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 1993 Kluwer Academic Publishers { Manufactured in The NetherlandsEuLisp Threads: A Concurrency ToolboxNEIL BERRINGTON (N.Berrington@southampton.ac.uk)University of Southampton, UKPETER BROADBERY (pab@maths.bath.ac.uk)University of Bath, UKDAVID DEROURE (D.C.DeRoure@southampton.ac.uk)University of Southampton, UKJULIAN PADGET (jap@maths.bath.ac.uk)University of Bath, UKKeywords: Concurrency, objects, threads, channels, Linda, futures, communicatingsequential processesAbstract. Many current high level languages have been designed with support for con-currency in mind, providing constructs for the programmer to build explicit parallelisminto a program. The EuLisp threads mechanism, in conjunction with locks, and a genericevent waiting operation provides a set of primitive tools with which such concurrency ab-stractions can be constructed. The object system (TELOS) provides a powerful approachto building and controlling these abstractions. We provide a synopsis of this `concurrencytoolbox', and demonstrate the construction of a number of established abstractions usingthe facilities of EuLisp: pcall, futures, stack groups, channels, CSP and Linda.1. IntroductionPrograms for modern computer systems must frequently address issues re-lating to concurrency. These programs are becoming more commonplace,especially at applications programming level, as the availability of multipleprocessors and networked computer systems increases. Recent high-levelprogramming languages o�er concurrency features to support the program-mer in this task.EuLisp was designed with concurrency features from the outset. In theLisp tradition, the intention was not to enforce a particular concurrencymodel, but rather to provide the primitive tools and means of combina-tion so that programmers (and library-writers) could build the appropriateabstractions for the task at hand.Programming with multiple threads of control within a single addressspace is emerging as an important and increasingly common-place paradigm



2 BERRINGTON ET ALin modern computing. We note two reasons:� Solutions to a large class of programming problems often fall natu-rally into the thread model, particularly programs which respond toasynchronous events. Many programs associated with user interac-tion and with networks fall into this class, hence this programmingstyle is becoming more common as these application areas expand.� Programs written with threads can be executed on uniprocessor ormultiprocessor hardware (perhaps with distributed shared memory).In the multiprocessor case, the threads can execute on any availableprocessor. This promotes portability with the potential for makinggood use of the available resources, and provides a degree of scala-bility. In this way, threads provide a means to harness the power ofmodern computing platforms.It is for these reasons that EuLisp adopted a threads mechanism as itsprimitive concurrency model. The importance and utility of a thread modelis demonstrated by the adoption of threads in recent operating systems,for example MACH, DCE[19], Chorus[20]. This trend will facilitate theimplementation of EuLisp systems on new platforms.In contrast with many other concurrent lisp languages[21][8], EuLispattempts to provide a model of concurrency which can be extended by e�-cient implementations of concurrency abstractions which are not explicitlysupported by the kernel, such as futures and Linda. The thread model isquite general, and does not require pre-emptive scheduling or true multi-processing, which may be infeasible on some systems. Even without thisform of scheduling, the thread model can be used to create useful abstrac-tions that use separate threads as a problem-solving aid, rather than ameans of obtaining concurrency.The EuLisp object system, TELOS[2] can be used in order to providea degree of re
ectiveness and extensibility in the thread model | one cane�ectively provide a protocol for a particular operation, and a simple imple-mentation, and allow the user to extend or specialise it. This specialisationallows the new abstractions to be more of an integrated part of the existingkernel, rather than an additional library with independent ideas about howto create and manipulate threads | we illustrate this later in the Lindasection.In this paper we give an overview of theEuLisp thread model (sections 2{4) and give reasons why the particular primitives have been chosen. Insubsequent sections we discuss several di�erent parallel abstractions andtheir realisation in EuLisp. Finally (section 12), we compare these withexisting languages.



EuLisp THREADS: A CONCURRENCY TOOLBOX 32. The EuLisp threads interfaceThe EuLisp de�nition[14] allows for the concurrent execution of expres-sions through the use of threads, and atomic communication and mutualexclusion via the use of semaphores. Threads are instances of an abstractdata type which represent a 
ow of control in a program, and they interactwith other threads via shared memory. When a thread is created, an initialfunction is supplied; arguments are provided when the thread is started,and the thread executes the application of the initial function to these ar-guments. When the function returns, the value of the thread is set to thereturn value of the function, and the thread completes normally.The following interface is provided for the creation and control of threads.<thread> A class object representing the class thread. This object is pre-installed in the TELOS hierarchy.(make <thread> 'init-function function) Allocates, initializes and re-turns a thread with function as its initial function.(thread-start thread . args) Starts a thread by applying the initial func-tion to the arguments args.(thread-reschedule) Indicates that the current thread is prepared tocede control to another thread.(thread-value thread) Blocks the current thread until thread has com-pleted, and returns the result of the application of the initial functionto the arguments passed by thread-start.The de�nition does not force a conforming EuLisp implementation toadopt any particular scheduling policy, allowing implementors to choose asuitable one for the hardware and operating system platform they are tar-geting. A portable EuLisp program must therefore not assume a particularscheduling policy itself; for example, assuming a time-slicing scheduler andtherefore never explicitly calling thread-reschedule may cause the pro-gram to fail on a scheduler which lacks preemptive tasking, where threadsmust voluntarily give control back the the scheduler.A fairness guarantee also needs to be stated. Due to the possibilityof a host operating system handling the execution of threads[5][1], it isimpossible to make a strong guarantee.However a su�cient, although weak, guarantee is that if a thread resched-ules in�nitely often, then every other ready thread will also be scheduledin�nitely often.



4 BERRINGTON ET AL2.1. Condition handlingConditions raised on a thread may be handled by any condition handlersplaced in the dynamic extent of that thread, or by a default handler whenno other handlers are present on the thread.The default handler causes execution on the thread to be aborted andthe thread to signal an error on any thread that tries to obtain its value.A mechanism for threads to raise conditions on other threads is alsoprovided. The function signal takes an optional thread argument, andwill cause a condition to be raised on that thread. The condition must bean instance of <thread-condition>, itself a subclass of the <condition>class. This restriction is made so that a handler function for externallysignalled conditions need only deal with a well-de�ned subset of all possibleconditions. This enables a handler to distinguish between an internal andexternal signals. In addition, it would be possible for one thread to cause,say, a division by zero condition to be raised on some other thread | ingeneral, this does not seem to be desirable behaviour.A conforming implementation guarantees that after the condition hasbeen registered with the target thread, it will be signalled on that thread nolater than when the thread is next rescheduled for execution|no guaranteeis made that the condition will be raised immediately, even if the threadis currently executing, due to the di�culty of maintaining such a strongguarantee in a distributed environment. The normal procedure is thatconditions are processed by threads in registration order.3. SemaphoresSemaphores are provided for synchronisation between threads and mutualexclusion. The following primitives are provided.<lock> A class object representing the class lock. This object is pre-installed in the TELOS hierarchy(make <lock>) Allocates and initializes a new (open) lock.(lock lock) Perform a P operation [6] on lock.(unlock lock) Perform a V operation on lock.An implementation is free to choose its strategy for the locking operation:for example blocking a thread on a lock until it becomes free or busy waitingby rescheduling a thread until the lock becomes free.



EuLisp THREADS: A CONCURRENCY TOOLBOX 54. WaitThe generic function wait has standard methods de�ned for a stream andfor a thread. The purpose of wait is to enable the portable implementationof event-driven programming by allowing programs to wait on events.The method for threads takes a thread to wait on and a time-out periodand blocks the current thread until the time-out period has elapsed or thethread being waited on has become determined. A thread is determinedwhen it has either �nished normally or has had a condition handled by thedefault handler. The method returns true if a thread became determined(or was already determined) during the call and () otherwise. A call towait with a zero time-out period is equivalent to a poll to see if the threadis determined.The de�nition does not specify how the method should be implemented,and, like semaphores, a wait could be performed using busy waiting or ablocking mechanism.This concludes the discussion of the EuLisp thread model. The rest ofthe paper is concerned with its use in the development of various parallelabstractions.5. PcallsPcalls (parallel calls) [8] allow functions to be called with their argumentsevaluated in parallel. Thus (pcall + 1 2 3) is equivalent to (apply +(list 1 2 3)) except all the arguments to pcall are evaluated in paral-lel, including the function argument. It is the programmer's responsibilityto decide when to use this construct, and he/she should be aware of theamount of potential parallelism its use could release (possibly too much)and whether side e�ects in the parameter expressions will behave as ex-pected when evaluated in parallel.Modelling this construct using threads splits the pcall into three distinctphases:1. Spawn threads to evaluate each argument;2. Collect the results of the threads;3. Perform application.These phases can be coded using macro and function de�nitions as shownin Figure 1.



6 BERRINGTON ET AL(defmacro pcall args`(let ((all-args (map thread-value (make-threads ,args))))(apply (car all-args) (cdr all-args))))(defmacro make-threads (args)`(list,@(map(lambda (a) `(make <thread> 'init-function (lambda () ,a)))args)))Figure 1: Macro implementation of pcall6. FuturesFutures[8] introduce the opportunity for concurrent evaluation of expres-sions whose results will not be needed until some time in the future.The form (future expression) returns a place holder which is a handleon the future. In MultiLisp, once a future has been evaluated the placeholder is replaced with the value of the expression, and if the value wasrequested before the future has been determined, then the requesting threadis blocked and waits for the future to �nish evaluating.EuLisp has no support for replacing one object with another, as Multi-Lisp does when replacing place holders with a future's value, and so thistransparent mechanism cannot be reproduced. Instead a function is pro-vided which the user can use to obtain the value of a future. This placesa restriction on the user who must know which parameters are futures andexplicitly request their values.Using EuLisp's generic functions, this explicit \touching" of futures canbe hidden in some functions, for example the generic function binary+ canbe given a method which specialises on and touches futures, thus allowingthe + function to handle futures invisibly. However, this is not a universallyattractive solution because of the vast number of additional methods thatmust be de�ned|and the likelihood of forgetting some.A na��ive implementation of futures maps simply onto the EuLisp threadprimitives. A future can be represented as a thread evaluating the futureexpression, in which case a function to get the value of a future mapsdirectly to thread-value. However, it is preferable to make futures intoa class of their own; a possible implementation of eager task creation isshown in Figure 2.Many authors have noted that the eager future model, where a process isspawned every time future is called, rapidly paralyzes the computational



EuLisp THREADS: A CONCURRENCY TOOLBOX 7(defmacro future (exp)`(let ((future-thread(make <thread>'init-function (lambda () ,exp))))(thread-start future-thread)(make <future> 'future-thread future-thread)))(defun future-value (future)(thread-value (future-thread future)))Figure 2: Eager futuresresources of most systems which become occupied with future managementrather than future execution. This problem and policies for future creationare analyzed in detail in [12]. There, it is shown that the simple mecha-nism of not creating processes when the number awaiting execution exceedssome threshold (load based partitioning) can lead to deadlock. The novelalternative put forward in [12] is lazy task creation, where it is the parentthat might be executed on another thread, rather than the child. A sketchof this tactic is given in Figure 3.(defmacro future (exp)`(let/cc k ;;rest of the program...the parent(let* ((child-result(make <placeholder>)) ;;for child ! parent communication(parent-task ;;object for stealing(lambda ()(thread-start ;;start thread to execute parent code(make <thread> 'init-function k)child-result)))) ;;passing the placeholder(enqueue (steal-queue (current-thread)) parent-task)((setter value) child-result ,exp) ;;evaluate exp...the child(if (dequeue (steal-queue (current-thread)) parent-task)(k child-result) ;;carry on because parent was not stolen(suicide)))))Figure 3: Lazy task creationThere are a couple points to be made about this sketch: it assumes thatdequeue is an atomic operation; it requires that a continuation created onone thread can be called on another. This last part is the more signi�cantsince, at present, this is precluded by the EuLisp de�nition. The reasonis that multiple threads invoking one continuation would cause expressions



8 BERRINGTON ET ALon that continuation to return more than once, making the implementationof EuLisp more complex than we would like. However, it would not benecessary to allow general cross-calling of continuations, just that one canbe used as the init-function value when making a thread.(defmethod send-channel ((chan <channel>) obj)(lock (chan-buffer-guard chan))(add-item (chan-buffer chan) obj)(unlock (chan-buffer-guard chan)))(defmethod read-channel ((chan <channel>))(let ((read-val nil))(lock (chan-buffer-guard chan))(setq read-val (remove-item (chan-buffer chan)))(unlock (chan-buffer-guard chan))(if (value-p read-value)(value-of read-val)(progn (thread-reschedule)(read-channel chan)))))Figure 4: Channel operations7. ChannelsChannels [9] [23] provide an abstraction allowing threads to communicateobjects. Communication can either be synchronous or asynchronous.A channel is modelled using a structure containing the following data:� A bu�er to store objects before they are collected. This could bebounded or unbounded.� A semaphore to guard access to the bu�er resource.Sending an object down a channel causes that object to be added to thechannel's bu�er. The sending thread then proceeds. In a bounded bu�erthe sending thread will block if the bu�er is full. It will continue once anobject has been removed from the bu�er.Retrieving an object from a channel is the reverse process. If the chan-nel's bu�er is empty then the receiving thread will block until data hasbeen sent to the channel. When an object is present it is removed fromthe bu�er (FIFO ordering) and the receiving thread proceeds. The codefor each of these operations appears in Figure 4.



EuLisp THREADS: A CONCURRENCY TOOLBOX 9(defun context-switch (sg)(let ((csg *current-stack-group*))((setter status) csg ':resumable)((setter status) sg ':active)(setq *current-stack-group* sg)(unlock (semaphore sg)) ;;unblock someone else(lock (semaphore csg)))) ;;block selfFigure 5: Stack group context switch8. Stack groupsStack groups o�er a similar abstraction to coroutines. They allow multipleprocesses to be de�ned although no concurrency occurs. Stack groups sim-ply pass control around between themselves. This means that they do notuse an underlying scheduler, although one of the stack groups may havethat role [22].As with most other control constructs, stack groups can be modelledusing continuations. However in EuLisp this is not feasible since full con-tinuations are not supported|instead, we have used threads, which are apackaged and simpli�ed form of continuation. A stack group is representedby a structure containing the thread which runs the stack group's com-putation, a semaphore which is used to control whether the stack groupis executing, the value returned when a stack group has completed, theresumer of the stack group (see below) and the status of the stack group.To create a new stack group the macro make-stack-group takes threearguments:1. A string containing the stack group's name;2. A function the stack group is to perform;3. The argument(s) of the stack group function.The macro translates into code which allocates a new stack-group struc-ture and �lls in the required slots. The new stack group is then allowed torun, and it immediately blocks, ready to have control passed to it and beginexecuting the stack group function. There are a number of ways of passingcontrol between stack groups but all methods involve a context switch. Thisinvolves unblocking the stack group we wish to resume and blocking thecurrent stack group. The code for a function implementing this operationis given in Figure 5. There are three means for the programmer to switchstack groups:



10 BERRINGTON ET AL1. stack-group-resume switches context to a given stack group passingit a given value;2. stack-group-funcall has the same e�ect as stack-group-resumebut also sets the resumer slot of the stack group it is resuming, sothat it can itself be resumed in the future by stack-group-return(see below);3. stack-group-return resumes the stack group which is in its resumerslot.All three functions set the required slots of the stack groups and callcontext-switch. Finally when a stack group is �nished it calls the functionend-stack-group. This sets the return value slot and unblocks the stackgroup's resumer so another stack group may execute.As an example of the use of stack groups we show the code for the classic\same fringe" predicate which takes two binary trees and returns true ifboth trees have the same fringe (full code is given in the appendix).9. EitherThe either construct[17] (also known as the parallel-or operator) takestwo expressions and spawns two processes to evaluate them. The constructreturns when one of the processes completes, the remaining process is thenkilled, and the value of the �rst process is returned. This construct canbe used where there is more than one method to arrive at a solution, forexample searching, and in providing fault tolerance on unreliable networks.The either form can be implemented by a macro that performs the fol-lowing operations:1. Spawn two threads to evaluate the two expressions;2. Use the generic function wait to block the current thread until oneof the spawned threads has �nished;3. Kill the thread which has not �nished using signal;4. Return the value of the evaluated expression.NOTE | wait can be extended to wait for a set of threads by de�ning a newclass denoting a group of threads and adding a method for this new class. It isthen possible to de�ne this method in terms of waiting for a single thread.Figure 6 combines the channels primitives with either to model a simpledatabase retrieval system. Two database servers retrieve information from



EuLisp THREADS: A CONCURRENCY TOOLBOX 11(deflocal data '((apple . 20) (banana . 30) (peach . 25)))(deflocal db1-in (make-channel))(deflocal db1-out (make-channel))(deflocal db2-in (make-channel))(deflocal db2-out (make-channel))(defun server (db input output)(let ((message (read-channel input)))(send output (assq message db))(server db input output)))(deflocal server1(thread-start (make <thread> server) data db1-in db1-out))(deflocal server2(thread-start (make <thread> server) data db2-in db2-out))(defun search (item in out)(send-channel in item)(read-channel out))(defun lookup (item) ;;parallel search(either (search item db1-in db1-out)(search item db2-in db2-out)))Figure 6: A fault tolerant database servershared data. Requests can be made to lookup an item on either database,or both. By sending the same request to both databases and retrieving the�rst result returned we gain some fault tolerance|the system should stillwork even if one server fails.10. CSPThe CSP primitives, introduced by Hoare[9] can be used as the basis for aprogramming language, of which the most well-known example is occam.CSP is a process algebra with three components� Computation� Communication� Process networks



12 BERRINGTON ET ALThe primitives involved are very similar to those described for channelsin section 7, with some extensions:� sending or receiving an object via a channel, with the additional re-quirement that the sending and receiving threads must synchronizefor the transfer to take place.� a way of creating multiple parallel threads (for the PAR construct),and synchronising after they have completed.� a mechanism for doing non-deterministic selection (for the ALT con-struct).10.1. ImplementationThere were initially �ve macros in the occam-style extension to EuLisp:(PAR expression*) Execute each expression in parallel.(ALT f(IN channel var) expression*g*) Non-deterministically select andexecute an expression whose associated IN channel has a value avail-able, with the value assigned to var. In occam, the guard can be anyboolean expression, but since EuLisp has other forms for conditionalexpression, ALT has been restricted to testing for input from channels.(IN channel fvarg) Input a value on the channel, and assign the value tothe variable if it is speci�ed, otherwise return the value.(OUT channel value) Output a value on the channel. An error is signalledon attempting to output a value on a channel from a thread that isnot connected to the channel.(SEQ expression*) Evaluate each expression in sequence. This only re-names progn, but is provided for completeness.The creations of channels and their connection to threads must be donemanually in the EuLisp implementation, whereas, in occam, code to con-struct the process network is generated as part of the compilation process.We plan to address this in a future version of the CSP module. Extensionssuch as those outlined above are reasonably straightforward (an exercise inmacro writing), but the resulting language is limited due to the static na-ture of occam|it is not intended that it be possible to create an unknownnumber of threads, or do non-deterministic selection on an arbitrary num-ber of channels. This does not �t well with the dynamic nature of Lispand the solutions that culture develops. Thus, we indulged in some furtherextensions to resolve these \shortcomings".



EuLisp THREADS: A CONCURRENCY TOOLBOX 13The problem of creating an arbitrary number of processes is addressedby the FOR construct, which is similar that in occam, but has no restrictionon the types of expressions that can be used as predicates. The issue ofdoing an ALT operation on an arbitrary number of channels is addressed bythe IN-FROM construct which has the syntax(IN-FROM (chan-var value-var) chan-list expression*)When an IN-FROM statement is executed, a channel from chan-list whichhas input pending is selected non-deterministically, and the expressions areevaluated in the current environment, augmented with chan-var bound tothe selected channel and value-var bound to the value input on the selectedchannel. These two operations provide more 
exibility than the standardset above|indeed, those are implemented in terms of FOR and IN-FROM.To illustrate the use of these extensions the appendix shows an implemen-tation of the dining philosophers problem. The major di�culty is specifyingthe network over which the processes act|as it can be created dynamicallyone cannot simply compile this information into a startup function, butmust make it explicit in all parts of the program that fork threads andcreate channels. Currently this is done by creating a channel which hasinput and output ends, forking the new threads, and �nally connecting theends of the channel to the new processes. Note that the code in the ap-pendix the channels are two-way (thus both IN and OUT operations may beexecuted on the same channel). Two-way channels are simply a pair of nor-mal channels connected in opposite directions between a pair of processes.The standard connect operations are specialised (they are implemented asgeneric functions) to make the two connections, so that the user may viewthe object as a single channel.11. LindaLinda [4] is proposed as a a coordination language suited to a wide variety ofarchitectures, and also is able to make the prototyping of parallel programseasier. While there is a readily identi�able set of core operations (in, out,rd) and data structures (pools and tuples) in the Linda model, there is stillmuch debate about the desirability of non-blocking operations (inp, rdp)and the semantics of eval. For a detailed survey of this area see [3].The EuLisp language allows one to describe Linda in an object-orientedfashion. In this section we make a case study of producing such a system.The resulting system1 is described in detail below. In keeping with thelack on agreement on system aspects, we add some of our own extensions,1called Ellis



14 BERRINGTON ET ALmotivated by the fact that TELOS enables generic operations to be de�nedon the Linda system's classes.multiple pools: In standard Linda, all operations work on a single pool.It is far more convenient to regard pools as �rst class, instantiableobjects|as many others have done.generic operations: The key Linda operators (linda-in, linda-out andlinda-read) take an additional pool argument which may be used tospecialize the operation to provide di�erent behaviours.generic matching primitives: The match operation on tuples in poolsis generic, so that tuple lookup can be specialized.The original model has a potential bottleneck and a serious problemwith distributed processing in the use of a single pool2. The single poolalso creates other problems because it is like the global environment ofclassical imperative languages. This leads to two phenomena:unintended aliasing: Any tuple created by one process is visible to everyother process|the only thing preventing retrieval of the \wrong"tuple is adherence to some globally consistent naming scheme. Thiscon
icts with the notion of decoupling that Linda encourages. Iftwo sets of tuples do not have unique names the result is unintendedaliasing.temporal aliasing: When two components operate as producer and con-sumer, but the former generates faster than the latter can accept andthere is an implied ordering on the tuples. One way to resolve this isby enumerating tuples, but this is neither elegant nor general.Both of these problems can be resolved with the help of multiple poolswhich provide a mechanism akin to COMMON blocks in FORTRAN. In-deed, all of the extensions listed above help in the production of more mod-ular programs|in systems with single pools ad-hoc techniques are used toensure that no tuples in di�erent parts of the application can be matchedusing the same pattern. Also, since no process is able to operate on a poolwithout access to the pool object, a malicious or incorrect process will notbe able to interfere with another's data.2Which is not to say that multiple pools are without problems



EuLisp THREADS: A CONCURRENCY TOOLBOX 1511.1. DecompositionIn designing the Ellis system, as with any other library designed in anobject-oriented style[11], the implementation is split into a number of in-teracting classes of object. For Linda, the choice of object classes are fairlyobvious.We begin by identifying the objects used in the standard Linda model:tuples: The objects returned by linda-in and linda-read operations.pool: The object which stores the tuples, and processes requests for them.The linda-in and linda-read operations require an object which is usedto match a tuple or set of tuples. We view patterns and tuples as di�erententities|without this it becomes di�cult to implement some of the exten-sions described below. It also means that \wildcard values" in tuples areno longer needed. Of course, we also need a class to model Linda processesand some form of scheduling to mediate requests for new threads and poolsand to map Linda processes to processors. This is all provided by a sched-uler class, which also permits the introduction of a notion of locality. Ascheduler object comprises a thread and any number of pools. When (user)Linda processes access these pools, they come under the in
uence of thescheduler which owns the pools and can be controlled by it. Although aprocess can access the pools belonging to any scheduler, it is going to befaster to access the pools of the scheduler on the same processor as theaccessing process.Each class is freely instantiable, and may be extended via inheritanceand method specialization to support di�erent or more e�cient services asdesired.11.2. ImplementationThe initial target architecture was a shared memory system which pro-vides subclassable threads and semaphores as part of its kernel. The samesystem has also been run under virtual shared memory on the KSR-1.While the implementations for shared and virtual shared memory (VSM)can be the same, as we further develop systems on the KSR we expect thelower level details to change because of the higher cost of cache misses andprocess contention. Despite the simplicity of relying on cache misses to getthe right data to the right processor, it seems that high performance willonly be achievable if the VSM hardware is bypassed.The mapping between Linda's threads and the model provided by Eu-Lisp is direct; a Linda thread is simply a subclass of thread with no extra



16 BERRINGTON ET ALfunctionality. The only remaining problem is that of choosing an appropri-ate data structure for pools, tuples and patterns. For ease of implementa-tion, patterns which have a symbolic key are used. This key is then used asan index into a table of tuples stored by the pool using an eq comparison.The tuple is then matched from the resulting list.11.3. ExtensionsUsing the model described above, one can also design a system whichruns over a network of machines or processors that do not share memory|the only place we required shared memory in the implementation abovewas for storing the pool data structure. Such a system has been built inFeel[16], using PVM[7] as the communications mechanism for a network ofSun workstations. The actual implementation details are quite simple|thepool structure itself is not distributed, and when a pool is passed to a remotemachine (via a remote thread starting mechanism), it is the name of thepool and its location that is sent. If any Linda operations are executed onthe (remote) pool, then the name is interpreted as a forwarding address, anda proxy process on the original machine carries the operation, and returnsthe result. This means that we can reuse much of the above implementation,just adding methods on the new classes of pool and tuple that contact theappropriate server. The scheduler class is rede�ned as a list of schedulersand a pool. When the creation of a new task is requested, the task iswrapped up as a tuple and placed in the pool. When a processor becomesidle, the associated scheduler executes a linda-in operation on the poolto get more work. This approach provides a simple mechanism for loadbalancing without high overheads.Matching patterns to tuples in Ellis is a generic operation and, thus,susceptible to specialization. One interesting avenue to explore is the ideaof a system which regards tuple matching as an active part of the program,rather than the passive rôle it has in the standard Linda model. Withthe help of active tuple matching, remote procedure call (RPC) could bemodelled by sending the arguments in a pattern, with the results returningas the \matched tuple". This form of communication has the advantagethat the receiver and sender need not be aware of each others' locations|anumber of di�erent servers could be capable of doing the match operation.Also, by using a suitable distribution function, a requesting process couldattach to any of them. There are many other possibilities following fromthis model that we have yet to explore. What makes this convenient isthat the same framework can be used because of the generic nature of thesystem.



EuLisp THREADS: A CONCURRENCY TOOLBOX 1712. Related workSeveral languages now have support for concurrency using a threads ab-straction.Sting[10][15] is an e�cient parallel dialect of Scheme. Threads provide aninterface to an underlying virtual machine (which may be running manyvirtual processors). A number of optimizations have been made to en-sure that the threads are lightweight including thread stealing and reuseof thread control blocks. The EuLisp de�nition purposely does not statehow creation and scheduling of threads is to be achieved and an e�cientimplementation could employ these techniques.A distributed interpreter[18] for a Lisp-like language has been imple-mented in the ICSLA project at INRIA-Rocquencourt. Following a similarphilosophy to the concurrency toolbox, it o�ers a single primitive responsi-ble for thread creation and termination, another responsible for migrationof threads to other sites on a network, and an atomic exchange operation.The language is based on Scheme and makes extensive use of �rst classcontinuations; in contrast, the EuLisp threads model deliberately restrictsthe use of continuations. The ICSLA model would itself be a suitable basisfor implementing EuLisp threads and the abstractions built from them.Modula 3 [13] de�nes a threads package. Like EuLisp it provides proce-dures to control threads and semaphores to implement mutual exclusion.It also has a mechanism for controlling threads by allowing them to wait onconditions which other threads could signal (either unblocking one threadwaiting on the condition or using a broadcast to unblock all threads waitingon the condition). A similar feature could be implemented in EuLisp usingthe thread primitives, semaphores and wait.13. Conclusions and Future WorkIn this paper we have given a more detailed description of the EuLispthread model than appears in the de�nition by virtue of examining a num-ber of abstractions built from the basic components. This has the advan-tage of providing a much better feel for the capabilities of the model, howits de�nition maps to di�erent architectures and illustrates a \rationale byuse" for why the thread model is as it is.We also believe that the thread model, while useful on its own, is ren-dered signi�cantly more powerful when taken in conjunction with TELOS.Not only are we able to model other common parallel abstractions usedin other languages as well as in Lisp, but the user may modify their be-haviour via inheritance and specialisation, rather than using a �xed set of
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22 BERRINGTON ET AL;;Initialisation | First construct the channels, then call the;;main functions with a connected end of the channel.(defun doit (n)(let ((left-channels (map make-Chan-Pair (make-vector n)))(right-channels (map make-Chan-Pair (make-vector n)))(doorman-chans (map make-Chan-Pair (make-vector n))))(PAR(FOR (i 0) (< i n) (++ i)(SEQ (init-phil i)(philosophize i(connect-chan-pair (element left-channels i))(connect-chan-pair (element right-channels i))(connect-chan-pair (element doorman-chans i)))))(FOR (i 0) (< i n) (++ i)(fork-task (connect-chan-pair (element left-channels i))(connect-chan-pair (element right-channels(remainder (+ i 1) n))))))(doorman (map connect-chan-pair doorman-chans) n)))


