The research resorted in this paper was sponsored
by the Advanced Hesearch Prolects Agency Information @phﬂ 260k
Processing Technigques O7ffice and was monitored by thegy [~ 7¢F

K soc\ | Command under contract F196286TC000k with the

‘/ﬁ T \\\ e, . »
/ .\ Electronic Systems Division, Air Force Systems Aum?22§%?2§&¢ﬂﬂzf”
. A. Barnett

Svyste] i
Ny /// System Development Corporation. DATE

System Development Corporation 2500 Coicrado Ave./Santa Menica, California 90406 20 September 1966

LISPE 2 Programming Exsmples

The LISBP O Source Language s still in the developmental stages. The programming
exanples shown reflect one proposed syntax. However, it is expected that numerous
changes will be made in the near fuiure.

Definition of S-expressions

1

a word
ABC is an identifier

<identifier>

<number> * = I hope you already know
1.9, 2 are numbers

<array> = by example:
[INTEGER 1 2 3} is an array of three numbers

<functicnal> = by example:
FUNCTICN ADD (A,B) A+B, definition of function ADD that

sums its two arguments

<boolean> = TRUE|FALSE

<string> = # a hollerith string #
#4BCK is a siring and is different from ABC. Identifiers
like ABC may have several properties not attributed to
strings. {An explanation of this will not be given here.)

<nil> = NIL|()
Think of this as the empty list, i.e., a list of no
elements, (NIL = ())

<atom> = <identifier>|<number>|<array>|<functional>|<boolean>
<string>|<nil>

<g-exprescsion> = <atom>|(<s-expression> . <s-expression>)

() Copyright System Development Corporation 1966,

a4 Zaov

20 September 1066 e SP-260L

Lxamples of s-expressions:

¢

1 D

} binary tree has the property thst either a terminator exists at a point or
that point is an ordered pair of "pointers" to more tree structure.

An s-expression has the property that either an atom exists at a point or that
point is an ordered pair of othor g-expressions.

#5 iz obvious by now, this notation is cumbersome. A few conventions are adapted:
(Ao (B~~~ 2)) (A0 -~ 1)
(A.{B.C))»{aB.C)
(A . 0O = (A}

i.e., 17 a dot sppears to the left of a {, the dot and the matching
set { and)} are removed. Applylng this rule to

TR Y
;

(a . (8. {c .. (i)

(A B, {(C.{Dp. {Hn

[}
.
o,
%

-

ea
S
Nt

(A B C
(Aapco . ()
and finally {4 B C D }

Whenever an s-oxpression is reducible to a form containing no dots, we call
this a pure list., Lists ars cbviosusly a subset of s-expressions.

20 September 1906 -3~ SP-2604

In working wita vither [isls ov g-expressions there are three basic and necessary
functioens;

CAK -~ the firvst element ¢f the ordered pair which is an s-expression

CarR{ {(a . b)) =
CAR((a b c}}

i

i

oy

il {a . (Le))) =a

CLR - the second eizmant of the ordered palr which is an s-expression

CDR(b
CDR{ SoR{ {a . (b e))) = (b ¢)
- structure, the vailue of CDR is a list of all but the
eI PR

CONE -~ takes =wo soexpressions as arguments and produces the ordered pair
of then

«

CONS(a, b} fa . b)
conNg{a, (v c}} = (s . {bec)} = {abc)

CONS is written in LISP 2 Source Language a&s the infix operator ".",

e.g., CONS(a , b} 2 & . b~ {n . b), The "." in the language is
compiled as & call to the function CONS.

The functions CAR and CDR arz so asmed for historical reasons and are undefined
for an atomic argument.

Another function used in the cxempie programs is APPEND, which has two arguments,
both lists.

APPEND((m b) {x y 2}) = {ea &z y z)
APPEND simply combines the two list arguments to form e new list,
CADR(X) = CAR{CDR (X))

CDDAR{X) = ODR{CDR (CAR{X}}} eotc.

20 Geptoemhor 1900 -l 8P-260k4

v VEORM 17 A CF ONE ARZUMENT, A ONE DIMENSIONAL

S, TO BE CONSIDERED AS A VECTOR, THE

D TO A UNIT VECTOR IN THE SAME DIRECTION.
TR OTHE VALUR OF VNORW I3 THEE NORMALIZED VECTOR.

SYMRGL FUNOTICH WASHT (A) IEAL ARRAY A:

; INTECGER N:

{®, 'REAL), L « VLENGTH(A))

‘{{“\f‘}’ Yoo ey

i,

S aag R &]

FOR M STEP -
i - R
B35 IS R R34

TR OVIENGTE COMPUTER THE LENGTH OF ITS ARGUMENT. A
7R VECTOR REPREOLY ARRAY OF REAL NUMBFRS.
REAL FUNCTION VLENGTH (4} FFAL ARRAY A:

{A)) PUAL L; INTEGER N:

—__—r W
RLCCH (L, N =+

N
IR T STt AR e 5 TINUTr Y .
FOROEOOTEP WL INTIL ¢ 1

Lo+ Lo+

.
PRI

SR st ¢
-
SNEE
oYy T OO T TY RIS U AT
aH PRIE FOULOWINEG 15 AN

S 5 e
YIOD Sinimay I G
(’,{I\‘Oh!\’! . l.: AV S RS RIS B

SRUARR SER N R 1S
AT A0 LD
R

20 September 1966 ~5- SP-260k

Apn examypie of LIS i ilustrating the use of functional arguments is
the function TTETR. The »ooogument, X, 1is an S-expreasion., The second
argment, P, ds s Muncticn srowesat which is e predicate of en S-expression,
That i3, P{X} is either i or FALSE depending on the wlue of X. The third
srgument, U, i sl :vtionel argument, and is used to control the flow
of the recursicn. T slon TESTR ewsmines the nodes of the S-expression
X one st o time and wide asks 17 the predicate P 1s TRUE for that
node, The value of P17 i the first node satisfying P. If all the
nodes fail, then the valus of TESTR ~?d U) is NIL. The order of examination
of the nodes is 1llustrated in the follc wing exouple !

1
7
R N\ This tree is represented in s-expression
’ A notation as
3 & (3.¢)) . (a.(B.(c.E))))
o \\ or
37 - .
Bl ((ARB.CYABC.E)
N
L i3

Suppose we execute
Q« TRESTR ("((a B . CYABC . L), P, symbel funarg () NIL);

1r P(X) 1s TRUE only when cay X = ‘B then @ will have the value ((B . C)).
Ir P (X} is TRUE only when ¥ = ' then 0 will have the value NIL.

SYMBOL FUNCTIOH TESTH (X,D.U)} 5YMBOL X,
BOOLEAY FURCTIORAL {SYMBCL} P
SYMBOL FUNTTIORAL { } U
Iv v IX: THEW LIST (¥
FLSE IR ROT SODE (X THEN U
ELSE TESTR [CAR ¥, P, SYMBGL FUNARC () TESTR (CDR X, P, U));

An alterpate Pormulation oFf the fusnetion TESTR is the function TESTRZ of two
arguments.

4 e T N g enrEereee ey F s
SYRSOT. FURCTION TESIED (X,

EUOQMAR ¥

ﬁmom P

P (X)) WOT NODE (X} THEN NIL
BLEE BLOCK (Y ‘) SYMBOL Y:
" ESTR2 (CDR X, P);
RETUR

e SO T EReEATE

g

1ly equivalent, in the sense that with the

These tun versions s
v snswver.

same arvgumonts, they produe

TESTE (X, ¥, SYMBOL FUNARG {) ¥In) = TESTR2 (X, P)

20 Ceptember 1966 -6 aP-260b

“P Bee Page T for comments

OYMMAOL SECTION TEST:

DECLARE (EXP) FLUID EXD:

FUNCTTION COMPILER (EXP) FLUID FXP:
IF ATOM EXP OTHEN LIST (LIST ('LOAD, EXP))
ELSE BLOCK (07 <« CAR RXP)
RETURN IF OF = 'PLUS THENW COMAD () FLSE

IF OF = "MINUS THEN COMIN () FLEE
IF 0P = 'TIMES THEN COMPY () ELSE
IF OP = 'DIVIDRE THEN COMQUO {)} FLSE ERROR {)

END,

FUNCTION COMIN (}: APPEND (COMPTLER {CADR EXP) , ' ({COMPLIMENT))),
EUNCTION coMoun ()

APPEND (APPEND (COMPILIR (CADDR EX7P), '((9TORE PUSH.))),

APPEND (COMPTILER (CADR EX®), '((DIV PP ,)))),

FUNCTION COMAD (): COMAR ('ADD),
FUNCTION COMPY ()s COUAR ('MPY),
FUISICTION COMAR (THCTRUCTION)

RLOCK (LISTTNG « COMPILER (CADR EXP), X):

FOR X I CDDR ©XP:
LISTING « APPEND (APPEND (LISTING, '((STORE PUSH,))),

APPEND (COMPILFR(X), LIST (LIST (INSTRUCTION, 'POP

RETURH LISTING

FD;

20 September 1966 -T- SP-260k

COMPILER compiles simple arithmetic expressions. The only relevant point in
this program is the handling of the variable EXP, a FLUID variable. Note that
many functions reference EXP which is not an argument. For each level of the
recursion a new EXP is "created." Work through the code with the following
example and zee if you understand the use of EXP:

(PLUS (TIMES A B) (TIMES ¢ (PLUS D E)))
A*D + C*{(Dh + L)

The list notation for this example is called Polish Prefix notation and is the
form of input to COMPILER. The value of COMPILER is:

({ LOAD A) PUSH. and POP. are convenient notations
{5TORE PUSH.) for using a push down stack. PUSH.
(L.OAD B) creates a temporary storage location
{(MYP POP.) on the PDS, POP. references the last
{STORE PUSH.) location created by a PUSH. (and not
(LOAD C) already popped) and releases it. Many
(STORE PUSH.) assemblers give such a capability for
(LOAD D) addressing a PDS.

(STORE PUSH.)
(LOAD E)

(ADD POP.)
{MPY POP.)

(ADD POP.))

20 Septemoer 1966 B TP.260k

AR LS PINDS THE LONGEST COMMON SEGMENT OF TWO LISTS
CYRROL, FUNCTTION LCS(X, Y) SYMBOL X, Y:
HLOoK (¢ « (), X1, X1, MAXL < 0) TSYMBOL €S, X1, Y1, INTEGER MAXL:
FOR X1 ON X WHILE LEIGTH{X1) > MAXL:
FOR Y1 ON YV WHILE LENGTH (Y1) > MAXL:
BLOCK (X2 + X1, L « 0) SYMBOL X2; INTEGER L:
FOR I, STEP 1 WHILE NOT NULL X2 AND NOT NULL Y1
AND CAR X2 = CAR Y1:
e X2 + CDR X2
Yl « CDR ¥1;
FRD;
1F L > MAXL THEN DO MAXL + L;

CS + X1,
H

END
END,
RETURN FIRSTN({CS, MAXL)
END,
SYMAOT, FUMCTION FIRSTN(X, L) OYMROL X; THTEGER L:

TP L = 0 THEN () BLOE CAR X . FIRSTH {(CDR X, L = 1),

7T FOLIOWING I8 AN LDXAMPLE
e {ABCDEF), '"(ACDEF AB);

e

SROTHE COMPUTER RESPONDS

P
(0D E F)

20 September 1966 -9~ AP-260k

FUNCTION NUMLIST(L, W) FLUID INTEGER N; SYVMBOL L: WORKER(L),

FUICTION WORKER(M)
IF NULL ¥ THEW NIL
KLSE LIST(CAR M, I + §+1) , WORKER{CDR M),

7R OTHE FOLLOWING I8 AN EXAMPLE
NUMLIST ((A B C D), O)

TR THE CNMPUTER RESPONDS
(ta 1} (3 2) (C3) (DL))

Wote the use of the fluid variable ¥ for communication between NUMLIST mnd
WORKER,

20 September 1966 -10- SP-2604

SOURCE
LANGUAGE |A +B * ¢

{

SYNTAX
TRANSLATOR

INTERMEDIATE f§ (PLUS A (TIMES B C))
LANGUAGE

COMPILER

((LDA B)
LAP | (FMP C)
(FAD A)

e - - o -

20 September 1966 -11- SP-260bk

S-EXPRESSION SIMPLIFICATIOR

s.)

(s (s 33))‘""(51 5, . S84

1 2

(s . ())—»(s)

(a . (b . (¢ . (@ . ONN
(a b . (e . (a .)
(a b ¢ . (a . ()))

a, b, ¢, d are S-expressions

(a v ¢ a . ()))

(e b ¢ 4)

() 3 NIL is the empty list (also an atom)

20 Oeptember 1966 -12- SP-2604

BINARY TREE

20 September 1966 -13- SP-260k
(1ast page)

BINARY TREE

((A.B).(c. (D.E)))

