LISP 1.5 IMPLEMENTATION

on the
CD 3600
and the

IBM SYSTEM /360 SERIES

by

J. G. Kent

2.1

2.1.1
2.1.2
2,1.3
2.1.4
2.1.5
2.1.6
2.,1.7
2.1.8
2.1.9

2,1.10

3.1
3.2

3.3

4,1

L.l

4.2

INTRODUCTION

NEW FEATURES IN THE LIS?3600 SYSTEX
Organization of the system

Organization of storage on a one bank CD 3600
Organization of storage on a two bank CD 35600
Arguments and registers

Object list

*Atoms

Property lists

Binary markers

Fullwords

Printnames

Numbers

EXTENT OF IMPLEMENTATION
Extensions
Omissions

Differences

LISP3600 VERSUS OTHER LISP SYSTEMS
LISP 1.5 (IBM 7090)

Sugzested reasons Sor the increased speed of
7 JTSP3600 systen

The AN/FSQ-32/V LiSP system (LISPQ32) (2)

gl oEng

Pace

N

o

10

10

10

11

S.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10

6.1

6‘2

7.1
7.1.1
7.1.2
7.1.3

7'1'.4

(ii)

SOME USEFUL FEATURES OF THE CD 3600
The D-register

Registers R

'Addressing

Instructions for operations on bits

Instructions for operations on bytes

The return jump instructions

Discussion of the locate list element instruction
Arithmetic instxructions

The ECHO facility

SCOPE loading procedures

TWO FEATURES THAT WOULD IAVE MADE CD 3600 MORE
SUITED TO LIST PROCESSING

Addressing

Indexing with the A-register

PRELIMINARY REMARKS ABOUT LISP/360
Some conventions

LISP-cells

Register use

Storage allocation

Relocation

SOME USEFUL FEATURES OF THE IBM/360

Registers

Addressing

References

13
14
15
15

15

19
19

19

INTRODUCTION

This paper describes certain aspects of the
implementation of a LISP 1,5 intexpreter on tihe CD 3600,
The CD 3600 is a l's complement binary computer with a 48-bit
wordlength and 1 to 8 banks of 3276810 words of storage. Core
speed is 1,5 microseconds, SCOPE, the monitor for CD 3600,

occupies 6000. . words of storage.

10
The machine has an accumulator A, an accunmulator
extension Q, and a flag register D. .A, Q and D are all 48 bits
long, In addition there are six 15 bits index registers Bl-B6
and various oéher registers, '
This paper also indicates some features of the
IBM System /360 Series which will make it possible to write a
more efficient interpreter for these computers,
The implementing of LISP 1.5 on CD 3600 was performed
at the Kjeller Computer Installation, Kjeller, Norway, as the
main part of the author's thesis work for his M.A. degree. As'
several installations have asked me to make a LISP 1.5 interpreter
for the IBM System 360, I have started to do this at the
University of Waterloo, Waterloo, Ontario, Canada.
It is assumed in the following that the reader has a
good working knowledge of the LISP 1.5 Programmer's Manual, (5).
The readers who want to look more closely at the
implementation of LISP 1.5 on CD 3600 should obtain my M.A.
Thesis (1). The thesis contains among ocher things a complete

description (with some flowcharts) of my implementation of

LISP 1.5 on CD 3600 (hereafter called LISP3600).

2.1
2.1,1

-2 - C ’

NEW FEATURES IN THE LISP3600 SYSTEM

The LISP3600 system is an interpretative LISP system
modelled after the original LISP 1.5 system for the IBM 7090.
Care has been taken to ensure compatibility between these two

\
versions,

The actual implementation of this interpreter differs
in some important respects from the original version to increase
the efficiency.

The most ma. xed differences are in the organization of
stgrage, where the idea of a separaté block for '"fullwordstorage"
has been abandoned, and in the organization of the internal .
representation of LISP-atoms., Several of the indicators needed
on the property lists in LISP 1.5 has been rendered unnecessary.
Note that the interpreter and the initial object list are f~
assembled relocatable, LISP3600 operates under control oflthe

standard operating system SCOPE for the CD 3600.

Organization of the system

Organization of storage on a one bank CD 3600.

Core store is distributed according to this figure.

00000

8
SCOPE
124008
Pushdownlist
222508 .
Freewordstorage
714008
77000. | LISP interpreter
777778 Various drivers

Figure 2.1 Organization of core store on a onebank CD 3600

\

N apme Wete o SOOWENYOEIYRCIIATEIIRT: o e il
T ¥ U VE T T PTIIRI=

2.1.2

-3 -

The boundary between freewordstorage and the
pushdownlist is fixed though casy to reset when reassembling
the LISP-system,

One a oncbank CD 3600 the length of the pushdownlist,

has been set to 4000lO words. The interpreter occupies about

285010 words and freewordstorage the rest of. core store, about
20000lo words, This compares favourably with LISP 1.5 which by
excising LAP and the compiler has 1630010 words of free- and
fu}lwordstorage.and 256010 words of pushdowmlist,

Organization of storage on a twobank CD 3600

Core store is distributed as follows.

Bank 0 Bank 1

000004 000005
SCOPE
124008
Pushdownlist Freewordstorage

626208 ‘ \
714008
27000 LISP interpreter

777778 ' 777778 Various drivers

- Figure 2,2 Organization of core store on a twobank CD 3600

-4 - .

On a twobank CD 3600 the pushdownlist is in another
bank than the interpreter and freewordstorage. This means that
the length of freewordstorage is increased tod2490010 words.

The length of the pushdownlist has been set to 20000 words,

10
2,1.3 Arguments and registers
Between LISP-functions arguments are transmitted
through'the A-register, Q-register and the locations ARGB,...
.The A-register is used for transm;tting information
ta and from the pushdownlist, Only the contents of one Qord
is savéd at a time,
The value of a function is always held in the
A-register when returning from the function., The D-register
‘contains several indicators (binary switches) needed in the
interpreter, Information about the status of the interpreter
can then be read out of the bit for bit displayed D-register on

-the console,

2.1.4 Object 1list
That part of the object list which contains the
standard atoms has been generated in assembly language. The
object list is sequential in LISP3600, and not bucket sorted
as in LISP 1,5, fhis means it is very easy to generate the

object 1list by using the ECHO feature of COMPASS.

2,1.5 Atoms
The atoms and their property lists have been

reorganized in LISP3600. All LISP cells having bit 47.set

are so called atomheads. An atomhead contains in its uppér

2.1.6

2.1.7

address a pointer to the atom's fullwordlist and in the lower

address a pointer to the atom's prcperty list,

The atom EXAMPLE with an empty property list:

L | ~]

[EXAE [o1] *PLE loi_—]

Figure 2,3 The atom EXAMPLE

Property lists

A typical property list might look like this:

[FF__ o1

\d

LAMBDA

Figure 2.4 Property list of the atom FF

wF

FF is as we see a function namely an EXPR which starts this

way (LAMBDA (X) ...).

Binary markers
A LISP-cell is one woxrd on the.CD 3600. Since the

word length is 48 bits, and only 15 uits are needed to express

an address, 9 bits in the upper halfword and 9 bits in the 'a
4

lower halfword are released for other uses, As mentioned aboq}i

;
v

-

2.1.8

. b) 24 bits from a 48 b

bit 47 indicates that this word is an atomhead.

44

~
I

,.
- = O O

47 45 45 44 4

o

-2

O » O O W

o ¥Val T YNED
D :“.L‘L‘th‘mR

0
0 SLAROINT
., ., i e 0 TLOLLZOINT
L
E-?‘ '_2 ::: .r-ﬁ - - el
R BT 1 1 LOGICLL
R BT
’e £ '1 ':4
o = o &
g 5 3 9
< Z o oA

Figure 2.5 Markers and their meaning in the atcmnecd

The bits 46, 45 and 44 refer to the fullwordlist

associated with the atom.

.

s to be traced has bit 39 set.

b

A function that
This means that the indicator TRACZ is unnceded.

When bit 22-is set this indicates that the woud
Bit 23 is used by the garbage

in question is a fullword.

collector to mark active words.

Fullwords
The fullwords in frecwordstorage replace the

"fullwordstorage' iIn LIS2 1.5.

L fullwoud s o word with bit 22 set and the upper

24 bits occupied by cither:

in Srom the w4l wila Llonks
LTOW TS TLZLC WLlL OLllAKkE.y

.
we maamalymea
< TLlocl.

P

-~
s

GER

c) he address of a binary LiS2-routine (SUBR or FSUZR).

~f nced te filsed

-~

2,1.9

2,1,10

. b) Fleating peint,

3.1

Printnames

All nonumeric atoms have in their upper address of
their atomhead the address of a linear list of their BCD
printnames. For instance the atom DIFFERENCE has this \

fullwordlist:

IDIFF_ 01 —J———FREN o1 —t—cE 01 7]

Figure 2.5 The fullwordlist of the atom DIFFERENCE

Numbers
There are three kinds of numbers: ;

a) Fixed point (integers),

c) Logical (octal),
All are stored as 48 bit binary numbers with the
help of two fullwords, and must be converted to BCD in input

and output, (The BCD representation of a number is not stored),

PRSI

EXTENT OF IMPLEMENTATION

Extensions

a) Alphameric atoms may in LISP3600 have up to 82 characters.

'b) Fixed point numbers may have absolute values up to 247.‘

c) Floating point significance on input is 10 digits,

d) Floating point numbers may have values between 10307
and 107397,

e) Numbers are considered equal if the absolute values of “

3.2

£)

g)

h)

D

)

their difference is less than 10~8.

A completely new function called APPEND1 is included as
a SUBR, See reference 1 for details.

CAR of an atom is not junk as in LISP 1.5 but the aaéress
of the fullwordlist of that atom.

Three peculiar new functions called SETBIT, CLEARBIT and
TESTBIT exist as SUBRs, They can be used to set, clear
and test bits in the D-register.

Tracing will only occur if SETBIT(7) has been evaluated
before tracing is to start, This means that evaluation
of functions are faster when SETBIT(7) have not been
executed because all the tests for tracing in EVAL are
skipped.

Whenever an error occurs in LISP3600 the lists bound on

the pushdownlist is printed out. This holds true for all

runtime errors except the STACK EXCEEDED error. The most

recently used list in the stack (the list on top) is
printed last., The last printed lists will therefore give

a good indication of what caused the error.

Omissions

&)

b)

The following functions are not implemented: LAP, COMPILE,

EXCISE, ARRAY, ERRORSET, RECLAIM, COUNT, UNCOUNT, TRACECOUNT

and SPEAK, \

No control cards of any type exists in LISP3600. A LISP3600

run consists of a single packet ending with a card containing

R

a 4-8 punch in column 1. This last card acts as an ehd-of-file

to LISP and prevents LISP from reading into the next job.

3.3

Differences

a) The scale factor in a logical number is an exponent to

the base 2.
b) A minus siga preceding a logical aumber will cause the
logical number to be complemenced aiter an eveatual

shifting.

. ~

¢) Blanks are used as f£ill-in in the fullwords. Tais makes

. - 3 %" nd e - ZR N - Y 1. ‘- o,
it -impossible to prial more than one blank at a time.
-

Tut this means that the conscant $8% 3% will print as a
single space,

teen imnlemented because

&

d) The function CLIARBUST has not
it is never necded,
e) The functions INTERN and MY have been combined into

2 single function namaly MKATCNM,

MKATOM = INTERN (MXNAM)

[41

£) Because of the reorgeaization ol all property lists, the
printname is CAR of the atom.
g) UNPACK takes an atom os its arguuent.

h) PRINT should not be used direccly aifter 2RINL without

exceutive TERPRI in oetween, becouse 2XINT sats the

output buffer to blanks before printing thareby descroying

what was put in by PXINI.
i) CO must oaly be given atomic labels.

~ 2

j) + and - should never be uséd as chawasters

| o
13}
[}
)
M
(44
(o4
d

J——

—

SR IR RS TR e A,

4,1

4’.1'1

- 10 -

LISP3600 VERSUS OTHER LISP SYSTEMS

LISP 1.5 (IBM 7090)

Identical LISP programs have been run on the
IBM 7090 using the LISP 1.5 system, and on the CD 3600
using the LISP3600 system, The execution times thereby
obtained showed that programs are executed from 15 to 20
times faster under the LISP3600 system. Even if we allow
for the difference in speed between IBM 7090 and CD 3600
;he LISP3600 system should be about three times as fast as
tﬂe'LISP 1.5 system,

A few runs that could not be run under LISP 1,5
were run successfully under LISP3600 on a onebank CD 3600,
because of the slight increase in the length of freeword-
storage and the pushdownlist in the LISP3600 system, Several
runs with extremely heavy recursion that could not be run under

the LISP 1,5 system were run successfully under LISP3600 on a

twobank CD 3600, the reason being the very long pushdownlist

‘available on a twobank CD 3600.

Suggested reasons for the increased speed of the LISP3600 system
a) Better instruction repertoire on the CD 3600. This is
discussed in the next section.

b) CD 3600 has six index registers as opposed to IBM 7090's
three,

c¢) The reorganization of property lists that eliminates the"
search for an atom's printname. This is especially important

in the handling of numbers. - The address of the fullwordlist

‘containing the number is alwayleAR of its atom, The typé of

4.2

- 11 -

the number in question is indicated by binary markers in
that number's atomhead.

d) The slightly larger freewordstorage in the LISP3600 system,
which means that garbage collections do not occur as often
as in the LISP 1.5 system,

It must however be remembered that in the LISP 1.5
system there exists a compiler, By having the most important
functions compiled, the execution time of big programs can be
significantly reduced, The LISP3600 system does not have a
compiler.

One of the reasons why the interpreter in the LISPBﬁOd
system could be made shorter than its LISP 1.5 counterpart, is
the introduction of so-called 'combined arithmetic routines",

All functions which are equal in all respects save the actual
operation involved are combined into single routines with different
entry points, For instance the functions PLUS and TIMES both use
the same routine PLUSTIME, with the two entry points PLUS and

TIMES, PLUSTIME (as the other combined routines) performs the
correct operation by executing it indirectly through the location
ADR., which is loaded with the address of the correct instructién

at the entry point., In other words the address of an addinstruction
1s placed in ADR. at the entry point PLUS prior to transferring

to PLUSTIME, A

.The AN/FSQ-32/V LISP system (LISPQ32) (2)

An algebraic simplification program (3) written in
LISPQ32, has been-modified (4) so that it may be run on the :

LISP3600 system. Comparing almost identical examples run on

P

' 5.1

5.2

- 12 -

both systems has shown that the program is between ten and
thirty times slower when run on the LISP3600 system. Even
though the computexs are of approximately the same speed the
result is very favourable for the LISP3600 system. Thié\may
seem a strange conclusion until one considers the fact that
the LISPQ32 system is a compiler oriented system while the

LISP3600 system is completely interpretative.

SOME USEFUL FEATURES OF THE CD 3500

The' D-register

The D-register cannot load words from or store
words in memory directly., It was however very useful as a
flag register., The D-register keeps track of the status of
the interpreter by various bit combinations, which are setj
cleared or tested by the interpreter. An added advantage of
the D-register is the fact that it is displayed bit for bit
on the console of the CD 3600. Information about the status
of the LISP3600 system is therefore readily available,

This made debugging easier and was also used to
time certain routines in the interpreter such as the garbage
collector,

Registers
The increased number of index registers (6) and the

very good inter-register instructions in many cases made the

storing and restoring of registers unnccessary,

N

s oot

5.3

504

3.5

5.6

- 13 - ’

Addressing

Double indexing and indirect addressing is always

useful when one is doing list processing. -

Instructions for operations on bits \

Instructions for setting, clearing and testing
(ZBJP and NBJP) any bit in any register made it easy to test

for the various markers used in some.LISP-cells.

Instructions for operations on bytes

The instructions SBYT and LBYT, which can store and

load a byte from the A-register or the Q-register, and the

‘Instruction SCAN which can compare any byte in storage with a

byte in the A-register or in the Q-register, were used
frequently throughout the interpreter. A byte may be specified

to be of any length between 1 bit and 48 bits in these

instructions.

The return jump instructions

Almost all linkages in the interpreter utilize the
return jump instructions, These inggructions store the
return address in the first instruction in the routine they
are jumping to. Control is then transferred to the second
instruction in the routine in question, By executing a Sump
back to the first instruction in the subroutine a correct -
Jump will be made from there back to the calling program with

the aid of the address stored there by the return jump

'1nstruccion.

5.7

- 14 -

Discussion of the locate list element instruction

The locate list element instruction (LSTU/L) has
not been used in the interpreter at all. LSTU/L scans a
liststructure containing two 18 bit addresses in each wb$d
in the same way as the two 15 bit addresses carried in all
LISP-cells., LSTU/L scans down a liststructure for the n'th
element, This is done by either using all upper addresses (LSTU)
or all lower addresses (LSTL) in the n-l preceding elements in
the liststructure, It will in other words simulate a CAR chain
or a CDR chain, The instruction requires however the setting
up of two Iindex registers and is fairly slow., If going down
only one or two elements in a liststructure it is much faster
to use the index register load instructions with indexing.
Another disadvantage of LSTU/L is the fact that it considers
a word containing an address of zero to be *he last word in a
list, This would have been very well indeed if the atom NIL
could have its atomhead in address zero. This 1is however
impossible since the word with address zero in storage is used
by the interrupt system on the CD 3600. IE'LSTU/L reaches a
word containing an address of zero before the n'th element has:
been found it will terminate scanning and give as a result
address zero instead of the address of the word which contained
the address zero, which would have been more useful, N
LSTU/L would however have been very useful if the
LISP3600 system had been designed for a multibank CD 3600. As

the system is now, freewordstorage must be wholly contained in

]/’

5.8

5.9

5.10

- 15 -

a single bank, because the LISP-cells only contain 15 bit
.addresses. A 15 bit address can only address 3276810 words

of storage which is one memory bank on the CD»3600. To address
any word in any of the eight possible memory banks an a&éress of
18 bits is required, LSTU/L would come in very handy in this
case bec;use this instruction scans liststructures containing

18 bit addresses. A liststructure containing 18 bit pointers

could weave in and out of banks with no difficulty,

Arithmetic instructions

The arithmetic instruction set is very good. It is
for example possible to convert a number from integer to

floating point or vice versa using only three instructions.

f
The ECHO facility

i

As already mentioned above, the ECHO facility in
CD 3600's assembly language made the generation of the initial
object list easy., The ECHO feature is a macro-like feature
vhereby a specified number of instructions can be repeated a

specified number of times with parameter substitution.

SCOPE loading procedures

Because of the loading procedures in SCOPE, the
monitor for CD 3600; it is very easy to find out at run time
how much storage is left over. The interpreter will therefore
always utilize all available space for freewordstorage. This
is only partly true on a multibank CD 3600, where only the

highest numbered bank will be fully utilized,

6.1

6.2

- 16 -

TW0 FEATURES THAT WOULD HAVE MADE CD 3600 MORE SUITED TO
LIST PROCESSING

Addressing

It would have been easier to make a ﬁISf system
utilizing all available banks if the index registers had\
been 18 bits long, and addressing had been performed via
an indexregister to get the required 18 bit address, The
bankswitching that has to be performed now with the aid of

special 3 bit bank registers is cumbersome.

Indexing with the A-register

Some of the functions in LISP such as CAR and CDR
could have been made shorter and faster if it had been possible
to use the lower 15 bits of the A-register as an index reg;ster.
As it 1s nowv the transmission of the lower address of the !

A-register to and from index registers is very frequent.

PRELIMINARY REMARKS ABOUT LISP/360

The implementation of LISP 1.5 on IBM System /360
(LISP/360) has already started. The system will be modelled
after the LISP3600 system. It is howeQe; our hope that the
system will eventually contain all the unimplemented functions
of LISP3600 including LAP and COMPILE, We will also try to
make the garbage collector compacting and the object list
bucket gorted., The LISP/360 system will be made in such a
way that it can utilize the so-called Large Capacity Storage

that 1is available for the IBM System /360 Series computers.

oy

- 17 -

7.1 Some conventions

7;1.1 LISP-cells
' A LISP-cell will in the LISP/360 system be one
doubleword. This has several advantages: \\

a) Each LISP-cell can then contain two full 24 bit addressés,
which means that freewvordstorage may utilize all available
store on any IBM/360 computer.,

b) Single precision numbers can be stored in a single fullword. .
This will increase the speed of arithmetic in LISP/360
considerably.

c) Space is left over in the LISP-cell for binary markers as
in the LISP36OQ system, Since the space left over is one

byte in the upper word and one byte in the lower word,ythe
: t

‘test under mask instruction (TM) makes it easy to test/
these markers.
7.1.2 Register use

Some of the 16 registers available on the IBM/360

has been assigned special tasks,

Register Task
2 Internal linkage register
6 Contains the address of NIL
7 Stack pointer
8 A-register .
Used for transmitting arguments.
9 " Q-register
12 - Base register for the interpreter
13 Contains a pointer to a save area used by

systemprograms for. storing the registerblock

-

7.1.3

- 18 -

Storage allocation

A system for storage allocation for freewordstorage
and the pushdowmlist that would suit everybody's needs has not
been found., Three proposals have becen made:

a) Let the amount of space set aside for the LISP/360 system
be aﬁ assembly parameter,

b) Issue the GETMAIN macroinstruction continuously immediately
after loadiﬁg, until all available space is under control
of the LISP/360 system. Since total amount of core needed
for a job must be specified on the job card, this proposal
is just another way of doing scheme a) with the added -
advantage that the space set aside for freewordstorage and
the pushdowmlist is a job parameter. Operating System /360
will not allow a job to use more space than what is specified
on the job card.

c) Issue the GETMAIN macroinstruction only when more space is
needed., A certain amount of storage will be made available
initially as an aséembly parameter.

The GETMAIN macroinstruction codes in a call to an

Operating System /360 routine, which will try to assign the

specified amount of storage available to the program issuing the

GETMAIN,

The very first version of the LISP/360 systemvwiII use
proposal a) for its storage allocation. |
Other ways of allocating storage may Ee necessary when

one wants to utilize the Large Capacity Storage.

7.1.4 Relocation

8.1

8.2

-arithmetic and logical operations may occur. However register

. can be used for indexing has reduced the number of instructions

. Computers can get up to 8 million bytes of continuously addressable

- 19 -

Several relocation schemes have been considered, .
More information is needed about Operating System /360
Option 4 and the Roll in - Roll out feature. In the first
version of the LISP/360 system every LISP-cell will carry
full 24 bit physical addresses. This means that no relocation
of freewordstorage or the pushdownlist will be possible once it

has been loaded into storage.

SOME USEFUL FEATURES OF THE IB!/360

Registers -

The 16 general registers in which both indexing,

0 cannot be used for indexing, In the routines so far written

the inerease {n the numbe¥ of vegistérs and the fact that they

considerably,

Addressing
The addressing scheme of the IBM System /360 which

makes bytes and words just as easily addressable, have made
programming of ‘the interpreter simpler,

The 24 bit address of the IBM System /360 which means
that about 16 million bytes are immediately addressable scems to
be just what {s needed in list processing. This fact coupleé with

the availability of Large Capacity Storage whereby present IBM/360

core store, may prove to be of great importance in LISP processing.,

ol

. // &.r v

4,

Se

7.

Kent, J. G.

Saunders, S. A.

Korsvold, K,

@dmansson, E.

McCarthy, Jc et. alo

- 20 -

References

- An Interpretative System for the
Programming of Recursive Functions
on a Digital Computer, Intern rapport
E-88, Woruvegian Defence Resecarch
Establishment, Kjeller, Norway. (1966)

- The LISP System for the Q-32 Computer,
in the book, '"The Programming Language
LISP: 1Its Operation and Applications',
Information International Inc,,
Cambridge, Massachusetts, (1964)

- An On-line Algebraic Simplify Program,
Stanford Artificial Intelligence Project
Memo 37, California. (1965)

-~ Applications of the Programming Language
LISP, Intern rapport E- , Norwegian
Defence Research Establishment,

- The LISP 1,5 Programmer's Manual,
MIT Press, Cambridge, Massachusetts,
(1962)

- Control Data 3600 Computer System
Reference Manual, Pub, No, 60021300,
(July 1964)

- IBM System /360 Principles of Operation,
Form A22-6821-4, (1966)

	Contents

	1
 Introduction
	2 New features in the LISP3600 system

	3 Extent of implementation

	4 LISP3600 versus other LISP systems

	5 Some useful features of the CD 3600
	6 Two features that would have made CD 3600 more suited to list processing
	7 Preliminary remarks about LISP/360

	References

