CERN COMPUTER CENTRE R 200

PROGRAM LIBRARY January 1978
LONG WRITE-UP Language: IBM only
LISP

 The version of LISP currently offered at CERN is the Stanford LISP/360
‘Wwith the Utah modifications of 1975. It is offered only on the IBM
systemn. Thé present long‘write—up is the complete documentation,
~and consists of:

1. The Standford LISP/360 manual (pages i-vi and 1-58) and

2. The Utah appendix (pages Al1-Al6) which can be considered
as an update to the Stanford manual

LISP can be accessed directly at CERN as in the following example:
// JOB '

//LISP EXEC PGM=LISP3TO

//STEPLIB DD = DSN=CR.PUB.LISPLOAD,DISP=SHR
//LISPOUT DD SYSOUT=*%

//LISPIN DD *

LISP program

pmcjones
Sticky Note
Missing pages 32 and 57 of part III (the Stanford LISP/360 Reference Manual).

UTAH CDMPUTATIUNAL PHYSICS GROUP January 1975
OPERATING NOTE NO. 289) :

Al.
A2.
A3.
A4,
AS.
AB.
A7.
A8.

A3.

‘Appéndix -~ Utah Modifications
Stanford Lisp/368 Reference Manual, Fourth Edition

by
Kevin R. Kay

Computational Physics Group
University of Utah

Table of Contents, Utah Appendix

Comments on the Stanford Manual |
LISPl Patches for ASMG, 368/31, and 378/
Textual Re-arrangements in code.

Bignums -- Arbitrary Precision Arithmetic
Garbage Collector, GCx, CONDENSE, SETSIZE
New Checkpoint Facilities \

New Partitioned Data Set input

Other changes -- ERRORSET, etc.

Summary of new functions, errors, and diagnostics

Work supported ih part by the National Science Foundation under Grant

No. GJ-32181 and by the Advanced Research Projects Agency of the Office

of the Department of Defense under Contract No. DAHC15-73-C-B383.

A-1

~

APPENDIX -- UTAH MODIFICATIONS

Al. Comments on the Stanford Manual

Ly

The following chapter-and-verse notes are intended as (a) clarifica-
tions of certain statements in the existing manual, or (b) brief hints
of changes made at Utah, but not as a complete list of such changes.

Section Page'

2.1 4
2.1.1 7
2.2 9
3.1 15
3.1 13
3.1 21
3.1 22
3.1 23
3.1 23
3.1 24
3.2 25
4, 27
5. 28
6.1 29
5.1.1 29

(continued)

Comment

Bits 4 and 5 denote BIGPOS and BIGNEG numbers, as the
BIGNUM extensions to fixed-point representatuons'
see section A4,

Generated numeric values are not put on the object
list, but read-in numbsrs are currently (and thus they
are searched for befors INTERNing).

Initial stack length nou is 3K words; this can
be altered by CONDENSE and SETSIZE, section ASG.

EXPT(nl,n2) -- nl may be a BIGNUM (section A&4), but
n2 may not unless nl = 8, +1, -1, +1.8, or -1.8 .

OVOFF/0VON routines deleted, since overflows now are
handled by the BIGNUM package, and these routines can
confuse it,

READCH returns the atom EOF if end—of—flle.seen.

REMPROP now checks every cell on the property list,

" instead of just the lst, 3rd, 5th, etc.

RPLACA/D only replace the address portion of the cell
pointed at (the lower 24 bits of the word), and Keep
the old high-byte with its flag bits. Thus they are
not quite analogous to CONS (which works on 32 bits),
and probably unsuitable for manipulating fullcells, etc.

SPEAK (and UNCOUNT) use 2 CONS to return a value.

TRACE and UNTRACE have additional capabilities, to affect
function tracing and error tracebacks, section A3.

New atom GCy has an APVAL initially NIL, but can be
reset by user to affect garbage collections; see
section AS.

Fixed-point numbers may be of any magnitude internally
and any input/output length externally; section A4.
An initial check is made for LISPOUT and LISPIN; if not
provided as DD statements; error messages are given
and the run is terminated (return code = 12); if

provided, LISPOUT will use the JCL’s BLOCKSIZ.

'B=8" now works; multiple PARM specifications now work;

RESTORE affects the POS length as well as the initial
PARMs: see section AB.

All file-input related functions can now handle certain
partitioned data sets. See section A7 for details
and the extended denctation of the ddname argument.

JCL-supplied LRECL and BLKSIZE are now used if given;
if not and if OPEN’s second argument = NIL, say, then
the SYSFILE defaults are supplied.

APPENDIX -- UTAH NODiFICATIONS

Section Page

6.1.1 38
6.1.2 38
6.1.3 38
6.1.4 30
6.1.5 31
6.1.7 31
6.2 32
7.1.3 35
7.3.2 41
7.3.2 41

{continued)

Comment

The DCB-address property is now called OPENFILE, to
distinguish it from APYALs or chance NIL references.
The value of the DCB OPENFILE is now a simple fullcell,
obtainable by CAR(GET (ddname, 'OPENFILE)), with the

complication of being negative for PDS DCB’s.

Partitioned data sets are not really closed, uniess the
user so requests explicitliy; see section A7.

If ASA is used in conjunction with an OTLL, the ASA
should precede the OTLL.

OTLL(n) permits a maximum n of 128, but the user should
restrict it to <= LRECL, of course. For compactness,
all datasets will print up to their respective OTLL;

LISPOUT is permitted, however, to start a new line if
an atom prints to within 28 spaces of the selected
OTLL. To turn off this feature, do OTLL((n)).

Note also that LISPOUT’s linelength includes the ASA
control-character and the 4-space indentation, such
that the user-uritable length is at most n-G.

WRS(LISPOUT) has the effect of ASA(T) and OTLL(128).

WRS (any-other-dataset) sets ASA(NIL) and OTLL (LRECL-8).

RDS(NIL) is equivalent to ROS(LISPIN).

ROS (any-dataset) sets input linelength to LRECL-8.

The checkpoint facilities have been significantly
extended, but there are still hazards; see section AB
for an exhaustive/exhausting discussion.

All checkpoint-related 1/0 functions automatically OPEN
the data set as a SYSFILE (if the user omits doing
so), and also automatically CLOSE it (unless it is
a member of a partitioned data set; see section A7).

R15 (PDL) may be used freely, except uhen interacting .
Wwith the »MOVE and +«REMOVE processes of the compiler,
which set up R15 as the local routine’s stack;

R7 (PDS) should never be changed, except indirectly
by means of one of the stack macros of 7.1.4 .

BPSMOVE and BPSZ now zero the old evacuated BPS area
to avoid thuwarting the garbage collector of its prey.

BPSMOVE {n) can give an error "BAD ARG OR TOO BIG" if n
is not an integer or would involve shifting BPS away
from the end-of-BPS (mustn’t clobber FCS). For the
latter or to get more BPS, CONDENSE might be useful
(see section A5.2).

BPSMOVE will normaliy return the relocation done as a
logical-number, signifying how far the BPS base was
shifted in #-of-bytes; this will be B8 mod 8, in order
to maintain double-word alignment within BPS.

EXCISE(p) will only function as EXCISE(T), because the
compiler has been re-arranged with LAP368 first.

| APPENDIX -- UTAH MODIFICATIONS

Section Page ~ Comment
7.3.2 42 OYOFF/0OYON routines deleted, since overfious nou are
' handled by the BIGNUM package, and these routines can
confuse it.

e 7.3.3 42 In addition to interpreter-assist routines shouwing up
as "BAL 2,nn(B,R12)", the following common routines
have been open-coded for less LAP space and greater
execution speed: APPEND1, ATOM, CONS, FLAGP, GET,

. NCONC, NUMBERP, TERPRI, and tuwo extra: NCONS, XCONS.

8. 44 The garbage collector has a user-variable (section AS)
to affect early job termination if space exhausted,
and an alternate CLEANing function has been added.

18.4 58 The register dump now prints a few extra word-contents, :
but the average user needn’'t pay attention to these. e

The "OVER- OR UNDERFLOW" message should never occur,

‘ in principie, uwhen using the BIGNUM package...i.e.,

} the system’s arithmetic routines mentioned in section

? ' A4, User-uritten LAP code is not protected.

: 18.5.2 651 The traceback can be selectively turned off by doing

| a prior UNTRACE(T); see section A8.4.

; 18.5.3 54 A new error has been added to OPEN, such that:

D1-FILE CANNOT BE OPENED - DD STATEMENT MISSING .

Errors D5 and D6 no longer exist, since SYSFILEs

will be automatically OPENed.
Error message D7 has been updated to reflect the neu
capabilities discussed in section AB, and now reads:
"D7: WRONG CHKPT FILE, OR NOT ENOUGH RoOM" .
Each such file (created by CHKPOINT, BPSCHKPT, WBLK)
has a TYPE and a DATE in its first record (as uell as
some relocation information); the date is the LISP1
source edition or version date, e.g. " 128174", and
is included as a precaution against users RESTOREing
old files subsequent to LISPl being patched and rebuilt. e

The possible reasons for "NOT ENOUGH ROOM" are:

RESTORE - the file’'s FCS+BPS is longer than the in-
core FCS:end-of-BPS;

‘ BPSRESTR- the file’'s BPS is longer than the in-core

i BPS boundaries;

1 RBLK - - the file’s overlay length is longer than

: the in-core unused-BPFS remaining.

-18.5.3 55 Error RS now should apply only to long atom names,
since numbers may be any length (core permitting).

APPENDIX -- UTAH MODIFICATIONS

A2. LISP1 Patches for different Assemblers and Computers:

1) Many of the extended definitions of BCR instructions have been used
in the source code to enhance legibility, and the MACROs for these
have been included in the file. These are needed for users doing
the assembly with ASMF and should be retained as is by such users.
For users doing the assembly with ASMG, these MACROs are redundant
and must be deleted...the follouing cards Wwill do the trick:

./ N 18

./ R 182848 1083278

ve .

% FOR ASMG ASSEMBLY, THE EXTENDED-DEFINITIONS

% OF BCR-INSTRUCTIONS HAVE BEEN DELETED.

ve

2) The modification above will suffice on most 368 computers. Houever,
those models with "imprecise" interrupts (in particular, the 368/391)
will need the follouing additional insertions:

./ N 2

1 212852

CLI 6(1),X'BF’ IMPRECISE NON-OVERFLOW?
BH TRAPSCAR YES.
CLI 6(1),X'88’ IMPRECISE OVERFLOW?
BH .~ TRAPSQOVF YES.
A 212718
BNER 8 NO-OP; PIPELINE DRAIN FOR /31.

3} The modifications above for the 368/391 are reputedly sufficient for
the 378 series; however, the follouwing alteration to CONS may be
used (instead of the "pipeline drain" card) if an explicit test is
needed rather than relying on the "specification exception" trap:

./ N 2

./ D 212850

./ R 212558

CONSINST C FREE,FOUR

./ R 212788 212718 . ‘

s LOW COMPARISON HERE, TO SIGNAL NEED TO GC.

CONS C FREE, FOUR

BNL CONSOK

STM 7,5,CONSAV

BAL 14,CONS@

LM 7,5,CONSAV REG 6 EQU "FREE", OF COURSE.

CONSOK ST A,CAR (FREE)

1 212768

CONSAY DS 15F

APPENDIX -- UTAH MODIFICATIONS

A3. Textual and Programming re-arrangements in LISP1

1) Nulls (X'88’) have been remcved from the source code, so the ECHO

‘and ECHOKRK macros have been amended to supply nulls in atom names.

In addition, ECHO will handle names written as hexadecimal and allou
names of any length, following a design by Ouwen Saxton of SLAC.

2) The arrangement of the functions is slightly shuffled but
hopefully handier and more commented for new programmers who have
to read the code. The ssections of the file have been renumbered.

3) In line with the modifications to the checkpoint functions, the
treatment of type 4@’ cells (APVALs, SUBRs, BPS, etc.) is nouw more
comprehensive; the internal BPRELOC functions have been accordingly
deleted or amended. g

4) Users who patch LISPl with extra atoms or initialization code
probably Will need to increase the STACKSIZ. The present method of
assigning core assumes no user routines are LKED above the LISP1
assembly module, so terminal-interaction code should be first,

5) Assembliies doing LIST and XREF may need more tracks allocated for
SYSUT2, SYSUT3, SYSPRINT. The LISPl source currently takes 98 tracks.

68) The codes returned from the LISPl module upon termination now have
some significance, and indicate the follouwing conditions:
B - norma! termination (e.g. after EOF on LISPIN};

4 -~ termination after non-fatal error, because EXITERR(T);
8 - termination after fatal error {e.g. FCS exhausted);
12 - termination after serious error while initializing LISP.

7) N.B. Although the garbage-collector now checks the POS for unboxed
numbers (e.g. the result of CAAR 3), it still assumes (for speed) that
arhitrary unboxed numbers are never stored as part of FCS structures. e
They are safe on the stack and can usually be passed safely as computed
arguments to SUBRs or FSUBRs, but should not be bound to atoms or
appear on the ALIST, etc. Otheruise, the next GC will either complain
CAR TAKEN OF FULLCELL or abort with a BCB system error.

Usually, if LISP blows up Wwith a BCB and if no interrupt message or
register-contents are printed, a GC was in progress (prior interrupt)
which suddeniy found a spurious or unboxed number (non-fullcell) and
uwas led astray.

APPENDIX -- UTAH MODIFICATIONS

A4, BIGNUMs -- Arbitrary Precision Arithmetic
A4.,1 Effects to user

Lisp functions accepting a fixed-point number previously were limited
to integers in the range -<2931> : <2931>-1. UWith the current BIGNUM
code, this restriction is void; an integer may be of any magnitude ...
limited only by the number of cells in FCS (e roughly 9 decimal digits
per celll.

Hence the following functions accept arbitrary integers with impunity:
ADD1, SuBl, MINUS, PLUS, TIMES, DIFFERENCE, QUOTIENT,
REMAINDER, MAX, MIN, ZEROP, MINUSP, LESSP, GREATERP,

EVENP, FIXP; EQUAL, RNUMB/MKATOM, READ, PRINT.

The follouwing and their ilk (and perhaps some compiler functions)

are still restricted to the old range (for speed):
LENGTH, COUNT, SPEAK.
The fallowing are partially restricted or special:

FIX(n) -- a large floating-point number does not become
an imprecise BIGNUM, but returns B8 as before.
FLOAT (n) -- a BIGNUM larger in magnitude than 4.3EG8 or so
‘ will give the error "BFLT OVFL".
BIGP(n) -- gives T if n is internally represented as a

BIGNUM (see below); gives NIL if anything else,

including an integer < 2131 in magnitude.
EXPT(nl,n2) -- nl may be a BIGNUM, but

n2 may not, unless nl = 8,+1,-1,+1.8,-1.8, else

you’ll get an "EXPT- BIGNUM EXPONENT" error.

A4.2 Implementation

A new numeric atom-type is defined, using bits 4 and 5 to denote
positive and negative BIGNUMs: BIGPOS (X’C8’) and BIGNEG (X’CC’) types
respectively., The arithmetic routines, and others (mentioned abovel) as
appropriate, make software or hardware checks for atom-type or overflouw
and perform necessary conversions and arithmetic operations for those
integers requiring more than 32 bits to express {roughly 2 billion in
magnitude)., The actual code is derived from that wuritten for Lisp 1.6
(Stanford A.1. Lab's Lisp for the PDP-18), with the necessary changes
for a 32-bit machine, different overflow mechanism, etc., etc.

The principal routines are almost exactly 1:1 in content, wWwith the
exception of the BIG:FLOAT conversion which uses a hexadecimal
representation. The code therefore has the virtues and failings of the
Lisp 1.6 rendition, which appears to be modelled after Collins’ SAC
system. At any rate, the intermediate scratch cells are generally
returned to the FREE list to'reduce GC frequency, and the 3 special-
cases of the divide routine are handled a la Knuth.

APPENDIX -- UTAH MODIFICATIONS

AS. Garbage collector, GCw, CLEAN, CONDENSE, SETSIZE

AS.1 Changes to the garbage collector

A5.1.1 The global variable "GCx" may be set by the user to force a

terminating error when FCS runs lou,

instead of going on and on

collecting a few cells at a time before dying with "STORAGE EXHAUSTED".
The variable’s APVAL is initially NIL, which means run to exhaustion
as previously; if set to some integer, say 588, then the system will
abort (error GC2) if a future GC fails to reclaim that many cells.

A5.1.2 A new function has been added as a more powerful alternative

to doing RECLAIM() and should oniy be invoked at the top-level because
it clears the ALIST and all other internal holding areas to ensure that
everything collectable is GC'd. The function is CLEAN() and causes
pass 1 of the garbage collector (marking cellis in use) to first make

an extra check on user-introduced atoms: if they aren’t pointed to

by some FCS cell and do not have a property-list either, then they will

~be GC'd. 1f they do have some property, they are retained (presumably

for future reference). This check/purge gets rid of numbers,
intermediate atom names from the compilar, etc.

A5.1.3 The FREE list has its CARs cleared when collected, Wwith a subtle
indirect intent of reducing those 8C8 or car-of-fullcell errors uhich
occurred during GCs or tracebacks (see also section A3.7).

A5.2 Neu functions affecting PDS and FCS sizes

A5.2.1 SETSIZE(nl,n2) will try to set the PDS length to nl words and
the FCS area to n2 cells, if the space exists. All Lisp space not in
use, including high BPS, will be taken as needed; hence edquivalents
of "FCSMOVE" and BPSMOVE are done, but SETSIZE cannot reduce the
actual size of FCS ... to do that, use CONDENSE belou.

In detail, SETSIZE relocates the FCS

and BPS core blocks and their

inter-block pointers to atoms and SUBRs; then resets all system
work cells to 8, the ALIST to NIL, the POS to its origin, and does a

A5.2.2 CONDENSE (nl,n2) will compact
the PDS, with the FREE list becoming

- RECLAIM; finaliy exits to the top-level EVALOT and reads a neu doublet.

FCS cells doun in core towards
linear in high FCS; then it uses

SETSIZE(nl,n2) being able to reduce FCS (up to the number reclaimed)

if so desired.

In detail, the compacting method involves: marking all cells in use,

moving high cells doun to the louest
updating FCS and BPS pointers to the
and completing the GC to rebuild the

N.B. Because the compacting affects
some caution is needed if CONDENSE's
checkpointing functions; see section

unused FCS areas or niches,
moved atoms and cells (error-prone),
FREE list (above the active area).

the locations of atomheaders,
are done in proximity with
AB.5 for details.

. APPENDIX -~ UTAH MODIFICATIONS

A6, New Checkpoint Facilities
AB.1 Old limitations superseded’

A6.1.1 Reading BPS files uas essentially restricted to those files
deriving immediate ancestry from the Lisp core which generated the
most recent RESTORE. That is, the sequence

BPSCHKPT (X1), CHKPOINT(X), RESTORE(X), BPSRESTR(X1)
worked in a bare Lisp, but the sequence

RESTORE (CMPL), BPSCHKPT(Y), BPSRESTR(Y)
would blow up without warning.

AB.1.2 A BPSCHKPT from an EXCISEd Lisp (compiler and LAP368 deleted)
could safely be BPSRESTR'd only into a similariy EXCISEd Lisp, because
of the old relocation methods.

A8.1;3 Likewise, without some knowledgeable tinkéring by the user,
a BPSCHKPT from a Lisp-with-compiler could not be BPSRESTR'd into an
EXCISEd Lisp.

AB.2 General comments about Utah facilities

With the present Utah system, the limitations of AB.1 have been removed
and new features have been added, mainly the functions WBLK and RBLK
for creating and restoring partial-BPS overlay files. My comments in
paragraphs AB.3-5 are directed mostly to system builders trying to
conserve core, and the following shoulid suffice for.most users:

AB.2.1 A RESTORE will reset the PDS length to whatever it was when

the file was CHKPOINT'd. Thereafter the length can be changed by doing
SETSIZE (section AS) without adversely affecting future BPSRESTRs. 1If
a CONDENSE were used instsead, the caution bhelow applies.

AG.2.2 Restores may be done Without regard for the particular
sequence of ancestry (in the sense of AB.1.1). The only remaining
need for caution is if a CONDENSE is used in proximity with a BPS
file function.

AB.2.3 Re 6.1.2 and .3, BPSRESTRs will restore the BPS properly, but
not the pointers in FCS; a RBLK will do the trick correctly.

AB.2.4 BPSRESTR (and RBLK) will now accept a file created by CHKPOINT
as well as by their output counterparts, and will restore just the BPS-
related portions from the file. A trivial example would be:

RESTORE (CMPL), use CMPL, EXCISE(T), other, BPSRESTR(CMPL),
which would retain the FCS structures built up but reset BPS with just
the compiler routines.

APPENDIX -- UTAH MODIFICATIONS

AB.3 CONDENSE caution

As noted in section AS, a CONDENSE involves relocating atomheaders
(and other FCS cells) and updating in-core FCS and BPS pointers to
them accordingly; howsver, BPS code in a previousiy-output BPSCHKPT
file cannot be so updated and, if now BPRRESTR'd, might erroneously

‘and fatally reference some FCS address whose contents were moved.

Tuo solutions around this inconvenience are:

AB.3.1 If the user’'s BPS code references only system atoms and
functions (and no numbers explicitly), CONDENSE can probably be used
safely since anything referenced in FCS is compacted already.

AB.3.2 .One general solution is to do all CONDENSE’s in the ancestral
system prior to involved CHKPOINT's, BPSCHKPT's, or RBLK's. That is
build your system, shrink it using CONDENSE to the minimal size anyone
might want (want as a user after a RESTORE), and do the appropriate
checkpoint function(s) immediately.

AB.4 Neuw functions

In the Stanford and Utah systems, BPSCHKPT and BPSRESTR are used to
urite and re-read entire contents of BPS. Two new functions have been
implemented to handle the bookkesping for segmenting BPS into indi-
vidual overlay areas. Logical blocks of code (presumably containing
logical blocks of functions) may be arbitrarily relocated in BPS,

‘regardless of intervening BPSMOVE's and SETSIZE’s, as long as the

blocks and their storage territories either overlap completely or not
at all. If this condition is met and the CONDENSE caution is heeded,
the W/RBLK pair will handie relocations. and maintenance of BPS-FCS
linkages. In addition, RBLK "remembers" uhere a block was read in
previously; if the block or another of its overlay "family" is read
to the same origin subsequently, the function is quite fast; a future
relocation takes a bit more time, once-only for each family.

WBLK (ddname at n} -- this function performs |ike BPSCHKPT, except
that a range is specified by the second and
third arguments for the amount of BPS to be
written: S

at= name of the very first F/SUBR compiled in
the block. You may get a "NOT FOUND" error.

n = the address of the end of this block; e.g.,
the numeric equivalent of (CAR BPS) just
after the last function was compiled.
Or, n may = NIL, in which case the current
value of BPS is used; i.e., write from at to
the end of active BPS.

The value WBLK returns is the end-of-block
address used.

A-10

APPENDIX -- UTAH MODIFICATIONS

RBLK (ddname at n) -- this function performs |ike BPSRESTR, except
that the second and third arguments specify
what block is being read and where to store:

at= name of the F/SUBR routine which heads the
block uwhen restored. It may be "NOT FOUND"
if no common ancestry exists.

n = the BPS address of the origin of the block
when read into core and stored; e.g., the
address portion of GET(at F/SUBR} as a number.
Or, n may = NIL, in which case the current
value of BPS is used as the origin.

The value RBLK returns is the first free BPS
location above the block read. BPS’s APVAL
is unchanged even if RBLK'd above active BPS.

AB.4.1 Note that WBLK blocks can be filled in by the compiler in any
sequence and at arbitrary (non-overlapping) ranges in BPS, A family
of overlays, later to be RBLK'd to some common origin point, need not
be bullt from that exact origin in the ancester’s BPS; each member can
have a different origin uhen built, if that is more convenient to the
user, but if the building-grounds overlap at all, they must have the
same origin. o

AG.4.2 Moreover, once one member of a family is created or RBLK’d
With the same origin as another member, it is not as free to relocate
about in BPS as previously. Instead, the longest member of the family
must move first (be RBLK'd first at the new origin). If you have
trouble or want to Know uwhy, paragraph AB.5.4 may help.

AB.4.3 Examples of this last proviso:

a) The X family has two members, X1 and X2, which uere built
in and WBLK’d from two separate areas of the ancestral BPS. In the
user’s Lisp, both are RBLK'd to origin Y; if later they are to come
in at origin Z, the longer of the tuo members should be RBLK’d first
there. '

b} The Y family has two members, Yl and Y2, which were built.
at the same ancestral origin (at separate times). When first RBLK’d
into another Lisp (or into the same Lisp at another origin), the
longer of the two blocks should be read in there first.

c) The Z family also has two members which were built at the
same ancestral origin (at separate times) but, after these uere
WBLK'd, still more functions ABC were compiled at the same origin. If
later a Z member is RBLK’d over these, all is well except ABC are not
recoverable. If the Z's were RBLK’d to some neu origin not
overlapping ABC, you might suppose ABC could still be used. They
cannot, however, because their FCS addresses uwere relocated as if
part of the Z family.

, d) Similariy, if X1 were RBLK'd at one origin and X2 at
another, both could be safely referenced by other user code; but if
Yl were RBLK'd at one origin and then Y2 at another, only Y2 could be
called safely because Yl's addresses were relocated. Yl would have
to be re-RBLK’d somewhere before trying to call it, and so on.

A-11

APPENDIX -- UTAH MODIFICATIONS

e) You might ask now "In (d), if the longest of the Y's must
be RBLK'd first at any new location, houw could Y1 be read here one
time and Y2 elseuwhere the second? Shouldn't Yl be read there first,
and then Y2 on top of it?" This is true except if you use the
following trick: determine ahead of time (or over-estimate) the
longest member’s length, add this to the effective origin of each
member, and set your third argument to their WBLK'’s accordingly.
Then, each member of the family will be the same length as far as
RBLK is concerned, and any can be read at an arbitrary new origin.

tf) Note: 1f you are trying to shoehorn overlays into lower
BPS areas below other code, leave a small slop-over area above the
block because the files are read in 88-byte chunks.

AB.5 Implementation details

AB.5.1 Perhaps a feu details on compiled-code |inkages will bear

mentioning here for completeness, since these are not discussed in the
main manual. The initial links generated by the compiler to called

functions really might be calied "slowlinks", as they search the
property-list of the function named for a F/EXPR or F/SUBR attribute,
and dispatch accordingly to the APPLY interpreter or to the BPS or
system-routine code. If a SUBR or FSUBR is linked to, the address of
the actual function code (relative to NIL) is inserted in the sloulink,
making it a "fastcall".

Future use of this linkage no longer checks the atom and its
property-list but just jumps directly between subroutines with minor
bookkeeping (adding the current NIL, etc.). This is faster, with less
overhead, but a fastcall |inkage can no longer be traced nor will it
respond to lambda re-definitions of the particular called function.

In the Stanford version of 368/Lisp, no means was provided to uncall
these linkages back to sloulinks., You can nouw use TRACE, houever, to
perform desired uncalls (section A8.3); an UNTRACE can be done
whenever you're ready to let LISP make it into a fastcall again.

Be careful if you redefine system routines and compilie them,
since the LAP368 generator relinks any older code-definitions to the
new routines in BPS. Usually this is safe, but occasionally the code
for several system routines is intertuined such that the RELINK patch
could Wipe out part of another routine. In such a case, you're better
off not trying to redefine although LAP368 can be tricked.

A6.5.2 With that by way of history, you uwill see that fastcalls in a

‘WBLK would not work when RBLK’d into a different Lisp (or a BPSMOVEd

Lisp). Therefore WBLK uncalls any fastcalls within the block it’s
working on (i.e., any calls outuard from the block or betuween functions
Wwithin the block). Likeuwise, if a block is read in by RBLK to a neuw
family origin than previousliy, all fastcalls from the rest of BPS to
this family are uncalled. On subsequent RBLK’s to the same origin,
there is no need to uncall, and all linkages remain speedy.

RBLK can also read files made by CHKPOINT or BPSCHKPT, if you have a
need to, but remember that the latter files aren’t internally uncalled.

A-12.

APPENDIX -- UTAH MODIFICATIONS

A6.5.3 This mechanism handles the most general cases, subject to the
rules of AB.4: to eliminate this uncalling altogether would, however,
place too many (more) restrictions upon the user. Granted the first
.RBLK of a family wastes time checking the compiler if it hasn’t been
EXCISEd, but subsequent RBLK's pay no overhead and instead (hopefully)
enjoy the greater generality.

AB.5.4 Finally, a brief discussion of hou FCS relocation is handled
may aid the perplexed user and explain the need for the AB.4 provisos
concerning block origin and movement.

Each logical block of functions has in its WBLK file a few
figures about length and position, if only so RBLK can decide if room
is available, Strictly, a WBLK doesn’t knou which FCS atoms point to
its compiled functions nor what quoted atoms it references, any more
than a BPSCHKPT does; only the ancestral FCS remembers this (or
retains this information in a CHKPOINT). Compiled functions in core
(and in CHKPOINT and BPSCHKPT files) can have SYS or FCS or BPS
addresses relative to NIL’s atomheader, but a WBLK file will have
just relative FCS addresses because the rest are specially uncalled.
Therefore, uhen RBLK'd to some origin, some FCS addresses (type '48°
cells) must be relocated appropriately to again reference the block.
Namely, only those address-cells refering to this family and by the
amount the new origin differs from the previous or ancestral origin.
This delta is easily calculated from RBLK's second argument, but to
shift all family references (sharing its old origin) requires the
longest most-inclusive member to move first.

A-13

APPENDIX -- UTAH MODIFICATIONS

A7. New partitioned data set facilities

A7.1 PDS files can nou be read, though not uritten, Wwith blocking of
(88,16088); this is also the standard blocking for the various SYSFILE
functions (RESTORE, RBLK, etc). Houwever, because only one 1688 byte
buffer is used in this implementation, a feu provisos:

A7.1.1 Text and checkpoint files apparentiy should not be members in
the same PDS as LISP(LISP). The latter would require an unformatted
buffer of 7288 bytes, uwhich didn’t seem necessary for this version.

A7.1.2 RDS’s of text-PDS members should be closed or de-selected
before doing any restore-type function invalving a second PDS member.
Otheruise the single buffer will be pre-empted and a subsequent read
of the RDS file will get a software-forced ECF.

A7.1.3 Note: whenever a member is RDS’d, reading always restarts at
its beginning, and not at the point reached when last read; this is
mostly for bookkeeping ease and avoids confusing the buffer.

A7.2 To invoke just one specific member of a PDS, use the current
method of a specific DD statement.

A7.3 To invoke a general PDS file for subsequent input of any member,
supply a DO statement for the file itself; then within Lisp, refer '
to the desired memnber name wherever you’d currently use an atomic
ddname, as the dotted-pair: (ddname . membername).

The output functions (WRS,CHKPOINT,BPSCHKPT,WBLK) will give a
non-fatal ERROR message if you try to output to a general PDS file.

The input functions will likeuise protest, e.g., if you try to
read a member which isn't in the file,

A7.4 Note: the buffer is only allocated once and each general POS
file is really opened only once and never closed, for speed in
processing subsequent member requests in the same general PDS.

The OPEN function (still only explicitly needed for a ROS or WRS}
has the form: OPEN((ddname.member) SYSFILE INPUT), uwhere the member ‘
name is optional for commenting. OPEN will protest however if you try
opening the same ddname as both a simple and a PDS filetype.

CLOSE ((ddname.member)) is ignored as a commenting call. To
explicitly close the PDS itself, do CLOSE ((ddname)].

A-1L

APPENDIX -~ UTAH MODIFICATIONS

A8. OQOther Changes

A8.1 ERRORSET(e,at) provides a means, as in other Lisps, to evaluate
an expression Within an environment protected against ERRORs. Fatal
errors Will terminate the job or return to the top-level EVALQT as
before (according to EXITERR), but other errors, diagnostics, and user
calls to ERROR are caught and contained within the current innermost
ERRORSET. 1f none is active, the stack unuinds to the top.

As far as the user is concerned, he calls ERRORSET with an expression e
and a flag at. If EVAL of e produces no errors, LIST(e) is returned:
i.e., a non-atomic value.

[f the user invokes ERROR(at2) during the EVAL, the PDS and ALIST are
restored, and the ERRORSET returns at2., Likewise, if an internal error
occurs, NIL is returned. If the user’s flag at =NIL, the error message
and backtrace printout will be omitted; if nonNIL, they will be printed
as usual,

A8.2 POSN() returns the current cursor position of the PRINT functions;
e.g. returning 1 after a TERPRI(). Heavy use of this function will
cause more frequent GC’s, as with any arithmetic routine, since each
integer returned requires 2 CONS’s to construct.

A8.3 TRACE(x) has been extended in the following ways:

TRACE(list) - in addition to flagging each function’s atomheader to
signal LISP to trace it when called, in-core BPS is
searched and any fastcalls to these functions are nou
uncalled to permit tracing compiled code (see section
AB.5.1). Houever, for simplicity, fastcalls to RELINKed
functions are only uncalied if they address the latest
re-compilation of the function; older references aren’t

checked for presently, and are therefore still untraced.
TRACE(T) - enables tracing of any previously-specified functions;

TRACE(list) automatically sets TRACE(T) for you.
TRACE(NIL) - temporarily disables tracing in general until another

TRACE(T) is given, but retains all passivated functions.

A8.4 UNTRACE(x}, if given an atomic argument rather than a list, will
affect the printing of tracebacks (after errors) in the following uway:
UNTRACE(T) - turns off the traceback, though not the error message;
UNTRACE (NIL) - turns on the traceback printing (the initial state).

A8.5 Tuo auxiliary CONS functions have been added, and are also open-
coded during compilations:

NCONS (x) - performs CONS(x,NIL);

XCONS (x1,%2) - performs CONS(x2,x1).

AB.6 488 $(p), the ABEND function, now takes one argument to speci fy
an immediate dump (if T) or a deferred dump (if NIL); if deferred, the
dump is taken for return codes >= 4, but not for a normal termination.

A-15

APPENDIX -- UTAH MODIFICATIONS

“AS.
AS.1

A3.2

A3.3

AS. 4

Summary of New Functions, Errors, and Diagnostics

Neu functions in Utah Lisp/368 are:

CONDENSE, SETSIZE, WBLK, RBLK,
BIGP, POSN, NCONS, XCONS, CLEAN

New system atoms are:

GCx

Neu fatal error messages are:

LISPOUT DD STATEMENT MISSING - RUN ENDED
LISPIN DD STATEMENT MISSING - RUN ENDED

New non-fatal error messages are:

D1-FILE CANNOT BE OPENED - DD STATEMENT NISSING
D7: WRONG CHKPT FILE, OR NOT ENOUGH ROOM
BPSMOVE - BAD ARG OR TOO BIG

UNCALL FAILED TO FIND ATOM FOR THIS ADOR
R/WBLK -- FIRSTFUN F/SUBR NOT FOUND
BFLT OVFL

EXPT- BIGNUM EXPONENT

ZERO DIVISOR

OPEN: PDS NOT SYSIN OR SYSFILE (88,1600)
PDS DONAME/ARG INCORRECT

PDS MEMBER NOT FOUND OR [/0 FAULT

PDS NOT SELECTABLE FOR QUTPUT

PDS BUG - SYSFILE HIT EQDAD

A9.5 New diagnostic messages are:

SOFTWARE EOF FORCED ON RDS

A-16

LISP/360 REFERENCE MANUAL

)

* stanford center for information processing - stanford university

PREFACE

This manual is intended to provide tha LISP 1.5 user
with a reference manual for the LISP 1.5 interpreter,
assembler, and compiler on the SCIP 360/67. It assumes
that the reader has a working knowledge of LISP 1.5 as
dascribed in the LISP 1.5 Primer by Clark Weissman, and
that the reader has a general knowledge of the operating
anvironment of 0S 360.

B23inning users of LISP will find the sections The
LISPZ36Q_System, Qrgauization of Storage, Functjions,
LISP_Job_Set-up, and LISP/360 Systep Messages most
helpful in obtaining a basic understanding of the LISPD
systen. Other sections of the manual are intended for

users desiring a more extensive knowledqe of LISP.

The particular implementation to which this reference
manual is directed was started by Mr. J. Kent while he
was at th2 University of Waterloo. It is modeled after
his implemertation of LISP 1.5 for the CDC 3600,

Iacludel in this edition is information on the use of
the time-shared LISP system available on the 360/67
whizh was implemented by Mr. Robert Berns of the

SZIP Systems Softwvware staff.

ii

Section

TABLE OF CONTENTS

pREFACE L J L] L * L] . L] L L d L] L4 []

TABLE OF CONTENTS . ¢ o ¢ o o« &

THE LISP/360 SYSTEM . . . « . &

ORGANIZATION OF STORAGE . « o .

2.1 Free Cell Storage (FCS) . .
2,1.1 Atoms_; o« .
21,2 Numbers o o
2.1.3 Object List

2.2 Push-down Stack (PDS) . . .

2.3 System Punctions . . « . &

2.4 Binary Program Space (BPS)

2.5 Input/Output Buffers . . .

FUNCTIONS, PREDEFINED ATONMS AND CHARACTER-OBJECTS

3.1 LISP FunctiolS =« e« ¢« o o« o
3.2 Atoms with Initial vValues .

3.3 Character-objects
SPECIAL DIFFERENCES IN LISP/360
LISP JOB SET-UP e ® e e o e ® @

DATA MANAGEMENT IN LISP/360 . .
6.1 Data Management Functions .

6.1.1 OPEN(ddname,list,at)

iii

Page
ii

1ii

10
10
25
26

27
28

29
29
29

7.

6.2

6.1.2

6.1.3

C6.1.4

6.1.5
6.1.6
6.1.7

CLOSF (ddname)

s
]
]
L]
]
L]
.
L]
L]
L]

ASA(P) ¢ o oo o o s o o o o o o o«
OTLL(N) ¢ ¢ o o o o o o o o« o o
ﬂRS(ddhame) e e o o v o s o o s a
INLL(D) ¢ o o o o o o o o o o o o

RDS (ddname) e o o o e o o o o o o

Checkpoint Facilities in LISP/360

6.2.1
6.2.2

6.2.3

6.2.4

CHKPOINT (ddname) . « o ¢ o o o o o
RESTORE (ddname) . « o o o o o o
BPSCHKPT (ddname) « « o o o o o o o

BPSRESTR(ddname) « « « o o o o o «

THE LISP ASSEMBLER AND COMPILER .+ ¢ o o o o o

7.1

LISP Assembly Program (LAP) . « « o « o &

7.1.1

7.1.2

7.1.3

7.1.4

7.1.5
Binary

7.2.1

Differences Between LAP and OS
Assembler Language ¢« « « o ¢ o o o

Passing Arguments To and From LAP
ROutines e o 8 ® 6 e e ® e s o o o

Register UsSage . o« « o o o o o o &
MACLOS « « o o o o s o o o o o o o
7.1.4.1 User Defined Macros . . .
7¢1.4,2 System MACILOS « o« o o o o
Sample LAP Program « « « o o o o o
Programming SPace =« « o « o« o o o

The Atom BPS L . L d . i L] L] L 4 * * L4

The LISP Compiler « o« ¢ o o o o o o o o o

7.3.1

7.3.2

LISP Job Set-up for the Compiler .

Auxiliary Routines

iv

30

30

30
30
31
31
32
32
32
32

32

33
33

33

34
35
36
36
36

38

.39

39

40

40

41

7.3.3

7.3.4

THE GARBAGE COLLECTOR . . « o« o o

TIME-SHARED LISP AT STANFORD . . .

Example of a Terminal Session

LISP/360 SYSTEM MESSAGES

EVALQUOTE Messages « o o o
Tracing in LISP/360
Garbage Collector Message .
Interruption.uessaqe e o o o
Error Diagnostics
10.5.1 Syntax Brrors . . .

10.5.2 Execgtion Errors .

Exanining the Compiled Code

Names of Compiler and Assembler Routines

'10.5.3 Error Codes and Messages

APPENDIX: THE LISP INTERPRETER .

REFERENCES L d L3 L] L] L J L] L] L] . . L] .

42

43
44
45
47
49
49
49
49
49
50
50
51

53
56

58

Pigure
Fiqgure
Figure
Figure
Figure
Figure
Figure

Figure

LIST OF ILLUSTRATIONS

Initial Organization of LISP System Memory
LISP Cell v v v o o « o o « o o o o o o »
Full Cell . . o ¢ ¢ o ¢ o o« o o o o o o @
Binary Markers =« « o« ¢ o o o o .0 o o o o

LISP Atom With An Empty Property List . .

' LISP Atom With Associated Property List .

object List * L L] L . L] - L L L * - . L L]

The AtOm BPS . L L] L) - . L] L I . . L3 L] .

vi

39

1. THE_LISP/360_SYSTEM

LISP 360 operates under the IBM System/360 Operating System (0US).
The operation of the LISP executive is best described as foliows:

1. Read a function and list of arguments.
2. Start the timer.

3. Pass the function and list of arguments to the functlon
EVALQUOTE for evaluation.

4, Print the execution time and the value of the function.
5. Start again at step 1.

The LISP system initially consists of a large body of predsfined
functions and provides the facility to add additional function
definitions, Statements in the LISP language are evaluated
interpretively by the function EVALQUOTE to determine their value,
although some functions (such as COMPILE) are evaluated more for
their effect than for their value. A compiler and an assembler
are also available.

During execution, LISP data structures (including LISP function
definitions) are constructed in Pree Cell Storage (FCS). The
Push-down Stack (PDS) is used to store program parameters
dynamically during recursion. '

Other system areas are allocated as Binary Program. Space (BPS) to
contain the machine code for all ccmpiled functions and as I/0
Buffers to be used by 0S. The general organization of system
memory is given in Figure 1.

System Programs
{LISP Interpreter

And All Predefined
Functions)

6,000 Push-Down Stack
Words A (PDS)

[Oblist
Free Cell ‘
Storage < Remainder of
(FCS) Free Cell Storage

Binary Program
Space
(BPS)

Given Back to 0S
. for 1/0 Buffers

Figure 1: Initial Organization of LISP System Memory

2. ORGANIZATION OF STORAGE

Within the LISP system, computer memory is subdivided into several
functional areas. The largest portion of system memory is devoted

to Free Cell Storage (FCS), the area used to contain all working data
structures. The remaining parts of memory are used for the Push-down
Stack (PDS), Binary Program Space (BPS), Input/Output Bufters, and
system functions.

2.1 PFree Cell Storage (FCS)

A large portion of LISP memory is devoted to the storage of working
data structures in Free Cell Storage. Each word of FCS (called a LISP
cell) is a System/360 doubleword (64 bits) consisting of an upper word
(32 bits) and a lower word (32 bits). LISP cells, depending on their
use, may contain four fields as shown in Figure 2.

& 64 N
= -~ - . (
E—8—D& - 24 >PE—8—D>€ 2 —
) ;
]]
] '
] .
Used for -First Address Position psed for ' . Second Address Position
Markers Markers
1
')
' ’
H 1
0 78 31 32 39 40 63

Figure 2: LISP Cell

Initially, all available words in FCS are in a free cell list. as
LISP cells are used to create data structures, they are removed from
the free cell list until removal of the last word forces the systenm
to perform a garbage collection in an attempt to restore vwords to the

free cell list.

A LISP cell is normally considered to contain pointers to other LISP
cells in both its upper and lower words, but a special type of LISP
cell is defined in which the upper word contains information other
than a pointer. This LISP cell is called a full cell and its format
is illustrated in Figure 3.

« — 32 ><—8—>< U

This word may contain -

1. Four EBCDIC characters from a
print name.

2. A 32-dbit number.
3. The address of a binary LISP routine.

Second Address Position

- - e .- -

Figure 3: Full Cell

siacce the length of the LISP cell 1is 64 bhits and only 24 bits are
neceded to express an address, the first 8 bits in the upper word and
the first 8 bits in the lower word are available for other uses.
Figure 4 indicates the uses for some of these bits as explaiued below.

=24 —> <24 —>
First Second
Address Address
Position Position

0 1 2 3 4 s

Logical Marker
Floating-point Marker

Number Marker
Atomhead Marker

Bit 0

Bits 1, 2 and 3 -

Bit 7

Bit 32

32

I

7.
Tr:ce Marker

If this cell
is an atomhead,
this address

33 34 35 36 37 38 39
Full Cell Contents Indicator

Full Cel) Marker
Garbage Collector Marker

If this cell

is an atomhead,
this address
points to the
property list.

points to the
full cell list.

Figure 4: Binary Markers

indicates that this cell is an atomheéd.(l.e.,
the first cell in an atom).

refer to a full cell list associated with an
atom. Bits 1, 2 and 3 are used as folliows:

1 Number Marker
2 - Floating-point Marker
3 - Logical Marker

Bit -
Bit
Bit
For an atomhead (bit 0 is set to one), one of
the' following bit patterns will be used to
describe the full cell list associated with

the atom:

kit 0 bit 1 bit 2 bit 3
1 0 0 0 EBCDIC Characters
1 1 0 0 Fixed-point Number
1 1 1 0 Floating—-point Number
1 1 0 1 Logical MNumber

indicates that a function is to be traced.

is used by the garbage collector to mark active
cells.

Bit 33 - indicates that this is a full cell.

Bit 34 - is used in a full cell to indicate that the first
word (first 32 bits) contains EBCDIC characters
or a number. Bit 34 is not set in a full coll
when the first word contains an address.

2.1.1 Atoms

An atom begins with a LISP cell (called an atomhead) that contains in
its first address position a pointer to a full cell list associated
wvith that atom. The €full cell list contains either the printnanme

of the atom (in the case of a literal atom) or the binary value of
the atom (in the case cf a number). ’

The second address position contains a pointer to the list of
properties associated with that atom -- if it exists (numbers
never have properties). The first bit of the first word (bit 0)
is set to one to indicate that this cell represents the start of
an atonm. :

Figure S5 illustrates the atom EXAMPLE and its full cell list. - The
property list is empty.

- ® > - oo

[bits 32-34 oits 32-34

1E X A wjon P L E D11

I

Figure S: LISP Atom With An Empty Property List

Note: A pointer to the atom NIL is represented by a diagonal line
in the address portion of a LISP cell.

Figure 6 illustrates the atom FF and its property list. The property
list includes all of the attributes associated with that atom. 1In
this example, the atom FF is a function, namely an EXPR, which starts
(LAMBDA . . .)

-

e e e o

o - - -
b - - - -

‘;!! 0

(bits 32-34

\ atom EXPR N]
t F o1 : — e

. v
'
LAMBDA

Figure 6: LISP Atom With Associated Property List "
Attributes of the atom are designated by flags or indicators on the
property list. Flags are atoms which by themselves indicate that
the atom (on whose property list the flag occurs) has some attribute
(e.g., COMMON). Indicators are atoms which identify the atom (on
vhose property list the indicator occurs) as having a special value
vhich is found as the next item on the property list (e.g., SPECIAL,
APVAL) . Indicators used by the LISP system include: '

APVAL -- The atom is a constant whose value is the following
item in the property list.

EXPR -- The atom is a function name. The lambda expression
defining the function is the following item in the
property list.

FEXPR -- The atom is a special function name. The lambda ‘5
expression defining the function is the following
item in the property list. An FEXPR differs from
EXPR in that the FEXPR is defined with precisely two
arguments and may be called with an indefinite number
of arquments. When an FEXPR is called, the list ot
arguments and the current association list are bound to
the lambda variables defined in the FEXPR expressioan, so
that the arguments are not evaluated before the function
is called. ' '

SUBR -- The atom is a compiled EXPR or a built-in function.

The entry address of the subroutine is the following
item in the property list.

FSUBR -- The atom is a compiled FEXPR. The entry address of the
subroutine is the following item in the property list.

Atoms are created in LISP in several ways. READ, GENSYM1, and MKATOM
all create literal atoms. READ creates atoms trom the input text and
places them on the object list. GENSYM1 creates an atom but does not
place it on the object 1ist. MKATOM creates an atom on the object
list using the buffer filled by the function RLIT.

Numeric atoms are created by every numeric function. Thus, the same
number may be different atoms. These numeric atcms are not placed on

the object list.

2.1.2 Numbers

—————————" o—

There are three kinds of numbers:

1. PFixed-point (integers)
2. Floating-point
3. Logical thexadecimal)

All numbers are stored as 32 bit binary numbers with the help or a

full cell and must be converted from EBCDIC characters on input and

to EBCDIC characters on output. (The EBCDIC representation of a

number is not stored.) The first word of a numeric atomhead points to

this full cell; the second word is NIL. :

A fixed-point anumber is a signed or unsigned integer (written without

a decimal point) in the range -2**31 < number £ 2%**31-1. For example:

0
91
-91
173
-2147483647.

A floating-point number is a signed or unsigned string of decimal

digits with a decimal point. The string of decimal digits may be
followed by a decimal exponent., Floating-point numbers may have
absolute values in the range 10*¥%*-75 < number < 10%#*75, including
zero. For example: .

7. .
"3-“ ‘
2.5E+07

-3.2E-4

2.6E7

A logical number consists of from 1 to 8 hexadecimal digits
V,1,2,¢¢.,9,A,B,C,D,E,F) which may be followed Lty the letter 'X°'.
If the number begins with one of the letters A through F, it must
be preceded by a zero to avoid awmbiguity with character atoms.
Logical numbers need not be folloved by *'X* if they contain any
of the digits A through F. All numeric functions treat logical
numbers as integers. For example:

14X

-3aBX

0AX

OFFFFFFPFCX

" 14 AFS

2.1.3 Object List

Pointers to LISP atoms are chained together on a list called the
'object list'. The system searches this list in order to find atosms
referenced by the LISP program. The format of the object list 1is
shown in Figure 7. As literal atoms are added to the system, their
pointers are added to the front of the object list, immediately
following the pointer to the atom NIL except for literal atoms
created by GENSYM1, which are not added to the object list. The
predefined atom OBLIST has an APVAL on its property list which .
points to the object list. To print the object list, the following
statement can be used: EVAL(OBLIST NIL).

v

< 64

A
&

oee oo

TR —

T——
fe -~ - -

R

L e =]

atom NIL 2nd atom 3rd atom

Figure 7: Object List

2.2 Push-down_Stack (PDS)

. i P e U <o A G G S D

The PDS is used to save active data structures and addresses during
program recursion, The size of the PDS is fixed at 6K words (32
bits/word), and it can only be changed by regenerating the LISP
systenm. '

2.3 System Functions

The system function area contains the contrcl program, the EVALQUOTE
interpreter, predefined system functions, the garbage collector, and
the error handler.

2.4 Bipary Program_Space_ (BPS)

This area contains all compiled code not part of the standard LISP
system (including LAP and the compiler).

2.5 Inputs/Output Buffers

This 1is an area of 8K bytes (8 bits/byte) returned to 0S for use as
input/output storage. The size of the area can be changed any time
LISP is loaded by using appropriate EXEC parameters.

3. FUNCTIONS, PREDEFIN

3.1 LISP Functions

——

This section gives the
LISP/360. The letters
of the function name.
follows:

C - This function is

I - This function is
compiler usage.

N - This function is

T - This function is
standard LISP.

The symbols used for fu

alst - association
at - atom

ch - character-ob
ddname - ddname .

e . - valiad LIsSp £
fn - function

ind - indicator
list - list

n. - number

P - predicate

X - S—-expression
ADD1 (n)

AND(p1,P2,¢4.,PN)

APPEND (list1,1list?2)

ED_ATONS_AN

CHARACT ER-OBJECTS

definitions of the functions available 1in
that precede the function names are not part
They are used to explain the functions as

contained in the compiler.

contained in the compiler and is for interaal

not available in time-shared LISP.

available in time-shared 1L1ISP but not in

nction arguments are defined as follows:
list
ject

orm

ADD1 takes a number as its argument and
returns that number plus 1. If n is a
fixed-point number, the result is a flxed~"
point number. If n is a floating-point
number, the result is floating-point.

AND evaluates its arquments from left to
right until one is NIL or the end of the
list is reached. It returns NIL or T,
respectively.

APPEND takes twag lists as its arguments.
Its value is a list of the elements of list1l
folloved by the elements of list2.

APPEND((A B C) (DE F)) = (A BCoDE F)

10

APPEND1(list,x)

APPLY (fn,list,alst)

ASA(p)

ATOM (x)

ATTRIB(list1,1list?2)

Bpséaxpw(ddnane)
BPSLEFT ()
BPSMOVE (n)
BPSRESTR (dd name)
BPSUSED (p)
BPSWIPE (fn)

BPSZ ()

BREAKP (ch)

APPEND1 causes the element x to be added
onto the end of 'list'; the value 1is the
modified list.

APPEND1((A B C) D) = (A B C D)

APPLY causes the function, fn, to be applied
to the arguments in the list; alst is used
as the association list.

(see Section 6.1.3)

ATOM returns T if x is an atom (either
numeric or literal); otherwise it returns
NIL. ’

ATTRIB modifies list1 by tacking on list2 at
the end. The value is list2. ATTRIB has
the same effect as NCONC although the value
is different. Note that if listl is an
atom, list2 is added to the end of the

- property list of list1.

(see Section 6.2.3)
(see Section 7.3.2)
(see Section'7.3.2)
(see Section 6.2.4)
(see Section 7.3.2)
(see Section 7.3.2)

BPSZ takes no arguments. BPSZ deletes all
binary program space and adds that storage
to Free Cell Storage. Jobs not using

the compiler, LAP, or “any user compiled
functions should call EPSZ for maximum
storage. (See Section 7.3.2)

BREAKP is a predicate. If its argument is
one of these character-objects:

blank '

left parenthesis (

right parenthesis)

comma .

period : .
its value is T; othervwise its value 1s NIL.

1

CAAAR(Xx)

CAADR (x)
CAAR (x)
CADAR(X)
CADDR(Xx)
CADR (x) ; -
CAR (Xx) These functicns represent all possible
CDAAR (x) . nestings of CAR and CDR up to three levels.
CDADR (x)
CDAR (x)
CDDAR(x)
CDDDR(x)
CDDR (x)
CDR (x)
N CHKPOINT (ddname) (see Section 6.2.1)
N CLOSE(ddname) (see Section 6.1.2)
C COMMON (list) {see Section 7.3.2) "
C COMPILE(list) (see Section 7.3)
C COM1(x1,x2,x3) COM1 is a function used by the compiler.
C CONC(X1,X2, eas,Xxn) CONC is a function used by the compiler.
CONS (x1,x2) CONS obtains a new doubleword from the tree
storage list (see Section 2.1) aand
places its two arguments in the first and
second words, respectively. It does not
check to see if the arquments are valid list
structures, The value of CONS is a pointer
to the word that was just created. It the
free storage list has been exhausted, CONS
calls the garbage collector to make a new
free storage list and then performs the
CONS operation. "
N COUNT(n) The argument n must be an integer. COUNT

turns on a counter which automatically causes
a trap when CONS has been done more than ‘n'
times. Any CONS performed by systenm
functions are also counted. Tihe counter

is turned off by UNCOUNT(NIL). The

counter is turned on and reset each time
COUNT(n) is executed. The counter can

be turned on so as to continue counting

from the state it was in when last turned
off by executing COUNT (NIL). The

function SPEAK{() gives the current value

of the counter, which is decremented cach
time a CONS occurs.

12

CSET (at, x)

CSETQ(at, x)

N DEBUG (p)

DEFINE (list)

DEFLIST (1ist,at)

DIFFERENCE(n1,n2)

DIGP (ch)

EJECT()

CSET is used to create a constant by putting
the indicator APVAL and a value on the
property list of the atom. The value
stored in the property list of the aton

is CONS(x,NIL). The value of CSET 1s its
first argument. It 'at' already had an
APVAL, the old value is removed.

CSETQ is like CSET, except that the tirst
arqument is quoted instead of being evaluated.

currently, this function has no effect.

The argument ‘'list' of DEFINE is a list of
pairs

((ul v1) (u2 v2) ... (un van))

where.each u is a name and each v 1s a

‘lambda-expression for a functiom. For each

pair, DEFINE puts an EXPR on the property
list for u pointing to v. DEFINE puts
things on at the front of the property list.
The value of DEPINE is a list of the u's.

DEFLIST is a more general defining function
than DEFPINE. Its first argument is a list of
pairs as for DEPINE. Its second argument is
the indicator that is to be useda. The

second argument should be a literal

atom. After DEFLIST has been executed

with (u v) as its first argument, the
property list of u will begin with the
indicator, at, followved by v.

DEFINE(((FN (LAMBDA(X) (CAR X))))) =
DEFLIST (((FN (LAMBDA(X) (CAR X)))) EXPR)

Both arguments of DIFFERENCE must be
numbers., The value is n1 minus nZ.

If either argument is a floating-point
number, the result is floating-point.

DIGP is a predicate. If its arqument 1s one
of these character-objects: 0, 1, 2, ..., 9
its value is T; otherwise its value 1is NIL.

EJECT takes no arguments. It causes a line
to be written with a 'new-page' control
character in the first byte (skip to new

page) .

13

EQ(x1,x2) ' EQ is a predicate which tests if its two
arguments point to the same location in
storage. Literal atoms are stored unigquely,
so that if x1 is an atom, EQ(x1,x2) will be

—- -7 true if x2 is the same atom., List structures
‘ -and numbers are not stored uniquely, however,
and thus it is possible for two equivalent
list structures not to be EQ. EQ returas
T if its arquments are the same, otherwise
it returns NIL. :

EQUAL (x1,x2) EQUAL is a predicate. It returns T if its
tvo arquments are equivalent list structures.,
EQUAL is recursive, using EQ to test literal
atoms, Tvo numbers are assumed to be
EQUAL if they differ by less than 10%*-6.

ERROR (x) ERROR is one wvay for a user to cause a LISP
error, The message '#*** a1 - CALL TO ERROR'
and the value of x will be printed, follow..
by a trace-back as described in Section
10.5. ERROR does not return and so it
has no value. '

EVAL (e,alst) The first argument e must be a valid LISP
expression, It is evaluated using alst as
an association list for values of variables.

EVCON(list,alst) The argument is a list of the form
. ‘ ((p1 el) (p2 e2) (p3 €3)...(pn 2n))

where the p?'s and e's are valid LISP
expressions. The p's are evaluated 1iu
order until a non-NIL value is obtained.
Then the corresponding e is evaluated
and its value is returned as the value
of EVCON. For each of these evaluations,
alst is used as the association list.

" EVENP (n) EVENP returns T if the fixed-point number "
'‘n' is even; othervise it returns NIL.

EVLIS(list,alst) The first argument is a list of valid LISP
expressions. They are evaluated in order
using alst as the association list. The
list of the values is returned.

C EXCISE(p) (see Section 7.3.2)

EXITERR (p) EXITERR(T) causes the run to terminate
after the occurrence of any error that
is generated in the execution of the
program. EXITERR (NIL), the default,
turns off this feature.

14

EXPLODE (at)

EXPT {(n1,n2)

FIX (n)

FIXP (x)

FPLAG (list,at)

FLAGP(at1,at2)

FLOAT (n)
FLOATP (x)

FUNCTION (fn)

- EXPLODE takes an atom as an argument and

has as its value a list of the characters
in the printname of the atom.

EXPT takes two numbers as its arguments.
The second arqument must be a fixed-
point number. It returns nl1 to the nlth
power. The value is floating-point if n1
is floating-point or if n2 is negative.

FIX takes a floating-pcint number as 1its
argument. The argument is truncated to
an integer.

FPIXP returns T if x is a fixed—point
number, othervise it returns NIL.

FLAG puts the flag 'at' on the property
list of every atomic symbol in the 1list.
Note that 'list' must be a list of atoms.
No atom ever receives a duplicate flag.
The value of FLAG is NIL.

FLAGP searches the property list of the atom
at1 (CDR at1) for an occurrence of an item
EQ to at2. If such an item is found, the
value of FLAGP is the rest of the list
beginning with that item. Othervise, the
value is NIL.

FLOAT takes a fixed-point number as its
arqument. It returns that numsber
converted to floating-point.

FLOATP returns T if its argument is a
floating-point number; otherwise it
returns NIL.

FUNCTION is a special form. Its ‘argument'
nust be the name of a function or a lambda-
expression. FUNCTION is used to pass
functional arguments to other functioas.
When the form

(FUNCTION (LAMBCA(X) ...))

is evaluated in interpreted LISP, FUNCTION
returns the special fornm

(FUNARG (LAMBDA(X)...)) alst)

where alst is the current association list.
Then the FUNARG form is interpreted by

15

C GENSYM()

GENSYNM1 (at)

GET (at1,at2)

GO(at)

GREATERP (n1,n2)

N INLL (n)

C LAP360 (list,alst)

~APPLY as a function, with the association

list taken from alst instead of taking the
association list at the time APPLY is
called. Thus, PUNCTION, in effect, saves
the current association list along with
'fn', so that later calls will use current
variable bindings. '

GENSYM is a function used by the compiler.

GENSYM1 creates a nev atom whose printname
consists of the first four characters of
the atom which is passed as its argument,
followed by four digits. The atoms that
GENSYM1 creates are NOT on the object list,

unlike other atoms in the system. Thus,

GENSYNM1 (ALPHA) = ALPHO502

Even if there already exists an atom whose
name is ALPHO0S502, the result of GENSYM1
will be unique, ‘

GET searches the property list (CDR) of its

first argument for an indicator EQ to its

second argument. GET then returns the itenm

following the indicator in the property
list. If no element of CDR (ati1) is EQ
to at2, GET returns NIL.

GO is a special form. Its one argument
must be a label in the PROG in which GO
appears. Its argument is not evaluated.
GO causaes PROG to branch to the label
specified. 1In compiled LISP, GO cannot .
appear except as a statement in a PROG,
or in the top level of a COND which 1is

a statement in a PROG. Specifically, GO °

cannot appear within a PROG2 within a
COND.

GREATERP is a predicate which takes two
numbers as its arguments. The value is
T if the first arqgument is numerically
greater than the second, and NIL it they
are equal or the first is less than the

second.

- (see Section 6.1.6)

(see Section 7)

16

LAST (1ist)

LEFTSHIFT(n1,n2)

LENGTH (1ist)

LESSP(n1,n2)

LETP (ch)

LIST(x1,Xx2,...,XN)

LITP (ch)

LOGAND (n1,n2,...,1nk)

LOGOR(n1,02,...,nk)

LOGP (x)

The argument is a list. LAST returns the
tail end of list which contains omnly the
last element:

LAST((A B C D)) = (D)

(This is the list of the last element, not
just the last element).

LEFTSHIFT takes two numbers as its
arguments. The second argumeant must be
a fixed-point number. The word (32 bits)
vhich contains the number given by the
first argument is shifted left the
number of places specified by the second
arqument. If the second arqument is
negative, the first argument 1s shifted
right. The value is a logical number.

LENGTH returns the number of top-level
elements contained in the list given as
its argument.

LENGTH(((A BC) L (E. F))) = 3

LESSP is a predicate which takes two

numbers as its arguments. The value is T
if the first argqument is numerically less
than the second; otherwise it is NIL.

LETP is a predicate. Irf its argument is
one of the letters in the range A, B, ...,
Z, its value is T; othervwise 1ts value 1is
NIL. :

LIST takes an indefinite number of

"arguments, and returns a list of .

those values,
= NOT (OR(BREAKP (ch) ,DIGP(ch))) .

LOGAND takes an indefinite number of
arquments, LOGAND performs a bit-by-bit
logical AND on its arguments and returns
the logical number thus produced.

LOGOR is similar to LOGAND, except that 1t
computes the bit-by-bit logical OR of its
arguments,

It returns T if its argument 1s a logical
number, and NIL otherwise.

17

LOGXOR(n1,n2, ... ,0k)

C MAP(x1,x2)

MAPCAR (list,fn)

C MAPCON(x1,x2)

MAPLIST(list,fn)

MAX(n1,n2,¢¢0,0k)

MEMBER (x,1list)

MIN(n1,02,...,0k)

MINUS(n)

MINUSP (n)

MKATOM()

LOGXOR is similar to LOGAND and LOGOR,
except that 1t computes the logical
exclusive OR of its arquments.

MAP is a function used by the compiler.

MAPCAR takes tvwo arquments: the fiirst 1s 4
list and the second is a function of one
argument. MAPCAR applies the giveun tunction
first to the CAR of list, then to thes CADR

. of list, and successively to each element of

list until the end of the list is reached.
MAPCAR returns a list whose kth element is
the value of the functicn applied to the kth
element of the list given as an argument.

MAPCON is a function used by the compiler.

MAPLIST takes two arguments: the first is
a list and the second is a functional "
argument. MAPLIST applies the given

function first to list, then to CDR list,

and successively to each 'tail end' of list,
until the end of the list is reached.

MAPLIST returns the list of the values

of those function evaluations.

MAX takes an indefinite number ot
arquments, MAX returns the largest of 1its
arquments., If any of the arguments are
floating-point numbers, the result will

be floating-point.

'MEMBER searches the list for an occurrence

of an element EQUAL to x. If such an
element is found, MEMBER returns T;
othervise it returns NIL.

MIN takes an indefinite number of "
arguments, and returns the smallest of

them. If any of the arquments are floating-
point numbers, the result will be a
floating-point number. :

MINUS takes a numberkfor its argument,
and returns the negative of that number.

MINUSP takes a number for its argument;
it returns T if that number is less than
zero and NIL othe;uise.

MKATOM is a function with no arguments.

It is used to make atoms out of the
information put into the internal

18

NCONC (list, x)

NOT (x)

NULL (x)

NUMBERP (x)

OPEN (ddname,list,at)
OPTIMIZE (p)

OR(P1,P2,...,pPN)

0RDERP(at1,at2)

OTLL (n)
OVOFF()
OVON ()

PAIR (list1,list2)

character buffer by RLIT or RNUMB.
MKATOM returns the atom created.

The first argument must be a list. NCONC
changes the end of 'list' to point to x,
In effect, NCONC is like APPEND except
that it actually changes its first
argument instead of copying it. NCONC
returns the modified first argument.

NOT returns T if its arqument is NIL and
NIL otherwise. It is the same as EQ(x,NIL).

NULL is the same as NOT(x).

'‘NUMBERP is a predicate which returns T

if its arqgument is a number (logical,
fixed-point or floating-point); otherwise
it returns NIL.

(see Section 6.1.1)
(see Section 7.3.2)

OR takes an indefinite number ot arguments.
The arguments are evaluated from left

to right until one is reached whose value
is not NIL, or the end of the list is
rcached. OR returns T or NIL respectively.

ORDERP imposes an arbitrary canonical order
on literal atoms. PFor character-objects
that order is alphabetic; for all other
atoms, the order depends on the actual
location in storage of the atomhead.

ORDERP returns T if the two arguments are
EQ or the first comes before the second in
this canonical order, and NIL if the first
argument comes after the secoad.

{see Section 6.1.4)
(see Section 7.3.2)
(see Section 7.3.2)

PAIR is a function used internally by the
LISP system to build association 1iists.
PAIR takes two lists as its arquments. The
lists must be of equal length; otherwise

an error will occur., PAIR matches tne
elements of the ftirst argument with the
elements of the second arqument and returns

19

PAIRMAP(x1,x2,x3,x4)

@]

PLANT (x1,x2)
PLANTDC(x1,x2)
PLANTSQ (x1,x2)
PLANT1 (x1,Xx2)

Z I X

PLUS(n1,n2,...,0k)

PRBUFFER (p)

C PRINLAP(p)

PRINT (x)

PRIN1(at)

a list of dotted pairs; the CARs of the
pairs are the elements cf the first list
and the CDRs of the pairs are the elements
of the second list. The list of dotted
pairs is in the reverse order ot the input
lists.

PAIR((A B C) (D E F)) =
({(C . F)(B . E) (& . D))

PAIR((A B) (C D E))

--==> *%% F2 - TOO MANY ARGUMENTS - EXPR

PAIRMAP is a function used by the compiler.

These functions are used by the compiler
to insert code into BPS (Bimary Program
Space).

PLOS takes an indefinite number of
arguments. PLUS computes the algebraic
sum of its arquments and returas that
nupber. If any of the arquaents are
floating-point numbers, the result will be
floating-point. PLUS() = O.

PRBOFFER takes T or NIL as an argument.
PRBUFFER(T) will cause READ and READCH to
print the input buffer every time a new
record is moved into it. A *=>' in the
margin of a line indicates that the line
is a buffer printout. PRBUPFER (NIL) will
stop the printing of the input kuffer.
PRBOFFER is used when it is necessary to
show exactly what was given as input to
LISP. '

{see Section 7.3.2)

PRINT takes an arbitrary S-expression for

its argument. PRINT causes that S-expression
to be written on the output device currently
write selected (default LISPOUT).

The arqgument of PRIN?1 must be an atom
{numeric or literal). PRIN1 tramslates
its arqument into output format amd
places it in the output buffer.. PRIN1
does not terminate the line, however,
and sucessive calls to PRIN1 will place
the values immediately following each
other in the ocutput line.

20

PROG (list,e1,e2,...,en) PROG is a special form. It provides

PROG2(x1, x2)

QUOTIENT (nl1,n2)

N RDS(ddnanme)

READ()

READCH (p)

the capability to perform iteration

by allowing looping and the use of
temporary variables. The list contains
the variables of the PROG required

by the statements el,e2,...,en. PROG
variables are initially NIL; they can

be reset with the functions SET or SETQ.
The "statements" el1,e2,...,en must be
either expressions or literal atoms.

The literal atoms are used as statement
labels. PROG evaluates the statements
e1 through en in sequence, unless 1t
comes to the special forms GO or RETURN.
When a GO is evaluated, PROG continues
evaluation at the statement immediately
following the label given in the GO. When
a RETURN is evaluated, the expression
given in RETURN is returned by PROG. If
no RETURN is reached before the last
statement, PROG returns NIL.

PROG2 takes two arguments and returns
the second as its value.

Both arquments of QUOTIENT must be numbers.
N1 is divided by n2 and the quotient 1is
returned. IF both n1 and n2 are fixed-
point numbers, the value is truncated to
an integer; otherwise the result is a
floating-point number.

(see Section 6.1.7)

" The execution of READ causes one

S-expression to be read from the current
Ainput file (as defined by RDS). The value
of READ is the S-expression.

If the argument is NIL, READCH will read
the next character from the input buffer
and return with the corresponding
character-object as a value. READCH(T)
causes a simulated backspace. The value
of READCH(NIL) after a READCH(T) has been
executed will be the same as that returuad
by the previous READCH (NIL). The vaiue of
READCH(T) is the same as that retuined by
the next to last READCH(NIL). READCH(T)
should only be executed once betore
calling READCH(NIL).

21

RECIP (n)

RECLAIN()

RELINK (x1,x2)

REMAINDER (n1,n2)

REMFLAG (List,at)

REMOB(at)

REMPROP(at,ind)

RESTORE (ddname)

RETURN (x)

REVERSE (list)

RLIT (ch)

For floating-pcint numbers, the vaiue is
the reciprocal of n. For fixed-point
numbers the value is 0.

RECLAIM causes a garbage collection to
occur. The value is NIL.

- RELINK 1s a function used by the compiler.

The value of the function is the remainder
given when dividing n1 ty n2.

This function removes all occurrences of the
flag 'at' (a literal atom used as a flay

on atomic property lists) from the property
list of each atomic symbol in the list,

When the flag is found, the pointer in the
preceding element of the property list is
modified to delete the flag from the list. ‘
The value of REMFLAG is NIL.

This function removes the atom ‘at' froa
the OBLIST. It causes the symbol and all
its properties to be lost unless the
symbol is referred to by an active list
structure. When an atcmic symbol has been
removed, subsequent reading of its name
from input will create a different atomic
symbol.

REMPROP searches the prcperty list of

'at' looking for all occurrences of the
atomic symbol ‘ind'. 1If the atomic symbol
is found, it is removed from the list

along vwith the succeeding element.

Removal is accomplished as described 1n
REMNFLAG. The value of REMPROP is NIL. "

(see Section 6,2.2)

This function is used in the PROG reature.
RETURN is the normal end of a program. The
arqument of RETURN 1s evaluated and this is
the value cf the program. No further
statements are executed.

REVERSE causes the top level of list to be
reversed. Thus, REVERSE((A (B . C))) =
((B . C) A).

RLIT takes a character-object as an

argument and puts the corresponding
character intc an internal character buffer.

22

RNUMB (ch)

RPLACA (x1,x2)

RPLACD (x1,x2)

SASSOC(x,alst,fn)

‘ C SELECT (g, (91 x1),
(gdn xn) ,x)

SET(x1,x2)
C SETC(x1,x2,x3)
SETQ (x1,x2)

N SPEAK()

*

4

Executing RLIT sequentially will cause a

string of characters to be constructed in
the character buffer. MKATOM can then be
called to make a literal atom out of it.

RNUMB takes one of these character-objects
as an arqument: +, -, E, 0, 1, 2, ..., 9.
RNUMB will construct a partially translated
number in the internal character buffer.
Remember that the character-objects 0, 1,
2, ««eps 9 are different from the numbers 0,
1, 2, «..y 9. The sequence of character-
objects presented to RNUMB, one at a time,
must represent a meaningful integer or
floating-point number. MKATOM can then

be called to make a numeric atom out of

the information in the character butfer.

RPLACA replaces the CAR of the LISP cell x1
with x2. This provides a method of
changing list structures without using
CONS, and thus creating no new LISP cells.
The value is the new x which can be
described as CONS (x2 (CDR (x1)).

BPLACD replaces the CDR of the LISP cell
x1 with x2, as described in RPLACA. The
value is the new x which can be described
by CONS((CAR x1) x2).

SASSOC searches alst, which is a list of
dotted pairs, for the pair whose first
element is equal to x. If such a pair is
found, the value of the fuaction is this
pair. Otherwise the value is the function
of no arguments, fn.

This function is used internally by the
compiler. ‘

The value of x1 is bound to the value of
x2 on the current association list. The
value is the value of x2.

This function is used intermaily by the
compiler. A

SETQ is like SET except that the first
argument is quoted (not evaluated).

SPEAK gives the number of CONS function
calls since the CONS counter was last reset,

23

SPECIAL (list)

SUBLIS(&lst,x)

" SUBST(x1,x2,x3).

SUB1 (n)
TERPRI()

TIMES(ni, ...,0n)

TRACE (list)

|
TREAD (x)

TTAB (n)

UNCOMMON (list)
UNCOUNT ()
UNSPFECIAL (list)

UNTRACE (list)

VERBOS (p)

WRS (ddname)

(see Section 7.2.3)

Alst is a list of dotted pairs,

((ul.v1) (u2.v2)...(un.vn)). The value
of SUBLIS is the result of substituting
each vl for the corresponding ul in x.

" The value of SUBST is the result of

substituting x1 for all occurrences of
the S-expression x2 in the S-expression x3

The value of SUB1 is n-1.
This function terminates the print 1line.

The value of TIMES is the product of the
arguments,

The arqument of TRACE is a list of functio

- After TRACE has been executed, the argumen

and values of these functions are printed
each time the function is entered. The
value of TRACE is NIL.

(see Section 9)

TTAB moves the current output cursor to
the nth position in the output tuffer.
Whatever is PRINTed next will appear
starting at the given cclumn. ‘
(see Section 7.3.2)

UNCOUNT turns off the CONS counter.
(see Section 7.3.2)

This function removes TRACEing from all

" functions in the list. The value of

UNTRACE is NIL.

VERBOS controls the printing of garbage
collection messages. VERBOS (NIL) cturans
off the messages and VERBOS(T) turns the
messages on. The value of VERBOS is NIL.

(see Section 6.1.5)

24

XTAB (n) ' XTAB moves the current output cursor 'n°
‘ characters to the right. The argument
must be a positive integer. Whatever is
PRINTed next will appear starting *n!
columns to the right of the end of
vhatever was last printed (using PRIN1).

ZEROP (n) ZEROP takes a number for its argument.
It returns T if the absolute value of"
its argument is less than 10**-6, and
NIL otherwise,

3.2 Atoms_With_Initial Values

S2veral atoms have predefined values (APVALS) in LISP/360. These
atoms and their corresponding values are as follows:

Atom Yalue

ALIST association list

BLANK ' Elank

BPS start and end of binary program spac=s
(see Section 7.2)

COMNA .

DASH -

DOLLAR $

EQSIGN =

F NIL

LPAR (

NIL NIL

OBLIST object list

PERIOD .

PLUSS +

RPAR)

SLASH /

STAR *

T T

25

3.3 Character-obijects

The following character-objects are defined in the system.

blank { ! X 4
A + $ | Y 5
B | % Z 6
C &) unprintable 7
D J H ’ 8
E K = % 9
F L - - 3
G Y] / >]
H N S ? 2 "
I 0] T 0 '
4 p 0 1 =
. . Q v 2 . "
< R L] ' 3

The ‘unprintable' character has no graphic symbcl on the printer.

Its punched card code is 12-11. READCH will translate any one of the
256 characters available on the IBM System/360 into one of the above-
mentioned 64 character~-objects. Lower-case letters are translated
into upper-case letters. Note that READ does not perform this
translation.

26

4. S

In LISP/360 there exist special differences of which the user

PECIAL DIFFERENCES_IN_LISP/360

—— S St > s o S S——— —

should be aware.

Several difterences pertain to numbers:

1.

Fixed-point numbers may have absolute values up to
2*%%x31,)

Floating-point numbers may have absolute values
between 10*%*75 and 10%** (-75), including O.

Floating-point significance on input is 6 digits.

Numbers are considered equal if the absolute value
of their difference is less than 10**(-6).

Ssigns are ignored in reading logical numbers.

Some other differences refer to atoms, control cards, and
several functions:

1.

Alphanumeric atoams in LISP/360 may have up to 80
characters.

CAR of an atom is not junk as in LISP 1.5, but the
address of the full cell list of that atom.

No control cards of any type exist in LISP/360.

If a PRINT is exeéuted after PRIN1, the list generated

by PRINT follows the data output by PRIN1.

GO can only be given atomic 1labels.

"READ ignores extra right parentheses.

27

5, LISP_JOB_SET-UP

LISP statements can b2 written with a free-field format in coluans
1-72. The following control statements are necessary to run the LISP

program:

// JOB Statement
/* KEY Statement (omit for remote jobs)
//stepname EXEC PGM=LISP

//LISPOUT DD SYSOUT=A

//LISPIN DD =

.

LISP Progranm

/*

Additionally, DD statements for using the compiler may be included. e

An example of these statements is given in Secticn 7.3.1.

The user may also specify the percentages for allocation ot CcOrLe
between free cell storage and binmary program space (BPS) in the PARn
field of the execute statement., The fcllowing statement

//stepname EXEC PGM=LISP,PARM='F=66"

will cause 66 percent of the core available for the rum to be
allocated to fre= cell storage and 34 percent of the core to be
allocated to BPS. The statement

//stepname EXEC PGN=LISP,PARN='B=34"

will cause the same allocations to be made. If the user specities

both paramet=rs, the 'B' parameter will take precedence. The default
values are F=66 (B=34). Thus, if a user is running interpreted LISP
only and is not using the compiler, 'B=0' will give the user
considerably more core than the default values. "

If the user RESTORE's from any file (including the compiler), the
values specified in the PARM field are overridden by the values
specified when that file was created. 1In this case, the F and B
options of the PARM field are meaningless.

One additional PARM field entry may be made to indicate the amount of
core to be reserved by the system for opening and closing files. The
Statement :

//stepname EXEC PGM=LISP,PARM='R=8K'
vill cause 8%*1024 bytes to be reserved for OS OPEN's and CLOSE's.

This parameter may also be specified without the 'K'. For example,
#=7000 will reserve 7000 bytes. The default value for 'R' is B8K.

28

6. DATA_MANAGEMENT IN_LISP/360

6.1 Data Management Punctions

LISP/360 can read or write data sets on any 0S/360 supported device
with the aid of the functions OPEN, CLOSE, WRS, and RDS. The
handling of its buffers can be modified by the functioas ASA, 1NLL,
and OTLL. It is assumed in the following paragraphs that the reader
has a working knowledge of 0S5/360 Data Management.

6.1.1 OPEN{(ddname,list,at)

A1l data sets must be 'opened' by the function OPEN before they are
used. A DD statement is used to define the data set and OPEN uses the
ddname in the statement to refer to the data set. The ddname is the
argument of OPEN. The record length (LRECL), blocksize (BLKSIZE) and
whethar or not the record's tirst character is a control character (A)
can be specified in the second argument of OPEN. The taira argument
of OPEN specifies whether the data set is to be used for input (INPUT)
or output (OUTPUT).

The following is an example of the opening of the data set defined by
the DD statement named DATA:

OPEN (DATA ((LRECL . 100) (BLKSIZE . 1000) (A)) OUTPUT)

The second and third arquments of this OPEN indicate that the data

set has a record length of 100 bytes, a block size of 1000 bytes, that
the first character in each record is a control character, and that
the data set is to be used for output., The record length and

the blocksize can be given in the DD statement instead of in OPEN.

All other DCB parameters are fixed by OPEN and they cannot be changed
by the LISP user. The record format is set to fixed blocked (FB),

and the error option (EROPT) is 'accept®' (ACC) on input and tskip!
(SKP) on output.

The three ddnames LISPIN, LISPOUT, and LISPUNCH are given special
significance in OPEN. LISPIN and LISPOUT are opened automatically by
the interpreter and therefore need not be OPENed. The second and third
arguments are implied by LISPUNCH, and are tharefore ignored when OPEN
is given LISPUNCH as its first argument. LISPUNCH implies a record
length of 80 bytés, a blocksize of 80 bytes, that the first character
1n each record is data and not a control character, and that the data
set is to be used for output,

One of the atoms SYSIN, SYSOUT, SYSPUNCH and SYSFILE may be used as
the second arqument of OPEN.

SYSIN implies a record length of 80 tytes, a blocksize of 80 bytes,
and that the data set will be used for input.

29

SYSOUT implies a record length of 133 bytes, a blocksize of 665
bytes, that the first character in each record is a control
character, and that the data set will be used for output.

SYSPUNCH implies a record iength of 80 bytes, a blocksize of 80
bytes, and that the data set will be used for output.

SYSFILE implies a record length of 80 bytes and a blocksize of
1600 bytes. SYSFILE should be specified for all data sets used
by CHKPOINT or RESTORE.

OPEN puts an APVAL on the atom which is the filename, with a pointer
to the DCB for that file.

6.1.2 CLOSE{(ddname)

All data sets should be *'closed' by the function CLOSE after use.

CLOSE takes as its arqument the ddname in the DD statement that "
defines the data set. The two ddnames LISPIN and LISPOUT refer to

data sets that remain open throughout a LISP job. LISPIN and LISPOUT
cannot be closed by CLOSE. They are, however, closed automatically

at the end of a LISP job.

6.1.3 ASA(p)

A control character is normally prefixed to all output records
produced by LISP/360. Executing ASA(NIL) stops the prefixing of
control characters. This is useful when LISP/360 is used to produce
output that will be input to LISP/360 later on. Executing ASA(T)
will cause LISP/360 to start prefixing control characters again.

For 'n' in the range 0 < n < 120, OTLL (out-line-length) specifaies
how many character positions LISP/360 can use in €ach output record. "
After OTLL(n) has been esvaluated, LISP/360 will fill in exactly 'n'‘
positions in each output record. Whenever necessary, atoms will be
split across two output records so that precisely 'n' positions are
filled in each output record. This is useful when LISP/360 1s used

to produce output that will be input to LISP/360 later on. In a fow
cases, OTLL is called automatically by HRS.

6.1.5 WRS(ddname)

s e D e i e o —

WRS (Wrlte-select) 1is an output directing function that takes as its
argument the ddname from the DD statemaent that defines the desired
output data set. All output from LISP/360 will go to the aata set
associated with the ddname after WRS(ddname) has been executed. The
two ddnames LISPOUT and LISPUNCH are given special significance 1in

30

WRS. In additicn to directing the output to LISPOUT, executing
WRS (LISPOUT) will have an effect similar to executing ASA(T) and
OTLL(100). Similarly, in addition to directing the output to
LISPUNCH, executing WRS (LISPUNCH) will have an effect similar to
executing ASA(NIL) and OTLL(72). For all other files, the user must
call OTLL explicitly - it does not occur automatically. WRS will
open LISPUNCH if it is not already opened. A data set produced by
PRINT when LISPUNCH was write selected (i.e., WRS(LISPUNCH)) 1s in
SYSIN format,

INLL (in-line-length) specifies how many character positions LI5P/360
should scan in each input record. This is useful when LISP/360 is
raquired to read data sets that are not in SYSIN format.

6.1.7 RDS(ddname)

RDS (read-select) is an input selecting function that takes as its
arqument the ddname from the DD statement that defines the desired
input data set. a1l input to LISP/360 will ba taken from the data
set associated with the ddname after RDS(ddname) has been executad.
The ddname LISPIN is given special significance in RDS. In addition
to selecting input from LISPIN, executing RDS(LISPIN) will have an
effect similar to executing INLL(72). For all other files, the

user must call INLL explicitly. :

31

7. TIHE LISP ASSEMELER AND COMPILER

Use of the LISP assembler (LAP) and compiler can decrease the running
time of a LISP program (formerly run interpretively) by a tactor of
from eight to twelve depending on the particular application. How-
ever, the theoretical differences between compilers and interpretars
impose certain restrictions on what can be compiled. These restric-
tions are easily bypassed and are mentioned in the following text
so that the user will be aware of them as they arise.

The compiler itself calls.the LISP assembler so that once a runction
is compiled it is immediately available for execution. LAP was
written to resemble closely the 0S assembler language on the IBM
System/360, with certain modifications. It should be remembered that
LAP is not only used by the compiler, but may be used independently by
the LISP user. '

7.1 LISP Assembly Program (LAP)

7.1.17 Differences_Between LAP_and OS_Assembler lanquage

0f the instructions available in the 0S assembler language, the
following have been omitted from LAP: _ ’

Set Program Mask (SPM) Set System Mask (SSHN)
Test I/0 (TIO) Start I1/0 (SI1I0)

Test and Set (TS) Test Channel (TCH)

Read Direct (RDD) : Write Direct (WRD)

Set Storage Key (SSK) Insert Storage Key (ISK)

Supervisor Call (SVC)

while these instructions are not directly available, they still may
be generated by use of the 'Define Constant' (DC) instruction. Also,
no extended mnemonics are available., All sixteen of the registers
are available in LAP, but they must ke roferenced with an R pretix,
i.e., RO, R1, ..., R14, R15, 1In addition, the user may refer to
registers R8, R9, and R10 as A, Q, and M, respectively; RS as NILR;
R4 as Ku4; R15 as PDL; and R7 as PDS. These aliases will become
clear as LAP is described.

The major difference between LAP and 0OS assembler language is the
availability of QUOTE cells and SPECIAL cells. These cells are
assembled as pointers to the particular quantities they represent.
Care must be taken in using QUOTE and SPECIAL cells. Examples are
includ2d in this section that illustrate the use of these cells.
Also, macros have been prepared to aid in their use,

'Define Constant!' and *'Address Constant' are defined in LAP in a
limited form. They may appear as (DC -logical number-) or ‘
(AC -S—-expression-). No duplication factors or variations are
allowed. AC is assembled as the address of the atom minus the

33

address of NIL. As the garbage collectcr has no way of knowing
about internals of compiled functions, the expression must be an
atom on the OBLIST to prevent it from being collected.

‘DC's and AC'S must be on fullword toundaries and this is

done in LAP by assembling a NO-OP in front cf the constants, if
necessary. If the user desires other instructions on fullword
boundaries, he may specify (CNOP) which inserts a halfword NO-OP
instruction (BCR RO RO), if necessary, to put the next instruction on
a fullword boundary. Also, a reference to an 'immediate' tield, such
as an MVI, can only be a logical (hexadecimal) number. For exaample,
(MVI 4 (R1), O0BX).

There is no indirect referencing in LAP. The use of * or *+4, etc.,

-~ (e.g., LA *+4 or LA NAM+4) is not allowed. All locations referenced

must be labeled at the point of reference.

LAP is invoked by calling the routine LAP360. It takes two arguments.
The first is a list of LAP instructions, the second is a 1list of

dotted pairs representing an initial symbol table or NIL (usually "
NIL). The first member of the first argument is a list of three
elements -- first, the name of the routine being defined; second, the
type of function (either SUBR or FSUBR); and the third, the number

of arguments., After this member comes the rest of the imnstructions,
each enclosed in parentheses.

7.1.2 Passing Arquments To_and From_ LAP_Routines

Any technique can be used for passing arguments between two user
defined routines., However, since it is sometimes necessary to
communicate with the interpreter routines, the fcllowing scheme is
preferred as it is the method used by the interpreter. Aas for the
actual call to another routine (once the arguments are established),
this is done by the macro *LINK which will be descrited later.

If there is only one argument, it is passed in register A (aiias for .
R8) . If there are two arguments, they are passed in A and @ (aliases
for R8 and R9). If there are more than two arguments (up to a maximu"
of twenty-two), there is a reserved area in core twenty words long
called ARGS in which the user can place the third, fourth, etc.,
argquments. ARGS may not be referenced directly, but its address is
permanently located at eight bytes past R12. Therefore, to store the
contents of RO as the third arqument, code

(L M 8(RO R12)) (ST RO O (RO M))

The value of a function is always returned in register A.

34

7.1.3 Register_Usage

Although all registers have been defined as usable, care must be taken
in the use of some of them. The following describes those of special

interest:

B3 -

R5 (NILR) -

R15 -

o R10 (M) -

R4 (KU4) -

R7 (PDS) -

R6 | -

R11, R12, R13

RO, R1, B2, R14-

is used as a base register to cover the extent of
the LAP routine. ’

contains NIL and should never be altered froam that
value. It may be used to store NIL in locations

"or to load other registers with NIL.

is the temporary pointer to the push-down list
for compiled code.

as mentioned above, are used for passing
arguments. These registers may be used freely
in routines and need not be restored.

is completely free for any general use.

contains the number 4. It may be used locally but
must be restored outside the scope of the
inmediate routine.

has meaning only for the compiler and amay
be used freely in LAP. It must be restored
if it is used in conjunction with the
compiler.

points to the next available free cell. It
should never be changed.

are used as base registers for the interpreter.
They must be restored.

are completely free for general use.

' It should never be assumed that any free register will be saved when
calling another function, even between two LAP defined user routines.

35

7.1.4 Macros

7.1.4.1 User_Defiped Macros

Macros may be defined for LAP by doing a DEFLIST of a LAMBDA
tefinition with the property MC. The LAMBDA definition must have
one argument which will become a list of the arguments to the
macro. The value of the macro should be a list of imstructioas to
be inserted. For example:

DEFLIST (((*SAVE (LAMBDA (x) (LIST (CONS (QUOTE ST) (CONS (CAR X)
(QUOTE (0 (R7))))) (QUOTE (BXH R7 K4 0 (R12)))))))HC)

Then the instruction (*SAVE R15) beccmes

(ST R15 0 (R7)) .
(BXH R7 K4 0 (R12))

Macros may be given any name that the user desires, except, of course,

it cannot be the same as a valid instruction mmnemonic. The system ’
def ined macros all begin with '*' for ease of recognition. ‘

7.1.4,2 System Macros

(*SAVE RX) - saves register x on an internal push-
down stack. It should be used with
care.,

(*UNSAVA RY) _ - pops up the top item on the stack and

stores it in register y.
(*SAVE Rx) and (*UNSAVE Ry) are used principally in recursive functions.,
(*LOAD Rx (QUOTE...)) - is used to load QUOTE cells. (QUOTE

cells are in core relative to NIL.
Therefore, this macro expands to

(L RXx (QUOTE...)) o
(AR 8x NILR) '

(*LOAD BRx (SPECIAL Z)) - is used for loading SPECIAL cells.
The macro expands to

(L Rx (SPECIAL 2))
(L Rx O (NILR Bx))

(*STORE RXx (SPECIAL 2)) - is used for storing SPECIAL ceils.
The macro expands to

(L M (SPECIAL 2))
(ST Rx 0 (NILR M))

36

(*RETURN NIL)

(*LINK FN i)

Two other macros,

Note: M is changed when using this
macro.

is used to exit a LAP routine. This
macro tranches to a particular place
in the interpreter. It expands to

(BC 15 48 (RO R12))
Note: *RETURN is the only way to
end a LAP routine., 'Falling through
the end' of a routine is incorrect.

is used to call function FN with 'i’
arguments.

*MOVE and *REMOVE are used principally by the

compiler and will be described in that section.

37

7.1.5 Sample LAP_Program
Define SETC such that (SETC X ((A,1) (X,2) (Y,L)) 7) modifies the
second argument to ((A,1) (X,7) (Y,L)), i.e., if the second argument
is the ALIST, we are changing the binding of variable X.
LAP360(((SETC SUBR 3) 1.
(L M 8(RO R12)) 2.
(L RO O (RO M)) _ 3.
(ST RO TENMP) 4,
(ST NILR O (RO M)) Se
(*LINK SASSOC 3) 6.
(L RO TEHNP) 7.
(ST RO 4 (RO a)) . 8.
(*RETURN NIL) 9.
TEMP (DC 0X) 10.
) NIL) 1.
Explanation: ‘

1. Defines SETC as a SUBR with 3 arguments.

2. Picks up the address of ARGS to find the 3rd argument.

3. Puts 3rd argument in RO,

4, Stores RO in temporary location.

5. Sets 3rd argument to NIL.

6. Calls SASSOC which has the same first twc arguments as does
SETC, hence they remain in A and Q and SASSOC's third
argqument remains in NIL for this case. SASSOC will return a
pointer to the dotted pair whose CAR contains the first
argument.

7. Picks up the saved value in RO (this was SETC's 3rd argument)'.

8. and stores it in CDR of the dotted pair.

9. Returns from the functions. Note that SETC's value 1is the
dotted pair since that is what is in A.

10. Definition of the temporary location.
11. Closes the routine with NIL in the symbol taktle.

It should be pointed out here that the value of LAP360 1s the

tinal symbol table of local labels relative to the beginning ot

the routine in bytes -- hence, in the above example, LAP360 returns
((TEMP.24X)) -- assume that *LINK takes 8 bytes.

38

7.2 Binary Progqramming_Space

— P — T - <o T P w—

An area is set aside for binary programs produced by LAP. The

size of this ‘area is set when LISP/360 is assembled. However, the
area may be eliminated by calling the function BPSZ which increas-s
free cell storage. The atom BPS has two pointers indicating how much
binary program space is available at any given mcment.

The atcm BPS mentioned above is slightly different from most atoms as
is indicated in Pigure 8.

b v - - -
[PU—

YR —

e = - - - o

'b-q---cﬂ

® ..
Lbits 32-34)
Vo 4 :
] APVAL] '
8 P s 011 » 1)
' ']
] (] 1
i
ADDRI ADDR2
‘ . Figure 8: The Atcm BPS !

ADDR1 and ADDR2 are pointers to the beginning and the end of binary
program space, respectively.

39

7.3 The_LISP_Compiler

—— o — — —— ———— - D s ——-—

The function COMPILE takes as its arqument a list of function names
vhich are EXPR's or FEXPR's. It compiles code in BPS for those

- functions and replaces the EXPR or FEXPR with an appropriate SUBR or
FSUBR property. It returns the list of function names. Functioans
to be compiled are restricted as follows:

1. GO statements within PROG2's are not allowed.

2. GO statements within COND's which are within COND's are
not allowed.

3. Free variables must be declared SPECIAL tefore compilation.
A function called SPECIAL (defined im Sectiomn 7.3.2) can
be used for this purpose.

4. variables used which communicate with the interpreter
. must be declared COMMON before ccmpilation. A function .
called COMMON (defined in Section 7.3.2) can be used
for this purpose.

once compiled, the function is called exactly as it would have been
called before compilation.

7.3.1 LISP Job_sSet-up for the Compiler

The following control statements should b2 used to access the
|- comspiler:

@ /7 JOB Statement ,

| " /¥ KEY Statement (omit for remote jobs)
//stepname EXEC PGB=LISP

‘ //LISPOUT, DD SYSOUT=A

| ‘ //CMPL DD DSN=SYS3.LISPCMPL,DISP=0OLD

//LISPIN DD * .
OPEN (CMPL SYSFILE INPUT) ()
RESTORE (CMPL)

CLOSE (CMPL)

| LISP Program

/¥

40

— e — ————

BPSLEFT()

BPSMOVE (n)

BPSUSED (p)

BPSWIPE (fn)

BPSZ {)

COMMON (list)
UNCOMMON (1ist)

EXCISE (p)

- returns as its value an integer indicating the

number of words remaining in BPS.

provides the ability to move the current BPS to
within *n* words of the end of all BPS. The space
vacated is returned to free cell storage. ‘n!
must be greater than six and less than the current
amount of binary program space left.

takes one argument. If p is true, LAF and the
compiler will print the size of the progranm
compiled. BPSUSED(NIL) turns off this message.

takes as its argument the name of an FSUBR or
SUBR previously compiled using the COMPILE func-
tion. For example, BPSWIPE (ARGNAME) would cause
all functions which have been compiled since
ARGNAME and including ARGNAME to be erased from
BPS. The next function compiled after BPSWIPE
has been called will be located in BPS in the
same space in which ARGNAME had been compiled and
future compiled functions will follow 1it.

The use of this function is two-fold. First, it
can be used for functions whose use is short-
lived enabling them to bes erased after some point
in the run, Secondly, it can be used in conjunc-
tion with the routins BPSCHKPT to create multipls
BPS files. Since these BPSCHKPT files may come
into use at various times in the run, the SUBK
pointers are never destroyed. Therefore, the user
must be sure that the function he calls does
exist in ‘his current BPS. If not, erroneous
results will occur.

takes no arquments. Returns all BPS to free cell
storage (for jobs requiring a lot of free cell
storage and not needing the compiler or LAE).

takes a list of variables as arguments and gives
or takes away the progerty ‘common' for ecacih of
themo

takes one argument. If the argument is NIL, the
compiler is EXCISED and the space added to Iree
cell storage. If the arqgument is true, the
compiler and LAP are EXCISED. The user may call
EXCISE twice. For example,

EXCISE (NIL) EXCISE (T)

41

takes one argument. If the argument 1s T,

the function causes optimization of compiied
code. However, it does slow down the compilation
process. OPTIMIZE (NIL) is the default.

OPTIMIZE (p)

OVOFF() - takes no arguments. 'In compiling, a type-8
: overflow or underflow error may occur frequeantly..
This is not an error, but OVOFF will stop the
message from printing.

OVON() : - takes no arguments. This function restores the
overflov message.

PRINLAP(p) - takes'one argument. If the argument 1s true,
the LAP produced by the compiler will be printed.

SPECIAL (list) takes a list of variables as arguments and gives
UNSPECIAL (list) or takes away the property *special' for each of

them.
. ";’

7.3.3 Examining_the Ccmpiled Code

If the user wishes to see the codz produced by a compiled function he
can do this by saying PRINLAP(T) before the compilation. Two
compiler macros *MOVE and *REMOVE will be noticeable in all compiled
routines. These macros set up and restore the push-down list upon
entering and leaving the routines. The user will also notice many
BAL's to a number of bytes past R12. This area contains interpreter
defined routines to handle SPECIAL, COMMON and FUNCTIONAL arguments,

42

7.3.4

Names of Compiler and_Assembler Routines

The following table is a list of the names of the routines used by

the compiler and assembler.

Care should be taken in using routines

vith the same names as these, for if they are redefined by the user,

the compiler will call the wrong routine.
_' and *'* are part of the atom's name.

COMMON
COMPILE
coM1

CONC

MAP
MAPCON
OPTIMIZE
OVOFF
OVON
SELECT
SPECIAL
UNCOMMON
UNSPECIAL
**CALL
*%*COMCOND
**COMPLY
**CCOMPROG
**PAFORM1
**ppi
**PHASE2
**SPECIAL
**UNSPECTIAL

* ASSEMBLE
*_ATTACH
* CALL
*_CEQ
*_CHCOMP
*_COM2
*_COMBOOL
*_COMCOND
*_CCMLIS
*_COMP
*_COMPACT
*_COMPLY
*_COMPROG
*_COMVAL
*+_DELETEL
*_ LABLER
*_LAC
*_LAP360
*_LOCAL
*_LOCATE
*_LONG
*+_LOCK
*_OPTFN
*_PAFORN
*_PAFORM1
*_PAIRMAP

43

-

Where indicated, the

* PALAM
*_PASSONE
* PA1
*_PA2
*_PA3

. *_PAY

*_PAS
*_PA6
*_PA7
*_PAS
*_PA9

 *_Pa1

*_pA12
*_PA1Y
*_PHASE2
*_PI1
*_PROGITER
*_p12
*_P13
*_QSET
*_QTCL
*_REGSET
*_SPCL
*_STORE

"8, THE GARBAGE_COLLECTOR

Garbage collection refers to the process by which currently unused
LISP cells in PCS are returned to the free cell list, The process
is initiated whenever the free cell list is empty.

The first phase invclves marking within the confines of the tiee
cell storage area all LISP cells which are in use as part of some
list structure. The group of pointers in the LISP system which
reference all active data structures are referred to as base
pointers. For each base pointer, the system starts with the LISP
cell pointed to by the ‘base pointer and marks all LISP cells
reached by chaining through the CAR part or the CDR part (both
recursively). All cells having an address within the free cell
storage area are marked by turning on bit 0 of the CDR part ot
the cell., Fullvord cells are detected and only their CDR parts
are chained through. Cells on common sublists which have already
been marked are chained through only once.

The second phase consists of collecting all unused cells and
placing them on the free word list. The free cell storage is now
traversed linearly. Each cell which is marked has its mark bit
turned off. Each cell which is unmarked is placed on the free
cell storage list, and the number of cells thus collected is
counted.

by

To use the ORVYL version of LISP, the‘user must Lte familiar with the
Stanford time-sharing system and with the WYLBUR text-editiung
facilities. '

Once the user has logged on, typing the word LISP in response to a
COMMAND? prompt will cause the message 'ENTERING STANFORD/LISP' to be
typed. The user is then ready to start a LISP session. The commands
wvhich are available are the following:

1. DO <range> This command causes the <range> indicatzd to be
executed. <range> can be any valid WYLBUR range
(e.g., DO ALL, DO 10/LAST, DO 5, etc.). The
program to be executed must reside in the WYLBUR
working data set.

2. GO This command causes execution to be continued atter
an interrupt which was caused by hitting the
attention key.

3. SET LONG When executing a function, LISP will prant the
SHORT following if LONG is in effect:
NONE
ARGS

<name of function>
<list of arguments>
VAL -

<resulting value of functiocn>

If the SHORT option is in effect, only the resulting
value of the function will be printed.

If NONE is in effect, none of the above will be
printed and the only output to the terminal will be
from a user call to the PRINT function.

SET LONG is the default option.

. EVQ This command provides an immediate mode of
execution. For examgle, if the user types

EVC CAR((A B)) CDR((B C))
- these two functions will be evaluated immediately
as opposed to being executed by a DO coammand and
r existing in the WYLBUR data set.

5. EXIT ‘ This command terminates the LISP session.

45

To facilitat2 I/0 to the terminal, & function called 'TREAD 1s
available to permit dynamic reading of data from the termingl.
TREAD is defined as follows: :

TREAD (NIL) will prompt an '!' and read one S—-expression trom
the terminal. This S-expression will become the
value of the TREAD function.

TREAD (T) assumes that the user has previously executed the
function PRIN1, The argument of PRIN1 will than
become the prompt in place of the *!°',

TREAD (0) is a dummy call to TREAD which initiaiizes the
input buffer so that the next TREAD will reaa
from a newly prompted line.

As is 1implied above, more than one S-wexpression may be tyjed on di
input prompted line and successive use of TREAD will read these
expressions consecutively {(unless there is an intermittent TREAD (0)).

The time-shared version of LISP has no file 1/0 capabilities or
checkpoint and rastore facilities. Therefore, all functions
pertaining to these features do not exist in the time-shared
version. This also applies for the compiler, as well as for
certain other functions which would have no meaning in the
time-shared environment. :

One additional feature is the use of the character-=object *>* to
indicate 'put enough right parentheses to balance the lett parentheses
up to this point*. Por example,

CAR(((((X Y)))))
may be written as

CAR(((((X Y> : .

To use %>' for other purposzs, use $3$$>%.

46

9.1 Example ot a Terminal

The following is an axample of & Simple LTSP pregram using tie tim-o-
shared LiSP systew available on the 360,67 at Stanford. The program
tinds the last clement of a list. Text typed in all uppel Case lettorp:,
ptidicates systewm responses and prompts., Lower case lettelrs have been
used to indicate information typed by the user.

STANFORD 33 10/18,71 12:06€: 34
FAME? 'w. woodpecker!

ACCOUNT? HMuBE .

KEYWORD? NW¥NW

TERMINAL? poo0

S COMMAND? s=2t terse

f lisp
EHTERINGS STANFORD/LISP

2 collect 10 by 10

10, J aetine{((lest (lawmbda(l)
20, ? {cend ((null 1) nil)
30. ? { (rull cdr 1)) (car 1))
49. 7 { t (last (cdr 1))))
50. 2))))
60. 7 ATINkAX
» do all
ARGS
UEFINY
(({LAST {LAMBLDA (L) (COND ((NULL L) NIL) ((NULL CDR 1)) (CAR L))
(T (LAST (X 1)))))))
VAL

(LAST)
Zevyg dst((a2 b cd =2 gh Jkluwnpgr s

ARGS
LAST
((ABCDEGHUJIKLMNEPOQRS))
s*% AB-UNDEFINED VARLABLE
* CDR
* ({LABCDEGHUJIKLMDNGPCRERS))
#¥% TRACE-BACK FULLOWS

. NIL
» ((LABCLCEGHJIKLBMNGPG QR S))
* (CDR 1)

* HULL

* ((LABCDEGHUJIKLHMNTPGCRS))
* ((LABCDEGHJKLMNEP PO QRS))

* (((NULL CDR L)) (CAR L))

* (((NULL L) NIL) ((NULL CDR L)) (CAR L))

47

? mod 30

30. ((NULL CDR L)) (CAR L))
ALTERS ? , i
30. ((NULL (CDR L)) (CAR L))
ALTERS ? cr
? do all
ARGS
DEFINE '

(((LAST (LAMBDA (L) (COND ((NULL L) NIL) ((NULL (CDR L)) (CAR L))
(T (LAST (CDR L))))))))

vaL
(LAST)

? evqg last((a b c d e g hklmnpgecs))

ARGS ’ ,
_ LAST ’ ‘ ©®
(WABCDEGHJKLMNPQRS))
VAL
s

? set shott
? evqg last((z 'y x w vutsrcgqda))
A

? logoff
EDITING TIME =
COMPUTE TIME =
MEMORY USAGE = 92.14 PAGE-SECONDS
I/0 ACTIVITY = 0 UNITS

ELAPSED TIME = 00:04:36

END OF SESSION

0.06 SECONDS
2.06 SECONDS

48

10. LISP/360_SYSTEM MESSAGES

10.1 EVALQUOTE Messages

The message *'ARGUMENTS FOR EVALQUOTE ...' and the two S-expressions ifl
the last doublet are always printed before entering EVALQUOTE.

If no errors occur during the evaluation of the doublet, the message
*TIME xxxxMS, VALUE IS ...' and the value of EVALQUOTE for this
doublet are printed upon return from EVALQUOTE. The time 1indicated 1in
the above message gives the time spent in EVALQUOTE not including time
spent in garbage collection. The time is in milliseconds.

10.2 Iracing_ in LISP/360
Tracing is controlled by the pseudo-function TRACE, whose argument is
a list of functions to be traced. After TRACE has been executed,
tracing will occur whenever these functions are entered. However,
b2cause of the nature of the linkage between compiled functioas,

once a call by a compiled function to a comgiled function has

bzen executed untraced, it can never be traced again.

The trace-handler prints out the name of a functicn and a list of its
arguments when it is entered, and its name and value when 1t is
tinished unless that function is a FEXPR or a FSUER. When

tracing of certain functions is no longer desired, it can be
terminated by the pseudo-function UNTRACE whose argument 1s a

list of functions that are no longer to he traced.

10.3 Garbage_Ccllector Message

The message 'COLLECTED xxxxx CELLS AND STACK HAS xxxx UNITS LEFT* 1is
printed after every garbage collection. The message gives an
indication of the amount of free cell storage freed, and the size

of the push-down stack at each garbage collecticn. The printing

ot this message can be controlled by the function VERBOS.

10.4 Interruption Message

An lnterrupt supervisor takes care of all program interruptions in
LISP/360. See the IBM manual System/360 Principles_of Operation for
information about System/360 interruptions. The program status word
(PSW), the contents of registers 0-15 and the message '***ERKRORk: CAR
TAKEN OF FULLCELL' are printed if the interruptiocn codes is 1 to 7.

A trace-back is then given of the same type as described in Section
10.5.2. This type of interruption is usually caused by indiscrimiaate
use of CAR and CDR past the atomic level. The execution ot the doublet

49

that caused the interruption is halted and a new doublet is read in for
evaluation. Note that many functions (EQUAL, etc.) which chain

through the CDR of 1lists do not check for the full cell mark. Thus,

it these functions are applied to the CAR of an atom or a property

list which contains an FSUBR or SUBR, this type of interruption can
occur. Additionally, this type of interruption can occur durlng

the trace-back of another error.

An interruption code of 8 to F means that an overflow or underflow
occurred. This type of interruption causes the message ****QVER- OR
UNDERFLOW OF TYPE xx* to be printed. xx is the interruption code.
Execution of the function that caused the overflcw cr underflow 1is
resumed after the lntetruptlon.

10.5 Error_Diagnostics ; _ | | o

10.5.1 Syntax Errors

If the scanner finds syntactical arrors in an S-expression, it imnssrts
special atoms at appropriate places in the S-expression. These
special atoms are used as fcllows:

Atom Meaning

ERRB A '.,' (dot) encountered as the first non-biank
character after a '('. »

DOTERR1 The second S-expression in a dotted pair is not
followed by a right parenthesis.

DOTERR2 A '.* or ')!' encountered as the first non-blank
character after a dot.

The message '***R1-SYNTAX ERROR' precedes the printing of the "
S-expression with the error. A doublet containirg one or more
~syntactical errors causes the following message to appear *'***ERRORS
ENCOUNTERED WHILE RFADING. CONTINUING WITH NEXT DOUBLET' and
evaluation of the doublet is skipped.

50

—

10.5.2 Execution Errors
when am error occurs durlng executlon, the following type ot error
diagnostic 1s printed:

**%*arror code-error message
S-expression 1
S-expression 2

***TRACFE~-BACK FOLLORS
S~expression 3

S-expressions 1 and 2 are related to the type of error encountered
and are described below with the error messages. The trace-back
includes the lists bound on the stack at the time the error occurred.

The most recently used list in the stack (the list on top) is printed
first. Therefore, the first few lists will usually give a good
indication of what caused the error.

As an example, assume that none of the functions being interpreted are
using the PROG-feature and that TRACE has not been executea. Under
these conditions, the lists bound on the stack will be alternately
function calls and association lists., When reading the stack,

the user should keep in mind that the innermost functions are
evaluated first, even though the functions are interpreted from the
outside in. Therefore, the call on the function being evaluated when
the error occurred will be near the top of the stack, if the call to
that function is being interpreted.

If TRACE is executed within a LISP job, the name of an EXPR that was
called will be found on the stack between the definition ot the EXPEL
and the corresponding association list. If a function using the PROG-

feature was called, it will cause the fcllowing lists to appear in the
stack printout:

The association list.
The GO-list.

A list of the uninterpreted statements in the function starting
with the one to be evaluated whern the error occurred.

The complete argument of FROG (omitting the name of the
function) .

51

The following is an example of the error that might occur when using
the PROG definition shown. After the function has been decfined and
called, the error messages given below would be printed. Note that
the four items after the trace-back message are the ones described

above.

DEFINE(((TEST2(LAMBDA (X) (PROG (Y)
(SETQ Y (CAR X))

(SETQ Y (CONS X Y))

(SETQ Y (CAR Y))

(SETQ Z (CAR Y)))IMN)))

TEST2((A B C))
After execution has started, the following will appear:
**%xAS5~-SET VARIABLE UNDEF (see Section 10.5.3)

« 0z
* ((YABC) (XA BC)) o
***TRACE- BACK FOLLOWS
* (({ABC (XABOQ)

* NIL ,

* ((SETQ Z (CAR Y)))

((Y) (SETQ Y (CAR X)) (SETQ Y (CONS X Y)) (SETQ Y (CAK Y)) (SETQ

Z (CAR Y)))

52

10.5.3 Error_Codes_and_Messages

A1-CALL TO ERROR
This message is given if a LISP program calls ERROR. The argument
(if any) of ERROR is printed (s-expression 1). The trace-back is
not given with this message.

A2-FUNCTION NOT DEFINED ‘
This message occurs when an atom given as the first argument ot
APPLY does not have a function definition either on its property
list or on the association list.

S-=xpression 1 is the atom in gquestion.
s-expression 2 is the association list,

A3-NO ARGS OF COND TRUE
None of the prepositions following COND are true.

S-expression 1 is the list of the arguments given COND.
S-expression 2 is the association list.

AS-SET VARIABLE UNDEPF -
The function SET or SETQ was given an undefined progran variable.

S-expression 1 is the program variable.
s-oxpression 2 is the association list.

 A6-UNDEF LABEL IN GO

The label given as the argument of GO has not been defined.

S-expression 1 is the label. _
S-expression 2 is the list of the labeled statements.

A7-MORE THAN 22 ARGS :
More than 22 arguments were given to an EXPR cr a SUBR.

s-expression 1 is the list of arguments to the function.

AB-UNDEFINED VARIABLE
A variable is not bound on the association list, nor does 1t have
an APVAL. This error occurs in EVAL.

s-expression 1 is the variable in gquestion.
S-expression 2 is the association list.

AY-FUNCTION NOT DEFINED
The form given as the first argument to EVAL has as its tirst
slement an atom with no function definition either on 1ts
property list or on the association list.

S-expression 1 is the atom in question.
S-expression 2 is the association list.

D2-FILE CANNOT BE OPENED - NO STORAGE AVLBL
OPEN was asked to open 4 data set (file) when there was no btoLage
available in which to put the DCB for that data set. CLOSE
releases the space taken up by the DCB of the data set that 1t
is closing.

S-expressxon 1 is the ddname given as the first argument to OPEN.

P3-RDS FILE NOT OPENED

D4~-WRS FILE NOT OPENED
A data set (file) must be opened by OPEN before LISP/360 can vrltu
or read from it. ;

S-expression 1 is the ddname given as the argument to RDS or WRS.

D5-CHKPOINT FILE NOT OPENED

D6-RESTORE FILE NOT OPENED)
A data set (file) must be opened by OPEN before CHKPUINT or RESTOP‘
can use it.

S-expression 1 is the ddname given as the argument to CHKPOINT or
RESTORE.

D7-RESTORE GIVEN FILE INCOMPATIBLE WITH SYSTEM SPECIFIED

F2-TOO MANY ARGUMENTS-EXPR
F3-TOO FEW ARGUMENTS-EXPR
The wronqg number of arguments has been given to a definad tuiction.

S-cxpression 1 is the list of the function variables.
S-expression 2 is the list of supplicd arquments.

F2-TOO MANY ARGUMENTS-SUBR
F3-TO0O FEW ARGUMENTS-SUBR
The wrong number of arquments has been given to an SUBB.

S-expression 1 is the function. ®
S-expression 2 is the list of arquments, :

G2-PUSHDOWN STACK OVERFLOW .
) Recursion is very deep. Non-terminating recursion will cause this
error. S—expressions 1 and 2 will, if given,-depend on where 1in
the interpreter the stack was last used. The trace-back 1is not
given on this error. The message 'IN THE GAREAGECOLLECTOR' may
follow immediately after this message. This means that ther: was
not enough stack left for the garbage collectcr to work with when
the garbage collector was called. This is a fatal error and
LISP/360 gives up control to OS.

54

GC2-STORAGE EXHAUSTED
The garbage collector is unabls to find any unused cells 1in 1iree
cell storage. S-expressions 1 and 2 are the argumesnts of CONS.
The trace-back is not given on this error. This is a tatal ecrror
and LISP/360 gives up control to O0S.

I3-BAD ARITHMETIC ARGUMENT
An arithmetic routine was given a non-arithmetic argument.
S-expressions 1 and 2 will depend on which arithmetic routine
found the error,

IS~-ATTEMPT TO RAISE O TO O
This error is caused by trying to execute either EXPT (0,0) or
EXPT(0.0,0).

I6-ATTEMPT TO RAISE 0 TO NEGATIVE POWER)
This error is caused by trying to execute either EXPT (0O,n) or
EXPT(0.0,n), where n is negative.

I8-EXPT CANNOT TAKE REAL EXPONENT
' This error occurs when the second argument of EXPT is a floating-
point numter. ' .

R1-SYNTAX ERROR
A syntax error has occurred while reading am S-expression.
S-expression 1 is the S-expression in question. The trace-back is
not given on this error. ’

R2-BAD BRACKET COUNT
An end-of-file was reached while reading an S-expressiou,
S-expression 1 is the list as read with needed brackets (i1.e., right
parentheses or terminating character in the '3' notation) gJenerated.
The trace-back is not given on this error. This is a tatal error
and LISP/360 gives up control to O0S,

R3-BAD BRACKET COUNT ON USER FILE
An end-of-file was reached while reading an S-expression trouw a
data set other than IISPIN. S-expression 1 is the list as read
vith needed brackets generated. The trace-back is not given on
this error. The error causes LISP to start reading from LISPIN.

R5-NAME OR NUMBER TOO LONG
An EBCDIC printname or a number is longer than that acceptea by the
interpreter. Truncation occurs on the right. Oply the message
appears for this error. »

55

APPENDIX
THE LISP INTERPRETER

valquote[fn;args] = [get[fn;FEXPR] V get[fn;FSUBR] ->
eval[{cons[fn;args];NIL]
T -> apply[fn;args;NIL]]
apply[fnjargsia] = [
null{ fn] -> NIL;
étom[fn] -> [get[£fn;EXPR] -> apply[expr;largs;al];
| spread{ args];? | ‘

get{ £n;SUBR] -> ALIST:=a;

L 2

BAL subr?

T => apply[cdr(sassoc[fn;a; [[Jserror[A2]]]);args;a];
=q[carc[fn]J;LABEL] -> apply[caddr[fn];args:cons[cons[cadr[fn];caderfn]];a
eq{car[fn]; FUNARG] ~> apply[cadr[fn];args;caddr[fn]];
eg[caf[fn];LAMBDA] -> eval[caddr[fn];nconc[péit{cadr[fn];args];d]];

T -> apply[eval[fn;a]Jsargs;a]]
evalf form;a] = [|
null[form] -> NIL; ‘
numberp[{form] -> form;
atom{ form] -> [get[form;APVAL] ;> car[apvali];
T -> cdrf sassoc[form;a; [[Js;error[a8]]1]13: \ .
oq[car| form]};Q0UTE] -> cadr{form];z
eq(car{ form]}; FUNCTION] -> Iist[FUNARG;cadr[form];a];z’
—~q{car[form J];COND] -> evcon[cdr[torm};a];

egq[car| form}; PROG] -> proq[cdr[form];a]:2

56

REFERENCES

—————— w——— “

LISP_1.5_PRIMER, Clark Weissman, Dickenson Publishing Company

The_ Programming Lanquage LISP: _Its Operation agg_ggg;;catlons,

— e — ———

Berkeley, E. C. and Bobrow, D. G., editors, M.I.T. Press-

LISP_1.5 Programmer's Manual, McCarthy, J., M.I.T. Press

Programming_sSystenms and_;anggadeg, Eosen, S., editor, McGraw

Hill Publishing Company, pp. 455-490

An_Introduction_to LISP, Griffith, A. K., University ot Florida"

The BBN-LISP Systenm, Bdbroa, D. G., Murphy, D. L., and
Teitelman, W., Bolt Beranek and Newman, Inc.

Stanford LISP 1.6 Manual, Quam, L. H., Stanford Artificial
Intelligence Project

——— e s

Berns, R. I., (soon to be publisked)

IBM System/360 Principles of Operation, Form No. A22-6821

58

	CERN Writeup, January 1978
	Utah Modifications, January 1975

	Stanford LISP/360 Reference Manual, fourth edition (March 1972)

