TRM-2
April, 1968

THE UNIVERSITY OF TEXAS
64CG/66C0 LISP 1.5
an Adaptation of

MIT LISP 1.5

Revision 1Y, April 2, 19638

by
James B. Morris, Jr.

Don J. Singleton

Sponsored by

Dr. W.W. Bledsoe

THE UNIVERSITY OF TEXAS AT AUSTIN

CCMPUTATION CENTER

TABLE OF CdNTéNTs ‘

T. Tntroduction « o v o o o v o v o v e e e e e e e e e C e 1

i Iiu List Stfuctures e e e e Cee e . ;‘.—. . i _2‘

[1I. Available System FUnctions . . « « + + « « S e - »v" 5
iV. LISP Input and Output . . .'. I S 7
V. Runhing the LISP System .‘;'; . . .‘. I A

4I. The LISP Library ¢ ¢ . . 04 04 R P ¢
References . o« s s o o o s o- o o s e e e e e e ;,;-. e e e e 141

} <:) Appéndix - General Peculiarities of the Systemr{x, - .‘;b. . ,15‘

THE UNIVERSITY¥ OF TEXAS

640076600 LISP 1.5

An Adaptatiecn cf MIT LISP 1 5

1 Introduction

In approximately 1961, a grcoup cof computer scientists under the direction
cf Professor John McCarthy at MIT develcped a LISt Processing language called LISP.
The concept cf LISP was intrcduced in a paper by McCarthy entitled '"Recursive

Functions of Symboiic Expressions and Their Computation by Machine,'" which was pub-
lished in Communications of the ACM April 1960; this language was to be the fore-

runner of the present LISP 1 5 programming system. Its use in methods of analysis

of symbolic expressiong rather than numerical expressions has grown rapidly since

1961. Perhaps the moét'striking example of manipulation of symbolic expressions - ..
ccmes from a report by Hesrn (1) at Stanford which describes the use of LISP for
symbolic calculaticn of particle scattering properties in high energy physics. Heérn
teports that '"Six man-months of effort was reduced to fifteen minutes of 7094 com-
puter time through the use of LISP." Slagle (6), at MIT, reported on a LISP pro-
gram which does heuristic symboli: integration of complex calculus integrals. Otﬁer
uses of LISP include symbolic differentiation programs (2,3), simplification of
symbolic arithmetic expressions (4.5}, and many other uses in electrical circuit
thecry (4,5), mathematical logic, game piaying, and other fields of artificial in;
cxficialviﬁCelligenne l

In Sepremrber of 196€, a project sponsored by Profésaotﬂwe H. Bledsoe was
begun to develop a LISP 1 5 interpreter system for the Control Data 6000 computer
servies The zompietion of the systemr is anncunced with the publishing of this

decument .

The standard user’s manual for acquiring a knowledge of the use of the LISP

1.5 language is the L1SP 1.5 Programmer's Manual available for reference in The
University of Texas Computation Center 1ibrary, or from the MIT Press, Cambridge,
Massachusetts,at a price of $3.00. A second publication, The Programming Language

LISP: Its Operaticn and Applicaticns, {s also available fram the MIT Press for

$5 00 and is suggested as interesting reading for those already familiar with the
LiISP language. The METEOR interpreter, also available at The University of Texas

and(running under the LISP intefpretezg is explained ifn the above publication.

~ The purpose of this document’is to poinr out the differences oetween .
6400/6600 LISP and MIT LISP. 1t is assumed that the reader has a knowledge of LISP

or has the LISP 1.5 Programmer s Manual available for reference.

1l - List Structures

v ‘With the exception of the property list, the representation of list structures
given on page 36 of the LISP 1.5 Programmer’'s Manual applies tov6400/6600'LISP.5 In *

this system, the addresses (CAR and CDR) are each 18 bits in length. A 6-bit identi-
fication field (used by the interpreter, but not available to the programmer) has
been set up to identify the use of any particular 6400/6600 word, i.e., whether it

.is an atom, an element 1n the property list, a list element, etc, Since a 6400/6600

word contains 60 bits, this leaves 18 bits otherwise unused (i.e., unused in the

<:>3t structure--they are used in the property list). Two functions have been'created‘;e

tc allew the LISP programmer to reference this "special address'" in each list element.

The function "CSR" has as its value the contents of the "special address" of the lietf o

clement specified by its argument. The corresponding function RPLACS will store an
address in the "special address" portion of any word in a list, just as RPLACA and
RPLACD store in the CAR and CDR portions of a word. :

The property lists in 6400/6600 LI1SP ereletructured'somewhat differently from

MIT LLSP property lists (see Figures 1 and 2),* Because of the availability of"a_y’
rhird address, the 6400/6600 system is able to use one word where the MIT system".
needs two words This results in a considerable gain in property list search time,

which 1s a critical factor in the executicn time required by the interpreter: In

additien, a 2-ro-1 savings in memory space is gained for property list storage 2 Thus,

(Z)r large LISP programs such as METECR, this is a distinct advantage..

One 6400/6600 computer word contains a complete unit of information about an
’atom; " The property iist is made up of many of,these units of information. Each of
the three address porticns in the computer word (or list cell) plays a different "
role. The CSR portion of the list cell identifies the property type (denoted as .
PCODE in Figure 2) which this cell specifies. This property type will be an atoo ’

‘*In these figures, a "*" & the CAR portion of the first list cell of an atomic
symbol property list denotes ”address of the cell in which the °‘*’ appears

FIGURE 1

//
%

) A g
/%A ;;o%// O%VD

V) ©

I
=

N

O \74

omic | " DEFINE (A (LAMBDA (X) (COND((+- - -+ "))
Symbol A l
&
2 |EXPR — 2| &
P, List R

T
K4

o T 1
g .

;———J | v
| N

7, |
Y, | ‘ ,
| £ | 2
! A DPC CODES | | DPC CODES| | DPC CODES
f o |
//% /1 %] prOP | prOP V| PrOP
........ N fusT| T 1o & dust| T P10 & | LsT

7, .
% /-\ NIL indicates that nothing falls in this bucket

OBLIST

" FIGURE 2

© LIST ELEMENT
~ ATOMIC SYMBOL
O -
* PROP LIST
PNAME

" FLOATING POINT
o
 INTEGER

~ OCTAL

- this cell

Prop. List
1 - {Linkage for| *
this Atom
: ' Linkage to ’
2 | rcope PROP Inext cell on|
DEF. Prop list |
4 |3rd 10 char|2nd 10 char
TV Y Y e
DPC codes DPC codes DPC codes .
Pointer to ;
"1 Floating * .
8 Point :
- Number »
Pointer to : 7
21| 6o bit * | |
integer o |
| Pointer to o
1 31gl60 vit Octal * -
. Number ‘
Points to

COR|

1st 10 char|.

such as PNAME, EXPR, FEXPR, SUBR, FSUBR, APVAL, etc. The CAR portion of the list
cell contains a pointer to the property definition for the specified property.

For EXPR's and FEXPR's this is a pointer to the list structure for-a LISP function;
for SUBR's and FSUBR's this is a pointer to a machine language routine; fbr PNAME

it 'is a pointer to a cell which points to a print name. The CDR portion of the list
cell will contain a link to the next cell on the property list, or NIL in the case
of the las% cell.

The implementation of the garbage collector in 6400/6600 LISP is essentially
the same as that in MIT LISP. The A0 register of the computer always contains a
pointer to the top cf the free-storage list. 1In the garbage collector, active list

structures are marked by linking to all cells which can be reached from car-cdr-csr
chains beginning in special header cells. These special header cells are: the OBLIST,
thaz pushdown stack, the a-list; ail A, B, and X registers, the TEMLIS (temporary lists)g

and dcublets which remain tc be executed. Marking in full word space is accomplished

by a bit table.

When garbage collection occurs; the following message will be prihted in the
event that the programmer has included a "G" in the list of parameters on the LISP

control card:

FULL FREE = WORDS COLLECTED BY GARBAGE COLLECTOR '
nnnn onmn

where
nann 1is the number of words collected in full word space,

mrmm 18 the number of words collected in free-sgtorage space.

171. Avaiiable System Functions

The fcllcwing functicns {not including the I/0 functions listed in Section ..

are available to the LISP programmer and operate exactly as explained in the

LISP i.5 Programmer’s Manual ¢

~ RPLACA

ADD1 DIGIT GREATERP NULL
AND _ DIVIDE LABEL -~ = . NUMBERP RPLACD
APPEND EFFACE LEFTSHIFT ONEP - RPLACS
APPLY EQ LENGTH : OR - - SASSOC
ATOM EQUAL LESSP PAIR . SEARCH
. ATTRIB ERROR LIST PLUS SELECT
- CAR ERRORSET. LOGAND PROG SET
CBR EVAL LOGOR PROG2 .- SETQ
. CSR EVALQUCTE LOGXOR PROP . SPEAK
- CONC EVLIS MAP QUOTE - SUB1
COND FIX MAPCON QUOTIENT ~ SUBLIS t
aras FIXP MAPLIST RECIP SUBST = S
CORY FLAG MAX RECLAIM TEMPUS , -
COUNT ~ FLCATP - MEMBER REMAINDER TIMES
. CSET FUNCTION = MIN REMFLAG TRACE
CEETQ ' GENSTM ' MINUS REMOB " TRACESET ’
DEFINE ~ET MINUSP REMPROP UNCOUNT
QEYTH NCONC . RETURN UNTRACE
e8] ' 1ot REVERSE UNTRACESET
: ZEROP

: o Tho following function names are unique to this LISP system and are explained
in details o '

~tempus[] - A function of no arguments which returns as value the elapsed program
time in seconds as a floating-point number. (Caution: Calling this
function a large number of times will result in large amounts of pp
usage time since a pp routine is involved in the implementation of
this function.) :

A+ fuaction of no argunents which returns as value the current associa-
tion list. (See page 17 in [3].)

'éiist[1 -

This function has two arguments, a and b, both of which must be atomic
symbols, GRAUP reruvrns *T¥* if the core memory address at which a is
stored is greater thaa the core memory address at which b is stored,
N{L otherwise. This function may be used as a fast, arbitrary order-
: ing function. It may be assumed that the core memory locations of -
<:) B atomic symbols do not change during the entire run.

“gradpla;b]

~atphapla;b] This function has twe arguments, a and b, both of which must~be_atomic‘
symbols. alphap returns *T% if a precedes b in alphabetical order,
HIL otherwise {using display code sequence as collating sequence)

random[n] - Thic function is concerned with (pseudo)} random number gnneraelop and '
' oparates in the focllocwing manner: ’

<) returns the last random number which was genefated,'and does not
generace a new random number. Thus random may be callied w1th
ﬂ<0 and not change the state of the generator.

n= causes generation of a new random number X, 0.0 < X < 1. 0 'The
value X is returned.

o<l & is the new seed from which subsequent random sequences will be 'i“\ﬁ
D tormed. This option allows the user to start a new random sequence :
: bnglnniqn with n. The value returned is n. ' :

ba

In addition, it should be mentioned‘at this time that the operation of'severalv
of the functions which manipulate property lists is peculiar to 6400/6600 LISP due
to the methods of packing atomic property list structures (see Section II). These-~

peculiarities are explained below.

CSR and RPLACS functions are available (see Section II) for manipulation of
the packed list structures.

ATRRIB expects its. second argument to be a packed property list structure.
This is added on to the end of the packed property list structure given as
the first argument.

GET expects its first argument to be a packed property list structure. Oné
difference, however, is that GET should not be used to '"get'" a print name of
an atom. Instead, the programmer should use

{GETEN X)
which, under the MIT LISP system would be called by

(GET (QUOTE PNAME) X)

GETPN will return a full word list of the print name.

PROP must be given a packed property list structure as its first argument.
It returns a packed property list structure as value.

REMPROP, FLAG, REMFLAG, CSET, CSETQ, DEFINE, and DEFLIST all search a packed
property list structure and must be given a structure of this type as their
first argument.

The user must supply his own routines to manipulate the normal list structures if he
intends to utilize an equivalent operation as normally performed in the MIT LISP

system by one of these functions with the above-mentioned peculiarity.

IV. LISP Input and Qutput

The LISP input/output routines allow the user running under the SCOPE -
operating system to read from files named INPUT (the standard input file) and up to |
two arbitrary files. It also allows writing to filen named OUTPUT (the standard
cutput file) and up to two arbitrary files which need not necessarily be the same .

- arbitrary files as used with read operations.

(:>,‘ The following MIT LISP input/output routihes are available in 6400/6600 LISP

and are explained in the LISP 1.5 Programmer's Manual :

PRINT PACK
PRIN{ UNPACK
TERPRI OPCHAR
READ DIGIT
CLEARBUFF LITER
ENDREAD NUMOB
ADVANCE MKNAM
STARTREAD INTERN

‘The "Class A" as mentioned on page 83 has been expanded to include the following

characters due to the SCOPE 2.0 63=character set:

Class A ABCDEFGHIJKIMNOPQRSTUVHXYZ=*/8[]eVAtA< >;:520

Thé:gection "Characters and Character Objects' has been changed in the foilbwing ways:

(1) A 63-character set and the character "$EORS$" are the 64-characters
available in 6400/6600 LISP. The extra 16 characters not mentioned
in the LISP 1.5 Manual, except for the "¢", may be used anywhere that
an alphabetic character may be used. The ”{" character is discussed
cn vage)7 of this dcoument.

(2) Numeric character objects may not be used in arithmetic. Sending“the~
character object through NUMOB will solve this problem, since NUMOB
always returns a number, even for the digits O- 9

(3) The new special character objects are as follows:

, Character
Name Representation

EQUIV
LBRACK
RBRACK
COLON
NEQUAL
RARROW
ORSIGN
ANDSIGN
UPARROW
DARROW
LESS
GREATER
LESSEQ
GREATEREQ
NOTSIGN
SEMICOLON’

J VIV Ae-+=>y e urm it

wo

The atomic symbols CURCHAR, CHARCOUNT, and CPPI are not available.

The following functions have been added to the alreédy existent standard
1/0 funcrions in the 6400/6600 LISP system. 1In each case, the right#hand column
specifies an MIT LISP functton. In the correspoﬁding left column is the name of
a 6400/6600 LISP function which will produce the same results except input/output
is to some arbitrary programmer-defined file given as argument to the function.

The normal input/output routines as described in the LISP 1.5 Programmer's Manual

send information tc system files named INPUT or OUTPUT, whichever the case may be.

| 6400/6600 LISP MIT LISP
O (OUTPUT (QUOTE ARB) X) (PRINT X)

(OUTPUT1 (QUOTE ARB) X) (PRINT1 X)
(ARBTERPRI (QUOTE ARB)) (TERPRI)
{ARBENDREAD (QUOTE ARB)) (ENDREAD)
(INPUT (QUOTE ARB)) (READ)
{ARBADVANCE (QUOTE ARB)) (ADVANCE)
(ARBSTART (QUOTE ARB)) (STARTREAD)

where ARB is some user defined file (limit of two). Also, the function call

{OUTPUT (QUOTE OUTPUT) X)

is equivalent to
- {FRINT X)

9
The same is true for all of the "arbitrary file'" functions. 1In addition, the func-
tions '
(REWIND (QUOTE ARB)) and (ENDFILE (QUOTE ARB))

will rewind and write an end-of-file, respectively, on file ARB.

The format of all input/output files is 512-word odd-parity recorda (binary) bf,‘ ,wk;k
‘records) . e

"V, Running the LISP System

The 6400/6600 LISP system cperates under the standard SCOPE operating -
system in a batch mode of operation. This section describes the deck and control .

card setup necessary for running a LISP program.

beck sccup

<:>A » (1) The first card in the deck is @ comment card and 1s not processed by
' the interpreter. ' :

(2) The next series of cards is a sequence of doublets for EVALQUOIE.
. Card format is free field and only the first 72 columns of the card
are processed. Atomic symbols do not continue over to the next card,
even if the atomic symbol ends in column 72.

(3) STOP))))) card. The number of right pérentheses is optiodal,'but at
least one must be present.

(4) Repeat {2) and (3) as many. times as desired. Each series of statements
between STOP cardsis <called a ''packet'" and the first packet is executed oo
by the iaterpreter before discovering that the second packet (and suc- ‘
ceeding packets) exists. Function and other definitions carry over to

each new packet.

SR (5) The last card {n the deck must be a card with FIN punched on it in any
<:> ~ cclumn S _ _

Qontrol card setup

The interpreter automatically assigns the available memory in the user's

field length, after loading of the interpreter, to available space lists.
Approximately 80% is used for the free storage list and the remaining

for the full word iist. Thus a user need only specify the field length

on his JOB card and the interpreter will see that the entire amount of

memory is utilized. ' The field length must contain room for the interpreter
over and above the amount of available free storage space required by the
program. The current size of the interpreter is 2970010 words‘(z227308 words) .

{a) The first control card is the JOB card and is explained in the SCOPE
Reference Manual. ,

O

(b)

(c)

10

The second control card calls the LISP iﬁterprete: and appears -as
LISP(L,G)

beginning in column one. If the 'L is omitted as in

LISP(G)
a source deck listing of the LISP program is suppressed. Similariy,
if the G 1is omitted, garbage collector messages are suppressed.

Both parameters may be omitted by a card which contains only

LISP.

It is also possible to obtain a listing in which a parenthesis count
is inserted under left and right parentheses in the listing (except
within comments) . This parenthesis-count option-is an invaluable fea-
ture for preliminary LISP debug runs since mismatched parentheses may
be detected very easily from the source deck listing.

This option is obtained through the use of a P parameter in the LISP
control card. Thus,

LISP(P,G) is the same as LISP(L,G)
or

LISP(P) - is the same as LISP(L)
except that the parenthesis count is added to the source deck listing.

The third card is an end-of-record card.

Following the above is the LISP deck. Of course the control card setup

shown is for a normal run only, and other SCOPE control cards, such as for core

dumps, etc., may be added.

VI. The LISP Library

_ A feature which has recently been addéd‘to the LISP system is the LISP _
library. By means of this feature, symbolic LISP functions may be stored on a per-
nanent file and directly loaded into the system for subsequent use within the inter-

‘preter. The library file may be maintained through the use of special LISP functions

as cxplained below.

Ofganization. The LISP library itself is a file named LISPLIB. The LISPLIB

- file is a series of logical records (each of which is a LISP list structufe) in the

following format:

(record-name = logical-record-information)

'(:>he record-name specifies the name of the logical record, and the 10giéa1¥reéord—

information contains the record information.

The format of the LISPLIB file is as foilows:

10gica1 record 1: (LISPLIB:LOADER :PROGRAM loader function) ‘
logical record 2: (LISPLIB:CATALOG:PROGRAM 'catalog fuﬁction)
logical record 3: (LISPLIB:LIBLIST:PROGRAM liblist function)
" "o Af (LISPLIB:UPDATE :PROGRAM update function)
" " 5: (LISPLIB:DELETE:PROGRAM delete function)
- " - 6: (LISPLIB:LIBCOPY:PROGRAM libcopy function)

" " 73 (LISPLIB:DIRECTORY((rnk.k)..;(rn2.2)(rn1.l)))

where rn, is the name of the jtP logical record‘followiﬁg
the LISPLIB directory '

E (:> g logical record 6+j [j goes from 1 to k]: (name of the jth

record (one or more
named LISP function s-expression(s)))

For example,

(EXAMPLE*FUNCTIONS { (EJECT (LAMBDA () (PROG2 (PRINI 1)(TERPRI))))
(FF (LAMBDA (L) (COND ((ATOM L) L) (T (FF (CAR 1))))))))

Use and maintenance. The LISPLIB library tape is filed in The University of
Texas Computation Center tape vault under tape no. 510/0473. The following LISP

functions are available to enable the user to maintain and use the LISP library:

e T S R S T T P S

LOAD(L)

12

L is a list of record names. All the named S-expression functions in each
record given in the list L are DEFINEd for the current LISP run. The value

returned is a list of all function names which were defined.

Exaﬁgle:
LOAD((EXAMPLE*FUNCTIONS))
will DEFINE the functions EJECT and FF
value is: (EJECT FF)

CATALOG(LIB)

O

LIB is the name of a library file. This program lists the name of all
records in the file. The value returned is a list of all record names in

the file.

Example:
CATALOG(LISPLIB)
value: (list of all record names, e.g., EXAMPLE*FUNCTIONS)
LIBLIST (L)

L is a list of record names. This program lists all function S-expressions

in each record given in the list L. Value returned is NIL.

Exémgle:

LIBLIST ((EXAMPLE*FUNCTIONS))
will list the functions EJECT and FF

UPDATE (L)

L is a list of logical records to be added to the end of the éurrent LISP
library. If any duplicate record names are encountered, an error message
occurs and the new duplicated record is not added to the library. The new
LISP library is produced on a file called NEWLIB. Value returned is #*T%
if no duplicate record names were found on the library, otherwise NIL.
Lxample:
UPDATE ((

(EXAMPLE*FUNCTIONS ((EJECT (LAMBDA()

(PROG2(PRIN1 1) (TERPRI))))

(FF (LAMBDA (L) (COND (ATOM L)L)

(T(FF(CAR 1))))))))))

13
DELETE (L)

L is a list of logical records to be deleted from the current LISP’libréry;
The new LISP library is produced on a file called NEWLIB. Value returned is L.

Example:

DELETE((EXAMPLE*FUNCTIONS))
value: (EXAMPLE*FUNCTIONS)

LIBCOPY((Fl F2))
Copies the file named F1 to the file named F2. Value returned is NIL.'

Examgle:

O LIBCOPY((NEWLIB LISPLIB))

" Note: A minimal LISPLIB library file configuration is the 6 LISP functions denoted€

~in the first 6 logical records,'a directory which appears as
(LISPLIB:DIRECTORY ((PRETTYPRINT 1)))

and a logical record named PRETTYPRINT which contains the 7 functlons
included in the PREITYPRINT system. ' ‘

14

REFERENCES

llearn, A. C. '"Computation of Algebraic Properties of Elementary Particle
Reactions Using a Digital Computer,'" Communications of the ACM, Vol. 9 (August,
1966), n»p. 573-577. '

Maling, K. '"The LISP Differentiation Demonstration Program,' Memo 10, Artifi-
cial Intelligence Project, MIT, Cambridge, Massachusetts, 1959, 6 pp.

McCarthy, et al. - "LISP I Programmer's Manual,'" Computation Center and Research
Laboratory of Elec., MIT, Cambridge, Mass., March 1960, p. 22.

Goldberg, S. H. "Solution of an Electrical Network Using a Digital Computer,“
M. S. thesis, Elec. Engr. Dept., MIT, Cambridge, Mass., 1959, 203 pp.

Edvards, D. "Symbolic Circuit Analysis with ‘the 704 Electronic Computer,"
M. S. thesis, Elec. Engr. Dept., MIT, Cambridge, Mass., 1959, 48 pp.

Slagle, J. R. "A Heuristic Program That Solves Symbolic Integration Problems
in Freshman Calculus,'" Journal of the ACM, Vol. 10 (October, 1963), pp. 507-520.

APPENDIX
GENERAL PECULIARITIES OF THE SYSTEM

. There are several minor differences between 6400/6600 LISP 1.5 and MIT LISP
1.5, and this appendix will attempt to list these differences. References will be

made to pages in the LISP 1.5 Programmer'’'s Manual, so that the user can update

his manual to conform with 6400/6600 LISP.

1. Page 2, last line should read:

O

In 6400/6600 LISP the CAR and CDR of atomic symbols are given particulaf values

instead of leaving them undefined, to prevent accidental reference to addresses

‘car [A] = A

outside a job's field length.

2. Page 3, 7th line should read

cdr [A] = NIL

3. Page.4, 5th line from bottom should have inserted:

"The 6400/6600 LISP system automatically recognizes multiple CAR[s,‘CDR?s,
and CSR's having up to eight lztters (A, D, or S) between the C and the R."

4, Page 16, Sth 1ine should read:
<:> "A comma is equivalent to a string of one or more blanks, thus only one

comma may be used.to separate atoms in list notation.'

5. Page 20, line 15 should read:

" .. the second 1s peculiar to the LISP Programming Systems on the IBM 7090
and the CDC 6400/6600 computer series."

6. Page 24, lines 19 and 20 should read:

4., Absolute values must lie Between 1030§ and 10~308

5. Significance is limited to 10 decimal digits

~

oo}

.~11 °

12.

16

Page 24, line 31 should have added:

"In 6400/6600 LISP the number 6002-1 is an acceptable floating-poiht

number, even though it does not contain a dot."

Page 25, line 4 should read:

"2, Up to 20 digits (0 through 7)"

. Page 25, lines 13 through 28 should read:

"The effect of the read program on octal numbers is as follows:

} 1. The number is placed in the accumulator three bits per octal digit
with zeros added to the left~hand side to make twenty digits. The
rightmost digit is placed in bits 2-0; the leftmost digit is placed‘
in bita 59-57.

2. The accumulator is shifted one bit (one binary digit) times the scale

factor. Thus the scale factor is an exponent to the base 2.

3. If there is a negative sign, the number is complemented after it
is shifted by the Q scaling factor. The examples in a through e‘
above will be converted to the following octal words:

a. 00000000000000000777 |
b. 00000000000000017760

77777777777777763777

d. 77777777777777743777

e. 00000000000000034000 "

0

Page 26, lines 19 thrcugh 21 should be deleted. EXPT is not implemented in
6400/6600 LISP.

Page 26, 4th line from bottom should read:

"The logical functions operate on 60-bit words."

Pages 27 and 28: Delete section on the Array Featuré; it is not 1mp1eménted
in 6400/6600 LISP.

13.

14,

- 15,

16.

Y

Page 30, line 20 should read:

""The form GO can occur at any level of a PROG (and must_réturn to the
top level of the PROG)."

There 1s no assembler or compiler, hence all references to these routines
should be deleted.

Disregard Appendices C, D, E, G, H, and I.

Comments may be inserted in LISP expressions in 6400/6600 LISP. These comments

must be separated from the LISP expression by punching a '"{" on each side of
the comment., The "}" 1is a character found on keypunches with the 64-character
set; it is formed by an 11, 6, 8 punch. The effect of the "4'" is to cause

the 1ntérpreter to scan looking for another "!{" and disregard anything in be-

tween. For example,

(CAITHIS IS A COMMENTIR A)

"1s the same as

(CAR A).

Any atomic symbol beginning with a plus or minus sign and followed immediately
by a non-numeric character will not be converted intc a numeric atom but
rather will function as a non-numeric atom. "+" and "-" by themselves are

included in this group.

Notes on the Use of LISP Version 1.5.6

6/24/68

LISP Version 1.5.6 makes the following corrections to LISP
Version 1.5.5: ;

1. CONC was entirely rewritten. The old version stopped
concatenating when it encountered a null list.

For example,
in the old version:
conc E} B);‘NIL; (éﬂ
returned (A B) |
In the new version it returns (A B C).

2. MAPCON produced an. effect very similar to that explalned
in (1) and was also flxed

1)
3. Information appearing in column 73-80 would cause the
interpreter to lose 1nformat10n in a user's program.
This has been corrected

4. The number of garbage collections which occurred in a
run is now prlnted at the end of the run (regardless of
G parameter settlng) y

5. 1In rare cases, our failure to normalize after additions
and subtractions caused incorrect arithmetic results. This

has been corrected

6. The READ function has been extended to read not only 1IStS,
but also atoms (as it should have orlglnally been 1mp1emented)

7. The RANDOM functicdn has been added See.page 6 of the
enclosed supplement manual

8. MKNAM spelling has been corrected from MKANM.

9. More than one douoletvfor evalquote may appear on a card.

Installing the LISP 1.5.6 System

The tape which is enc osed is 556 BPT density and is in
UPDATE format. The tape is unlabelled ‘and should be declared external
on SCOPE 3.X systems. ~

0

o

)
O

R
=
-

et

ocatabl

‘a rel

ce
ion

»

11lpfodu

for execut

'1=0,B=PUNCHB)

ble
X.

‘program w

@ . e L R : B

s Tl A O A
T - K2 St = L -
. N - T e - e L~ : L

1
JOB cafd
REQUEST
UPDATE (Q)
COMPASS
<coﬁPILE

<

The foll

of.
i

on of LISP

versi

	Morris_Singleton-UTLisp-1968_04-COPY_20001_a
	Morris_Singleton-UTLisp-1968_04-COPY_20002_a
	Morris_Singleton-UTLisp-1968_04-COPY_20003_a
	Morris_Singleton-UTLisp-1968_04-COPY_20004_a
	Morris_Singleton-UTLisp-1968_04-COPY_20005_a
	Morris_Singleton-UTLisp-1968_04-COPY_20006_a
	Morris_Singleton-UTLisp-1968_04-COPY_20007_a
	Morris_Singleton-UTLisp-1968_04-COPY_20008_a
	Morris_Singleton-UTLisp-1968_04-COPY_20009_a
	Morris_Singleton-UTLisp-1968_04-COPY_20010_a
	Morris_Singleton-UTLisp-1968_04-COPY_20011_a
	Morris_Singleton-UTLisp-1968_04-COPY_20012_a
	Morris_Singleton-UTLisp-1968_04-COPY_20013_a
	Morris_Singleton-UTLisp-1968_04-COPY_20014_a
	Morris_Singleton-UTLisp-1968_04-COPY_20015_a
	Morris_Singleton-UTLisp-1968_04-COPY_20016_a
	Morris_Singleton-UTLisp-1968_04-COPY_20017_a
	Morris_Singleton-UTLisp-1968_04-COPY_20018_a
	Morris_Singleton-UTLisp-1968_04-COPY_20019_a
	Morris_Singleton-UTLisp-1968_04-COPY_20020_a
	Morris_Singleton-UTLisp-1968_04-COPY_20021_a
	Morris_Singleton-UTLisp-1968_04-COPY_20022_a

