
'1"\,
!) !

/

\ l J
-"-.-"

THE BBN 940 LISP SYSTEM

Daniel G. Bobrow
D. Lucille Darley
L. Peter Deutsch
Daniel L. Murphy
Warren Teitelman

Bolt Beranek and Newman Inc
50 Moulton Street

Cambridge, Massachusetts 021.38

Contract No. AF19(628)-5065

Project No. 8668

Scientific Report No. 9

This research was sponsored by the Advanced Research ~rojects
Agency under ARPA Order No. 627, Amendment No; 2

15 July 1967

Distribution of this document is unlimited. It may be released to the
Clearinghouse, Department of Commerce, for sale to the general public.

Contract Monitor: Stanley R. Petrick
Data Sciences Laboratory

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

(..

\~)

(j
~/

C)

ABSTRACT

This report describes the LISP system implemented at BBN on the

SDS 940 Computer. This LISP is an upward compatible extension of

LISP 1.5 for the IBM 7090, with a number of new features which

make it work well as an on-line language. These new features

include tracing, and conditional breakpoints in functions for

debugging and a sophisticated LISP oriented editor. The BBN 940
LISP SYSTEM has a large memory store (approximately 50,000 free

words) utilizing special paging techniques for a drum to provide

reasonable computation times. The system includes both an

interpreter, a fully compatible compiler, and an assembly language

facility for inserting machine code subroutines.

-iii-

o

o

u

o

C)

SECTION I
INTRODUCTION

SECTION II

TABLE OF CONTENTS

. 1

USING THE LISP SUBSYSTEM ON THE 940 .•...••••••. 2

SECTION III
DATA TYPES AND THE ORGANIZATION OF

VIRTUAL MEMORY . 4

SECTION IV
FUNCTION TYPES •.•.•.....•..•.....•••••.•.•••..• 12

SECTION V
PRIMITIVE FUNCTIONS AND PREDICATES ••••••••••••• 16

SECTION VI
LIST MANIPULATION AND CONCATENATION ..•••••.•••• 27.

SECTION VII
PROPERTY LIST FUNCTIONS .•.•.•••.••...••.•••.••• 32

SECTION VIII
FUNCTION DEFINITION AND EVALUATION ••••.•.•••... 35

SECTION IX
THE LISP EDITOR .•••..•..••..•.•••..•••....•.•.• 40

-v-

TABLE OF CONTENTS (cont.)

SE.CTION X
ATOM, ARRAY, AND STORAGE MANIPULATION ..•.•.•... 59

SECTION XI
FUNCTIONS WITH FUNCTIONAL ARGUMENTS•..• 64

SECTION XII
VARIABLE BINDINGS AND PUSHDOWN LIST FUNCTIONS .• 68

SECTION XIII
ARITHMETIC FUNCTIONS .•••••••••...••••••.•...... 72

SECTION XIV o
INPUT/OUTPUT FUNCTIONS 77

SECTION XV
ERROR HANDLING AND DEBUGGING FUNCTIONS •••••••.• 94

SECTION XVI
THE COMPILER AND LAP ••...•••.•.•••.•••.•..••••• 107

INDEX TO FUNCTIONS ••.• ___ •.•..•••••..••••••.•••••.•.•... 122

o
-vi-

SECTION I

INTRODUCTION

LISP is a highly sophisticated list-processing language which is

being used extensively in artificial intelligence research. This

document describes the BBN 94' LISP system~ which has a number of
unique features which make it a very good on-line interactive sys­

tem with a large drum memory. Ideally, a LISP system would have a

very fast, random-access memory. However, magnetic core memory

(the only large scale random-access memory available) is very ex­

pensive relative to serial memory devices such as magnetic drums
or discs. Since average access time to a word on a drum or disc

is many times slower than access to a word in a core memory, using

~ a drum as a simple extension of core memory would reduce consider­

ably the operating speed of such a system. We have developed spec­

ial paging techniques which allow utilization of a drum for stor­

age with a much smaller penalty in speed. These techniques are

described in detail in Bobrow and Murphy's "Structure of LISP Us­

ing Two-Level Storage," (Comm. ACM, March 1967).

Although we have tried to be as clear and complete as possible,

this document is not designed to be an introduction to LISP.
Therefore, some parts may be clear only to people who have had

some experience with other LISP systems .. A good introduction to

LISP is Clark Weisman, "LISP 1.5 Primer" (Dickenson Press 1967).
Although not completely accurate with respect to the BBN 94' LISP

system, the differences are small enough to be mastered by use of

this manual and on-line interaction. Other important references,
published by the MIT Press, are John McCarthy, LISP 1.5 Program­

mer's Manual and Berkeley and Bobrow (editors), The Programming

!-~ Language LISP, Its Operation and Applications.
\.J

SECTION II

USING THE LISP SUBSYSTEM ON THE 94~

In order to use LISP, you must have in you~ files a sysout f~le

of the basic system. This basic LISP system file, usually called

LISP, contains a binary image of LISP after it has been initial­
ized and loaded with the library. You do not need a copy o~ the

library if you have t~is file.

Call LISP by typing LIS; the system will respond P; then type ~,
when LISP finally responds READY, and types +, you are talking to

. the LISP supervisor, usually called evalquote. Then type the

following:

SYSIN (LISP)

After typing the above, the system will find and load the basic
system binary file of this name from tape. When it has read it

in successfully, it will resporid with a T, and the LISP super­
visor will again type +, indicating that it is listening to you

again.

When typing in to evalquote, typing a control-Q will clear the
input line buffer erasing the entire line up to the last carriage

return. Typing control-A erases the lait character typ~d iri,

echoing a t and the erased character; it will not g6 beyond the

last carriage return. Pressing the RUBOUT button while in the
middle of a typein to the LISP executive, evalquote, will clear
the entire read bUffer of everything back to th~ last +, and.

LISP~ill again type +.

-2-

o

o

(~
,-)

o

The LISP read program counts parentheses, and echoes a carriage

return when all left and right parentheses balance. Left and

right brackets, "[" and II]", are super-parentheses. A right

bracket will close all open left parentheses up to the last open

left bracket; if there is no open left bracket, it will close the
entire expression. For example:

PRINT ((THIS IS A LISP SYSTEM FROM BBN (FOR THE 94~]

will print the expression shown with enough right parentheses to

close all lists; that is, the "]" is equivalent, in this case, to

three right parentheses. Unpaired right parentheses are read as

NIL.

To exit from LISP, type:

LOGOUT ()

One can then execute any system commands, except those which
start another subsystem, and continue LISP using the system
CONTINUE command. This will .revive the LISP system exactly as

you left it, except that all open files will be closed, and you
will be typing to evalquote, whether or not you executed the

logout at the top level.

-3-

SECTION III

DATA TYPES AND THE ORGANIZATION OF VIRTUAL MEMORY

LISP operates in a 21-bit addresa space, though only that portion

currently in use actually exists on the drum. A portion of the

address space above that actually allocated for structures is

used for representation'of small integers, as described below.

All data storage is contained within this virtual memory,

including literal atoms, list structure, arrays and compiled'code,

large integers, floating point numbers, and pushdown list storage.
This virtual memory is divided into pages of 256 words. References

to the virtual storage are made via an in-core map which supplies
the address of the required page if it is in core, or traps to a
supervisory routine if the page is not in core. This drum super­

visory routine selects an in-core page, writes it back on the

drum if it has been ,changed, and reads the required page from the

drum. Closed subroutine references to an in-core word through
the map take approximately 40 microseconds. A reference to a

word not in core, which must be obtained from the drum, takes up
to 33 milliseconds, the drum maximum access time. It takes twice

as long if a page must be written out on the drum before the
referenced page can be read in.

Type Determination of Pointers

The virtual memory is divided into a number of areas as shown in
Fig. 1. As can be seen from this map of storage, simple arith­
metic on the address of a pointer will determine its type. We

chose to allocate storage rather than provide in-core descrip­

tors of storage areas, because they would take up valuable in-core
space.

-4-

o

o

\J

(') ,----
VIRTUAL
MEMORY

(MAPPED TO
DRUM)

t
CORE

MEMORY

'"

SMALL INTEGERS

460 000

LARGE INTEGERS

FLOATING POINT NUMBERS
HASH TABLE

t ATOM PNAME POINTER

t ATOM FN CELLS

t ATOM PROP LISTS

t ATOM VALUES

t CONTROL PDL

t PARAMETER PDL

t PNAME STRINGS

'" LIST STRUCTURE

t

COMPILED CODE
AND ARRAYS

NUMBER PDL - - - - - - - -

OCTAL
ADDRESS

, 10 000 000

4 230 000

CIl
p::
riI
C!:)
riI
E-4

t a 454000

450 000

424 000

410 000

364 000

340 000

40 000

FIG. 1 MEMORY ALLOCATION IN LISP

-5-

CIl
p::
riI
~
~
:::;,
z

CIl
~
0
E-4 «

Literal Atoms

A literal atom is constructed from any string of characters not

interpretabl~ as an integer or a floating point number. When a

string of characters representing a literal atom is read in, a

search is made to determine if an atom with the same print-name

has been seen before. If so, a pointer to that atom is used for

the current atom. If not, a new atom is created. Thus, as in all

LISP systems, a literal atom has a,unique representation.

Four cells (940 words) are associated with each literal atom.

These cells contain pointers to the print-name of the atom, the

function which it identifi~s, its top level or global value, and

its property list. Since pointers to atoms occur in only one

part of the address spac·e, 0l1e can. tell from a pointer (address)

whether or not it is pointing to a i1teral atom.

Instead of having the four cells associated with each atom on the

same page, each is put in a separate space in a positiori compu­

table from the pointer to the atom.

Separating value cells and function cells, for example, is useful

because most users will not use the same name for a global

variable as they will for a function. Therefore, if the four

cells were brought in whenever anyone was asked f.or, it is

likely that the other three cells would never.be referenced. Yet,

they use up room in core which could be used for other storage.

Similarly, the print-name pointers associated with atoms are

needed during input and output, but rarely during a computation.

Therefore, during computation these cells are nev~r in core.

Car of a literal atom usually contains the top levelbindirtg· of

the atom. If the atom has not yet been bound, the value cell

-6-

o

()

/\
U

contains the special atom NOBIND. ~ of the atom is a pointer

to the atom property list, initially NIL. The PNAME cell contains

a pointer to a pack~d character table which contai~~ th~ print_

name of the atom. The function cell contains NIL until a function

by that name is defined. One implication not immediately obvious

is that car[NIL] = NIL, and cdr[NIL] = NIL. These latter two

values are a significant convenience in programming.

Numerical Atoms

Integers

In LISP, most numerical atoms (numbers) do not have a unique re­

presentation; that is, a number of different pointers may reference

numbers with the same value. This implies that for comparison of

numbers, or for arithmetic operations, the values of the numbers

must be obtained. The values of floating point numbers and large

integers are stored in a "full word" space. Pointers to these

values are used in list structure.

However, we utilize the fact that not all addresses in the virtual

address space of the drum can legitimately appear as pointers. in

list structure. These "illegal" pointers are therefore used in

the context of list structure to represent "small" integers

directly, offset by a constant.

The input format for an integer is any string of digits, option­

ally preceded by a "+" or "-". Integers must have magnitude less

than 223. "Small" integers are those of magnitude below approxi­

mately 218 (an assembly parameter). A string of digits followed

by a "Q" will be interpreted as an octal number ..

-7-

.~.

_____ ~-I.-----

Floating Point Numbers

Floating point numbers and operations· are available in BBN LISP.

They are stored in two contiguous 24 bit words in standard 940

format~ in full word space. When creating an atom with read~

ratom or pack, LISP will recognize as a floating point number a

string of digits containing a decimal point. The letter IIEII

(exponent of 10; i.e. yyExx=yy * 10xx) will also serve to desig­

nate a floating point number if preceded and followed by one or

more digits. The following are legal floating point input strings.

5. 5.0 5EO 5E-3 5.2E+6 .3

The floating point/string conversion, and the floating point

.arithmetic are performed by the _POP's and BRS's available in the

940 system. Additional information concerning- conversion and

precision is available from the system documentation of these

routines.

The atom printing routine (used by prinl~ prin2, prin3, unpack)

will call the system conversion routine when it encounters a

floating point datum. The output format is controlled by the

function fltfmt[n] described later.

-8-

o

o

(J Arrays

Arrays in BBN LISP have the following format.

+

Header Block

Non-Pointer Area

Pointer Area

Relocation Information

Typical Array

The HEADER BLOCK is four cells long and contains:

Cell: ~ Length of entire array.
1 Relative address of first word of

pointers.
2 Relative address of first word of

information.
3 ~ if an integer or symbolic array.

1 if a floating point array.

Length

protected

relocation

Used as temporary storage in compliled code.

-9-

An array may contain both pointer and non-pointer data, separated

as shown. Pointer data is assumed to be one of the standard LISP

types, and the pointer data cells in all arrays are used as base

cells for tracing during garbage collection. The non-pointer

data, beginning in the fifth cell of the array, is of unrestricted

type, and will not be used as trace pointers during garbage

collection.

Relocation information contains the relative addresses of cells

in the array which are to be relocated when the array is used as
a compiled function, and is· placed in core memory.

Examples:

1. Compiled code.
a. Machine instructions and unboxed numeric

literals are in the non-pointer area.
b. Other literals and variable name pointers are

.in the pointer area.

c. Relocation information area addresses all

machine instructions whose address is within

the same program, e.g., BRANCH instructions.

2. Array of lists.

All data would be in the pointer area; the other
areas would be of length ~.

3. Array of unboxed numbers.

Al~ data would be in the non-pointer area; the
other areas would be of length ~.

-10-

o

o

()
'--.

cJ

List Structure

List Structure is created in list space as shown in the memory
map. Lists can contain pointers to all data types. As can be

seen from the map, list space and array space grow toward each

other. The total space available is an assembly parameter.

Currently the space available is 96K (K=1024) SDS 940 24 bit

words, which if used all for list storage would provide 48K words

of free storage.

-11-

· SECTION IV

FUNCTION TYPES

There are basically eight. function types in the BBN LISP System.

These ei~ht types are~characterized by three dichotomies. A

function may independently have:

1. its arguments evaluated or unevaluated,
2. a fixed number of arguments or an indefinite number of

arguments.

3. be defined by a LISP expression, or by machine code
(which may be permanent system code, or compiled

machine code).

Expressions used to define functions must start with either

LAMBDA, or NLAMBDA; indicating that the arguments of this func­

tion are to be evaluated, or not evaluated, respectively.
Following the LAMBDA or NLAMBDA may be any atom (except NIL) or

a list of atoms (possibly empty). If there is a list of atoms,

each atom in the list is the name of an argument for the function
defined by the expression. Arguments for the function will be

evaluated or unevaluated, as dictated by LAMBDA or NLAMBDA, and

paired with these argument names. If an atom follows the LAMBDA

or NLAMBDA, this function has an indefinite number of arguments.
If it is an NLAMBDA expression, then the atom is paired to the

list of arguments (unevaluated) of the function; that is, to cdr
of the form in which this function name was car.

If a LAMBDA is followed by an atom, each of its arguments, n, will

be evaluated in turn and placed on the parameter push down list.

The atom following the LAMBDA is bound to the number of arguments

()
'---./

(':\
which have been evaluated. A built-in function arg[m] returns _)

-12-

(J

(J

o

the value of the mth argument of this function from the push

down list. For m>n or m~o, it is undefined.

Functions defined by expressions can be compiled by the LISP com­
piler, as described in the section on the compiler and lap. They
may also be written directly in· machine code and the LAP assembly

language if the lap conventions are followed to allow linkage to

LISP functions. Functions created both by the compiler and lap

are referred to as compiled functions. Built-in system coded

functions are called subroutines. To determine the type of any

function fn, you can use the function fntyp[fn]. The value of
fntyp is one of the following 12 types:

EXPR

EXPR*
FEXPR

FEXPR*

CEXPR

CEXPR*
CFEXPR

CFEXPR*

SUBR

SUBR*
FSUBR

FSUBR*

The types in the first column are all defined by expressions.

The * suffix indicates an indefinite number of arguments (i.e. an
atom following the LAMBDA or NLAMBDA). Functions of types in the

first two rows evaluate their arguments. The types in the second
column are compiled versions of the types in the first column, as

indicated by the prefix C. In the third column are the parallel
types for built-in subroutines. The prefix ~ again indicates no

evaluation of arguments. Thus, for example, a CFEXPR* is a
compiled form of an NLAl'-1BDA expression with an atom following

the NLAMBDA.

-13-

A standard feature of the BBN LISP system is that no error

occurs if a function is called with too many or too few arguments.

If a function is called with too many arguments, the extra argu­

ments are evaluated but ignored. If a function is called with

too f~w arguments, the unsupplied ones will be delivered as NIL.
This applies to both built-in and defined functions.

There is a function progn of an arbitrary number of arguments

which evaluates the arguments in order and returns the value or
t.he last (i. e., it resembles and is an extension of· prog2) .

The conditional expression. has be.en generalized so that instead

of doublets it accepts h+l-tuplets which will be interpreted in

the following manner:

(COND
(PI Ell E12 E13)

(P2 E21 E22)

(P3)
(P4 E41»

will be taken as equivalent to (in LISP 1.5):

(COND

(PI (PROGN Ell E12 E13»
(P2 (PROGN E21 E22»

(P3 P3)
(P4 E41)

(T NIL»

This is not-exactly true, but only because P3 is not evaluated

a second time, if the value is needed in the third item in the

-14-

------------ ----~------~-- .. - -~ ~-----~--.-

()

o

o second conditional expression. Thus, a list in a c.ond. with only

a predicate and no following expressions causes the value of the
predicate itself to be returned. Note also that NIL is returned

if all the predicates have value NIL. No error is invoked.

C)

LAMBDA and NLAMBDA expressions also have implicit progn's; thus

for example

(LAMBDA (VI V2) (Fl VI) (F2 V2) NIL)

is interpreted as

(LAMBDA (VI V2) (PROGN (Fl VI) (F2 V2) NIL»

The value of the last expression following LAMBDA (or NLAMBDA)
is returned as the value of the expression. In this example,

the function would always return NIL.

-15-

"-. :

SECTION V

PHIMITIVE FUNCTIONS AND PREDICATES

Primitive Functions

car[x]

cdr[x]

caar[x] = car[car[x]]

cadr[x] = car[cdr[x]]

cddddr[x] =
[cdr[cdr[cdr[cdr[x]]]]

car gives the first element of a

list ~, or the left element of a
dotted pair~. Nominally unde­
fined for liter~l atoms, it

usually gives the top level
binding (value) of a literal

. atom x. For the usually unde£ined
case of a number, its value is
the number itself.

cdr gives the tail of a list (all
but the first element). This is

also the right member of a dotted

pair. If ~ is a literal atom,
cdr[~] gives the property list

of x. Property lists are usually

NIL unless modified by the user.

If ~ is a number, cdr returns NIL.

All 30 combinations of nested
cars and cdrs up to 4 deep are

included in the system. Levels 1,

2 and 3 are subroutines; 4 is
compiled. All are compiled open
by the compiler.

-16-

-~----- ~~- ---- - ------

C)

o

()

cons[x;y] cons constructs a dotted pair of
-- J •.

x and~. If ~ is a list, ~ be-

comes the first element of that
list. To minimize drum accesses

.J '.,'

the following algorithm is used

for finding a page on which to

put the constructed LISP word.

cons[x;y] is placed

1) on the page with y if Y is a list and there is room;
otherwise

2) on the .page with .x if .x is a list and there is room;
otherwise

3) on the same page as the last cons if there is room; .--
otherwise

4) on a page in core if one is available with a specified
minimum of storage;.otherwise

5) on any page with a specified minimum of storage.

The specified minimum is presently 20 LISP words in
both cases.

The.user may effect the operation of cons with the following

function:

conspage[x] causes the page on which ~ re­
sides to be used for alternative

3 above instead of the result of
the previous cons. If x is an

atom, alternative 4 or 5 will

be taken.

-17-

conscount[]

rplacd[x;y]

rplaca[x;y]

quote[x]

Returns the number of conses

since LISP started up.

This very dangerous SUBR places

in the decrement of the cell

pointed to by ~ the pointer ~.

Thus it changes the internal list

structure physically, as opposed

to cons which creates a new list

element. This is the only way

to get a circular list inside of

LISP; that is by placing a

pointer to the beginning of a

list in a spot at the end of the

list. Using this function care­

lessly is one of the few ways to
really clobber the system. The

value of rplacdis ~.

This SUBR is similar to rplacd,

but it replaces the address

pointer of ~ with~. The same

caveats which applied to using

rplacd apply to rplaca. The

value of rplaca is~. Rplaca

and rplacd of NIL are illegal.

This is a function that prevents

its argument from being evaluated.

Its· value is x itself.

-18-

n .-/

-- ------

(-)
'.-/

cond[x] The argument for cond is a list.

Each element of the list is it­

self a list containing n > 1

items: the first is an expression

whose value may be false or true

(that is NIL, or anything which

is not NIL); the rest may be any

expressions. This is the condi­

tional expression in the LISP

system. The meaning of it is:

if the first element of the first

list is true (not NIL), then the

following expressions are evalu­

ated. The value of the condi­

tional is the value of the last

expression in this sublist. If

there is only one element in the

n-tuplet, then the value of the

conditional is the value of this

element if it is not NIL.

This value of a conditional agrees

with that of LISP 1.5 for pairs

of items, but allows additional

flexibility. If the first ele­

ment of the first list is false

(=NIL), then the second sublist

is considered, etc. Thus, the

arguments are searched until a

first element of a list is found

which is not NIL. If none are

found, the value of the conditional

expression is NIL.

-19-

This very useful function is used

to select a sequence of instruc­

tions based on the value of its

first argument x. Each of the

~i is a list of the form

(~i ~li e2i···~ki)

where ~i is the selection key.

If ~i is an atom the value of x

is tested to see if it is ~ to

~i (not evaluated). If so, the

expressions elo, •.. eko are eval-
- 1 - 1

uated in sequence, and the value

of the selectq is the value of

the last expression evaluated,

i.e. eki ·

If ~i is a list, and if any ele­

ment of ~i is ~ to the value of

x, then eli to e ki are evaluated

in turn as above.

If ~i is not selected in one of

the two ways described then

~i+l is tested, etc. until all

the ~'s have been testedo If

none is selected, the value of

the selectq is the value of z.

z must be present.

-20-

C)

prog2[x;y]

progn[x;y; ... ;z]

An example of the form of a

selectq is:
(SELECTQ (CAR X)

(Q (PRINT FOO) (FIE X»
((A E IOU) (VOWEL X»

(Y (TRY-AGAIN X»
(COND((NULL X)NIL)

(T (QUOTE STOP»»

which has 3 cases, Q,(A E IOU)

and Y, and a default condition

which is a condo

selectq compiles open, and is

therefore very fast; however it

will not work for lists, large
integers or floating point num­

bers since it uses a 24 bit open

compare (an open ~).

This function evaluates its

arguments in order, that is, ~l

then ~2 etc. It returns the

value of its first argument ~l'

Evaluates x, then y and returns

y".

progn evaluates each of its

arguments in sequence, and re­

turns the value of its last

argument as its value. It is an

extension of prog2.

-21-

go[xJ

This feature allows the user to

write an ALGOL-like program con­

taining LISP statements to be

executed and is identical to the

~ in LISP 1.5. The first

argument is a list of program

variables. The rest is a se­

quence of (non-atomic) state­

ments (expressions), and atomic

symbols used as labels for trans­

fer points. The value of a prog

is determined by the function

return. If no return is exe­

cuted, the value of the prog is

not guaranteed, but will not give

an error.

go is the function used to cause

a transfer in prog. (GO A) will

cause the program to continue at

the label A.

A go can be used at any level in

a prog. If a go is executed in

an interpreted function which is

not a prog, it will be executed

in the last interpreted ~

entered.

-22-

(\ ,)
"-/

() return[x]

set[x;y]

setq[x;y]

o

setqq[x;y]

A return is the normal end of a

~. Its argument is evaluated

and is the value of the ~ in

which it appears. If a return

is executed in an interpreted

function which is not a prog,

the return will be executed iri

the last interpreted ~ entered.

This function sets the atom which

is the value of ~, to the value

of ~, and returns the value of ~.

This FSUBR is identical to set,

except that the first argument

is not evaluated.

Example: If the value x is ~,

and the value of ~ is b, then

set [x;y] would result in c

having value ~, and b returned.

setq[x;y] would result in x

having value ~, and b returned.

In both cases, the value of ~

is unaffected.

Identical to setq except that

neither argufuent is evaluated.

-23-

Predicates and Logical Connectives

atom[x]

eq[x;yJ

eqp[x;y]

neq[x;y]

nill[]

null[x]

equal[x;y]

atom[xJ=T if x is an atom; NIL

otherwise.

The value of ~ is T if ! and ~

are identical atoms, NIL other­

wise. This includes numbers, if

~ is called from an interpreted

function. It is not guaranteed

for floating point numbers and

large integers when used in a

compiled function, since it is

compiled open as a 24 bit compare.

Identical to ~, except that it

is compiled closed, and hence

will work for all numbers in

compiled code.

The value of this function is T

if x is not eqp to ~, and NIL

otherwise.

Defined as NIL

eq[x;NIL]

The value of this function is T

if ! and ~ are equal, that is,

identical S-expressions, and NIL

otherwise. Identical here means

that they will print identically.

-~~-~.------------- ---

o

o

CJ

or[x l ;.·· ;xnJ

not[xJ

memb [x;y J

member[x;y]

This function is an FSUBR and

can take an indefinite number of

arguments. Its value is the

value of its last argument if

none of its arguments has value

NIL, and is NIL otherwise. Argu­

ments past the first null argu­

ment are not evaluated.

or is also an FSUBR and may have

an indefinite number of arguments

(including 0). or has value NIL

if all of its arguments have

value NIL, otherwise, it has the

value of its first non-null argu­

ment. Arguments past this one

are not evaluated.

Same as ~

This function determines if x is

a member of list ~, i.e. if there

is an element of ~ eq to x. If

so it returns the portion of the

list starting with that element.

If not it returns NIL.

Identical to memb except that it

uses equal instead of eq to check

membership of x in ~.

-25-

intersection[x;y]

union[x;y]

This function returns with. a list

whose elements were members of

both lists x and ~.

This function is entered with two

lists. It returns with a list

consisting of all elements

included on either of the two

original lists. If the same

item is a member of both original

lists, it is included only once

on the new list.

-26-

(J

()

o

/ ---\

\,_J

list[x l · ... ; x ;:] , n

append[x;y]

nconc[x;y]

SECTION VI

LIST MANIPULATION AND CONCATENATION

The value of list is a list of

the values of its arguments.

This function copies the top

level of list ~ and appends list

~ to this copy. The value is

the combined list.

This function is similar to

append in effect, but it causes

this effect by actually modifying

the list structure ~, and making

the last element in the list x

point to the list~. The value

of nconc is a pointer to the first

list ~, but since this first list

has now been modified, it is a

pointer to the concatenated list.

-27-

---------- ----------

tconc[x;p]

lconc[x;p]

attach[x;y]

This function provides an effi­

cient way for placing an item x

at the end of a list. This list

is the first item on 2, that is,

car[p]; cdr[p] is a pointer to

the last element in this list; !
is placed on the end of the list

by modifying this structure, and

! is placed on the list as an

item. The effect of this function

is equivalent to
nconc[car[p];list[x]], with Cd~[p]
updated to point to the last ele­

ment of the modified list.

This function is similar to tconc,

except that in. this case x is a

. list. An entire list will be
tacked on the end of car[p], and

cdr[p] will be adjusted to be a

pointer to the last element of

this new combined list. Both

tconc and lconc work correctly

given null arguments.

This function attaches the element

x on the front of the list ~ by

doing an rplaca and an rplacd.

This will not work correctly if

~ is an atom. Thus it is similar

to cons, except that it modifies

the contents of the first element

of the non-null list ~.

-28-

-- -~~------------------

remove[x;l]

dremove[x;l]

copy[x]

reverse[l]

dreverse[l]

subst[x;y;z]

The function remove removes all

occurrences of ~ from list 1,
giving a ~ of x with all ele­

ments equal to ~ removed.

This function is identical to

remove, but actually modifies

the list ! when removing ~, and
returns x itself.

This function makes a copy of the

list x. The value of ~ is the
(Dcation of th~ copied list. All
levels of x are copied.

This is a function to reverse the

top level of a list. Thus, using

reverse on

(A B (C D» gives «C D) B A)

Identical to reverse but dreverse

destroys the list ! while reversing

by modifying pointers, and thus
does not use any additional

storage.

This function gives the result of

substituting the S-expression ~
for all occurrences of the atomic

symbol ~ in the S-expression ~.
It returns a copy of z with the

changes made.

-29-

dsubst[x;y;z]

sublis [x;y]

subpair[xjy;z]fl

last [xl

Identical to subst, but physically

inserts a copy of x for ~ in ~,
thus changing the list structure
z itself.

Here x is a list of pairs:

((ul • vI) (u2 • v 2) ••• (un· v n))

The value of sublis[x;y] is the
result of substituting each v
for the corresponding u in ~.
Copies the structure ~ with
changes.

Similar to suglis, except that
elements on Yare substituted for
corresponding atoms on 4 in ~.
New structure is created only if

needed, or if fl=T.

This function has as its value a
pointer to the last cell in the
list ~, and returns NIL if ~ is
an atom. i.e. if x=(A B C) then
last [x] = (C)

-30-

-- -------

(j

o

C) nth[x;n]

1ength[x]

(J

The arguments of nth are a list ~

and a positive integer~. Its

value is a list whose first ele­

ment is the nth element of list

x. Thus if n = 1, it returns
the list x itself. If n = 2,

it returns cdr[x]. If n = 3,
it returns cddr[x], etc.
If n = 0 it returns cons[NIL,x].

This function has as a value the

length of the 1ist~. If x is
an atom, it returns ~.

-31-

- -- -----

put[x;y;z]

remprop[x;y]

prop[x;y;u]

SECTION VII

PROPERTY LIST FUNCTIONS

This function puts on the pro­

perty list of ~, the label ~

followed by the property~. The

current value of ~ replaces any

previous value of ~ with label ~

on this property list.

This function removes all occur­

rences of the ~erty with label

~ from the property list of x.

The function ~ searches the

list x for an item that is equal

to~. If such an element is

found, the value of ~ is the

rest of the list beginning

immediately after that element.

Otherwise, the value is u[],

where ~ is a function of no argu­

ments. Its effect is similar to

memb and member, and they are

more efficient when usable.

-32-

C)

get[x;y]

getp[x;y]

deflist[x;P]

This function gets from the list

x the item after the atom ~ on

list x. If Y is not on the list
x, this function returns NIL. For

example, get[(A B C D);B] = C.

This function get~the 2.roperty

with label ~ from the property

list of x.

NOTE: Both ~ and ~ may be
used on property lists. However,

since ~ searches a list two at
a time, the latter allows one to

have the same object as both a

property and a value. e.g., if

the property list of ~ is

(PROPl A PROP2 B A C)
then get[x;A]

but getp[x;A]

= PROP2,
= c.

This function is used to put

items on property lists. Its

first argument x is a list of
two element lists. The first of
each is a name. The second ele­

ment is the value to be stored

after the property 2. on the pro­

perty list of the name. The
second argument 2. is the property

that is to be used.

-33-

add[x;y;z]

assoc[x;a]

sassoc[x;y;u]

This function adds the value z to

the list appearing under the

property ~ on the atom x. If x

does not have a property ~, the

effect is the same as

put[x;y;list[z]].

If a is a list of dotted pairs,

then assoc will produce the first

pair whose first item is eq to x. -
such an item is not found, assoc

will return NIL.

The function sassoc searches ';[,

which is a list of dotted pairs,

for a pair whose first element is

equal to x. If such a pair is
found, the value of sassoc is this

pair. Otherwise, the function ~
of no arguments is taken as the

value of sassoc.

-34-

If

getd[x]

putd[x;y]

o

putdq[x;y]

SECTION VIII

FUNCTION DEFINITION AND EVALUATION

This function gets the ~efinition

of the function whose name is

the value of x. If x is not a

defined function, the value of

getd[x] is NIL; if x is a machine

code function, the value is a

number.

putd places the value of y into

the function cell of the atom

which is the value of x. This

is the basic way of defining

functions. putd is mnemonic for

put definition on x. The value of

putd is the definition (value of

yJ.

This function is similar to putd,

but both arguments are considered

quoted, and its value is x.

-35-

fntyp[fn]

define[x]

This function returns NIL if the

atom fn is not the name of a de­

fined function. If fn is a func­

tion, then fntyp returns one of

the following as defined in the

section on function types:

EXPR

EXPR*

FEXPR

FEXPR*

CEXPR

CEXPR*
CFEXPR

CFEXPR*

SUBR

SUBR*

FSUBR

FSUBR*

The prefix ~ indicates unevalu­

ated arguments; the prefix C in­

dicates compiled code; and the

suffix * indicates an indefinite

number of arguments.

The argument of define is a list.

Each element of the list is it­

self a list containing two

or more items. In a two-item
list, the first item of each ele­

ment of the list is the name of a

function to be defined, and the

second item is the defining
LAMBDA or NLAMBDA expression. In

longer lists, the first item
is again the name of the function

to be defined. The second is the

LAMBDA list of variables and the

remainder of the lists are forms for
evaluation. As an example, consider

the following two equivalent

-36-

-_ .. --_._--_ .. _-- - ~- ~ - -_. ------

o

()

(J

(~.

\)
\ ---""",

defineq[x; ..• ;z]

C)
'-

eval[x]

evala[x;a]

expressions for defining the

function nUll.

1) (NULL (LAMBDA (X) (EQ X NIL»)

2) (NULL (X) (EQ X NIL»

define will not allow redefini­

tion of a SUBR or FSUBR.

This FEXPR is closely related to

define. However, it can take an

indefinite number of arguments,
and it will treat them literally
as if they were quoted. Each of

the arguments must be a list, of

the form described in define.

Using defineq instead of define

allows one to eliminate two pairs

of parentheses in writing func­
tions to be defined for loading

with the function load.

eval evaluates the expression x

and returns this value.

This is the regular eval from
7094 LISP. Its first argument is

a form which is evaluated by us­

ing the values obtained from ~,

a list of dotted pairs. That is,

any variables appearing free in

~, that also appear on ~, will be
given the value indicated on a.

-37-

evalr[x;a]

e[x]

apply[fn;args]

nargs[fn]

arglist[fn]

Same as evala except with list a

reversed. Used by evala.

This FEXPR is defined as eval;

however, it is shorter and it re­

moves the necessity for the extra

pair of parentheses for the list

of arguments for eval. Thus,.

when typing into evalquote one

can simply type ~ followed by

whatever one would type into eval

and have it evaluated.

apply applies the function fn to

the arguments args. i.e. the

arguments of fn, args, are not

evaluated but given to fn direct­

ly.

Returns NIL if fn is not a func­

tion, and the number of arguments

of fn if it is. It returns 1 for

functions of type

EXPR*, FEXPR*, CEXPR*, CFEXPR*,

CSUBR* and CFSUBR*.

Returns with the list of argu­

ments of the function fn. Causes

an error if fn is a built-in

function or undefined.

~38-

----------------- - --

o

o

arg[n]

setarg[n;v]

\

-0

This function works with a func­

tion of type EXPR* or CEXPR*.

It returns argument n of that

function. It is undefined if

n20 or n~m where m is the number

of arguments bound.

Sets argument ~ of an EXPR*

function to v.

-39-

. SECTION IX

THE LISP EDITOR

The LISP editor allows rapid,convenient modification of list

structures. Most often it is used to edit function definitions,

often while the function itself is running. It is another impor­

tant feature which allows good on-line interaction in the BBN-LISP
system.

Editor Language Structure

Let us take a concrete example of a list (not necessarily a func­
tion definition) to be edited. Suppose we are editing the follow­

ing incorrect definition of the append function:

(LAMBDA (X) Y (COND «NUL X) Z) (T (CONS (CAR)

(APPEND (CDR X Y)))))).

At any given moment, the editor's attention is confined to a

single list (generally a sUbcomponent of the original list being
edited), which it will print when given the command P. To avoid

printing of confusing detail, sUblists of sUblists will be printed

simply as &. Thus:

*p

(LAMBDA (X) Y (COND & &)).

where * indicates that this line was typed by the user.

-40-

---------- ------- --- -- ----._-- -- ----

(\
',-- _ J

()
'--

,--.,.
i)
'----

()

Only the list on which attention is currently focused may be

changed. Commands thus fall naturally into four classes: moving

around the list structure; making changes in the current list;

printing parts of the list being edited; and entering and leaving

the editor.

Many commands use the convention that an integer designates a

sublist of the current list· For example, if an integer alone

is typed, attention is focused on the designated sub list of the

current list.

Thus:

*2

*p

(X)

The converse command is the number ~, which causes the current

list to revert to its former state. For example, starting again

with the list at the beginning of the section:

*3 P .

Y

*~ P
(LAMBDA (X) Y (COND & &)).

Note the use of several commands on a single line. In BBN LISP,

a carriage return is printed automatically whenever a right paren­

thesis is typed which causes the parenthesis level to become a

zero. Therefore, a non-atomic command is necessarily always the

last command on its line.

-41-

In the remaining examples, unless mentioned specifically, it is

assumed that the state of the edit is that which existed at the

end of the previous example. As above, lines typed by the user

are prefixed with an asterisk.

Attention Commands

The two fundamental commands for moving around the structure have

already been mentioned: a positive integer ~, to examine the nth

sublist, and 0, to revert to the superlist. If n is a positive

integer, then -n examines the nth sublist of the-current list

starting from the end and counting backwards, i.e. -1 examines

the last sublist of the current list.

A more drastic command is +, which clears the editor's memory of

descent through the structure and reestablishes the top level of

the entire list structure being edited as current. Thus:

*4 2 1 + p

(LAMBDA (X) Y (COND & &)).

A command similar to n is (NTH n) which caused the list starting

with the nth sublist of the current list to become current. Thus:

*(NTH 3)
*p

(Y (COND & &)).

*0 p

(LAMBDA (X) Y (COND & &)).

-42-

,----.,
(~)

(\
\ ;'

(NTH -n) may also be used, with the expected result:

*(NTH -3)
*p t

(eX) Y (COND & &))

The command (F e), where ~ is any S-expression, searches for an

instance of e in the current list, and then acts like NTH,. so

that for example:

*(F Y)
*p

(Y (COND & &)).

A more thorough (and time-consuming) search is provided by (F e T)

which searches through the entire structure. Thus:

*+(F Z T)
*p

(Z)

*0 p

((NUL X) Z)

*0 p

(COND (& z) (T &))

*0 P
(LAMBDA (X) Y (COND & &)).

-43-

One more variation is provided by (F en), which finds the nth

occurrence of ~ anywhere in the structure. The search is done

in printout order, so for example:

*+ (F X 1)
*p

(X)
*+ (F X 2)
*p

(X)
*0 p

(NUL X)
*+ (F X 3)
*0 p

(CDR X y)

The argument e of the F commands need not be a literal S-expression. (~
The symbol & will match any element of a list; the symbol -- as

the last element of a list to be searched for will match the rest

of any list. Thus:

*+(F (NUL &) T)
*p

(NUL X)
*+(F (CDR --) T)
*p

(CDR X Y)
*+(F (CDR &) T)

?

The question mark which followed the last command is the editor's

all-purpose error comment: it simply means something was wrong

-44-

~--~---~--- - --~----- ----

.,---". . \

\ j
'-/

(J

with the last command. The commands are simple enough that it

is rarely difficult to ascertain the nature of the error. A

problem may arise if several commands were stacked on a single

line, since no indication is given of which one caused the error:

in this case the state of the edit can always be discovered by

using P.

Three facilities are available for saving information relating to

the current state of the edit and later retrieving it. At any

stage in the edit, a mark can be made and later returned to. The

commands are MARK, which marks the current state for future

reference; +, which returns to the last mark without destroying

it; and ++, which returns to the last mark and forgets it. For

example:

*t 4 2 P

«NUL X) Z)
*MARK t (F CONS T)

*p

(CONS (CAR) (APPEND &))

*t P

(LAMBDA (X) Y (COND & &))
*++ P

«NUL X) Z)

?

This last example demonstrates another facet of the error recovery

mechanism: to avoid further confusion when an error occurs, all

commands on the line beyond the one which caused the error are

forgotten.

-45-

A more drastic marking facility is available if it is desired to

save the state of the edit in its entirety. Since changes are

made as they are typed in, there is no simple way to undo part of

an edit. However, the command COPY will make a copy of the entire

state of the edit, which may be retrieved with RESTORE. This has

the effect of undoing all changes made since COPY was given, since

the copy is not affected by editing commands given after the copy

was made. This facility is unlike MARK in that a second COPY

obliterates the list saved by the first. Furthermore, since

RESTORE retrieves the copied edit state and not a copy thereof,

subsequent RESTOREs will definitely not have the desired effect.

Frequently it is desired to move or copy a sublist from one place

in the structure being edited to another. No command for perform­

ing this particular operation is provided. However, it is

possible to set a variable to the current list or a sublist thereof.

The I command described below can then be used to treat this value

exactly as though it had been typed in literally. In particular,

the command (S v), where ~ is a variable name, sets v to the

current list. (S v 0) may also be used. Thus:

*t (S EL2 2)

will result in setting the value of EL2 to the sublist (X).

Modification commands

Just as most general text editors contain INSERT, REPLACE, and

APPEND commands, the LISP editor provides facilities for these

three basic operations. To insert the S-expressions ~l· .. ~m
before sublist n of the current list, one simply gives the

command (-n e l •.• e), thus:
·m

-46-

o

*t (F CAR T)
*p

(CAR)

*(-1 CRR)
p

(CRR CAR).

To replace the gth sublist with ~l ... ~m' one gives the command

(0 el ... em), for example:

*t(F NUL T)
*p

(NUL X)

*(1 NULL IS)
*p

(NULL IS X).

And to append at the end of the current list, one writes

(N el ... e), thus:

*(N THIS LIST)
*p

(NULL IS X THIS LIST).

Deletions may be accomplished by using the replace operation with
no new S-expressions specified: to restore the list we have just
created to the state in which we presumably want it, we can say:

-47-

*(5)

*(4)
*(2)

*p

(NULL X).

Deletions should generally be made from back to front, since other­

wise the indices of later sublists will change as earlier ones

are deleted, e.g. the above sequence of commands given in front

to back order would have been

*(2)

*(3)

* (3) .

Very often one wants to make a simple change in a list structure,

without wanting to know exactly how to trace down the structure

to the point where the emendation is to be made. The command

(R ele2) replaces all occurrences of ~l in the current list and

all its substructure by ~2' This is done using a variant of

subst called dsubst that runs faster, and physically replaces the

old structure in the list.~y a copy of the new structure. For

example:

*t(R Z Y)

*4 2 P

«NUL X) y)

The mechanism by which lists saved with the S command may be used,

among other things, is (I c el' ... en)' whi ch is equivalent to

([atom[c]-+c; T-+eval[c]] eval[~] ... eval[en]). Thus for example,

-48-

o

if EL2 has been set to (X) as per the sample above:

*t (I (CAR (QUOTE (F))) EL2 T)
*p

(X)

because the I command is equivalent to (F (X) T).

Structure changing commands

The commands presented in the last section do not allow convenient

alteration of the list structure itself, as opposed to components

thereof. Consider, for example, the list (A B (C D E) F G). We

can remove the parenthesis around (C D E), which is the third

sublist, by (LO 3) (this stands for take Left paren Out). This

produces the list (A BCD E). LO simply deletes all elements of

the original list beyond the one specified. If we want to preserve

them, we could say (BO 3), take Both parentheses Out, which pro­

duces (A BCD E F G). Conversely, if we want to take the partial

list beginning at B and subordinate it one level, making

(A (B (C D E) F G)), we can say (LI 2), i.e. put a Left parenthe­

sis in before sublist 2 (and a matching right parenthesis at the

end of the list). Again, if we want the matching right parenthe­

sis inserted somewhere other than at the end of the list (after

the F, for example), we can say (BI 2 4), put Both parentheses

In around elements 2 through 4, which results in the list
(A (B (C D E) F) G).

Two other operations of this sort are also possible. If we wanted

to bring only the D and E up to the level of the A B F G, and

leave (C) as a sublist, we can use (RI 3 1), namely move the ~ight

paren at the end of sublist 3 In to sub list 3 after sublist 1

-49-

(of sublist 3). This will produce (A B (C) D E F G). A related

operation is (RO 3), which means move the Right parenthesis of

sublist 3 Out to the end of the list, producing (A B (C D E F G».

Finally, if it is desired to move a right parenthesis only part­

way out, for example to produce (A B (C D E F) G), this can be

accomplished by (RO 3) followed by (Rr 3 4).

Printing commands

We have already encountered the command P, which prints the current

list showing only one level of nesting. To print a selected sub­

list in the same way without changing the state of the edit,

(P n) is used: for example,

* t P
(LAMBDA (X) Y (COND & &»

*(P 2)
(X) •

Furthermore, one may examine the nth sublist (or, if n=O, the

current list) to ~ levels of nesting by using (P n m). The con­

vention is that m=3 yields the usual format: several illustrations

are given below:

*(P 0 1)

&

*(P 0 2)

(LAMBDA & Y &)
*(P 0 3)
(LAMBDA (X) Y (COND & &»
*(P 4 2)

(COND & &)
*(P 4 4)

(COND «NUL X) Z) (T (CONS & &»).

-50-

\ ,
\,-,/

Another command which is available for examining the environment

during editing is (E e), which simply prints the value of e with­

out disturbing the state of the edit. This is done under errorset,

so that one can actually try to run the function which one is

editing. It should be mentioned that changes are made as soon as

they are typed in, so that the state of the definition of a func­

tion (which is what is usually being edited) is always exactly

what one expects. Also, the variable l contains the state of the

edit, with the current list being car[lJ. Thus, (E (CAR L» will

cause the current list to be printed by print.

Edit Macros

In editing a set of functions, to make a consistent change in a nUIT;­

ber of places, one must give the ·same sequence of commands a number of

times. For example, to replace all occurrences of calls to
" """ \...-J (Faa &) by calls to (FIE & T), (where & stands for any expression),

one would type

t

(F Faa T)

(1 FIE)
(N T)

as many times as the replacement was necessary. To save this

typing, one can define an edit Macro, called RF for example, by

typing

(M RF t (F Faa T) (1 FIE) (N T»

-51-

Then each time you type

RF

the sequence of commands, following the RF in the definition list,

will be executed. If RF were made the last command in the list,

the sequence would be repeated until Faa could not be found.

The simple edit macros described above cannot be given any argu­

ments, and will always do exactly the same thing. One can also

define macros which use parameters. For example, to define a

macro to switch two items in a list, onewould type

(M SW (A B) (S SWI A) (S SW2 B) (I B SWl) (I A SW2»

where the list of argument names (A B) immediately follows the

macro name, SW. To make this macro, SW switch items 2 and 7 in

a list, one would type

(SW 2 7)

This command would substitute 2 for A, and 7 for B, in the macro

definition following the argument list (A B); and then execute

that sequence of commands with the substituted values. In this

case, the sequence would be

(S SWI 2)

(S SW2 7)

(I 7 SWl)

(I 2 SW2)

Note that a macro with no parameters is called by typing an atom

-52~

o

/~
\

,)
'--

(its name); a macro with parameters must be called by using its

name as the first element of ~ list, followed by the values to be

substi tuted for the parameters cf' the macro.

All the edit Macro definitions can be found on a free variable

called EDITMACROS. This value can be edited bytbe editor, and

will be the cumulative list of all macros defined since the current

sysin was done. New definitions of macros supercede old ones.

This feature lets you easily expand the repertoire of edit commands,

and thus "program" the editor.

Using the editor

As presently interfaced to the outside world, the editor consists

of a basic function for editing S-expressions, edite, and three

special NLAMBDA functions for editing values, definitions, and

property lists, respectively editv, editf, and editp. Thus,

*EDITF(APPEND)

EDIT

would be used to begin the edit which has been used as the example.

When editing is complete, STOP or OK will cause edite to exit with

the edited list as value. The three interface functions all re­

turn as value the atom being edited, and place the new value in the

appropriate place.

In fact~ the work of the editor is done by two functions editcom

and editdefault. Editcom assumes the existence of a fre~variable

-53-

------------------~--~-----

L, initialized to list of the list being edited; a free variable

Y, used to hold the copy made by COPY, if any; and a free variable

M, to hold marks made by MARK. It accepts as its argument an

editing command and performs the appropriate transformation on

these three variables. Unrecognizable commands are passed to

editdefault, which is currently defined as A[[c];error[c]]; the

edit is run by edite under an errorset.

A complete example, starting with the erroneous definition given

at the beginning of Section IX and ending with the correct defini­

tion of append, is given below.

*EDITF(APPEND)
EDIT

*(P 0 100)
(LAMBDA (X) Y (COND «NUL X) Zr (T (CONS (CAR) (APPEND

(CDR X Y»»»
*(3)
*(2 (X Y»
*p

(LAMBDA (X Y) (COND & &»

*(R NUL NULL)
*(R Z y)

*t(F CAR T)
*(N X)

*t(F CONS T)

*3 (RI 2 2)

*p

(APPEND (CDR X) Y)

*t(P 0 100)
(LAMBDA (X Y) (COND «NULL X) Y) (T (CONS (CAR X) (APPEND

(CDR X) Y»»)

*STOP

APPEND

-54-

(\.
\ " '-_/

,~-

U

In all fairness, it should be admitted that in this particular

instance it probably would have been faster to type the function

in again. However, LISP functions are typically three times as

big as append and have only one or two errors. It has been found,

after over a year of use at BBN and Berkeley, that the editor just

described does materially decrease the amount of time required

to produce working LISP programs.

A Summary of the Editor Commands

Atoms

n>O

n<O

n=O

COpy

RESTORE

P

+
MARK
+-

+-+-

STOP or OK

Makes nth element be current level list

Makes nth element from end be curren~ level list

Makes previous level be current level list

Saves a copy of current work

Restores as current work earlier copy

Prints current level list to depth 3
Makes current list be the top level list

Marks this point

Makes current level be last marked list

Makes current level be last marked list and forgets mark
Exit from editor

Other atoms give an error indication of ? if not defined as an

Edit Macro. This can be changed by modifying the routine

editdefault, currently defined as

(LAMBDA (C) (ERROR C))

-55-

--- --------------------

Lists

(S name)
and

(S name 0)

(S name n) n~l

(R old new)

(P n m) n~O

(F e)

(F e T)

(F e n) n~l

Replace element !l by the k elements

e l' ... , ~k· Deletes the nth ele-

ment if k=O

Inserts e l , ... , ~k before nth ele-

ment

Adds ~l to ~k at end of current
level list

Sets name to current level list

Sets name to nth element

Replaces all odcurrences of the

old item by new in current level

list

Prints element n to depth m

(current list if n=O)

Finds e at current level; "&"
matches any item.> " __ '1 matches any

remaining list

Finds ~ at any level

Finds nth occurrence of e any level

-56-

----------~------- -~- - - ----

o

o

· (NTH n) n~l

n<O

(E e)

(LO n)

(LI n)

(RO n)

(RI n m)

Makes nth element be first element

of current list

Makes nth element from the end be

the first element on the list

Evaluates ~l ... ~k and then performs
command as usual.

Command can be a number, N, R,F,
etc. If command is not atomic,

it is evaluated.

Evaluates and prints e

Removes left paren before element

!! (and removes a right paren at
end of current list. If there are

no more right parens at end of

list, elements left hanging
"drop off").

Inserts left paren before element

!!, (and a corresponding right paren

at the end of the list).

Removes right paren after element

n. It moves it to the end of the

current list.

Inserts right paren in element n

after element m. In element !!, it
moves a right paren from the end

of element n which must have more
than m elements.

-57-

- -----

(BO n)

(BI nin)

Removes both left and right parens

around element n

Inserts both left and right parens,

making a sublist at position ~

containing elements n to m inclusive.

Defines name (an atom) as an Edit

Macro equivalent to the sequence

of commands ~l' ~2'···' ~.

All other lists cause errors> which print "?". See the statement

on editdefault above.

Edit commands are all interpreted in one function editcom which

accepts a single command as an argument. It and its subfunctions

assume a free variable L initialized to list of the list to be

edited; a free variable Y to hold a copy, if requested> and a

free variable M to hold any marks created. With these restrictions

editcom can be used as a subroutine (as it is in breakin,

described in the section on debugging aids). Edite does the

reading from the teletype> transmits the commands to editcom,

and prints the "?" on errors. All errors and rubouts are caught

by the errorset in edite.

-58-

/' (\

(~\

\ /

pack[xJ

,
~) unpack[xJ

chcon[x;j J

SECTION X

ATOM, ARRAY, AND STORAGE MANIPULATION

The argument ~ of pack must be a

list of atoms. The value of pack

is a single atom whose print name

is a packed version of the print

names of all the atoms given in the

list. Thus:

pack[(A BC DEF G)J = ABCDEFG
pack[(l "." 3)J = 1.3 a floating

point number

The argument of unpack should be an

atom. The value of unpack is a list

which contains, in order, the char­

acters which make up the print name

of that atom.

Returns a list of numbers represent­

ing characters in print name of x

which must be an atom.

j = NIL prinl representation

= T prin2 representation

-59-

gensym[]

oblist []

reclaim[]

minfs [n]

gcgag[x]

This function of no argument gener­

ates a unique symbol of the form

Annnn, in which each of n's is

replaced by a digit. Thus, the

first one generated is AOOOl, etc.

This is a way of generating new

atoms for various uses within the

system.

Creates a list of all atoms

currently in the system.

This function initiates a garbage

collection and returns with the

number of available LISP words in

free storage. See minfs. Atoms

with no property list, value or

function definition, and not used

in any lis~ are collected.

Sets the minimum amount of free

storage which will be maintained by

the garbage collector. If, after

automatic garbage collection, fewer

than n free words are present, (as

printed out by the garbage collector)

sufficient storage will be added to

raise the level to n.

If x=T garbage collector will print

a message when entered. If x=NIL no

message is printed. Previous setting

is returned. Initially set to T.

-60-

,~,
(,
,)

~\ (,

" /

C~) logout []

closer[a;x]

ilp[x]

openr[a]

loc[x]

vag[x]

allocate[n]

Deactivates users pro~ramand returns

the user to the time-sharing system

executive.

Stores x into location a. Both x

and a must be numbers.
a<2 14 actual core location
a~214 address in virtual

address space.

Unrestricted car of x.

Value is number in a as defined

in closer.

Makes a number out of ,!, i.e.

returns the virtual address of x.

The inverse of loco Unboxes num­
bers. An unboxed number n which

doesn't correspond to the address
of a list structure or an atom is

printed #n e.g. array pointers.

Allocates an g word block in array
(binary program) space. Returns a
pointer to the address of the first

word allocated. Returns NIL if no
more array (binary program) space

is available.

-61-

- - ----------~~-----

statistics[]

storage[]

Array Functions

Prints out statistics on number

of wraparounds of compiled code;

number of mapped stores; total

number of mapped references (car's,

cdr's, cons's, rplaca' s, rpl·acd' s,

getd's, etc.); total number of

drum references.

Prints out current status of

storage including number of binary

program (array) words in use; number

of list words (two 940 words) in

use; number of 940 words available;

and number of words used up for
print names.

Arrays and compiled code are both allocated out of a common

.array space. Arrays of pointers and unboxed integers may be mani­
pulated by the following three functions:

array[n,p,v] This function allocates a block of

n+4 940 words, of which the first

4 are header information. The next

p~n are cells which will contain

unboxed integers, and are initialized

to 0. The last n-p~O will contain

pointers initialized to v. If £ is

NIL it is assumed equal to 0 (i.e.,

a symbolic array). The value of

this function is an unboxed number

-62-

C)

elt[a;mJ

seta[a;m;vJ

arraysize[aJ

which is the location of the array

in virtual memory, and is called

an array pointer.

Has as value the mth element of

the array pointed to by~. For

out of bound calls, if m<l or m>n,

where ~ is the length of the array

~, elt gives element I if m<l, or

element n if m>n.

Sets the value of the mth element

of a to v. On out-of-bounds

reference no store is made. The

value of this function is always

v. It is the users responsibility

to ensure that no pointers are

placed in the non-pointer area.

Any in that area will not be

traced during garbage collection.

Returns the size of array a ~f a

is an array pointer.

There will be three parallel functions, arrayf, eltf, and setaf

which will manipulate arrays of unboxed floating point numbers.

Until they are implemented, only pointers to floating point

numbers can be stored in arrays. These will be useless until

open floating point arithmetic is available.

-63-

SECTION XI

FUNCTIONS WITH FUNCTIONAL ARGUMENTS

As in all LISP 1.5 Systems, arguments can be passed which can then

be used as functions. Functions which use functional arguments

~hould use variables with obscu~e names to avoid conflict of vari­

able names with variables used free in a functiona~ argument.

There is no "FUNARG devi ce " used in this system. All system func­

tions standardly use variable names consisting of the function

name concatenated with x or fn etc. A FUNARG device may be

implemented in the future.

function[x]

map[x;fnl;fn2]

Similar to quote except that ~ is

the name or definition of a function

used as an argument; must be used

with all functional arguments.

If fn2 is NIL (i.e. not provided)

this function applies the function

fnl to successive tails of the list

x. That is, first it computes

fnl[x], and then fnl[cdr[x]], etc.

until ~ is NIL; however, if fn2 is

provided, fn2[x] is used instead

of cdr[x] for the next call for fnl.

'I'hus if fn2 were cddr , alternate

elements of the list would be

skipped. If fn2 is a conditional

-64-

()
',,--_/

mapc[x;fnl;fn2J

mapcar[x;fnl;fn2]

maplist[x;fnl;fn2J

mapconc[x;fnl;fn2J

mapcon[x;fnl;fn2J

expression, then the next element

to be looked at can be contingent

on a computation.

Identical to ~, except that

fnl[car[x]] is computed each time.

If fn2 is NIL, fnl is applied to

each element of the list x in turn.

If fn2 is NIL, this function applies

the function Ynl to each of the

elements of the list x. It creates

a new list which is a map of the

old list in the sense that each

element of the new list is the

value of applying fnl to the

correspondinv element of the old

list. If fn2 is provided, fn2[x]

is used instead of cdr[xJ for each

succeeding computation with fnl.

This function computes successively

the same values that map computes;

it forms a new list consisting of

successive values of applications

of this function.

Identical to mapcar except that it

does an nconc instead of a cons.

Identical to maplist except that it

does an nconc instead of a cons.

-65-

This next set of functions is a slightly different extension of

the mapping functions usually found in LISP 1.5. They are all

defined by EXPR* type expressions, and make no recursive calls.

The first argument to each is a function fn of n arguments.

Following this first argument should be n lists. The mapping

function iterates down the lists by successive cdrs until anyone

becomes empty and then rEturns the value specified. At each itera­

tion, fn is applied to these lists, as specified. For example,

the function

pair[x;y] could be defined as

maccar[function[cons];x;y]

Similar to map. Applies fn to

successive cdr's of ~1'~2. . , , ... ,x. -n
Returns NIL.

Similar to mapc. Applies fn to

car's of successive cdr's of

~1;~2; ... ;~n. Returns NIL.

Similar to maplist. Applies fn

to successive cdr's of

~1;~2; ... ;~n. Returns a consed

list of these values.

Similar to mapcar. Applies fn to

car's of successive cdr's of

xl ;x2 ;··· ;~n. Returns a consed

list of these values.

-66-

---- - ---- -------

Similar to mapcon. Applies fn

to successive cdr's of

~l;~2;.M;xn. Returns an nconced

list of these values.

Similar to mapconc Applies fn

to car's of successive cdr's

of ~l;~2~ ... ;~n· Returns an

nconced list of these values.

-67-

SECTION XII

VARIABLE BINDINGS AND PUSHDOWN LIST FUNCTIONS

A number of schemes have been used in different versions of LISP

for storing the values of variables. These include:

1. Storing values on an association list paired with the

variable names.

2. Storing values on the property list of the atom which is

the name of the variable.

3. Storing values in a special value cell associated with

the atom name, putting old values on the pushdown list,

and restoring these values when exiting from a function.

4. Storing values on the pushdown list.

The first three schemes all have the property that values are

scattered throughout list structure space, and, in general, in a

paging environment would require references to many pages to deter­

mine the value of a variable. This would be very undesirable in

our system. In order to avoid this scattering, and possible ex­

cessive drum references, we utilize a variation on the fourth

standard scheme, usually only used for transmitting values of

arguments to compiled functions; that is, we place these values

on the pushdown list. But since we use an interpreter as well as

a compiler, the variable names must be kept. The pushdown list

thus contains pairs, each consisting of a variable name and its

-68-

._----_._--

o

v~lue. The interpreter need only search down the pushdown list

for the binding (value) of a variable.

One advantage of this scheme is that the current top of the

pushdown stack is usually in core, and thus, drum references are

rarely required. Free variables work automatically in a way

similar to the association list scheme.

An additional advantage of this scheme is that it is completely

compatible with compiled functions which pick up their arguments

on the pushdown list from known positions, instead of doing a

search. To keep complete compatibility, our compiled functions

put the names of their arguments on the pushdown list, although

they do not use them to reference variables. Thus, free variables

can be used between compiled and interpreted functions with no

special declarations necessary. The names on the pushdown list

are also very useful in debugging, for they provide a complete

symbolic backtrace in case of error. Thus, this technique, for

a small extra overhead, minimizes drum references, provides
symbolic debugging information, and allows completely free mixing

of compiled and interpreted routines.

There are three pushdown lists used in BBN 940 LISP: the first

is called the parameter pushdown list, and contains pairs of

variable names and values, and temporary storage of pointers;
the second is a number stack for temporary storage of unboxed

numbers; the third is called the control pushdown list, and con­

tains function returns and other control information.

The following functions allow one to interrogate these pushdown

lists from inside another function. The functions, nthfnback,
evalv, setv, variables, and rename take an argument ~ which, if

positive, is the number of function calls which have been made -

-69-

essentially the depth of nesting of functions from the top l~~el.

If ~ is negative, it references back from the current call l~vel.

The function nthfn returns as a value a positive number which is

the number of call levels from the top (consistent with that

needed by nthfnback, etc.). The argument ~ to nthfn (n>o) is

interpreted as the ~th preceding occurrence (i.e. counting back)
of the function named.

nthfnback[n]

nthfn[fn;n]

evalv[var;n]

setv[var; n; val]

variables[n]

rename[old; n; new]

Returns the name of function called

at call level (position) ~

Returns the position (number of

call levels from top) 6f the nth
occurrence back of function named
fn.

Returns the value of variable var

evaluated starting at pushdown list

position n

Sets the value of variable -var
starting at pushdown position n

to value val

Returns list of variable names on
pushdown list at pushdown position

n

The variable named old at level n
will be renamed new. The push-list
cell containing the variable n~me

is changed.

-70-

retfrom[n;v]

backtrace[n;m]

Returns from the function at

position ~, with value v. Thus

an errore] under a nlsetq is

equivalent to a

retfrom[nthfn[nlsetq;l];NIL].

Prints out the untrace normally

associated with errors, starting

at position ~, and going back

to position m (i.e. n>m). If

n=NIL; it is assumed equal to

current position; if m=NIL; it

is assumed equal to 0.

-71-

SECTION XIII

ARITHMETIC FUNCTIONS

Integer Arithmetic

The following functions all work on integers. When given floating

point numbers as arguments, these arguments are fixed (converted

to integers) before any operation is performed. Most of these

functions are compiled as open code.

plus[xl ;x2 ; .. ·;xn] Returns an integer xI +x 2+ ... +xn

minus[x]

difference[x;y]

addl[x]

subl[x]

quotient[x;y]

- x

This function has for its value

the numeric difference between its

arguments.

x + I

x - I

Returnsan integer equal to the

product of ~1'~2, ... En

Greatest integer in quotient x/y

-72-

-- - ~~---------~ --~ ~~ -- ----

c)

remainder [x;y]

divide[x;y]

numberp[x]

greaterp [x;y]

lessp[x;y]

zerop[x]

minusp[x]

logand[x; ... ;z]

logor[x; ... ;z]

This function computes the number

theoretic remainder for fixed­

point numbers.

This function yields a dotted pair

whose first member is quotient[x;y]

and whose second member is

remainder[x;y].

T if x is a number; NIL otherwise.

This function works for floating

point numbers as well as integers.

T if x>y; NIL otherwise

T if x<y; NIL otherwise

T if x is zero; NIL otherwise

T if x is negative; NIL otherwise

This function takes the logical

and of all of its argument, and re­

turn this value as an integer.

This function takes the logical

or of all of its arguments, and

return this value as an integer.

Logical exclusive or of xI' ... '!n

-73-

lsh[n;s]

rsh[n;s]

abs[x]

Performs an arithmetic left

shift of s?o on n. Equivalent

to n * s

Performs an arithmetic shift of
-8

s~o on n. Equivalent to n * 2 .

Returns absolute value of x.

-74-

(~

_--)

r"\
\)

o

Floating Point Arithmetic

The floating poirtt arithmetic functions available in BBN LISP are

fplus, fminus, ftimes, fquotient, and fgtp. They will accept

mixed arguments, i.e. integer or floating point. Just as the

integer-type functions fix any floating arguments before perfor­

ming their computation, the floating-type functions float

any fixed arguments before performing a computation. Thus the

result of a floating point function is guaranteed to be a floating
point number.

The functions specifically related to floating pOint are:

fgtp[x;y]

fix[x]

float[x]

floatp[x]

fminus[x]

fltfmt[x]

Floating greaterp; compares by

subtraction

Returns integer part of ~

Produces floating number

Returns T if x is a floating

point number, NIL otherwise

Negative of ~

Output format control; ! is

defined as the time-sharing system

formatting of floating point output

Returns the sum of its arguments

-75-

fquotient [x;y] Returns x/y

Product 'of its arguments

Equal and eqp will compare two floating point numbers for equality,

and will float an integer to compare it to a floating point number.

Eq when compiled is an open 24 bit compare which usually won't

work for arithmetic comparisons. Equal uses ~.

-76-

-- --- - -- -- ------ -- - ---- -

Cl '---"

o

o

SECTION XIV

INPUT/OUTPUT FUNCTIONS

Opening and Closing Files

BBN 9J~0 LISP 1. 69 allows the user to have any number of files open

at a given time. Restrictions in the time-sharing system currently

limit this to a maximum of 2, however. A file is identified by

its LISP File Name.

The three basic file manipulation operations are:

infile[name;type]

used to open for input the file named name, which must be of type

type (i.e., for binary, 2, or for symbolic, 3) if type

is not NIL. Its value is the name of the file if it was opened

successfully, or NIL otherwise. The standard input file is set

to name. T is the name of the teletype as an input (or output)

file.

outfile[name;type]

opens for output the file name, which is set to type type if type

is not NIL, and otherwise to type 3, symbolic. Its value is the

name or NIL as for infile. It sets the standard output file to

name.

-77-

closef[x]

openp[x]

Closes the named file. If x is

NIL, it attempts to close the

standard input file if other than

teletype. Failing that, it attempts

to close the standard output file

if other than teletype. Failing

either, it returns NIL. If it

closes any file, it returns the

name of that file. If it closes

either of the standard files, it

re~ets that standard file to tele­

type.

Returns NIL if x is not an open

file, returns x if x is an open

file.

At any given time one input and one output file are selected as

primary (the exact meaning of this is given below). Normally

these are both T for teletype input and output. The primary

input file may be changed by

input [name]

which sets name to the primary input file. Its value is the name

of the old primary input file. Similarly, the primary output file

may be set with

output[name]

-78-

o

C)

C)

which has the obvious effect. To read the current setting of the

primary input and output files

input[]

and

output []

may be used.

Input/Output Transmission

Without exception, functions that actually read or write on files

may be given an additional argument which is the name of the file

on which the operation is to take place. If the additional argu­

ment is NIL, the primary file will be used.

The following functions perform output:

feed[n]

produces ncarriage returns and line feeds:

prinl[a]

prints its argument.

prin2[a]

prints ~he expression ~ with double-quote marks inserted where

required for it to read back in properly; both prinl and prin2

print lists as well as atoms. Neither print a carriage return

-79-

ppon termination, both have value a.

prin3[a]

print[x]

spaces en]

terpri[]

Prints ~ using double quotes for

separation and break characters
specified by setbrk and setsepr

as described under ratom

Prints the S-expression x;

uses prin2; its value is ~

Produces n spaces; its value is

NIL

Produces a carriage return and line
feed; its value is NIL

If any print function is given an unboxed number ~, it will print

it as #n with n in octal.

The print functions print, prinl, prin2, and prin3 are all effected
by a level parameter set by

printlevel[n]

The variable n~0 controls the number of unpaired left parentheses

which will be printed before any list will be printed as &.

Suppose x = (A (B C (D (E F) G) H) K)

Then if n = 2, print[x] would print

(A (B C & H) K)

-80-

--~-----

o

()

o

and if n - 3,

(A (B C (D & G) H) K)

and if n = 0, it prints as just

&

The value of printlevel[n] is the old parameter setting.

In order to change the level dynamically, while the system is

printing at y.ou, you can type control-P followed by a number, i. e.

a string of digits followed by a period. The print level will ,
immediately be set to this number for this printout. If the print

routine is currently deeper than the new level all unfinished lists

above that level will be terminated by "--)". Thus, if a circular

or long list of atoms, is being printed out, typing in

will cause the list to be terminated. After this printout, the

level will be returned to its previous setting. Only printlevel

(not pc) changes the print level permanently.

character[n] This function outputs on the tele­

type a single character with octal

ascii representation (code) n. n

must be a number.

-81-

Input Functions

read[]

rdflx[x]

ratom[]

ratoms[a]

Reads one S-expression from the

current file

If x is NIL this function will try

to read one S-expression with

read[]; if no error occurred in

reading, it will return with list

of the S-expression that was read.

If an error occurs in reading, it

returns with NIL. If x is not NIL,

it will attempt to read an S-ex­

pression and keep attempting to

read it until it gets one without

an error; each time it tries to

read an S-expression and gets an

erro~, it will print out x. In

this case it returns with the S­

expression itself (not list of the

S-expression) .

Reads in one atom from the standard

file. Separation of atoms is

defined by the functions setsepr

and setbrk.

Calls ratom repeatedly until atom a

is read. Returns a list of atoms

read not including a.

·-82-

CJ setsepr[x]

setbrk[x]

setseprc[x]

setbrkc[x]

Arguments should be octal numbers,

e.g., l55q for carriage return.

Characters defined by setbrk will

delimit atoms and be returned as

separate atoms themselves. Charac­

ters defined by setsepr will not be

returned and will serve only to

separate atoms. For example, to

make ratom read in ordinary format,

space (Oq), comma (l4q), and

carriage return (155q) are separa­

tion characters, and left paren (lOq),

right paren (llq), and period (l6q)

are break characters. Thus

setseDr[Oq l4q l55ql
...~. . -1

setbrk[lOq llq l6qJ

would s~t up these characteristics.

The value of setsepr and of setbrk

is NIL. Use chcon to find numeric

codes for characters. The tables

are initially set to this standard

LISP set of break and separator

characters.

Same as seisepr except that x is a

list of characters.

Same as setbrk excent that x is a ---- ..
list of characters.

-83-

ratest[x]

readc[]

Input/Output Control Functions

Performs two functions depending

on setting of x.

If x = T ratest returns indicator

which is:

T if a separator was encountered

immediately prior to last atom

read by ratom.

NIL if there was no separator

between last two atoms returned

by ratom.

If x = NIL it returns an indicator

which is:

T if last atom returned by

ratom was a break character.

Reads the next character. Not

affected by setsepr and setbrk.

These functions Derform a variety of operations on the state of

files. Those marked with * do not take the optional extra argu­

ment to indicate a file.

* clearbuf[] Clears the input buffer of the file

(not particularly useful for any

file other than the teletype)

-84-

(\
I ~
\ J

(~
I \
\)

* radix[n;iJ

* control [j]

j = T

;'--)
,----" j = NIL

j = 0

j = 1

* linelength[nJ

* position[J

()

Sets output radix to g and sign

indicator to i. If! is !,
negative numbers will print as sign

and 23 bit value (normal). If i

is NIL, all numbers print as 24 bit

unsigned intege~ Returns previous

setting.

Sets modes for reading with ratom

as follows:

Eliminates LISP'S normal line

buffering (and also eliminates

automatic detection of control-A

and control-Q as line~editing

characters on the TTY).

Restores line buffering (normal).

Eliminates the echo of the character

being deleted by control -A.

Restores the echo (normal).

Sets the length of the print line

for all files.. The value is the

former setting of the line length.

Gives the character position on the

print line. No guarantees are made

about its meaningfulness if output

is being done intermittently to more

than one file.

-85-

* readp []

Special Functions

sysout[name]

sysin[name]

rbin[xJ

wbin[w;x]

Gives T if there is something in

the input buffer (either the TSS

input buffer or LISP'S line buffer)

and NIL otherwise.

Dumps the entire state of LISP on

the file named. This name should

not specify a drum file, since more

than 38K of information (the maxi­

mum for a sequential drum file)

will always be written. When the

LISP system is reassembled, old

sysout files are no longer readable.

Restores the state of LISP from a

sysout file. Sysin may only be

done once after entering LISP. If

it returns NIL, the file was not

found, or was no longer a valid

sysout file. Sysin will return T

if it was successful.

Reads one word from !.' the specified

file. This function returns the

word as a number.

Writes one word, ~, on file speci­

fied by x. W must be a number.

-86-

----------------- - ----- -.

o

,~ Files opened for binary 1-0 should be closed by closef in the

usual way.

Symbolic File Input

load[x;p]

C)

Symbolic File Output

prettyprint[x]

endfile[x]

load is a function which reads

successive S-expressions from file

x and evaluates each as it is read.

If p = T, then load prints the value;

otherwise it does not. load

continues reading S-expressions and

evaluating them, until it reads the

single atom STOP followed by a

carriage return, at which point it

returns the value NIL. Using load

is the standard way of getting

functions in from files. It saves

having to write sequences of

E(EVAL (READ)).

If x is an atom it will be evaluated

to yield a list of functions. The

definitions of the functions will

be printed on the teletype in a

pretty format. If x is a list, it is

used directly as the list of functions.

Prints STOP on and closes the file

specified by x.

-87-

prettydef[fns;file;vars] This function is used for the

creation of files containing sys­

tems of functions.

The arguments are interpreted as follows:

fns (first argument)

file (second argument)

If a list, it is treated as a list

of function names. If fns is an

atom, it should have as a binding

the list of functions for prettydef.

The functions on the list are

prettyprinted surrounded by a

(DEFINEQ ...) so that they can be

loaded with load. In addition, a

SETQQ will be written which saves

the list of functions on the named

atom, and a PRINT will be written

which informs the user of the named

atom when the file is subsequently

loaded.

The name of the file on which the

output is to be written. The

following options exist:

file=NIL

The standard output file is

used as determined by the

last setting of output.

file=atom

-88-

The file atom is opened if not

already open, and becomes

the standard output file.

---------~

o

n
\.~ .. ,/

vars (third argument)

file=list

Car of the list is assumed

to be the file name and is

opened if not already open.

The standard output file is

not changed in this case.

This option is used where there

are a number of atoms having top

level bindings which the user

wishes to save on the output file.

The following options exist:

If vars is an atom, this atom is

evaluated and should yield a list

of atoms. For each atom in this

list, a SETQQ will be written which

will restore the top level binding

t~ the atom when the file is loaded.

In addition, a SETQQ and PRINT are

written which save and print vars

as described above for fns. If

the list contains STOP as its last

element, endfile will be called on

the specified fil~, closing it as

described above.

If vars is a list, the list is

handled as above, except that the

SETQQ and PRINT saving the list

itself are not written.

-89-

As an additional option, if DATE is bound, "THIS FILE WRITTEN ON

date" will be printed when the file is loaded.

Examples:

PRETTYDEF«FOOI F002) /FOO/)

The file /FOO/ is now open, regardless of whether it was open

before. Furthermore, /FOO/ is the new output file.

PRETTYDEF{(F003 F004) (/FIE/»

The file /FIE/ is opened, if necessary, and F003 and Foo4 are

written on it. /FIE/ is not closed. /FOO/ is still the output

file.

PRETTYDEF«F005 F006»

F005 and Foo6 are written on /FOO/

PRETTYDEF«F007 FOOS) /FIE/ (STOP»

F007 and FOOS are written on /FIE/ which is closed with a

STOP at the end. The output file is now the teletype.

SET(FOO(FOOI F002 F003»

PRETTYDEF(FOO /FOO/)

FOOl, F002, F003 are written on /FOO/. Also written on the

file are (SETQQ FOO (FOOl F002 F003»

and

(PRINT (QUOTE FOO».

-90-

C)

,'.- \

SET (FOOVAR (ZOTMUMBLE STOP»
SET (ZOT T)
SET(MUMBLE NIL»

PRETTYDEF(FOO /FUM/ FOOVAR)

The fellewing are written en /FUM/: definitiens ef

FOOl, F002, and F003;
(SETQQ FOO (FOOl F002 F003)1:

(SETQQ FOOVAR (ZOT MUMBLE STOP»; (SETQQ ZOT);
(SETQQ MUMBLE NIL); (PRINT (QUOTE FOO»;
(PRINT (QUOTE FOOVAR»; and STOP.
The file is closed.

·As yeu might surmise, the mest cenvenient way to. use prettydef is

as fellows: set a variable to. the list ef the functiens desired
() in a particular file, say FOO, and anether variable to. a list ef

variables to. be set in that file, if any; prettydef will de the
rest. Then if yeu de

LOAD(/FUM/)

yeu will see

THIS FILE WAS· CREATED ON 4-06 (~f yeu had set DATE)
FOO
FOOVAR
STOP

and the file will be leaded.

-91-

clock[n]

time[x;n;g]

for n=O value of time of day

clock, i.e., number of

seconds since midnight

for n=l time of day user logged in

for n=2 number of seconds of com­

putetime since user

logged in

for n=3 time spent in garbage

collections

Time executes the computation ~,

n number of times, and prints out

the number of conses, total time/n

if n~l and computation time per

iteration. Garbage collection

time is not included, i.e., it is

subtracted out. If ~ is NIL, it is

set to 1. If g is T, garbage col­

le~tion time is also printed.

Example:

TIME ((CONS NIL NIL) 1000 T)

GARBAGE COLLECTION

2458 CELLS

1 CONSES

12/1000=0.12000E-Ol SECONDS

GARBAGE COLLECTION TIME: 23 SECONDS

(NIL)

-92-

CJ

TIME «PRETTYDEF (QUOTE (Faa»»
o CONSES
9.0 SECONDS
(Faa)

-93-

SECTION XV

ERROR HANDLING AND DEBUGGING FUNCTIONS

Error Handling

Errors in BBN LISP are dichotomix;ed into two. cla~s.es: H errors

for which the user can provide Help on the spot; and H errors,

for which no help is possible. H errors in the LISP system

normally cause a trap to a routine which prints an error message

and unwinds the pushdown list. While unwinding the pushdown list,
LISP prints the functions which have been entered, and their argu­

ments. The most recently entered function is printed first, etc.

C)

until the top level evalquote if reached. This printout can be (~
terminated by pressing RUBOUT; this will return you to the LISP

executive. See printlevel for a discussion of modifying the

printout without terminating it. The function

error[x] induces an H error, printing a

message x

An H error can be induced from the console by pressing the RUBOUT.

To prevent H errors from stopping all computation by unwinding to

the top level, the following functions can be used:

-94-

---------- ---

errorset[form; flag] This function calls eval with the

value of form. If no error occurs

in evaluation, it returns with a
list containing one element, the

value of eval[form]. If an error

was encountered in the evaluation,
it returns NIL. Note that NIL can
only be returned if there was an
error. A value NIL is returned as
(NIL). The argument flas controls
the printing of error messages. If
flag=T, the error message is printed;
if flag=NIL it is not.

On an error the pushdown list is unwound to the errorset,but no

further. Printing the untrace of functions and arguments on un­
winding to an errorset is controlled by esgag. If an error was
induced by a RUBOUT, a second RUBOUT seen by LISP within 3 seconds
will cause an immediate untrace past all errorsets.

esgag[g]

ersetq[x]

Sets the unwinding flag for error­
set to g, and returns old value.
If g=T an untrace will be p~inted
on an unwind to an errorset. If
g=NIL no untrace will be printed.

Initially set to NIL.

An FEXPR equivalent to errorset,

with the argument x quoted, and
flag=T.

-95-

nlsetq[xJ

qUit[xJ

reset[J

An FEXPR equivalent to errorset,

with ~ quoted, and flag=NIL.

Induces a "strong fl error which

will unwind through errorsets to

the top level. It prints the

error message x. An untrace is

printed.

Induces a "strong" error which

will immediately return you to

the top level with no untrace.

There are three types of H errors which will allow the user to

fix the mistake, and let the program continue. On these errors,

the system will call breakl, described below, through either of

two functions interrupt or faulteval. These Helpable errors are:

1) An unbound atom

This usually occurs when an atom has been misspelled or

not set at the top level, but may also occur because of

an error in syntax. When this occurs the system will

print the message

UNBOUND ATOM name

where name is the unbound atom~ and

breakl will print

(name broken)

Then all the options of breakl are available which will

-96-

o

allow, for example, the user to set the atom, or return

a value without setting it, editing the function with

the error, et c .

2) Undefined car of form

An H error is induced, and the system types

UNDEFINED CAR OF FORM atom

where atom is the one for which the error occurred. This

usually implies that the function has not yet been

defined, or that its name was mistyped. The user can

then define the function, or return a value etc. The

entire form is bound in breakl to a variable called
BRKIEXP.

3. Undefined function

If in compiled code, a function is called which is
undefined, the system will print

UNDEFINED FUNCTION function

and breakl will then print

(function BROKEN)

where function is the function not defined.

The user may define this function as a LAMBDA expression

with spread arguments only, if the function was also

undefined at compiled time. The arguments (up to 12 of

them) are bound in the interrupt routine to

-97-

ARGl, ARG2, ... , ARG12

and can be examined in the usual way in breakl.

Inducing H errors

In addition to these errors detected by the system, the user may
induce an H error by typing HC (H with the control button pressed).
At the next point a function is about to be entered, the system
will type

INTERRUPTED BEFORE ·function

and breakl will type

(function BROKEN)

At this point the user can examine the status of his computation,

by evaluating variables, or exploring the pushdown list with the
appropriate functions (as of course can be done in any entry to
breakl). The arguments are again bound to

ARGl, ARG2, ... , ARG12

As usual, in breakl the function call will be continued if the
user types OK or GO.

In allH errors, the function or atom in question will be bound to
the variable FUNCTION. The form which will be evaluated on an
EVAL, GO, or OK is bound to BRKIEXP. The number of interrupts
which have been done before are bound to the variable INTERRUPT.

If a new H error occurs within 6 Call levels of an H breakl, the

-98-

o

()

interrupt routine will not be entered again; an H error will be

induced, and the user will be back in the earlier H interrupt.

If a (GO name) or (RETURN exp) is evaluated, breakl will be left

immediately and quietly, and these functions executed in the last

interpreted prog on the Dushdown list. The user should avoid

redefining the functions faulteval and interrupt Which are called
by the system on H-errors I and 2, and H-error 3 and HC respectively.

To suppress all calls to these functions, the user should set the

free variable HELPFLAG to NIL.

Debugging Functions

There are three facilities in the system for easily modifying

function definitions to allow a user to follow the flow of control

and variable bindings in his programs. These three facilities v

together are called the break package. All three redefine functions
,-~ in terms of a system function, breakl, described below. Trace
\._~

modifies a definition of a function fn so that whenever fn is
called, its arguments (or some other value~ specified by the user)

are printed. When the value of fn is found it is printed also.

Break modifies the definition of fn so that if a break condition

(defined by the user) is satisfied, the process is halted tempo­

rarily on a call to fn. The user can then interrogate the state

of the machine, perform any computations, and continue or return

from the call.

Breakin allows the user to insert a breakpoint inside an expression

defining a function. When the breakpoint is hit, and if a break

condition (defined by the user) is satisfied, a temporary halt

occurs and the user can again investigate the state of the

computation.

-99--

Breakl

The basic function of the break package is breakl. It allows the

user to interrogate the state of the world and ~ affect the

course of the computation. Once a function is broken, the user

may type in forms to eval and, under heavy errorset protection,

see the value of the computations. In addition, he has the

following options that are specifically recognized by breakl:

GO

OK

ERROR

t

RETURN form

Releases the break allowing the

computation to proceed. When the

function is evaluated, its value

is printed.

Similar to GO except value is not

printed. When the function is

evaluated, just the function name

is printed.

Causes an error return from

breakl (all other errors will

maintain the break). This is

a useful way to get back to the

preceding break.

Unwinds to the top - i.e. it

evaluates (RESET).

The value of form is returned as

the value of the function broken.

-100-

EVAL The computation proceeds but the

break is maintained so that after

the function is evaluated, a

message to this effect is printed

and the user can interrogate the

value which is stored on the atom
VALUE.

Whenever an error occurs inside of a break, either by RUB OUT , or

otherwise, the break is maintained. Printing of the function

value is done (with a function bpnt0) to a depth of 4; therefore

circularities through the car are permissible.

Break

Break is an NLAMBDA which takes any number of functions to be

broken. The functions may be of type EXPR, FEXPR, SUBR, etc.,

or even undefined. In the case of SUBRs, break will require the

~ames of the arguments and will ask for them on the teletype.

Break will usually establish unconditional breaks, i.e. the

function will always be broken. To set up a conditional break,

one can use a list instead of a function name in the call to

~eak. The fi~st element of the list should be the name of the

function, the second the break condition, and the third - if

present, a value to be printed. Thus

BREAK(FOOI (F002 (GREATERP N 5) (CAR X)))

(FOOl F002)

will cause a break in FOOl whenever it is called, and a break in

F002 whenever it is called with N greater than 5. In the latter

case, (CAR X) will be printed, using bpnt0.

-101-

In general, if th~ break condition (the second element of the list)

ev~luates to T, the function will be broken, and the value of the

third element will be printed. If the break condition evaluates

to NIL, no break will occur. If the break condition evaluates
to (NIL), then the value of the third element and the value of the

function will be -printed, but no break will occur. This is effect­

ively what happens in trace.

Trace

Trace is also an NLAMBDA which takes any-number of functions to be
traced. In the normal mode of operation, the arguments of the

function will be bpnt~ as well as the value. To print out other
values, list the function, followed by the values. Thus

TRACE(FOOI (F002 y) (F003 (CADR X)Z) (F004»

(FOOl F002 F003 F004)

will cause FOOl to be traced, printing out all of its arguments,
F002 to be traced printing out Y, F003 to be traced printing

(CADR X) and Z, and Fo04 to be traced printing out nothing except

the name F004. In every case, the value of the function is also

printed. The features of trace are exemplified further by the
following:

(1) The user can specify the values of interest to him in
addition to or instead of the arguments of the function,

by writing a list headed by the function followed by
the values of interest, in place of just the function

name.

-102-

(J

o

Example:

TRACE(FOO (FOOl Y (CAR Z»)

(Faa FOOl)

FOO(A B (C D»

Faa:
X=A

Y=B
Z=(C D)

•.. Arguments of Faa

FOOl:

Y=A

(CAR Z)=NIL

etc.

(2) The user can specify the level to which the arguments,
or values, are to be printed by writing (FN N X Y Z ...)
in the call to trace. N is taken to be 4 if not speci­
fied by this device.

(3) If an error occurs, or RUBOUT is pressed, while a function

is being traced, a normal break occurs and, the user can
proceed from that point.

-103-

Example:

TRACE(FACTORIAL)
FACTORIAL

FACTORIAL(2)

FACTORIAL:
N=2

FACTORIAL
N=l

FACTORIAL:
RUBOUT ... RUBOUT pressed here

(FACTORIAL BROKEN)
N

o
EVAL

FACTORIAL EVALUATED
FACTORIAL
1

OK

. •. break occurs

FACTORIAL exit from break

FACTORIAL = 1

FACTORIAL = 2
2

-104-

o

C)

Breakin

The third way to use breakl is by means of breakin. Breakin

inserts a call to breakl inside of a function definition. In

other words, although it is impossible to break on eq, or quote,

because so many functions use it, it is possible to break at ~he

point eq or quote is called from some other function.

Breakin is a function of four arguments: FN, WHERE, WHEN, and WHAT.

FN, WHEN, and WHAT play· the same role as the three arguments shown

when break is called with a list instead of an atom, i..e. they

specify under what conditions a break should occur, and what is

to be printed. The second argument, WHERE, specifies where the

break is to be inserted.

WHERE can be either (BEFORE ...) (AFTER ...) (AROUND ...). II II

is used by the editor's find command to locate the correct point.

Thus (BEFORE COND 3) will break before the third COND, and

(AROUND (SETQ X --)) will break around the first place that X is

set. With the exception of labels in a top level FROG, you cannot

specify a BREAK AROUND, BEFORE, or AFTER an atom, because breakin

automatically changes the atom to (atom --) when calling the

editor. Thus, (BEFORE COND 3) is the same as (BEFORE (COND --) 3).

The first time that breakin is called, it copies the function

definition. Subsequent times it merely searches for the appro­

priate location and smashes the function definition. If the loca­

tion is not found, breakin prints !l?!!. If the function is a

machine code function or undefined, it is not possible to breakin­

side of it.

-105-

Unbreak

Unbreak restores functions modified by break, trace, or breakin

to their original state. It is possible to do multiple breaks,

traces or breakins in any combination without first performing

unbreak. Unbreak is an NLAMBDA which takes an indefinite

number of functions to be restored. The variable ALL is set to a

list of all functions broken. Unbreak[ALL] will restore all func­
tions to their original state. Since unbreak[FOO] does not remove

Faa from the list ALL, a subsequent unbreak[ALL] will cause

(Faa NOT BROKEN) to appear in the value of unbreak.

-106-

-------------------._.-

(\
\)
.-/

o

o

SECTION XVI

THE COMPILER AND LAP

The Compiler

The compiler is a separate sysout file on the system tape, usually

called COMPILER. To use the compiler, copy your symbolic files

onto the drum, enter LISP and do a SYSIN (COMPILER). You can now

load your functions, thus defining them, and then use the function
compile; or you can compile directly from drum using rcompile. The

latter is recommended to avoid a clash of function names with the

compiler. The compiler compiles to a LAP2 code which can be

(~) written out symbolically on the drum and loaded into any standard

system, using loadc.

compile[x]

rcompile[]

This will compile all the functions

on the list x

example: COMPILE((FOO FIE))

will compile FOO and FIE if they

are defined

This will compile from a drum

file whose name will be requested

after the compset questions have

been answered

-107-

When either of these functions has been called, they call a func­

tion compset which asks a number of questions. Those that can be

answered "yes" or "no" can be answered with YES, Y, or T for YES;

and NO, N, or NIL for NO. The questions are:

(SETUP - TYPEOUT?)

This question should be answered YES only if you want to see the

LAP and LAP2 code produced by the compiler printed on the teletype.

If you answer 1 or 2 you will see the output of pass 1 or 2,

respectively of the compiler. Usually one should answer NO to

this question.

(STORE AND REDEFINE?)

This question should be usually answered NO, unless you want to

work with your functions within the compiler system. If you

answer YES, you will be asked the question

(SAVE EXPRS?)

If you answer this YES, the exprs will be saved on the property

list of the function name. Otherwise they will be discarded.

(NO-SPREAD NLAMBDAS-)

If there are any NLAMBDA's with atomic argument lists called from

your functions to be comp~led which are not defined, answer the

question with one of the following:

S Means Same list as now on the

free variable NLAMA

-108-

o

C)

Cj---
'-

EDIT

NIL, N, NO

Add fn 1 to fnk to list saved on

NLAMA.

Remove functions from NLAMA

The editor will be called and

you can edit the list of functions.

Set NLAMA to the list of functions

Set NLAMA to NIL

Any other atom will cause a question mark to be printed and let

you answer again. Then compset will ask:

(SPREAD NLAMBDAS-)

Answer in the same way. The free variable used by the compiler

is called NLAMS this time.

(OUTPUT FILE)

This question is always asked. You should usually provide the

name of a drum file on which you wish to save the LAP2 code gene­

rated. If you answer T, TTY or TELETYPE, the listing will be

typed out on the teletype. If you answer N, NOTHING or NIL,

output will not be done. If the file named is already open, it

will continue to be used.

When the compiler is operating, it will normally print out the

name of the function compiling, a list of its bound variables

and a list of its free variables. When compile returns, it prints

-109-

its list of the functions compiled. The value of rcompile is NIL. (\
----)

When you have finished compiling all the functions you wish to

dump on one drum file, print NIL on that file and close the file

with closef[name].

The code dumped on the file can be loaded into any standard system

by using

loadc[file;flag]

where if flag=T the names of the functions loaded will be printed.

Affecting the Compiled Code

There are three ways you can affect code compiled for you. You

can make a function fn compile open (as an open LAMBDA expression) C-)
by putting the expression defining it (including the LAMBDA) on

the property list of fn after the flag MACRO, and adding fn to the

list which is the value of OPENFNS. Abs and memb are functions

currently compiled open. The effect is the same as if you had

o
-110-

~-~~~~- -~~~~~- ------ ---~~--~- -----

/~ ,
U

written the LAMBDA expression in place of fn wherever it appears

in a function being compiled. This saves the time necessary to

call a function (about a millisecond) at the price of more

compiled code generated.

By putting on the property list of fn under the flag MACRO an

expression starting with an atom other than LMIlBDA, one can obtain

the usual MACRO feature of LISP. The atom which starts the list

is bound to cdr of the form in which fn appears. The expression

following the atom is evaluated, and the results of this evaluation

are compiled. List, mapc and map are compiled using this technique.

For example: list has on its property list the expression

(X (GLIST X», where glistis defined as

(LAMBDA(L) (COND«NULL L)NIL) (T (LIST (QUOTE CONS) (CAR L)

(GLIST (CDR L»»»

If the value of the result of this evaluation is the atom,

INSTRUCTIONS, no code will be generated. It is then assumed the

evaluation was done for effect and the necessary code has been

added. This is a way of giving direct instructions to the compiler

if you understand it.

Finally, an expression following MACRO on the property list can

start with a list of atoms which are dummy variables for a substi­

tution MACRO. Each atom is paired with a corresponding element

in the form containing fn. Then these elements are substituted

for their paired atoms in the expression following the list of

atoms, and this substituted expression is compiled. The functions

addl, subl, neq, zerop, lessp, minusp, difference, ersetq

and nlsetq

-111-

are all compiled open using these sUbstitution macros. For example, c=)
on the property list of add 1 is the expression «X)(PLUS Xl)).

LAP and LAP2

The compiler has two main passes. The first compiles into a

fairly powerful macro language we call LAP; and this is expanded

into a simple assembly language called LAP2. The user can write

code directly in LAP to be compiled for LISP. It can be processed

by the function

lap[fn;v:free;m;cJ

Where fn is a function name; v is its list of bound variables;

free is a list of variables used free; ~ is the maximum position

used on the pushdown list; and ~ is the code to be compiled. LAP

expects the flag LAPFLG to be set to NIL, T, 1, or 2 to determine

printout on none, all, first or second pass code respectively.

The variable STRF should be T or NIL, to store or not store the

definition. The variable SVFLG should have value NIL (T only to

save expr's) and LCFIL should be set to the name of an open file

on which the output is to be placed. FTYP should have value EXPR.

The code is a list of instructions, which are lists, and atoms

which are treated as labels. Instructions are lists with at least

two elements. The first element, fn, can be an op code, a substi­

tution macro, a lambda macro, or a function macro. These LAP

macros are completely separate from the compiler macros. In the

first three cases, fn has on its property list a property OPD with

a value we will call mc. A function macro is the default case,

and a list of code to be used is computed by applying fn to cdr

of the instruction, and this new list is assembled. Useful function

-112-

o

C)

o

()

macros in the system will be described later.

If mc is a number, thenfn is an opcode of the 94.0. The codes

defined at the moment, with their values, are listed at the end

of this section.

Instructions containing these codes as first elements are dumped

in symbolic form and at load time are added to the second of the

instruction. If the third element is !, the index bit is set in

the instruction.

The substitution macros are those where mc is a list which starts

with a list of dummy variables for the macro. Corresponding ele­

ments of the instruction are substituted for the variables in the

macro which is cdr[mc], and this new list of instructions is com­

piled, before the next instruction on the original code is compiled.

Hhen mc starts with LAMBDA, (a lambda macro) similarly to the

default case, a list of instructions is computed by applying mc

to cdr of the instruction. The substitution and lambda macros

in the system are listed at the end of this section.

-113-

'I'he important ones of this group are: (where A indicates accumulator) (;
--./

(LDV X)

(STV X)

(LDT N)

(ST'l' N)

(NSTT N)

(LQT X)

(LDN N)

(S'rN N)

(CLL L K U)

(CLLA L K U)

(RE'I')

(BE N B)

(BNE N B)

(BN B)

(BNN B)

(BA B)
(BNA B)

(BI B)

(BNI B)

(BIS B L)

(BNS B L)

(JUMP B)

Load variable X into A

Stores A into X

Load A from stack position E... (a stack

position is a pair of 940 words n>0)

Store A in stack position ~ and store 0

in variable slot. - This is important to

prevent garbage collector foul ups.

Store A in stack position N, do not store

0.
Load ~ quoted as a constant

Load an unboxed integer from position ~

Store an unboxed integer in position ~

Call function L with K/2 ~rgs, and U/2

positions used up on the pushlist through
last argument of function called

Calls a functional argument L as above

Standard return, only one per function

is usual

Branch to B if A=N

Branch to B if A~N

Branch to B if A=NIL

Branch to B if A~NIL --
Branch to B if A an atom -
Branch to B if A not atom

Branch to B if A a number

Branch to B if A not number

Branch to B if A=L a quoted

Branch to B if A~L a quoted -
Branch to B

-114-

----- - ~. ---

constant

constant

o

(CONSCLL N)

(CCALL OP)

Calling sequence for cons of element in

stack position ~ with contents of A.

Used with either op=CARCLL or

op=CDRCLL

to call car or cdr A.

The important function macros are:

(PRGR~F OP B)

(BRANCH OP B)

(RELREF OP N)

(LITREF OP EXP)

(VREF OP X)

(STKREF OP N)

This m~stoe used for all instructions

whose address l?. is a number relative to

the beginning of the code and therefore

must be relocated on loading. In com­

puting~, remember that LAP inserts 4

instructions at the beginning of your

code for initialization.

Must be used for all instructions which

reference a label (branch point) in the

code.
Used when N is relative to current

location.

Stores EXP in a list of literals and

computes the address of the literal for

use in the compiled code. Used to get

any literal quantity into the code,

Computes the position on the stack of

the variable named X.

Computes the actual address on stack

of position _~.

For further information, consult the document HAn Annotated LISP

Compiler Tl by Bobrow, Murphy and Deutsch (forthcoming).

-115-

MACROS for the compiler

The following expression when loaded with the compiler defines

all the MACROS used by the compiler.

(DEFLIST(QUOTEC
(LIST. (X (GLIST X»)
(ADD! qX)

(PLUS X 1>))
(SUBt . (00

(PLUS X - 1»)
(NEQ «X Y)

(NOT (EQ X Y»»
(ZERO? «X)

(EO X C»)
(LESS? «(X Y)

(GREATER? Y X»)
(MINUS? (OD

(GREATER? 0 X»)
(DIFFERENCE «X Y)

(PLUS X (MINUS Y»»
(ABS (LAMBDA (X)

(COND
«GREATER? 0 X)

01INUS X»
(T X»»

(ERSETQ «X)
(ERRORSET (QUOTE X)

T»)
(MAP (X (LIST (SUBpAIR (QUOTE (MA?F MAPF2»

(LIST <CFNP (CADR X»
(COND

CCCDDR X)
(CFN? (CADDR X»)

(T (QUOTE CDR»»
(QUOTE (LAMBDA (MAPX)

(PROG NIL
LP (COND

«NULL_MAPX)

»»
(CAR X»»

(RETURN»)
01APF MAP~)
(SETG MAPX (MAPF2 MAPX»
(GO LP)

-116-

CMAPC (X (LIST (SUBPAIR CQUOTE (MAPCr MAPCr2»
(LIST CCrN? (CADR X»)

<COND
(C.CDDR X)

(CrNP (CADDR X»)
(T <QUOTE CDR»»

(QUOTE CLAMBDA <MAPCX)
CPROG NIL

LP (COND

))))
(CAR X»»

«NULL t-1APCX)
(RETURN»)

<MAPCr (CAR MAPCX)'
(SETQ MAPCX CMAPCr2 MAPCX»
<GO LP)

'CMEMB (LAMBDA (X Y) ~'"

)

(PROG NIL
LP (RETURN (COND

«ATOt-1 Y)
NIL)

»)
(NLSETQ «(X)

«SQ X (CAR Y»
Y)

<T (SETQ Y (CDR Y»
<GO LP»»

(ERRORSET (QUOTE X)
~IL»)

(VAG (X (CEXPR (CAR X»
(COND

«EQ (CAADR CODE)
(QUOTE ENBOX»

(RPLACA (CDR CODE»)
(T (STORE (QUOTE (UNBOX»»)

(QUOTE INSTRUCTIONS»)
(LOC (X (CEXPR (CAR X»

(COND
«EO (CAADR CODE)

(QUOTE UN90X»
(RPLACA (CDR CODE»)

(T (BOX SP»)
(OUOTE INSTRUCTiONS»)

(ARG (X (CEXPR (LIST (QUOTE VAG)
(CAR X»)

(STORE (LIST (QUOTE VREr)
(QUOTE SUB)
(COND

(ARGARG)
CT (ERROR CQUOTE CrUNCTION 'ARG' NOT LEGAL»»»

<STORE (LIST CQUOTE ARGN)
ARGARG»

(QUOTE INSTRUCTIONS»)
»(QUOTE MACRO»

-117-

LAP MACROS

The following expression when loaded with the compiler defines

the substitution and lambda macros for Lap.

(OEF'LIST(QUOTE(
(CSPl «LV LF LT)

(LITREF LDA LV>
(LITREF LDX LF:)
(LITREf l.DB LT)
(PRGREF' VA~ (PLUS ENTER PLITORG 1»»

CVSTl «PP LV V)
(LITREF LDA ?P)
(LITREF LDB LV)
(PRGREF VAL (PLUS IPV PLITORG V»»

CBE C(N 8>
eSTKREF SKI!: N)
eRELREF 8RU 2>
(JUMP 8»)

CBNE «N B)
(STK8EF SKE N>

. (Jm1P B» >
(LOV (LAt1BDA (5)

(VREF (QUOTE LOA>
S»>

CSTV (LAM8DA (S>
(VREF (QUOTE STA>

S»)
CLOT (LAM8DA (S>

(STKREF' (QUOTE LDA)
S) »

(STT (LAMBDA (S)
(STKREF' eQUOTE STA)

S) »
(NSTT (LAMBDA (S)

eSTKREF' eQUOTE NSTA)
s»)

(LQT (LAMBDA ex>
(LITREF (QUOTE LOA)

.. X) »
eLDN (LAMBDA (S)

eNREF' eQUOTE LDA)
S»)

-118-

--- ---------------_ .. ---

o

(J

(STN (LAMBDA (N)
(NREF (QUOTE STA)

N) »
(CLL «L K U)

(LITREF LOA U)
(LITRE!'" LD8_K)
(LITREF CLLX L»)

(CLLA CCL K U)
(LITRE!'" LOA U)
(LITREF LOB to
eVREF CLLXA L»)

(ARGN «A)
(LSH 1)
(ARGSUB A)
(ADD PPPTR)
(CAXS 0)
(LOA 0 I)
(CBX 0»)

(ARGSUS (LAMBDA NIL
(LITREF (QUOTE ADD)

(PLUS -2 <VREEI A»»)
(RET (NIL (VAL RETURN»)
(BN «S)

(SKE SYSNIL)
(RELREF SRU 2)
(JUMP S»)

(SNN «S)
(SKE SYSNIL)
(JUMP S»)

eBA «S)
(SKG SYSTAT)
(RELREF BRU 2)
(JUtv]P B»)~

(BNA «S)
(S~G SYSTAT)
(JW'lP S»)

-119-

(UNBOX (NIL (VAL UNBOX»)
(ENBOX !(N)

(VAL (PLUS ENBOX N»»
(NEG (NIL (CNA 0»)
(DVD «N X)

(RSH 23)
CDIV N X»)

(DIVIDE «S)
(STTN S)
(SHAP 0)
(l;:NBOX S)
(STKRI::F SXMA S)
(I::NBOX S)
(STKREF XMA S)
(CONSCLL S»)

(BI «8)
(SKG SYSNUM)
(RELREF BRU 2)
(JUMP B»)

(BNI «B)
(SKG SYSNUM)
(JUMP B»)

(BIS "B L) ..
(LITREF'l SKE L)
(RELREF BRU 2)
(JUMP B»)

(BNS«B L)
(LITREF'} SKE L)
(J(jMP B»)

(CONSCLL «N)
(CAB 0)
(STKREF LOA N)
(VAL (PLUS CONSCLL (TIMES N 2»»)

(CCALL .((O?)
(VAL OP)
(LOX PPPTR»)

(CLLX (N)
(vAL (PLUS XCLL N»»

(CLLXA «N X)
<VAL (PLUS XCLL N X»»

(SWAP (NIL (XAB 0»)
(Jur-1P « B)

(PRGREF' BRU (GBS B»»
(MPY UN X)

(MUL N X)
(LSH 23»)

) >eQUOTE OPD»

-120-

r)

C)

C) OPCODES currently defined for LAP

The following expression loaded with the compiler defines the

Opcodes for Lap.

(DEFLIST(OUOTE(
(LOA 760000(0)
(STA 350.000(0)
(NSTA 35000(00)
(LOB 750000(0)
(STB36000000)
(LOX 71.00010(0)
CSTX 370000(0)
(EAX 770000(0)
(XMA 620000(0)
(SXMA._6200000Q)
(ADO 550000(0)
(ADM 630000(0)
(MIN 6.10000(0)
(SUB 540000(0)
(MU!.. 640000(0)
(DI.V 650000(0)
(ETR .1.40000(0)
(MRG .160000(0)
(EOR 170000!aO)
(CLA 4600(010)
(CLB 46000(20)
(CAB 460000.LIO)
(eBA £160001(0)
(XAB 4600(140)

(CAXB 460044(0)
(CBX 460!a02(0)
(CNA 460100(0)
(BRU 10.000(0)
(BRX 410000(0)
(BRM 4.30000(0)
(BRR 510000(0)
(SKE 500000(0)
(SKG 130000(0)
(SKM 70000(00)
(SKA 720000(0)
(SKB 520000(0)
(SI<N 53000000)
(SKR 60000(00)
(RSH66(JOO@OQ)
(LRSH 662 L1(000)
(RCY 662000(0)
(LSH 670000(0)
(LCY 672000(0)
CNOP 200000(0)
CEXU 2300000Q)
(VAL 0Q)
(BIO 5760000(0)
CBRS 5730000(0)
(CTRL 5720000(0)

)) (QUOTE OPD»

-121-

name of
function

abs

add

addl

allocate

and

append

apply

arg

arglist

array

arraysize

assoc

atom

attach

backtrace

bpnt0

break

breakin

breakl

car, cdr,

character

chcon

clearbuf

clock

closef

INDEX TO FUNCTIONS

(etc)

-122-

description
page

74
34
72

61

25
27

38

39
38
62

63

34
24
28

71

101

101

105

100

16

81

59
84
92

78

(\
\~j

('"

~)
name of description
function page

closer 61

compile 107

cond 19

cons 17
conscount 18

conspage 17
control 85
copy 29
define 36
defineq 37
deflist 33
difference 72
divide 73
dremove 29

\ dreverse 29
<~

dsubst 30
e 38
editcom 53
editdefault 53
edite 53
editf 53
editp 53
editv 53
elt 63
endfile 87
eq 24

eqp 24

equal 24

error 94
errorset 95

:J

-123-

of defcription
()

name
function page

ersetq 95
esgag 95
eval 37
evala 37
evalr 38
evalv 70
faulteval 99
feed 79
fgtp 75
fix 75
float 75
floatp 75
fltfmt 75
fminus 75
fntyp 36 (~

fplus 75 _)

fquotient 76
ftimes 76
function 64
gcgag 60
gensym 60
get 33
getd 35
getp 33
go 22

greaterp 73
ilp 61
infile 77
input 78
interrupt 99

(\
\ ' , '

-124-

C) name of des cripiion
function page

intersection 26 .

lap 112

lap2 112

last 30

lconc 28

length 31

lessp 73

line length 85

list 27

load 87

loadc 110

loc 61

logand 73

logor 73
logout 61

, \
\,-~

logxor 73

lsh 74

mac 66

macc 66

maccar 66

maccon 67

macconc 67

maclist 66

map 64

mapc 65

mapcar 65

map con 65

mapconc 65

map list 65

memb 25

-125-

name of description n
function page

member 25

minfs 60

minus 72

minusp 73

nargs 38

nconc 27

neq 24

nill 24 -

nlsetq 96

not 25

nth 31

nthfn 70

nthfnback 70

null 24

numberp 73
(~)

oblist 60 --/

openp 78

openr 61

or 25

outfile 77

output 78

pack 59

plus 72

position 85

prettydef 88

prettyprint 87

print 80

print level 80

prinl 79

prin2 79

o
-126-

-----~ -~~

() name of description
function page

prin3 80

prog 22

progn 21

progl 21

prog2 21

prop 32

put 32

putd 35

putdq 35

quit 96

quote 18

quotient 72

radix 85

ratest 84

ratom 82

() rat oms 82
\ ... j

rbin 86

rcompile 107

rdflx 82

read 82

readc 84

readp 86

reclaim 60

remainder 73

remove 29

remprop 32

rename 70

reset 96

ret from 71

return 23

-127-

name of description (~)
__ f

function page

reverse 29
rplaca 18
rplacd 18
rsh 74
sassoc 34
selectq 20
set 23
seta 63
setarg 39
setbrk 83
setbrkc 83
setq 23
setqq 23
setsepr 83
setseprc 83
setv 70 0
spaces 80
statistics 62
storage 62
sublis 30
subpair 30
subst 29
subl 72
sysin 86
sysout 86
tconc 28
terpri 80
time 92
times 72
trace 102

-128-

{-) name of description '\,.-..,.-
function page
unbreak 106
union 26
unpack 59
vag 61
variables 70
'(.<lbin 86
zerop 73

-129-

Following is a list of all atoms with initialized top

level values in the basic system and those values.

blank space

space space

tab tab

COD'ma ,
eqsign =

xeqs =

f nil

nil nil

period

pluss +

lpar (

rpar)

slash /
t t

t t

qmark ?

xdol $

xsqu

xdqu "
xlbr [

xrbr]

xarr +

uparr t

colon

xgreater >

xlesser <

xnum #

xper of
10

xamp &

xat @

-130-

('!

(,I

,'~--.

xsem

xexclaim

xcr

bkslash

carriage return

\

-131-

"

'";;,

	Abstract
	Table of Contents
	I Introduction
	II Using the LISP Subsystem on the 940
	III Data Types and the Organization of Virtual Memory
	IV Function Types
	V Primitive Functions and Predicates
	VI List Manipulation and Concatenation
	VII Property List Functions
	VIII Function Definition and Evaluation
	IX The LISP Editor
	X Atom, Array, and Storage Manipulation
	XI Functions with Functional Arguments
	XII Variable Bindings and Pushdown List Functions
	XIII Arithmetic Functions
	XIV Input/Output Functions
	XV Error Handling and Debugging Functions
	XVI The Compiler and LAP
	Index to Functions
	Top-level Bindings

