
o

o

THE UNIVERSITY OF TEXAS

6400/G600 LISP 1.S

an Adaptation of

H.IT LISP 1.5

Revision II, April 2, 1968

by

Janes Bo Morris, Jr.

Don J. Singleton

Sponsored by

Dr. ~·l.~l, Bledsoe

CONPUTATION CENTER

TRM-2 '
April, 1968

(J

o

Part

I.

II .

IIIe

IV"

v.

VI •

Introduction

List ~tructures

TABLE OF CONTENTS

Available System Functions .'
LISP Input and Output

Running the LISP System

The LISP Library

, References

Appendix - General Peculiarities of the System

.-

Page

1

2

5

7

9

11

14

15

I Introduction

~. ,~-

THE UNIVERSITY OF TEXAS

. 6400/6600 LISP .L2

In approximately 1961~ a group of computer scientists under the direction

cf Professor John McC1irthy lit MIT developed a lli.t ~roce88ing language called LISP,

The concept of LISP was intrcduced in a paper by McCarthy entitled '~ecursive

Functions of Symbolic Expressions and Their Computation by Machine," which was pub­

lished in ~2-I1}!!}_unicat!£.!!.L~L!h~CM, Apri 1 1960;' ·this language was to be the fore ..

Iunner of the present LISP 15 programming syotemo Its use in methods of analysis

of ~oli.~~~ress1ons rather than numerical expressions has grown rapidly since

o 1961, Perhaps the most st,f'iking example of manipulation of symbolic expressions- "

ccmes from a report by Helln (1) at Stanford which describes the use of LISP for

symboltc calculation of psrti.cle scatter-ing propert1eS'in high energy physics 0 Hearn

reports that "Six man~~onths of effort wac reduced to fifteen minutes of 7094 com­

_put~r tlm~ through the use of LISP, It Slagle (6) f> at MIT, reported on a LISP pro-

gram which docs heuristic 8ymboli,~ integration of complex calculus integrals, Other

uses of LISP include aymbollc differentiation programs (2,3)~ aimplificatlon of

symbolic arIthmetic expreo!ions (4:5}v and many other useo in electrical circuit

theory (4.5)~ mathematicdl logic l , game playing~ and other fields of artificial in­

(~[icial intelligence

IVA SepcErrber of 1966>j 8 p1"oje~t aponsored by Professor·' We 11. Bledsoe was

lJegunto develop a LISP 1-) interpreter syatem for the Control Dltll 6000 computer

o set'i~s The: ~ompletion lO,f the dyst£m 1& annGun,~ed with the publishing of this

document,

The standar·d user 'J s manual for a,cquiring a knowledge of the use of the LISP

1,5 language 1s the ~!~P 1:5 Programmer~8 Manual· available for reference in The

Unlv~rsity of T~xa5 Computation C~nter librarY9 or from the KIT Prel8~ C8mbrldge~

Nassachusetts 9 3t a price of $3~OOo A second publicatlon 9 The Programming Language

L!SP~ Its Operation and Applications~ is also available fran the MIT Press for

$5 00 and is suggested as intere3t1ng reading for those already familiar with the

LISP language, The METEOR interpteter~ also available at The University of Texas

and running under th~ LISP interpreter b is explairied J~ the above publication.

1

2

'The purpose of this document is to point out the ~ifferences between

6~00/6600 LISP and MIT LISP. It is assumed that the reader has a knowledge of LISP

or hc;s the LISP ~. _5_ .~r,?g:r~E.!t1eE_~ s _ ~f:l~u_a ~ avai lable for reference.

11 bi5l-~ructures

With the exception of the property list~ the representation of list structures

given on page 36 of the LISP 1.,.5~~ognlmmeri s. ~anual applies to 6400/6600 LISP.' In

tllis ~ystemt the addresses (CAR and CDR) are each 18 bits in length. A 6-bit identi­

fication field (used by the interpreter. but not available to the programmer) has

been set up to identify the use of any particular 6400/6600 word. i.e. t whether it

, is an atom~ an element in the property list, a list element, etc. Since a 6400/6600

word contains 60 olts, this leaves 18, bits otherwise unused (i.e., unused in the

Ost structute~-they are used in the property list), Two functions have been' created

to allow the LISP programmer to reference this "special address" in each list element.

The function "CSR" has as its value the contents of the "special address" of the list,

element specified by its argument. The corresponding function RPLACS will store an

address in the "special address" portion of any word in a list, just as RPLACA and

RPLACD store in the CAR and CDR portions of a word,

The property lists in 6400/6600 LISP are structured somewhat differently from

MIT LISP property lists (see F1gures 1 and 2).* Because of the availability of a

third address, the 6400/6600 system is able' to use one word where the MIT system

needs two words Thts results in a considerable gain in property list search time,

Hhich is a critical factor In the execution time required by the interpreter, In

addition. a 2-ro-1 savings in memory space is gained for property list storage. Thus j

Dr large LISP programs such as METEOR~ this is a distinct advantagee

One 6400/6600 computer word contains a complete unit of information about an

atom The property list 18 made up of many of these units of information. Each of

the three address portions 1n the computer word (or list cell) plays a different

role. The CSR portion of the list cell identifies the property type (denoted as

PCODE in F1gure 2) wh1Ch this cell specifies, This property type will be an atom

* In these figures. a "*" .'.~'. t~le CAR portion of the first list cell of an atomic
symbol property list denotes "address of the cell in which the G*D appears."

"

!(',

3

FIGURE 1
((A(B C))D) = ((A. ((B. (C·NIL)).NIL))· (D:NIL))

o A o

o B

o
1\ tom ic DEFINE (((A (LAMBDA (X) (COND ((......)))))))
S ym bo 1 A~~--IJ--....L...-_---Zo'---_-I

~>
2 EXPR -f----D4 2 .~

P. List~~ __ ~~ __ L-__ ~ ~~~~~ __ ~~~L-__ ~

o

o

: __ ~-<v PROP

o ~~~ LIST
~-v PROP

, 0 ~~~ LIST

1271~ NIL indicates that nothin~ falls in this bucket

OBLIST

••••

~-v PROP
;< 0 ~~~ LIST

--------------~~-~~------- --------

LIST ELEMENT

ATOMIC SYMBOL

o
PROP LIST

PNAME

FLOATING POINT

0
.INTEGER

OCTAL

,~ • - 7'" '

4

FIGURE 2

[0 I CSR [CAR CDR [

1
Prop. List

Linkage for
this Atom

2 PCODE

4 3rd 10 char

DPC codes

Pointer to

118 Floating
Point

Number

21 8

Pointer to
60 bit

integer

31 8

Pointer to
60 bit Octal

Number

*

PROP
DEF.

2nd 10 char

DPC codes

*

*

Points to
this cell

,~. .

Linkage to
next cell on

Prop list

1st 10 char

DPC codes,'

Nil

>,

... ", , ~:

,,'"'

.#.;

. "

_ •• • ,_ .•. ".- '1"'~ • ~ •• ;p •. ,... •.•• ~. ___ .. I __ __ ~_':'-.-~··- .. ' .. ~~~'.-~oo;".· ,_ ... :', ~

such as PNAME i EXPR, FEXPR D SUBR~ FSUBR v APVAL~ etc. The CAR portion of the list

cell contains a pointer to the property definition for the specified property.

5

For EXPRQs and FEXPRcs this is a pointer to the list structure for'a LISP function;

for SUBRus and F5UBR i s this is a pointer to a machine language routine; for PNAME

it 'is a pointer to' a cell whic~ points to a print name. The CDR portion of the list

cell will ~ontain a link to the next cell 6n the property list, or NIL in the case

of the las~ cell.

Ths impl~mentatlon of the garbage colrector in 6400/6600 LISP is essentially

the same as that in MIT LISPo The AO register of the computer always contains a

pointer to the top of the ~e-storage list, In the garbage collector, active list

8tru~tur~s are marked by linking to all cells which can be reached from car-cdr-csr

chains beginning in special header cells. These special header cells are: the OBLIST j .

o the pushdown stack~ the a-list. all Af; Btl and X registers ~ the TEMLIS (temporary lists,) ~
and doublets which remain to be executedo Marking in full word space is accomplished

o

by a bi t table 0

When garbage collection occurs 5 the following message will be printed in the

event that the prograrruner has included a "G" in the list of parameters on the LISP

control card~

FULL FREE = WORDS COLLECTED BY GARBAGE COLLECTOR
nnnn mmm.I'\'I.

nnnn i8 the number of words collected in full word space~

mmmm is the number of words collected in free-storage space,

The f c 110w1 ng func; t1cns (not inc luding the I/O functions lis ted in Sec t ion /

are availgble to the LISP programmer and operate exactly as explained in the

LISP 1,5 P!'ogrammer C s Manus 1 ~

0-

ADDI
AND
APPEND
APPLY
ATOH
ATTRIB
CAR
CDR
CSR
CONe
COND

copy
COUr,7
C,SET
r.~~\~TQ

DEFINE
DE:::-lJISi

DIGIT
DIVIDE
EFFACE
EQ
EQUAL
ERROR
ERRORSET,
EVAL
EVALQ'UCTE
EVLIS
FIX
FIXP
FLAG
FLOA':.'P
17JJNCTION
GENSYM
~'.~rrn ,-:.;'.L

~~~~t'lrIi 

CJ) 

GREATERP 
LABEL 
LEFT SHIFT 
LEf\T~'TH 

LESSP 
LIST 
LOGAND 
LOOOR 
LOGXOR 
MAP 
MAPCON 
NAPLIST 
MAX 
11EMBER 
MIN 
NINUS 
IvlINUSP 
NCONC 
NOT 

6 

NULL RPLACA 
NUMBERP RPLACD 
ONEP RPLACS 
OR SASSOC 
PAIR SEARCH 
PLUS SELECT 
PROG SET 
PROG2 SETQ 
PROP SPEAK 
QUOTE SUBI 
QUOTIENT SUBLIS 
RECIP SUBST 
RECLAIM TEMPUS 
REMAINDER TIMES 
REMFLAG TRACE 
REMOB TRACE SET 
REM PROP UNCOUNT 
RETURN UNTRACE 
REVERSE UN TRACE SET 

ZEROP 

Th" fo 11oo;..;ing -func tion names are unique to this LISP system and are exp la ined 
in detail: 

t~mpus[ ] - A function of no arguments which returns as value the-elapsed program 
time in seconds as a floating-point number. (Caution: Calling this 
function a large number of times will result in large amounts of pp 
usage time since a pp routine is involved in the implementation of 

alist[ ] 

th is func tion. ) 

A function of no arguments which returns as value the current associa­
tion listo (See page 17 in [3].) 

l' 

" 

,I" 

--
, . 

.' . 

, 

" ' 

" .~'.~' " 

gr;H1p(a;bl This function 11.3s t~,]o arguments, a and b, both of which must be atomic' 
symhaLs • G~G{P ~e!:~!"r,s *T* if the core memory address at which a is 
stored is' grEate:r t~an the core memory addre$s at which b is stored, 
NIL othet'T!:lis€: 0 Tr.is f'Jnction may be used as a fast, arbitrary orde:r-
i ng :rune t i.an. I t may be as sumed tha t the core memory loca t ions 0 f . 

0, atomir. sy-mho13 do not change during the entire run. 

. <.ilphnp[a;b] This function has t',7Q argurr;ents, a and b, both of which must be _ atomic' 
symbols. B.lphap returns *T* if a precedes b in alphabetical order, 
NIL othE~wise (using rlisplay code sequence as collating sequence). 

ranc1om[n] - T~is function is cOtlce:':r.ed with (pseudo-) random number gensration and 
op~1.'ates in the follo't<7ing manner: 

~o !'~tur:."s thE l~st rar~dom number which was generated, and does not 
generate. a new random number. Thus random may be called with 
n<O gnd not cha,ge the state of the generator. 

n=O causes generEtio~1 of a new random number X, 0.0 $. X $ 1 .. 00 The 
value X is returnedo 

0<0<1 D. is the new seed from which subsequent random sequences will be It 

for~ed. This option allows the user to start a new random sequence 
b~ginning ~ith n. The value returned is no 



o 

o 

6a 

In addition, it should be mentioned at this time that the operation of several 

of the functions which manipulate property lists is peculiar to 6400/6600 LISP due 

to the methods of packing atomic property list structures (see Section II). These" 

peculiarities are explained below. 

CSR and RPLACS functions are available (see Section II) for manipulation of 
the packed list structureSD 

ATRRIB expects its second argument to be a packed property list structure. 
This is added on to the end of the packed property list structure given as 
the first argument. 

GET expects its first argument to be a packed property list structure. Op.e 
difference, however, is that GET should not be used to "get" a print name of 
:-ttl Atom. Instead, the programmer should use 

,(GETPN X) 

1,.]hich, under the MIT LISP system would be called by 

(GET (QUOTE PNAME) X) 

G£TPN will return a full word list of the print name. 

PROP must be given a packed property list structure as its first' argunient. 
It returns a packed property list structure as value. 

REMPROP, FLAG, REMFLAG, CSET, CSETQ, DEFINE~ and DEFLIST all search a packed 
rroperty list structure and must be given a structure of this type ,as their 
first argument 0 

, .... 



7 

The user must supply his m-ln routines to manipulate the normal list structures if he 

intends to utilize an equivalent operation as normally performed in the MIT LISP 

system by one of these functions ~~ith the above-mentioned peculiarity. 

IV. LISP Input and Output 

The LISP input/output routines allow the user running under the SCOPE 

operating system to read from files named INPUT (the standard input file) and up to 

two arbitrary files. It also allows writing to fileo named OUTPUT (the standard 

output file) and up to two arbitrary fi~s which need not necessarily be the same 

arbitrary files as used with read operations. 

~ The follm~ing MIT LISP input/output routines are available in 6400/6600 LISP 

and are explained in the LISP 1.5 ProgrammerQs Manual 

PRINT 
PRIN1 
TERPRI 
READ 
CLEARBUFF 
ENDREAD 
ADVANCE 
STARTRE.AD 

PACK 
UNPACK 
OPCHAn. 
DIGIT 
LITER 
NUMOB 
MKNAM 
INTERN 

The "Class A" as mentioned on page 83 has been expanded to include the follm1ing 

characters due to the SCOPE 2.0 63-character set: 

Class A ABCDEFGHIJKLMNOPQRSTUVWXYZa*/~[ ]"VAt"'~ >;: ~~, 

ThH~ction "Characters and Character Objects" has been changed in the follOl-ling ways: 

(1) A 63-character set and the character U$EOR$" are the 64 .. characters 
available in 6400/6600 LISP. The extra 16 characters not mentioned 
in the LISP 1.5 Manual» except for the "+". may be used anywhere that 
an alphabetic chllracter may be used. The "~" character is discussed 
cn[Jc1[~e J 7 of t.n i 5 dc,:umen t c 

(2) Numeric character objects may not be used in arithmetic. Sending the 
character object through NUMOB will solve this problem, since NUMOB 
a lways returns a number~· even for the digits 0-9. 

(3) The ne\~ special character objects are as follow8~ 

.~ 



Character 
Name Representation 

EQUIV !2 

LBRACK [ 
RBRACK ] 
COLON 
NEQUAL ~ 
RARRo\~ r" 
ORSIGN V 
ANDSIGN A 
UPARROH t 

I 

DARROW ~ 
LESS < 
GREATER > 
LESSEQ ~ 

GREATEREQ ~ 

NOTSIGN .., 
SEMICOLON 

0 

The atomic symbols CURCHAR, CHARCOUNT, and CPPI are not available. 

The following functions have been added to the already existent standard 

1/0 functions in the 6400/6600 LISP system, In each case, the right~hand column 

specifies an MIT LISP fUDct10n. In the corresponding left col~mn is the name of 

'8 

a 6400/6600 LISP function which will produce the same results except input/output 

is to some arbitrary pI'ogrammer-defined file given as argument to the function. 

The normCJl input/Output: r'oLatines as described 1n the Ll§1-.1-_~.~~!_~gr.ammer IS Manual 

send information to system files named INPUT or OUTPUT, whichever the case may be, 

o 
6400/6600 LISP 

(OUTPUT (QUOTE ARB) X) 
(OUTPUTl (QUOTE ARB) X) 
(ARBTERPRI (QUOTE ARB) 
{ARBENDREAD (QUOTE ARB» 
(INPUT <"QUOTE ARB» 
~itRBADVANCE (QUOTE ARB») 
(ARBSTART (QUOTE ARB» 

MIT LISP 

(PRINT X) 
(PRINTl X) 
(tERPR!) 
(ENDREAD) 
(READ) 
(ADVANCE) 
(STAll TREAD) 

where ARB is some user defined file (limit of two). Also, the function call 

{OUTPUT (QUOTE OUTPUT) X) 

is equivalent to 

~PRINT X) 

.-.-~-~.-~---



I 

I· 
I 

The same, is true for all of the "arbitr,ary file" functions. In addition, the func-

tions 

(REHIND (QUOTE ARB» and (ENDFILE (QUOTE ARB» 

will rewind and \oJrite an end-of-file, respectively, on file ARB. 

The format of all input/output files is S12-word odd-p~r1ty records (binary) 
r.e<:,0r<tsp • 

The 6400/6600 LISP system cperates under the standard SCOPE operating 

system in a batch mode of operation. This section describes the deck and control, 

card setup necessary for running a LISP program. 

The first ~atd 1n the deck is a comment card and is not processed by 
the interpreter 0 

(2) The next series of cards is a sequence of doublets for EVALQUOTE. 
Card format is free field and only the first 72 columns of the card 
are processed, Atomic symbols do not continue over to the next card, 
even if the atomic symbol ends in column 72. 

(3) STOP))))) card, The number of right parentheses is optional, but at 
least one must be present 

(4) Repeat (2) and (3) a~ many. times as desired. Each series of statements 
between S:OP ..::arcS is called a "packet" and the' first packet is executed 
by the interpreter before discovering that the second packet (and suc­
ceeding paCKets) ex1sts, Function and other definitions carryover to 
each new pa~ket, 

(5) The last card in the deck must be a card with FIN punched on it in any 
c=> cclumn 

fontr_~c:ard set~ 

The-interpteter automatically assigns the available memory in the uiervs 
field length~ after loading of the interpreter 9 to available space lists, 
Approximately 80% 1s used for the free storage list and the rem~ining 
for the full word I1stc Thus a user need only specify the field length 
on hiS JOB card and the interpreter will see that the entire amount of 
memory is utilized. The field l~ngth must contain room for the interpreter 
over Bnd above the amount of available free storage space required by the 
pt'ogram, The current size of the interpreter is ~700l0 words '. (~227308words), 

(a) The first control card 1s the JOB card and is explained in the SCOPE 
Referenct Manual, 



o 

o 

I· 

i, 

10 

(b) The second control card calls the LISP interprete~ and appears as 

LISP(L,G) 

beginning in column one. If the 'L is omitted as in 

LISP(G) 

a source deck listing of the LISP program is suppressed. Similarly, 
if the G is omitted, garbage collector messages are suppressed, 
Both parameters may be omitted by a card which contains only 

LISP. 

It is also possible to obtain a listing in which a parenthesis count 
is inserted under left and right parentheses in the listing (except 
within comments). This parenthesis-count option,is an invaluable fea­
ture for preliminary LISP debug runs since mismatched parentheses may 
be detected very easily from the source deck listing. 

This option is obtained through the use of a P parameter in the LISP 
control card. Thus, 

LISP(P ,G) is the same as LISP (L',G) 

or 

LISP(P) is the same as LISP(L) 

except that the parenthesis count is added to the source deck listing. 

(c) The third card is an end-of-record card. 

Following the above is the LISP deck. Of course the control card setup 

shown is for a normal run only, and other SCOPE control cards, such as for core 

dumps, etco, may be added. 



I, . 

11 

VI. The LISP Library 

A feature which h~s recently been added to the LISP system is the LISP 

library. By means of this feature, symbolic LISP functions may be stored on a per­

manent file and directly loaded into the system for subsequent use within the inter­

. preter. The library file may be maintainc~ through the use of special LISP functions 

ns cxplnincd below. 

Organization. The LISP library itself is a file named LISPLIB. The LISPLIB 

file is a series of logical records (each of·which is a LISP list structure) in the 

following format: 

(record-name logical-record-information) 

Che rccord-nmr.e specifies the name of the logical record, and the logical-record­

information contains the record information. 

o 

The format of the LISPLIB file is as follows: 

logical record I: 

logica 1 record 2: 

logica I record 3: 

" II 4: 

" II 5 : 
II " 6: 
II II 7 : 

(LISPLIB:LOADER:PROGRAM loader func tion) 

(LISPLIB:CATALOG:PROGRAM catalog function) 

(LISPLIB:LIBLIST:PROGRAM liblist function) 

(LISPLIB:UPDATE:PROGRAM update function) 

(LISPLIB:DELETE:PROGRAM delete function) 

(LISPLIB:LIBCOPY:PROGRAM libcopy function) 

(LISPLIB:DIRECTORY«r~.k) ... (rn2 .2)(rn l .l») 

where rn. is the name of the jth logical record following 
J 

the LISPLIB directory 

logical record 6+j [j goes from 1 to k]: (name of the jth record (one or more 

named LISP function s-expression(s») 

For example, 

(EXAMPLE*FUNCTIONS«EJECT (LAMBDA () (PROG2 (PRINI l)(TERPRI)}») 

(FF (LAMBDA (L) (COND «ATOM L) L) (T (FF (CAR L»»»» 

Use and maintenance. The LISPLIB library tape is filed in The Univers1ty of 

Texas Computation Center tape vault under tape no. 510/0473. The following LISP 

functions are available to enable the user to maintain and use the LISP library: 

--- ~--~-":'--~ __ ~""""' __ • _______ -.J.. -..-.-..... _ ----..."r-____ . _____ ; ________ . 

.. ' 



LOAD(L) 

12 

L is a list of record names. All the named S-expression functions in each 

record given in the list L are DEFINEd for the current LISP run. The value· 

returned is a list of all function names which were defined. 

Example: 

LOAD«EXAMPLE*FUNCTIONS» 

will DEFINE the functions EJECT and FF 

va lue is: '(EJECT FF) 

CATALOG(LIB) 

LIB is the nan:e of a library file. This program lists the name of all 

c:). records in the file. The value returned is a list of all record names in 

the file. 

Example: 

CATALOG (LISPLIB) 

value: (list of all record names, e.g., EXAMPLE*FUNCTIONS) 

LIBLIST(L) 

o 

L is a list of record names. This program lists all function S-expressions 

in each record given in the list L. Value returned is NIL. 

Example: 

LIBLIST«EXAMPLE*FUNCTIONS» 

will list the functions EJECT and FF 

UPDATE (L) 

L is a list of logic~l records to be added to the end of the current LISP 

library. If any duplicate record names are encountered, an error message 

occurs anu the new duplicated record is not added to the library. The new 

LISP library is produced on a file called NEWLIB. Value returned is *T* 

if no duplicate record names were found on the library, otherwise NIL. 

Example: 

UPDATE« 

(EXAMPLE*FUNCTIONS«EJECT(LAMBDA() 

(PROG2(PRINl l)(TERPRI»» 

(FF (LAMBDA (L) (COND (ATOM L) I,) 

(T(FF(CAR L»»»») » 



13 

DELETE(L) 

L is a list of logical records to be deleted from the current LISP' library. 

The new LISP library is produced on a file called NEWLIB. Value returned is L. -

Example: 

DELETE«EXAMPLE*FUNCTIONS» 

value: (EXAMPLE *FUNCT IONS) 

LIBCOPY«F1 F2») 

, Note: 

o 

Copies the file named Fl to the file named F2. Value returned is NIL.' 

Example: 

LIBCOPY«NEWLIB LISPLIB» 

A minimal LISPLIB library file configuration is the 6 LISP functions denoted 

in the first 6 logical records, a directory which appears as 

(LISPLIB:DIRECTORY «PRETTYPRINT.1») 

and a logical'record named PRETTYPRINT which contains the 7 functions 

included in the PRETTYPRINT system. 

'"1'.' 



o 

o 

14 

REFERENCES 

1. Hearn, A. C. "Computation of Algebraic Properties of Elementary Particle 
Reactions Using a Digital Computer," Connnunications of the ACM, Vol. 9 (August, 
1966), pr. 573-577. 

2. Maling, K. "The LISP Differentiation Demonstration Program," Hemo 10, Artifi­
cial Intelligence Project, MIT, Cambridge, Massachusetts, 1959, 6 pp. 

J. McCarthy, et a1. '''LISP I Programmer's Manual," Computation Center and Research 
Laboratory of E1ec., MIT, Cambridge, Mass., March 1960, p. 22. 

4. Goldberg, S. H. "Solution of an Electrical Netwo"rk Using a Digital Computer," 
M. S. thesis, E1ec. Engr. Dept., MIT, Cambridge, Nass., 1959, 203 pp. 

5 . Ed'vards II D. "Symbo lie C ircui t Ana 1ys is wi th 'the 704 E lee tronic Computer," 
}1. S. thesis, E1ec. Engr. Dept., MIT, Cambridge, Mass., 1959, 48 pp. 

6. Slagle, J. R. "A Heuristic Program That Solves Symbolic Integration Problems 
in Freshman Calculus," Journal of the ACM, Vol. 10 (October, 1963), pp. 507-520. 



APPENDIX 

GENERAL PECULIARITIES OF THE SYSTEM 

1,· 
.J 

There are several minor differences between 6400/6600 LISP 1.5 and MIT LISP 

·1.5, and this appendix will attempt to list these differences. References will be 

made to pages in the LISP 1.5 Programmer Os Manual, so that the user can update 

his manual to conform with 6400/6600 LISP. 

1. Page 2; last line should read; 

o car [A] a A 

In 6400/6600 LISP the· CAR and CDR of atomic symbols are given particular values 

instead of leaving them undefined, to prevent accidental reference to addresses 

outside a jobQs field length. 

2. Page 3 D 7th line should read 

cdr [A] • NIL 

3, Page.4» 5th line from bottom should have inserted: 

"The 6400/6600 LISP system automatically recognizes multiple CAR~s. CDRls, 

and CSR's having up to eight 1~tter8 (A, D, or S) between the C and the R." 

4. Page 16» 5th line should read~ 

.0 "A comma is equivalent to a string of one or more blanks, thus only one 

comma may be used.to separate atoms in list notation." 

5. Page 20, line 15 should read~ 

" the second is peculiar to the LISP Programming Systems on the IBM 7090 

and the CDC 6400/6600 computer series." 

6. Page 24, lines 19 and 20 should read~ 

4. 
308 -308 

Absolute values must lie between 10 . and 10 

Significance is limited to 10 decimal digits 



7. Page 24, line 31 should have added~ 

"In 6400/6600 LISP the number 600E-l is an acceptable floating-point 

number, even though it does not contain a dot." 

8, Page 25~ l1ne 4 should read: 

"20 Up to 20 digits (0 through 7)" 

9. Page 25, lines 13 through 28 should read: 

"The effect of the read program on octal numbers is 8S follows: 

16 

1, The number is placed in the accumulator three bits per octal digit 

with zeros added to the left~hand side to make twenty digits. The 

c=> rightmost digit is placed in bits 2-0; the leftmost digit is placed 

in bits 59'"'570 . 

o 

2. The accumulator is shifted one bit (one binary digit) times the scale 

factor. Thus the scale factor is an exponent to the base ~. 

3. If there is a negative sign. the number is complemented after it 

is shifted by the Q scaling factor. The examples in a through e 

above will be converted to the following octal words: 

8. 00000000000000000777 

b. 00000000000000017760 

Co 77777777777777763777 

do 77777777777777743777 

eo 00000000000000034000" 

10, Page 26~ lines 19 through 21 should be deleted. EXPT is not implemented in 

6400/6600 LISPo 

~.11. Page 26 j 4th line from bottom should read~ 

ftThe logical functions operate on 60-blt wordso" 

12: Pages 27 and 28~ Delete section on the Array Feature; it is not implemented 

in 6400/6600 LISP. 



o 

o 

13. Page 30, line 20 should read: 

"The form GO can occur at any level of a PROG (and must return to the 
top level of the PROG)." 

14. There is no assembler or compiler, hence all references to these routines 

should be deleted. 

15. Disregard Appendices C, D, E, G, H, and I. 

Ii 

16. Comments may be inserted in LISP expressions in 6400/6600 LISP. These comments 

must be separated from the LISP expression by punching a fl." on each side of 

the commento The "J" is a character found on keypunches with the 64-character 

set; it is formed by an 11, 6, 8 punch. The effect of the "~tI is to cause 

the interpreter to scan looking for another tI~tI and disrQgard anything in be­

tween. For example, 

(CA~THIS IS A COMMENT~R A) 

is the same as 

(CAR A). 

17. Any atomic symbol beginning with a plus or minus sign and fo11owed,itmnediate1y 

by a non-numeric character will not be converted into a numeric atom but 

rather will function as a non-numeric atom. "+" and tI_" by themselves are 

included in this group. 

~ '. 

~ ,', . 

. _. -, .. ,- - .... ----.. ..,'::- ----.. - '-"~'.~-'-- - - -.-_._ .. _-..... -.. _ ... ---~-----



--------------------------~-------------.~."~-,~ .. ,~-;~.,,=."~"----~."~"~'"'.~"~-----------------------------------------

o 

.. 0 

Notes on the Use of LISP Version 1.5.6 

6/24/68 

LISP Version 1.5.6 makes the following corrections to LISP 
Version 1.5.5: 

1. CONC was entirely rewritten. The old version stopped 
concatenating when it~ncpuntered a null list. 

For example, 

in the old version: 

conc ~ B); NIL; (C~ 
returned . (A B) 

In the' new version it returns (A BC). 

i' 

2. MAPCON produced an eff~c~ ~~ry similar to that explained 
in (1) and was also fixed. 

3. Informat"ion appealhng in column 73-80 would cause the 
interpreter to lo~e information in a user's program. 
This has been corrected. ! 

4. The number of garbage collections which occurred in a 
run is now printed at the ~nd of the ru~ (regardless of 
G parameter setting). 

5. In rare cases, ou~ failure to normalize after additions 
and subtractions caused incorrect arithmetic results. This 
has been corrected. 

, , 

6. The READ function has peen extended to read not only lists, , 
but also atoms (as it should have originally beep impleme~~ed) . 

7. The RANDOM function has been added. See page 6 of the 
enclosed supplement m~nual. 

8. MKNAM spelling has been corrected from MKANM. 

9. More than one doublet for evalquote may appear on a card'. 

Install ing the LISP 1.5.6 System 

The tape which is enclosed i~ 556 BPI density and ,is in 
UPDATE format. The tape is unlabelled 'and should be declared external 
on SCOPE 3.X systems. 



r: .. ' 

i.: 

t, 

l' 

; ~ .: . 
,~"b; 

'. -\ 
. ",-;; 

":'J1.--:: 

~ . J'. 

" . 

~ t' 

I' 

/' 
'.' .', 

," . .;. ~ ~ 

',~:' ," 

'., 

. ~ f '. 

.......... ' .'.-' 
. ~, 

.', 

.", 

. f 

;," 

The' following 'program ·w"itl.p'r.odu~e a 
", version of LISP, 1~5.6 suitable for execution: 

t' , 

... :',':" . JOB' card 
.! ,'to .J, 

I 
,&..J., 

", 

'I,' 

:: ~, 

. 1 

'1' 

, " 

REQUEST ,OLDPL,HI~X.· 
•• ~I 

. " 

UPDATE(Q) 
"i 

COMPASS'(I~COMPILE, . L=O,B=PUNqRB) 

7 
8, 

9' 

~'''COMPILE .' 'LISP 
,: ~ 

6 1 

·7 
8 

9 

. - ~ . 

II'. : 

'.\ 

r '~ .' , 

" . 

; .... 

" I' 

',.,'-!', 

: ..... ~ 

~ <' • 

1. 
• 'l 

',' 

~ ... 

,', 

j ~. 

')!' 

: ;',' 

"f 
. ! ". 

,", ,. 
.' I i,' 

" .. 

'"f 

'" .... ,,' 

' .. , 

",' 


	Morris_Singleton-UTLisp-1968_04-COPY_20001_a
	Morris_Singleton-UTLisp-1968_04-COPY_20002_a
	Morris_Singleton-UTLisp-1968_04-COPY_20003_a
	Morris_Singleton-UTLisp-1968_04-COPY_20004_a
	Morris_Singleton-UTLisp-1968_04-COPY_20005_a
	Morris_Singleton-UTLisp-1968_04-COPY_20006_a
	Morris_Singleton-UTLisp-1968_04-COPY_20007_a
	Morris_Singleton-UTLisp-1968_04-COPY_20008_a
	Morris_Singleton-UTLisp-1968_04-COPY_20009_a
	Morris_Singleton-UTLisp-1968_04-COPY_20010_a
	Morris_Singleton-UTLisp-1968_04-COPY_20011_a
	Morris_Singleton-UTLisp-1968_04-COPY_20012_a
	Morris_Singleton-UTLisp-1968_04-COPY_20013_a
	Morris_Singleton-UTLisp-1968_04-COPY_20014_a
	Morris_Singleton-UTLisp-1968_04-COPY_20015_a
	Morris_Singleton-UTLisp-1968_04-COPY_20016_a
	Morris_Singleton-UTLisp-1968_04-COPY_20017_a
	Morris_Singleton-UTLisp-1968_04-COPY_20018_a
	Morris_Singleton-UTLisp-1968_04-COPY_20019_a
	Morris_Singleton-UTLisp-1968_04-COPY_20020_a
	Morris_Singleton-UTLisp-1968_04-COPY_20021_a
	Morris_Singleton-UTLisp-1968_04-COPY_20022_a

