Session 25 Hardware and Software
for Artificial Intelligence

CLISP - Conversational LISP

Warren Teitelman
Xerox Palo Alto Research Center
Palo Alto, California 94304

Abstract

CLISP is an attempt to make LISP programs
easier to read and write by extending the
syntax of LISP to include infix operators,
IF-THEN statements, FOR-DO-WHILE statements,
and similar ALGOL-like constructs, without
changing the structure or representation of
the 1language. CLISP is implemented through
LISP's error handling machinery, rather than
by modifying the interpreter: when an
expression is encountered whose evaluation
causes an error, the expression is scanned
for possible CLISP constructs, which are
then converted to the equivalent LISP
expressions. Thus, users can freely
intermix LISP and CLISP without having to
distinguish which is which. Emphasis in the
design and development of CLISP has been on
the system aspects of such a facility, with
the goal in mind of producing a useful tool,
not just another 1language. To this end,
CLISP includes interactive error correction
and many 'Do-What-I-Mean' features.

* % *

The syntax of the programming language
LISP2'3'9 is very simple, in the sense that
it can be described concisely, but not in
the sense that LISP programs are easy to
read or write! This simplicity of syntax is
achieved by, and at the expense of,
extensive use of explicit structuring,
namely grouping through parenthesesization.
For the benefit of readers unfamiliar with
LISP syntax, the basic element of LISP
programs is called a form. A form is either
(1) atomic, or (2) a list, the latter being
denoted by enclosing the elements of the

list in matching parentheses. In the first
case, the form is either a variable or a
constant, and its value is computed
accordingly. 1In the second case, the first
element of the 1list is the name of a
function, and the remaining elements are
again forms whose values will be the
arguments to that function. In Backus
notation:

Figure 1
Syntax of a LISP Form

<form> ::= <variable>{<constant>|
(<function-name> <form> ... <form>)

For example,A assign X the value of the sum
of A and the product of B and C is written
in LISP as (SETQ X (PLUS A (TIMES B C))).

686

The
cor

syntax for a conditional expression is
respondingly simple:*

Figure 2
syntax of a Conditional Expression

<conditional expression> ::=
(COND <clause> ... <claused)

<clause> ::= (<form> <form>)
Note that there are no IF's, THEN's,
BEGIN's, END's, or semi-colons. LISP avoids
the problem of parsing the conditional
expression, i.e., delimiting the individual

clauses,

con

that each clause be a

the

sublist, of which the predicate

and delimiting the predicates and
sequents within the clauses, by requiring
separate element in
expression, namely a
is always

conditional

the first element, and the consequent the
second element. As an example, let us
consider the following conditional
expression which embodies a recursive

def

*

k%

inition for FACTORIAL:**

Fiqure 3
Recursive Definition of Factorial

(CoND
((fQ N 0)

(T (TIMES N (FACTORIAL (SUB1 N)))))

Actually, a clause can have more than
two consequents, in which case each form
is evaluated and the value of the last
form returned as the value of the
conditional. However, for the purposes
of this discussion, we can confine
ourselves to the case where a clause has
only one consequent.

The expression in Figure 3 is shown as
it would be printed by a special
formatting program called PRETTYPRINT.
PRETTYPRINT attempts to make the
structure of LISP expressions more
manageable by judicious use of
identation and breaking the output into
separate lines. Its existence is a
tacit acknowledgment of the fact that
LISP programs require more information
than that contained solely in the
parenthesization in order to make them
easily readable by people.

The first clause in this conditional is the
list of two elements ((EQ N 0) 1), which
says if (EQ N 0) is true, i.e., if N is
equal to 0, then return 1 as the value of
the conditional expression, otherwise go on
to the second clause. The second clause is
(T (TIMES N (FACTORIAL (SUB1 N)))), which
says if T is true (a tautology-the ELSE of
ALGOL conditionals), return the product of N
and (FACTORIAL (SUB1 N)). The latter is
evaluated by first evaluating (SUB1 N),
then calling FACTORIAL (recursively) on this
value.

As a result of the structuring of
conditional expressions, LISP does not have
to search for words such as IF, THEN, ELSE,
ELSEIF, etc., when interpreting or compiling
conditional expressions in order to delimit
clauses and their constituents: this
grouping is specified by the parentheses,
and is performed at input time by the READ
program which creates the 1list structure
used to represent the expression.
Similarly, LISP does not have to worry about
how to parse expressions such as A+B*C,
since (A+B)*C must be written unambiguously
as (TIMES (PLUS A B) C}), and A+(B*C) as
(PLUS A (TIMES B C)). In fact, there are no

reserved words in LISP such as IF, THEN,
AND, OR, FOR, DO, BEGIN, END, etc., nor
reserved characters like ¢, -, *, /, =, <,

etc.* This eliminates entirely the need for
parsers and precedence rules in the LISP
interpreter and compiler, and thereby makes
program manipulation of LISP programs
straightforward. 1In other words, a program
that "looks at" other LISP programs does not

need to incorporate a 1lot of syntactic
information. For example, a LIsP
interpreter can be written in one or two

pages of LISP code.3 It is for this reason

that LISP is by far the most suitable, and
frequently used, programming language for
writing programs that deal with other
programs as data, e€.q., programs that
analyze, modify, or construct other
programs.

However, it is precisely this same
simplicity of syntax that makes LISP
programs difficult to read and write

(especially for beginners). *Pushing down'
is something programs do very well, and
people do poorly. As an example, consider
the following two "equivalent" sentences:

"The rat that the cat that the dog
that I owned chased caught ate the
cheese. "

versus

"I own the dog that chased the cat
that caught the rat that ate the
cheese."

Natural language contains many linguistic
devices such ~as that illustrated in the
second sentence above for minimizing

* except for parentheses (and period),
which are used for indicating structure,
and space and end-of-line, which are
used for delimiting identifiers.

and

687

embedding, because embedded sentences are
more difficult to grasp and understand than
equivalent non-embedded ones (even when the

latter sentences are somewhat longer).
Similarly, most high 1level programming
languages offer syntactic devices for
reducing apparent depth and complexity of a
program: the reserved words and infix
operators used in ALGOL-like languages
simultaneously delimit operands and
operations, and also convey meaning to the
programmer. They are far more intuitive

than parentheses. 1In fact, since LISP uses
parentheses (i.e., 1lists) for almost all
syntactic forms, there is very 1little
information contained in the parentheses for
the person reading a LISP program, and so
the parentheses tend mostly to be ignored:
the meaning of a particular LISP expression
for people is found almost entirely in the
words, not in the structure. For example,
the expression in Figure 4

Figure 4
Careless Definition of Factorial

(COND (EQ N 0) 1)
(T TIMES N FACTORIAL ((SUB1 N)))

is recognizable as FACTORIAL even though
there are five misplaced or Missing
parentheses. Grouping words together in

parentheses is done more for LISP's benefit,
than for the programmer's.

CLISP is designed to make LISP programs
easier to read and write by permitting the
user to employ various infix operators, IF-

THEN-ELSE statements, FOR-DO~-WHILE-UNLESS-
FROM-TO-etc. expressions, which are
automatically converted to equivalent LISP
expressions when they are first interpreted.
For example, FACTORIAL could be written in
CLISP as shown in Figure 5.

Figure 5
CLISP Definition of FACTORIAL

(IF N=0 THEN 1 ELSE N* (FACTORIAL N-1))

Note that this expression would be
represented internally (after it had been
interpreted once) as shown in Figure 3, so
that programs that might ‘have to analyze or
otherwise process this expression could take
advantage of the simple syntax.

CLISP also contains facilities for making
sense out of expressions such as the
careless conditional shown in Figure 4.
Furthermore, CLISP will detect those cases
which would not generate LISP errors, but
are nevertheless obviously not what the
programmer intended. For example, the
expression (QUOTE <expression> <form>) will
not cause a LISP error, but <form> would
never be seen by the interpreter. This is
clearly a parentheses error. CLISP uses
both local and global information to detect,
and where possible, repair such errors.
However, this paper will concentrate
primarily on the syntax extension aspects of
CLISP, and leave a discussion of the
semantic issues for a later time.

There have been similar efforts in other
LISP systems, most notably the MLISP
language at Stanford.* CLISP differs from
these in that it does not attempt to replace
the LISP language so much as to augment it.
In fact, one of the principal criteria in
the design of CLISP was that users be able
to freely intermix LISP and CLISP without
having to. identify which is which. Users
can write programs, or type in expressions
for evaluation, in LISP, CLISP, or a mixture
of both. 1In this way, users do not have to
learn a whole new language and syntax in
order to be able to use selected facilities
of CLISP when and where they find them
useful.

CLISP is implemented via the error
correction machinery in INTERLISP*. Thus, any
expression that is well-formed from LISP's
standpoint will never be seen by CLISP

(e.g., if the user defined a function IF, he
would effectively turn off that part of
CLISP). This means that interpreted
programs that do not use CLISP constructs do
not pay for its' availability by slower
execution time. In fact, the interpreter
does not 'know' about CLISP at all. It
operates as before, and when an erroneous
form is encountered, the interpreter calls
an error routine which in turn invokes the
Do-What-I-Mean (DWIM) analyzerS'?'s which
contains CLISP. If the expression in
question turns out to be a CLISP construct,
the equivalent LISP form is returned to the
interpreter. In addition, the original CLISP
expression, is modified so that it becomes
the correctly translated LISP form. In this
way, the analysis and translation are done
only once.

Integrating CLISP into the LISP system
(instead of, for example, implementing it as
a separate preprocessor) makes possible Do-
What-I-Mean features for CLISP constructs as
well as for pure LISP exrressions.S'? For
example, if the user has defined a function
named GET-PARENT, CLISP would know not to
attempt to interpret the form (GET-PARENT)
as an arithmetic infix operation.
(Actually, CLISP would never get to see this
form, since it does not contain any errors.)
If the user mistakenly writes (GET-PRAENT),
CLISP would know he meant (GET-PARENT), and
not . (DIFFERENCE GET PRAENT), by using the
information that PRAENT is not the name of a
variable, and that GET-PARENT is the name of
a user function whose spelling is "“very
close" to that of GET-PRAENT. Similarly, by
using information about the program's
environment not readily available to a
preprocessor, CLISP can successfully resolve
the following sorts of ambiguities:

* INTERLISP (formerly BBN-LISPS) is
implemented under the BBN TENEX
timesharing system2 and is jointly

maintained and developed by Xerox Palo
Alto Research Center and Bolt, Beranek,
and Newman, Inc., Cambridge, Mass. It
is currently being used at various sites
on the ARPA Network, including PARC,
BBN, ISI, SRI~AI, etc.

688

1) (LIST X*FACT N), where FACT is the name

of a variable, means (LIST (X*FACT) N).

2) (LIST X*FACT N), where FACT is not the
name of a variable but instead is the
name of a function, means
(LIST X*(FACT N)), i.e., N is FACT's
argument.

3) (LIST X*FACT(N)), FACT the name of a
function (and not the name of a
variable), means (LIST X* (FACT N)).

4) cases (1), (2) and (3) with FACT
misspelled!

The first expression is correct both from
the standpoint of CLISP syntax and semantics
and the change would be made without the
user being notified. In the other cases,

the user would be informed or consulted
about what was taking place. For example,
to take an extreme case, suppose the

expression (LIST X*FCCT N) were encountered,
where there was both a function named FACT
and a variable named FCT. The wuser would
first be asked if FCCT were a misspelling of
FCT. 1f he said YES, the expression would
be interpreted as (LIST (X*FCT) N).* If he
said NO, the user would be asked if FCCT
were a misspelling of FACT, i.e., <4f he
intended X*FCCT N to mean X*(FACT N). If he
said YES to this question, the indicated
transformation would be performed. If he
said NO, the system would then ask if X*FCCT
was to be treated as CLISP, since FCCT is
not the name of a (bound) variable.** If he

* Through this discussion, we speak of
CLISP or DWIM asking the user.
Actually, if the expression in gquestion
was typed in by the user for immediate
execution, the user is simply informed
of the transformation, on the grounds
that the user would prefer an occasional
misinterpretation rather than being
continuously bothered, especially since
he can always retype what he intended if

a mistake occurs, and ask the
‘programmer's assistant to UNDO the
effects of the mistaken operations if
necessary.S For transformations on
expressions in his programs, the user

can inform CLISP whether he wishes to
operate in CAUTIOUS or TRUSTING mode.

In the former case (most typical) the
user will be asked to approve
transformations, in the latter, CLISP

will operate as it does on type-in,
i.e., perform the transformation after
informing the user.
** This question is important because many
of our LISP users already have programs

that employ variables whose names
contain CLISP operators. Thus, if CLISP
encounters the expression A/B in a

context where either A or B are not the
names of variables, it will ask the user
if A/B is intended to be CLISP, in case
the user really does have a free
variable named A/B, but has mistakenly
used A/B here in a context where it was
not bound.

said YES, the expression would be
transformed, if NO, it would be left alone,
i.e., as (LIST X*FCCT N). Note that we have
not even considered the case where X*FCCT is
itself a misspelling of a variable name, as
with GET-PRAENT. This sort of
transformation would be considered after the

user said NO to X*FCCT N -> X* (FACT N). The
complete graph of the possible
interpretations for (LIST X*FCCT N) where

FCT and XFCT are the names of variables, and

FACT is the name of a function, is shown in-

Figure 6.
Figure 6
Possible interpretations of (LIST X*FCCT N)

FCCTFCT?

X

FCCT He (FACT W) ?

7

4 X*FCCT+XFCT,

7

-

XéFCCT TREAT AS CLISP?

7 X

The final states for the various terminal
nodes shown in Figure 6 are:

1: (LIST (TIMES X FCT) N)

2: (LIST (TIMES X (FACT N)))

3z (LIST XFCT N)

4: (LIST (TIMES X FCCT) N)

5: (LIST X*FCCT N)
CLISP can also handle parentheses errors

caused by typing 8 or 9 for *(* or ')'. (On
most terminals, 8 and 9 are the lower case
characters for ‘(' and ')*, i.e., *(' and
t8* appear on the same key, as do ')' and
191,) For example, 1if the wuser writes
N*8FACTORIAL N-1, the parentheses error can
be detected and fixed before the infix
operator * is converted to the LISP function
TIMES. CLISP is able to distinguish this
situation from cases 1like N#*8*X meaning
(TIMES N 8 X), or N*8X, where 8X is the name
of a variable, again by using information
about the programming environment. In fact,
by integrating CLISP with DWIM, CLISP has
been made sufficiently tolerant of errors
that almost everything can be misspelled!*
For example, CLISP can successfully
translate the definition of FACTORIAL:

(IFFN=0 THENN 1 ESLE N*8FACTTORIALNN-1)

* Where misspelling includes runnipg
adjacent words together, as shown in
example.

to the form shown in Figure 3, while making
5 spelling corrections and fixing the
parenthesis error.*

This sort of robustness prevails throughout
CLISP. For example, the iterative statement
permits the user to say things like:

(FOR OLD X+M TO N
DO (PRINT X) WHILE (PRIMEP X)) **
However, the user can also write OLD
(OLD X+«M), (OLD (X<M)), permute the order of
the operators, €e.g., DO (PRINT X)
TO N FOR OLD X<M WHILE (PRIMEP X), omit
either or both sets of parentheses, misspell

(X<M),

any or all of the operators FOR, OLD, TO,
DO, or WHILE, or 1leave out the word DO
entirely! And, of course, he can also

misspell PRINT, PRIMEP, M, or Ni*x*x*

CLISP is well integrated into the INTERLISP
system. For example, the above iterative
statement translates into an equivalent LISP
form using PROG, COND, GO, etc.**** When the
interpreter subsequently encounters this
CLISP expression, it automatically obtains

and evaluates the translation. Similarly,
the compiler "knows" to compile the
translated form. However, if the wuser
PRETTYPRINTS his program, at the
. corresponding point in his function,

689

PRETTYPRINT. "knows" to print the original
CLISP. Similarly, when the user edits his
program, the editor makes the translation
invisible to the user. If the user modifies
the CLISP, the translation is automatically
discarded and recomputed the next time the
expression is evaluated.

* CLISP also contains a facility for
converting from LISP back to CLISP, so
that after running the above definition
of FACTORIAL, the user could *'CLISPIFY'
to obtain:

(IF N=0 THEN 1 ELSE N* (FACTORIAL N-1)).

** This expression should be self
explanatory, except possibly for the
operator OLD, which says X is to be the
variable of iteration, i.e., the one to
be stepped from M to N, but X is not to
be rebound. Thus when this 1loop
finishes execution, X will be equal to
N.

*x% In this example, the only thing the user

could not misspell is the first X, since
it specifies the pname of the variable of
iteration. The other two instances of X
could also be misspelled.

*%%% (PROG NIL
(SETQ X M)
$$1LP (COND
((OR (IGREATERP X N)
(NOT (PRIMEP X)))
(RETURN) })
(PRINT X)
(GO $SLP)).

In short, CLISP
but rather a

is not a language at all,
system. It plays a role
analagous to that of the programmer's
assistant.$ Whereas the programmer's
assistant is an invisible intermediary agent
between the user's console requests and the
LISP executive, CLISP sits between the
user's programs and the LISP interpreter.

Only a small effort has been devoted to
defining a core syntax for CLISP. Instead,
most of the effort has been concentrated on
providing a facility which' *makes sense' out
of the input expressions wusing context
information as well as built-in and acquired
“information about user and system programs.
Just as communication is based on the
intention of the speaker to produce an
effect in the recipient, CLISP operates
under the assumption that what the user said
was intended to represent a meaningful
operation, and therefore tries very hard to
make sense out of it. The motivation behind
CLISP 1is not to provide the user with many
different ways of saying the same thing, but
to enable him to worry 1less akout the
syntactic aspects of his communication with
the system. In other words, it gives the
user a new degree of freedom by permitting
him to concentrate more on the problem at
hand, rather than on translation into a
formal and unambiguous language.

CLISP has just become operational and the
expected reactions and suggestions from
users will do much towards polishing and
refining it. However, the following
anecdote suggests a favorable prognosis:
after being cursorily introduced to some of
the features of CLISP, two users wanted to
try out the iterative statement facility,
but neither of them were sure of the exact
syntax. The first user thought that if they
just typed in something "reasonable", the
system would figure out what they meant.
And it did!

690

References
Berkeley, E.C. "LISP, A Simple
Introduction," in The Programming
Language LISP, its Operation and
Applications, Berkeley, E.C. and
Bobrow, D.G. (editors), MIT Press,
1966.

Bobrow, D.G., Burchfiel, J.D., Murphy,
D.L. and Tomlinson, R.S. "“TENEX, a
Paged Time Sharing System for the
PDP-10." communications of the ACM,

March 1972, Vvol. 15, No. 3.
McCarthy, J. et al. LISP 1.5
Programmer's Manual. MIT Press,
1966.
Smith, D.C. MLISP User's Manual,
Stanford Artificial 1Intelligence

Project Memo AI-84, January 1969.

er
Teitelman, W. "Automated Programming -
The Programmer's Assistant."

Proceedings of Fall Joint Computer
conference, December 1972.
Teitelman, W., Bobrow, D.G., Hartley,
A.K., Murphy, D.L. BBN-LISP Tenex
Reference Manual, Bolt, Beranek,

and Newman, Inc., August 1972.

Teitelman, W. "Do What I Mean,"
computers and Automation, April

1972.

Teitelman, W. “Toward a Programming
Laboratory," Proceedings of First
International Joint Conference on
Artificial Intelligence, Walker, D.
(editor), May 1969.

Weissman, C. LISP 1.5 Primer, Dickenson
Press, 1967.

	00.tif
	001.tif
	002.tif
	003.tif
	004.tif

