Session 25 Hardware and Software

for Artificial Intelligence

A LISP MACHINE WITH VERY COMPACT PROGRAMS

L.

Peter Deutsch

Xerox Corporation, Palo Alto Research Center (PARC)
Palo Alto, California 94304

Abstract

This paper presents a machine designed for
compact representation and rapid execution
of LISP programs. The machine language is a
factor of 2 to 5 more compact than
S-expressions or conventional compiled code,
and the compiler is extremely simple. The
encoding scheme is potentially applicable to
data as well as program. The machine also
provides for user-defined data structures.

Introduction

Few existing computers permit convenient or
efficient implementation of dynamic storage
allocation, recursive procedures, or
operations on data whose type is represented
explicitly at run time rather than
determined at compile time. This mismatch
between machine and language design plagues
every implementor of languages designed for
manipulation of structured information.
Neither of the usual software solutions to
this problem is entirely satisfactory.
Interpretive systems are easy to build and
flexible, but intrinsically inefficient;
compilers which approach the efficiency of
those for conventional languages are hard to
write and often force the implementor (and
user) to sacrifice valuable but expensive
language features for the sake of
efficiency. On many machines compiled code
also occupies at least as much space as a
structured representation of the source
program.

An alternative approach to this problem is
to design machines whose code structure more
closely resembles that of their major
programming language(s). This approach of
tailoring the machine to the language was
first used in the Burroughs B5000 and
successor machines, which were designed to
execute ALGOL 60 programs.2 In recent years,
the availability of microprogrammed
processors and the continuing decline in the
cost of processor hardware and design have
prompted several experiments of this sort at
universities* and at least one successful
experiment by a large companyé and one
unsuccessful new commercial venture.3

The present paper describes a machine design
for efficient representation and execution
of BBN-LISP programs. BBN-LISP is an
interactive system developed from the LISP
language.?® 19 Readers unfamiliar with LISP
should consult Weissman's excellent primers;
some details particular to BBN-LISP appear
in the next sections of this paper. A
complete and well-maintained but voluminous
reference manual for BBN-LISP is also
available.13 The machine design presented
here will be referred to as MicroLISP, a
name intended to connote both code
compactness and possible microprogrammed
implementation.

697

pPata Types

LISP has many data types (e.g. list,
symbolic atom, integer) but no declarations.
The usual implementation of languages with
this property affixes a tag to each datum to
indicate its type. In LISP, however, the .
vast majority of data are pointers to lists
or atoms, and it would be wasteful to leave
room for a full word plus tag (the space
needed for an integer datum, for example) in
every place where a datum can appear such as
the CAR and CDR of list cells.

Consequently, in BBN-LISP every datum is a
pointer; integers, strings, etc. are all
referenced indirectly. Storage is allocated
in quanta, and each quantum holds data of
only one type, so what type of object a
given pointer references is just a function
of the object's address, i.e. the pointer
itself.

The chief drawback of this scheme is ‘that
every built-in function which produces a
number as a result (such as PLUS, the
addition function) must allocate a word to
hold the result. This leads to frequent,
time-consuming garbage collections.

BBN-LISP circumvents this problem for the
most part by permanently storing all the
integers from -1536 to #1535 in consecutive
cells and just returning a pointer to one of
these cells if a numerical result is in this
range, rather than allocating a new cell.

In MicroLISP, which is intended as a
reasonably efficient numerical language,
data on the stack (temporary results and
variable bindings) carry a type tag
identifying them as integers, floating point
numbers, or pointers. In this way, long
numerical calculations can take place
without any consumption of allocated space.

No existing LISP system permits the user to
define his own packed data structures.
MicroLISP includes such a facility, since it
can be made inexpensive when implemented in
the machine language and since its absence
from LISP is one of the reasons most
frequently cited for choosing other
languages for complex symbolic computation.
The details are presented in Appendix A,
since they are somewhat peripheral to the
rest of this paper. It is worth noting that
the scheme could be implemented within
BBN~LISP and even lends itself to efficient
compilation in the usual case.

control and Binding Structure

MicroLISP uses a single stack structure for
both control and variable bindings,
essentially as described in a recent paper.t
A function call allocates a "basic frame"
for the arguments and a "frame extension"
for control information and temporary
values. The basic frame contains the
function name, the argument values

{bindings), and a pointer to the arqument
names. The frame extension holds a pointer
to the caller's frame extension and a
variety of other bookkeeping information.
The FUNARG capability of LISP 1.5, i.e. the
ability to construct a data object
comprising a function and a binding
environment, is provided through a primitive
function which creates an "environment
descriptor" pointing to a specified frame.
As long as there are accessible references
to this descriptor, the frame continues to
exist. Environment descriptors also allow
the user to construct cooperating sequential
processes (coroutines); the stack becomes

tree-structured rather than linear, as in
the Burroughs B6500,12

BBN-LISP, like most programming languages,
recognizes two kinds of accesses to
variables: "load" and "store". This duality
actually exists for data structures as well
(CAR-RPLACA, GET-PUT, etc.) but is not
treated systematically. MicroLISP
systematizes this concept by allowing a
function to have, in effect, two
definitions, one for the (normal) "“load"
context, one for the "store" context. The
SET function is extended so that if the
first argument is a list

(fn argl ... argn)
rather than a variable, the function fn is
called in "store" mode with arguments argl
... argn and newvalue (the second argument
of SET). SETQ is also extended in the
obvious way, but is not particularly useful.
A more useful function is

(SETFQ (fn argl ... argn) newvalue)
which quotes the function name and evaluates
everything else. This allows RPLACA, for
example, to be defined as

(LAMBDA (X Y) (SETFQ (CAR X) Y)).

The semantics of variables are simple in
principle: search the current basic frame,
then the caller's frame, etc. for a binding
of a variable with the desired name; if none
is found, consult the "value cell" of the
variable; if this contains the special value
NOBIND, the variable is unbound. (In fact,
the search follows a chain through an
"access link" pointer in the frame extension
rather than the caller pointer or

"control 1link", to cover application of
FUNARGsS.) MicroLISP (and compiled BBN LISP)
actually use three variations of this
searching strategy depending on the
situation. Searching for the arguments of
the current function is pointless: their
relative locations in the basic frame are
known to the compiler and they can be
accessed by indexing. Searching for
variables which are set at the top level and
never rebound is time-consuming: there is a
compiler declaration to force references to
specific variables to bypass the search and
go directly to the value cell. Repeated
searches for a variable referenced more than
once in a given function are wasteful; in
MicroLISP the search always occurs at the

time of the first reference and is not
repeated thereafter.

698

In both BBN-LISP and MicroLISP, all variable
bindings appear in the basic frame. 1In
BBN-LISP half of each word in the basic
frame is reserved for the name. 1In
MicroLISP, the basic frame contains a single
pointer to a table of names (the LNT; see
below). Either scheme requires that any
PROG or open LAMBDA which does not
constitute the entire body of a function be
made a separate subfunction, since PROG
variables are bound at the time the frame is
created, i.e. when the function is entered.
The MicroLISP scheme may slow down free
variable searches, since a name table may
not be in core any longer when the search
wants to scan it. Its advantages are that
it is not necessary to insert the name of
each variable at function entry time, and
that the entire word is available for
holding the binding, which (with the help of
a few type bits elsewhere in the frame) may
thus be a full-word integer or real number.

Code Design

Conventional machines generally take the
attitude that it must be convenient for any
instruction to reference any word in the
overall address space. This approach tends
to produce instruction formats in which a
large fraction (half or more) of the bits
are devoted to a memory address. MicroLISP
takes advantage of the observed fact that a
given LISP function references rather few
functions and variables and therefore can
make do with very short addresses which just
index a global table (of commonly used
functions) or a function-local table (of
local variables and less common functions).
Furthermore, a given name is usuvally only
used as either a function or a variable, not
both. MicroLISP tags each name in the
tables with a function/variable flag, which
eliminates the need for levels of list
structure as a syntactic device, and tags
functions with an argument count, which
eliminates the need for sublists as scope
delimiters. Thus MicroLISP code is
essentially a string of byte-sized .
instructions, representing the original
S-expression in postfix form, where most
bytes reference either a "global name table"
(GNT) or a "local name table" (LNT) as just
described.

The LNT actually has additional internal
structure: argument names come first, then
PROG and free variables, then everything
else. The "binding" of a free variable is a
pointer to the true binding, and the
variable searching algorithm uses this
knowledge: since all the bindings in a
given frame are identified by a single
pointer from the basic frame to the
associated LNT, the searching process can
tell from the tag if the match was on a free
variable, and if so, follow the pointer one
more step to obtain the value if desired.

MicroLISP programs, like LISP programs, are
structured into functions. Each function
has a header which gives the expected number
of arguments and the length of the LNT. The
former determines the size of the basic
frame. The latter determines the function's
entry point, since the LNT immediately

follows the header and precedes the code,
and also fixes the range of byte values that
addresses the LNT: larger byte values
address the GNT, after being adjusted
downward by the size of the LNT.

Each GNT or LNT entry consists of a H4-bit
tag and a datum (pointer) whose
interpretation depends on the value of the
tag. To accommodate the usual organization
of memories into words, each NT is organized
into blocks of entries: the arrangement for
a 36-bit memory, for example, appears below.

to tl t2} t3 t4 | t5 t6 t7
do dl
a2 d3
a4 d5
dé6 a7
ﬂuta l‘tg I etc, %

The algorithm for computing the location of
the i'th name in a N is atually quite simple
and only involves addition and shifting.

The possible tag values are presented
immediately below and discussed in the
following paragraphs.

CONST GVAR IVAR FVAR
FNO FN1 FN2 FN3 FN4 FN5 FN6
FN*

Function tag values must include the number
of supplied arguments; the datum holds the
function name. The tags FNO ... FN6
represent function calls with the most
common argument counts. FN¥ represents a
function call with more than 6 arguments:
the actual argument count is supplied as the
last argument, and the machine removes it
before constructing the new frame. The
primitive functions APPLY and APPLY* provide
the ability to call a function whose name is
computed: this ability is not represented
directly by a tag value.

The four variable tags represent different
strategies for obtaining the value of the
variable. All variable references
eventually result in pushing the value of
the variable onto the end of the current
frame extension; a function call severs the
appropriate number of arguments from the end
of the old frame extension for incorporation
in the new basic frame. CONST (CONstant)
simply pushes the datum itself. GVAR
{Global VARiable) pushes the contents of the
value cell of the variable whose name is the
datum, or traps if the value cell contains
NOBIND. 1IVAR (Indexed VARiable) does not

use the datum: it just pushes the N'th
value from the basic frame, where N is the
actual byte value. FVAR (Free VARiable)
works similarly, but takes the value as a
pointer to the true binding; if the pointer
has not been set up, a stack search occurs
first to find the nearest binding and set
the pointer to it.

699

Instruction Set

A few primitive operations, such as
returning from a function, cannot be
represented by function calls, so a few byte
values are reserved for them. These are the
only real "opcodes" in MicroLISP. Some of
them are followed by displacements or other
parametric information in the next byte or
bytes; a few (STORE, DSTORE) are followed by
an ordinary variable reference which is
interpreted specially. The convention
followed in the description of the opcodes,
and also in the examples in Appendix B, is
that upper-case words like STORE represent
opcodes; lower-case words represent
parameter bytes; upper-case words in
[brackets] represent references to
functions; lower-case words in brackets
represent references to variables.

Data Movement

STORE, (v]
This causes the top value on the stack,"
2z @®. to be stored. The interpretation
depends on the tag of v:

IVAR, GVAR:
The value in the binding is replaged by
Z.
FVAR:
The value in the addressed binding is
replaced by Z.
CONST:
Error (trap)e.
FNO ... FN6:
The function is called at its "store"
entry point with one more argument than
its tag specifies. '
FN*:
The function is called at its “store"
entry point with one more argument than
the count (immediately below Z on the
stack) specifies.

DSTORE, (v]

Performs the same action as STORE
followed by POP.

ADDRX, nl, n2; ADDRXX, n1, n2 n3
These serve to increase the range of
addresses. The 2-byte or 3-byte
parameter is interpreted as an address
in the LNT or GNT as appropriate.

POP
Removes the top item from the stack.

CoPY

Pushes the top value on the stack onto
the stack. Only apparent use is for
SELECTQ.

ARG
;f N is the top value on the stack (an
integer), replaces N by the N'th
argument of the function.

SETARG
;f Z is the top item and N is the next
item (an integer), sets the N'th
argument of the function to Z and
removes N from the stack (but retains gz,
squeezing N out).

control

The jump opcodes are followed by a parameter
byte, d, which is interpretedas a 2's
complement address displacement relative to
the opcode itself. If positive, 4 is
adjusted by *+3 to eliminate meaningless
small values. A few values of 4 are
reserved to indicate extension into a second
byte to provide a larger range of
displacements.

JuMP, d
Always jumps d bytes relative to the
instruction.

TJUMP, d
Tests the top value on the stack and
pops it; then jumps if the datum was
true (not NIL).

FJUMP, d
The inverse of TJUMP (jumps if NIL).

NTJUMP, d
Like TJUMP, but pops the value only if
the jump fails (value is NIL). This is
for COND's with clauses lacking a
consequent, where the value of the test
becomes the value of the COND if true.

TYPEJUMP, t, d
The bottom bits of t give a type number;
the top bit of t selects jumping on true
or false. The top value on the stack is
removed, then jump or no jump depending
on its type.

GOTOSELF
Calls the current function recursively
by jumping to its entry point after
replacing the arguments, i.e. a
PROGITER-type call.

RETURN
Returns the top value on the stack as
the value of the current function.

Conclusions _and Comments

MicroLISP programs are consistently
one-third to one-fourth the size of BBN-LISP
compiled programs, and the MicroLISP
compiler is about one-third the size of the
corresponding part of the BBN-LISP compiler.
Some of the former advantage is due to
design decisions in BBN-LISP which result in
bulky code: ITS LISPt1, for example, is
remored to produce code one-third the size
of BBN-LISP or only one-third larger than
MicroLISP. However, this compactness is
achieved at the expense of many of the
attractive features of BBN-LISP: recall the
observations about compilers in the
introduction. Since no MicroLISP machine
exists, there are no comparable timing data.
However, a microprogrammed implementation
and a software interpreter are in
preparation.

MicroLISP has been presented as a machine
language, but slight additions would permit
unambigquous decompilation into the original
S-expression for editing. This approach is
only feasible in general when the machine
language closely resembles the source code:

700

compilers for conventional machines must
rearrange and suppress the original program

structure extensively to achieve efficient
execution. Interpretive systems, of course,
generally do reconstruct the source text
from an intermediate representation, often
using their knowledge of the program
structure to advantage (e.g. indenting to
indicate depth of logical nesting).

Several factors prompted the author to
investigate the type of design just
presented. One was the feeling that the
constant demands from the Artificial
Intelligence community for larger primary
memories were based as much on
disinclination to spend time contemplating
alternatives to traditional machine and
program organization as on a real need to
deal with larger amounts of information.
Another was the hope, based on an earlier
experience with a small computer?, that a
LISP minicomputer could provide, at a
fraction of the cost, the kind of facilities
now available only through large, expensive
time-shared installations. A recent product
announcement for a desktop BASIC machine?® is
encouraging in this regard.

Realizing this hope for less expensive LISP
systems requires compressing the data as
well as the program. One approach is to
provide facilities for the user to define
his own packed data structures; a simple
proposal along this line is described in an
appendix. Another is to consider
"compiling" data in a manner similar to
programs. A careful reading of the
MicroLISP design reveals that the encoding
scheme works on arbitrary lists, not just
programs. The essential ideas are:
Eliminating CDR pointers by forcing
logically successive data to be
physically consecutive;
Eliminating non-atomic CAR pointers by
associating an operand count with each
operator, so the end of a sublist
(subexpression) is defined implicitly;
Compressing atoms by use of tables, on
the assumption that some few atoms
(different for different contexts) will
account for most of the references.
These ideas are applicable, separately or
together, to data as well as programs, and
offer a partial solution to the "address
explosion" problem; the tendency for

addresses to become longer and longer as
virtual memories become larger, so that one
winds up paying for many bits of memory used
to hold largely uninteresting links.

Acknowledgements

The idea of using very short instructions
and accessing the entire environment through
a table originated in the design of the
Burroughs B5000. The author was inspired to
contemplate the present design by some
suggestions of Butler Lampson and Charles
Thacker of Xerox PARC. The idea of a STORE
entry to a function is due to Alan Kay, also
of PARC.

Appendix A: User-Defined Data_Structures

The data structure definition facility
allows the user to define classes of objects
which are essentially generalizations of
list cells. List cells have two components,
which are pointers; user-defined structures
may have any (fixed) number of pointers,
integers, and reals (floating point
numbers) . CONS called with fewer than two
arguments fills in the missing components
with NIL: +the user may specify the default
values for his own structures. There are
corresponding generalizations of CAR and CDR
for extracting components from user
structures, and of RPLACA and RPLACD for
replacing components.

The user defines a new class of structures
by calling
(STRUCTURE number-of-pointers
number-of-integers number-of-reals
initial-value-list).
STRUCTURE returns (a pointer to) a
"template" for objects of the new class.
The template serves three purposes. First,
(STRUCPARS template)
returns a list of the
argquments to the call of STRUCTURE which
created the template. Second, applying the
template as a function to a list of
component values creates a new object of the
class, e.g. if complex numbers are defined
by
(PUTD (QUOTE COMPLEX)
{STRUCTURE 0 0 2)),

then (COMPLEX 1 -1) would create the complex
number 1-i. Third, there is a function
(STRUCP any-datum)
which returns the template if any-datum is
an object from a user-defined class and NIL
otherwise.
The generalized extraction function
(ELTR object component-number first-bit
number-of-bits)
returns a component selected by position:
components are numbered from 0, first
pointers, then integers, then reals.
First-bit and number-of-bits are only legal
if the component is an integer; if omitted,
a full word is fetched. The corresponding
replacement function is
(SETFQ (ELTR ...) value),
consistent with the MicroLISP notion of
"load" and "store" entries to a function.
For efficiency, P PUIN
(ELTFN template component- first-bit
number-of-bits)
returns a function £ such that
(f object)
is equivalent to
(ELTR object component-number first-bit
number-of-bits)
provided that the object is of the class
given by the template, or at least of a
class whose components up to and including
the specified one all have the same types as
the corresponding components of the class
given. 1In MicroLISP, the function f is of a
special data type called "selector" which
works as efficiently as CAR and CDR; CAR is
actually implemented as :
ELTFN (STRUCTURE 2) 1) and CDR as
(ELTFN (STRUCTURE 2) 0).

701

Appendix B: 16— AND 32-Bit Words

It is always awkward to implement systems
involving pointers on machines with 16- or
32-bit words, since 16 bits is not quite
enough for a pointer but 32 is too many.
However, a slightly different application of
the basic idea of MicroLISP (the use of
statistical knowledge about the topology of
data structures to reduce the number of bits
required to represent them) can produce a
useful 256K address space on a 32-bit
machine. The idea is to make 4 subspaces,
each of 64K (requiring 16-bit pointers), and
using global conventions to supply the
subspace number when following any given
pointer.

The software MicroLISP implementation
currently under construction uses the
following subspaces: (A) stack; (B) strings,
atom print-names, and the atom hash table;
(C) arrays and compiled code; (D) lists,
atom heads, and other descriptors. The
subspace number for pointers from each of
these areas is supplied as follows:

Stack
The *"control link" and "access link"
refer to space (A); the "resumption
point" carries an explicit subspace
designator, since it may refer to an
S-expression (space (D)), compiled code
(space (C)), or machine code; all other
pointers are to space (D).

Strings, print-names
There are no pointers in these
spaces.
Atom hash table
All pointers are
(D) .
Arrays, compiled code
All pointers are
Lists
All pointers are
heads :
CAR (value cell) and CDR (property
list) are to space (D);: the
definition carries an explicit
subspace designator, for the same
reason as the resumption point on
the stack; the print-name pointer
is to space (B).
String descriptors
These point to space (B).
Environment descriptors
These point to space
Array descriptors
These point to space (c).
This scheme works as long as the number of
different arrays, environments with
descriptors, and strings is not too large.
when these numbers become large, a great
deal of space (D) becomes devoted to
uninteresting descriptors.

to atoms, in space
to space (D).

to space (D).
Atom

@ .

Appendix C: Examples

These examples compare the S—expression, the
MicroLISP code, and the PDP-10 code produced
by the present BBN-LISP compiler. The
MicroLISP code assumes that a pointer
occupies 2 bytes and that 4 bytes fill a
word. The size figures for the compiled
codes do not include 1 word of header for
MicroLISP and 2 words for BBN-LISP
respectively.

%tttk REVERSE *¥%%%%

S-expression: 36 LISP cells
LAMBDA (X)
(PROG (Y)
LP (COND ((NLISTP X) (RETURN Y)))
(SETQ Y (CONS (CAR X) Y))
(SETQ X (CDR X))
(GO LP)
))

MicroLISP:
Tags:

IVAR IVAR [+ padding; 4 bytes]
Names: '

X Y [total 4 bytes]

26 bytes

Code:
(1p)
(x]); TYPEJUMP, listp, a; {y]; RETURN
(a)
[x]: [CAR]); (y]): [CONS]; STORE, [y]
[x]); (CDR]; STORE, (x]; JUMP, 1lp
PDP-10 compiled code: 22 words
REV1
(ISP 7 , ENTERF)
(262144 0)
(0 PLITORG)

tl1 (PUSH PP , KNIL)
LP (HRRZ 1 , X)
(PSTN1 LISTT).

(JRST t4)
t5 (HRRZ 1, ¥)
(JRST t3)
t4 (HRRZ 1 , X)
(HRRZ 1 , 0 (1))

(HRRZ 2 , Y)
(PUSHJ CP , CONS)
(HRRM 1, Y)
(HRRZ 1 , X)
(HLRZ 1 , 0 (1))
(HRRM 1 , X)
(JRST LP))
t3 (SUB PP , BHC 1)
t2 (POPJ CP ,)
LITORG
PLITORG
X
Y
xxkxkk%k SUBST *%*kkkk
S-expression: 41 cells
(LAMBDA (X Y 2)
(COND
((NLISTP %)
(COND ((EQ Z Y) X) (T Z)))
(T (CONS (SUBST X Y (CAR Z)) (SUBST X Y
;?DR 2)))))

702

Byte LISP: 37 bytes
Tags:

IVAR IVAR IVAR FN3 [+ padding:

Names:
X Y Z SUBST [total 8 bytes])
Code:

{z]:
[y):

SUBST
(Jsp 7,
(786432 0)

(0 PLITORG)
tl (HRRZ 1 , %)
(PSTN1 LISTT)
(IRST t3)
(HRRZ 1 , Z)
(HRRZ 2 , ¥)
(CAME 1 , 2)
(JRST t4))
(HRRZ 1 , X)
(JRST t5)

t4 HRRZ 1, 2)

t5 (JRST t6)

t6 (HRRZ 1 , X)
(PUSH PP , 1)
(HRRZ 1 , Y)
(pUsH PP , 1)
(HRRZ 1 , Z)
(HRRZ 1
(PUSH PP , 1)
(CCALL 3 , ¢
(PUSH PP , 1)
(HRRZ 1 , X)
(PUSH PP , 1)
(HRRZ 1 , Y)
(PUSH PP , 1)
(HRRZ 1 , 7)

[z]); [CAR
[z]: (CD

TYPEJUMP, listp, a
[z]; [EQ); FJUMP, b; [x];

[SUBST)
R); [

SUBST J;

PDP-10 compiled code: 39 cells

ENTERF)

0 (1))

SUBST)

(HLRZ 1, 0 (1))

(PUSH PP , 1)
(ccaLn 3 , ¢
(MOVE 2 , 1)
(POP PP , 1)

SUBST)

(PUSHJ CP , CONS)

t6
t2 (POPJ CP ,)
LITORG
PLITORG
X
Y
z
SUBST

4 bytes])

RETURN

[CONS];

10

11

13

References

Daniel G. Bobrow, Ben Wegbreit

A Model and Stack Implementation of
Multiple Environments

BBN Report #2334

March 1972

Burroughs B5500 Information Processing
System Reference Manual

Burroughs Corporation

1964

Computer Operations Incorporated
GEMINI Reference Manual
(distributed internally)

J. Moore, D. Steingart, H.R. Zaks
A Firmware APL Time-Sharing System
1971 sJccC '

Clark Weissman

LISP 1.5 Primer

Dickenson Publishing Company
1967 '

R. Rice et al.

SYMBOL - A Major Departure from Classic
Software-Dominated Von Neumann Computing
Systems

1971 sJcc

E.C. Berkeley, L.P. Deutsch
The LISP Implementation for the PDP-1
Computer in the Programming Language

LISP: 1Its Operation and Applications
M.I.T. Press
1966

Hewlitt-Packard Corporation
advertisement in Scientific American
Feb. 1973

John McCarthy

Recursive Functions of Symbolic
Expressions and Their Computation by
Machine

Communications of the ACM

April 1960

~John McCarthy et al.

LISP 1.5 Programmer's Manual
M.I.T. Press

1962

M.I.T. Project MAC Artificial
Intelligence Laboratory
no available reference

E.A. Hauck, B.A. Dent
Burroughs B6500/B7500 Stack Mechanism
1968 SsJccC

W. Teitelman et al.
BBN-LISP TENEX Reference Manual
Bolt Beranek and Newman Inc.

Cambridge, Mass.

latest revision: Feb. 1972

703

14

J.F. Rulifson, J.A. Derkson, R.A.
wWaldinger

QAl4: A Procedural Calculus for Intuitive
Reasoning

Artificial Intelligence Center Technical
Note 73

stanford Research Institute

Menlo Park, California

Nov. 1972

	01.tif
	011.tif
	012.tif
	013.tif
	014.tif
	015.tif
	016.tif

