
APL2 EXPLOITING DB2 by James A. Brown

AND SQL/DS Harlan Crowder"

July 1985 TR 03.267

July 1985

TR 03.267

APL2aExplo1t1D9 DB2 and SgL/DS

by

J.a.s A. Brown

Harlan Crowder

Internat~onal Business Machines Corporation

General Products Division

Santa Teresa Laboratory

San Jose. California

ABSTRaCT

~i. paper discuss.. an interactive connect1on b.~w••n DB2
or SgL/DS and APL2. ~1. connection allow. .zplo1tat~on of
the fac11~t1•• of the databa•• product. w1thou~ the need for
any preprocessors or com.p11ers. AP!l2 1. inherently array
oriented and so ace..... and proc..... r.lat~onal tables all
at once -- not row by row. Th1. is part1cularly .1gn1f1cant
in light of "the fac1: "that APL2 is not an application that'
u... relat10nal data but rather a general. purpose
proqruuUnq languaq. in' which such appl~cat1on. aay be
wr1-ttan.

APL2: Explo1t1nq DB2 and SQL/DS

by James A. Brown ana Harlan.Crowder

IftRODUCTION

API, has always had the ability to de• .l with collection. of
nuabers or collections of characters a. s1nqle objec1:s.
!h••• collections are called arrays. APL functions operate
OD entire collections of data all at onc. wi thout the need
for wr~t1n9 loops. ~h. AP~ operators provide .impl. control
.tructur•• for mod~fy1n9 the way func~1ons apply to data.

IBM'. rec:en1:1y announced APL2 Proqram. Proc1uc1: introcluce. 1:0
the AP~ language additional data structure. which allow the
r.pr•••n~a~ion of non-rectan~ar collec~1ons of data.
the•• arrays are callecl "nes"ted arrays".

The concept of nested arrays and the concept of a relational
database evolved independently over the last decade. In
liqht o~ th~s. it is surprising that taDles trom the
relat1.onal database m.ap 80 perfectly 1n-to nested arrays.
This paper will discuss four aspects of ~he connection
between the relat10nal database produc~s and the APL2
product -- the APL2 data structures. how they can be used to
represent relational tables, accessing DB2 or SQL/DS fro.
APL2. ana examples of how APL2 proqrallls can ezplo1t these
fac:1111:j.es.

The result1nq combination of products is not in 1tself an
end user application but rather represents a powerful tool
tor the app11cat~on programmer.

APL2 pata Structures

APt has a~ways prOVided for storaqe display. andJ

coapu1:a1:1on on simple collections of numbers and simple
collections of characters. Here 3re som.e examples of this
kind of data.

-1

3

A
3

B
OPEN THE POD-BAY DOOR. HAL

C
1 2 3 4 5
6 7 8 9 10

11 12 13 1~ 1S

The va~u. of A is the single nuaber 3. The value of B is a
s1:rine; of characters. Such a character s"trine; is called a
yectgr. 'rh. value of C 1. a table of nua.bers having three
row. ana five columns. Such a table is called a matrix.

By defaul"t. when you .8k for the value of a variable (like
A. B. or C). you get the value. displayed. in a neat
arrange.ant •• shown. III general. however. yOU' cannot tell
exactly what the struc"ture 1. • A on. row aatr1z aay look
very auch l1.ke a vector. For this rea.on. AP.£.2 provides a
func"tj.on (a proqraa. if you w11~) called "DISPLA1'''. When
'th1. func1:1.on is appl:1ed to dat:a 1 t produce. a picture that
shows ~••tr~c~ure o~ ~. da~a.

Here is ~e ,t DISPLAY" ~unct1on as applied to the three
variables we saw De~orel

DISPLAY A

DISPLAY B

r t i
IOPEN THE POD-BAY DOOB. HALl
, I

DISPLAY C
I· i
• 1 2 3 4 51
J 6 7 8 9 101
111 12 13 1q 151
I..w I

A s1nqle value. like A. has no structure and so only the
value is shown. The vector o~ characters B. however. does
have some structure. It is a list of characters arranged in
50.e par1:icular order. This structure is shown 1:y a box
arouncl the data with an arrow on the top edqe to show tha~ .
the data is arranged alonq one d1.rec1:~on. The matrix C is
pictured with an arrow on the top edqe and an arrow on the

-2

left edge showing that the data is arranqed alonq two
directions.

APL2 has added SODle new data structures. In APL2. we can
have an arranqeaent of data where at any spot in the
arranqement is a single nuaber. a single character. or any
other data structure.

Her.'. one example of a new APL2 data s~ructurel

ElIP_DArA
Abe Ad... 1234 10 19 42
Bob Blue 2431 11 17 53
Charl•• Curti. 31q2 12 25 39

!hi. 1. a aatr1z hav1nq thre. rows -- each repre••nting an
..ploy••• and three columns -- repr•••nt1nq ••ploy•• naaes.
1d nWIDers. and birth dates. Su.ch data is called a nested
array in API,2.

The fact that thj.. array has thre. rows •.•••• pretty
obv1oua. !he fact that 1t has three columns 18 que.tionable
-- it really doesn't look like three columns. We can use
the "DISPLAY" function to show the structure of this array.

I t

+ I t i
I lAb. Adams 1
I

, , 123~
r t

110
L..

19 42

I
I
I

r"
I Bob,

i
Bluet

I
2431

r'
111
L..

17 S3

I
I
I

, t i
ICharles Curtis I, I

3142
r'
112
L.

2S 39

Lc

The outer box has an arrow on the top edqe and one the left
edq. and so it is indeed a matrix. Each item in column 1 is
a box with one arrow on the top edge and so is a character
string. Each item in column 2 has no box and so is a sinqle
number. Each 1tem 1.n column three has a box with an arrow
and is a nuaeric vector. (The ".. on the bottom. edge Ileans
numeric.)

Here' s another example o'f a nested array. This time each
item in row one and column one is a character string and
every other item is a single number.

-3

SALES_DATA
REGION/QTR 1Q 2Q 3Q qQ
NORTHEAST 632 1256 959 1033
MID-STATES 719 Sq8 1179 1180
SOUTHEAST 1~35 88~ 1020 1331

%here are two things to not~c. abou~ th~s array. First it 1s
an ordinary ~ by S, APL2 aatr1z. Second. it looks
suspiciously like a tab~e fro. a relat1oDa~ database.

A relation is	 like a matrix. A coluan ~n a relation may be
aade up of numbers or 1 t aay be .ad. up of character
strings: an item of data can be aisa1n9J and columns have
na.... Thus "SALES_DATA" is an AP£2 aatr1z that is a
representation of a relational table. A table could also be
represented other ways and in a Iloment we "11 show another
repre.enta"t1on. Here's the "DISPf,AY" of the aa•• arrayl

I" ,......, ... ,......, ...+ r t i
I	 IREGION/QTRI 11Q1 12QI 13QI J£fQI

1-..J L.-J L-.J L.-JI I I

I r· i
I INOHTHEAS'J! I 632 1256 959 1033
I I I

1 r t

•I IMID-STATES I 719 SL+8 1179 1180
I I	 I

1 r t i
I 1SOUTHEAST I 1£+35 884 1020 1331
I I I

Lc

This should,
matrix.

by now. be a ~aa1.1j.ar picture of an APL2

Relational Tables

A relat~onal table is a matrix where rows present data about
one entity, columns have one k:1nd of data for each entity,
and columns have names. We have a.lready shown that such a
taDle can be represented as a nested array. The··
representation we used Defore has the t1tles as the first
row of a matrix. This is one of aany ways that a relational

table can be represented and is convenient if only a report
is required. If, on the other hand. a computa~1on is
required, then that computation is normally done only on the
data in a column and not on the title. Therefore we will use
another representat10n of. a relation where the t1 tles are
stored separately fro. the data.

For our example, let's assume we have a company called
"Hac,ker's Internatj.onal". We are going to use a set of
relational tables to keep track of the personnel and the
orqanj..zat1on. '!he first 'tabla needed is an ••ployee table
which we'll call the Hacker'. Internat1ona~ ataff table and
g1ve it the name "HIS~AFFt'.

HZSTAFF
ID NAME INT DEPT YEARS SALARY 101 INGRAN ffD D01 2 18000

102 /CAHAN SA D03 6 32000
103 GALVIN .IE DOI4 5 21000
104 BANKS .lA D04+ 1S 35000
105 lfULVEY .1S DO~ 3 21000
106 DEAN RA D02 12 38000
101 CRON P,/ D02 6 24000
108 EA'ZON
109 FAHB

FA D03 18.l" D01 2S
40000
50000

110 HARVEY HP DOlf 23 45000
111 ~AJfAR Nt! D02 21 45000
112 NELSON AS D04 7 32000
113 ADAMS SA D01 12 36000
114 JACKSON /fA D02 1 16000

This table" in APL2 teras, is a two iteJll vector. The items
are the column heac1:Lngs and the data. The APL2 tunct:1on.
pick (::»). can be used. to select one or the other of these
two iteas. Let's look at this data structure in detail.

First let's look at the first it•• -- the coluan titles.

1~HISTAFF

ID NAME INT DEPT YEARS SALARY

p'~HISTAFF

p ··1~HISTAFF

24345 6

The first expression selects the first of the two items from
HISTAFF. If we ask for its shape (p). 11: tells us that
there are s1z column tJ.tles. Each t.1 t1e is a character
vector. If we ask for the shape of each 1 tem (p ••). 1 t tells

-5

6

us that the first t~tle is a two-element vector, the second
is a 4-element vector. etc.

The second item is the data portion of the two item vector.

2,=,HISTAFF

101 INGRAII MD D01 2 18000

102 KAHAN SA D03 6 32000

103 GALVIN JE DO~ 5 27000

10lf BANKS tlA DOLt 1S 35000

105 MULVEY .lS D04 3 21000

106 DEAN RA D02 12 38000

107 CROW PJ D02 6 24000

108 EATON FA DOa 18 40000

109 FARR JJ D01 2S 50000

110 HARVEY HP D04 23 '+5000

111 LANAR liJ D02 21 ~5000

112 NELSON AB DOLt 7 32000

113 ADAlfS SA D01 12 36000

11~ JACKSON /fA D02 1 16000

n18 is a nested array wi th a .tructure that should look
faJlL111ar;

n. ~wo item vector can be turned 1nto something that looks
more like a report with the follow1nq expressions

+,C1J/HIS~AFF

ID NAlfE INT DEPT YEARS SALARY

101 INGRAM liD D01 2 18000

102 KAHAN SA D03 6 32000

103 GALVIN .IE DOtl- 5 27000

10£+ BANKS JA D04 1S 35000

105 MULVEY .7S DOLt 3 21000

106 DEAN RA D02 12 38000

107 CROW PJ D02 6 24000

108 EATON FA D03 18 40000

109 FARR .lJ D01 25 50000

110 HARVEY HP DOLt 23 45000

111 LAMAR WJ D02 21 45000

112 NELSON AB D04 7 32000

113 ADAMS SA D01 12 36000

114 JACKSON MA D02 1 16000

All th~s expression does is catenate (,l the titles as a new
row on the data portion.

I~ a :fancier report 1.s wanted. you can write whatever ycu
want 1n APL. Here's an examp~e of a slightly ~anc1er report.

-6

-- -----

PRESFORM HISTAFF

ID NAME INT DEPT YEARS SALAllY

-_-.~-

----~----- --- ======
101 INGRAM IfD D01 2 18000

102 KAHAN BA D03 6 32000

103 GALVIN JE DO~ 5 27000

10'+ BANKS JA D04 15 35000

105 MULVEY JS D04 3 21000

106 DEAN RA D02 12 38000

107 CROll PJ D02 6 24000

108 EATON FA D03 18 if0000

109 FARR JJ D01 25 50000

110 HAllVEY HP D04 23 ~5000

111 LAMAR WJ D02 21 45000

112 NELSON AS D04 7 32000

113 ADAMS SA D01 12 36000

114 .JACKSON MA D02 1 16000

The func:tj.on "PBESFORlf" (mean1nq PRESentation FORM) does
essentially what the previous 8zpress1on does except that it
puts a little decoration between a 1:j.tle and. the column 1t
heads. Here is the definition of the "PRESFORlf" function:

COj Z.PRESFORM T
(1J ~ TABLE PRESENTATION FORMAT
C2J Z+~Z((p~Z·~T)p-'=·)

(3) Z+Z.(1J2~T

Line 2 puts a vector of equal signs under each head. and
line 3 catenates this combination as two new rows on the
data table.

COmmunicating with the database system

We'll take a look at how APL2 co..un1cates wi th DB2 or
SQL/DS by taking the "HISTAFF" table and stor1nq it 1n the
database and then do1nq some selection. on it.

Here's how to create the databases

-7

HISTAFF_C
CREATE TABLE HISTAFF

<ID SMALLINT.
NANE VARCHAR(S),
INT CHAR(2).
DEPT CHARe]).
YEARS SMA~LINT.

SALARY INTEGER)
IN AP£CLASS

"HISTAFF_Ct , is just an APL2 matrix of characters. It looks
like a SQL CREATE st.atement. The function "SQLX" is used to
pas. 'this matrix to the database systeID.. Since no error
report 1. generated. the database accepted the request and
created the database.

The func1:1on "SQI,X" is listed at the end of this paper.

Now we have creat.ed the database but it contains no data.
Here's how to put data into the tablet

HISTAFF_I
INSER~ INTO HISTAFF
(ID. NANE. INT. DEPT, YEARS, SALARY)
VA[,UESCI1. 12. &3. :4. &5. :6)

SQLX HISTAFF_I C2:;,HISTAFF)

Aqa1n "HISTAFF_I" is just an APL2 character matrix but.
again. it looks someth1nq l1ke a SQL command. This time we
use the "SQ,LX" func1:ion to pass two things to the database:
the insert statement and the data portion of our relat1on.

If we look at the INSER~ cOllUlland. we t 11 see that this does
not look exactly like it would in other languages. This is
because APL2 always tries to deal with whole arrays at once
-- not single items or s1nqle rows. In other lanquages the
INSERT statement would have names of variables (called host
lanquaqe variables) where we have ,1, :2. etc.

This expression causes the entire table to be inserted into
the database in what appears to the user as one operation.

Now that we have created the database and stored some dat a
in it, that information is now available to other uses of .
the database. They can access it any way they want

-8

(assWDinq they have permission to do so). We can access 1 t
using SQL SELEC~ statements as follows:

S
SELECT ID_ NAME. YEARS. SALARY

FRON IlIS7!AFF
liHERE YEARS < 6

AND SALARY > 15000

SQLX S

101 INGRAM 2 18000

103 GALVIN 5 27000

105 MULVEY 3 21000

11q JACKSON 1 16000

Here "s" is a character matrix which represent. a SQL SELECT
statement. Passing this to the database. with the "SQLX"
functj.on. <;1ves us back a sub-table as an answer. This
sub-table is just a nested matrix t.o APL2 and. anything you
want. to do wi th 1 t you can do. Note that. like the INSERT
state.ent of the previous example. the en1:.1re array comes
back at once. There is no need to wr1 te a loop that causes
the table to fetched one row at a time. The concept of a
cursor (as used by other host lanquages) is v1r~ually

unneeded in APL2. You make a selection request 211d you qet
back the answer all at once. For select:1ons that produce
very large tables there is an option that allows you to
spec1'fy some maximum. nWlLber of rows to produce at one time
:but. ~n many practical applications. this fac111. ty is not
required.

"Erploit1nq the database system

You've now seen much of the facilities of SQL demonstrated.
Basically, everyth1nq you m.1qht want to do to a relational
table or a set of relational tables, you can do
interactively from APL2. Of course much of what you've seen
could be done with any of several other products that
support the database products.

Next we'll look at some of the ways we can exploit the fact
that we have APl2 which. in addition to beinq a powerful
comput~nq lanouage. also interfaces to many other strateq1c
products.

-9

Producing Charts

One thing you might want. to do with relational data is
produce business charts. The Inte·ract1ve Chart Utili ty
(IeU), a part of GDDM~ provides a set of menus which aid in
the production and ta11or1nq of charts. AP~2 provides a way
to call leu with chart data obtained from a relational
table.

The following SQL query obtains total salary by department,
then uses the function SQLICU. listed in the appendix. to
call the Interactive Chart Utilitya

SUMSAL
SELECT SU!f(SALARY), DEPT

FROM HIS'1!AFF
GROUP BY DEPT

SDATA+SQLX SUNSAL
SDATA

D01 10~OOO

D02 78000
DO! 72000
D04 128000

TITLE+'SALARY DISTRIBUTION'
SQLICU TITLE SDATA .

The columns of SDATA are used as the label and y-axis data
in the chart call. After SQLICU is invoked. we enter the
home panel of leU. from which we can select various options.
such as the display of a pie chart. On GDDM release 4. by
specifying the thickness of the pie. we can produce a 3-D
displayz

-10

---- ----------- ----- ---------------- ----- --------

SALARY DISTRIBUTION

344 D04

19X D63

27~ D01

Produc1nq Form tetters

For our next example let' s look again at Hackers
International. We have already seen one table that the
company mdqht use -- the employee table HISTAFF.

Here's two more tables that this company might keep.

DEPT DEPTiVAME MGRID LOCATION

D01 Administration 109 Dallas
D02 Production 106 Bos1:on
D03 Research 108 Boulder
D04 Marketi.nq 104 New York

-11

The first table relates department numbers to department
names and we'll call it HIDEPT. The second relates manager
identification numbers with location names and we'll call it
HIMGR. Notice that these three tables have some C01U~lS in
common. For example. HISTAFF and HIDEPT have a departm.ent
name in common. Weill .ake use of this in a moment.

This defines the database for the company. Let· s suppose
that the president. Joseph Blow. wants to send a form letter
to each employ.e of the company. How can he aake use of the
database to do this?

Here's a sample of the letter he wanta to sends

April	 1. 198.£+
Froas	 Joseph Blow

CEO. Hackers International
Silicon Valley. Ca

To: SA ADAlfS
Administration D.par~••nt
Dallas

Just a little note to tell you that

Hackers International grew another 400~

in 1Q84. Our success was really helped

along by your efforts in Dallas.

Keep hacking:

Regards. JB

We need three things to get this job done:

- the right information fro. the database

- a prototype letter

- a file that can be processed to print the 1nd1vidual
letters

To begin with let's select the data that we need. Iterels a
SELECT statement that will do the job:

J
SELECT NAME, INT, DEPTNxME. LOCATION

FRO:f HIST~lFF. HIDEPT
WHERE HISTA£F.DEPT=HIDEPT.DEPT
ORDER BY NAME

This SELECT statement gets the information we need for each
employee: his name and initials. his department name and his

-12

location. Thi.s information in not all in one table so the
FROM clause JIlent10ns two tables: HISTAFF and HIDEPT. The
WHERE clause requests that these two t:ables be combined on
equal department names -- ~hat 1s. the selection is a join.
Finally, it requests that the results be sorted in
alphabetical order by name. Th.1s sort could have been done
in APL2 after the selection bu~ the data base will do it for
U8.

Here'. what we get out of this s.l.ct~on:

O+/fAIL+SQLX J
/fAIL

ADAMS SA Ada1n1s~rat1on Dallas
BANKS ~A Narket1nq New York
CRON p~ Produc~1on Boston
DEAN RA Produc~1on Bo.ton
EATON FA Research Boulder
FARH J~ Admin~strat1on Dallas
GALVIN ~E Narket1nq New .York
HARVEY HP Narket1nq New York
INGRAM ND Administration Dallas
JACKSON NA Production Boston
KAHAN SA Research Boulder
~AMAR NJ Production Boston
MULVEY JS Marketing New York
NELSON AS Market1nq New York

Notice that. in "addition to mak1nq the selection. we stored
it in the variable "MAIL" (and then requested that the value
be printed). Now we have an ordinary APL2 array that we can
process as we wish.

~h. next piece of 1nforma1:1on that we need is a prototype
letter. Here it is:

-13

·nf
.11 ~o

April 1, 1984
From:	 Joseph Blow

CEO. Hackers International
Silicon Valley. Ca

To:	 SINT. SNAME

&DEPTNAME. Departaent

&LOCATION

.sk
3ust a little note to te~l you that
Hackers Internationa~ grew another 400%
in 1Q8q. Our success was really helped
along by your efforts in SLOCA7ION ••
• 8k:Keep hackinql
.sk:Regaras. JB
.pa

!his prototype let1:er is just an ordinary sequential file
stored on the host sys~e.. The details of the APL2 functions
used are in the Appendix bu"t if you want to produce the
letters, here t s what you enter and a few line. of what you
get:

'.1m letter' SETFZLE NAILHEAD MAIL.s.	 NAME = 'ADAMS
.se	 IN': = 'SA
.se	 DEPTNAME = 'Administration
.se LOCATION='Dallas
.1m letter
.se NAME = 'BANKS
.se INT = 'JA
.se DEPTNAME = 'Market1nq
.se LOCATION='New York
.1m. let1:er
.se NAME = 'CROWS
.se INT = 'PJ
•se DEPTllAME = 'Production
.se LOCATION='Boston
.1m letter

You may recognize this as a SCRIPT file suitable for
processinq by the Document Compos1 t10n Fac111 toy. TJ1US APL2
has tied SQL to SCRIPT:

This SCRIPT file could now be processed to produce the set
of letters as required.

-1~-

Conclusion

APL2 has access to the relational database products and many
other products. We have shown examples of how APL2 can be
used to produce business charts using the Interactive Chart
Utility. and form letters by using the Document Co.position
Facility.

In add1tiOD. because AP L2 1n1:erfaces to ISPF. you could
bUild a full screen panel application to be u8ed in the
building and updat1nq of a database.

Thus APL2 has the ability to tie t0ge~er all the products,
to which it 1nterfaces_ in a unified package.

Reference.

- 5820-9216 APL2 Proqrammdnql Guide

- SH20-9217 APL2 Programming. Using SQL

- SH20-9218 APL2 Programming. Sys~e. Service. Reference

- 5H20-9227 APL2 Programa1nql Lanquaqe Reference

- SH20-9229 An Introduction to APL2

- SC26-4081 DB2 Application ProqramDdng Guide

- GH24-S065 SQL/DS Concepts and Fac111t1e8 for VM/SP

- SH24-S068 SQL/DS Application Programming for VM/SP

- SC33-0102 GDDH PGF Proqramminq Reference

- SC33-0 111 GDDM PGF Interact1ve Chart:. U1:111ty User' s
GUide

- SH3S-0070 DCF SCRIPT/VS Lanquaqe Reference

Ac:Jcnowledqement

The authors wish to thank Ed. Euseb1 who produced the chart
exaapJ.e.

-15

.4P1:2 Functions

~Q~X is the cover function used in the paper for
communication with the database system. It merely passes the
~equest to the IBM supplied cover function (in distributed
workspace SQL> and strips off the return code before
returning the result. This allows us to ignore error
conditions during the d~scuss1on of the SQL interface.

VZ+SQLX SQL_STMT
(1) A SQL cover function
(2) Z+SQL SQL_STMT A Pass request to IBM cover function
(3) .(6v.~tZ)/O A Return everyth1nq if error
C4J Z.2~Z A ELSE only return data

the SETFILE function "takes a relational table and builds a
SCRIP7 file. The right argument to "the function is a
relation in the form used in the paper -- a two item vector
with column t1tles first and the data matrix second. The
left argument is the header line to be appended above the
information produced for each row of the table.

Line 2 turns each 1 tem. of the relation into a character
s'tr1ng even if 1 t was a number originally. (The example we
gave in the paper did not need this because we only selected
character columns.) Line 3 builds each ".se" line up to and
1ncludinq the open quote q1ven before the value. Note that
the column names are used as the set symbol names. Line L4
attaches to these lines the variable d.ata from each row of
the relation and then builds the s1mple matrix from it.

VZ+P SETFILE HD:D;H
(1) A Generate DCF set symbols
C2J D•• ··2:;,HD ATurn each item into characters
C3 J H+ (c: •• s e '), .. (t HD) , .•c:' = ,. A Build linet

(~J Z·~C2J.(((pD)pH),-D),~PAReturn simple character matrix

The following function is the one ~used to call the
Interactive Chart Utility. The r1qht argument is a two-item
vector; a character s·tr1ng which represents the t1 tle, and a
2-column SQr. table. This function can be changed to use
X-axis data. multiple Y-axes, and keys. For an explanation
of the values used in the call, see the description of AP126
in APL2 Systems Services. and of IeU in GDDM PGF Programming
Reference.

S~£ICU uses the IO function from the APL2 distributed
workspace 1 UTILITY. to convert integers to System 370
characters.

-16

VZ+SQLICU TLY:LABELS:TI~tE:X:YJCCTL;DAT:CTL;OIO;R

C1J OIO+'
C2J ~ INVOKE INTERACTIVE CHART UTILITY
C3J (TI~LE LABELS Y)+(1+~Ly),cC1J2~TLY

(4J LABELS+c(2J:;)LABELS . ,. LABELS SANE LENGTH
(53 X•• \~y ft DEFAULT X-AXIS
(6) lit OFFER 'rO SHAllE liIrR AP126
(7) OESev/2.126 CSYO-'CTL' 'DAT')/'AP126 SHAllE ERROR'
(8J "BUILD CHART CONTBO~ •••
(9) CCTL+' ,
[10J CCTL+CCTL.I+ IO 0 .. LEVEL a=OLD LEVEL
(11J CC~L~CrL.4 IO 1 A DISPLAY 1~HONE PANEL.2=CHART
[12J CCTL+CCrL.q IO 1 A HELP 1-DISPLAY PFKEY INFO
(13) CCTL+CCTL,4 IO 0 A ISO£~E O.A~L FACILITIES
[14) CC7!L+CC~L. • * " FOBIfNA/fE *-DEFAPL'f
[15] CCfL+CCTL. •* '" DATANAlfE .-OfS&l PARlfS
C16J CCTL+CCrL.1+ IO 0 A BINDING O.~IED.1=FREE

[17J cCr~.cCrL•• 4 IO,1 .. DATA GROUPS
[18J CcrL+CCTL,.4 IO,-pX A ELENENTS - WITH LABELS
[19J CC~£+CCTL.'+ IO 0 " KEYL a-NO KE1S
[20J ccr£+CCTL s »4 IOf)+I,ABELS lit LABEL£ O=NO [,AMELS
[21] ccrL+CC'rL •• LJ IOpfITLE fII BEADINGL a-NO ReADING
[22J CCTI,+CCTL.' * '" PB'£NANE *aUNlCNOIJN
(23) ccrL+CCTI,.~ IO 0 A PBTDEP a-DEFAULT
C2QJ CCfL+CCTL.~ IO 80 ~ PBTMID O=DEFAULT
C25J CCTL+CCTL.~ IO 1 ~ PRTCOPY Os DEFAULT
(26) ft SPEC CHART-CON~RO,.KEYS.LABELS,rITLE

(21J DAT+CCTL.··.(c~ABELS).rITLE

(28J " SPEC NUlfERIC INFORlfATION
(29J a+(pCcTt),1 O.CP.X).X.(D.Y),(,Y),O,(pcLABELS),DTITLE
(30) C~L.-10.H " CALL ICU

-17

