
LISP AND SYMBOLIC COMPUTATION: An International Journal, ?, ??{??, 1993c
 1993 Kluwer Academic Publishers { Manufactured in The NetherlandsEuLisp in EducationRUSSELL BRADFORD (rjb@maths.bath.ac.uk)University of Bath, UKDAVID DEROURE (D.C.DeRoure@soton.ac.uk)University of Southampton, UKKeywords: Education, Lisp, object-oriented programming, concurrent processing, lan-guage designAbstract. We present our experience with EULISP as a teaching language, focussingon the level of the language which was speci�cally designed for this purpose (level-0).EULISP has been used in undergraduate and postgraduate teaching since 1990, in lecturesand laboratories, where in many cases it has replaced Scheme or Common Lisp. Ithas been used extensively in programming courses, parallelism courses, as a vehicle foradvanced courses in symbolic computing and programming language design; it has alsobeen used as a platform for �nal year undergraduate projects. This experience hasdemonstrated that EULISP is well suited to teaching and far reaching in its capabilities:it supports the relevant concepts in a consistent and versatile framework, so that thelanguage serves to facilitate the educational process. The discussion is illustrated withexamples, and where appropriate we draw a comparison with the Lisp dialects usedpreviously in these courses.1. IntroductionThe EULISP language design process has been progressing for several years,and during this time the reference implementation developed at the Univer-sity of Bath, UK, has tracked the evolving de�nition [4]. The availabilityof the interpreter has enabled the language to be evaluated as a platformfor teaching, as well as for research and applications development; thisexperience has then been fed back into the design process.Lisp frequently features in undergraduate courses, often as a vehicle forteaching other material. The authors have been involved in many suchcourses. Prior to the availability of a EULISP interpreter, several Lisp di-alects had been used; these included Standard Lisp, LISP/VM, Schemeand Common Lisp. Level-0 of EULISP was speci�cally designed with aview to teaching, and was adopted experimentally by the authors whenan implementation became available in 1990. This level is roughly compa-rable to Scheme with the addition of an integrated object system (single

2 BRADFORD AND DEROUREinheritance),1 modules and support for concurrency.EULISP has now been used across a spectrum of courses in four insti-tutions, including courses on programming, parallelism, symbolic comput-ing, programming language design and arti�cial intelligence. This paperpresents our experience of using EULISP in teaching, and compares it withour experience of Scheme [10] and Common Lisp [12]. Section 2 describesa `programming paradigms' course which was originally based on Scheme,section 3 presents a course on parallelism using the `concurrency toolbox'of EULISP, section 4 describes a programming language design course; othercourses are discussed in section 5. We conclude with some comments onimplementations in section 6 and some �nal remarks.2. ProgrammingIn a course designed to introduce a variety of programming paradigms,it is convenient to use a single language which provides natural supportfor the various styles; it can be argued that nearly any language could beused, but clearly some languages are more suitable than others and willfacilitate rather than impede the educational process. Scheme is chosenfor this role in the classic text Structure and Interpretation of ComputerPrograms [1], which provides an excellent introduction to programmingin models supporting referential transparency, data abstraction, mutablestate, message passing and streams, as well as issues in language designand implementation.EULISP has also been used in this role, supporting a programming coursewhich follows up an introductory programme based on Standard ML. Theprimary objective of the course is to introduce techniques for managingthe complexity of programs which are larger in size than the introductoryexamples, re
ecting the typical programming task of the individual pro-grammer. An adjacent course addresses methods of large-scale softwaredesign and engineering.The course was originally based on [1] but has evolved to accommodatethe addition of new items to the syllabus. The major addition is object-oriented programming, while the other signi�cant changes result from a`spiral approach' to teaching programming techniques for window systemsand for distributed systems; we believe these classes of problems to besu�ciently important to warrant �rst-class status in the core syllabus forevent-driven programming and programming with threads. This philosophyleads to a further, more pervasive, change because concurrency issues are1One of the authors has been heard to call it Scheme++-, because it is Scheme++without full continuations.

EULISP IN EDUCATION 3now discussed throughout the course.The current course syllabus is:1. Programming in a functional style;2. Handling state and changes to state;3. Object-oriented programming;4. Stream-oriented programming;5. Event-driven programming;6. Programming with threads.The course makes full use of EULISP's features at level-0 of the languagede�nition. To address software systems of signi�cant complexity, the mod-ule system is used to construct the components of an evolving system; thisapproach enables existing components to be provided to the students, whocan then create their own modules to integrate with these. Ultimately,the software consists of the modules provided plus those programmed bythe students using the di�erent techniques introduced during the course,forming a relatively sophisticated software system. These techniques arediscussed in turn in the following sections.2.1. Programming without side e�ectsSince the students have already worked in SML, this section of the coursedoubles as an introduction to the syntax of EULISP and the use of the EULISPenvironment. Initially all data values are numbers, and the concepts ofgeneric functions and multimethods are introduced. This is then extendedto user-de�ned classes (structures) and inheritance.The typical example for this material is the introduction of a new classwhich can be handled by generic arithmetic functions, for example rationalnumbers (which we call fractions to distinguish from the existing rationalnumber class). One module provides the implementation of fractions, ex-porting the constructor and accessor functions for the <fraction> class;alternative implementations are possible, where the fraction may be re-duced to its lowest terms at construction time or at access time. Thismodule is imported by a second fraction arithmetic module which providesmethods on the addition, subtraction, multiplication, division, equality andcomparison operations (see Figure 1). An application requiring fractionscan then simply import the fraction arithmetic module.The use of a Lisp1 after a course based on SML provides a naturalprogression, hence EULISP and Scheme are attractive choices. The strength

4 BRADFORD AND DEROURE(defmodule fraction-arithmetic(import (fraction-implementation1 eulisp-level-0)syntax (eulisp-level-0))(defmethod = ((a <fraction>) (b <fraction>))(and (= (num a) (num b)) (= (denom a) (denom b))))(defmethod binary* ((a <fraction>) (b <fraction>))(make-fraction (* (num a) (num b)) (* (denom a) (denom b))))) Figure 1: Part of the fraction arithmetic moduleof EULISP in this context is the provision of a data abstraction mechanismwhereby user-de�ned `types' (classes) are identical in use to those providedby the system; this simplicity is not evident in Scheme or CLOS.2.2. Introducing stateThe slots in the structures introduced above are immutable: either ob-jects are created with the slots initialised, or the constructor function as-signs values to the slots|in both cases the slot values do not change onceset. To provide the facility to modify their values the sole function thatneed be introduced is setter (this function is also used to update struc-tures based on cons cells). Figure 2 illustrates part of the classic bankaccount program, where an account is created by (make <account>) andhas an initial balance of zero; deposit increases the balance, returning thenew value.There is a particular elegance to the Scheme solution, where closuresprovide a primitive mechanism for capturing state and controlling accessto it; this style of solution is viable in EULISP too, but for simplicity andconsistency we adopt objects as the sole repositories of state|the object-system is seen as the mechanism for handling the intellectual complexityof state in our programs.2.3. Object-oriented programmingAt this stage the major language features to support object-orientedprogramming have already been introduced. To establish the concepts, theinheritance mechanism is discussed (this is single inheritance at level-0)and examples making more sophisticated use of inheritance are presented.

EULISP IN EDUCATION 5(defmodule bank-account(import (eulisp-level-0) syntax (eulisp-level-0))(defstruct <account> () ((balance accessor balance initform 0)))(defgeneric deposit ((ac <account>) (x <number>)))(defmethod deposit ((ac <account>) x)(let ((new-balance (+ (balance ac) x)))((setter balance) ac new-balance)new-balance))) Figure 2: Part of the bank account moduleFigure 3 illustrates part of an example based on a blocks world, with anabstract class <block> and methods added to generic-write to illustrateclass precedence.(defstruct <block> () ((colour))) ;abstract class(defstruct <sphere> <block>((diameter accessor sphere-diameter)))(defstruct <cube> <block> ((side accessor cube-side)))(defgeneric volume ((b <block>)))(defmethod volume ((b <cube>)) (expt (cube-side b) 3))(defmethod generic-write ((b <block>) s)(print 'block s))(defmethod generic-write ((b <cube>) s)(print 'cube s)(call-next-method))Figure 3: Part of the blocks moduleMessage-passing as a paradigm is also discussed here, where it can be de-scribed in terms of messages between real-world objects. A correspondencebetween messages and generic function calls is established, and this wouldbe an appropriate point to introduce closures as repositories of state, andthe setq special form to mutate bindings; these techniques can be usedto control access to shared bindings, providing a mechanism for creating

6 BRADFORD AND DEROUREcontours within the module boundary.2.4. Stream-oriented programmingThe powerful combination of standard interfaces and a
exible means ofcomposition of components is exempli�ed by Unix.2 The illusion of indi-vidual data items
owing along channels between black boxes (c.f., Unixpipes) can be implemented using lists, or using streams as in Scheme (wherethe second argument to cons is delayed and the evaluation of stream ele-ments is memoized). It is possible to write generic code which will workwith various implementations of streams; Figure 4 illustrates part of thede�nition of generic head and tail functions.(defstruct <stream> () ())(defstruct <empty-stream> <stream> ())(defstruct <stream-pair> <stream>((head accessor stream-head)(tail accessor stream-tail)))(defgeneric head (s))(defmethod head ((s <list>)) (car s))(defmethod head ((s <stream-pair>)) (stream-head s))(defgeneric tail (s))(defmethod tail ((s <list>)) (cdr s))(defmethod tail ((s <stream-pair>)) (force (stream-tail s)))Figure 4: Part of a generic streams implementationThe implementation of the data
ow illusion using lists is
awed in that itrequires the stream to be �nite in length and no data appears at the outputuntil all the input data has arrived. Delayed evaluation is demand-drivenin nature and overcomes these de�ciencies, accommodating in�nite streams(and streams which may contain elements which cannot be computed);however, this implementation is still problematic when interfacing to realdata streams. Therefore actual input{output streams are also introducedin this section; we adopt the EULISP I/O model which supports user-de�nedstreams, and enables stream processing elements to be plugged together inan arbitrary manner to construct more complex streams.The multiple inheritance mechanism of CLOS provides a powerful means2Unix is a trademark of Unix Systems Laboratories, in the USA and other countries.

EULISP IN EDUCATION 7of constructing a versatile input{output streams system [8]. At EULISPlevel-0 we are restricted to single inheritance. We can use this to simulatemultiple inheritance by performing a second generic-function-call on proto-typical stream properties stored in the slots of stream objects. This servesas a good example of single versus multiple inheritance.2.5. Handling exceptionsSome problems contain `exceptional' situations and it is appropriate thatthe programmer writes code which re
ects this, using EULISP's conditionsystem with user-de�ned conditions; in these programs, the programmerwill arrange both to signal and handle the conditions. In general, theprogram may also handle conditions raised by the EULISP system itself inresponse to the occurrence of exceptional situations. In the absence ofuser-de�ned handlers, a default handler will take appropriate action.Figure 5 shows a simple handler for a read-eval-print loop in an embed-ded interpreter. The application of the user's generic-eval function (seesection 4) to the input expression occurs within the dynamic scope of theenclosing with-handler form; should any conditions be raised during thatapplication, the handler accepts them and performs a non-local exit fromthe enclosing block form. The other options for the handler would be tocall the resume continuation, or simply to return and thus decline to handlethe condition.(defun rep (v)(format t "~a~%> " v)(rep (block k(with-handler(lambda (condition resume) (return-from k 'error))(generic-eval (read (standard-input-stream))global-environment)))))Figure 5: Read-eval-print loop with trivial error handlerThis style of condition handling is not provided in Scheme, but can besupported.2.6. Event-driven programmingUse of the condition system introduces the notions of dynamic extent andthe single thread of control being interrupted by exceptional events occur-ring asynchronously. Building on these ideas, we can introduce the idea ofa program whose normal mode of operation is to respond to asynchronous

8 BRADFORD AND DEROUREevents in its environment.To do this, we introduce the wait construct, which provides a genericinterface to blocking operations. wait is provided as a standard abstractionfor blocking on asynchronous events; the user can add methods for any ob-jects, though the EULISP de�nition only speci�es wait methods for streamsand threads. Given an input stream as argument, wait returns true assoon as data becomes available on that stream (i.e., an input operationwill not block), else if the timeout period expires it returns false. Figure 6illustrates the use of wait in an event loop, where the object system canbe used to control the relationships between di�erent types of events.(while (wait stream timeout)(generic-event-handler (read-event stream)))(defmethod generic-event-handler ((k <keypress-event>)) ...)Figure 6: Fragment of an event-driven programThis construct can support non-deterministic input{output operationswhen provided with a collection of streams; however, collections are notsupported in level-0 of EULISP.2.7. ThreadsThe �nal paradigm is programming with multiple threads of control.This is a natural extension of the previous material, where the idea ofexternal events now includes events associated with other threads executingasynchronously. The use of EULISP to teach parallelism is discussed in thefollowing section.Neither Scheme nor Common Lisp support multiple threads of control aspart of the standard languages; however, the EULISPmodel can be simulatedin Scheme, and Common Lisp implementations often provide appropriatefacilities (such as stack groups).3. ParallelismEULISP has been used successfully as a component of both undergraduateand postgraduate courses on parallel processing. A course on parallelismshould ideally contain some practical exercises|actually trying to programin parallel is the best way of getting across to the student the di�cultiesinherent in the subject. However, not many classes have access to a trueparallel machine, thus we must simulate the process in some fashion by

EULISP IN EDUCATION 9scheduling threads on a single processor. The threads mechanism in EULISPis designed so that the user is unaware how many actual processors arerunning, or how the threads are scheduled on the available processors (someweak promises are made in the de�nition, but also see [6]). So the user mustwrite code that has no such built-in assumptions, encouraging portabilityof code, and
exibility of programming style.In using EULISP we have the opportunity to program using threads andbinary semaphores (named locks). From these low-level constructs studentassignments are to implement higher level abstractions (see [2] for exam-ples). To make a counting semaphore from a binary semaphore involvesthe student recognising that there are several issues at stake: the mutualexclusion on the counter; the problem of how and when to suspend a pro-cess that fails to decrement the counter; the question of non-determinismin reawakening of processes, and so on.Students must program without using the knowledge of the particularsystem the code may run on: it may be a multiprocessor or a uniprocessor,and the latter may be using run-to-completion or time-slicing to schedulethreads. This ensures that they fully appreciate the more subtle problemsthat may arise, particularly due to interleaving of control. For instance,does it make any di�erence if the two starred lines in the code for thecounting semaphore (Figure 7) are swapped? To determine the answerrequires some detailed thought.Building on this, it is a natural step to use counting semaphores (pack-aged as a module) to implement a bounded bu�er producer{consumer sys-tem, or as a way to break the deadlock in the Dining Philosophers problem.The student soon discovers that using bare semaphores is not a very conve-nient or easy way to program, and that a higher-level way of programming(for example, using monitors) is much better, as well as being less error-prone.After having written the Dining Philosophers problem using semaphores(Figure 8) the student can consider rewriting the code in terms of, say,monitors, at which point the student can appreciate the distinction be-tween synchronisation and mutual exclusion (these are well separated in amonitor, but are generally implemented in identical ways when using justsemaphores, leading to confusion of the issue at stake). Also, using moni-tors, the student can see their relative grain of control in comparison withsemaphores: the trivial solution of Dining Philosophers using one or twolarge monitors does not work, or at best over-constrains the actions of thephilosophers (typically, such attempted solutions have a philosopher beingstopped from picking up a fork if any other philosopher is trying to get afork). The �ne-grained nature easily available from a semaphore must bebalanced against the clarity of use of a monitor. This, again, illustrates

10 BRADFORD AND DEROURE(defmodule csem (import (eulisp-level-0) syntax (eulisp-level-0))(defstruct csem ()((sem initform (make-lock) ;access to the csemreader csem-sem)(count initform 0 initarg count ;the countaccessor csem-count)(suspend-sem initform (lock (make-lock)) ;block on thisreader csem-suspend-sem)(suspend-count initform 0 ;number waitingaccessor csem-suspend-count))constructor (make-csem count))(defun cwait (csem)(let ((sem (csem-sem csem)))(lock sem) ;get control of the csem(let ((s (csem-count csem)))(cond ((> s 0) ;room to move((setter csem-count) csem (- s 1))(unlock sem)) ;release the csem(t ;must suspend yourself((setter csem-suspend-count) csem ;one more(+ (csem-suspend-count csem) 1))(unlock sem) ;release counting sem(lock (csem-suspend-sem csem))))))) ;suspend yourself(defun csignal (csem)(let ((sem (csem-sem csem)))(lock sem) ;get the counting semaphore(cond ((> (csem-suspend-count csem) 0) ;someone is waiting((setter csem-suspend-count) csem ;one less now(- (csem-suspend-count csem) 1))(unlock (csem-suspend-sem csem)) ;unblock someone *(unlock sem)) ;release the csem *(t ;no-one waiting((setter csem-count) csem(+ (csem-count csem) 1))(unlock sem))))) ;release the csem(export make-csem cwait csignal)) Figure 7: Counting Semaphores using Binary Semaphores

EULISP IN EDUCATION 11(defmodule dinphilsem (import (eulisp-level-0 csem)syntax (eulisp-level-0))(defconstant no_phils 5)(defconstant count 20) ;each phil to eat 20 times(defun phil (p n) ;phil p eating for the nth time(let ((left p) (right (remainder (+ p 1) no_phils)))(when (< n count)(think p)(get-ticket p) (get-fork left p) (get-fork right p)(eat p n)(drop-fork left p) (drop-fork right p) (return-ticket p)(phil p (+ n 1)))))(defconstant room-ticket (make-csem (- no_phils 1)))(defconstant forks (make-vector no_phils))(defun init-forks (n)(when (>= n 0)((setter vector-ref) forks n (make-lock))(init-forks (- n 1))))(defun think (p)(format t "~s thinking " p)(thread-reschedule)) ;allow some other action while thinking(defun eat (p n)(format t "~s eating (~a) " p n)(thread-reschedule)) ;similarly while eating(defun get-ticket (p) ;issue up to 4 tickets(cwait room-ticket) ;controlled by the counting semaphore(format t "~a enters room " p))(defun return-ticket (p)(format t "~a exits room " p)(csignal room-ticket))...) Figure 8: Dining Philosophers using Counting Semaphores

12 BRADFORD AND DEROUREimportant points to be considered when writing parallel programs.3.1. Data Parallel ProcessingIf writing MIMD programs as part of the undergraduate programme isunusual, writing SIMD programs is relatively exotic. It is certainly a sub-ject that is not dealt with in great detail, if at all, in many undergraduateparallel processing textbooks. While FORTRAN-90 is an important case-study under this heading, we also explore symbolic data-parallel problemsand the abstractions that have been developed, mainly in the Lisp com-munity, such as Connection Machine Lisp [13] and Paralation Lisp [11].Although we have developed a simpler model [9] and implementations ofboth CM-Lisp and Paralation Lisp on top of that running on a MasPar, theemphasis in teaching is on the Paralation model using a serial simulation.Probably the most di�cult notion to get across is that it is harmless tocompute a value that is not used, because it is not wasted computationsince it was carried out at the same time as useful values were computed.An easier issue is the need for virtualization of the array once problem sizesexceed physical resources. This is readily appreciated as a tedious matterto implement, but a powerful abstraction once done.A number of exercises have been worked through in this context, be-ginning with numerical topics, such as relaxation (see Figure 9), conju-gate gradient method, matrix multiplication and moving on to non-numericproblems such as polynomial representation, (univariate) polynomial mul-tiplication, connectionist simulations and classi�cation.The combined coverage of MIMD and SIMD within a single languagealso provides a good springboard to the discussion of the simulation ofeach paradigm in the other and a motivation for architecture independentprogramming.3.2. General Parallel ProgrammingThe fact that we can employ all of these parallel models in a single lan-guage, using modules to import those constructs we need, is particularlyconvenient. For example, we have modules that implement Linda, moni-tors, paralations, a Future-like class of objects, and an occam or CSP-style(message passing on channels) language, and to use any of these is simplya matter of importing the module. This lets us contemplate the question ofchoosing the appropriate method for the solution of a particular problem,and also opens the way to mixed-paradigm solutions. For example, if wedecide that, say, the �rst phase of a problem would work best using Linda,while the second would bene�t from the use of paralations, we can do this

EULISP IN EDUCATION 13(defun relax (grid eps)(let* ((index (index grid));;boolean �eld indicating whether element is on boundary(boundary (elwise (index) ...)))(labels((loop (old new)(if (vref (lambda (x y) (or x y))(elwise (old new) (< (abs (- old new)) eps)));;some points not yet converged(let ((n (get N new ())) (s (get S new ()))(e (get E new ())) (w (get W new ())))(loop new(elwise (new boundary n s e w)(if boundary new (/ (+ n s e w) 4.0)))));;all points have convergednew)));;compute �rst iterate(let ((n (get N grid ())) (s (get S grid ()))(e (get E grid ())) (w (get W grid ())))(loop grid(elwise (grid boundary n s e w)(if boundary grid (/ (+ n s e w) 4.0))))))))Figure 9: Relaxation using paralationsin a single language, in a single program. Further, we are able to comparesolutions in di�erent models directly, and transform from one to another.We believe that the subject should be seen as a whole, not a series of com-partmentalised ideas that stand in isolation, and the design of EULISP letsus do this.4. Language designEULISP has also been used in a �nal-year course in programming languagedesign. The students already know the language from earlier courses, andwe can build on this to use EULISP in three new roles:1. EULISP is a contemporary general-purpose language and as such pro-vides a valuable case-study in language design, capturing a number ofimportant concepts in a consistent framework (for example, modules,the object system, exceptions, threads and streams).2. Like other LISP dialects, EULISP can be used to illustrate the tra-ditional `metacircular' LISP interpreter, and a correspondence estab-

14 BRADFORD AND DEROURElished between this and a simpli�ed denotational semantics of thelanguage. As part of the case study, this approach is used to describethe evolution of LISP (as discussed in [14]). EULISP a�ords two varia-tions on the traditional approach: the interpreter can be presented asa generic function, and it can be extended to include aspects of theEULISP language, notably continuations and threads [5]. Part of theinterpreter is illustrated in Figure 10, where the if special form hasbeen parsed into a structure <if> with three slots: if-test, if-trueand if-false.3. Building on the previous point, EULISP provides a powerful vehicle forteaching issues in language design ([7] adopts a similar approach), aswell as a symbolic platform for prototyping little application-orientedlanguage systems. In conjunction with interpreter techniques, themodule system is used extensively in assembling a complete languagesystem: each component of the system generates an intermediateprogram in a language L in the form of a module which imports theimplementation of L.(defgeneric generic-eval (k exp env))(defmethod generic-eval (k (exp <number>) env) (send k exp))(defmethod generic-eval (k (exp <quotation>) env)(send k (value exp)))(defmethod generic-eval (k (exp <if>) env)(generic-eval (lambda (v)(generic-eval k(if v (if-true exp) (if-false exp))env))(if-test exp)env))Figure 10: Fragment of generic eval5. Other courses5.1. Object-Oriented programming (advanced)EULISP level-1 is used in an advanced object-oriented programming courseto illustrate a metaobject protocol, where it has replaced CLOS. The TELOS

EULISP IN EDUCATION 15protocol is simultaneously at the heart of EULISP, and has a separate, in-dependent, identity. There are many constructs in EULISP that rely on theobject system, but it is possible to extract that system and consider it asan entity in its own right (this has been done through the reimplementa-tion of TELOS in other languages, including Scheme and Common Lisp).This orthogonality of design has allowed the development of a powerfulMOP independently of the rest of the language: the advantage of havinglanguage-independent implementations enables us to discuss the protocolin isolation, not relying on any particular language feature.5.2. Computer AlgebraOne of the classic applications of Lisp is computer algebra, and so EULISPhas been used in a computer algebra course. The object system again playsan important part, as it can abstract away distracting details of some of thealgorithms. For example, a traditional way of implementing a polynomialis to use a recursive list structure. We use a collection of macro de�nitionsfor accessors to the polynomial structures, and many conds to determinewhat part of the polynomial we are considering as we work our way downthe list (for example, leading coe�cient, the degree in the �rst variable, thereductum of the polynomial, and so on). In contrast, using TELOS we canuse classes for each di�erent part of the polynomial, and use methods ongeneric functions to isolate their functionalities. As a way of implement-ing fast polynomial arithmetic the use of generic functions and structuresmay not be the most e�cient, but certainly they are an excellent way toexplain the algorithms. Again, the integration of system and user types inTELOS provides a uniform interface for the user: the user can add appro-priate methods to + (via the generic function binary+), facilitating naturalexpressions such as (+ p q 1), where p and q are of class <polynomial>.5.3. ProjectsA number of �nal-year projects have been based on the EULISP platform,including the following:� Visual programming for EULISP. This is an X Windows System ap-plication which enables the user to construct programs in a data
ownotation with a graphical editor; the notation is loosely compatiblewith ProGraph [15], which is an icon-based visual programming envi-ronment with a programming model that shares much with EULISP.The tool generates executable EULISP code. The consistent treatmentof objects in EULISP permits a very simple graphical syntax.

16 BRADFORD AND DEROURE� EULISP editing environment. An application for OS/2 PresentationManager, this is an editor which has knowledge about standard EULISPsyntax but also accepts simple extensions to the standard syntax toincorporate additional class information for bindings, arguments togeneric functions and some return values. The environment includes atool (nicknamed EuLint) for checking for consistency within a EULISPapplication and another for �ltering the extended syntax into stan-dard EULISP code.� Score representation languages. EULISP has been used to implementsimple languages for representing musical scores. These have beenused as the target of composition tools, and as the input to tools whichgenerate either MIDI data or source text for typesetting utilities.EULISP provides a rich environment for construction and combinationof such tools, and this application is a good test of its novel event-oriented features.� User Guide to TELOS. A project to write a document that �rstly gavean overview of the TELOS MOP, and secondly showed how it could(and in some ways, could not) be used to emulate the C++ style ofclass de�nition and inheritance. The purpose behind this project wastwofold. On the one hand, the student was led by experimentation tounderstand the MOP; on the other hand, the student was doing realresearch by investigating the
exibility and extensibility of TELOS.� A module browser. The �rst stage of this project involved using theinterface to gdbm implemented in FEEL to build a module database.The second stage built a mode for GNU Emacs to browse the modulestructures stored in the database communicating via a EULISP process.This presented the user with a display modelled after the GNU Emacsdirectory browser where each line corresponded to an expression inthe module. Selection of an item lead to its display in a new bu�erfor editing and later storage. A similar mode was provided to editthe module directives. This environment also supported consistencychecking in a similar manner to the EuLint programmentioned above.6. Hardware platformsThe courses described above have been taught on four main platforms: Sun3and SPARC under SunOS; 386 and 486 PCs under MS-DOS and OS2/V2;Amiga. The primary EULISP implementation was FEEL [4]; we have alsoused Aubrey Ja�er's SCM and Scheme-to-C [3], with basic extensions forEULISP level-0 compatibility.

EULISP IN EDUCATION 17Inevitably the implementation of level-0 is more complex than Scheme,but one of the goals of is that it should be implementable by students ona reasonably short timescale. So far we have had good experiences withimplementing and porting level-0. The provision of interpreters for thepopular `home computers' has enabled students to work on a wide varietyof platforms without su�ering the constraints of larger Lisp systems.7. ConclusionOne of the objectives of EULISP is to provide a teaching platform. We havedemonstrated through teaching a number of courses over a three year periodthat EULISP performs this function well. Respect for the Scheme principlesof simplicity and orthogonality enables EULISP to be used unobtrusively inteaching non-Lisp related material, and it lends itself equally to advancedLisp-based courses. We anticipate that EULISP will continue to be used andexpanded in this role, aided by an increasingly rich environment as moretools are created.In comparison with Scheme, the most signi�cant increase in function-ality provided by EULISP is the object system; modules, conditions andthreads are also used extensively in our teaching. These mechanisms areprovided without introducing excessive complexity which would impede theeducational process. We favour EULISP over Common Lisp for its layeredapproach (providing level-0 as a small, well-de�ned and portable kernel),its natural progression from functional languages (through being a Lisp1)and the provision of the `concurrency toolbox', and over CLOS for itssimple, integrated classes. We miss �rst-class continuations and multipleinheritance, though these are needed only in advanced courses where wecan achieve them through embedded interpreters and EULISP level-1 re-spectively.AcknowledgementsThe authors wish to thank colleagues and students involved in the followingcomputer science courses for allowing us to use them to test the evolving de-sign of the EULISP language: C7 Lisp, C80 Applications of Logic, C85 Con-current Programming, MSc in Computer Algebra (Bath); CM203 Compu-tational Systems, CM333 Programming Language Design, CM358AdvancedLisp, CM364 Object-Oriented Programming and Systems CM366 SymbolicComputation, CM367 Models of Programming (Southampton); ConcurrentProcessing, Ph.D. programme (UPC Barcelona); Data Structures (War-wick).

18 BRADFORD AND DEROUREConsiderable thanks to the authors of Structure and Interpretation fortheir in
uential work. Keith Playford and Pete Broadbery implementedFEEL. Neil Berrington performed the 386 port, and provided EULISP level-0support on a variety of platforms.References1. Abelson, H and Sussman, G J with Sussman, J. Structure and Interpre-tation of Computer Programs. MIT Press, Cambridge, Massachusetts(1985).2. Andrews, G A. Concurrent Programming: Principles and Practice.Benjamin/Cummings, Redwood City, California (1991).3. Bartlett, J F. Scheme->C a Portable Scheme-to-C Compiler. ResearchReport 89 1, DEC Western Research Laboratory, Palo Alto, California(January 1989).4. Broadbery, P., et al. FEEL. Available by anonymous FTP frompub/eulisp on ftp.bath.ac.uk (1992).5. DeRoure, D C. QPL3|Continuations, Concurrency and Communica-tion. Technical Report CSTR 90{20, Department of Electronics andComputer Science, University of Southampton (1990).6. DeRoure, D C and Padget, J. Guaranteeing Unpredictability. Toappear (1993).7. Friedman, D P, Wand, M, and Haynes, C T. Essentials of ProgrammingLanguages. MIT Press, Cambridge, Massachusetts (1992).8. Keene, Sonya E. Object-Oriented Programming in Common Lisp:A Programmer's Guide to CLOS. Addison-Wesley, Reading, Mas-sachusetts (1989).9. Merrall, S and Padget, J A. Plural EULISP: A Primitive Symbolic DataParallel Model. LASC, 6, 1/2 (September 1993).10. Rees, J A and Clinger, W. The revised3 report on the algorithmiclanguage Scheme. ACM Sigplan Notices, 21, 12 (December 1986) 37{79.11. Sabot, G W. The Paralation Model: Architecture Independent SIMDProgramming. MIT Press, Cambridge, MA (1988).

EULISP IN EDUCATION 1912. Steele Jr, G L, Fahlman, S E, Gabriel, R P, Moon, D A, Weinreb, D L,Bobrow, D G, DeMichiel, L G, Keene, S E, Kiczales, G, Perdue, C, Pit-man, K M, Waters, R C, and White, J L. Common Lisp: The Language(Second Edition). Digital Press, Bedford, Massachusetts (1990).13. Steele Jr, G L and Hillis, W D. Connection Machine Lisp: Fine-GrainedParallel Symbolic Processing. In ACM Conference on Lisp and Func-tional Programming (1986) 279{297.14. Steele Jr, G L and Sussman, G J. The Art of the Interpreter; or, TheModularity Complex (Parts Zero, One, and Two). AI Memo 453, MITArti�cial Intelligence Laboratory, Cambridge, Massachusetts (May1978).15. Szpakowski, M, Pietrzykowski, T, Laskey, J, Kilshaw, T, Eyre, P,and Cox, P. Prograph Reference: A very high-level, pictorial, object-oriented programming environment. TGS Systems, Halifax, Canada(1989).

