A Summary of

ﬁ‘{aciﬂisp

Functions and Flags

David S. Tourstzky
August, 1979

) This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
_Order No. 3597, monjtored by the Air Force Avionics Laboratory Under Contract F336815-78-C- 1561,

The views and conclusions contained in this document are. those of the author and should not be
interpreted as ropreseming the official policies, either expressed or implied, of the Defense Advanced
: Research Projects Agency or the US Government. '

The author was sWtod by a Fannie and John Hertz Foundation fellowship,

Table of Contents

1. Manipulating S-Exprossions
1.1. Basic List Structure
1.2. Extracting Componcents of Lists
1.3. Predicatos on S-Expressions
1.4. Scarching and Substitution
1.5. Hashing List Structure
1.6. Sorting -
1.7. Hunks
2. Type Predicates
3. Atomic Symbols
3.1. Symbols As Variables
3.2. The Property List
3.3. Characters and Print-Names
3.4, The OBARRAY
4. Numbers
4.1, Predicatos on Numbers
4.2. Conversion
4.3. General Arithmetic *
4.4, Fixnum Arithmetic
4.5. Flonum Arithmetic
4.6. Logs and Poweors
4.7. Trigonometric Functions
4.8. Logical Operations on Numbors
4.9. Miscellaneous
5. Programs
5.1. The Evaluator
5.2. Evaluator Special Forms
5.3. PROG Forms
5.4. Conditionals
5.5. LEXPRS and LSUBRS
5.6. Non-Local Exits
5.7. Error Signalling
6. Mapping Functions
7. Arrays . ¢
8. Input/Output
8.1. Functions On Files
8.2. Functions on Filospecs and File
Objects
8.3. Basic I/O
8.4. Character 1/O
8.5. General |/O Control -
8.6. Terminal 1/O
8.7. Binary and Random Access 1/0
8.8. Misccllaneous Functions
8.8. OLD!O Functions
9. Programming Tools
g.1. Common Functions
9.2. Packages
10. Storage Management
10.1. Garbago Collection
10.2. Storage Allocation Concopts
10.3. Storage Spaces
10.4. Allocation

COONNODOGOOBBLWWNN

NN NNNN NN < b od b cd cd b b b od o b ad ad A
NODDWWN—2=aORIRNNNIOIOOD WN =20

28

30
31
32
a3

35
35
36
36

36°

37
38

' ag

11. Status Functions
11.1. Environmont Enqueries
11.2. Garbage Collector Status
11.3. 1/0 Status
11.4. Time

Index

39
39
a1
a2
a3

45

Preface

~This document is a summary of CMU Maclisp's
principle functions and flags. It is not a complete list,

and certainly not a reference manual.

Many of the ilems listed here are taken from
chapters 1 through 3 of the Maclisp Reforence Manual.
Since the manual is incomplete, the remainder are
drawn from information in a cumulative filo of Maclisp
update notices, ARCHIV.DOC[C380MLSP]/A.

A special notation is used to indicate the calling
syntax for functions:

- Evaluated arguments appear as bare atoms,
such as X and Y in (EQ X Y).

- Unevaluated argumonts, i.e. arguments
taken by fexprs and left unevaluated,
appear in quotation marks, e.g. (SETQ "X"
Y).

- Arguments that are destructively modified
by a function are preceded by an asterisk,
as in (RPLACD =X Y).

- Optional arguments appear in brackets, e.g.
(TERPRI [FILE])

- Numbers in brackets rofer to pages of the
Maclisp Roforonce Manual.

Building a summary from a mostly non-existent
reference manual is a difficult task. To simplify things,
system-level features (such as the interrupt system,
pure pages, and the evalhook mechanism) have been
omitted. Also omitted are those features that are not
applicable to the version of MaclLisp in use at CMU.
Please mail all corrections to this summary to
Maclisp@CMUA.

1. Manipulating S-Expressions

1.1. Basic List Structure

(CONS X V) [2-16)
Eg: (CONS ‘A ‘B) = (A . B)

(NCONS X) [2-16]
Same as (CONS X NIL)

(XCONS X Y) (2-17)
Same as (CONS Y X)

Returns a list containing the X.. Eg: (LIST 'A 'B
‘C)=(ABC)

(Lisr> X, Xp ... XN) (?]
An Isubr version of CONS. Eg: (LIST® ‘A 'B ‘C)
=(AB.C)

(APPEND X, X, s Xp) [2-19]
Returns a list of all the X, appended logether.
This is & non-destructive append: all but the last -
argument are copied at the top level. Eg:
(APPEND ‘(A B) (C D) (E)) = (ABCDE)

(NCONC *X; "X, ... Xp) [2-20])
Similar to APPEND, but all x‘ except the last are
modified rather than copied. Returns-the modified
Xy

, (REVERSE L) {2-20)
Reoturns the reverse of the top-level list L.

(NREVERSE *L) (2-21)
Like REVERSE, but destructive,

(NRECONC "X V) [2-21]
Same as (NCONC (NREVERSE X) Y)

(RPLACA *X V) [2-22]

Physically replacos tho CAR portion of X with Y,
returning tho modifiod X.

(RPLACD "X Y) (2-22]

Physically replacos the CDR portion of X with Y,
returning the modifiod X. ‘

(LENGTH L) [2-18]

Returns the number of top-lovel elomonts of the
hist L.

1.2. Extracting Components of Lists

(CAR L) : [2-15]
Eg: (CAR'(ABC)) = A

(COR L) [z-is]
Eg: (COR (A BC)) = (BC)

(C....R L) , [2-16)

Composite CAR’s and CDR’s, up to four deep. Eg:
(CADDR L) = (CAR (CDR (CDR L)))

(NTH N L) (7]
Returns the Nth ‘eilement of list L, with O being
the first element. Eg: (NTH 1’(ABC)) =8

(NTHCDR N L) (7]

Returns the result of taking the COR of list L,
repeated N times. Eg: (NTHCDR 1 ‘(A BC)) =
(8 C)

(LAST L) - [2-18]

The last cons cell of the list L. Eg: (LAST (A B
C)) = (C), (LAST'(AB.C))=(B.C)

1.3. Predicates on S-Expressions

(EQ XY) [2-3]
Returns T if objects X and Y are the same
pointer. EQ will correctly compare symbols and
lists, but not numbers. Eg: (EQ ‘A ‘A) = T, but
(EQ "(A) '(A)) = NIL

(EQuAL X Y) : [2-3]

Roturns T if objects X and Y are identical
s-oxprossions. Eg: (EQUAL ‘(FOO BAR) ‘(FOO
BAR)) =T

(NULL X) (2-4]

~J
Returns T if X is NIL, otherwise returns-NiL.

(NOT X) [2-4)
Same as NULL. Returns T if X is NIL, otherwise
returns NIL.

(MEMBER X L)) [2-24]
If X is EQUAL to any top-lovel eloment of Y,
then the tail of Y starting with the point where X
is found is returned. Otherwise NIL is returned.
Eg: (MEMBER 'C‘(ABCDE))=(CDE)

(MEMQ X L) [2-25)
Like MEMBER, but uses EQ instead of EQUAL.

1.4. Searching and Substitution

(sussT xvylL) . [2-22]
Substitutes X for aill elements EQ to Y in
L. Returns L.

(SuBLISAL) [2-23]

Uses the list of dotted pairs A 1o make
substitutions in L. Eg: (SUBLIS '((A . FOO) (B .
BAR)) '(SETQ A B)) = (SETQ FOO BAR)

) (DEL‘ETE X*L[N]) [2-25])

(DELETE X L) returns list L after all elements

“ EQUAL to X have been destructively removed.
DELETE should be used with 8 SETQ, not by
itsolf, as old pointors to the list L may be left
pointing to a deleted element. (DELETE X L N)
will delete only the first N occurrences of X from
L.

(ODELQ X *L [N]) [2-26]
Like DELETE, but uses EQ instoad of EQUAL.

(AsSsoc X L) [2-27]
Search the list of dotted pairs L for a pair whose
CAR is EQ 1o X. Roturns the first such pair found,
elso NIL. Eg: (ASSOC 'TWO '((ONE . 1) (TWO.

2) (THREE . 3))) = (TWO0. 2) .

(ASsSQ X L) - [2-28]
Like ASSOC, but uses EQ instead of EQUAL.
(SASSOC X L FN) [2-28]

Like ASSOC, but if X can’t be found in the
association list L, returns the value of a call to
function FN, a function of zero arguments,

(SASSQ X L FN) [2-29]

Like ASSQ, but if X can't be found in the
association list L, returns the value of a call to
function FN, a function of zero arguments,

1.5. Hashing List Structure

(SXHASH X) [2-26]

Hashos an s-expression into a fixnum. EQUAL
s-expressions hash to the same number,

(MAKNUM X) [2-29]

Translatos an object into a fixnum, by returning
tho memory address of object X. .

(MUNKAM N) ‘ {2-29]
Opposite of MAKNUM, Returns the object which
was given 1o MAKNUM to get the number
(memory address) N. '

1.6. Sorting

(SORT "X FN) [2-30)

Destructively sorts the list or array X, using FN
as a predicate to compare pairs of elernents. FN
should return T if the first arguement should
appear before the second in the sorted list. For
alphabetical sorting, use ALPHALESSP as the
predicale.

(SORTCAR *X FN) [2-31]

Like SORT, but calls the predicate on the CAR'’s
of the elements.

1.7. Hunks

(HUNK Xy X5 oo Xp_g Xg) [2-32]
Builds a hunk from the X.. Note that the 0'th
element appears last in the argument list. Hunk
sizes are always a power of two, no matter how
many arguments are actually given.

(CXRNH) [2-33]

Returns the Nih component of hunk H.

(RPLACX N *H X) (2-33]

Physically replaces the Nth component of hunk H
with X, and returns H.

(MAKHUNK N) [2-33])

Creates and returns an N-element hurk, filled
with NiLs. (MAKHUNK L), where L is a list,
creates a_hunk of the appropriate size and
initalizes it from L.

(HUNKSIZE H) » [2-33]

Returns the number of components in hunk H.

HUNKP [2-33)

If the global variabie HUNKP is NIL, the functions
PRINT, EQUAL and PURCOPY treat hunks as
conses. If non-NIL (the default), hunks are
treated as hunks.

2. Type Predicates

(ATOM X) | (2-1]

Returns T if argument is any kind of atomic
object, such as a symbol or a number, otherwise
NIL.

(SYMBOLP X) {2-1]

Returns T if X is an atomic symbol, otherwise
NiL.

(FiIxpP X) (2-1]
Returns T if X is a fixnum or bignum, othorwise
NiIL.

(FLOATP X) {2-1]

Returns T if X is a flonum, othorwise NIL.

(8IGP X) {2-1])

Returns T if X is a bignum, otherwise NIL.

(NUMBERP X) } [2-2]
Returns T if X is any kind of number, otherwise
NIL.

(HUNKP X) [2-2)
Returns T if X is a hunk, otherwise NIL.

(TYPEP X) (2-2]

Returns an atomic symbol describing the type of
object X. Possible values are FIXNUM, FLONUM,
BIGNUM, LIST, SYMBOL, STRING, ARRAY, and
RANDOM,.

3. Atomic Symbols

3.1. Symbols As Variables

(SETQ "X" V) . [2-a9]

The canonical assignment statement, Sets the
value of variable X to Y. X is left unevaluated, Y
is not. More than one variabie may be set at
once, eg (SETQ X 3 Z 4).

(SET X V) (2-50)
Like SETQ, but X is evaluated and must yield an
atomic symbol.

(PUSH X *L") [?]

Equivaient to (SETQ L (CONS X L)). Use where
L. is acting as a stack.

(POP g [nxn]) [?]
Returns CAR of L, sotling L to CDOR of L. (le.
pops tho top olemont off a stack and roturns it.)
Assigns tho popped valuo to the (optional)
variable X.

(SYMEvVAL X) (2-50]
Roturns the value of atomic symbol X. More
efficient than doing an ordinary EVAL.

{BOUNDP X) [2-51)

Roturns T if atom X has a value, othorwise NiL.

(MAKUNBOUND X) (2-51]

Removes any value associated with atomic
symbol X. ’

3.2. The Property List

(GET X P) ’ [2-53]
Returns the P property of atomic symbol X, or
NIL if there is no such property.

v

(GETL X L) R [2-53)
Returns a portion of the property list of symbol X
beginning with the first property in the list L, or
NIL if X has no properties in L.

(PUTPROP XV P) [2-54)
For atomic symbol X, make V be the P property.

(DEFPROP X" "y" "p*) [2-54]

Like PUTPROP, but arguments are left
unevaluated. Eg: (DEFPROP JOHN MALE SEX) =
(PUTPROP 'JOHN 'MALE 'SEX)

(REMPROP X P) [2-55)

Remove X’s P property. Returns a portion of the
property list beginning with property X, or NiL. X
may be an atomic symbol or any list that looks
like a property list.

(PLIST X) [2-55)

Returns the property list of atomic symboi
X. Note that in Maclisp the value celi and
print-name are not kept on the property list.

(SETPLIST X L) _ [2-55]
Sets the properly list of atomic symbol X to'L.

3.3. Characters and Print-Names

(ASCII N) [2-83]
Returns the character object for ASCIl code N.

(GETCHAR X N) [2-83)

Returns the Nth character of X's print-name,
starting from 1. The character is retlurned as a
character object.

(GETCHARN X N) [2-83]

Same as GETCHAR, except the characler is
returned as a fixnum instead of & character
object.

(PNGET X N) ' ' [2-57]

Returns the print-name of atom X as a list of
fixnums containing packed N-bit bytes. N may be
6or?7.

(PNPUT L FLAG) [2-57)

Creatos a new symbol whose print-name is
defined by the list of fixnums L, and intorns it if
FLAG is non-NIL. L is assumed to contain packed
7 -bit bytes.

(EXPLODE X) . [2-85]

Returns a list of characters, which are the
characters that would be typed out if (PRIN1 X)
were done, including slashes for special
characters but not including extra newlines that
PRIN1 would insert to prevent exceeding the
page width. Each character is represented by a
character object.

(EXPLODEC X) [2-85)

Like EXPLODE, but in the form of PRINC rather
than PRIN1T, i.e. special characters aren't
. slashified. :

(EXPLODEN X) (2-85)

Like EXPLODEC, but returns a list of fixnums
rather than character objects.

10

(FLATSIZE X) [2-85]
Returns the number of characters PRIN1 would
use to print X,

(FLATC X) [2-85]
Returns the number of characters PRINC would
use to print X, i.e. without slashifying special
characters.

(MAKNAM L) : (2-84)
Creates an uninternod atomic symbol whose
print-name is created from the characlers in the
list L.

(IMPLODE L) [2-84]

Same as MAKNAM, except the atom is intorned.

(READLIST L) [2-84]

Creates a new atom or list by parsing the
character sequence in the list L. All atoms are
interned. Inverse of EXPLODE.

(SAMEPNAMEP X V) [2-56]

‘Returns T if atoms X and Y have the same

print-name.)
k]

(ALPHALESSP X Y) {2-56)

Returns T if the print-name of atom X is lower in
the ASCIl collating sequence than the print-name
of atom Y.

3.4, The OBARRAY

'CINTERN X) [2-58)

Returns from the obarray the unique atomic
symbol whose print-name is identical to that of
X. If there is no such symbol, X itself is added lo
the obarray and returned as value.

(REMOB X) [2-59)
Removes atomic symbol X from the obarray.

(COPYSMBOL X FLAG) [(2-59]

Creates and returns a new, uninterned symbol
whose print-name is the same as that of X. If
FLAG is non-NIL, X’'s value and properties are
also copied into the new atom.

11

(GENSYM X) (2-59]

Gencerates and roturns a3 new, uninforned atomic
symbol, whose name is derived from a counter
and a one-lottor prefix. (GENSYM) returns the
next such symhol. (GENSYM N) sols the counter
to N and rotuins a now symbol. (GENSYM X)
sots the prolix to the_first charactor of X's
print-name and retwrns a now symbol.

4, Numbers

4.1. Predicates on Numbers

(ZEROP X) [2-63]
Returns T if X is zero.
(PLUSP X) (2-63])

Returns T if X is greater than zero.

(MINUSP X) [2-63)
Returns T is X is less than zero.

(000P X) (2-63)
Returns T if X is odd. X must be a fixnum or
bignum,

(SIGNP "C*” X) ' [2-63]

- General predicate for testing the sign of a
number. C is not evaluated; it must be one of L,
LE, E, N, GE, or G. Returns T if the specified

- relation between X and zero is true.

(=xv) [2-85]

Returns T if X and Y are numerically equal. X and
Y may be fixnums or flonums, but must be of the
same type,

(>Xxv) ' [2-65]

Returns T it X is numerically greater than Y. X
and Y may be fixnums or flonums, but must be of
the same type.

12

v(< Xv) (2-66]

Returns T if X is numerically less than Y. X and Y
may be fixnums or flonums, but must be of the
same type.

(GREATERP Xy X5 .- XN) [2-65]
Compares the X. from left to right, and returns T
if sach is greater than the next.

(LESSP X, Xz XN) [2-65]
Compares the)(i from loft to right, and returns T
if each is less than the nexi.

(MAX Xy X5 .. Xy) [2-66]
Returns the largest of the X.. If any argument is
a flonum, the result v:ill be a flonum; otherwise
the result is either a fixnum or a bignum,

(MIN Xqg X5 ... Xp) [2-66]
Returns the smallest of the X‘. it any argument is
a flonum, the result will be a flonum; othorwise
the result is either a tixnum or a bignum.

(HAULONG X) [2-64)

Returns the number of signifigant bits in X, which
must be a fixnum of bignum. The result is the
least integer not less than the base-2 log of
abs(X)-1.

4.2. Conversion

(FiIX X) ' [2-67)
Converts X to a fixnum or bignum, deponding on
' its magnitude.
(IFIX X) [2-67]

Converts X from a flonum to a fixnum. IFIX never
returns a bignum; this allows it to compile more
efticiently. Rounding is always down, as in the
Algol ENTIER function.

(FLOAT X) [2-67]
Converts X to a flonum,

13

(ABS X) l . [2-67]

Returns the absolute value of X,

(HAIPART X N) ’ [2-68]

Returns the N leading bits of the internal
represontation of abs(X). X must be a fixnum or
bignum. If N is negative, the N trailing bits of
abs(X) are roturned.

4.3. General Arithmetic

(PLUS Xy X5 ... Xp) [2-69]
Returns the sum of O or more arguments, which
may be any type of numbers.

(DIFFERENCE Xy X5 ... Xp) [2-69]

Returns the first argument minus the rest of the
arguments. Works for any type of number,

(MINUS X) [2-68)
Returns the negative of its argument.

(TIMES X4 X5 ... Xp) [2-69]
Returns the product of O or more argumonts,
which may be any type of numbers.

(QUOTIENT Xy X5 .o Xp) [2-69]

Roturns the first argument divided by the rest of
the arguments. Works for any kind of numbors.

(ADD1 X) [2-70]
Adds 1 to X.
(sust x) . [2-70]

Subtracts 1 from X,

(BEMAINDER X VY) (2-70]

Returns the remainder after dividing X by Y. The
sign of the remainder will bo the same as that of
X. Works for fixnums of bignums.

(GCD XY) - [2-70)

Returns the greatest common divisor of X and
Y. Arguments must be fixnums or bignums.

14

(EXPT X VY) [2-70]

Raises X to the Y power. If Y is a bignum, X
must be O, 1 or -1. If Y is a flonum, X is
converted to floating point and the exponentiation
is done using logarithms.

(*"DIF XVY) [2-70]
Obsolete, 2-argument version of DIFFERENCE.

(*Quo xXv) [2-71]

Obsolete, 2-argument version of QUOTIENT.

4.4, Fixnum Arithmetic

(' X' XZ oee XN) [2’72]
Returns the sum of th< integers X;.

(- Xqy X5 oo Xpy) [2-72])
Returns the first argument minus the rest. All
must be integers. If called with only one
argument, roturns it nogation,

(" Xy X5 . Xp) [2-72)
Returns the product of the integers Xi.

(/7 X4 X5 ... Xp) (2-73]

Integer division. Roturns the first argument
divided by tho rost. If callod with only one
argument, returns its integer reciprocal, which is
-1, 0, 1, or undefinod. i

(1+ X) (2-73)
Adds 1 to the intogor X.

(1-x) [2-73)
Subtracts 1 from tho intoger X.

(\xv) (2-73)

Returns the remainder of tho intoger division of X
by Y. The resuit will have the sign of X.
(\xv) [2-73)

Fixnum version of the gcd function. Roturns the
greatest common divisor of X and Y.

15

(~XY) (2-74])

Fixnum exponentiation. Always uses fixnum.
arithmetic; will be incorrect if the result is too
large.

4.5, Flonum Arithmetic

(+8 Xy Xy ... Xy) [2-75)
Returns the floating point sum of the X,
(-3 Xy Xa oo X”) [2-78]

Floating point subtraction. Roturns the first
argument minus the rest. When called with only
one argument, returns its negation.

(*s X, xz oee x~) [2-75])

Returns the floating point product of the X;.

(1/%3 Xy Xp oo Xy) [2-76)

Floating point division. Returns the first argument
divided by the rest. When called with only one
argumeht, returns its reciprocal.

(1+3 X) [2-78)
Adds 1.0 to X, which must be a tionum.

(1-%Xx) [2-786]
Subtracts 1.0 from X, which must be a ilonum,

(s XVv) . [2-76]

Floating point exponentiation. The first argument
must be a flonum, the second must be a fixnum,
To raise a flonum to a floating power, use (EXPT
X Y) or (EXP (®*$ Y (LOG X))).

4.6. Logs and Powers

(LOG X) [2-77]
Returns the natural log of X,

(EXP X) (2-77]
Returns oX.

16

(SQAT X) (2-77)

Returns the square root of X. Moro accurate than
(EXPT X 0.5)

4.7. Trigonometric Functions

(SIN X) [2-78)

Returns the trigonometric sine of X, which may
be a fixnum or flonum. X is in radians.,

(COS X) [2-78)

Returns the cosine of X, which may be a fixnum
or flonum. X is in radians.

(ATAN X Y) (2-78)

Returns the arctangent of x/y, in radians. X and’
Y may be fixnums or flonums. Y may be O as
long as X is not also O.

4.8, Logical Operations on Numbers

1)

(BOOLE K XY) [2-80])

Computes a bit-by-bit Boolean function on X and
Y. The function is specified by K, which must be
a fixnum botwoen 0 and 15. The four bits of K,
from left to right, specify the rosult of the
Boolean function when (X,Y) is (0,0), (1,0),
(0,1), and (1,1). If BOOLE is callod with more
than three arguments, the function is appiied to
the first two numbors, thon to tho result and the
third number, etc. Some common values for K
are: 1 for logical And, 7 for logical Or, and 6 for
logical Xor.

(LSH XY) ‘ [2-81)
Logically shifts the bits of X by Y places, to the
left if Y is positive, else to the right. X and Y

must be fixnums. The result is undefined it
abs(Y) exceeds 36.

(ROT X Y) (2-81)

Rotates the bits of X by Y places, to the left if Y
is positive, else to the right. X and Y must be
fixnums, The result is undefined if abs(Y)
exceeds 36.

17

(FSC X Y) [2-82]

Performs an FSC instruction on the floating point
numbers X and Y. Consult the PDP-10 processor
manual for details.

4.9, Miscellaneous

(RANDOM X) [2-79]

(RANDOM X) returns a random fixnum between O
and X-1 inclusive. Also, (RANDOM) returns a
random fixnum, (RANDOM X Y) uses X and Y to
set the random number seed, and (RANDOM NiL)
restarts the random sequence from the beginning.

ZUNDERFLOW [2-79]

If the global variable ZUNDERFLOW is non-NIL,
floating point underflows will return 0.0 as a
result. If NIL, floating point underflows will be
treated as errors, The initial value of
ZUNDERFLOW is NIL. This flag has no offect on
compiled arithmetic operations that were
open-coded. Also soe (SSTATUS DIVOV), which
controls division by zero,

S. Programs

5.1. The Evaluator

(eEvaL x [P]) (2-7)
Evaluates x as a LISP form and returns the result.

(EVAL X P) evaluates X using binding context
pointer P, Eg: (EVAL '‘(CONS ‘A 'B)) = (A . B)

(APPLY FN L [P]) [2-7)

Applies function FN to argument list L, The
arguments in the list L are used without further
evaluation. (APPLY FN L P) applies function FN
to argument list L using binding context pointer P.

(FUNCALL FN Xy X, ... Xp) [2-13)]

Calls function FN with argumonts X.. Similar to
APPLY, excopt the arguments are specified
individuaily instoad of as a list. Shouid not be
used with fexprs or fsubrs.

18

(SUBRCALL "TYPE" P X, X5 .. X”) (2-13]

Used to invoke a subr pointer directly rather than
through an atomic symbol with a subr property.
All arguments except the first aro covaluated.
TYPE is the type of resull oxpeclod, eithor
FIXNUM, FLONUM, or NIL (any type). P is the
subr pointer to be callod; the Xi are its
arguments.,

(LSUBRCALL "TYPE" P Xy Xpon XN) [2-13)

Like SUBRCALL, except the pointer P must be to
an lsubr instead of a subr.

(ARRAYCALL "TYPE" P X, X, ... Xy) [2-13)]

Like SUBRCALL, except an array pointer is used
instead of a subr pointer., TYPE must match the
type of the array when it was created. An
ARRAYCALL may be used as a first argument to
STORE.

6.2, Evaluator Special Forms

(QUOTE "x") v : (2-7)

Returns X without evaluating it. This is the
standard way to include s-oxpression constants
in a LISP form. (QUOTE X) is entirely equivalent
to ‘X. Eg: (QUOTE (FOO BAR)) or ‘(FOO BAR)
evals to (FOO BAR)

(FUNCTION *X”) [2-8]

Like QUOTE, but indicates that the expression is
a LISP form that may be compiled. Useful for
passing functional arguments to map functions and
the like. FUNCTION does not worry about the
*funarg problem"”,

(*FUNCTION "X") (2-9]

Like FUNCTION, but handles the "funarg problem*®
by generating a binding contoxt pointor that is
passed along with the functional argument.

BACKQUOTE (7]

Like QUOTE, but a comma within tho argument
causes the following s-exprossion to be
evaluated, and the sequence ,@ causes the next
s-oxpression to be evaluatod and spliced n.
Implementod via a macro character (‘) called the
backquote. Eg: Let A = FOO and B = (BAR BAZ).
Then ‘(ALL ,A ARE ,(CAR B)) = (ALL FOO ARE
BAR), and ‘(LA ,@B) = (FOO BAR BAZ). The
comma is a reserved charactor used by
backquote.

19

(LAMBDA ARGS Fy F, ... Fy) ' [1-15]

The mechanism for binding formal to actual
parametors in a function call. ARGS is the
argument list, the forms l-'i are evaluated in
sequence and the value of FN returned. |If ARGS
13 an atom instoad of a list, the atom will be
bound to the number of actual arguments passed,
and the function is calied a loxpr. LAMBDA isnt
itsolf a function, it is a special form that is
recognized by the ovaluator as denoling a
functional form. Thus a lambda exprossion may
appear wherever an atomic function name could
appear. Eg: ((LAMBDA (X) (TIMES X X)) 5) = 25

(LABEL NAME LAMBDA-EXPRESSION) [1-17]

A somewhal obscure method of wriling rocursive
expressions, rather than the usual recursive
functions. During the interpretation of the LABEL
special form, NAME is a local variable bound to
the given lambda oxpression. However, Maclisp
does not allow variables in function position, so

(PROGV VARS VALS Fy F, ... Fy)

(PROG VARS FeFoen FN)

(GO “TAG")

20

Evaluatoes VARS to got a variable list and VALS
to got a list of values. Binds the valuos to the
variables, then evaluatos the Fi and roturns the
last result. Useful for super-powerful binding
control.

The "program" special form. VARS is a list of
local variables which are initialized to NIL when
the PROG is entered. The F are evaluated
sequentially unless a function such as GO is
called to alter the flow of control. Atomic F. are
taken as program labels. PROG returns NIL
uniess an explicit RETURN funclion is executed.

Alters the flow of control of a DO or PROG to
proceed from the point named by TAG. If TAG is
not an atom it will be evaluated and should yield
one. GO may not be used to branch outside the

[2-11]

[2-38)

[(2-42)

APPLY or FUNCALL must be used to call the current PROG.
expression,
(RETURN X) [2-43]
(COMMENT ...) (7] : .
. Forces the current DO, or PROG to return with
The comment function. Ignores its arguments, and value X.
returns COMMENT. This is not the same as .

semicolon-style comments. (DO VARLIST EXITLIST F, FZ . FN) [2-40]

(DECLARE DECL, DECLZ e 0531_") : {7] All-powerful iteration fatility. VARLIST is a list
of entries (VAR INIT REPEAT), where VAR is a

In the interpreter, DECLARE is treated as a variable name, INIT an expression yielding an
comment. In the compiler, each of the DECL; are initial value, and REPEAT an expression for
interpreted as declarations or. compiler directives, iterating that variable’s value. EXITLIST is a list
generally by evaluating them. (E; E, .. E), where E, is a termination

prodicate. If E, returns a non-NIL value the rest
of, the Ei are evaluated and the value of the last
is returned. Otherwise the forms F. are
5.3. PROG Forms evaluated in sequence up to F,, then U:e
variables are iterated, etc. The'\i)o body is like
[2_”] that of a PROG, i.e. it may include labels and GO
and RETURN statements. See the Maclisp
Reference Manual for examples.

(PROGN F, F, ... Fy)

Evaluates the forms Fi in sequence and returns
the value of tho last one,
(DO VAR INIT REPEAT TEST F, FZ FN) [2-a1]

-1 .
(PROG2 F’ FZ F”) (2-10] The old DO, less genoral than the one doscribed
Like PROGN, but returns the value of F, no above. The VAR bound by the DO, a single
matter how many arquments it receives. Useful variable, receives initial value INIT and is

for hacking obscure side effects. iterated until TEST returns non-NIL. The F; are

evaluated on each iteration. Eg: the following
prints the numbers 1 through 10: (DO | 1 (1+ 1)
(> 1 10) (PRINT 1))

21
5.4, Conditionals

(AND Fy F, ... Fy) (2-386]}

Evaluates the Fi in scquence, If any one returns
NIL, AND returns NIL without evaluating the rest.
Otherwise the value of FN is returned. Eg:
(AND (NOT (ZEROP X)) (QUOTIENT 1 X))

(ORF,F, .. Fp) [2-26]
Evaiuvates the F5 in sequence. |f any one returns
a non-NIL value, that value is returned
immediately. Otherwise NIL is returned. Eg: (OR
(NULL X) (PRINT (CAR X)))

(COND (P' E’,1 E"z .--) “o) [2"36]

Geoneralized conditional facility. The Pi are
ovaluated in sequence until one is found that
roturns a non-NIL value, then all Ei' of that Pi
are ovaluated and the value of 'lhe last is
returned. |f there are no Ei, for that Pi' the
value of P. itself is returned. 'if no P, evaluates

to non-NiL, the COND returns NIL.

(CASEQ SEL ("A," E; 4 E; 5 ...) ...) (7]

SEL is evaluated and yields an atom. If the atom
is EQ to any unevaluated atom A, the Ei . of that
A. are evaluated and the value of tho last one is
returned. If an A, is a list, the test is MEMQ
instead of EQ. An “else” clause can be obtained
by making Ay be the atom T.If no test is

satisfied, CASEQ returns NIL.

5.5, LEXPRS and LSUBRS

(ARG N) [2-12])
(ARG N) where N is a number returns the value
of the Nth argument to the lexpr. (ARG NIL)
returns the number of arguments that were
passed. This is also the value that the lexpr’s
single lambda variable is bound to.

(SETARG N X) - [2-12)

Sets the lexpr’s Nth argument to X. This is the
equivalent of doing an assignment to a lambda
variable of an expr or fexpr.

22

(LISTIFY N) [2-13)

Roturns a list of the lexpr's first N arguments. If
N is negative, returns a list of the lexpr’s last N
arguments.

5.6. Non-Local Exits

("CATCHTAGE, E, ... E,) (2]

Receiving half of the non-local exit mechanism,
Evaluates the Ei in soquence and returns the
value of the last one if no non-local exit is
forced. If a *THROW (or THROW) whose tag
matches the first argument to the ®CATCH s
executod by one of tho Ei' tho value roturned is
the the value of the *THROW. If the tag doosn’t
match the first argument, the non-local exit
searches down the stack for the next *CATCH,
CATCH, CATCHALL, or CATCH-BARRIER.

(*THROW TAG VAL) (7]

Forces a non-local exit to occur, passing along
both the tag and the return value. At some higher
level the exit will be caught. If it is by a
XCATCH (or CATCH), the value is passed to the

" catcher. If by CATCHALL, both the tag and the
value are passed.

(CATCHALL FN E} E, ... E) ()

Has the same semantics as *CATCH, except that
all *THROWSs, independent of tag, will be caught.
FN must be a function of two arguments. It a
non-local exit occurs, FN will be called on the
tag and value passcd by the *THROW. FN may
itself issue a =THROW, in which caso the
CATCHALL acts like a filter botween the exiling
function and higher levols.

(CATCH-BARRIER TAGLIST E E, ... £~) [?]

Similar to *CATCH, but if a *THROW is executod
whose tag is not in the tag list, an Unseen Throw
Tag error is signalled instead of soarching further
down the stack for another catcher,

(UNWIND-PROTECT E U, v, ... UN) (7]

Evaluates the form E, then the forms U1 through
UN. It, during the evaluation of E, an event
occurs that causes the stack to be unwound (e.g.
a non-local exit, an error, a QUIT, etc.), the
unwinding will pause at the point of the
UNWIND-PROTECT and the Ui will be evaluated.
NOINTERRUPT is set to T boforo the Ui are
evaluated, so asynchronous condilions can’t
interefere with the cleanup routines.

(CATCH X ["TAG*]) [2-44)

Older form of =CATCH, being phased out.
Evaluates X, catching all THROWs with a
matching tag. If tho tag is omitted, all THROWS
are caught,

(THROW X [“TAG"]) [2-a5]
Older form of *THROW, being phased out.
Forces a non-local oxit, roturning X as value, to
a CATCH with matching tag or no tag at all. If
the second argument is omitted, THROW returns
to the nearest enclosing CATCH.

5.7. Error Signalling

(ERROR [MSG] [DATUM] [UINT-CHN]) [2-46]

(ERROR) is \he same as (ERR). (ERROR MSG)
signals a simple error and prints the error
message. (ERROR MSG DATUM) signals an
orror with an objoct to be printed and an error
message. (ERROR MSG ODATUM UINT-CHN)
signals an error but first signals a user interrupt .
on the specifiod channel. The value returned by
the - user interrupt handler detormines how the .
error -will be \reated. All arguments to ERAOR
are evaluated.

(ERRSET FORM [FLAG]) . [2-45)

Evaluates FORM and returns its value in a list, If
FORM signals an error, the error is trapped and
ERRSET returns NIL. If FLAG is specified and is
NiL, the srror message is suppressed as well,

(ERAR [FORM] [FLAG]) [2-47]

(ERR) causes a regular LISP error with no
message and no user intorrupt, (ERR X) causes
the surrounding ERRSET to return X, or signals an
error if there is no ERRSETY. (ERR X T) is like
(ERR X), except that X is not evaluated until just
before the enclosing ERRSET returns, i.e. after
the pdl has been unwound,

6. Mabplng Functions

(MAPC FN L) [2-99]

Applies funclion FN {o successive elements of
the list L. Relurns L.

24

(MAPCAR FN L) [2-99]

Applies function FN 1o successive elements of
the list L. Returns. a list of the results.

(MAPCAN FN L) [2-99)

Applies function FN 1o successive elements of
the list L. Returns NCONC of the resuits. -

(MAP FN L) [2-99]

Applies function FN to successive subslists of the
list L. Returns L.

(MAPLIST FN L) [2-99])

Applies function FN o successivo sublists of the
list L. Returns a list of the results.

(MAPCON FN L) [2-99]

Applies function FN to successive sublists of the
list L. Returns NCONC of tho results.

(MAPATOMS FN X) (2-99)

(MAPATOMS FN) applies function FN to ail atoms
in the current obarray. (MAPATOMS FN X)
applies FN to all atoms in obarray X.

7. Arrays

ARRAY BOUNDS (2-90)

The bounds of an array, denoted in this section

as Bi' give the number of distinct subscript values .

for each dimension Arrays in Maclisp are

zero-based. Therefore, the maximum subscript
. along any dimension is one less than the bound.

(ARRAY "X" V" B, ... B) (2-92}

Creates an N-dimonsional array named X of type
Y with bounds B, through BN. Only the Bi are
evaluated. The type code Y may be T for an
ordinary array, FIXNUM or FLONUM for numeric
arrays, NIL for un-garbage-collected arrays, or
OBARRAY or READTABLE. Roturns X. X may be
NIL, in which case an anonymous array is created
and an array pointer is returned.

25

(*ARRAY XY 8, ... By) {2-92]
Like ARRAY, but all arguments are evaluated.

(*REARRAY *X TYPE B, ... By) (2-93]

Redefines array X, copying the contents of the
old array into the new array in row-major order.
(*REARRAY X) kills array pointer X,

(STORE ARRAY-RLCF VALUE) {2-93]

Stores VALUE in the specifed array element.
ARRAY-AREF must be a subscripted array
reference, or an arraycall,

(ARRAYDIIS X) [2-93]

Returns a list of the typo and bounds of array
X. X must be an array pointer or an atomic
symbo! with an ARRAY property.

(FILLARRAY *X ¥) [2-94)

Fills array X from object Y, which may be a list
or another array. Extra olements aro ignorod. If
thore are too few elements to fill X, the
romaining clomonts of X are unchanged.

(LISTARRAY A [N]) (2-94)
Creates a list of the first N oloments of array A,
starting with the zeroth element. (LISTARRAY
A) creates a list of ail elements of A. A may be
either an array pointer or an atomic symbol with
an array property.

(DUMPARRAYS ARRAYLIST FILESPEC) (2-95)

ARRAYLIST is a list of array names. Dumps
specified fixnum or flonum arrays to file named
by filespec.

(LOADARRAYS FILESPEC) : [2-95

Reloads the arrays in the file named by filespec.
Returns a list of triplets of form (NEWNAME
OLDNAME SIZE), where NEWNAME is a new
gensym’ed atom, OLDNAME is the name the array
had when it was dumped, and SIZE is the number
of elements in the array.

26

8. Input/Output

In this section, tho torm FILESPEC rofers to a

name for a file. A FILESPEC may be a list, a.
string, or the namec part of a file object. {f a list,

it may be in NEWIO format: ((dov dir) name oxi),

or OLDIO format: (name ext dev dir).

A file object is a special kind of array that
contains information about an open or closed file.
When opon, the filo objoct is the channel through
which i/o opcrations are directod to the file. In
this section, whon the symbol FILE appears in an
argument specification it indicates a file object.
Some functions (e.g. PRINT) can take a list of
file objocts instoad. Also, most i/o functions
will do i/o to the toerminal if the FILE argument is
omitted. Passing T instead of a file object tells
MacLlisp o use the terminal.

8.1. Functions On Files

(OPEN FILESPEC [MODELIST]) [?]

Opens the file in the specified mode and returns a
file object. Available mode options are IN, OUT,
APPEND, ASCIH, FIXNUM, IMAGE, DSK, TTV,
BLOCK, and SINGLE. The default mode is (IN
ASCH DSK BLOCK). ‘

(CLOSE FILE) {?]
Closes the specified file. FILE must be a file
object, as returned by OPEN.

(PROBEF FILESPEC) (7]
Tests for the existonco of the specified file. ‘
Returns a completed filospec if found, else NIL.

(DELETEF FILESPEC) [?)
Deletes the specified file. Retwns the
completed filespec if succossful.

(RENAMEF FROMFILESPEC TOFILESPEC) (7]

Renames a file. Returns the completod filespec
if successful.

27

(LENGTHF FILE) (7]
Given a filo objoct, returns tho longth of the filo
in words or bylos, depending on how the filo was
opened.

(FASLP FILESPEC) [?]

Returns T if the specifiod file is a FASL
(compiled LISP) file, else NIL.

8.2. Functions on Filespecs and File
Objects

(NAMELIST FILESPEC) - [7]

Converts tho given filespec to list form.

(NAMESTRING FILESPEC) [?]
Converts the given filespec.io string form,

(SHORTNAMESTRING FILESPEC) [?]
Returns the file name portion of the given
tilespec, in string form. (Omits the device and
directory.)

(TRUENAME FILE) [?]
Returns a filospoc for the actual name of the file
associated with tho given file object.

(DEFAULTF FILESPEC) : [?]
Sets the ODEFAULTF variable from the given
filespec. ‘ .

DEFAULTF (?]

Global variable containing dofaults for each
component of a filespoc. Used by various i/o
functions to complete partially specitied filospec
arguments.

(MERGEF FILESPEC, FILESPECZ) (7]
Merges two filospecs and returns the result. An
astoerisk is used as the wildcard character.

(CNAMEF *FILE FILESPEC) 7]

Changes the name of the closed file objoct FILE
to that given in FILESPEC. Used 1o avoid
crealing extra file arrays. Obscure.

28

(FILEP FILE) (7]

Returns T if its argument is a file object,
othorwise NiL.

8.3. Basic I/O

(READ [FILE] [EOFVAL]) (7]
Reads one s-expression from the specified file.
Returns EOFVAL if end of file is encountered.

(*READ) [?]
Like READ with no arguments. Compiles faster.

(PRINt X [FILE]) - [?)
Prints s-expression X on the specified file.

Special characters are slashitied. Eg: (PRINC
‘IFO0 BAR|) prints |[FOO BAR|.

(PRINT X [FILE]) (7]

Like PRINT, but does a TERPAI first and prints a
space afterwards.

(PRINC X [FILE]) 2

. v
- Like PRINI, but does not slashify special
characters. Eg: (PRINC ’|FOO BAR|) prints FOO
BAR. :

(TERPRI [FILE]) (7]
Writes a carriage return 1o tho specified file.

BASE (7]

The global variable BASE controls the output
radix for displaying numbers. In a bare MaclLisp,
BASE defaults to 8. With a CMU LISP.INI file, it
4is set to 10. Sotting BASE 1o ROMAN causes
numbers to be output as roman numorals

1BASE (7]

The global variable IBASE controls tho input radix
for reading numbers. In a bare Maclisp, IBASE
defaults to 8. With a CMU LISP.INI file, it is set
to 10. Sotling IBASE to ROMAN causcs numbers
to be input in roman numeral form.

29

*NOPOINT [?]

If the global variable *NOPOINT is NilL, numbers
will be written with decimal points when BASE is
set to 10. If non-NIL, decimal points will be
omitted.

(*NOPOINT FILE) 2]

Inhibits printing of decimal poinls when outputling
to the specified file.

84 Character I/O

(READCH [FILE] [EOFvAL]) [?]

Reads one character from the specified file, and
returns a character object. EOFVAL is returned if
end of file is encountored.

(*READCH) . §g]
Like READCH with no arguments. Compiles
faster.

(rvi [FILE] [EOFvAL]) [?])
Like READCH, but roturns a fixnum instead of a
character objoct.

™I . : (2]
Global variable containing the tty input file
object.

(*7v1) (7]

Like TYi with no arguments. Compiles faster,

(TYIPEEK [PEEKMODE] [FILE] [EOFVAL]) (7]

Returns the fixnum representation of the next
character in the input buffor of FILE, without
removing the character, PEEKMODE defaults to
NiL.

(READLINE [FILE]) (7]

Reads a line of toxt, dolimitod by a carriage
return, and roturns it as a symbol.

(TYO N [FILE]) [2].

Writes the ASCH character denoted by fixnum N
to the specified file.

30

Tvo . ' (]

Global wvariable containing the tly output file
object.

(+TYO N [FILE]) (2]

Super-fast TYO, Does not check line length,
FILE must be a single file objoct, net T or a list.

8.5, General |/0O Control

(LINEL FILE [N]) {?]

With one argument, returns !i\e line length
associated with the file object. With two
arguments, sots the line length,

(PAGEL FILE [N]) (7]

With one argumont, returns the page length
associated with tho filo objoct. With two
arguments, sots the page length.

(LINENUM FILE [N]) [?]

With one argument, roturns the current line
number as stored in the file object. With two
arguments, sets the line number.

(PAGENUM FILE [N]) (73

With one argument, returns the current page
number as stored in the filo objoct. With two
arguments, sets the page number.

(CHARPOS FILE [N]) | (7]

With one argument, returns the curront character
position as storod in the file objoct. With two
arguments, sets the character position.

(EOFFN FILE [FN]) (7]

With one argument, returns the end-of-file
function associated with the spocified file object.
With two arguments, sets FN {o be the function
called when end-of file is encountered on the
file object. It FILE is NIL, sets the default
end-of-file function. If FN is NiL, clears the eof
function.

31

(ENDPAGEFN FILE [FN]) (7]

Like EOFFN, but the function is called on evory
end-of-page interrupt, i.e. whenever the line
count exceeds the page length. Useful for doing
=5MQORE"* modo processing.

(CLEAR-INPUT FILE)
Clears the input buffer associated with FILE,

(7]

(CLEAR-OUTPUT FILE) ' (]
Clears the output buffer associated with FILE.

(FORCE-OUTPUT FILE) (7]

Forces the output buffer of the specified file
object to be written.

8.6. Terminal I/O

INFILE (2]

Global variablo containing the current console
input file object. Usually T. Console input will be
done through INFILE only whon the giobal variable
“Q is non-NiL.

~Q (7]

Console input switch. |f the global variable “Q
(two characters) is non-NiL, input is from the
source solectad by tho global variable INFILE,
othorwiso input is from the TYI file object. In the
reader control-Q is a macro character which sets
the variable "Q 1o T.

(INPUSH FILE) (2]

Pushes the current value of INFILE onto the input
stack, and makes FILE be the new value of
INFILE. (INPUSH -1) pops the input stack.

INSTACK [?]
A global variable containing the current input
stack, as maintained by INPUSH.

OUTFILES (7]

A list of console output file objects. Usually NiL.
Console output will go to the specified files, in
addition to the TYO file object, only when the
global variable "R is non-NiL.

32

A . (7]

Console outputl switch. If the global variable "R
(two characters) is non-NIL, console output is
dirocted to the files specified in tho global
variablo OUTFILES, as weil as to the terminal. In
the reader control-R is a macro character which
sets the variable "R to T.

“w (?)
Terminal output switch. If the global variable "W
(two characters) is non-NiL, terminal output is
suppressed. May be used in conjunction with
QUTFILES and "R to redirect output to a file
instead of the terminal. In the reader, control-W

is a macro character which sets the variable “W
o T.

MSGFILES (7]

A global variable similar to QUTFILES, but used
fo system-type messages, i.e. those generated
by ERRORs, BREAKs, and systom packages, as
well as user-gonorated console output. Dofaults
to (T). Not controlied by the “R switch.

ECHOFILES . (2]
Global variable containing a list of file objects
for echoing terminal input to. Usually NiL.
Useful in dribble packages that record a LISP
session.

(LISTEN [FILE]) (7]

Returns 1 if there are characters in the tty input
buffer of FILE, eise O.

8.7. Binary and Random Access |I/0O

(IN FILE) | . (7]

Reads one word from FILE and returns it as a
fixnum. The file must have been opened in
FIXNUM mode.

(OUT FILE X) . (7]

Writes one word to & file, The file must have
been opened in FIXNUM mode.

33

(FILEPOS FILE [N]) (7]

With one argument, returns the current position in
the file (characters or words.) With two
arguments, sots the curront position to N, The
file may be opencd in ASCIl, FIXNUM, or IMAGE
mode. An error will be signalled if N is greater
than the length of the file. A position of NIL
means "beginning of file", and T means "end of
file®,

8.8. Miscellaneous Functions

(RUBOUT CHAR [FILE]) (7]

Rubs one character out of FILE's input buffer.
Returns T if the rubout was successful, eise NIL.
Useful for writing your own tty scanner.

(ERRPRINT P [FILE]) {?]

Reprints the ncarest error down the stack from P,
which must be a pdl pointer. {f P is NI, the
latest error is printod.

(FASLOAD *"(DEV DIR)" "FILE" "EXT") [?]

Loads a compiled LISP file, called a fasl file.
The extension defaults to FAS. FASLOAD also
accopts file names in OLDIO format, All the
arguments are optional; Maclisp tries to figure
out the filespec and uses DEFAULTF to complete
unspecified fields.

8.9. OLDIO Functions

These are functions left over from the old
Maclisp i/o system. They are relained for
compatibility .= with existing code. All the:
arguments are optional; Maclisp tries to figure
out the filespec and uses DEFAULTF to complete
unspecifiod fields. OLDIO funclions also accept
filespocs in the NEWIO format, e.g. (dev dir)
name oxi.

(UREAD "NAME® *"EXT® "DEV” "DIR") {?]

Opens the specifiad file and pushes it onto the
input stack, The “Q switch must be turned on
before the file will actually be read.

34

UREAD (7]
Global variable containing tho file object for the
file currently opencd by UREAD,

(UCLOSE) ()
Closes the current input file opened by UREAD.

(UWRITE "DEV" "DIR") (2]

Opens a file for output on the specified device
and directory, pushing the filo object onto
OUTFILES. The "R swilch must be twnod on
before output will actually be directed to the file.

UWRITE [?]
Global variable containing the filo object for the
file currently opened by UWRITE.

(UFILE "NAME™ "EXT") [?])
Closos the current oulput file opened by UWRITE
and renames it to the specified filoe nameo.-

(UAPPEND "NAME”™ "EXT" "DEV"™ "DIR") {?)

Opens the specified file for output in APPEND
mode, pushing the file objoct onto OUTFILES.
The "R switch mudt be turnod on bofore oulput
will actually be dirocted to the file. '

(UKILL "NAME” "EXT" "DEV" "DIR") (?)
OLDIO equivalent of DELETEF. Deletes the
specified file.

(UPROBE "NAME®" "EXT"™ “DEV" "DIA") (7]
OLDIO equivalent of PROBEF. Returns T if the
specified file exists, olse NiL.

14

(CRUNIT "DEV”™ "DIR") (7]

With no arguments, returns the current device and
directory. OLDIO functions update this by setting
DEFAULTF. With arguments, sets the current
device and directory.

35

9. Programming Tools

9.1. Common Functions

(DEFUN NAME TYPE ARGS BOUDY ...) (7]

Special form for dofining a function. TYPE should
be one of EXPR, FEXPR, or MACRO; it dofaults
to EXPR if omitted. ARGS is the argument list.
It is followed by one or moro s-exprossions that
make up the funclion body. Eg: (DEFUN KWOTE
FEXPR (X) (CAR X))

(GRINDEF "FN " "FN," ... "FNy") (7]

Pretty-prints the dofinitions of the specitied
functions.

(EDITF "EN") (7]
Invokos the oditor on the named function. See
the editor soction of the CMU TOPS Lisp manual
for details.

(TRACE FN, FN, ... FNy) [3-35]
Special form; traces the named functions. See
the Maclisp Roference Manual for information
about fancy trace options.

(UNTRACE FN, FN, ... FNy) (3-38)
Untraces the named functions. If called with no
arguments, untraces all traced functions. See the
Maclisp Reference Manual for more details.

(STEP) [3-40)
The Maclisp single-stepper. See the Maclisp
Reference Manual for instructions.

(DEBUG) (7]

The CMU Maclisp debugger. See the file
FIXIT.DOC[C380MLSP]/A for details.

36
9.2. Packages

XPRINT (7]

The Waters printer. Contains the prettyprinter
and many other print functions,

LET (7]

The LET package contains two uselul prog forms,
LET and LET™. It also conlains a destructuring
assignment function called DESETQ. See
ARCHIV.DOC[C380ML5P]/A for details.

DEFVST [?)

The MacLisp structure package. Used to define
and access hairy record structures.

DEFMAC {?]

An extension to DEFUN’'s syntax that provides
more flexible argument definitions. Also, some
functions for defining macros conveniently. See
ARCHIV.DOC[C380ML5P]/A for details.

FORMAT (?]

The FORMAT packago provides functions for
formatting numbers and atoms into more complex
messages. .

10. Storage Management

;l'O. 1. Garbage Collection

('GC) [3-59)

Causes a garbage collection to take place.
Returns NIL.

(GeTrwaAa ["FLAG"]) [3-59)

Controls the Garbage Collection of Truly
Worthless Atoms. (GCTWA) causes truly
worthiess atoms to be removed on the next
garbage collection. (GCTWA T) causes fruly
worthliess atoms to be removed on all subsequent
garbage collections. (GCTWA NiIL) turns off
removal of truly worthless atoms for ail garbage
colloctions after the next ono. The value
returned is a fixnum indicating the current
GCTWA status.

37

~0 [3-60]

The global variable “D (two characters) controls
the printing of messages after garbage
collections. If non-NIL, messages will bo printed
whenever a space is erpanded or garbage
coliected. In the readoer control-D is a macro
character which sets the varjable "D to T.

10.2. Storage Allocation Concepts

GCMAX [3-62]
The maximum size to which a space be should be
allowed to grow. If the space exceeds this size,
an error is signallod.

GCSIZE [3-62]

The expected size of the space. Garbage
collections will be performed to keep the space
within this size. If garbage coliection fails to
free enough storage, the space will be expanded
as long as it does not excoed GCMAX.

GCMIN £, [3-62]
The minimum amount of free space that should be
left after a garbage collection. It may be either
a fixnum, indicatling the size in words, or a
flonum, indicating a percentage.

PDLSIZE [3-62]

The number of words of valid data in a pdl at the
moment.

POLMAX ' [3-62)
The maximum size to which a pdl may grow
before intervention is required. Used to detect
infinite recursion.

PDLROOM [3-62]

The size beyond which a pdl may not grow no
matter what, This is slightly larger than the
pdimax, so that there will be some room left in
‘which an error handling routine can run.

38

10.3. Storage Spaces

LIST [3-60
Cons cells.
FIXNUM [3-60

36-bit integers.

FLONUM [3-60

36-bit floating point numbers.

BIGNUM (3-60

Bignum headers. Bignums also occupy fixnum and
list space.

SYmBoL [3-61
Atomic symbols.

HUNKn [3-61
Hunk space of size n, which must be a power of
2. Thus there exists HUNK2 space, HUNK4
space, HUNKS8 space, etc.

ARRAY - [3-61
Special arraycells.

REGPDL [3-61
The regular pushdown list, used for passing
arguments and doing recursion.

SPECPOL [3-61
The special pushdown list, used for binding.

FXPOL (3-61
The fixnum pushdown list, used for temporary
numeric values.

FLPDL : [3-61

The flonum pushdown list, used for temporary
numeric values,

39

8PS [3-61]

Binary program space. Used for compiled LISP
code, and also arrays., Must be allocatod at
initialization time. ‘

10.4. Allocation

(ALLOC SPACELIST) [3-63)

Sats storage management parametors for various
spaces. The argumont should be a list of form
(S4LyS, 1L, «..), Where the S; aro space namos
and the L, are fixnums or 3-lists. A fixnum
specifies the pdimax for a pdl, or qcsize and
‘gecmax for othor spaces. A 3-list is interpreted
as (gesize gecmax gemin). NIL in any position
means "don't change that paramier®., (ALLOC T)
returns a list of space names and their current
parameters.

ALLOCATION PSEUDOCOMMENT [?]

Binary program space can’t be expanded once
Maclisp starts up. Thus it must be allocated in
the LISP.IN! file. This is done with a COMMENT
that must appear as the first expression in the
file. The COMMENT shouid contain a series of
space names followed by initial allocations, e.g.
(COMMENT B8PS 10000 SYMBOL 5000).

11. Status Functions

(STATUS FUNCTION ARG, ARGZ AHGN) {3-77]
Special form for interrogaling various system
parameters. The arguments depend on the
particular status function being executed.

(SSTATUS FUNCTION ARG, ARGZ ARGN) [3-77)

Special form for setting various system
paramoters. The arguments depend on the
particular sstatus function being executed,

11.1. Environment Enqueries

DATE [3-89]

/
(STATUS DATE) returns the date as a 3-list of
fixnums, representing the date as (yy mm dd).

40

oow [3-89)
(STATUS DOW) returns the day of the woek as
an atomic symbol.

DAYTIME [(3-89)
(STATUS DAYTIME) returns the time of day as &
3-list of fixnums, ropresonting the time as (hh
mm ss).

LISPVERSION [3-89)
(STATUS LISPVERSION) rotlurns the version
number of this MacLisp as an atomic symbol.

UDIR [3-90]
(STATUS UDIR) returns the name of the file
directory the job is connected to, usually the
user’s own,

UNAME {3-90])
(STATUS UNAME) retwrns the user’s ppn, e.g.
C410HBOO.

USERID ' [3-90]
(STATUS USERID) returns the user's name, e.g.
BOVIK.

JNAME - [3-90]
(STATUS UNAME) returns a job identifier of form
nnnlL.SP, where nnn is a8 TOPS-10 job number.

SEGLOG [3-90]

(STATUS SEGLOG) returns the.log base 2 of &
segment, i.e. one unit of space allocation. On
TOPS-10 systems this is one page (512 words),
so the status call retwrns 9. -

FEATURES [3-96]

(STATUS FEATURES) retuwrns a list of symbols
indicating features of the current LISP system,

FEATURE [3-98]

(STATUS FEATURE X) returns T if the atom X is
in the features list, eise nil. (SSTATUS
FEATURE X) adds X to the foature list. X is not
evaluated.

a1

NOFEATURE [3-98]

(SSTATUS NOFEATURE X) removes X from the
feature list. (STATUS NOFEATURE X) s
equivalent to (NOT (STATUS FEATURE X)). X is
not evaluated.

STATUS [3-98]
(STATUS STATUS) returns a list of valid status
functions. (STATUS STATUS X) returns T if X is
a valid status function, else NIL. X is not
evaluated.

SSTATUS (3-98)

(STATUS SSTATUS) returns a list of valid
sstatus functions. (STATUS SSTATUS X) returns
T if X is a valid sstatus function, elso NIL. X is
not evaluated.

11.2. Garbage Collector Status

GCTIME ' - [3-87]
(STATUS GCTIME) roturns the number of
microseconds spent garbage collecting.
(SSTATUS GCTIME N) resets the time counter o
N, and returns the previous value of the counter.

SPCNAMES [3-87])
(STATUS SPCNAMES) retwns a list of space

names, which may be used with ALLOC or with
STATUS calls doscribed below.

SPCSIZE _— : [3-83)

(STATUS SPCSIZE SPACE) retuns the actual
size of SPACE in words. SPACE is evalvated.

GemMAx (3-88]
(STATUS GCMAX SPACE) returns the gcmax
parametler for SPACE. (SSTATUS GCMAX
SPACE N) sots the gcmax parameter {o
N. SPACE and N are ovaluatod.

GCMIN (3-88]
(STATUS GCMIN SPACE) retlurns the gcmin
parameter for SPACE. (SSTATUS GCMIN SPACE
N) sets the gcmin paramoter to N. SPACE and N
are evaluated.

42

GCSIZE [3-88)

(STATUS GCSIZE SPACE) returns the gcsize
parameter for SPACE. (SSTATUS GCSIZE
SPACE N) seots the gcsize paramoter to
N. SPACE and N aro evaluated.

PURSPCNAMES [3-88]
(STATUS PURSPCNAMES) roturns a list of
spaces that have pure versions.

PURSIZE i [3-88]

(STATUS PURSIZE SPACE) retuwns the actual
size of the puro vorsion of SPACE. SPACE is
evaluated.

PDLNAMES [(3-88)

(STATUS PDLNAMES) rotlurns a list of all the
pdis used by this LISP. Thoese names may be
used in the STATUS calls doscribod bolow.

POLSIZE [3-88]

(STATUS PDLSIZE PDL) roturns the curront
number of words on the pdl. PDL is evaluated.

POLMAX . (3-88]

4

(STATUS . POLARMAX PODL) roturns the pdimax
parametor of the pdi. PDL is evaluated.

POLROOM [3-88]

(STATUS PODLROOM PDL) rcturns the maximum
size of the pdl. PDL is evaluated.

MEMFREE [3-89)

(STATUS MEMFREE) retwrns the number of
words of address space not yet allocated for any

purpose.

11.3. 1I/O Status

FILEMODE (3-80)

(STATUS FILEMODE FILE) returns a list of form
(MODELIST . FEATURELIST), where MODELIST
is a description of the mode in which the file is
opened and FEATURELIST is a (possibly null) list
of foatures from the set CURSORPOS, FILEPOS, .
RUBOUT, and SAIL.

a3

TABSIZE (3-77]
(STATUS TABSIZE) roturns "the number of

charactoer positions assumed between tab stops.
For TOPS-10 systems, the number is 8.

NEWLINE [3-77]
(STATUS NEWLINE) returns a fixnum which is
the ASCHl code for the system’s ond-of-line
character. For TOPS-10 systems, this number is
15 octal, i.e. carriage return.

LINMODE [3-78]
(STATUS LINMODE) returns T if the terminal is in
line-at-a-time input mode, or NIL if it is in
character-at-a-time input mode. (SSTATUS
LINMQDE X) sets the linmode to X. This
status/sstatus call may take a file object as an
additional argument,

TTYINT [3-78]
(SSTATUS TTYINT CHAR FUNC FILE) turns on a
tty interrupt character. See the Maclisp
Reference manual for details.

TTYSCAN [3-81]

(SSTATUS TTYSCAN FUNC FILE) sots up a
function to porform initial processing of terminal
input. Soe ARCHIV.DOC[C3B0OML5P]}/A and the
Maclisp Reforonco Manual for dolails.

TTYCONS [3-79]

(SSTATUS TTYCONS TTY, TTYZ) binds two {1y
files into a console. 'Soe tho Maclisp reference
manual for details.

11.4, Time

(RUNTIME) [3-99]
Returns the amount of cpu time used by the job,
in microseconds, since the last call to RUNTIME.
(TIME) [3-99]

Returns the time (in seconds) the system has
been up, as a flonum,

a5

Index

)

x

=3
*ARRAY
XCATCH
*DIF
*FUNCTION
*NOPOINT
*Quo
*READ
*READCH
*REARRAY
*THROW
xTYl

+
+3
+TYO

-3

/1
/1%

1+
1+$
1-
1-3

<

=
>

ABS

ADD1

ALLOC
ALLOCATION PSEUDOCOMMENT
ALPHALESSP
AND

APPEND

APPLY

ARG .

ARRAY

ARRAY

ARRAY BOUNDS
ARRAYCALL
ARRAYDIMS
ASCH

ASSOC

ASSQ

ATAN

ATOM

BACKQUOTE

[2-72]
[2-75]
[2-92]

[2-70]
(2-9]

[2-71])
(?)
(2]
{2-93]

(7]

[2-72]
[2-75]
(7]

[2-72])
[2-75)

[(2-73)
(2-76]

[2-73)
(2-76]
(2-73]
[2-76]

[2-66)
[2-65)
[2-65]

[{2-67)]
[2-70]
[3-63)
(?]
[2-56)
[2-36]
[2-19]
(2-7]
[2-12])
[2-92]
[3-61]
(2-90]
[2-13]
[2-93)]
[2-83)
[2-27]
[2-28]
[2-78]
(2-1])

(7]

14
16
25
22
14
18
29
14
28
29
25
22
29

14
15
30

14
15

14

15

14

15.

14
16

12
11
11

13
13
39
39
10
21

17
21
24
38
24
18
25

16

18

BASE
BIGNUM
BIGP
BOOLE
BOUNDP
B8PS

C....R

CAR

CASEQ

CATCH
CATCH-BARRIER
CATCHALL
CDR

CHARPOS
CLEAR-INPUT
CLEAR-OUTPUT
CLOSE
CNAMEF
COMMENT
COND

CONS
COPYSMBOL
cos

CRUNIT

CXR

DATE
DAYTIME
DEBUG
DECLARE
DEFAULTF
DEFMAC
DEFPROP
DEFUN
DEFVST
DELETE
OELETEF
DELQ
DIFFERENCE
0o

DO

bDow
DUMPARRAYS

ECHOFILES
EDITF
ENDPAGEFN
EOFFN

EQ

EQUAL
ERR
ERROR
ERRPRINT
ERRSET
EVAL

EXP
EXPLODE
EXPLOOEC
EXPLODEN
EXPT

a6

(7]

[2-25]
(7]

(2-26)
[2-69]
{2-40}
[2-41)
[3-89)
[2-95)

(7]

28
38

16

39

21
23
22
22

30
31
31
26
27
19
21

10
16
34

39
a0
35
19
27
36

35
36

26

13
20
20
40
25

32
35
31
30

23
23
33
23
17
15

14

a7

FASLOAD
FASLP
FEATURE
FEATURES
FILEMODE
FILEP
FILEPOS
FILLARRAY
FIX
FIXNUM
FIXP
FLATC
FLATSIZE
FLOAT
FLOATP
FLONUM
FLPOL
FORCE-OUTPUT
FORMAT
FSC
FUNCALL
FUNCTION
FXPDL

GC

GCD
GCMAX
GCMAX
GCMIN
GCMIN
GCSIZE
GCSIZE
GCTIME
GCTWA
GENSYM
GET
GETCHAR
GETCHARN
GETL

GO
GREATERP
GRINDEF

HAIPART
HAULONG
HUNK
HUNKn
HUNKP
HUNKP
HUNKSIZE

IBASE
IFIX
IMPLOOE
IN
INFILE
INPUSH
INSTACK
INTERN

(?)
(7]
[3-98)
[3-96)]
[3-80]
(7]
(7]
[2-94]
[2-67]
[3-60]
(2-1]
[2-85]
[2-85]
[2-67]
(2-1])
[3-60]
[3-61]
(7]
(7]
(2-82]
[2-13]
(2-8]
[3-61]

[3-59]
(2-70)
{3-62)
[3-88)
{3-62)
[3-88)
[3-62]
[3-88)
[3-87]
{3-59]
2-59]
{2-53]
[2-83]
(2-83)
{2-53]
{2-42]
[2-65]
(7]

[2-68]
[2-64]
[2-32)
[3-61]
[2-33)
(2-2]

[2-33]

(?]
(2-67)
[2-84)
(2]
(7]
(7]
[?
[2-58)

33
27

28
12
10
32
31
31
31
10

JNAME

LABEL
LAMBDA
LAST
LENGTH
LENGTHF
LESsP

LET

LINEL
LINENUM
LINMOOE
LISPVERSION
LIST

LIST

LIST™
LISTARRAY
LISTEN
LISTIFY
LOADARRAYS
LOG

LSH
LSUBRCALL

MAKHUNK
MAKNAM
MAKNUM
MAKUNBOUND
MAP
MAPATOMS
MAPC
MAPCAN
MAPCAR
MAPCON
MAPLIST
MAX
MEMBER
MEMFREE
MEMQ
MERGEF
MIN
MINUS
MINUSP
MSGFILES
MUNKAM

NAMELIST
NAMESTRING
NCONC
NCONS
NEWLINE
NOFEATURE
NOT
NRECONC
NREVERSE
NTH
NTHCDR
NULL

NUMBERP

oDoP

48

a0

19
19

27
12
36

- 30

30
43
a0

38

25
32
22
25
15
16
18

10

24
24
23
24
24
24
24
12

a2

27
12
13
11
32

27
27

a3

NDODWWNND®D
-

49 50
- T e
OPEN [?] 26 ' SETPLIST [2-55) 9
OR {2-26] 21 SETQ [2-49] 7
ouT [?] 32 SHORTNAMESTRING {?) 27
OUTFILES [?) 31 SIGNP [2-63) 1"
SIN [2-78] 16
PAGEL (7] 30 SORT (2-30] 5
PAGENUM {?] - 30 SORTCAR [2-31) 6
POLMAX - [3-62) 37 SPCNAMES (3-87] &1
POLMAX (3-88) a2 SPCSIZE [3-88] a1
PDLNAMES (3-88) 42 SPECPDL (3-61] 38
PDLROOM [3-62) 37 SQART (2-77) 16
PDLROOM [3-88] 42 | SSTATUS (3-77) 39
PDLSIZE (3-62] 37 SSTATUS [3-98] a1
PDLSIZE [3-88) a2 STATUS (3-77) 39
PLIST [2-565] 8 STATUS [3-98) a1
PLUS [2-69] 13 STEP [(3-40] 35
PLUSP [2-63] 1 STORE (2-93] 25
PNGET [2-57] 9 SuB1 [2-70] 13
PNPUT [2-57]) 9 susLIS (2-23) 4
POP [?] 8 SUBRCALL ‘ {2-13) 18
PRIN1 (?) 28 suBsT (2-22) 4
PRINC (?] 28 SXHASH [2-26) 5
PRINT (2] 28 SYMBOL [3-61] 38
- PROBEF (7] 26 SYMBOLP [2-1]) 6
PROG (2-38) 20 SYMEVAL (2-50] 8
PROG2 [2-10] 19
PROGN [2-11] 19 TABSIZE [3-77]) 43
PROGV [2-11] 20 TERPRI v (7] 28
PURSIZE {3-88] a2 THROW . [2-a5] 23
PURSPCNAMES (3-88] 42 TIME {3-99) a3
PUSH [?]) 7 TIMES [2-69] 13
PUTPROP [2-54] 8 TRACE . [3-35) 35
TRUENAME [?) 27
QUOTE [2-7]) 18 TTYCONS (3-79] a3
QUOTIENT N [2-69] 13 TTYINT (3-78] a3
TTYSCAN (3-81] a3
RANDOM : [2-79] 17 TVY! (7] 29
READ (2] 28 TYIPEEK [?) 29
READCH [?] 29 * TYO (7] 29, 30
READLINE (7] 29 p TYPEP (2-2]) 7
READLIST (2-84] 10 '
REGPDL (3-61] 38 UAPPEND (7] 34
REMAINDER [2-70] 13 UCLOSE (] 3a
REMOB [2-59) 10 UDIR (3-90] 40
REMPROP [2-55] 8 UFILE (2] 34
RENAMEF {?) 26 UKILL () 3a
RETURN {2-43] 20 UNAME {3-90] 40
REVERSE [2-20] 2 UNTRACE {3-38) 35
ROT (2-81) 16 UNWIND-PROTECT ?] 22
APLACA [2-22) 3 UPROBE (?) 34
RPLACD {2-22] 3 UREAD ?) 33, 34
RPLACX [2-33) 6 USERID [3-90] a0
RUBOUT [?) 33 UWRITE (?] 34
RUNTIME {3-99] a3 _
XCONS (2-17] 2
SAMEPNAMEP © [2-56) 10 XPRINT (] 36
SASSOC [2-28] 5
SASSQ (2-29] & ZEROP (2-63] 1"
SEGLOG [3-90] a0 ZUNDERFLOW [2-79]) 17
SET [2-50] 7
SETARG . (2-12] 21 \ . (2-73) 14
“

	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0001_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0002_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0003_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0004_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0005_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0006_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0007_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0008_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0009_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0010_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0011_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0012_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0013_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0014_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0015_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0016_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0017_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0018_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0019_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0020_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0021_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0022_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0023_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0024_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0025_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0026_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0027_a

