4

——— D o ————

USERS GUIDE
by
Mats Nordstrom, June 1978,

Mailing address:
Datalogilaboratoriet
Sturegatan 2b
S=-752 23 UPPSALA
S W EDEN

The original work was supported by the Swedish B8oard for
Technical Development (STU) no 76-6253.

Revised May 1980 for CP~6 LISP
by Nick Briggs and Andrew Gullen,

__Academic Support_ Groupe .

Carleton University Computlng Centre;
Ottawar, Ontarios,

CANADA,

K1S SBé

TABLE OF CONTENTS

__PREFACE _ _

1. Primary datatypes.

. 2.. Internal representations,
3. Predefined atonms,

4. 1/0 = handling.

.. 5, Error handlings, Break_and Interrupts _

6. Garbage Coltection,

7. Edit,

8. Miscellaneous.

Appendix A: Functions in CP-6 LISP .
Appendix B: References,

PREEACE

__CP-6_LISP is based on LISP _F3, a LISP system written in FORTRAN. _

Except in the areas of memory management, break key haadling and
1/0, (CP-6 LISP is almost identical functionally t> the FORTRAN

_version, The first version (LISP F1) was written 1970-71 and has

by now been delivered to about 100 different computer
instaliations around the world.,

LISP F1 was a LISP 1.5 system (with some extsnsions) out has now

been almost completely rewritten into INTERLISP standard. C(P=-5
LISP is (almost) a subset of INTERLISP as defined #n Te 74 or Ha'
/5. In addition it is about 3 - 10 times more efficient that
LISP F1 and 1is easier to implement (as it is coded in a more
structured style).

As a users manual, Ha 75 is referred to {(and delivéred t09etﬁer’
with the system) and in this guide only differences fron
INTERLISP are reported,

Some of the functions in (P-6 LISP are coded in LISP and in the
following i1t 1s @assumeds, that atl those LISP-packages . are
included in your system, (Check with your diastallation
_manager!),

LISP may be invoked with

1LISP and the Llibrary (which contains many of the functions
described in this manual) may 2e read in with

(INPUT (OPENFILE 'LIBRARY.LISP)) This file will clos» itself

~_ when finished. Once the library has been read in, you nay save 3

clean LISP memory image, and avoid having to reread the Llibrary.

CHAPTER 2

. INTERNAL REPRESENTATIONS..

A more complete description of the internal representations is’
_given _in the implementation_ guide. _ Here we only give thes
information needed for a complete knowledge and wuseage of CP-=5
LISP from the user's point of view.

a) The ADDRESS SPACE..

The address space is shown by the following figure:

fixed memory dynamic memory

| e Bt I wmmm (meeeescmeemeeee]’)
small integers chars for strings listss, atomss, strings
and big intejers.

shrinks as necessary to
The total size is linited by:
segment, and user or tastallation:

The dynamic area of memory grows and
accomodate the users programs/data.
the size of the instruction
defined memory lLimits,

b) _Literal ATOMS,

_ _checks for a bound value 3EFORE a global value - as in INTERLIS?

_ be

ATOMS are éepresented as a "three-pointer record” with soaé

~ additional information which will not generally interest the (P-5

LISP user,

The globat value of an atom is stored in CARCaton).. . (EVALT

globatl value may be set:
If a3’
_assigned, CAR(atos) points-td> the aton

but in contradiction to LISP 1.5). A
either by SET/SETQ at the top levels or directly by RPLACA,.

global value has not been
NOBIND.

_ PROPERTY LISTS

atom is stored in CDR(atom). This can.
°roperties are normnally accessed by the

The property List of an
any LISP object.

D

€

A

<

@ @ 9

functions GETﬁwéndrbdf;

___PRINT_NAMES

The PRINT NAME of an atom is pointed to by a (non LISP):
pointer in the atom record, in a manner similar to the storage of
a string.

_FUNCTION DEFINITIONS

In INTERLISP each atom~record also has a "function. field”
called the function <cell <(Ha 75 opage 4). In (P=5 LISP user
defined functions are stored as LAMBDA or NLAMBDA expressesions
on the FNCELL. A SUBR or FSU3R 1is recognized by *2randing® ths
atom-pointer itself but 1in order to simulate the facility of
making use of “free function indicators”, GETD is defined t3;
return (SUBR , FO00) if FOO is a hand coded SU3R, and (FSUBR .
’ o FOO) if it is an. FSUBR.

The foramas (SUBR: . F0O0) and (FSUBR . FO00) are simulated functioa:
» L indicators and legal function arguments to APPLY,
Example:

__(DE KAR(X) ((SUBR . CAR) X]

This definition of KAR causes KAR to 5ehave exacfly.as cAR
_independently of whether (AR _has been redefined to somethinaj
el se.

©) STRINGS and SUBSTRINGS.
STRINGS and SUBSTRINGS are represented in two partse the étriﬁg
header, which contains a length and a (non LISP) pdinter to the
actual characters which make up the string.

= Tuo different strings may have the same print name.,
- A string's value is always idtself,
- A SUBSTRING cannot be distinguished from a3 normal string.

_ = A SUBSTRING shares characters with the parent string.

d) The SYMBOL TABLE.
- The function S o -
(O0BLIST). .

— _....feturns the actual 0BLIST, as a list _of lists - each of which is
one of the non-NIL buckets in the hashed symbol table. As this
is not a copy, care must be taken when doing operatisons on this
e) The ALIST.

" Variable bindings are stored in an association Llist (as in LIS>
1.5) but this Llist simulates a push down stack (as in INTERLIS?)
and _is implicitly given to EVAL, APPLY and EVLIS. .
The function
e CALIST) o e S
returns the actual association list, o A
I1f evaluation 1is to be performed in some spezdal: variable-
____ ___environment use . . — .. — o
(EVALA s assoc) - as (EVAL s) but uses
__AA _ assoc as the push down stack
(APPLYA fn L assoc) as (APPLY fn L) -"-
- Eﬁ.: A “Safe" definition of GETPQ may look like
_________ (DF GETPQCA IND)(GETP (EVALA A (CDDR (ALIST))) INDJ
l.e. the rébiﬁd{ng of A and IND, here done by GET?Q, is not
L seen inside the evaluation of A.
) LISTS,
) kﬁi}sr is represented a§" a tuoigs%nter recordes the firs;m}ielihi o
being the CAR, the second being the CDR.
e o ‘NGQSERE} - e e e) R .
.. _The value of a small integer is the value of the pointer with a
proper offset subtracted, The value of a big intejer is stored
in a3 full word hidden from the wuser (but found tarough its
e .pointer valuede, R, I N .

CHAPTER 3

o _PREDEFINED ATOMS o
Here ws a list of those atoms which may be of interest
for the CP-6 LISP user.

NIL,T These atoms can not be destrayed by any

functions such as RPLACA etc.
NOBIND is stored in car of undefined atoms. .
ADVISEDFNS List of advised functions,

*BACKTRACEFLAG if true, eval—-apply will store forms under
execution, This is needed to perform the
command BT (backtrace) inside a break,

«*BACKTRACE List of forms under execution if *BACKTRACEFLAG
= T.

BROKENFNS List of broken functions.

USERFNS List of those functions which have been deflned

before the first time (CURFILE file) was

performed.

CURFILE name of the current file (used by the MAKEFILE
S - package).
*PRINTLEVEL The printlevel used by TRACE.
«L ASTERRORN The most recent error number (NIL if no errors
B have occurred), e e
HELPFLAG If NIL, the break package will not be called

on errors,

]

! ’ o :": ?‘:9
- o - - CHAPTER &) -
o I/70 HANDL ING - -
Though CP-6 LISP was designed to be as true a subset of lNTERLIS’
) ..as _possible, there do exist some minor differences. Most of them
have to do with 1/0,
e .a) Ioput characters of speg¢ial meapiog. L

for dotted pairs. Must be separated by blanks!
A *.' which can not be interpreted as *a dotted 2air® is
read as an atom,
escape character
QUOTE character
* string character
super brackets

All these éharacterS'uork in the same way as they do ianNfERLIS’s

R \ 'fescue charaéter'.,uhen this character is seen in 3n
s-expr by the read routine, LISP F3 will enter BREAL
with FORM = 's-expr. (Useful for user-replacement at
e ... read-time), — R S
b) (hanging thbe meaniong of special ¢hacacterse
 The "meaning” of all characters are stored in a tabls «hich is -
accessible by the function
(CHTAB x) Read the typ;‘of X o %Nﬂ‘w*ﬁfww”wu~mawvwm S
(CHTAB n). Return the current representative of class n,
oo CCHTAB x n) _ Change the type of x to n. Returns old type.

CHTAB uses the first character of the atom x.

http:�-,_....�.�

" The following character table is standard.

|
|
i
i
!
]
|
|
E .
(1]
i
{
i
]
|
!
|
\
t
i
i
t
I
1
I
|
|
!
i
|
[
|

1 space W
2 (
3) - o e N
4 C i
5]
6 (1]
_____ 7#% : o _ _ .]
8 user break
e 9 - R
10 alphanumeric
11 +
— 12 - A
13=-22 0-9
23 %
24 rescue character

Ex;: If you want td have $ as a super brackets, and] as an
ordinary letter do:

{SETQ TYPE (CHTAB *%] (CHTAB *A)
(CHYAB *$ TYPE) , .
and 3f you want to have * as a break character do
(CHTAB '« 38))
_after which A*B will be read as the three atoms A » 3 separately,.

Note that when LISP is printing or making a strinj, and wishes
to _print a character class 2-7, 9 or 23 it will use the last
character to be defined as this class. Thusy, if one makes % 2a
right super bracket, it will become the "current rearesentative”
of the right super braccet class, and will be used in drinting
immediately thenceforth, even if] remains a super oracket., If.
the current representative of a class has its class changed, LIS?
_will hynt for another, and replace the current representative if

it can. If there 1is no replacement available, it will use 3

blank,

(a8 o n

Y wid

_sequential files (devices are treated as sequential files): that

__are not supported and I/0 is record-oriented rather than.

¢) Eile Qperatians:
{P-6 LISP provides access to the basic CP-5 operations on

is, openings, closing, reading and writing. The functipns provided
are similar those of INTERLISP except that file version numbers

character-oriented, Both these INTERLISP characteristics could be
simulated with LISP functions wusing the primitives supplied..
However, since we are dealing with sequential files, INTERLIS?:

character-addressable files are not implemented and only
characters within the current record may be referred to.

{P-6 LISP maintains a special file whose name is T. (actually
two filess both open to device ME; one with access INPUT, oae
with access OUTPUT) , This file cannot be closed or reassigned,.
An. EOF or any other 1/0 error on T results in an exit to IBEX,

As in INTERLISP, there exist two special: files, the primary:
input and primary ocutput files, which are initially assigned to:
To. AlL 1/0 operations, wunless otherwise specified, take place on
these files.

The h%gh-level read and write functions wuse 3 "currenat:
position” in the file buffers, this being the column position of.

the next character to be read or written, and refers only to, its-
position within the current record. Functions are available t>
manipulate these. As well, the print buffer has adjustadle left

and right margins (such that 0 < left margin < right margin <=.
buffer length),

~—=~ FUNCTIONS ===-

(FULLNAME file recog)

Returns the fullname for the file whose naame is the printnane
of file (a fyllname is the full fid for a file or device), The

parameter recog may have value NEW or OLD (OLDEST is orovided

only for INTERLISP compatibility and is equivatent to J2LD). If:
recog is NEW. any syntactically valid CP-6 fid will do for file;

if OLD, a TEST open will be performed for disk files, an LDEV’
sought for streams, and a validity check mnade for devices. NI..
will be returned if the check fails, The defautt for recoag i3

OLD.
Examples : A
-{FULLNAME °*TESTFILE)
DP#DISKITESTF;LE.PROJECT
~(FULLNAME 'LP3 'NEW)
LPO1aLOCAL
-(FULLNAME *XX01#)
xx018 .
-{(FULLNAME *JE)
JE#

http:de.vic.e>.�

(OPENFILE file access recog bytesize recleagth) S B
... Opens_ file _if (FULLNAME file recog) succeeds, in a mode N _ —
specified by access, Legal values and resulting (P~5 file access
modes are 3
7 access | INPUT. | OUTPUT I APPEND 1. 3314 1 B -
crP-6 [MEQNEINmiwfoNEQBEKTELM“JWMLHNEQREAIEL,MLMFUNEUEQAIE i —
mode |] EXIST=NEWFILE | EXIST=0LODFILE | |
e If NIL, the default is INPJUT, e
The parameter bytesize is provided onty for. INTERLiSR
- compatibility, and although ignored, must be either \NIL or a i
positive integer.
o o The Aparametér réclength specifies the size of buffe} to, de e
allocated for the file, and thus the maximum size of record which
may be read or written, The default is 256 characters.
T OPENFILE returns the fullname of the file opened. S
e e _Examples: S . . i
-(OPENFILE 'TESTFILE *"BJ3TH *'0OLD)
DPHDISK/TESTFILE.PROJECT.
| . =COPENFILE 'L1 ‘*oOUYPUT) S _ _ o .
LPO1#

http:�.---.._-------------._----_.._------_._.".__.._--_.----_�._--_..�

(CLOSEF file disp)

Closes file (which must be open); if file is NIL, then it will

close the primary input file if this is not T, else it #ill close
the primary output file if this 1is not T, else it simaly returns

NIL. If the primary input or. output files are closed, either o2y

default as above or explicitly, the primary fitle is set to T.

are REL or SAVE (default 1is no specifications, wuse systemn
defaults), The fullname of the file is returned.

Exampless
~(CLOSEF)
DPHDISK/LISP_OUT . PROJECT
~{CLOSEF °*TESTFILE *REL)
DPHDISK/TESTFILE . PRIJECT

{OPENP fi(e access recbg)

1f file is non=NIL, it will be tested to determine §f it is.
open Wwith the access and recog modes specified (if NIL these will

not be taken 1into account). The fullname is returned if open,

otherwise NIL..

If file is NIL, a Llist of files open with the access and reéo;mm

specified is returned (again, if NIL, these will not be checked)..

Example:
-(OPENP) , , o
(OPHDISK/TESTFILE,PROJECT LPO13LOCAL DPH¥SYS/STANDARD,LI3RARY)
—-C(OPENP ‘'LP "INPUT)

NIL
<=(OPENP NIL 'INPUT 'OLD)

(INPUT filte) and (OUTPUT file)

Lo €

The parameter disp is the disposition to be_ used, tegal' values

http:1--------_.-------------.------.----.-------.----.--.-----.-----.-...---�

(READPOS n) and (PRINTPIS n)

Sets the "current position” within the buffer for the primary

input or output file respectively to n (note once again that this
is a position within the current record), If n is NIL, the vatue

_is not altered, The old wvalue is returned,

(LEFTMARGIN n). and (RIGHTMARGIN n)

Set the left or right margin of the current primnary outout file
to n, If n is NIL, the setting is not altered. The old setting is
returned.

(PRINTDEPTH n) and (PRINTLENGTH n)

. Set the maximum depth in a list to which the priat routines

will go _before printing "eee"s and the maximum length of a list’

which will printed before terminating with "~~="_, This paraneter:
applies only to T, and will be ignored for other files., If n is

NIL, the value is not altered. The old value is returned,

(BUFSIZE file)

Returns tﬁe buffer-size of files if file is NIL, then a list of

the buffer sizes for the oprimary input and output files §s°
returned. Since T has two buffers, file=T returns a (ist of the
input and output buffers.

(GETREC file).

The file must be open in access mode INPUT or 82T4. The next
_.record is__read into the _file buffer, destroying the drevious
contents, GETREC returns a substring of the buffer which is the
.record read. If this substring, or any part of its, is to oe

___kept, it should be copiedrs as future I/0 operations will usually

4 Y v

overwrite it,

._An error witl: occur if EOF
user handling of

is encountereds, see ERROISET for:
input file is used.

errors. If file is NIL, the <curreat primary. -

-

(PUTREC file string)

Théawfile must be open in ag;sssw_mQQQWQU[PUiLWAR?ﬁﬂD or BOTH..

The string replaces the contents of the file buffer, shich is
then written out to the file., If file is NIL, the current primary
output file will be used.

The string written is returned,

(REWIND file).

The file 1is positioned at the beginning (including APPEND
files)e The souffer position will be s2t to one for INPUT and
BOTH filess to LEFTMARGIN for OJUTPUT and APPEND files,

(PRINTLEVEL carn cdrn) or (PRINTLEVEL *(carn . cdra))

This works as in Ihterlisp' and sets PRINTDE2TH and/or

PRINTLENGTH to carn and cdrn respectively,

(INFILE file) and CQUTFILE file)

The file is opened for input or output and made the primary
input or output file, The ald primary file is returned.

(INFILEP file) and (OUTFILEP file)

These test the eligibility of the file for INFILE and OJUTFILE.
NOTE = INFILEP does a syntax check and TEST open, thus ‘file

busy® will not 2e detected, DUTFILEP does a syntax check dnly.

(CLOSEALL disa)

Cigsggng, files with disposition dispe.

too Llarge to be handled as an integer, an alphanuneric atom $s
returned.,)

" As a matter of fact, PRINT, PRIN1T and PRIN2 are also defined i1
LISP using the one and only printing function PRIN) which is
_defined as:

__LQne_minQ£WWQiiierengeﬁtorWREAQ“ﬁnd_RAIQMW_quugh;mlf;a,nymbez.ijmwh,mw

ey w3 ‘
d> Changing standarcd bLehaxior of CPz6 LISE. %
y y |
,,,,,,,,) The functions GCREPORY, PRETTYPRINT, PRETTYBREAX, PRINT2UJITE, _ - i
and PRINTESCAPES are used to set flags which control ths
behaviour of the interpreter in the following ways :
ow .. (GCRE20RT T). =~ Report garbage collections. e _
(PRETTYPRINT T) = Prettyprint output.,
(PRETTYBREAK T) = Begin a new line whenever (... is founds,.
o o ... unless it is the first (or sometimes second)!
sub-expression,
(PRINTESCAPES T) = Use " and % where necessary to osermit output:
—— to be read back in correctiy (prin2 vs orial)d, R
(PRINTQUOTE T) - Print (QUOTE x) as opposed to "x,.
S e) Basic I/L0 fupctions S
The follbufng funct%bns work as in INTERLISP except that they’dﬁ
. not have a file argument. _ ﬂvﬂ
(READ) (RATOM) (READC) |
_ _ (PRINT x) (PRINT x) (PRINZ x) {TERPRI) e
{EJECT) (SPACES n)

i

(PRINDO x printtype flaafrflééé)

X valhe to be orinted (No TERPRI before or after!),

printtypé must be 0, 1, 2 or NIL (If NIL, O will be used).
Meanings are as follows (ref Sect 4d above)

0 - ordinary print (fast printd). ,]
1 - prettyprint (no prettybreak), ‘
2 - prettyprint and prettybreak.

if flagl then print % or " when so necessary to read atoms
L backe.
if flag2 then print (QUDTE s—-expr) instead of ‘s-expr.

Note that if there are no atoms too long to fit osetween the
margins then printtypes 1 and 2 (which move the left margin) wiill.
still produce output which can be read back in; however, only
printtype 0, with flag1l T, is guaranteed to do so. Als>, since an:
escape~-requiring character in the middle of a pname reguires on2
character for. the escaper one for the character and one for the
continyation _escaper, a minimum width of three characters is
required (less makes it impossible to g3et any of tnhe pnanme
printed on a line, and infinite tooping will result,

(PRINTL $1 s2 ,,,) and (PRINTL=SP s1 S2 ...)

perform PRIN1T on s1 s2 etc. followed by a TERPRI. (PRINTL-52:
inserts spaces dDetween each s—expr).

(NEWL INE)

will TERPRI if anything has been printed on the curr2nt line.

Also, the fdncfiog_

(PROMPTREAD prompt)

where prompt is a st;{hg or atoms will perform a (READ) using th2
pname of prompt as a prompt, It operates witn interrupts

__inhibited_so that the user cannot break out and leave the promt

FEN &0y s

The IBEX commands !SAVE and !GET may be used to save a core
image of LISP. Care should be taken to close all files before
SAVEing. The SAVE __command may be embedded in a LIS> function:
through the use of the LISP IBEX function. When the mamory image
is restored with !GET, execution wiil continue immediately after:

the call to IBEX, For example, the function SAVE is defined as

(LAMBDA (FILE EXPR)
(AND (NULL (OPENP) L

(I3EX C(CONCAT "SAVE OVER " FILE))
{EVAL EXPR)J)]

¥s used to. séve a memory image on FILE if no files are open and
EVAL the s-expr EXPR Wwhen the image is restored, NOTE : If the
save i1s successful, the value of EXPR is returned, otherwise NIL,

g). Ihe makefile packagea

This paékage is <coded in LISP and fo(lous the coaventions for.
INTERLISP makefile (See He 76 page 98 for details). The only:
commands in FILEVARS which are implemented are:

Before 3Joing MAKEFILE (or LOAD) you must however opea the file
by:

(OPEN symfile 1o file)
symfile your symbolic namne

io I or INPUT for. input file
- B} 0 or OUTPUT for output files -
file external file nanmne

_..and if you have no further use of the file you may close it
with

Y

i @

§
The NOEVAL function :
“ ~ (CURFILE symfile)) - o
o defines the ‘“current file” and all new functions defined =
afterwards belong to this file and will be added to the list’
symfileFNS., If (CURFILE symfile) is not evaluated, the name of:
e _..the current symfile is USER, and the function names are saved 01 —
USERFNS.
- The symbolic file names (including those from the library) aré e
kept in a list on the atom CURLIBS.
o Exo Define some functions and save them as your file MYFIJILE 6n, __________
the file SAVEFILE.,
o (OPEN "MYFILE ‘0 *SAVEFILE) N
{(CURFILE MYFILE)
= e (DE - eeee J etc e
(MAKEFILE °*MYFILE 1 82)
- - A __pretty printed _version of all functions is now written on =
SAVEFILE. (Argument nr 2 is used as PRINODO's argument ar 2 (fast:
print =+~ opretty print - pretty break) when the printing is-
| ... _performed. Argument nr 3 is used as the RIGHTMARGIN value during S
printing ~ defaults to file buffer length, which is defaulted to
OPENFILE default.)
| "The symbolic file names (including those from the library) are - o
kept in a list on the atom CURLIBS.
| o . . [e

CHAPTER S
. ERROR_HANDLING, BREAK AND INTERRUPTS
a) Error and Break
_Almost all __errors detected by CP=6 _LISP call the functisy,

SYSERROR which is a SUBR and which calls RESET after printing a
message. SYSERROR is then redefined in one of the standard LIS

message, BREAC 1 is the ordinary “break=-function” and may
therefore also have been called by a wuser setup breake Inside
BREAK1 the following commands exists:

le "+ STOP return to previous break if any, otherwise RESET,

0K continue
6O print value of croken form and continue..
EVAL eval broken form and break afterwards.

________ The value of the form is stored in the aton

1VALUE
10K as OK etc. but the function
N 160 is first unbroken

TEVAL then rebroken
RETURN x return the value of x.

e e UB . unbreaks_ the_function., e e
BR breaks the function.
BT backtrace of function calls (only LAM3IDA and

NLAMBDA's), = I

This is only possible if you have performed

(SETQ *BACKTRACEFLAG T) before evaluation.

ALIST prints the current value-binding stack
(except for variables bound in BREAK1 aad
SYSERROR).

?prints a list of the break commands.,

any other input is evaluated and value is printed.

In addition to 3REAK1, the functions BREAKO 3REAK UN3REAK RE3REAC
TRACE are defined and work as in INTERLISP,

. packages as a _ LAMBDA function which calls BREAK]1 after th2

http:1---.�_..�

o There also exists a function 3REAK11, which 1is a LAM3DA version:
of BREAX1 (which in turn is a NLAMBDA) and a function UNTRACE.

Each error is associated with a3 number, The funct{on

__CERRORN)Y _
returns the number for the the most recent error, and

(ERRORMESS n)

prints out a corresponding message.

On (P-6, we have only one method of obtaining the\system‘s
attention during program execution;, that iss, the <break> key.

(excluding ctri=Y, which is teft for emergency access to IBEX).,

This results in some slight deviation in interrupt procedures’
from those of INTERLISP. One major unfortunate effect is that:

interrupting a program will cause all typeahead and queued

To avoid confusion with the BREAK package, we will use the tern

referring to the actual key, as <break>.

one 1interrupts, if attempted, will be stored for servicing on

re-arming, the rest will be ignored. If armed, the request for:
~attention will be honoured at the next "“safe point”. Note that 3.

"safe point” is merely one at which CP-6 LISP can bes interrupted
and kept in a meaningful state, i.e. outside stack operations,

user's computation can be susSpended without damage,

instead of "break”, except where, as_abdve, we are

garbage collection, etc, It is NOT a "clean point”, at which thz"

EiLSLL_ilLQLEQQLim“mifmb§~iﬁﬂﬂiuQL*wdi§§f!@ileini§iL!£!!MlﬁEﬂi,m,“

Some interrupt actions can be performed at a safe point without

damaging the computation, e.g. requesting CPU time used. Others,
howevers, require a clean point,; one may elect to either 4ait. for:

b) Program lotecrupts
e terminal output to be lost.
e "™interrupt”

_one, and preserve the computation, or to unwind back to one, anxd

it _to fire. Any such interrupt will be_soft; thus a_fuaction may

Arming and disarming are done with

({INTERRUPTABLE flag))
_1f__flag _is _NIL, _the _arm/disarm _flag will.be set NIL, i,e.
interrupts disarmed. Anything else sets the flag to T, for armed.
iIf an interrupt has been stored while disarmed, arming will caus>

rearm interrupts as its LAST action, and any interruot «ilt occur:
after it has exited,

The status of the arm/disgjﬁw}lag may E;“a;;fied u{}h N
(INTERRUPTABLEP)
which returns NIL or T,

On honouring a <break>, the system will read a character fron
the terminal, All <characters have an assdciated "interrupt-
class™» which is an action to be performed on receipt of the
character. The classes and their corresponding actions are:

CLASS . CACTION
RESET - perform a (RESET)
ERROR - unwind to last break (as in "break
package "), or to top level:if none,
.. _ERRORX - _cause "USER BREAK"™ errofe. .
BREAK - cause "3REAK" error.
HELP - ask for system HELP (non-destructive)
___CPUTIME - print CPU time used since the begianiag of _ _
the current LISP session (non-destructive)
NONE - no actions, continue (non-destructive).

___immediately (hard - unwinding the current function if necessary

__through APPLY or EVAL., thus a soft interrupt will: not succeed 7

ALl <characters also have an associated "H;?Hflégng This
determines whether the associated action will D2e performed

and possibly damaging the computation), or at the next clean
point (soft). The <clean points are at form evaluation, either

interrupting an infinitely looping SUBR (e.g. MEMB on an infinite
Llist).

Character interrupt classes may be set with

(SETINTERRUPT char class hardflag)

oo Which__sets_the _intercupt class _of char to _class with hardness
flag hardflage.

Pname of length 1, or a number <char, J <= char <= 127 (for.
strings and atomss 0 <= CHCON1 [charl <= 127), The ctlass may »>2

ooz .._..The parameter _char _mast_be a_string of_ length=1, an_atom wit?

If «class is a system—-defined classr, then the assocjated action:
will take place on receipt of char. If it is a literal atom other:
e than one of these, the GLOBAL value of the atom will 2e set to T

on.receipt of char. If class is a list, it will be interpreted as:

a form to be EVAL'ed on receipt of char, This is done via the
. call (INTERRUPT fn args char), fn being the CAR of the form and

args the CDR; INTERRUPT may be redefined., The interrupt character
] (as an atom) will be added as the last element of the forms, thus
e the same form may be wused for a number of characters and yet
still be able to determine which was used.

—— SETINTERRUPT returns the old class and hardflag of char.

Example
. (SETINTERRUPT *A_'"(INTFN 1)) . i
(SETINTERRUPT "8" '(INTFN 1))
(SETINTERRUPT 7 °*RESET T) will cause an interrupt character " a"
o __to result _in evaluation of the form C(INTFN 1 _*A), "3" 4ill caus:?
evaluation of (INTFN 1 'B), and an ASCII *007'0 (belt) will cause
a RESET,

"?H;Aclass aﬁaﬂhardflag of é'éﬁiFétter h;y be quériéd With
(GETINTERRUPT char) wheee char is a string of one character or
i eoieo.. .& number (0 <= char <= 127).

Conversely.,
___ C(GETINTERRUPY class hardflag)) _

returns a list of the <characters with interrupt class of class
and hardness of hardflag (a NIL value for class signals "don't
~care”, howevers, NIL is a valid value for hardflag). Note that

_ .. _any atom except T or NIL, or _any liste hardflag may be NIL or T.

N

To overcome the necessity of using two keystrokes in situations
where the desired action is already known, a further facility. is
added, that of autointerrupts. Once the full flexibilty of thez
interrupt services are no longer required (e.ge in a debugged
packagel), the response to the <break> key may be preset with

__._(SETAUTOINTERRUPT class hardflag) = . _ U
where class and hardflag are as in SETINTERRUPT, except that NI_:
and T are allowed for class (see later). On <d>reak>s no read will:

_be performed; the action class will be apolied automatically.
Note that this should be used with <care; if, for instancer, th2
autointerrupt <class is CPUTIME, and one gets caught in an
infinite loops, the only option will be <ctrl-Y, and Ldoss of thz

S workspace. Autointerrupt class of BREAK with hardflay NIL could
also be fatal i1f caught in an infinitely looping SU3R.

- I1f a form has been specified, since 1o charaétervhas besn:)
typeds, the call to INTERRUPT will be (INTERRUPT fn args)., thus

B o the char argument to fn will be NIL. Since 1in this case one]

presumably knows what is to be done on <break>, this should not
be a problenm.

(SETAUTOINTERRUPT NIL) ,]
returns the current autointerrupt class and hardflags, while
(SETAUTOINTERRUPT T)

o resets to " no aut Oi nt E rr uptﬂj_(u: l ass " StatusSe M T T o -
- INITIAL CHARACTER INTERRUPT CLASSES S o
.. .. cthar class _ hardflag - . e _

Rer RESET T
— _ __Ueuw ERROR . IR I } B

Esre ERRORX T

Beb BREAK NIL
_ . __Hsh _— . BREAK L T

Tst CPUTIME T

? ‘ HELP T

i e ALl _others NONE o T _ _ }
A £ s

http:J~_~~U__y_'!.__.��__.�

CHAPTER 6

the user with the function RECLAIM,
The user may exercise some control
during garbage collection with
determines how
type when garbage collection
Garbage collection

strategy

available for a type 1is now at
type (at least 1
no further memory is allocated.
spacer a new page will be allocated
reason this is not possible a full
and the allocation is retried,
“tirst come first served"” basis
space (over which the user has no
strings., big integerse,
share the available
space for everyone,

memory around

=== FUNCTIONS =----

(RECLAIM type)

RECLAIM invokes a garbage
typer, which may

GARBAGE COLLECTION

much free space should be
is completed.
is to collect

new pag? {(thus minimizing memory utilization),
space for a tyoe is
o strings, big numberss, and lLists) are collected,

least the mninfs
if this type caused the garbage collection) then:
1f there

if possible,
compaction will ce invoked,
The pages
to pname
control) then to the atomse
and lastly lists.
if there

For__both RECLAIM _and MINFS _the types _are identified
predicate functions which recognize that type:

LITATOM Atoms

... SIRINGP _ string headers
FIXP big (integer) numbers
LISTP lists

be any one of the type

Garbage collection is invoked automatically whenever storage is
exhausted for a particular data type, but may also de invoked ay._

over the memory allocation:
the function

MINFS,

which

available to each data

before allocating 3
Any tine the free

exhausted all the fixed size objects (atoms,

If the space
value for that

is Lless than the minfs
If for any:

are atlocated on a
and string character:

No _attemdot is made t>:

is not sufficient

bi;sh:“

collection for the type specified b}
predicates, or- NIL. NIL' =

e

is treated as LISTP in this situation. RECLAIM returns as its
result the number of free objects for the causing type.

(MINFS type value)

_M_MlNﬁsm_ﬁctawghg__mjhjaymwnumggtmﬁqiﬂohqu;smwpfmtypq"wtxagwtnag;im

e e TN

should be available after a garbage collection to value, and
returns the last minfs wvalue for that type. If wvalue is

_ . negative, 0 _is used, If value is NILes no change is made, and the
current value is returned.,

] o o]
__ MISCELLANEOUS)] o)

The function GO will. search the Last PROG entered, n>: matter hdu
many functions down it is invoked (as in Interlisp), but will only . .
search that one PROG.

A new function 50# ismggfined as a fSUBR.

(60* labl a..)
- searches through all current PROG's for one of the argument -
labets, If it 1is found, a jumdo is performed. If it is nots th2
o arguments are returned and no other action takes place. GO also
takes mnultiple arguments; in both cases, where a PRJ)5 containas
more than one o5f the argument labels, the first (in list order
from the beginning of the PROG form) will be found. e
GO* is a way of implementing ERRORSET, ERROR!, TRYTOEVALUEATE,
FAIL, etc.]

In facts, ERROR! is defined as with GO* so as to unwiad back to a1
_ERRORSET or the BREAK packager whichever comes first, or RESETs - — .
if neither are found.

e e e B] . e B
ERRORSET is defined as:
"~ (DE ERRORSET (ERRORFORM ERRFLG)) [
(PROG NIL | .
i o (RETURN C(LIST (EVAL ERRORFORM})Y)Y = S
ERRORSET]
__and SYSERROR is_defined as: o L ;
(DE SYSERROR (ERRORTYPE FN ARG FORM)
S (SETQ *LASTERRORN ERRORTYPE) S - L

~ print nessage if ERRORFLG = T -~
- exit if ereror fatal -
- ... (GO0= ERRORSET)Y _ e .
(COND (HELPFLAG (3REAK1TT FORM T NIL))
(T (60% higher break) (RESET] 3
1
!
[E— JE {

‘ ‘ . .

When SYSERROR is'called’;QMZEQes tH;”;}rof humber,as tﬁ;fvalue'af
*_ASTERRORN, then tries to jump to the 1label ERRIRSET., If 3t

e succeeds (error_occurred under errorset) a "hig jump” to ERROQRSET.

is performed and the function ERRORSET returns NIL., Jtherwise:
if HELPFLAG s not NIL, BREAKIT is calleds if NIL, it tries to:
oo _jump to_a higher break_and failing this, RESETS..

EXIT has beeh redefined such that df called with NlL,a§ an:
argument and there files open which would be Llost on exite 2

warning is printed and RESET performed.
I Stcing Eunctions:

In addition to those explained in Ha 75 (page 108) a new string
function is defined:

{STRALLOC n ¢))
The first character of the (iteral atom (or /sub/string) ¢ is’
fetched, and a new string of length n is allocated, and filled
with the character from c. If ¢ is NIL then blanks «ill: 2 used,.

Other functions not reported in Ha 75 (but jna Te 74) are:

(ABS n) if (MINUSP n) then (MINUS n) else n,

(ADDLIST a) if memb(a,l) then L else cons{a,l)

(ASSQOC X L F). searches down a list L until. it finds an
element Y such that (F X _Y) is non-NIL. A
general case function which is an extznsion
of that in Te 74; howevers, F defaults to EQ
_which is as in Te 74.

changes the prompt to the pname of s, which
must be 1-30 characters in length. T resets
_to _defaults NIL returns present valuz.

(PROMPT s)

'QD N - o P

(CLOCK) time in milliseconds.
(DSORT L) Destructive sorting function
- . CEVLIS L) _MAPCARCL, 'EVALY = N _ R
(GCREPORT flag) Print message when GBC (if flag = T)
(NTH L. n) Performs CDR n=1 tims on L) :
___CONLINEP) =~ T it online, otherwise NIL.

(RPT n s) evaluate s n times A)
(RPTQ@ n s) _ as RPT but s is not evaluated at calling time
__(SASSO0C KEY AL) searches for an element on_an assocdation list , A
- a list ot dotted pairs of the form
(key . value), Defined as (ASSOC KEY AL ‘'EQUALDY.
(SIGN n) 0 or 1 or -1 depending on the _sign of n. = _ -
{XCALL fn 1) A way of calling FORTRAN routines,
Returns NIL in the virgin system.
Ask your system implementor if the
definition has changed.

The top-level functions, LISPX, is normally "defined" as
(LAMBDA NIL o i
(PROG (TEMP)
LOOP (PRINT (EVAL (READ)))
{GO LOOP)I))]

Mowever, if LISP is being run in batch or from an XEQ file,
and echoing is desireds, it may. be redefined as
(LAMBDA NIL
(PROG (TEMP)
LOOP L[PRINT (EVAL (PROG1T
(SETQ TEMP (READ))
_(PRIND (PROMPT))
(PRINT TEMP]

(GO LOOPI))]

In general., LISP primitives éay be redefined t5_35653c5755ﬁ7
behaviour desired.

A note 5n the méchénics of AND and OR =

These two functions are FSUBRs which take their arguments

unevaluated and evaluate them sequentially wuntil the result is
determineds The result of AND 1is initially T; dit- EVALs its
arguments until it finds one whose value in NIL, or it runs out
of arguments. The result is the value of the last argument. The
result of OR s initially NIL, it EVALs until it finds an

i
{
|
|

!

3 e
APPENDIX A
I __LIST OF FUNCTIONS I

NAME (ARGS) TYPE CHAPT. HA 75 TE 74
A3 S (N) L 8 . 13.8
ADDTCN) s 62 13.3
ADDLIST(A L) S 8 ,)
ADDPROP(A P V) L 17 7.1
ADVISE(FN WHEN WHERE WHAT) L 131 19«4~5

—_— ALIST () _ S 23 _
ALPHORDER (A B) 3 150 6.11
AND L FS 67 5.12

. APPEND(L1 L2) S 55 6.1
APPLY(FN L) S 82 8.9
APPLY*(FN .. L). L 82 8.10
APPLYA(FN L AL). S 24)
ASSOC (X L F) L 58 5.13
ATOM(S) S 12 5.11
BREAK 'L NL 5 127 15.18
BREAKOCFN WHEN COMS) L 5 127 15.16-19
BREAKT{"BRKEXPR °*BRKWHEN 'BRKFN

*BRKCOMS) NL S 127
BREAK11(BRKEXPR BRKWHEN BRXFN
BRKCOMS) L S
 BUFSIZE (FILE) S ke o

CAAAR(S) . S 12 Se1
CAADR(S) S 10 5.1

- CAAR(S). s 1) o

B CADARLS) s 17 5.1
CADDR(S) s 1) 5.1
CADRCS) o S 1. 5.1 o
CAR(S) S 12 Sal
CDAAR(S) S 13 5.1
CDADR(S). S s
CDAR(S) S 12 5a1
CDDAR(S) S 1) 5a1
CDDDR(S). S . 21 S.1

PROMPT (X). S 8
PROMPTREAD (X) L 8
. . ___ PROGT L FS. 54 546
PUTC(A P V) S 17 7.1=2
PUTD(FN §) L 73 A
PUTREC (FILE STRING) S &
QUOTE(*S) FS 22 5.3
QUOTIENT(NT N2) S 63 13.7
o RATOM () o - S e 9J 164,11-13
READ () S Le 93 14,10-11
READC () s Le 9] 14,14
_____ o READPOS (N) S 4c
READVISE 'L NL 131 19.8
REBREAK 'L NL 5 127 15.22-23
e RECLAIM (TYPE) s 6 149 10.11
REMOVE (A LD L 56 batb
REMPROP (A P) L 17 742
) ~ RESET () s 5 121 16.13
RETURN(S) S 81 57
: REVERSE(L) S 56 6.4
: o REWIND(N) S Le
RIGHTMARGIN (N) S be
RPLACA(ST S2) s 121 5e3
RPLACD(ST S2) S 132 Se2
RPLSTRING(ST N §2) S 129 10.5
RPTI(N S). 5 8 8.10-11
- RPTG(N *S)NL__8 i 8210-11
SASSOC (KEY ALIST) L 8 58 5.13
SAVEDEF(FN) L 73 8.7-8
SAVEWS (FILE S). _ _ L 8 . e
SELECTQ(...) FS S3 5.4-5
SET(A $) _ ‘ S 25 5.8
_ SETAUTOINTERRUPT (CLASS HARDFLAG) S 5> . ~ -
SETINTERRUPT (CHAR CLASS HARDFLAG) s Sb
SETQ('A S) £S 25 5a5
SETQQ (*A *sy . NL N LI Y- IO
SIGN(N). L 8
SMALLP (S) S 13.4
.. SPACES(N) -] L be 91 14,19

i I -] P
e . L
S o APPENDIX B] - o
S . i _DIFFERENCES BETWEEN L) B -
LISPF3 AND CP~-6 LISP
This_appendix_is designed_to give a brief overviews of differences: S S
between LISPF3 and CP-6 LISP, for those who have deen using the
former,
In the area of file manaézgent, t he us:;—o?_FﬁaET_ngN uni t ‘};umbers o N -
has been replaced by CP~-6 file id's, and some INTERLIS® features
I added. See section 4c for details. e
in thé area of bfeak key,contfo{, the break key has been used
S to. implement (as far as possible) INTERLISP interrudtss, which e
provide _a comprehensive set of facilities for <control and
debugging of programs. See section 5b for details.
o fﬁé néﬁdri m;hagéﬁént Has been modified to do "dynamic memory T
management”. This allows CP-6 LISP to grow t> a size appropriate
- to the task that it is asked to perform, and shrink whea memory o
is not required, This will normally be transparent t> the user
in terms. of the LISP language itself.

