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ABSTRACT

A Dirac group is defined and some facts concerning the structure
of Dirac groups are dlgctssed. A method is then described for calcu-
lating products and inverses of the elements of a given Dirac group

using MBLISP.
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THE DIRAC GROUPS

I. Properties:

Consider n quantites which satisfy a general exchange rule

1) 75.73 = (‘)ijyj yi

vhere e.g. for Dirac matrices “ij = =-1. Assume that for each 73 there .
exists some integer n, (not necessarily the same for each different 71)
such that
2) 7y T &
where gi is a scalar (in the case of Dirac matrices, a multiple of the
unit matrix).

Now consider quantities of the form
3) N73
where the %i are scalars. Torming all possible products of the quan-
tities in (3) we have
4 .H 7\‘171 = 7".'1.71 T 7“mym
Note that some of the 74 may be repeated several times. By choosing

an ordering for the 74 We can write this product in a canonical form

using properties (1) and (2) and the fact that the A&y, and nyg are
scalars,
m
k. 1 s afr arT aN
i = e N L L ETET L i
5) ToAYs = MM Ay yp o R Al % SR AN C R A

i=1

where ai(rﬁhthe characteristic exponent of 73 and k is an integer equal

to the numbers of 7i

1l,.... Since the Ai, Ei, and “Ej are scalars we have the form

s originally present divided by ny, etec. for
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& a ayN

where p is a scalar coefficient and the y's form an ordered product.
Bgfore proceeding we should note some properties which follow from
egs. (1):

First, if we take the determinant of both sides of (1) we see that
wij is oge of the n roots of unity if the 7; 8re n % n matrices. Now
if we require the product of 2 of the forms (i.e. eq. (6)) to be of
the seme form (closure), then the ; and £, are also roots of unity.

Note for the Dirac group all n 2are N = L, and the number

i -
of distinct possible products (elements) is 2-21L

32. In general it
N
is 2.2, all n, = 2.

From now on we drop the Roman mumeral subscripts and use Arabic
numerals and assume the order of y's is 1, 2, ... Furthermore since
the 7 are assumed knovm and also have a particular ordering we can
write eq. (6) as an n-tuple whose 1St element is the scalar coefficient
and whose subsequent elements are the powers of the 740 i.e.,

ap an
8 =
7 T AP A (p a1a27..an)
II. Product:

Consider the product of 2 of these elements

8) (A 8 85 een an)(u b, b, ... bn)
n asbs n .
(T W TN T 6, ) (am.) . (a.+D)
3¢5 9t Tttt M1 Mod gt P Pn/Mod nn)
i,j=1

where ki is the number of times n, divides ai+b and n, is defined in

i i i
eq. (2). Note that there are n(n-1)/2 "3 each with its characteristic

exponent.
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Since all of the scalar coefficients are roots of unity, we know

that there exists a root of unity p such that

C
%) ol = N
r Py
b) ot = 4 4
8
c) pl = g

where cs» rij’ end s

For example, if we had three roots of unity

= e 2Ti/M o = 2i/L

then p =

e2ni/K

_ o2mi/R

vwhere K = least common multiple of the product MLR.

One of our problems will be to find p.

IITI. Some Properties of w, s

i

are integers.

i
From eq. (1) 7173 = wijyjyi
-1 .
10) hence wij = mj ;i However, since the wij ere roots of unity
(hence in general complex)
-1

. *

(_)Ji (in
Therefore
11) .., = m, ¥

ij Ji
also 7173 “137171
12) Therefore we, = 1

ii

Fram egs. (11) and (12) we deduce that the matrix formed by the 43 is

hermitian.
Also from (1), if y

13) 03

then



.

At this point we have the following scalarss

g matrix of mij’s

a vector of gi‘s

and whatever kj‘s we care to use.
IV. Restating the Problem in Order to Program it in LISP:

We would like to write a LISP program which would multiply the
elements of our group. To do this we must write things in a different

form.

Define a matrix W with elements wij such that

lll-) .. = 6(211/K) Wij
1J

where p = e2ﬂi/ K. For LISP W has the form of a list of the columns

W o= ((w21 V- .wnl)(w32. .. n2)(w’+3' . .wn3) ... (Wn,n-l))
From the definitioﬁ of the Wij and the hermitian character of mij we
see that the W matrix can be made antisymmetric.
.Neglecting the multiplicative factor 2ni/K the product of mij‘ s
in eq. (8) in terms of the w's is
15) bX aw,. b,
i
i,,j=1
vhich is almost aWb if e could set all elements above the main diagonal = 0
in W.
To perform the summation of products in (15) we define a LISP
function, Quadratic Form - QF vhich performs this task QF(W X Y)

vhere W is as in (14) and

16) X = (ay --. &)



-5-
17) Y = (b...b)
where the powers to which the y's are raised in each element.- of the
product are X and Y. We assume positive integers only.
(qF (1LAMBDA (W X Y)
(IF (NULL W)
(DEC (QUOTE 0)
(+ (I* (CAR Y)
(1P (CIR X)(CAR W)))
(er (cIR W)(CDR X)(CIR Y))))))
QF uses IP (inner product) . IP is a function which calculates
the inner product of two vectors, i.e., if the vectors are A = (al an)
end B = (bl bn), IP calculates the scalar igl aibi'*
Another auxiliary_ function which we will need is one which, when

given the two lists (eqs. (16) and (17)) above and a list of the form

18) N = (nlxlnaxa...nnxn

da

n
where the n, are the powers for which y 1 i_¢ 5 end the x, are the powers

i
to which p must be raised to give &5 i.e.,
S e(2rri/K)xi

i

€ <
will give the final powers of the various y 1 mod ni and a scalar coeffi-

clent due to the products of the ¢ i We call this function PREPRODUCT
and define it as follows:

19) (PREPRODUCT (IAMBDA (M X Y)(PREPRODUCT* (DEC (QUOTE 0))(LIST) N X Y)))

*H, V. McIntosh, “Program Note No. 6." This Note contains a detailed

description of IP and also of other useful arithmetic functions.
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20) (PREPRODUCT* (IAMBPA (D L N X Y)(IF (NULL X)
(CONS D (REVERSE L))
((rAMBDA (U V)(PREPRODUCT* (I+ (I¥* U (CADR N)) D)
(cons v L)
(CDDR N)
(CIR X)
(CIR Y)))
($DIVIDE (2NDVAL ($PLUS (CAR X)(CAR Y)))(CAR N))) )))

(LIST (IAMBDA L L))

(REVERSE (LAMBDA (L) (REVERSE* (LIST L)))

(REVERSE* (LAMBDA (M L)

(7 (WULL L)
M
(REVERSE* (CONS (CAR L) M)
(CIR 1.))))) .

It should be noted that the lists X and Y must be of equal length,
hence if one of the factors in the product has e.g. 7 5 missing, then
we must explicitly write O for a, or bi whichever is the case.

We will also need a function which will add an arbitrary number of
terms which we now define,

21) (+ (LAMBDA L (IF (NULL L)(DEC (QUOTE 0))(++ 1L))))
22) (++ (1AMBDA (L)(IF (NULL L)(IEC {QUOTE 0))
(r+ (cAR L)(++(CIR 1))) )))
Defining 1 to be that power to which p must be raised to give A

in eq. (8) and similarly m for p, we can now define a function, which
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wewill call DP (Dirac Product) that will give the product of 2 elements
as in (8). The element lists will be of the form
23) X (lala.29.3...an)
ol) Y (m by b, b3 bn)
25) (DP (TAMBDA (X Y) ((TAMBDA (Z) (comws (REM (+ (CAR X)
(cAR Y) (qF (W) (cDR X) (CIR Y))
(car z)) (x)) (CDR 2)))
( PREPRODUCT (N) (CDR X) (CIR Y)))))
shere K, the inbeger which identifies p (p = 2 /%) ig defined by
26) (x(rAMBDA ( ) (DEC (QUOTE K))))
W is the matrix W dsfined by
27) (w (rAMBDA ( ) (NUMBETHERE (QUOTE ( M)
and N the alternating list given in (18) is defined by
28) (v (zaMBDA ( ) (WUMBETHERE (QUOTE (nl n2x2...)))))
K, W, and N are to be given for a particular problem.

We now wish to have a means of finding the inverse of one of the

elements, (A 8y 8, .. an) . The inverse will be of the form (u by by ..
We see that

nl
29) b, = n, - a, where y.9 = k..

J J J J J
Thus to find the correct powers of the y's in the inverse we define
(DINV* N X*) where X* = (al By e a’n), = CIR X vhere X = (2 a) &, .-
and N = (nl X, n, X, ...) given in eq. (28).
30) (DInNv* (LAMBDA (N X*) (IF (NULL X*)
(conNs (REM (I-(CAR N) (CAR x*)) (X)) (DINV*

(CDDR W) (CIR X¥))))))

bn) .

.8 )

n
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To produce unity the element and its inverse must satisfy
31) p+ A+ QF+ X * X, 00. = 1K, n=0,1, 2, ...

32) p = (K- (A+ QF X x2...)modK)modK

Now only those X; will contribute for which the corresponding
8y #0, i.e., the corresponding 74 1s present in X.
Hence we define
33) (pmw (LAMBDA (X) (IF (NULL X)
X
((zamBpA (z) (coNs (REM (I- (X) (REM (+
(car x) (o (W) (cIR X) z)(XT (N) (CDR X)))
(x))) (x)) z)) (pmv* (N) (CIR X))))))
vhere
34) (xr (zAvBDA (N x*) (cOND ((NULL N) (DEC (QUOTE 0))))
((EQ (cAR x*) (DEC (QUOTE 0))) (XTI (CDDR N) (CDR X¥)))

((AnD) (1+ (CADR N) (XT (CDDR N) (CDR X*)))))))






