Ready to &
[7] 'DES DET' DEA F A Execute
```

The general idea is to replace all occurrences of the single characters ' α ' and ' ω ' with the names of the actual arguments L and R, and execute the resulting string. Note the technique of replacing single characters with strings by using Finclose (c) to create a scalar. Square pege can fit into round holes. Enclose is the "universal rounder."

Appendix - APL2 Idiom List

The following is not meant to be a complete 1 Pl 2 idiom list, but instead a sampling of the more popular phrases. An effort has been made to keep the expressions simple and correct for all arrays within the domain of the expression. Sometimes the scalar (rank $=0$) casc or the empty (shape $\epsilon 0$) case doesn't work correctly. Notes are included to indicate the special restrictions. Since it is expected that most of these idioms will be used in-line, as opposed to being made into utility subfunctions, the simpler version of the expression is favored. Occasionally, the more sophisticated or general versions of the idioms are also shown.
$\Lambda \mathrm{n}$ informal naming convention is used; V for vector, A for array, M for matrix, and $A V$ for Array of Vectors. I prefer that the expressions are natural, rather than brutally following a rule cast in concretc. Some idioms are named by single words or short phrases to make them easy to talk about them. Some expressions are duplicated and used within other idioms. This was done intentionally to show their different uses.

1. First. The first item of a simple array as a scalar.
$\uparrow \Lambda$
2. I ast. The last item of an array.
$\uparrow \phi, \wedge$
3. First Dimension. Size of the first dimension as a simple scalar.
$4 \rho A$
4. I ast Dimension. Size of the last dimension as a simple sealar.
$+\phi \rho \wedge$
5. Simple? 'Test for simple array.
$1 \geq \equiv \wedge$
6. Nested? 'Iest for nested array.
$1<\equiv \wedge$
7. Item I ist. Make a simple array into a single item.
e ($1=\equiv \Lambda) / \cdot \Lambda+c \Lambda^{\prime}$
8. Item 「iqual. Non-pervasive equal, sometimes called a string equal for its most common use. Compare items for equality.
$A \equiv{ }^{*} B$

For example to search for ' NAME' in a vector of vectors:
$V V \equiv{ }^{\prime \prime} c^{\prime} N A M E{ }^{\prime}$
9. Type. Replace numbers with 0, characters with' ' (blank). Preserves the shape, rank, and structure of the array. (This was the primitive function 'Type in the $\Lambda P I .2$ IUP').
$+0 p \subset A$
10. Aray Type. Type of array: character, mumeric, or mixed.

```
I+2\perp0 ' ' }\epsilon&0\rho\subset\in\epsilon
\uparrowI\downarrow'?' 'CHARACTER' 'NUMERTC'' 'MIXED'
```

Note: Fiails to detect arrays of empty arrays of mixed type as MIXI:D, such as the two-item vector ' $1(10)$.
11. Array Type. Type of array: character, numeric, or mixed.

```
3 11 DNA 'PFA'
I*21'AIBJE' 'C'v.\epsilon* \subsetPFA A
4I\downarrow'?' 'CHARACTER' 'NUMERIC' 'MIXED'
```

Note: Works for all cascs.
12. Convert a vector into a one-column matrix

```
,[10]V
```

13. Convert a matrix into a vector of row vectors.
$c[1+\square I O] M$
14. Columns. Comvert a matrix into a vector of column vectors.
$c[D I O] M$
15. Split. Convert a rank N array into a rank $N-1$ array of vectors, taking vectors along the last dimension.
```
c[(0\not=\rho\rhoA)/「/i\rho\rho^]^
```

or

```
c[r/\imath\rho\rho\Lambda]^ n 0<\rho\rho^
```

16. Mix. Convert a rank N array of vectors into a rank $N+1$ array, putting the vectors along the last dimension.

$$
\supset A V
$$

17. Row Table. Assemble vectors into rows of a matrix.
```
วV1 V2...V'n
```

18. Column Table. Assemble vectors into columns of a matrix.

$$
\phi \supset V 1 \quad V 2 \ldots V n
$$

19. General I aminate. Ascemble arrays of equal rank into an array of rank one greater, putting their dimensions last.
```
>^1 ^2...An
```

20. Glue Λ long. Catenate arrays of equal rank into an array of the same rank, along a single dimension I. All dimencions of each array must match except dimension I. The result is an array where the th dimension is the sum of the Ith dimensions of the argument arrays.

$$
\supset,[I] / \Lambda 1 \quad \wedge 2 \ldots \wedge n
$$

For example, to make a single N-column matrix out of a list of three N -column matrices.
د.[DIO]/M1 M2 M3
21. Quick 1 ist. Vertical list of all visible defined functions and operators.

$$
,[10]\left[C R^{*} \subset[1+[] I O] D N L \quad 34\right.
$$

22. Quick Input. Input N strings into an N -item vector.

$$
V_{S+\Phi}{ }^{*} N_{\rho}^{\prime} \nabla^{\prime}
$$

23. "Chipmunk." Select sub-arrays given a set of paths I'1, P2, .. Pn.
```
P1 P2 ... Fnכ*`^
```

24. "Chipmunk with glasses and a toothache." Select multiple sub-arrays given a set of sets of paths.
```
(P11...P1n)...(Pk1...Pkn) \({ }^{*}\) " \(\subset \subset \wedge\)
```

25. Pair-wise. Apply a dyadic function between corresponding pairs of arrays in two lists.
```
AL1 ... ALn f** AR1 ... ARn
```

26. Nll Right. Apply a dyadic function to a list of arrays as a left argument and a single array right argument.
```
A1 A2 ...An f* cA
```

27. Nll I eft. Apply a dyadic function between a list of arrays as a right argument and a single array left argument.

$$
(\subset A) f^{*} \wedge 1 \wedge 2 \ldots A n
$$

28. Apply I ast. Apply a function to vectors alone the last dimension and assemble equal rank results at the end.

$$
د f^{\circ} \subset[「 / i \rho \rho \wedge] \Lambda
$$

or

$$
\supset f^{\ddot{ }} \subset[(0 \neq \rho \rho A) /[/ \rho \rho A] A \text { n scalars too }
$$

29. Word Proof. Given a vector of words and a dictionary vector or words, select the words that are N()T in the dictionary (misspelled words)

$$
W L \sim D I C T I O N A R Y
$$

30. Cartesian Iroduct. Generate all combinations of pairs from the left and right arguments.

$$
\left(c^{\bullet} \wedge L\right) \circ .,\left(c^{\bullet} \wedge R\right)
$$

31. Count Occurrences. Count the number of occurrences of each item in a vector $V 1$ found in a vector $V 2$.
+/V1。. ${ }^{\text {/V2 }}$
32. Sum By Bucket. Given a vector of categories with possible duplicates, a corresponding vector of counts, and a catcgory vector without duplicates; give a corresponding vector of total counts.
```
COUNTS+. ×CATS.. #UCATS
```

33. De-Duplicate Row Table. Delete duplicate rows of a matrix. The result is a matrix with possibly fewer rows than the original where each row appears exactly once in the order of the original.
```
V+c[1+DIO]M
((V,V)=1\rhoV)}+
```

34. De-Blank. Delete all hlanks in string.

$$
V \sim 1 \text { ' }
$$

35. Standard Name I ist. Force string, vector-of-strings, or matrix into a vector-of-strings with no blanks.

$$
(, c[\square I O] \phi \supset 1 / N L) \sim{ }^{\prime} \text { ' }
$$

This is useful in producing a name list. For example:

```
(, c[DIO]\emptyset\supset1/DNL 3 4)~"',
```

36. Word I ist. Convert a delimited simple character vector of words into a vector of vectors. (Rclease 2 only).
```
3 11 DNA 'DAN', a only din once
VV&DELIMITERS DAN V
```

37. Convert a vector of strings into a simple vector with one blank between each string.
```
        1\downarrow\epsilon' ',"VV'
Or
    1+-}1+\sigmaV
```

38. Quote. Wrap string in quotes and double-quote internal quotes.
```
\prime''',((1+''''=V)/V),'''
```

39. Scalar Iixtend. Iixtend all sealar array iteme to the shape of the non-scalar itcms assuming scalar compatibility.

$$
(\rho " \equiv \cdots /, A) \rho " \wedge
$$

40. Vector Pick. Pick a single item from a vector using an origin zero index. This works the same in either origin.
```
AI\downarrowV
```

41. If Then Plse.
```
    &^CONDITION+\phi'then part' 'else part'
Or
    & +CONDITION+'else part' 'then part'
```

42. Case. Fixecute the Ith expression.
```
&4+0 'case1' ... 'casen'
```

43. Simple Image. Convert a nested array to a simple character array image. क 1
44. Matrix Image. Iormat any array and yield a simple character matrix result.
$01+0{ }^{-1} 1+\pi \subset(1 \quad 1, \rho \Lambda) \rho A$
45. Format and right-justify all columns of a report.
```
1+[DIO]क0,[DIO]A
```

or
$1+[D I O] N ぁ 0,[D I O] \Lambda$ a NUMERIf: N
46. Nphahetize Matrix. Sort a simple character matrix alphabetically by rows.

```
M[DAV&M;]
```

47. Alphabetize I ist. Sort a vector of strings alphabetically.
```
vV[DAVA>VV]
```

48. Sort Number I ists Sort each simple numeric vector item.

$$
\left(4^{*} v V\right) \supset \cdots \subset " v V
$$

49. Poor Man's Rhyming Dictionary. Sort a vector of strings in approximate rhyming order.

$$
V V[D A V \phi \supset \phi " V V]
$$

50. Matrix Number. Nitach row numbers to a matrix.

$$
(1 \uparrow \rho M), M
$$

51. Execute Λ long I ast. Convert a simple character array representation of numbers into a simple numeric array of non-scalar rank.

Note: This will always produce a non-scalar.
52. Event Type for Expression. Get event type of a specific error dynamically. This is meant to be used in immediate exceution mode. Although it will work properly in any context, it is unreliable hecause it is dependent on future extensions. Note: If the execute of the right argument unintentionally produces a $W S$ FULL then the result will he 13 instead of the intended event type.

```
[..] 'DET' DEA '..ERROR..'
```

53. Do Or Dic. Report error at defined operation call if expression fails. This is especially useful with a defined operator where the function is blindly applied to its argument(s). The operator has no way of determining if the arguments are appropriate to its function operand, excepl for trying it.
```
'DES DET' DEA '..expression to protect..'
```

54. Rank Dach. Simple integer array of the rank of each item.
55. Raise. Strip off one level of nesting. for example vector of vectors of matrices becomes a longer vector of matrices.

$\uparrow, /, \cdots, \wedge$

56. Structure. Make an array of the same structure as ' A ' but consisting of all 7.cros.

$$
A \neq A
$$

57. Scalar Extend. Assuming all items of the same rank, force all items to the same shape by overtaking.

$$
\left(r / \rho^{*} A\right) \uparrow^{*} \wedge
$$

58. Replace All Items. Replace all items in A with NEW. The shape of A is unchanged.

$$
(, A) \leftarrow \subset N E W
$$

59. Replace Selected Items. Replace selected items corresponding to the 1 s in left argument with the corresponding items from $N E W$. The shape of A is unchanged.
```
((,COMPARE A)/,A)\leftarrow,NEW
```

Note: I'or conformability

```
+/,COMPARE A & \rho,NEW Or }1->\times/\rhoNE
```

60. Combine real arrays representing the real and imaginary parts, into a single complex array.
```
R+0J1\timesI
```

61. Split complex array into real \& imaginary. Shape is $2, \rho C$.
$911 \circ .0 C$
62. Join real \& imaginary into complex array along the first axis.
$10 J 1+. \times R I$
63. Split complex array into two-item real $\&$ imaginary array. Shape is 2 .
$9110 c C$
64. Join real \& imaginary fwo-item vector into single complex array.
$\uparrow 10 J 1+. \times R I$
65. Real from A, imaginary from B.

$$
(9 \circ A)+0 J 1 \times 11 \circ B
$$

66. Swap real \& imaginary.

$$
0 J 1 x+C
$$

67. Heterogeneous output can be produced by NOT including the semicolons and making sure all sub-expressions that include functions are parenthesized.

For example:

```
'PRODUCED' N 'ITEMS, TOTALING''(N\timesK)
```

Note: This form is actually more flexible than the old form of heterogeneous output using semicolons because any item can be an array of any rank, shape, type, or structure.

References

1. Brown, J. Λ., "The I'rinciples of Λ PI $2, "$ IIMM Santa Teresa I aboratory Technical Report, TR 03.247, March 1984. pr 86
2. Iverson, K. Г.., " Λ I Dictionary of the Λ 'I, I anguage," I.P'. Sharp Associates, September 198.
3. Benkard, J. P., "Rank ve Depth," ^II 8.3.

Acknowledgements

The following people have contributed to this doctument: Phil Benkard, Jim Brown, Bill Buscher, Darlan Crowder, Dick Dunhar, lid liusebi, John Gerth, Michael Golding, Alan Graham, I ou Groner, George IIenry, Gary I ogan, Blair Martin, Jon McGrew, Ray Polivka, Dave Rahenhorst, Iloward Smith, Karl Soop, Ray Trimble, and probably others. My thanks to all of them.

