
,..
".

(j

-0
ij

A·1l59 8/63

TM-2337/010/00

1r~~~~~~~~
I~I(OJ~~~~MI

(TM Series)

This document was produced by SOC in performance of contract __ ----=S=:D=--_9L 7l-· _______ _

LISP Primer SYSTEM

A Self-Tutor for Q- 32 LISP 1.5 DEVELOPMENT

CORPORATION
Clark Weissman

2500 COLORADO AVE.

14 June 1965 SANTA MONICA

CALIFORNIA

The views, conclusions or recommendations expressed in this document do not neces
sari Iy reflect the official views or policies of agencies of the United States Government.

Permission to quote from this document or to reproduce it, wholly or in part, should
be obtained in advance from the System Development Corporation, or from authorized
agencies of the U.S. Government.

.r- ,
'-' i

j

('\

o

14 June 1965 1
(Pa.ge 2 Blank)

LISP Primer

A Self-Tutor for Q-32 LISP 1.5

ABSTRACT

This document is a self-tutor for LISP 105 programming,
particularly for on-line Q-32 LISP 1.5. Material is
organized into chapters that, by discussion and example,
progressively expand the student's understanding of the
language and ability to write programs in the language.
A carefully selected and graduated set of exercises for

TM-2337/010/00

use on-line is provided a.s an integral part of each
chapter. Computer-checked answers for each exercise are
also provided as a separate appendix. The document is not
an exhaustive treatise on LISP 1.5, but, rather, a practical
primer that provides the serious student with a solid
foundation for understanding the programming language and
system. He may then easily supplement his knowledge from
other sources suggested herein.

C
r

, ,.'

p

14 June 1965 3
(Page 4 Blank)

ACKNOWLEDGMENT

'IM-2337/010/00

The author Wishes to acknowledge the considerable support he received in
preparing this primer from Jules Schwartz who instigated its preparation and
was its first user, Dr. Danny Bobrow (SDC consultant) who reviewed the
document for technical errors and suggested improvements in material
presentation, Dr. Stan Kameny for suggested improvements and for contributing
a number of important exercises, and Robert Saunders (I.I.I.) for checking the
technical consistency in accordance with the Q-32 LISP 1.5 system.

Thanks are also extended to Miff Perstein for his technical and editorial
review of the material during its preparation, and to Donna Firth and Frank
Poage for their suggestions, comments, and criticisms resulting from their
actual use of the primer as a teaching aid. Also, thanks to Professor
Marvin Minsky (M~I.T.) for suggesting additional material that Will be
incorporated in the final version of this primer.

The author further Wishes to acknowledge the incorporation of selected material
in this document from LISP 1.5 Programmers Manual, August 1962, M.I.T. Press,
Cambridge, Massachusetts, and The Programming Language LISP: Its Operation and
Applications, March 1964, Information International, Inc., Cambridge,
Massachusetts.

p

...

C'·

..
o
I,·
"",,

14 June 1965 5 TM-2337/010/OO
(Page 6 Blank)

PREFACE

This primer is an experimental approach to teaching the LISP 1.5 programming
language, particularly Q- 32 LISP 1.5. Material is presented in a sequence that
builds upon prior information by continually expanding the language's domain of
functional expressions. The student is cautioned not to progress to subsequent
chapters until he thoroughly understands all prior chapters. Each exercise
has .been carefully selected to explore his understanding. He should not treat
the exercises lightly, but do as many of the problems on-line as possible to
check his answers. Also, ex:plana.tory material for subtle exercises is often
reviewed in the answers of Appendix A.

Further material will be included in this primer after it is "field tested" by
the remote TSS user community. The author assumes full responsibility for all
errors that appear and he solicits general comments on the primer and notifi
cation of any errors that exist. Such comments will be reflected in an improved
final Q-32 LISP Primero

The student who desires supplemental material should consult the following
references:

1. Command Research Laboratory Users' Guide, TM-1354 S.D.C. document series.

2. LISP 1.5 Programmers Manual, August 1962, M.I.T. Press, Cambridge,
Massachusetts.

3. Q-32 LISP 1.5 Reference Material, TM-2337 S.D.C. document series.

4. The Progranming Langqage LISP: Its Operation and Applications, March 19~~.
Information International, Inc., Cambridge, Massachusetts •

o
i~

----------------- ----~~--~-----~------

14 June 1965 7 TM-2337/010/00
(Page 8 Blank)

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT • • • • • • 0 • • • • • • 0 • 0 • • • a • • • • • 3

5

9

PREFACE

CHAPl'ER

CHAPrER

CHAPrER

CHAPrER

CHAPl'ER

CHAPrER

CHAPI'ER

CHAPl'ER

CHAPrER

• •
1:

2:

3:
4:
5:
6:
7:
8:
9:

CHAPrER 10:
CHAPrER 11:

CHAPrER 12:
CHAPrER 13:
CHAPl'ER 14:
CHAPrER 15:
CHAPrER 16:
CHAPrER 17:
CHAPTER 18:

CHAPTER 19:
CHAPrER 20:

APPENDIX A:

APPENDIX B:

. o • • • • 0 • • • 0

INTRODUCTION. • • • • • • • • • • • • • • 0 • • • •

SYMBOLIC EXPRESSIONS. • • • • • • • • • • • • • • • . .
SYMBOLIC EXPRESSIONS IN LIST NOTATION • • • • 0 • • o •

ON-LINE OPERATION • 0 0 • 0 • • • • 0 • • • • • • • . .
~0.
ELEMENTARY FUNCTIONS. 0 • • • •

LAMBDA NOTATION • • • • • • • •

• 0 • • • • • • • • • •

· • • • 0 0 •

COMPOSITION OF FUNCTIONS. • • • • • • • • • • • • • • •

QUOTE, EVALQUOTE AND LIST 0 • • • • • • • • • • • • • •

D~DE. • • 0 •

PREDICATE FUNCTIONS • • • • • • • • • • • • • 0 • • • •

CONDITIONAL EXPRESSIONS • • • • • 0 •• • • • • • • • •

ARITHMETIC FUNCTIONS. • • • • • • • 0 • • 0 • • • • • •

RECURSIVE FUNCTIONS • • • • • • • • • • • • • • • • • •

THE PROGRAM FEATURE • • • • • • • • • • • • • •
VARIABLES AND THEIR BINDING • • •

INPUT-OUTPUT AND THE SUPERVISOR.

• • • 0 • • • • • • •

·
MACROS. • • •• 0 0 • · . • • • • • • •
FUNCTIONAL ARGUMENTS. • • • • • • • • •
META-LANGUAGE • • • • • • • • • • • • •

EXERCISE ANSWERS. • • 0 0 • • • • • • •

• • • o • • 0 •

• • • • • • 0 0

·
• • • • • • • 0

INDEX •••••• • • • • • • • • • • • • • • . . . • •

17
25

35
39
43
51
59
65
69
73
79
83

91
101

109
119
127
133
139
143
163

"..---

(
s,_

).1 o

o
:'t

o
I~

14 June 1965 9 TM-2337/010/00

CHAPTER 1. INTRODUCTION

LISP is a relatively new and remarkable programming language for instructing
large digital computers. The name comes from the contraction of the words
LISt Processing, which connote the primary data structures LISP is designed to
manipulate. LISP is remarkable in that-it is not only a programming language
for symbolic data processing but also a formal mathematical language. Ideally,
with such formalism, it should be possible to "prove" a LISP program as one
proves a mathematical theorem, thereby simplifying the debugging phase of
program checkout. For knowledgeable LISP programmers this ideal is approached
in practice; however, the mathematical formalism requires a rigorous parenthet
ical syntax (anathema to on-line programmers) that usually results in syn
tactic, rather than semantic, program errors, particularly for beginners.
Careful attention to LISP syntax by the student of this primer, may ease this
difficulty for the beginner.

1.1 HISTORICAL BACKGROUND

LISP is based on a paper by John McCarthy, "Recursive Functions of Symbolic
Expressions and Their Computation by Machine," which was published in
Communications of the ACM, April 1960. Q-32 LISP was implemented by
Robert A. Saunders of Information International, Incorporated, and is
based on the implementation of LISP by Timothy P. Hart for the M-460
computer at Air Force Cambridge Research Labs and the earlier IBM-790
LISP implementa.tion at M.I.T. by a group including John McCarthy, Stephen
B. Russell, Daniel J. Edwards, Paul W. Abrahams, Timothy P. Hart, Michael
1. Levin, Marvin L. Minsky, and others.

These implementations of LISP have been used primarily for symbolic data
processing in such areas as differential and integral calculus, electrical
circuit theory, mathematical logic, game playing, linguistics, heuristic
programming, and other fields of artificial intelligence. Newer implemen
tations,such as Q-32 LISP, have improved arithmetic capability, permitting
reasonably good numerical computation, which extends the domain of LISP
applications to problems requiring a mix of symbolic and numerical data
processing.

1.2 A SIMPLE LISP EXAMPLE

To demonstrate the power of LISP to process symbolic and numeric data, let
us examine a collection of LISP programs for manipulating and evaluating
algebraic equations. These e.re purposely simple LISP examples to keep
confusion to a minimum, alloWing the student to follow the subject matter
eaSily.

10 'lH-2337/0l0/00

LISP represents all data and programs as symbolic expressions called
S-expressions. Furthermore, LISP uses function logic syntactically
represented in Polish prefix notation. For simplicity, here we use
only the LISP arithmetic operators and limit them to two operands, i.e.,

PLUS
DIFFERENCE
TIMES
QUOTIENT

for +
"for -
for *
for /

The following tables demonstrate the equivalence between a.lgebraic expres
sions and their representations a,s LISP S-expressions.

Algebra.ic Expression

a+b
a. - b
a*b
a, / b
a,*x + b'*Y
(a,*x - b*Y)/c*z

S-expression Repre senta,tion

(PLUS A B)
(DIFFERENCE A B)
(TIMES A B)
(QUOTIENT A B)
(PLUS (TIMES A X) (TIMES BY»
(QUOTIENT (DIFFERENCE (TIMm A X) (TIMES B Y»

r',

CJ
p

a*x3 + bX~ + 2x +d
(TIMES C Z» r',

(PLUS (TIMES A (TIMES X (TIMES X X») l,,- •
(PLUS (TIMES B (TIMES X X» 'n,

(PLUS (TIMES 2 X) D»)

As a first example, letts examine a LISP program for computing points on
the curve of the function 2

f(x)=x +2x+5

We can represent the algebraic expression

x2+2x+5

as the S-expression

(PLUS (TIMES X X)(PLUS (TIMES 2 X) 5»

A point on the curve of the function f(x) would then be given as

(x,f(x»

and we can define the LISP function POINT to calculate a point on this
curve.

DEFINE «
(POINT (LAMBDA (X) (LIST X {PLUS (TIMES X X) (PLUS (TIMES 2 X) 5»») » . .

The LISP function DEFINE allows us permanently to define the function POINT
in the system as compiled code on Q-32 LISP and to use it subsequently
whenever desired. The function LIST is an existing LISP function that
lists its arguments, in this case x a.nd f{x). LAMBDA is part of the C\

t..

jJ.~ u 14 June 1965 11 TM-2337/010/00

functional syntax of LISP.

After defining POINT, as given above, we can compute all pairs (x,f(x» by
evaluating POINT with various values of x; e.g.,

POINT (0) ; (0 5)
POINT (1) = (1 8)
POINT (3) = (3 20)
POINT (10) = (10 125)
POINT (15) = (15 260)

DEFINE «
(GRAPH (LAMBDA (L)(MAPCAR L (FUNCTION POINT»»

»
GRAPH is another easily defined function, one that takes a list £ of values
of x and returns a list of points on the curve f(x). The Q-32 LISP
function MAPCAR takes, sequentially, each value of x in i" evaluates POINT
tor that value, and lists all the values computed by POINT; e.g.,

GRAPH «0 1 3 10 15» = «0 5) (1 8) (3 20) (10 125) (15 260»

A more powerful and general program for computing the value of any
algebraic expression f(x) can be easily defined in LISP. For example,
COMPUTE is defined as:

DEFINE «
(COMPUTE (LAMBDA (E L)(EVALl (SUBLIS L E»»

))

COMPUTE is defined as a LIsP function of two arguments e am i,.
The algebraic expression to be evaluated, e, is given in the Polish prefix
notation noted earlier; and £ is a list of pairs of variables and their
numeric values a.s used in the algebraic expression; e. g., for the expression

2
f(x)=x +ax+b
e = (PLUS (TIMES X X)(PLUS (TIMES A X) B»
i, = «X. l)(A . 2)(B . 5»

COMPUTE uses two important LISP functions, SUBLIS and EVALL For each
variable-value pair in i" SUBLIS substitutes the numeric va.lue for the
variable in expression e. SUBLIS returns as its value the new expression
formed by these substitutions. For the expressions e and i, . above, SUBLIS
returns the new expression

(PLUS (TIMES 1 l)(PLUS (TIMES 2 1) 5»
EVALl is an important Q-32 LISP function that evaluates expressions. In
this example, EVALl evaluates the expression returned by SUBLIS and hence
computes the desired value of the expression e for the values given in t.
Thus, COMPUTE is a general program that computes any f(x) written in
Polish prefix notation; e.g.,

14 June 1965 12 TM-2337/0l0/00

COMPUTE «PLUS (TIMES X X)(PLUS (TIMES A X) B»
«X. 2)(A • 3)(B • 100») = 110

1.3 A MORE INTERESTING EXAMPLE

As a more interesting example, let us consider an elementary LISP differ
entiation program. The LISP function DIFF (e x) is to differentiate allY
algebraic expression e with respect to the variable x. DIFF will use the
following differentiation rules:

ax ax = 1

: = 0, (y # x)

d(u + v) _ du + dv
ax -ax ax

d(u*v) = vdu + udv
ax ax ax

(rule 1)

(rule 2)

(rule 3)

(rule 4)

2 For example, if e = 3x+2x = (PLUS (TIMES 3 (TIMES X X» (TIMES 2 X»
we apply rule 3 first with u = 3x2,v = 2x to yield the explicit
expression

(PLUS (DIFF (TIMES 3 (TIMES X X» X)(DIFF (TIMES 2 X) X» (1)'

If we label the elements of e, we may see how the LISP definition for DIFF
operates more clearly.

e = (PLUS (TIMES 3 (TIMES X X» (TIMES 2X»

t -----------------l!i 2nd 3rd

Now applying rule 3 to expreSSion e we get axpression (2)

(PLUS (DIFF(2nd of e) X)(DIFF(3rd of e) X» (2)

which is equivalent to expression (1).

In LISP, the functions CAR, CADR, and CADDR are equivalent to the l~
2~ and 3rd elements of B. list, respectively, and the function QUOTE is
used to name things literally. We can then write expression (2) as an
implicit expression, i.e., an expression to be computed,B,s follows:

(LIST(QUOTE PLUS)(DIFF (CADR E) X)(DIFF (CADDR E) X» (3)

ExpreSSion (3) is an implicit LISP form for the differentiation rule 3.
Expression (4) below is the implicit LISP form for the differentiation
rule 4.

/"

p. o

o

14 June 1965 13

(LIST (QUOTE PLUS)
(LIST (QUOTE TIMES) (CADDR E) (DIFF (CADR E) X»
(LIST (QUOTE TIMES) (CADR E) (DIFF (CADDR E) X»)

TM-2337/0l0/00

(4)

Expressions (3) and (4) are general LISP forms that can differentiate any
arithmetic expression satisfying rules 3 and 4. This genera.lity is what
is meant here by an implicit form.

Let us now consider the total LISP definition for DIFF for all four
differentiation rules, where the algebraic expression e is given in Polish
prefix notation.

DEFINE «
(Dm' (LAMBDA (E X)

(COND «ATOM E)(COND «EQ E X) 1)

»

(T 0»)
«EQ (CAR E) (QUOTE PLUS»
. (LIST (QUOTE PLUS)(DIFF (CADR E) X)(DIFF (CADDR E) X»)
«EQ (CAR E) (QUOTE TIMES»

(LIST (QUOTE PLUS)
(LIST (QUOTE TIMES)(CADDR E)(Dm' (CADR E) X»
(LIST (QUOTE TIMES)(CADR E)(DIFF (CADDR E) X»»

(T (QUOTE UNDEFINED»»)

ATOM is a LISP function that has a Boolean value of true (T) or false (F);
true if its S-expression argument is a simple LISP symbol, called an atom,
and false if its argument is B. non-atomic S-expression. Such Boolean
functions are called predicates in LISP and are used for conditional
branching. The function EQ is also a. LISP predicate that is true if two
atoms are equivalent, i.e., the same atom, and false otherwise.

COND is a. special form for conditional expressions in LISP tha.t has the
format:

If predicate 1 is true, then the va.lue is that of expression 1, else

If predicate 2 is true, then the value is that of expression 2, else, etc.
Conditional expressions may benested a.s is done in the definition of-
DIFF.

If we examine the definition for Dm' above, we see that it is essentially
a conditional expression with three if/then clauses used to segregate the
four differentiation rules. (The first clause has a nested conditional
with two clauses for isolating rules 1 and 2.) The first clause begins
with the predicate ATOM, while clause 2 and clause 3 begin with the predicate
EQ. A fourth clause is provided as an error trap if none of the prior
conditions are satisfied. The definition has the structural form:

14 June 1965 14 TM-2337/010/00

If e is an atom then (if e=x then apply rule 1 else apply rule 2) else - ---- -- .
If 1s't of e = PLUS then apply rule 3, else

If 1st of e = TIMES then apply rule 4, else DIFF is undefined. -- -- --
Examination of the definition for BIFF shows the use of DIFF within
its own definition. We call such practice a recursive definition
and the function DIFF, when executed, will compute by recursion. The
mechanisms of list processing used by LISP encourage the use of recursive
definitions. In DIFF, recursion allows DIFF to be applied concurrently to
the solution of the original problem and to all subproblems necessary in
solving the origina,l problem. For example, the equation

3x2 + 2x

where u=3x2, v=2x is first differentiated by rule 3 to yield

2
d(:V} = ~ + : = d(~ +d(~)

du dv
But each of these terms dx and dx must be further· differentiated by
rule 4, i.e.,

2 2
Term 1 = 3x ; u=3, v=x

then d(u*v) du dv -- ax = "'dx + u-ax
2 = 2 ~ + 3 d(x)

x dx dx

I Term 2 = 2x , u=2, V=X
I

1 then d(u*v) = v:du +ndv
1_.- ax dx dx

=x~ +2dx
dx dx

Fina.lly, by application of rules 1, 2, and 4 once again to these partial
results, we get the total differential

f' (x) = 6x+2

Since we must apply differentiation rules 1, 2, 3, and 4 repeatedly to
each partial result, the use of a recursive definition for DIFF "automatically"
applies these rules to each partia,l result for us, and thereby results in a.
neat, tight expression for differentiating any polynomial expression.

Without exhausting all possible ca.ses, let's walk through the evaluation
of DIFF for one rule for the expression

e = 3x2 + 2x = (PLUS (TIMES 3 (TIMES X X}) (TIMES 2 X»

r. o

o
"1

o
'<

14 June 1965 15

First notice:

1st of e = (CAR E) = PLUS
2nd of e = (CADR E) = (TIMES 3 (TIMES X X»
3rd of e = (CADDR E) = (TIMES 2 X)

We enter COND and ask, Ills e an atom? II 1. e., (ATOM E)

TM-2337/010/00

IINo, e is a non-atomic S-expression. 1I So we then ask, Ills PLUS the 1st of e?1I
i.e., (EQ (CAR E) (QUOTE PLUS»
IIYes, (CAR E) is pillS.1I Therefore, we app~ rule 3 and evaluate

(LIST (QUOTE PLUS)(DIFF (CADR E) X)(DIFF (CADDR E) X»

which yields, by rule 3,

(PLUS(DIFF (TIMES 3 (TIMES X X)} X) ,
(DIFF (TIMES 2 X) X» = +

To solve this expression completely, we need to evaluate DIFF of the
partial results. We shall not do so here; however, the technique is
exactly that of the above. The final result of DIFF yields the expression

(PLUS (PLUS (TIMES (TDmlS X X) 0)
(TIMES 3 (PLUS (TIMES X 1) (T:rM&S X l)}»

(PLUS (TIMES X O) (TIMES 2 l}}) = 6x +2

1.4 ORGANIZATION OF THIS PRIMER

LISP is designed to allow expressions of increasing complexity and generality
to be evaluated by the computer. This primer leads the student to an
appreciation of this by building new concepts upon prior ones and thereby
expanding the domain of LISP expressions step-by-step_

Starting simply,with a formal definition of LISP S-expressions, the domain
is extended by the introduction of LAMBDA expressions, the fundamental
functional syntax of LISP. After the introduction of numbers, composition
of functions is presented as a primary capability of the langul:ige that
allows concatenation of existing functions into larger functions. Condi
tional expressions are expla.ined to give greater flexibility to the
increasing functional domain.

During his progress through this primer, the student is exposed to a
variety of basic system functions and arithmetic and predicate functions,
CAR, CDR, CONS, LIST, QUOTE, and DEFINE. Arriving at this pOint, recur
sion is introduced. LISP is designed to make recursion easy, as
recursive definitions are a. significant addition to the domain of LISP
functional expressions. Ina.smuch a,s recursion is often costly in system
operation, LISP provides the PROG feature. The PROG fea,ture is discussed

--_._----------_ ... _--_ ... _--

14 June 1965 16 TM-2337/010/00

and demonstrated to show the ALGOL-like statement capability within LISP
that permits iteration in lieu of recursion.

Beyond Chapter 15 the primer is devoted to further extending the functional
domain by the use of macros and functionals, i.e., functj.ons that take
other functions as arguments. Also this portion of the primer gives a
detailed discussion of the internal mechanics of the Q-32 LISP system
concerned with program execution under the Evalquote supervisor, input
output, and the binding of values to variables in the evaluation of an
expression.

A word of caution before we start. LISP is not an easy language to learn for
most knowledgeable algebraic language programmers because of the alien
functional syntax. However, LISP is consistent in this syntax. As
expressions get more complex, they still retain the same syntactic form.
If the student pays careful attention to this fact, learning LISP will be
a much easier task. The carefully graduated exercises should help in this
respect.

p.

CI
'"

o
«

14 June 1965 17 TM-2337/0l0/00

CHAPTER 2. SYMBOLIC EXPRESSIONS

All programs and data in the programming language are in the form of symbolic
expressions usually referred to as S-expressions. S-expressions are of indefi
nite length and have a branching binary tree structure, so that significant
sub-expressions can be readily isolated. The bulk of available memory is used
for storing S-expressions in list-structure form. This type of memory organi
zation permits the system to free the programmer from the necessity of memory
storage allocation for different sections of his program or data. It also makes
LISP programs and data homogeneous; 1. e., programs can be treated as data (and
vice versa) by other programs.

2.1 ATOMIC SYMBOLS

The most elementary type of S-expression is called an atomic symbol, or
an atom. Atoms may be numeric or non-numeric. We will discuss numbers
later.-

Definition: A non-numeric atomic symbol on the Q-32 is a string of
capital letters and numbers of indefinite length; the
first chara.cter being a letter.

Examples: A
APPLE
PART2
EXTRALONGSTRINGOFLETTERS
AIB66x4zz

These symbols are called atomic because they are taken as a whole and
are not viewed as individua.l chara,cters. Thus A, B, and AB are three
distinct and unrelated atomic symbols.

2.2 DOT NOTATION

All non-atomic S-expressions are built of atomic symbols and the
punctuation marks:

These larger S-expressions (non-atomic S-expressions) are always paren
thesized and always have two parts, a left part and a right part. A dot
fl." is used to delimit the two halves. For example, the S-expression

(A • B)

14 June 1965 18 TM-2337/0l0/00

has atomic symbol A as its left pa,rt and atomic symbol B a.s its right
part. Thus a non-atomic S-expression is always a "dotted pair."

Definition: An S-expression is either:

Examples:

1. an atom, e.g., Al
2. a dotted pair o~ atoms, e.g., (A • B)
3. a dotted pair of S-expressions, e.g., { (A • B) • C)

It is composed of these elements in the following order:

a left parenthesis,
an S-expression,
a dot,
B,n S-expression, and
a right pa.renthesis.

Notice that this definition is recursive since an S-expression
is defined in terms of itself.

ATOM
(A • B)
(A • ATOM)
{ATOMl • (BETA. C»
({u • V) • X)
({U 0 V) • (X • (Y • Z»)

2 • 3 GRAPHICAL REPRESENTATION OF DOTTED PAIRS

All non-atomic S-expressions are internally represented as a binary tree
structure, i.e., a tree structure with but two branches at each node. It
is often helpful to the student to "see" the graphical representation of
this tree structure.

We assume the following graphical symbols and their associated meanings:

Symbol

atem names

Meaning

A graphical node with a left and right branch.

A pOinter that is the interne.l address of the next element
of the graph.

The internal address' to which the a.tom named is assigned.

--_ .. _---_._ --- ----

,.

b

o

14 June 1965 19 TM-2337/010/00

First the graph of

(A • B)

is given by

where the left part of the dotted pair, atom A, is named in the left branch
of the node, and the right part of the dotted pair, atom B, is named in
the right branch of the node.

The graph of

((A • B) • c)

is slightly more complicated, namely

In this case, the highest node's left branch paints to the lower node,
while the highest node's right branch contains the name of atom C. The
lower node is exactly the graph of

(A • B)

shown above because it is the same S-expression. In this example, however,
it is a subexpression of the S-expression

((A • B) • c)

We see here graphically the meaning of "subexpression. 1I It is an
S-expression at a "lower level" and appears in dot notation as a more
deeply nested S-expression.

14 June 1965 20 TM-2337/010/00

Examples:

S=expression

(A • (B • C))

((A • B) • (C • D))

(A • (B . (C • D)))

('
,,-

"\

«(A. B) • C) . D)

----_. ---- ----------- ----

- --------------------------------

b 14 June 1965 21 TM-2337/010/00

««A. B) . C) . D) . (DD • (CC • (BB • AA»»

««A. B) . (A • B» • (A • B» • (A • B)

o
!

o .

14 June 1965 22 TM-2337/010/00

««A. B) • (C • D» • (E • F» • (G • «H • I) • (J • K»»
1234 4 4 43 3 32 2 34 '4 4 4321

(top level) . Levell

In this example we have numbered the parentheses (a tutororial aid that is
not a legal part of S-expressions) and labeled the graph nodes according

Level 2

Level 3

Level 4

to their subexpression depth. The correspondence between a parenthesis
subscript and a graph level is one-to-one and clearly illustrates the
structural meaning of the S-expression. With more complicated S-expressions
we have a deeper and larger graph. Thus; we can see that S-expressions
can be of unlimited size and complexity, constrained only by the physical
memory capacity of the computer.

2.4 EXERCISES

Which of the following are atomic symbols?

1. ATOM .
2. 1234A
3. AIB2C3
4. NIL
5· (x)
6. LISP
7. Q32
8. ONE
9· (MY • NAME)

10. 2TIMES

b

o
,-"'

,..

o ..

14 June 1965

Identify the dotted pairs.

11-
12.
13.
14.
15·

A • B
X.Y. Z
(YOU • AND •
(X • Y)
(NIL • NIL)

ME)

Graph these dotted pairs.

16. (ONE. (TWO. THREE»

(Page ~~ Blank)

17. «(THREE. NIL) • TWO) • ONE)
18. «A. B) • (B • (c • D»)

What S-expressions are these structures?

19·

20.

TM-2337/010/00

c3

o

o
~

14 June 1965 25 'l'M-2337/0l0/00

CHAPTER 3. SYMBOLIC EXPRESSIONS IN LIST NOTATION

Dot notation is necessary and sufficient to represent all list structures in
LISP, an~ in fac~ is the fundamental conception upon which the programming
language is built. However, it leaves much to be desired as a convenient
programming notation for S-expressions, particularly the excess of parentheses
and do~s. List notation was invented to improve this situation and simplify
the readability and writability of S-expressions.

For example, the li st (A BCD)

is an S-expression in list notation for the same S-expression

(A • (B • (C • (D. NIL»»

written in dot notation. The atom NIL has special significance and will be
discussed shortly.

3.1 LIST ELEMENTS

A list may have sublists, and these sublists may also have sublists.
is usually convenient to speak of "elements" of a list, or sublist.
used in this primer a list element is either an atom or a sublist.
a sublist has sublists and atoms, these are elements of the sublist.

For example (A B C)

is a list with three elements A, Band C.

Whereas (A (B C»

is a'list of the two elements, A and (B C).

The second element (B C)

is a sublist of two elements, Band C.

It
As
When

14 June 1965 26 TM~2337/010/00

Historically, the separator for elements of lists was the comma; however,
one or more blanks are now generally u3ed and either is acceptable.

Thus the two S-expressions

and

(A BCD)

(A,B,C,D)

are entirely equivalent lists in LISP.

The student should be cautioned that though much of the LISP programming
language is written as s-expressions in list notation, the basis for these
S-expressions is always dot notation. In fact all S-expressions in list
notation can be transformed into their dots notation equivalents, but not all
S-expressions in dot notation can be transformed into list notation.
This will be evident after we examine the rules and identities required
for translating between notations.

3.2 NIL

About the turn of the century theoretical physics was in a dilemma. Was
light emission a wave or a particle phenomenon? Ample evidence existed to
support either school of thought. Physics resolved its dilemma by
considering light as a wavicle.

LISP also has a dile~ resolved in a similar fashion. The dilemma
is what to do with an empty list, i.e.,

()

The solution is to define an atom, called NIL, that is entirely
equivalent to the empty list. Like the wavicle of physics, NIL is
simultaneously an atom and a list. LISP programmers can use either
fo~ when appropriate, as they are identically represente~ internally.

Consistent with this definition of NIL, we use NIL as a terminator of
all lists. For example, the list

(A B C)

has three elements, A, B, and C. If we walk down this list removing
each element we encounter, the list gets shorter as follows:

(A B C)
(B C)
(C)
()

c

b

o

o .

14 June 1965 21 TM-2337/0l0/00

After we have removed the last element C, we are at the end of the list
and what remains is the empty list, NIL. We consider NIL, not as an
element of the list, but as the ter,minator of the list.

3. 3 TRANSFORM: LIST NOTATION ID roT NOTATION

All nonatomic S-expressions are defined as dotted pairs. It is therefore
possible to transfor,m an S-expression in list notation to its equivalent
form in dot notation. The following rules and identities define the
transformation.

Identity 1: A list of one atom is a dotted pair of the atom and NIL
with NIL always the right part of the dotted pair, i.e.,

Examples:

(atom) == (atom. NIL)

or equivalently

(atom) - (atom. ())

(A) == (A • NIL)
(EXTRALONGATOM) == (EXTRALONGAIDM . NIL)

(NIL) } == { (NIL. NIL)

«)) «) . ())
When transforming a multi-element list to its equivalent form in dot
notation we begin by composing the dot notation equivalent for only the
top level elements of the list. We then compose the dot notation
equivalent for each sublist, and so on until the list is completely
transfor,med to dot notation. All we need then is a rule for transforming
a simple list to its dot notation equivalent, and repeating that rule
for all sublists. We can now state that rule.

Rule 1: The first (left-most) list element when transformed to
dot notation is always the left part of a dotted pair.
If the first element is also the last element of the list,
by identity 1 it is dotted with NIL. If the first element
is not the last element of the list, then the right part
of the dotted pair is the list for,med by removing the first
element. Then apply rule 1 to the right part of the dotted
pair.

For example, given the list

(A B C)

14 June 1965

we apply rule 1 and get·

Since

28

(A • (B C))

(B C)

TM-2337/0l0/00

is the right part of the dotted pair and is itself a list, we apply
rule 1 again to get

(A • (B • (C)))

Again, the right part is a list (C) so we apply rule 1 once more. We
note, however, that the list (C) satisfies identity 1 and is equivalent to

(C • NIL)

Hence the final S-expression is given by

(A • (B • (C • NIL»)

For another example, the list

(A (B C) D)

yields these partial expansions for each application of rule 1.

(A • «B C) D»)
(A • «B C) • (D»)
(A • « Be) • (D • NIL»)

Now expanding the sublist (B C) we find

Examples:

(A B C)
«A B)C)
(A B (C D»
«A))
«NIL))
«))
(A (B • C»

(A • «B. (C». (D • NIL»)
(A • «B • (C • NIL» • (D • NIL»)

(A • (B . (C • NIL»)
((A • (B • NIL» • (c • NIL»
(A • (B • «C. (D • NIL» • NIL»)
«A. NIL). NIL)
«NIL. NIL) • NIL)
(NIL. NIL)
(A • « B • C) • NIL»

~o

o
~

o .

-_._. _ ... _. __ ._._----------_ .. _----------------------------

14 June 1965 29 TM-2337/0l0/00

From the above examples one can see that identity 1 can be stated
alternatively as: When converting from list to dot notation, the
only atom that appears adjacent to a right parenthesis is NIL.

3.4 TRANSFORM: roT NOTATION TO LIST NOTATION

It is always possible to convert list notation to dot notation since
S-expressions are defined by dot notation. However, we cannot always
convert dot notation to list notation. For example, we cannot so

transform (A • B)

The rule that is in effect derives from identity 1.

Rule 2: Only those dotted pairs in which the only atom adjacent
to a right parenthesis is NIL can be represented in list
notation.

For complicated dotted'pairs the following procedure can be
followed starting With the most nested dotted pair:

1. If the right part of the dotted pair is an atom and not NIL,
conversion to list notation is impossible.

2. If the right part of the dotted pair is non-atomic (i.e., a
list or a dotted pair) or NIL (treat NIL here as (», then

a) delete the last right parenthesis of the dotted pair
b) delete the dot
c) delete the first left parenthesis of the right part; The left

part thereby becomes the first element of the list
d) repeat the procedure on the next higher level dotted pairs.

For example, given the dotted pair

(A • (B • NIL»

the most nested dotted pair is

(B • NIL)

Representing NIL by () and applying the procedure above we find

(A • (B»

Applying the procedureasain we get the list

(A B)

14 June 1965 30 TM-2337/0l0/00

For the case

(A . «B. C) . (D . NIL»)

repeated application of the procedure yields these expressions

(A • «B • C) • (D»)
(A. «B. C) D»
(A (B • C) D)

We can reduce this list no further as the second element of the list

(B • C)

is a dotted pair that cannot be represented as a list. We call the
expression

,
(A (B • C) D)

a list, but recognize that it is in mixed notation. Mixed notation is
perfectly acceptable to Q-32 LISP and is quite cammon in LISP
S-expressions.

3.5 "GRAPHICAL REPRESENTATION OF LISTS

S-expressions written in list notation can be transformed into identical
S-expressions in dot notationj graphical representation of S-expressions
is covered in section 2.3. This section Will review that material but
with the introduction of NIL.

Inasmuch as NIL is an atom, we need not introduce any new symbology.
However, since we use NIL as a list terminator, a diagonal slash is
often preferred and is adopted here. Thus the graph for

(A • NIL)

is

A IL1
But

(A • NIL) == (A)

so the graph also shows a single element list.

For more complicated lists we shall show the list, its dotted pair
equivalence, and its graph.

-----_ ... _-------._---.- ------- -_ .. __ ._--

o~

o
~"

- -----------.------.---.. --------------.. ------.-.~~ ~~--~~~~~~~-.- ._--

,'1
14 June 1965 31 TM-2337/010/00 0

Examples:

List Dotted Pair Graph

(A B e) (A • (B . (e • NIL»)

«A) B e) «A. NIL) . (B . (e • NIL»)

o

(A (B) e) (A • «B. NIL) • (c • NIL»}

(A B (e» (A • (B • «e. NIL) • NIL»)

o ..

14 June 1965 'l'M.-2337/010/00
"'\ o

List Dotted Pair Graph

«A) (B) (e» «A • NIL) • «B ~ NIL). «e • NIL) . NIL»)

«(A B») «(A. (B • NIL» . NIL) . NIL)

o
'"'

------------------- ---------------------

33 TM-2337/010!00

3.6 EXERCISES

Transform these lists to their fully expanded dot notation equivalents.

1. (ATOM)
2. «LISP»
3. «(MORE YET»)
4. (HOW ABOUT THIS)
5. (DONT (GET (FOOLED»)

Now go the other way--dotted pairs to lists.

6. (Xl. NIL)
7. (NIL. (Xl • NIL»
8. (KNOW. (THY • (SELF. NIL»)
9. «BEFORE. (AND. (AFrER • NIL») • NIL)

10. (A. «(B. (C • NI~» • NIL) • NIL»
.-

To what S-expressions do these graphs correspond?

o 11.

,..

12.

13.

o

14 June· 1965 FJ.'M.-2337/010/00

14.

15·

fI' o

o
'"

o

14 June 1965 35 TM-2337/010/00

CHAPTER 4. ON-LINE OPERATION

If you're still with me we can now try some exercises under time-sharing.
Those familiar With TSS should LOAD LISP and then skip to paragraph 4.1.
The uninitiated should perform steps 1 through 5,in orde; as noted below.

1. 1I@1I is the symbol used herein to indicate you must depress the
carria return key. This transmits your input to the Time-Sharing
System TSS Executive. Nothing happens until this key is depressed.

2. 11$11 is the symbol which prefixes all TSS output messages.

3. If you err (which is human) you may cancel the whole line by entering
an exclamation point (!). You may also cancel the last uncancelled

'4.1

character for each depression of the rubout key. (~ depressions cancels
the n last characters including blanks.)

Enter Literally

!LOGTIl 1234 SDC23 LISp8

$LOAD x:y 2.

$WAIT 3.
$LOAD x:y

$NO LOAD DRUMS FULL 4.

$WAIT 5·
$NO LOAD DRUMS FULL

Q-32 LISP AMENITIES

Comment

Announces your presence to TSS
and requests LISP to be loaded.
For 1234 use your man number,
and for SDC23 use your work
order number.

Best of four possible TSS responses
to step 1 j x:y is your channe 1
number. Skip to paragraph 4.1.

As good as step 2. Skip to
paragraph 4.1.

Very bad! ~stem is too busy.
Type QUIT \:)and try again later.

As bad as step 4. Type QUIT @
and try again later.

We now have LISP loaded and available at the teletype. Type! GO ~.
LISP will "speak" to you and tell you the date, time, Q-32 LISP model
number and that it is ready. But it is not ready until it has rung the
bell tWice. This is important since it is your only cue that LISP is
waiting for your input. Q-32 LISP always rings the bell when it is
ready for more input.

14 June 1965 TM-2337/0l0/00

LISP is notoriously parenthesis sensitive so take care to parenthesize
properly. You may use as many blanks or commas as you wish to delimit
atoms. Left and right parentheses are always delimiters so blanks or
commas before or after them are optional. Dot also acts as a delimiter
between non-numeric atoms so again blanks or commas are optional.
However, as we shall see later, numbers are atomic symbols and ambiguity
between a real (floating point) number and a dotted pair can result .if
the dot is not set off by blanks. Thus, it is a good habit always to
surround the dot with blanks.

4.2 EXERCISE PREAMBLE

Q-32 LISP accepts both list and dot notation, but always outputs in
simplest list notation. Thus, you can use it to test your ansWers to
the following exercises,as it will transform dot notation into list
notation. For the time bein~always enter your inputs in the following
form:

PRINT (s)

where s is the S-expression you wish to try. LISP will print your
ans,,,er twice, for reas()ns that will be clear later on, and then ring
the bell for the next input, or it will print out an error message and
ring the bell. For example, enter problem 1 of the exercises below as:

PRINT ((X. Y))

where in this case s equals

(X • Y)

4.3 EXERCISES

Which of the following are S-expressions?

1. (X. Y)
2. SDC
3. (YOURFIRSTNAME. YOURLAsmAME)
4. (YOURFIRSTNAME YOURLASTNAME)
5. «YOURFIRSTNAME:) (YOURLASTNAME»
6. «YOURFIRSTNAME). (YOURLASTNAME»
7. (Q32. TIME·. SHARING) . .
8. «AM. I) • (SMART. NIL»
9. NIL ..

10 • (((« »»)
How about this one;

11. «(z. Z) • B)

I:l,

o

o
:"

/> o

o

---- ~ --~-------- ---.~.~ ~---------- --~--~-----

14 June 1965 37
(Page 38 Blank)

TM-2337/010/00

LISP should ring the bell rather than print an answer since #11 is
not an S-expression because it is short one right parenthesis. Type
in this missing parenthesis and see if it prints.

Finally, try this:

12 . (AN. EXTRALON<€)
ATOMSTRING)

Q-32 LISP ignores line boundaries, thereby allowing atoms, and
S-expressions to be "split" across lines. (The carriage return is
ignored.) If you end an input to LISP with an atomic symbol, most
frequently NIL, always insert a blank before the carriage return to
delimit the atom, otherwise LISP will ring the bell on the following
line believing there are more characters to be entered. If this
happens, just enter a blank, return carriage, and all will be OK.

Convert the following S-expressions to list notation if possible.
Put the expression in the simplest list form. Use mixed notation
if necessary. Check your answers on the computer using PRINT as
above.

13. (A. NIL)
14. (NIL. NIL)
15. (A. (B • (C • NIL)))
16. (A. (B • (C • D)))
17. «A (B. NIL) • NIL)
18. «A. NIL) • «B. NIL) • NIL)
19. «A. (B • NIL) • «C • NIL) • NIL»)
20. «X. NIL) • «NIL. Y) . NIL»

,~

o

o ...

o

14 June 1965 39 rrH-2337/010/00

CHAPTER 5. NUMBERS

In Q-32 LISP, numbers are atoms and may be used in S-expressions exactly as the
previously defined atomic symbols. Thus

(1 2 3 A 4 B 5)

or

(ALPHA 960)

are legal S-expressions.

Integer, octal, and floating point numbers are all legal LISP numerical t,ypes,
and in arithmetic functions mixed data types are converted properly by the LISP
system.

5.1 INTEGER NUMBERS

The only fixed-point numbers are integers, positive or negative, with or
without a positive scale factor. The scale factor is denoted by the
letter E followed by a blank, zero, or any positive integer.
Negative scaling is illegal and not meaningful for fixed-point numbers .
Thus

is unacceptable for Q-32 LISP.

Examples:
LISP Number

5.2 OCTAL NUMBERS

123
+123E0
-321E
-1E3
53EO

796E-l7

Meaning

+123
+123
-321 3
-lXlO = -1000
+53

Integers may also be represented in octal. Octal numbers are denoted
by an optional Sign followed by octal digits followed by the letter Q

. followed by a blank, a zero, or any.positive decimal integer. The Q
~ be present. The decimal integer following Q is a scale factor
shOwing the power of eight. Negative scale factors are illegal and
not meaningful for fixed-point numbers whether represented in octal or
deCimal.

14 June i965 . 40

Thus

75757Q-4

is unacceptable for ,Q~32 LISP.

The largest octal number allowed is the 16 digit

7777777777777777Q = -0

or a word of all one's on the Q-32.

Examples:

LISP Number

123Q

123Q2
777Q3

-123Q
2Q8

3Q10

5.3 FU>ATING-POINT NUMBERS

Meaning

(123)8

(12300) 8

(777000)8

(7777777777777654)8
(200000000)8

(30000000000)8

TM-2337/0l0/00

Numbers in Q-32 LISP are always integers unless they contain a decimal
point. Floating-point numbers, therefore, must contain a decimal point.
The decimal point must not be in the first character position. Floating
point numbers may be positive or negative, with or without a positive or
negative scale factor. The scale factor is always denoted by the letter
E and may be followed by a blank, zero, or any positive or negative integer.

Examples:

LISP Number

3.14159
+1.0E-3
-976.003E3
0.273E+2
23. E .. l
17·

Meaning

+3.14159
+0.001
-976003.00
+27.30
+2.3

. +17.0

Float:f,ng-po1nt numbers, are accurate ,to 10 significant figures. Remember,
a floating-point numbermus.t n01;begin With ~ decimal point.

Thus

or

.123

• 123E+3

are unacceptable for Q-32 LISP.

---~---'------. -- ------_ .. _-
-~----- -~-------~---- -

."\

o

0,

",. o

o
".

o

14 June 1965 41
(Page 42 Blank)

TM-2337 /010/00

5.4 DECIMAL POINT OR DOTTED PAIR RESOLUTION

When floating-point numbers are used in S-expressions, the computer can be
confused as to the meaning of the period. Is it treated as a decimal
point or as the dot in a dotted pair? To eliminate confusion and avoid
ambiguity always surround the dot with blanks when writing a dotted pair,
and never surround the decimal point with blanks when writing a floating
point number.

The LISP system always assumes the first period embedded in a numerical
field is a decimal point. A second period embedded in a numerical field
will be taken as the dot for a dotted pair. For instance, if the
expression

(1.2.3.4)

were given to Q-32 LISP the system would consider the expression as the
dotted pair of two floating-point numbers, namely

(1.2 . 3.4)

5.5 EXERCISES (Use the computer with PRINT to check your answers.)

Which of the following are S-expressions?

1. (Q. lQ)
2 • (5E. (E . NIL»
3· (E5. 5E)
4. (l.E. lQ)
5. ANFSQ32
6. 4.4
7. (A·9)
8. (B.9.9)
9· (9.9·9)

10. (1.23 77Q3 27 27E5 0.321E-7 ALPHA Q.32)

ll.
12.
13·
14.
15·

Convert the following to list notation, if possible.

(99.9 • NIL)
(NIL. 99.9)
«PI) • 3.l4l59EO • NIL)
(5 • (5.5 • (5Q5 • (55.0E-l . (5E2 • NIL»»)
«13.13 • NIL) • «25Q2 . NIL) . NIL»

p

o

o ,.

o

--------.----.~---

14 June 1965 'lK-2337/010/ 00

CHAPrER 6. ELEMENTARY ruNCTIONS

LISP is a language for manipulation of S-expressions. Fundamental to this
manipulation is the ability to build S-eXpressions from smaller S-expressions
and produce subexpressions from a given S-expression. These abilities are
possible with the elementary LISP functions CONS, CAR, and CDR.

6.1 RAPPORT WITH ffiE SUPERVISOR

Before we examine the elementary functions we must understand a baSic
element of the syntax of the communication language accepted by the Q-32
LISP system. Chapter 17 covers the subject in greater detail. At this
juncture we will only consider the requisite parenthesization.

When we type input to the Q-32 LISP system, we are communicating with a
supervisor program that always expects two inputs, both S-expressions.
If we call this pair of S-expressions sl and s2' respectively, the first
S-expression sl is always treated by the supervisor as:

1. the name ofa function, or
2. an S-expression that behaves as a function.

(We will focus on the fo~er case here, and examine the latter case in
subsequent chapters.) Since functions have arguments, the second
S-expression s2 is always a list of the arguments for the function
whose name is the S-expression sl.

Consider the trigonometric function

If SIN were a LISP function, we would write

sm (90)

where the first S-expression sl is Smand the second S-expression s2 is
the list (90)--the list of the single argument required by sm.

As another example, in LISP the function PLUS perfo~s the arithmetic
additionqf its arguments. We can compute the sum of three numbers by
giving the following p8.ir of S-expressions to the supervisor:

PLUS (1 2 3)

14 June 1965 44 TM-2337!OlO!OO

The S-expression sl is the name of the function PLUS. The S-expression s2
is a list with three elements (i.e., 1,2,3) each an argument for the
fun"tion PLUS.

6.2 CONS -
OONS refers to "the construct of" and is the function that is used to
bUild S-expressions. It has two arguments that are both S-expressions.

Definition: The OONS of two S-expressions is the dotted pair of these
arguments, with the first argument the left part and the
second argument the right part of the dotted pair.

For example, given the arguments A and B we can OONS them by addressing
the supervisor with

CONS (A B)
-..-' -..-'

which means (A • B)

If the arguments were the lists (A) and (B) we would write

CONS ((A) (B))

sl s2

which is equivalent to «A) • (B» = «A) B)

Examples:

CONS(M N) = (M • N)
CONS«A • B) C) = «. A .• B) • C)
OONS(A (B CD» = (A • (B CD» = (A BCD)

6.3 CAR

CAR is a LISP function used to break S-expressions into subexpressions.
Its meaning is lithe first of." It has one argument, a non-atomic
S-expression (i.e., a dotted pair, or a list).

Defini tion: The CAR of a non-atomic S-expression is the left part of the
S~expression when represented in dot notation or the first
element of the S-expression when represented in list notation.
The CAR of an atom is undefined.

For example, the CAR of the argument (M • N) would be written

CAR ((M • N))
--.,...-..- -----

which is equivalent to M

'"
C 1

o

IV-

o

o

o
~

~-------~- ----- ~-- --~- -- -~-~----~---------

14 June 1965

Examples:

6.4 CDR

CAR«A. B» = A
CAR«(A . B) • C» = (A . B)
CAR«A BCD» = A
CAR«(A B C) DE» = (A B C)
CAR (ATOM) = undefined for atoms

TM-2337/0l0!OO

CDR is another LISP function used to break S-expressions into sub-expressions.
Its meaning is "the rest of." It has one argwnent, a non-atomic S-expression
similar to that accepted by CAR. CAR of a given non-atomic S-expression
yields the first elem~nt as an S-expression and CDR yields the rest of
that S-expression after the CAR is removed.

,
Definition: The CDR of a non-atomic S-expression is the right part of

the S-expression when represented in dot notation or the
balance of ,the S-expression after the first element is
removed when represented in list notation. The CDR of an
atom is undefined.

For exampl~, the CDR of the argument (M • N) would be written

CDR ((M • N)) ---- ----s\ s
il. 2
\

which is equivalent to N

Do not confuse list and dot notation when evaluating the CDR. If the
CAR of list

(A B)

is removed, the remainder is s~ill a ~

, (B)

If I remove the CAR of the dotted pair

I have the atom B.

Thus

(A . B)

CAR «A .' B» = A
CDR «A. ,B» = B
CAR «A B» = A
CDR «A B n = (B)

14 June 1965

Examples:

46

CDR«A • B» = B
CDR«A • (ATOM))) = (ATOM)
CDR«A BCD)) = (B C D)
CDR«(A B C) DE)) = (D E)
CDR(NIL) = undefined for atoms

TM-2337/010/00

Note: . The CDR of a list with only one element is the atomic symbol NIL.
For example:

CDR«ATOM) = () = NIL

6. 5 GRAPHICAL INTERPRETATION OF CAR AND CDR

In the previous Chapters we examined the graphs of LISP S-expressions .and
noted the binary tree structure of these expressions. Let us now examine
the meaning of the elementary functions that operate on these tree
structures.

If someone asked for directions to get to your home, you would most
naturally couch such directions in terms of city blocks, and house numbers.
In LISP, we are faced with a similar problem: to provide the LISP system
with directions for "traveling" through the binary-tree-structured
representation of an S-expression. We couch such directions in terms of
CARis and CDRIS, which designate the appropriate "turn" at each binary "fork"
in the "road."

For example, given the S-expression

«A B) C D) = «A. (B • NIL» • (C • (D • NIL»)

its graph is given by

'" o

o
"'I

" o

o

o

14 June 1965

Now the CAR and CDR of this S-expression yield

CAR («A B) C D)) = (A B)
CDR («A B) C D)) = (C D)

In the graph we note that

(A B)

is the left branCh of the top node and

(C D)

TM-2337/0 l 0/ 00

is the right branch. The connecting arrows of this graph were called
"pointers" in Chapter 2.

We see now that they are pointers to the CAR and CDR. We often say they
point to the "CAR chain" or "CDR chain" of the structure. If we take the
CAR and CDR repeatedly at each node, we can completely "traverse" the
S-expression, and reach any sub-expression or atom of the original
S-expression. The folloWing graph is completely labeled according to
these CAR and CDR directions, and the "location names" of each node.

- - - - - - - - - «A B) C D)

(A B) - - ...; - - - -(C D)

. (B) - - - - - - - - - -(D)

To get from the original S-expression to the atom D we require the
following directions:

1. CDR («A B) C D)) = (C D)
2. CDR of the output of (1), i.e.,

. CDR ((C :0))= (D)
3. CAR of the output of (2), i.e.,

CAR ((D)) = D

A shorthand for this could be

CADDR («A B) C D)) = D

14 June 1965 48 TM-2337/010/00

a.nd in fact is. Much of LISP programming is composing "directions"
of this variety. We sha.ll cover this fully as the subject "composition
of functions" in Chapter 8. Meanwhile problems 21-31 of this chapter give
us some exerci se in 11 finding our way home."

6.6 EXERCISES

Evaluate the following functions and then test your results by entering
each problem, exactly as shown, to Q-32 LISP.

I. CAR((LEFT. RIGHT»
2. CDR«LEFT • RIGHT»
3· CONS (LEFT RIGHT)
4. CAR((A BCD»
5· CARff(A) BCD))
6. CAR A (B CD»)
7· CAR((A • B) C D E»
8. CDR«THIS SENTENCE IS A LIST»
9· CDR~ (HOW (ABOUT THIS»)

10. CDR «OOT • PAIR1) (OOT . PAIR2»)
lI. CONS~CAR CDR)
12. CDR(EMPTY»
13. CDR((CAR CDR»
14. CAR«(CAR) CDR»
15· CONS(A (»
16. CONS (75Q 100)
17· CAR(~l • (2.0 . (30.0E-l 77Q»»
18. CDR(1 • (2.0 • (30.0E-1 • 77Q»»
19· CONS«A • B) NIL)
20. CAR((((((ALPHA))))))

Note: Problems 1, 2, and 3 above demonstrate the relationShip among
CONS, CAR, and CDRo Can you state this relationship?

List from right to left the sequence of CAR-CDR LISP functions whic~when each
is applied to the value of the prior function, will find the "A" in each of
the following S-expressions. For example:

CAR CDR

is the answer for the argument (C A T) by the folloWing reasoning:

CDR ((C A T)) = (A T)

then

CAR ((A T)) = A

Q.E. D.

C
"',

'" o

o

o

14 June 1965 49
(Page 50 Blank)

'IN-2337/0l0/ 00

21. «C AT»
22. «A»
23. (M ART)
24. (B. A)
25. (S MAR T)
26. (1 2Q 3E3 A)
27. «A. B) (C • D»
28. «B. A) (C • D»
29. «(C» «A»)
30. «X. Y) (A • B»
31. «X. Y) (B A»

Test your answers on the computer as follows:

1. Make an abbreviation for each of your lists of multiple CAR's and
CDR's by fo~ing a function name that begins WithC and ends with
R, and has as many A's and D's between them to correspond to each
CAR and CD~respectivel~ in your list.

2. Apply that function to its corresponding argument.

For the argument (C A T), above we found the answer CAR CDR.

CAR CDR = CADR

Now we can try CADR directly on the argument with

CADR ((C A T)) = A

Note: Q-32 LISP has these abbreviations available only up to ~ deep
(which is sufficient for problems 21 through 31), e.g., CAAAAR,
CAAADR , , , CADDDR, CDDDDR.

...

· , o

o
,'"

o

14 June 1965 51 'IM-2337/010/00

CHAPTER 7. LAMBDA NOTATION

In LISP 1. 5, as in other programming languages, we wish to write programs that
are parameterized and can compute answers only after values have been assigned
to the parameters of the program. However, in LISP 1.5, we do not use the
syntax and program structure of algebraLc languages. LISP programs are
conceived and written with mathematical rigor based upon the forma.lism
of function theory. As such, parameters are called variables, subroutines
are analogous to "forms", procedures are functions and functional expressions,
and computation is a process of "evaluationll of S-expressions.

7.1 FORMS AND FUNCTIONS

Given the algebraic expression

2
Y + x

evaluate the expression for the values 3 and 4.

For this problem statement, we immediately see a notational problem. Is
x=3 and y=4, or vice versa? The value of the expression changes with our
assumption. To resolve this ambiguity we need a notation that explicitly
states the correspondence between variables and their values. LISP uses
such a notation, the LAMBDA notation of Alonzo Church.*

Church's LAMBDA notation asserts that the expression

2
y + x

is a form. In LISP 1.5 this form. would be written as

(PLUS (TIMES Y Y) X)

Furthermore, . Church's LAMBDA notation asserts that

f = X(x,y)(y2 + x)

is a function named "f," since it provides the two necessary ingredients for
a function:

1. a form to be evaluated, and
2. a correspondence between the variables of the form. and the

arguments of the function.

* A. Church, The Calculi of LAMBDA Conversion, Princeton University Press,
Princeton, New Jersey, 1941.

14 June 1965 52 TM-2337/010/00

If we now ask the value of the function f for

r(3,4)

the previous ambiguity is resolved as Church's LAMBDA notation explicitly
gives the number and order of the arguments of f and defines the correspond
ence of 3 with x, and 4 with Y such that

2
f(3,4) = 4 + 3 = 19

In LISP, f(3,4) would be written as

(LAMBDA (X Y) (PLUS (TIMES Y Y) X)) (3 4)
~__________________ -ov--'

list s2 of
variables form

-----------------~----------------
and s is called a LAMBDA expression. A LAMBDA expression is our first
example of a functional expreSSion, i.e., an S-expression that acts like
a function. We shall explore LAMBDA expreSSions more fully below.

7.2 LISP FORMS

Earlier, we noted that the syntax of input to the Q-32 LISP supervisor
consists of two S-expressions sl and s2. We further learned that sl is
either a function or a function~l expreSSion and s2 is a list of the
argume~ts for s. When we type the s , s2 pair, we are composing a LISP
form because welhave an S-expression that can be evaluated. We speak of
this particular form as a top-level fonn. However, much of LISP programming
is written as forms at other than the top level. All such lower-level fonns
have a different format, which we will examine here.

As a rule a LISP form is:

1. an S-expression that can be evaluated when composed as
part of a functional expression, or

2. a functional expression or function applied to a list of
arguments.

For example, when performing addition at the top level we write

. o

o
i"

o

----------------- ------

53 TM.-2337/0l0/00

The pair of S-expressions is a form by (2) above. If, however, we wish
to compose a functional expression that, say, doubles the value of its
argument, we start with a form that uses PillS at lower than top level and
write this form as

(PLUS X X)

The first thing to note is that this form is a single S-expression bounded
by the left and right parentheses. These parentheses delimit the scope
of the function PLUS. The form includes,in order from left to r1ght,a
function name and the variables on which to compute.

In general, a lower-level form has the following format:

(function-name-or-functional-expression variables-or-other-forms)

The form used in the LAMBDA expression, above,

(PLUS (TIMES Y Y) X)

is a valid lower-level form that contains a nested form

(TIMES Y Y)

as one of its argwnents.
thumb.

From all this we get a very powerful rule of

Rule: In a lower-level form, all atoms adjacent to a left parenthesis
(except quoted expression~which we shall examine subsequently)
are treated as function names.

Remember that lower-level forms cannot be evaluated directly by the
supervisor as are top-level forms. To evaluate lower-level forms,
make them part of a functional expression, such as a LAMBDA
expression.

7.3 LAMBDA EXPRESSIONS

Definition: A LAMBDA expression is an S-expression. This S-expression is
a ~ of three elements in the following order:

1. the word LAMBDA
_ 2. a list of non-numeric atoms that may be used as

variables in the form
3._ the form. itself.

The general format accepted by Q-32 LISP is:

(LAMBDA list-of-variables form)

14 June 1965

For example:

'l'M-2337/0l0!OO

form
list of variables

LAMBDA

A LAMBDA expression is a functional expression and may be used wherever
functions are acceptable in top-level forms and lower-level forms. A
LAMBDA expression acts like a function since it specifies the correspond
ence between the variables in the form and the arguments of the function.
Therefore, it can be applied to arguments just as the elementary functions
CONS, CAR, and CDR were used earlier.

7.4 EVALUATING LAMBDA EXPRESSIONS

When using a LAMBDA expression in a top-level form, the LAMBDA expreSSion is
the first S-expression, s1' of the pair presented to the supervisor. Again, the
second S-expression, s2 or the pair is the list of arguments for 5,; in this
case, the list of arguments for the LAMBDA expression. It is important to
understand that the arguments in the list, s2' are paired with the variables
of the for.m in the LAMBDA expression, sl" The arguments in the list, s2' are
matched in number and position With the variables in the list of variables
following the LAMBDA. The process of pairing in this manner and then evaluating
the form inside the LAMBDA expreSSion is called LAMBDA conversion.

The doublet

is a simple top-level form. So is the doublet

(LAMBDA (J K) (CONS J K) (A B) ----" -..-.'
6 1 s2

In fact, they yield the same value, (A • B). Note, however, that by LAMBDA
conversion, the argument A is paired with the variable J, and the
argument B with the variable K. Then when the form wi thin the LAMBDA
expression

(CONS J K)

,.

o

o

o

14 June 1965 55 TM.-2337!olO!OO

is evaluated, the variables J and K are evaluated to yield A and B,
respectively; and it is these arguments that are CONSed.

Three rules should be remembered concerning LAMBDA conversion.

Rule 1:

Rule 2:

When evaluating a form, the number and order of the arguments
in the list of arguments must always match the number and
order of the variables in the list of variables of a LAMBDA
expression, even if the number of variables is zero; i.e.,
an empty list of variables; e.g.,

(~DA NI~ 3.l4l5~= 3.14159

(LAMBDA () 3.14159) () = 3.14159 -------------
Only non-numeric atoms may be used as variables specified in
the variables list of a LAMBDA expression. All variables
specified need not be used in the form within the LAMBDA
expression but must be matched in the arguments list, e.g.,

(LAMBDA (A B) (CDR B» (1 (2 3» = (3)

Rule 3: When evaluating a form

Examples:

7.5 PARENTHESES

1. arguments are paired With variables
2. the lowest-level forms are evaluated first
3. variables evaluate to their paired arguments
4. atoms folloWing a left parenthesis are evaluated as functions.

(LAMBDA (X) X) (123Q) = l23Q
(LAMBDA (ABLE) (CAR ABLE» ((THIS IS A LIST)) = THIS
(LAMBDA () 77) NIL = 77
(LAMBDA (ONE TWO) (CONS TWO ONE» (A B) = (B • A)
(LAMBDA (K) (CADAR K» («1 2 3) 4 5)) = 2

The LAMBDA expression:

(LAMBDA (A B) (CONS A B»

14 June 1965 TM-2337/010/00

uses six parentheses. They are very important. They designate scope or
extent of expressions, i.e., where they begin and where they end.
Parentheses have to be very precisely positioned. In order to understand
them, we shall first number them in associated pairs:

(LAMBDA (A B) (CONS A B»
1 2 2 2 21

The first left parenthesis #1 tells the LISP system that this is the
start of an expression. The final right parenthesis #1 tells the system
that this is the end of the expression.

The fi~st parenthesis #1 marks the beginning of the scope of the LAMBDA,
the extent of the expression to which LAMBDA applies. The second
parenthesis #1 marks the end of the scope of LAMBDA.

The first parenthesis #2 marks the beginning of a list, which,is ended by
the second parenthesis #2.

Finally, the third parenthesis #2 marks the beginning of the scope of
CONS, with the last parenthesis #2 ending that scope.

Always, all parentheses in the S-expressions of LISP occur in pairs of
left and right parentheses; generally, each pair marks the scope of an
expression, or bounds a list. The parentheses in LISP are never optional
as they are sometimes in mathematics: they are required parts of
expressions.

Note that in the example above, the sub-expressions

and
(A B)

(OONS A B)

are both bounded by parenthesis pairs labeled #2. If we consider the
parenthesis numbers as "depth" counters or I1level s ,11 we see that these
two sub-expressions are at the same depth, namely level two. Since the
only occurrences of parentheses #1 completely bracket the LAMBDA
expressions, we say that the LAMBDA expression is at level one, the
top level.

Parenthesis counting is a good crutch in that it immediately identifies
sub-expressions at the same level within a larger S-expression; a verf
useful debugging and formatting tool. In fac~ Q-32 LISP printouts are
always formatted by breaking the output, when it will not fit on one line,
at the deepest possible depth (i.e., the highest numbered parenthesis)
and then indenting one space for each level. This indenting device has
also been found useful for input since literally numbering parentheses is
prohibited.

..
o

o

o

14 June 1965 57
(page 58 Blank.)

'lM-2331/010/00

1.6 EXERCISES

Try evaluating these LAMBDA expressions on Q-32 LISP.

1-
2.
3.
4.
5·
6.
7·
8.
9·

10.

(LAMBDA (X) X) (A'IDM)
(LAMBDA (Y) Y) «LIST»
(LAMBDA (J) (CAR J» «THREE ELEMENT LIST»
(LAMBDA (K) (CDR K» «THREE ELEMENT LIST»
(LAMBDA (U V) (CONS U V» (VERY GOOD)
(LAMBDA (Y X) (CONS Y X» (ONE (THEN • ANOTHER»
(LAMBDA (A) (CAADR A» «A (B • 11Q2»)
(LAMBDA (VARIABLE) (CDAR VARIABLE» « (A B»)
(LAMBDA (J) 3.14159) (NIL)
(LAMBDA () 3.14159) ()

Note: Problems 1, and 2 are the identity fUnctions in that they always
evaluate to their input. Problems 9, and 10 are constant functions
which always evaluate to the constant specified, in this case
3.14159, regardless of the value of the argument. However, these
arguments are necessary since Q-32 LISP always expects a doublet
when a LAMBDA expression is encountered at level one. Also note
that the list of variables in problem 10 is empty. In LISP,
a function with an empty variable list is a function of no
arguments. For proper LISP syntax, we must always include the
list of variables, even when empty. In such'cases NIL is as
acceptable as ().

Evaluate:

11-
12.
13.
14.
15·

(LAMBDA (U V) U) (ALPHA BETA)
(LAMBDA (U V) U) (BETA ALPHA)
(LAMBDA (U V) V) (ALPHA BETA)
(LAMBDA (V U) V) (ALPHA BETA)
(LAMBDA (FIRST SECOND) (CAR FIRST» « FIRST) SECOND)

Q

o

o

o

14 June 1965 59 'l'M-2331/0l0/00

CHAPTER 8. COMPOSITION OF FUNCTIONS

When applied to argument lists, LAMBDA expressions and the fUnction CAR, CDR,
and CONS are evaluated and their results printed. These doublets--i.e., function,
argument list--are programs--trivial to be sure, but programs.

To create more powerful programs we must be able to create more complex
S-expressions. A first step in that direction is the ability to construct
new functions by composition of functions.

Definition: Function composition is the concatenation of functions in such a
fashion that an argument for a function at level n is the value
resulting from the evaluation of a function at level n+l.

For example:

(LAMBDA (J) (CAR (CDR J)))
1 2 2 2 3 321

is a fUnction constructed by composition of functions.

8.1 EVALUATING COMPOSED FUNCTIONS

The general rule for evaluating composed functions is to evaluate the
innermost (deepest nested) expressions first, then the next-higher-level
expressions and so on until the entire expression has been evaluated.

Example:

(LAMBDA (J) (CONS (CDR J) (CAR J))) «A. B))
1 2 2 2 3 3 3 321 12 21

Pairing va.riable J with argument (A • B) we evaluate the form

(CONS (CDR J) (CAR J))

Beginning with the innermost expressions, J evaluates to (A • B) and

(CDR J) = B, (CAR J) = A

These values are transmitted as the arguments for the next-higher-level
expression

(CONS B A) = (B • A)

Since there are no further expressions to evaluate, (B • A) is the value
of the entire expression.

14 June 1965 60 TM-2337/010/00

8.2 NESTED LAMBDA EXPRESSIONS

Since a LAMBDA expression acts like a function, it,too,may be used for
constructing larger expressions by composition of functions, in exactly
the same manner and format as used with functions. Because LAMBDA
expressions are lists with many parentheses, the student often loses
Sight of this fact. To show the Simple mechanics of the construction, let
us develop a nested form using CAR and a nested form using a LAMBDA
eXpreSSion, concurrently.

Step 1: S-Expressions As Functions

CAR (LAMBDA (X Y) (CONS X Y»

Step 2: S-Expressions As Forms

(CAR X) «LAMBDA (X Y)(CONS X Y» X Y)
-..-

function variable functional expression variables

Step 3: Pairs For Supervisor

(LAMBDA (X) (CAR X» ((A») t (LAMBDA (U V)«LAMBDA (X Y)(CONS X Y» U V)) (A B)
---------~--"--¢'" -..-

functional expression

----- ~-------. form

I--------~---~------------
Step 4: Evaluation of SteE 3

X = (A) 1. Binding of variables U =: A, V = B

(CAR X) = A 2. Evaluation of forms

A 3. Return value

Bind 2nd LAMBDA's variables
X = value of U = A
Y = value of V = B
(CONS X Y) = (A . B)

(A • B)

CI

v o

o

'1

u

14 June 1965 61 'IM-2337/0l0/00

In evaluating each of the Step 3 examples,first the variables are bound
initially by the LAMBDA expression to the arguments in list s2' then the
nested forms are evaluated. In evaluating these forms, the var~ables are
evaluated, yielding the values bound from the argument list s2' For the
nested-LAMBDA-expression example, we must bind variables twice; first the
outermost LAMBDA's variables U and V are bound to the arguments in list s2'
Then,when evaluating the form within the outermost LAMBDA expression,
that form itself is a LAMBDA expression and its variables X and Y must be
bound. X and Yare bound to the values of the variables U and V after they
are evaluated. Finally the form (CONS X Y) is evaluated, yielding the value
for the total expression.

We can take these examples further by constructing even larger expressions
by inserting forms wherever variables occur. Composition of functions allows
us this freedom. As an example, let us expand Step 3 once.

Step 5: Composition of Functions

CAR Example:

(LAMBDA (X) (CAR (CDR X))) ((A B))
~

£01:'111

form

--_____ --~-'v--------------
sl

LAMBDA Example:

(LAMBDA (U V) «LAMBDA (X Y)(CONS X Y)) (CAR U) (CDR V))) «A) (B C)) -------functional expression arguments

--------------~-----------~ form

-----------.... ----~----.... ----~. --------
sl s2

14 June 1965 62 TM-2337/0l0/00

Ste;p 6: Evaluation of Step 5

x = (A B) 1. Binding of variables U = (A) , V = (B C)

(CDR X) = (B)

(CAR (CDR X» = B

2. Evaluation of forms Bind 2nd LAMBDA's variables

x = value of (CAR u) = A

B 3. Return value

Y = value of (CDR V) = (C)
(CONS X Y) = (A • (C» = (A q

(A C)

Of note here is the binding of variables X and Y. In Step 4, X and Y were
bound to the value of U and V respectively. In Step 6, X and Yare bound to
the values of the forms (CAR U) and (CDR V) respectively.

8.3 EXERCISES

Evaluate the following:

1.
2.
3·
4.
5·
6.
7·
8.
9·

10.

(LAMBDA (A B) (CAR (CONS A B») (43 NUMBER)
(LAMBDA (A) (CAR (CDR A») «ARG LIST»
(LAMBDA (A) (CDR (CAR A») «(A»)
(LAMBDA (A B) (CDR (CONS A B») (NUMBER 43)
(LAMBDA (B A) (CDR (CONS A B») (NUMBER 43)
(LAMBDA (A B) (CAR (CDR (CONS A B»» (X (Y»
(LAMBDA (J) (CONS (CONS J NIL) NIL» «LIST»
(LAMBDA (J) (CAR (CAR (CONS (CDR J) (CDR J»»)
(LAMBDA (J) (CAR (CONS 123Q3 J») (NIL)
(LAMBDA (J) (CONS (CAR J) (CDR J») «A. B»

«A B»

Note that problem 10 clearly demonstrates the relationship between
CAR, CDR, and OONS.

11. CAR could be called FIRST since it finds the first element of a list.
Hri te a LAMBDA expression using only CAR's and CDR I s by composition
of functions which finds the third element of a list. Try it with
argument

(1 2 3 4)

For the argument

«A B C) D)

compose and evaluate your own LAMBDA expressions using only CAR's
and CDR's that evaluate exactly as the following abbreviations:

o

o

14 June 1965 63
(Page 64 Blank)

TM-2337!010jOO

12. CAAR
13. CADR
14. CDAR
15. CADAR

Check your answers by using CAAR, CADR, etc., directly as in problems
21-31 of Chapter 6.

Evaluate the following:

16. (LAMBDA (U V) «LAMBDA (X Y)(CONS (CAR X) (CDR Y))) U V)) «A) (B C))
17. (LAMBDA (U V) «LAMBDA (X Y)(CONS (CAR X) Y)) U (CDR V))) «A) (B C))
18. (LAMBDA (W X) (CAR «LAMBDA (Y Z)(CONS Y Z)) W X))) «A) (B C))
19. (LAMBDA (W X) (CDR «LAMBDA (Y Z)(CONS Y Z)) (CAR W)(CDR X)))) «A) (B C))
20. (LAMBDA (J)(CONS

«LAMBDA (X Y)(CONS Y (CONS X NIL))) (CAR J) (CADR J))
«LAMBDA (U V) (CONS (CONS V (CONS U NIL)) NIL)) (CADDR J)(CADDDR J))

)) «A BCD))

C"
,,'

o

o

o

14 June 1965 65 TM-2337/010/00

CHAPrER 9. QUOTE, EVALQUOTE AND LIST

In most of the simple programs we have seen so far, data for the expression to
be evaluated was supplied in the argument list and paired to the variables
specified in the variable list within the LAMBDA expression. For example
problem 1, of Chapter 7

(LAMBDA (X) X) (ATOM)
12211 1

gave the atom ATOM as data to be paired with variable X. In a sense one can
think of the LAMBDA expression as the program and the argument list as the
program t s data. For LISP to be a more powerful programming tool we must
allow data to exist within the program. That is, we must permit arguments
wi thin the LAMBDA expression. The expression QUOTE allows us to do this and
thus serves to isolate a program from its da.ta..

Defini tion: QUOTE takes ~ argument, an S-expression. The value of the
expression QUOTE is its argument, taken literally.

Examples: (LAMBDA NIL (QUOTE ALPHA» ()
1 2 21 1 1

evaluates to ALPHA.

(LAMBDA (X) (CONS (QUOTE ALPHA) X» (BETA)
1 2 2 2 3 3 21 1 1

evaluates to (ALPHA • BETA)

9.1 MEANING OF QUOTE

What does QUOTE mean? The expression QUOTE tells LISP that what follows
is to be treated as itself, not as the name for something else. This
meaning is like the meaning in ordinary English when we use quotation
marks and say:

"ParisH has five letters.

and mean:

The particular word has five letters.

We do not say:

Paris has five letters.

14 June 1965 66 TM.-2337/010/00

because Paris is a city and it makes no sense to say that a city has
five letters; what a city has is people, streets, buildings, etc.

In English one of the standard uses of quotation marks is to produce a
name for an expression, instead of designating what the expression
usually refers to. This is the use of QUOTE in LISP.

9.2 SPECIAL CASES

The implementation of the LISP programming system gives rise to a number
of anomalies regarding QUOTE. These anomalies exist as a programming
convenience for almost all LISP implementations, Q-32 LISP included.

Rule: Numbers, NIL, and the letters ~ and ~ are never quoted since they
are treated by the system as follows:

1.
2.
3·
4.

a number,
NIL
T
F

e.g., 99 is treated as
is treated as
is treated as
is treated as

(QUOTE 99), which evaluates to 99
(QUOTE NIL), which evaluates to NIL
(QUOTE T), which evaluates to T
(QUOTE NIL), which evaluates to NIL

c

Note that F is treated by the system as (QUOTE NIL) such that F evaluates ~I
to NIL. If the user wishes the value F explicitly, he must write (QUOTE F), ~/
which evaluates to F.

We have seen examples of numbers and NIL in LAMBDA expressions in exercises
of Chapter 8. The use of T and F will become clear when we examine
predicates and conditional expressions in the following chapters.

9.3 EVALQUOTE

When inputting a pair of S-expressions,sl and s2,at the top-level to the
supervisor program, we are "conversing" with the principal LISP mechanism
for evaluating expressions. In many LISP systems,including Q-32 LISP,
the supervisor program is referred to as a function called Evalquote.
Evalquote is an illusion in Q-32, as in reality there is no such function.
(Q-32 does have a callable function EVALQT that behaves like Evalquote.
This is covered in greater detail in Chapter 17.) The Q-32 LISP supervisor
is a program written in LISP, and historically, LISP supervisors were
programs called Evalquote. Thus, the name has persisted and we speak of
"pairs of S-expressions for Evalquote."

As we saw earlier, the pair of S-expressions to Evalquote which
called sl and s2 previously, consist of a functional expression,
51' and a list of arguments,s~for 51' e.g.,

PLUS (1 2 3)

we
or function,

o

o

o

14 June 1965 TM-2337/0l0/00

After-accepting sl and s2 Evalquote quotes each a.rgument in the list,s2,and
then applies the :function or functional expression,sl,to the quoted argu
ments. It is important to understand that the arguments for top-level
expressions are not evaluated since they are internally transmitted by
Evalquote as quoted expressions.

For clarity, examine the following examples:

1. CONS (A B) ---------------input to Evalquote

sl s2

(Qp'OTE A) (QUOTE B)

(CONS (QUOTE A) (QUOTE B»

(A • B)

---------------transmitted arguments

---------------internal form evaluated

---------------value

2. (LAMBDA (X Y Z) (CONS X (CONS Y (CONS Z F»» (33 T F) ----input to Evalquote --------.. ------~ -~
sl s2

(QUOTE 33)(QUOTE T)(QUOTE F) ---------------transmitted arguments

X = (QUOTE 33),Y = (QUOTE T), Z = (QUOTE F) ----------variables bound

(CONS (QUOTE 33) (CONS (QUOTE T) (CONS (QUOTE F) (QUOTE NIL»» ---internal
form evaluated

(33 • (T • (F • NIL») = (33 T F) ---------------value

Note that the explicit argumentF of CONS in sl is always internally repre
sented as (QUOTE NIL), whereas ·the input argument F in s2 is transmitted
as a literal quote, i.e., (QUOTE F).

9.4 LIST

Since the bulk of programming in LISP is in the form of lists, we need
list-processing functions that are convenient to use. One of the most
useful is the function LIST.

LIST is B. function of an indefinite number of arguments that forms a list
of these arguments. LIST creates a list. It is a shorthand notation.
The following identities, written as lower-level forms (required for
composition of functions), illustrates the shorthand notation.

14 June 1965 68 TM-2337/010/00

(LIST) = NIL
(LIST A) = (CONS A NIL) = (A)
(LIST A B) ::: (CONS A (CONS B NIL» = (A B)

(LIST A B .•. Z) = (CONS A (CONS B (CONS ... (CONS Z NIL) ..• » = (A B ..• Z)

Students often confuse the effect of LIST and CONS. Here are some examples
·that demonstrate the difference.

CONS (A B) = (A • B)
CONS (A NIL) = (A)
CONS (A (B» = (A B)
CONS «A) B) ::: «A) • B)
CONS «A) (B» ::: «A) B)

LIST (A B) = (A B)
LIST (A NIL) = (A NIL)
LIST (A (B» ::: (A (B»
LIST «A) B) ::: «A) B)
LIST «A) (B» = «A) (B»

Rule: LIST effectively wraps parentheses around its arguments.

9.5 EXERCISES

Evaluate:

1. (LAMBDA NIL (QUOTE X» ()
2. (LAMBDA (J) (QUOTE J» (ALPHA)
3. (LAMBDA (J) (QUOTE (!iN S EXPRESSION») (ALPHA)
4. (LAMBDA (J) (CAR (QUOTE (A B C»» (ALPHA)
5. (LAMBDA (J)(CDR (QUOTE (J J»» (NOTJ)
6. (LAMBDA (A B) (CONS A B» (QUOTE EXPR)
7. (LAMBDA (A B) (CAR (CONS (QUOTE A) B») (ALPHA BETA)
8. (LAMBDA NIL (QUOTE

(NOW IS THE TIME FOR ALL GOOD MEN TO COME TO
THE AID OF THE PARTY») ()

9. (LAMBDA NIL (CONS (QUOTE A) (QUOTE B») ()
10. (LAMBDA NIL (QUOTE

1l.
12.
13.
14.
15.

(LAMBDA (X) X») ()
(LAMBDA (A B C) (LIST A B C» (ONE TWO THREE)
(LAMBDA (A B C)(CONS A (CONS B (CONS C NIL»» (ONE TWO THREE)
(LAMBDA (A B C) (LIST F A F B F C» (F F F)
(LAMBDA (A B C) (LIST (QUOTE F) A (QUO. TE F) B (QUOTE F) C» (F F F)
(LAMBDA (A BCD) (LIST (LIST F (QUOTE F) A)

(LIST T (QUOTE T) B)
(LIST NIL (QUOTE NIL) C)
(LIST 123 (QUOTE 123) D») (F T NIL 123)

Ci

o

o

o

- ------------- --------------------

14 June 1965 TM-2337!010!00

CHAPl'ER 10. DEFINE

Evaluating LAMBDA expressions a.t the top level is a one-shot proposition. If
we wish to evaluate the same expression for different a.rguments, we must type
the entire doublet again. After evaluation, the state of the LISP system is as
it was prior to execution. This is desirable for many situations including
debugging, code execution, and program formulation. However, for the majority
of cases, we would like to save the expression as part of the LISP system, give
ita function name, and use it repeatedly to build larger programs. We can do
this by defining new functions in LISP with the pseudo-function DEFINE.

Pseudo-functions are expressions that are used like functions, but that do not
behave like LISP functions in manipulating S-expressions. They are expressions
that have side effects, invisible to LISP, in which we are interested. Input!
output functions in LISP are good examples of other pseudo-fUnctions.

10.1 DEFINE FORMAT

DEFINE is a pseudo-function that takes one argument, a list of functions
to be defined. Like CAR, CDR, a.nd all other single argument functions
evaluated at the top level, the- general format is:

DEFINE (e)
1 1

where e is the argument, a list of functions to be defined.

The format of e is:

where f l , f 2, ••• , f are the definitions for the functions we wish to
define. The format snare all the same, namely a LAMBDA expression, pre
fixed with a name for the expression. This name, a_ non-numeric a,tomic
symbol, will become the function name. Thus

(name (LAMBDA (variables) form)
3 4 5 5 43

is the general format for any of the fi function definitions, and

14 June 1965

»

DEFINE «
12

21

70

(namel (LAMBDA(variables)fo~ »
3 4 5 5 43

(name2 (LAMBDA (variables) fo~ »
3 4 5 . 5 43

(name (LAMBDA (variables) form »
3 n 4 5 5 n 43

TM-2337/0l0/00

is the general format for the complete DEFINE expression.

Note the parentheses, their depth and meaning. The pa.ir #1 bound the
second S-expressio~ sZfor Evalquotej pair #2 bound the single argument
of DEFINE as a list; pairs #3 bound ea.ch of the n f'unct1ona.l expressions
to be defined.

Example:

DEFINE «
12

»
21

(THIRD (LAMBDA (X) (CAR (CDR (CDR X»»)
3 4 5 5 5 6 7 76543

(IN3 (LAMBDA (X) (CAR (CAR (CAR X»»)
3 4 5 5 5 6 7 76543

(SECONDOF1ST (LAMBDA (X) (CAR (CDR (CAR X»») .
3 4 5 5 5 . 6 7 76543

If we wish to define only one f'unction, the format is still the same with
the argument list to DEFINE containing one f'unctional expreSSion.

10.2 EVALUATING DEFINE·

The value of the pseudo-f'unction DEFINE is a list of the names of the
f'unctions defined. For the example above, LISP would return

(THIRD IN3 SECONDOF1ST)

o
~

o

o

14 June 1965 71 TM-2337/0l0/00
(Page 72 Blank)

What have we really done by evaluating DEFINE? For Q-32 LISP, a. compiler
based LISP system, we have compiled machine code for each of the functional
expressions in the argument list. This machine code becomes a permanent
part of the LISP system, which can be referenced by the name used in the
functional expression, and can be used to evaluate data like all other
system functions.

10.3 REDEFINING

If, after defining a function, you find the definition to be in error or
you wish to change the function I s definition (1. e., change the i'unction IS

LAMBDA expression) for other reasons, you need only use DEFINE again with
the old function name and a new LAMBDA expression. The new LAMBDA ex
pression will be compiled and referenced under the old name. The old
compiled code is lost and cannot be referenced again. Furthermore, the
space occupied by the old code cannot be reclaimed and is lost to the
system. Repeated redefinitions build up such "garbage" and should be
avoided.

For the purposes of this primer, however, you should feel free to redefine
programs at will, as you ca.nnot, at one Sitting, exhaust all the binary
~rogram space. But do not define programs whose names are syst. em functions
(e.g., CAR, CDR, LAMBDA, etc.) as you will redefine functions possibly
used internally by the system.

10.4 EXERCISES

Define the following new functions and test them on list (A BCD E)

1. (FIRST (LAMBDA (X) (CAR X»)
2. (SECOND (LAMBDA (Y) (CADR Y»)
3. (THIRD (LAMBDA (Z) (CAR (CDDR z»»
4. CADDDDR
5. Define a function, called REVDOT, that reverses the CAR and CDR of

any dotted pair. Try it on the following arguments:

(A • B)
«A) • (B»
«(FIRST» • (LAST»

o

o

o

14 June 1965 73 TM-2337/010/00

CHAPTER 11. PREDICATE FUNCTIONS

To do interesting things in a programming language we must have facilities for
testing data. In LISP we use predicate functions for this task. A predicate
function is a function whose value is either true or false. In LISP, the
values true and false are represented by the atomic symbols ! and NIL,
respectively.

Definition: A LISP predica.te is a function whose value is either T (for true)
or NIL (for false).

11.1 THE PREDICATE, ATOM

Definition: The predicate, A'lOM, takes ~ argument. The value of ATOM
is T if its argument is an atomic symbol. The value of
ATOM is NIL if its argument is a. non-atomic S-expression.

Examples:
ATOM (A) = T
ATOM (EXTRALONGSTRINGOFLETTERS) = T
ATOM «A • B» = NIL
ATOM «A» = NIL
(LAMBDA (J) (ATOM (CAR J») «A. B» = T

11.2 THE PREDICATE, EQ

Definition: The predicat~E~takes two arguments. The value of EQ is
T if its two arguments are the same non-numeric atomic symbol.
The value of EQ is NIL if its two arguments are different
non-numeric symbols. The value of EQ is undefined if either
of its arguments is a non-atomic S-expression, or if either
argument is a number.

Note: In pure LISP, the state "undefined" has meaning. In the progrannning
system it means we cannot guarantee the value of the function, and quite
likely it will induce a program error. For predicates, we often equate
lIundefined" with NIL.

Examples:
EQ (A B) = NIL
EQ (T T) = T
EQ «T) (») = undefined (NIL on Q-32 LISP)
EQ(12 12) = undefined (NIL on Q-32 LISP)
EQ «) NIL) = T
EQ (F NIL) = NIL
(LAMBDA (J) (EQ T (CAR J)) {(T • B» = T
(LAMBDA (J) {EQ T (ATOM J») (ANYATOM) = T

(LAMBDA (J) (EQ F J» (NIL) = T
(LAMBDA (J) (EQ F (CDR J») «A»

(LAMBDA (J) (EQ F J» (F) = NIL

11.3 THE PREDICATES EQUAL AND EQUALN

iN-2337/0l0/00

) Remember the explicit F
= T ~ is treated by Q-32 LISP

~ as (QUOTE NIL)

The explicit F is treated as
(QUOTE NIL), whereas the
argument F is transmitted
as (QUOTE F) by Evalquote.

Definition: The predicate EQUAL takes two arguments. The value of
EQUAL is T if its two arguments are identical S-expressions.
The value of EQUAL is NIL if its two arguments are not
identical S-expressions.

Examples:
EQUAL (A :s) = NIL
EQUAL (A A) = T
EQUAL «A) (A)) = T
EQUAL «A • :s) (A • :s)) = T
EQUAL «A) A) = NIL
EQUAL (15 15) = T
EQUAL (17Q 15) = T
EQUAL (1.000000001 1) = T
EQUAL (1.000000002 1) = NIL

Note: For Q-32 LISP, EQUAL will a.ccept and convert numbers of differing
types before it performs the test for equality. For the case of floating
point numbers, they must agree within a specified accuracy given by the
following:

EQUAL (Nl N2) = T

if Nl and N2 are floating-point numbers such that

Nl - N2

Nl + N2

Definition: The predicate EQUALN is identical to EQUAL for non-numeric
arguments. For numeric arguments, EQtlALN is T if and only
if the two arguments are identical S-expressions and are of
the same number type. Otherwise EQUALN . is NIL. EQUALN is
a. predicate available only on Q-32 LISP.

~,

()
"-----'

c

o

o

o

14 June 1965

Examples:

75

EQUALN (A A) = T
EQUALN «A) A) = NIL
EQUALN (1 1) = T
EQUALN (1 1.0) = NIL
EQUALN (1 lQ) = NIL
EQUALN (1.0 lQ) = NIL
EQUALN «1.0) (1.0» = T

TM-2337/0l0/00

11.4 ARITHMETIC PREDICATES

All of the following predicates end with the letter P, for predicate, as
a mnemonic aid.

NUMBERP (N)

FIXP (N)

FLOATP (N)

ZEROP (N)

MINUSP (N)

= T if N is a number of any type.
= NIL if N evaluates to a non-atomic S-expression.
= NIL if N evaluates to a non-numeric atomic symbol.

= T if N is an integer or octal number.
= NIL if N is a floating-point number.
= Undefined if N evaluates to a non-numeric S-expression.

= T if N is a floating-point number.
= NIL if N is an integer or octal number.
= Undefined if N evaluates to a non-numeric S-expression.

= T if N is a positive or negative zero of s.ny numeric type.
(l's complement arithmetic of the Q-32 can produce a
binary word of all ones; i.e., a negative zero.)

= NIL if N is a non-zero number.
= Undefined if N evalua.tes to a. non-numeric S-expression.

= T if N is a negative number of any numeric type.
= NIL if N is a positive number.
= Undefined if N evaluates to a non-numeric S-expression.

GREATERP (Nl N2) =T if Nl is greater thanN2, where Nl and N2 may be any
numeric types.

= NIL if Nl is less than or equal to N2.
= Undefined if Nl or N2 evaluates to a non-numeric

S ... expression.

14 June 1965

LESSP (Nl N2)

TM-2337/010/ 00

= T if N is less than N2, where Nl and N2 may be any
numeric types.

= NIL if Nl is greater than or equal to N2.
= Undefined if Nl or N2 evaluates to a non-numeric

S-expression.

Note: ZEROP, GREATERP, and LESSP all use the accuracy specifications
for floating point numbers noted for EQUAL.

11.5 LIST PREDICATES

NULL (L) = T if L is the empty list () or NIL.
= NIL if L is not NIL or ().

MEMBER (Ll L2) = T if S-expression Ll is a top-level element of list L2.
= NIL if Ll is not an element of L2, or is an element

of a lower-level sublist of L2; e.g.,

MEMBER (A «A») = NIL

11.6 LOGICAL CONNECTIVES

NOT (p) = T if P evaluates to NIL. (Remember, an explicit F evaluates
to NIL.)

= NIL if P eva.luates to any non-NIL atomic symbol.
= NIL if P evaluates to any non-atomic S-expression.

AND takes an indefinite number of arguments, not a list of arguments. The
arguments of AND are evaluated in sequence from left to right, until one
is found tha.t is false, or until the end of the list is reached. The
value of AND is T if all arguments are true. The value of AND is NIL
if any argument is false. In accordance with this definition:

AND () = T.

OR takes an indefinite number of arguments, not a list of arguments. The
arguments of OR are evaluated in sequence from left to right, until one
is found that-rs true, or until the end of the list is reached. The
value of OR is T if any argument is true. The value of OR is NIL if all
argumentsare false.In accordance with this definition:

OR () = NIL.

c

o

o

o

14 June 1965 11

11.1 EXERCISES

Eva1ua,te:

1. (LAMBDA (J) (CONS (EQ J J) (QUOTE (F T F»» (X)
2. ATOM (NIL)
3. NULL (NIL)
4. NULL «NIL»
5. NULL « »
6. EQUAL (0 NIL)
1. NUMBERP (1965)
8. NUMBERP «1965»
9. (LAMBDA (A B C) (OR (ZEROP A)

(FIXP B)
(FLOATP C») (1 2 3)

10. (LAMBDA (J) (NOT (AND (ATOM J)
(NUMBERP J)
(FLOATP J)
(MINUSP J)
(NOT (ZEROP J»») (-1.0)

GREATERP (1964 1965)
GREATERP (1965 1964)
LESSP (10Q 10)
MEMBER (HEAR (NOW HEAR THIS»
MEMBER (HEAR (NOW (HEAR THIS»)

TM-2331!OlO/OO

1l.
12.
13.
14.
15.
16. ZEROP is true for both positive a.nd negative zero. Define NEGZEROP

which is true only for negative zero. Test it with these cases:

NEGZEROP (-0) = T
NEGZEROP (7777771117777777Q) = T
NEGZEROP (0) = NIL .
NEGZEROP (7Ql5) = NIL

17. The propositional connective "equivalentll has the following truth table:

x y X EQUIV Y

true true true
true false false
false true fa,lse
false false true

Define the LISP function EQUIV and test it on these ca.ses:

EQUIV (T T) = T
EQUIV (T NIL) = NIL
EQUIV (NIL T) = NIL
EQUIV (NIL NIL) = T

14 June 1965 78 'IM-2337/010/00

18. The propositional connective IMPLIES has the following truth table:

x y X IMPLIES Y

true true true
true fa,lse false
false true true
f'alse f'a,lse true

Def'ine the LISP f'unction IMPLIES and test it on these cases:

IMPLIES (T T) = T
IMPLIES (T NIL) = NIL
IMPLIES (NIL T) = T
IMPLIES (NIL NIL) = T

19. Def'ine the predicate INSEQ that is T if e, list of 5 elements are all
numbers in ascending or descending order a.nd NIL otherwise. Test it
with these cases:

INSEQ «1 2 3 4 5» = T
INSEQ «5 4 3 2 1» = T
INSEQ «lQ 2.0 99 1000Q 1000.0» = T
INSEQ «lOQ 10 10.0 11.0 12Q» = NIL
INSEQ «10 98 7Q 7» = NIL

20. Def'ine the predicate EQN that is T if its-two arguments are the
identica.l atom and NIL otherwise. Test it with these cases:

EQN (A A) = T
EQN (1 1.0) = NIL
EQN (77Q 77Q) = T
EQN «A) A) = NIL

Q

()

-- -----~-~------ ~~~-

79 TM-2337/010/00

CHAPTER 12. CONDITIONAL EXPRESSIONS

The class of functions that can be formed with what we know so far is quite
limited and not very interesting. Predicates give us a mechanism for testing
data. Now we need functions that branch conditionally on the value of
these predicates and thereby allow a mu~h larger class of functions to be
defined.

12.1 FORMAT OF CONDITIONAL EXPRESSIONS

A conditional expression in LISP has the following form:

where Pl' P2'" Pn are predicates or expressions that evaluate to true
of false, and el , e2", en are any S-expressions.

COND takes an indefinite number of arguments, called clauses, each of
which is a list containing a p. and its corresponding e._

1 1

12.2 MEANING OF CONDITIONAL EXPRESSIONS

LISP evaluates a conditional expression from left to right as follows:

If Pl is true, then the value of COND is the value of el •

If Pl is false, then

If P2 is true, then the value of COND is the value of e2 •

If P2 is false, then

If P3 is true, etc.

The entire expression is searched by evaluating p. of each clause, until
the first p. that is true is found, and then the ~orresponding ei of
that clause1 is evaluated. Note that e. is never evaluated if the
corresponding p. of that clause is fal§e.

1

If a true clause cannot be found (i. e., all p. are false), then the value
of the entire expression is undefined. To pr5tect against this occurrence,
LISP programmers usually set the last predicate, p of the last clause,
equal to T and set the last expreSSion, e of thatnclause, equa.l to some
termina.ting expression. Since T is treat~d by the system as (QUOTE T),
it always evaluates true and COND can never be undefined. If nothing else
proves true then the value of e will be the value of the entire
conditional expression. n

14 June 1965 80 TM-2337/0l0/00

Ea.ch p. or ei is itself an S-expression; possibly a function, a. composition
of fun~tions, or another conditional expression. It is perfectly proper
for Pi or ei to be ~JL ,T ,F , or any atom that evaluates true or false.

12. 3 AN EXAMPLE

The propositional connective IMPLIES has the following Truth Table:

x Y X Y

true true true
true fa.lse false
false true true
false false true

Using CONn, we can define IMPLIES in many ways. Here a.re four alternate
definitions.

DEFINE {((IMPLIES (LAMBDA (X Y)(CONn (X Y)(T T»» »
DEFINE « (IMPLIES (LAMBDA (X Y)(COND {(EQ X Y) T)(T Y»» »
DEFINE {((IMPLIES (LAMBDA (X Y){COND (Y T)(T (NOT X»») »
DEFINE « (IMPLIES (LAMBDA (X Y){COND (X (CONn (Y T)(T F»)

(T T»» »

The last def.inition demonstrates the nesting of conditionals; however,
the first definition is more elegant, since it takes full advantage of
the true-false nature of the data. by letting the variables act as
predicates.

12.4 EXERCISES

Evaluate:

1. (LAMBDA NIL (COND (F (QUOTE FALSE»
(T (QUOTE TRUE»» ()

2. (LAMBDA NIL (CONn (NIL (QUOTE FALSE»
(T (QUOTE TRUE»» ()

3. (LAMBDA NIL (COND (NIL F) (T T») ()
4. {LAMBDA (A B C) (COND (T A) (T B) (T C)) (1 2 3)
5. (LAMBDA (A B C) (COND (NIL AJ (NIL B) (NIL C») (l 2 3)
6. Define this expression as ABVALU:

(ABVALU (LAMBDA (N) (CONn «GREATERP 0 N) (CONS (QUOTE MINUS) N»
(T N»»

Try these:

ABVALU (144)
ABVALU (-14.4)
ABVALU (-0.0)
ABVALU (OQ)

o

o

o

14 June 1965 TM-2337!OlO/OO 81
(Page 82 Blank)

7. Define a. function, called SMALLER, that takes two numeric arguments
and returns the .smaller of the two.

Try these:

SMALLER (15 7)
SMALLER (-15 7.02)
SMALLER (-15.0E-l -TEl)
SMALLER (+0 -0.0)
SMALLER (lOQ 8)

8. Using conditionals, define EQUIV (X Y) which is true only if
both X is true and Y is true, or
both X is false and Y is false;
and is false otherwise.

Try these:

EQUIV (T T) = T
EQUIV (T NIL) = NIL
EQUIV (NIL T) = NIL
EQUIV (NIL NIL) = T
(LAMBDA (X Y) (CONn «EQUIV X Y) (CONS X Y»

(T (QUOTE FALSE»» (NIL NIL) = (NIL • NIL) = (NIL)
9. The LISP predicate OR (X Y) is the inclusive OR which is true if X or

Y or both are true. Using conditionals, define a LISP predicate EXOR
(X y) of two arguments that is the exclusive OR and is true if
and only 'I'r"'X or Y are true, but not both. Try it out.

10. MEMBER is a predicate in Q-32 r,ISP. If it were not, it could be
defined as:

(MEMBER (LAMBDA (A X) (COND «NULL X) F)
«EQUAL A (CAR X» T)
(T (MEMBER A (CDR X»»»

where A is en expression to be looked for on the top level of list X.

Study this example and the use of CONDo Don't be alarmed by the use
of the function MEMBER within its own definition. Treat this
recursive function like any other function you've seen. We sha,ll
examine recursion much more fully in subsequent chapters.

Note that we first examine the CAR of list X to see if it is equiva
lent to A. If yes, we return the value "true" as the value for MEMBER.
If no, we apply the function MEMBER to the CDR of list X. Thus, we
are applying MEMBER to a shorter and shorter list each time we reCurse
until A is found. If A is never found, list X is eventually reduced
to NIL by the repeated CDR. This terminal condition is trapped by
the NULL and the value of F, i.e., NIL, for "false" is returned as the
value of MEMBER, since A is not a member of list x.

o

o

- ._-----.---

~ o

o

14 June 1965 TM.-2337/010/00

CHAPl'ER 13. ARITHMETIC FUNCTIONS

Chapter 5 discusses Q-32 LISP representation of numbers and it might pay
to review tha.t chapter. Let us review three important points:

1. Numbers may occur in S-expressions as though they were atomic
symbols.

2. Numbers are constants that evalua.te to themselves. They do not
need to be quoted.

3. Numbers should not be used as variables or function names.
(Never as variables in a. LAMBDA expression.)

13.1 GENERAL COMMENTS

All the arithmetic functions must be given numbers as arguments, or
S-expressions that evalua.te to numbers; otherwise an error condition
will result. For example:

(xxxx NOT A NUMBER)

where xxxx is a non-numeric argument to an arithmetic function, is the
most probable error message given by the Q-32 LISP system for this
error condition.

The numerical arguments to arithmetic functions may be any type of
number, i.e., integer, octal, or floating point. An arithmetic function
may be given some fixed-point (i.e., integer or octal) and some floating
point a.rguments at the same time. If all of the arguments for a function
are fixed-point numbers, then the value will be a fixed-point number.
(Integer and octal arguments always yield an integer value.) If at
least one argument is a floating-point number, then the va.lue of the
function will be a floating-point number.

13.2 Q-32 LISP ARITHMETIC FUNCTIONS

PLUS (Xl x2 ... xn) = Xl + x2 + ••• + x n

PLUS is a function of any number of arguments whose va.lue is the
algebraic sum of the arguments.

DIFFERENCE (x y-) = x - Y

DIFFERENCE has for its value the algebraic difference of its arguments.

MINUS (x) = -x

MINUS has for its value the one's complement of its argument.

14 June 1965 84 TM-2337/010/00

TIMES (Xl x2 ... xn) = (xl)(x2)(···)(xn)

TIMES is a function of any number of argu.l'!!ents whose value is the
product (with correct sign) of its arguments.

ADDl (x) = x + 1

ADDl adds one to its argument and returns the sum. as its value. The
value is fixed point or floating point according to the argument type.

SUBl (x) = x - 1

SUBl subtracts one from its argument and returns the difference as its
value. The value is fixed point or floating point according to the
argument type.

MAX (xl x2 ••• xn)

MAX chooses the largest of its arguments for its value. Note that

MAX (3 lQ 2.0) = 3.0

yields a floating-point number since at least one argument was
floating-point.

MIN (xl x2 ••• xn)

MIN chooses the smallest of its arguments for its value.

QUOTIENT (x y) = x / Y

QUOTIENT computes the quotient of its arguments. For fixed-point
arguments, the value is the number theoretic quotient, e.g.,
QUOTIENT (5 2) = 2. A divide-check or floating-point trap will result
in a LISP error.

REMAINDER (x y)

REMAINDER computes the number theoretic remainder for fixed-point
arguments, e.g., REMAINDER (5 2) = 1 and the floating-point residue
for floating-point arguments.

DIVIDE (x y)

DIVIDE returns a.s its value a list of the QUOTIENT and the REMAINDER
of its arguments. It could be defined by:

(DIVIDE (LAMBDA (X Y) (LIST (QUOTIENT X Y) (REMAINDER X Y»»

EXPT (xy) = xY
EXPT. If both x and y are fixed-point numbers, this is computed by
iterative multiplication. Otherwise, the yth power of x is computed
by using logarithms. The first argument x cannot be nega.tive if y is
not an integer.

o

o

85

SQRT (x) = v'Ix1
SQRT is a LISP function unique to the Q-32.
root of the absolute value of the argument.
as a. floating-point number.

RECIP (x) = 1 / x

TM-2337/0l0/00

The value is the square
The value is always given

RECIP computes and returns as its value the reciproca.l of its a.rgument.
The reciprocal of any fixed-point number is defined to be zero.
(RECIP is not currently available.)

ABSVAL (x) = 1 x 1
ABSVAL returns as its value the absolute value of its argument. If x
is positive, it returns x. If x is negative, it returns the value of
MINUS(x).

FLOAT (x)

FLOAT is a LISP function unique to the Q-32. The value is the floating
point equivalent of its argument. It could be defined by:

(FLOAT (LAMBDA (X) (ADD X 0.0»)

ENTIER (x)

ENTIER is a LISP function unique to the Q-32. The value of the function
for positive numbers is the largest integer less than or equal to its
argument. For negative numbers it is MINUS the ENTIER of the magnitude
of the argument. For example:

ENTlER (93.75) = 93
ENTlER (-3.75) = -3
ENTIER (0.35) = 0
ENTlER (-0.35) = 0

Whereas FLOAT converts a fixed-point number to floating-point, ENTIER
converts a floating-point number to fixed pOint.

13.3 LOGICAL ARITHMETIC FUNCTIONS

The following functions operate on 48-bit words. The only acceptable
arguments are fixed-point numbers. These may be entered as octal or
decimal integers, or they may be the result of a previous computation.

LOGOR (Xl x2 ••• xn)

LOGOR is a function of any number of arguments, whose value is the
logical OR of all its arguments.

14 June 1965 86 TM-2337/010/ 00

LOGXOR (xl x2 ••• xn)

LOGXOR is a function of as.-ry DUlllber of arguments, whose value is the
'logical exclusive OR of all its arguments.

LOGAND (Xl x2 ••• xn)

LOGAND is a function of any number of arguments, whose value is the
logical AND of all its arguments.

LEFTSHIFT (x n) = {x){2)n

LEFTSHIFT shifts its first argument left by the number of bits specified
by its second argument. If the second argument is nega.tive, the first
argument will be shifted right.

13.4 AN EXAMPLE

* The power series expression for SIN is given by:

x3 x5 x7 x9 '
SIN x = x - 3! + 5! - 7! + 9! -

where x is in radians.

If cl = 1

c3 = 3~ = -1.666666667E-l
1

c5 = 5! = 8.333333333E-~

c7 = 7~ = -1.984126984E-4
1

c9 = 9! = 2.755731922E-6

We can approximate the power series as:

SIN x = clx + cr3 + c5x5 + cr 7 + ccf9

The LISP function SIN (x) where x is in radians, can now be defined in
terms of this power series approximation.

DEFINE «
(SIN (LAMBDA (X)(PLUS X (Tn-mS -10666666667E-l X X X)

(TIMES 8.333333333E-3 X X X X X)
(TIMES -1.984126984E-4 X X X X X X X)
(TIMES 2.755731922E-6 X X X X X X X X X»» »

* Handbook of Mathematica.l Tables and Formula.s, Burington, Handbook
Publishers, Inc., Sandusky, Ohio, 1953.

o

o

o

o

14 June 1965 87 TM-2337 /010 / 00

If we factor out x2 and write the power series in the form
222 2 SIN x =x(c1 + x (c3 + x (c5 + x (c7 + c~ »»

a more computationally efficient LISP program for SINcen be defined by
using a nested LAMBDA expression, as we need compute x2 only once.

DEFINE «
(SIN (LAMBDA (X) «LAMBDA (XSQ) (TIMES X (PLUS 1 (TIMES XSQ (PLUS -1.6666667E-l

(TIMES XSQ (PLUS 8.333333333E-3 (TIMES XSQ {PLUS -1.984126984E-4
(TIMES XSQ 2.755731922E-6»»»»»(TIMES X X»» »

13.5 EXERCISES

Evalua.te:

1. PLUS (1 2 3 4 5 6 7 8 9 10)
2. DIFFERENCE (99 3.14159)
3. TIMES (2 2 2 2 2 2 2 2 2 2)
4. ADDl (77777Q)
5. SUBl (1.0)
6. MINUS (-0)
7. MAX (10 12Q 10.000000001)
8. MIN (10 12Q 9.999999999)
9. QUOTIENT (55 3)

10. QUOTIENT (55.0 3Q)
11. REMAINDER (55 3)
12. REMAINDER (55 3.0)
13. DIVIDE (55 3)
14. DIVIDE (55 3.0)
15. DIVIDE (55 3Q)
16. ENTlER (123.4)
17. ENTlER (-123.4)
18. ENTIER (0.7)
19. ENTlER (-0.7)
20. SQRT (25)
21. RECIP (3.0)
22. RECIP (3)
23. FLOAT (123456789)
24. ABSVAL (-3.14159)
25. LOGOR (77777Q 12345Q)
26. LOGOR (70707Ql 12345Q)
27. LOGOR (77777Q 12345Q)

14 June 1965

28. LOGXOR (70707Ql 12345Q)
29. LOGAN» (77777Q 12345Q)
30.LOGAND (70707Ql 12345Q)
31. LEFTSHIFT (1Ql 1)
32. LEFTSHIFT (7Ql -1)

88 TM-2337/010/00

Define the following functions and try them out with your own values
of variables.

33.
34.
35.
36.
37.
38.

TRIPLE (X) =f + X + X
CUBE (X) = X
SIMPLEINTEREST (PRINCIPAL RATE YEARS) = pel + YR)
ANNUALCOMPOUND (p R Y) = pel +R)Y
TlMEC<Jt1POUND (p R Y T) = pel + R/T)TY
The value of a. two-by-two deter.minent is defined by:

821 8 22

Define the LISP function

TWOBY (811 a12 821 8'22)

39. The value of 8 three-by-three deter.minant is defined by:

all 81.2 a13

a21 a22 8 23

a31 8'32 8 33

Define the LISP function

THREEBY (81.1 812 ••• 8 32 a33)

40. Given three simultaneous equa.tions

8 11 ~ + a12 ~ + 8 13 u3 = cl

a21 ~ + 8 22 u2 + 8 23 u3 = c2

a'31 ul + a32 ~ + a33 u3 = c3

o

o 14 June 1965

()

0

~~~~~~~- ---------------

89 TM-2337/0l0/00 
(Page 90 Blank) 

we can solve for any variable ~ by dividing two determinants. The 
denominator determinant, D, is a.s defined in problem 39. The numera
tor determinant is similar but with the ck terms replacing the coeffi
cients of the ~ variables. For example: 

all cl .8.13 

8.21 c2 a23 

a3l c3 8'33 

u2 = D 

Define the LISP function 

SOLVE (all a12 .•• a32 a33 cl c2 c3) 

which computes the value of all variables ~ for three simultaneous 
equations in three variables. (HINT: Use your definition of 
THREEBY and QUOTIENT.) 

Try these equation sets: 

l. 2ul + u2 -2u3 = -6 

~ + u2 + u3 = 2 

-ul -2u2 + 3u3 = 12 

2. 2ul + u2 - 2u3 = 5 

2ul + u2 + 3u3 = 6 

-~ - 2u2 + 3u3 = 12 

3. l5~ + l5u2 + l5u3 = 15 

7ul + u2 - 100u3 = -100 

-50ul + u2 + u3 = -16 

4. ul + 2u2 - 2u3 = -12 

ul + u2 + u3 = 6 

-2ul - u2 + 3u3 = 2 

5. -2ul + ~ + u3 = -24 

ul + u2 + u3 = 29 

3ul - u2 - 2u3 = 9 





o 

o 

o 

----~-----~----

14 June 1965 91 TM-2337/010/00 

CHAPl'ER 14. RECURSIVE FUNCTIONS 

The functions we have thus far defined have used LAMBDA expressions, composition 
of functions, and conditional expressions. A still wider cla.ss of functions 
can ,be defined using these methods an~ the method of recursion. 

It takes time and practice to think recursively, particularly if you have 
programming experience with the linear flow of control common with algebraic 
languages. You cannot be taught to think recursively, but you can learn to 
think recursivelY. To help you learn, we give same helpful heuristiCS, and 
examples, and more examples. 

The mechanics of defining recursive functions is like any other function 
composition. When we construct a. form, such a.s 

(CONS X Y) 

we are making an explicit call upon the function CONS. CONS, in this cas~ is 
an alre~ existing function. In a recursive function definition, for say 
function f, we likewise make explicit calls upon functions; however, one or more 
such calls are upon the function f itself. The only apparent difference between 
calls upon CONS and calls upon f, is that f is the function being defined itself. 
But LISP doesn't mind. In most algebraiC languages, the programmer is cautioned 
not to write subroutines that call upon themselves, since that is recursion and 
most algebraic languages cannot handle recursion. In LISP we do it all the 
time. For example, it is syntactically proper to write 

DEFINE « 
(EXAMPLE (LAMBDA (L)(COND «NULL L) NIL) 

(T (CONS (CAR L) (EXAMPLE (CDR L»»») » 

We note that in this do-nothing function definition, i.e., EXAMPLE returns as 
its value the input list L, EXAMPLE makes an explicit call upon itself. EXAMPLE 
is thereby a recursive function. 

Recursive definitions always define an idea in one or more special starting or 
finishing cases, and then define the idea in the general case in terms of a. 
preceding or adjacent case. Let's see how this statement applies to a LISP 
problem. 

14.1 AN EXAMPLE 

Problem: given any list, such as 

(A B C) 

define the predicate 

ATOMLIST (,I,) 



14 June 1965 92 TM-2337/010/00 

which is true if all elements of t 9.re atoms, and false otherwise .. 
How shall we proceed? Essentially, we wish to perform the test 

If ATOM A , then 
If ATOM B ; then 

If ATOM C , then true. 
Else false 

Else false 
Else false 

which, as a LISP functio~would be defined by 

DEFINE « 
(ATOMLIST (LAMBDA (A B C) 

(COND «ATOM A)(COND «ATOM B)(ATOM C» 
(T F») 

(T F»» » 

But this is not a. solution to our problem. We are not given A, Band 
C explicitly, but rather list t , which can have any number of elements. 
We must do 

(ATOM (CAR L» 

to test an element of t. Thus, we could write 

DEFINE « 
(ATOMLIST (LAMBDA (L) (COND «ATOM (CAR L» 

(COND «ATOM (CADR L) )(ATOM (CADDR L») 
(T F») (T F»» » 

But this last definition solves the problem when we know list t has 
exa.ctly three elements. How about the general case where we do not 
know the length of list t, or even when we do know, but where t is 
very long? We don't want to write 

(CADDDDDDDDDDDDDDDDDDDR L) 

even if we could, for a 2o-element list. 

The proper strategy is to test the first element of the list with the 
expression 

(ATOM (CAR L» 

If it is false, we exit NIL. If it is true, we need to test the second 
list element. If it proves true, then we test the third element, etc. 
But note, if after we test the first element, we remove the first element 
from the list, then the second element becomes the first element of the 
new list and we can a.pply the same test to the new list. The new list is 

(CDR L) 

and the test is applied recursively. Thus we can write: 

c) . 



o 

o . 

o 

93 TM-2331 JJIC/CO 

DEFINE « 
(ATOMLIST (LAMBDA (L) 

(COND «ATOM (CAR L» (ATOMLIST (CDR L») (T F»» » 

which is recursive. What we ha.ve done is first examined the (CAR L). If 
it is an a.tom, we reduce the list t by taking the (CDR L) to get a. new 
list. Then test this new list with ATOMLIST. If we ever find a. non
atom, the conditional will return NIL. 

This last definition almost works, but not quite. It fails because we 
haven't set up a terminal condition. As it stands now, unless we exit 
NIL because some element of the list was non-a:tomic, we will recurse 
again and again, reducing t each time until t no longer has elements but 
is NIL. And then we would try recursing once more and try to take the 
CDR of NIL. There's the rub. (CDR NIL) is undefined. To exit properly, 
we must test for the terminal condition. In this case 

(NULL L) 

will suffice. Thus our final, correct recursive definition for ATOMLIST 
is: 

DEFINE « 
(ATOMLIST (LAMBDA (L) (COND «NULL L) T ) 

«ATOM (CAR L» (ATOMLIST (CDR L»} 
(T F»» » . 

Note: if we ever encounter the null condition, ATOMLIST is true since 
a.ll prior elements must pave tested true. We perform the null test first 
to allow t to be completely general including the empty lis~NIL. Note 
then that 

ATOMLIST () = T 

14.2 SOME HELPFUL HEURISTICS 

The following heuristics can be used to help in defining recursive 
functions. 

1. Start with a. trivial case, or a terminal case in which the rule for 
computa:tion is known. Some typical trivial or terminal cases are: 

for S-expression ; atoms 
for Lists ; NIL 
for Numbers ; 0,1 

2. For the non-trivial, non-terminal case try to reduce what you are 
trying to compute to some function of a. case "nearer" to the trivia.l 
case. 



14 June 1965 TM.-2337/010/00 

3. Combine the trivial or terminal case with the other, using the 
trivial or terminal case first in a conditional expression. 

4. Always check your definition by trying several simple--but not all 
trivial--examples. 

Let's try these heuristics on the recursive definition of FACTORIAL, 
where 

n! = UNDEFINED ,for n < 0 
= 1 , for n = 0 
= (n) (n-l): , for n > 0 

1. The argument of FACTORIAL is a. number. Therefore, the trivial case 
is for n = 0. 

2. In the trivial case where n = 0, then 

FACTORIAL (N) = (COND «ZEROP N) 1» 

3. If n is not zero, then we can break n! into the product of two parts, 
nand (n-l): since (n-l)! moves us nearer the trivial case (2). 
Thus, 

FACTORIAL (N) = (TIMES N (FACTORIAL (SUBl N») 

4. Now combining the two cases (2) and (3) conditionally with the 
trivial case first, we get, 

DEFINE « 
(FACTORIAL (LAMBDA (N) (COND «ZEROP N) 1) 

( T (TIMES N (FACTORIAL (SUBl N»»») » 

Let's trace through this example for n = 3. 

Arguments of FACTORIAL = 3, descend (recursion) 
Argtunents of FACTORIAL = 2, descend (recursion) 

Ar~wnents of FACTORIAL = 1, descend {recursion) 
Arguments of FACTORIAL = 0, terminal condition 
Value of FACTORIAL = 1, ascend 

Value of FACTORIAL = 1, ascend 
Value of FACTORIAL = 2, ascend 

Value of FACTORIAL = 6, complete 

What we have effectively done in this example is to create 

FACTORIAL (3) = (TIMES 3 (TIMES 2 (TIMES 1 1») 

In general, we will descend as deep as is necessa.ry to reach the terminal 
case and the effective computation would be 

FACTORIAL en) = (TIMES n (TIMES n-l ••• (TIMES 2 (TIMES 1 1» ••• ») 

o . 

-' 



o 

o 

o 

14 June 1965 95 TM-2337/010jOO 

Examples: The following functiona.l definitions are pedagogical devices. 
Although these functions are available in Q-32 LISP, these definitions 
may not exactly replicate those in the system. 

1. The function EQUAL (x y) as we have seen in Chapter 11 can be 
defined by: 

DEFINE « (EQUAL (LAMBDA (X Y) 
(CONn «ATOM X) (EQ X Y» 

«ATOM Y) NIL) 
«EQUAL (CAR X) (CAR Y» (EQUAL (CDR X) (CDR Y») 
(T NIL»» » 

2. The value of the function APPEND of two arguments, both lists, is a 
list formed by appending the second list to the first. 
For example: 

APPEND «A B) (D E F» = (A B D E F) 

DEFINE « (APPEND (LAMBDA (X Y) 
(COND «NULL X) Y) 

(T (CONS (CAR X) (APPEND (CDR X) Y»»» » 

3. The function LAST of one a.rgument, a list, returns the last top 
level element-or-the list. 

DEFINE « (LAST (LAMBDA (L) 

14.3 LABEL NOTATION 

(COND «NULL L) NIL) 
«NULL (CDR L» (CAR L}j 
(T (LAST (CDR L»»» » 

Earlier we saw that we could compose and evaluate an expression as a 
temporary LAMBDA expreSSion, or as a permanent function defined by a 
LAMBDA expression. Recursive expressions point up an inadequacy in 
LAMBDA notation that requires us to define as permanent, recursive expres
sions that which we wish to consider temporary expressions. This 
difficulty stems from the inability to use the expression within itself, 
since the LAMBDA expreSSion is not named; and when a function is 
recursive, it must be given a name. To resolve this difficulty and 
thereby allow composition and evaluation of temporary recursive 
expreSSions, we use the LABEL feature of LISP. 

In order to be able to write expressions that bear their own name, 
we write, 

(LABEL name LAMBDA-expression) 

where name is any non-numeric atomic symbol you choose as the name 
for the given LAMBDA expreSSion. 



14 June 1965 

Example: 

(LABEL DlJMMY (LAMBDA (X) 
1 233 

(COND «ATOM X) X) 
3 45 5 4 

(T (DUMMY (CAR X»»» (argument list) 
4 5 6 654321 1 1 

TM-2337/0l0/00 

LABEL nota,tion, a,s this is called, creates temporary expressions that, 
like the temporary LAMBDA expressions seen earlier, must be provided 
immediate~ with a list of arguments to be associated with the LAMBDA 
va.riables during evaluation. Also, like temporary LAMBDA expressions, 
the expression must be entered again each time it is applied to a 
different argument list. In fact, that is the meaning of IItemporary 
expression" as used here. Of course, we can always use DEFINE to create 
permanent functions rather than repeatedly use LAMBDA or LABEL. In 
practice, temporary LAMBDA expressions are used frequently, but LABEL is 
seldom used, the preference being to attach the name by use of DEFINE. 

14.4 EXERCISES 

1. Define FACTORIAL as given in the previous examples. Try it for a 
few values of n ~ 10. 

2. To see the recursion dramatically, do the following: 

enter, 

After the 

enter, 

TRACE «FACTORIAL» 

system responds 

{FACTORIAL) 

FACTORIAL (5) 

The system will print the argument and value of FACTORIAL each 
time it is entered so that you may see the recursion as the function 
first descends, and then ascends in its computation. When 5~ has 
been computed, enter, 

UNTRACE «FACTORIAL» 
to remove the tracing action from the function FACTORIAL. 

3. Evaluate 

(LABEL KAME (LAMBDA (X) (COND «ATOM X) X) (T (NAME (CDR X»»» 

for the following arguments; (Remember, LABEL takes a list of 
arguments) : 

o ,. 



-- ~-~----.------~-.-.. ~~~~ 

o 

o 

o 

14 June 1965 

A 
(A • B) 
«X. y) • (X • z» 
(A B C) 
(A (C • E» 

4. Evaluate 

97 

(LABEL MATCH (LAMBDA (X Y) 
(CONn «NULL X) (QUOTE NO» 

«NULL Y) (QUOTE NO» 
«EQ (CAR X) (CAR Y» (CAR X» 
(T (MATCH (CDR X) (CDR Y»»» 

for the following arguments: 

5. Define 

(X) (X) 
(A B E) (J 0 E) 
(K A Y) (E V E) 
( ELL I N) (H E LEN) 

(TWIST (LAMBDA (S) 
(CONn «ATOM S) S) 

Evaluate 

(T (CONS (TWIST (CDR S» 
(TWIST (CAR S»»») 

TWIST (A) 
TWIST «A. B» 
TWIST «(A. B) • C» 
TWIST «A B C» 
TWIST «(A. B») 

6. Let us plan how to defin~ recursively, the function 

SUM (x y) = x + y. 

TM-2337/010/00 

using only the functions ADDl and SUB1, and the predicate ZEBOP • 

• The trivial 'case is if y = O. Then the value of SUM would be 
the value of x. 

• Now if we try to reduce the general case to this trivial one, 
we see that ify ~ 0, then reduce y by 1, and increase x by 1 
and SUM these two numbers. Then recurse. We can write 



14 June 1965 

(SUM (LAMBDA (X Y) 
(COND «ZEROP Y) X) 

(T (~uro (ADDl X) (SUBl Y»»» 

TM-2337/010/00 

1. Using this definition, show the arguments and values of SUM 
each time it is entered for 

SUM (1 2) 

2. Check your answers to (1) by defining SUM on the computer and 
tracing its evaluation for ~l, y=2. 

3. Don't forget to UNTRACE «SUM». 
7. Define" recursivel:Y; using only the functions ADD1, SUB1, and ZEROP 

PROD (x y) = (x)(y) 

HINT: If y = 0, then the product is trivially zero. If not then 
the product is the SUM of x and the PROD of x and y-l. 

8. We know that division is essentially repeated subtra.ction, and 
that the remainder in division is the residue when subtraction is 
no longer possible. Therefore, 
Define recursively 

RDDCY (x y) 

which yields the remainder resulting fram the division of x by y. 

9& The greatest common divisor (G .. C .. D) of two whole numbers is the 
largest number that will exactly divide both of them. Euclid 
gave an algorithm, which can be stated in English as: 
The G.C.D of x and y is: 
• If x is greater than y, the G.C.D. of y and x. Else, 

If the remainder ofy divided by x is zero, x. Else, 
• The G.O.D. of x and the remainder of y divided by x. 

Use this algorithm to define 

GCD (x y) 

GCD (7 7) = 7 
GCD (19 7) = 1 
GCD (28 35) = 7 

o 

Q 

... 

n "---./. 



o 

o 

o 

14 June 1965 99 TM-2337/0l0/00 

10. Define 
AMONG (a t) 

which is a predicate that is true if and only if atom a is among 
the top level elements of list t. 

11. Define 

AMONG (X (A B X» = T 
AMONG (X (A B (X») = NIL 

INSIDE (a e) 

which is a predicate that is true if and only if atom a appears 
anywhere at ~ level in the S-expression e. 

12. Define 

INSIDE (X (A B X» = T 
INSIDE (X (A (X) B» :::: T 
INSIDE (X (A • (B • X») = T 

COPYN (x n) 

which will put n copies of x on a list; e.g., 

COPYN «A B) 3) = «A B) (A B) (A B» 

13. Define 
LENGTHS (t) 

which counts the number of top level elements of a list; e.g., 

LENGTHS «A B (C D) E» = 4 

14. Define 
UNIONS (x y) 

which returns a list that contains every element that is in one 
list or the other or both. The order in which the elements are 
presented is first, all the elements that are in the first list x 
and not in the second list y, and second, all elements in the 
second list y whether or not they are in list x. 
HINT: Use the function MEMBER as given in problem 10, Chapter 12. 

15. Define 

UNIONS «U V W) (W X y» = (U V W X y) 
UNIONS «A B C) (B C D» = (A BCD) 

INTERSECT (x y) 

which returns a list of elements common to both list x and list y. 

INTERSECT «A B C) (B CD» = (B C) 
INTERSECT «A B C) (D E F» = NIL 



14 June 1965 100 'J!M-2337/0l0/00 

16. Define 
REVERSAL (L) 

which reverses the order of top level elements of the list t; 
e.g." 

REVERSAL «(A B) D (D E) G»= (G (D E) D (A B» 

HINT: Use APPEND as given in the earlier examples. 

17. Define 
PAIRS (ll L2) 

which produces 8 table (list of dotted pairs) of the elements of 
two lists of equal length; e.g." 

PAIRS «ONE TWO THREE) (1 2 3» = «ONE. 1) (TWO • 2) (THREE • 3» 
18. Define 

19. 

DELJfi1E (a L ) 

which produces a new list in which all references to atom 
been deleted from the top level of list l; e.g." 

DELETE (Y (X Y z» = (X z) 

Define the predicate 
INSEQ (t) 

a' have 

which is true if list L contains a numerical sequence in proper 
ascending or descending order and ,false otherwise. 
U'T"'lITI. TT ... ~ III'!II..... 0 ... "",,",1 .. n'M'W • .,p. ...... " ........ "'''''' T'lTC!'I::Pl\A '+'he+- .... a~+lI!!t eelMDft""'" 't"I,.,. ""' .... .::16 ... 
.a.&..I..~1"'. vgw: Q.W, g",......,.. ........... o..LJ .... ""'"' .... " ..... "" ........... ,.., ....... v.u.u..v ~,..,...,"'u ,"",w'-"'A.A~ ""_""'"'_ 

only. Use INSEQA with REVERSE (a system function analogous 
to REVERSAL above) to test descending order. 

INSEQ (1 2 3 4) = T 
INSEQ (40 30 2 1) = T 
INSEQ (1 23 24 27 26 30)= NIL 
INSEQ (10.0 9 8 7.4 2.3) = T 
INSEQ (A BCD E) = NIL 

20. Define 
REPLACE (8 b x) 

a function that replaces atom b by atom 8 tor every occurrence 
of a in S-expression x. 

REPLACE (A B (A BCD» = (A A C D) 
REPLACE (TWO TO (WE TO HAVE TO CATS» = (WE TWO HAVE TWO CATS) 

o 
'~ 

o 



o 

D 

14 June 1965 101 TM-2337/010/00 

CHAPrER 150 THE PROGRAM FEATURE 

The LISP 1.5 program feature,which is called by the LISP expression PROG, 
allows us to write an ALGOL-like program containing LISP statements to be 
executed. For JOVIAL programmers, its greatest attribute appears to be the 
ability to perform iteration by allowing looping and the use of temporary 
variables. 

15.1 PROG FORMAT 

The PROG format is embedded within a LAMBDA expression and so may be 
used in the same way LAMBDA expressions are used: for temporary 
evaluation of expressions; for permanent definition of expressions with 
DEFINE; in recursive expressions; and with LABEL. 

Recall, a LAMBDA expressions has the following format: 

(LAMBDA list-of-variables form) 

The PROG forma.t bec.omes the "form" in a LAMBDA expression.. Like all 
forms, it is an S-expression; it has the structure: 

(PROG list-of-variables sequence-of-statements) 

The list of variables comprise the temporary variables required by the 
sequence of statements, which are themselves S-expressions. 

Thus the complete LAMBDA expression with the PROG form has the structure: 

(LAMBDA (lambda-variables) (PROG (program-variables) statements » 
15.2 PROGRAM VARIABLES 

We usually call the variables associated with the LAMBDA expression 
"LAMBDA variables," and those associa.ted with the PROG, "program or 
PROG variables." The list of PROG variables, just like the list of 
LAMBDA variables, must always be present in the structure of the 
expression. If we have none, then the list is entered as NIL or ( ). 

Unlike LAMBDA variable~which have no value until an argument list is 
provided, PROG variables always have value NIL until they are changed 
or set by statements Within the PROG structure. Two forms are used to 
set program variables, sm and SETQ. 



102 TM-2337/010/00 

SET acts like a function of two variables, and has the structure: 

(SET vl v2) 

which can be read as "set value of v equal to value of v ." Both 
variables vl and v2 can be and usually are S-expressions ~emselves. 
They are evaluated and the value of vlis set equal to the value of 
v2• If we wish to set the name of something rather than set its value, 
we must always use QUOTE, e.g., 

(SET (QUOTE PI) 3.14159) 

SET is not available on Q-32 LISP; however, this is not a serious loss 
as SETQ is available. 

SETQ is like SEl', but for convenience, SE'l'Q always quotes its first 
argument. The Q in the name SETQ is to remind us of this fact, e.g., 

(SETQ PI 3.14159) 
SETQ returns a.s its value the value of its second argument v2• 

15.3 FLOW OF CONTROL 

Each program statement is an S-expression, and the sequence of statements 0,' 
is a sequence of S-expressions. The simplest S-expressions are atomic 
symbols, and these are used as location tags or markers for the state-
ments that follows. For exampl~, 

(SE'l'Q PI 3.14159) 
LOCl (SETQ R N) 

(~~O A~~A (~~ ~ »T ~\\ \ ___ ~ ... __ ... , .... oJIJt, • ....., _ ...... ~.'I 

has atomic symbol LOCl as a location tag for the statement 

(SETQ R N). 

Statements are normally executed in sequence. Executing a statement 
means evaluate the S-expression. Program statements are often executed 
for their effect rather than their value, as with SE'l'Q above. GO 
is a perfect example of exe~tion for effect rather than value. It is 
a form used to cause a transfer to a tagged statement. It acts like a 
function of one argument that is not evaluated; that argument being a 
location tag, e.g., ---

(GO LOC1) 

To exit from a FROG, we use RETORN. It acts like a function of one 
argument, and the argument is evaluated. The value is returned as the 
value of the PROG. No further statements are executed. 

We can also exit from a PROG without the RETURIf statement by just 
"running out" of statements. In that case, the value of the PROG is 
always NIL. 



" o 

o 

o 

14 June 1965 103 TM-2337/o10/00 

statements can be constructed of any of the expressions available in 
LISP. They may be ~onditional or recursive expressions. They may even 
be LAMBDA or PROG expressions, thereby allowing nesting of PROG expressions. 

15.4 SOME CAUTIONS 

Conditional expressions as PROG statements have a useful peculiarity. 
If there is no true clause, instead of an error indication,which would 
otherwise occur, the program continues with the next statement. In 
other words, you "fall through" the conditional if there are no true 
conditions. This peculiarity is true only for conditional expressions 
that are on the top level of a PROG. The top level is the statement 
level, an~except for nested conditionals, conditionals are usually at 
the top level. 

This attention to the top level is also required for the GO statement. 
It also must be used on the top level of a PROG or immediately inside 
a COND thai:; is on the top level of a PROG. -

If we nest a PROG within a PROG, within a PROG, etc., the GO, RETURN, 
SETQ, etc., will have a scope local to the most recent PROG. For 
example, GO cannot transfer to a statement tag within a.nother higher or 
lower level PROG. Similarly, RETURN takes you IIUp" one level to the 
next higher PROG. In certain special cases, SETQ may be used on 
variables defined a.t a higher level PROG. These variables are then 
called "free" variables and require special attention. We will discuss 
variables and their "bindings" to values in the next chapter. 

In the last chapter we saw the recursive definition of FACTORIAL. 
Let's contrast that expression with one using the PROG feature. 

FACTORIAL--Recursive definition 

DEFINE « 
(FACTORIAL (LAMBDA. (N) 
(COND «ZEROP N) 1) (T (TIMES N (FACTORIAL (SUBl N»»») » 

FAm'ORIAL--PROG feature 

DEFINE « 
(FACTORIAL (LAMBDA. (N) (PROG (Y) 

» 

(SETQ Y 1) 
TAGl (COND «ZEROP N) (RETURN Y») 

(SETQ Y (TIMES NY» 
(SETQ N (SUBl N» 
(GO TAG1»» 



14 June 1965 104 TM-2337/0l0/00 

In this example, the recursive definition appears to be simpler than the 
one using the program feature. In other problems it may be otherwise. 
The choice of whether to use the PROG feature or to use "pure LISP" in 
programming in LISP depends in large measure on the problem. Style in 
programming is often, however, the stronger influence. See "Styles of 
Programming in LISP," by Fisher Black, in The Programming Language LISP: 
Its Operation and Application, March 1964, Information International Inc., 
Cambridge, Massachusetts. In that article, Black discusses this subject 
in depth. 

15.6 PROG2 

The function PROG2 has nothing to do with PROG. It is a function of 
two arguments that evaluates both its arguments in order, i.e., 
argument one first, argument two second. PROG2 has as its value, the 
value of its second argument. Thus 

PROG2 (l 2) = 2 
{LAMBDA (X Y) {PROG2 (CONS X Y) Y» (A B) = B 

The utility of PROG2 can be seen in the following example: 

Problem: Given a list of numbers, define the function SORT, which 
sorts these numbers into odd or even and returns a list of 
two sublists of the form; 

({Odd-count list-of-odd-numbers) (even-count list-of-even-numbers» 

e.g., SORT «1 2 3 4 5» = «3 (5 3 1» (2 (4 2») 
SORT « 1 3 5 7 9» = ({5 (9 7 5 3 1» (O NIL» 
SORT {(2 4 6 8 10» = ({O NIL) {5 (10 8 6 4 2») 

DEFINE {( 
(SORT (LAMBDA (X) {PROG (ODD EVEN ODDCNT EVENCNT L) 

(SErQ L X) (SETQ ODDCNT 0) (SErQ EVENCNT 0) 
LOOP {COND «NULL L) {RETURN {LIST (LIST ODDCNT ODD) 

(LIST EVENCNT EVEN»» 
«ZEROP (REMAINDER (CAR L) 2» 

(SETQ EVEN {PROG2 (SETQ EVENCNT (ADDl EVENCNT» 
(CONS (CAR L) EVEN»» 

(T (SETQ ODD (PROG2 (Sm'Q ODDCNT (ADDl ODDCNT» 

(SETQ L (CDR L» 
(GO LOOP) ») » 

(CONS (CAR L) ODD»» 

c . 



o 

o 

o 

--------------- -------------------

lit. June 1965 105 

15.7 EXERCISES 

1. Using PROG, define the function 
NmCNT (1.) 

which counts the number of negative numbers at the top level of 
list t. 

2. The discriminant b2_4ac of a second degree equation of the for,m 

2 2 
ax +bxy+~ +dx+ey+f=O 

can be used to determine the type of curve for the plot of the 
equation according to the following schedule: 

1. a parabola if discriminant = 0 

2. an ellipse if discriminant <0 
3. a hyperbola. if discriminant >0 

Define 
CURVE (a b c) 

which evaluates to PARABOLA, ELLIPSE, OR HYPERBOLA as a function 
of the numerical va.lues of arguments a, b,and c. 

3. The recursive definition for LENGTHS is: 

DEFINE « 
(LENGTHS (LAMBDA (M) 

(COND «NULL M) 0) 
(T (ADDl (LENGTHS (CDR M»»») » 

Define LENGTHS using PROG. 

4. The recursive definition for LAST is: 

DEFINE « 
(LAST (LAMBDA (L) 

(COND «NULL L) NIL) 
«NULL (CDR L» (CAR L» 
(T (LAST (CDR L»»» » 

Define LAST using PROG. 



14 June 1965 106 TM-2337/0l0/00 

5-7. Define the following functions using PROG. (See Chapter 14, 
problems 16, 17, 18.) 

5. REVERSAL 

6. PAIRS 

7. DELmE 

8. Each different arrangement of all or a part of a set of things is 
called a "permutation." The number of permutations of n different 
things taken r at a t:iJne is 

Pen r) = n! / (n-r)! 
Define,with and without PROG, (define FRACTORIAL first) 

PERMUT (n r) = n! / (n-r)! 

9. Each of the groups or relations which can be made by taking part or 
all of a set of things, without regard to the arrangement of the 
things in a group, is called a "combination." The number of combi
nations of n different things taken r at a t:iJne is 

C(n r) = n! / r! (n-r)! 

Define,with and without PROG, 

COMBIN (n r) = n! / r! (n-r)! 

10. A convenient way to obtain the combinations of n different things 
taken r at a time is to construct Pascali s triangle. The triangle 
looks like 

n=O ... 

n=l ... 

n=2 ... 

n=3 ... 

n=4 ... 

n=5 ... 

r=0 
rI 

1 r=l 
rI 

1 1 r=2 
rI 

1 2 1 r=3 
rI 

1 3 3 1 r=4 

1 4 6 4 1 rI r=5 
1 510 10 5 1 rI 



o 

o 

o 

14 June 1965 107 
(Page 108 Blank) 

TM-2337/Ol0/00 

Given the pseudo function PRINT,which takes one S-expression as its 
argument and prints the value of that argument, e.g., 

•••• (PRINT (LIST (QUOTE A) (QUOTE B) 3 (QUOTE C») = (A B 3 c) 

and ignoring the triangular format, use your definition for COMBIN 
to define 

PASCAL (n) 

which prints Pascal's triangle, e.g., 

PASCAL (5) = 
(1) 
(1 1) 
(1 2 1) 
(1 3 3 1) 
(1 4 6 4 1) 
(1 5 10 10 5 1) 
NIL 



o 



o 

o 

14 June 1965 109 'l'M-2337/0l0/00 

CHAPTER 16. VARIABLES AND THEIR BINDING 

So far, as a teaching convenience, I have been intentionally vague and loose in 
the mechanisms used by LISP in evaluating S-expressions. This chapter attempts 
to formalize what we have been doing regarding variables. 

A variable is a, symbol that is used to represent an argument of a function. 
Thus, one might write "a + b", where a = 341 and b = 216. In this Situation, 
no confusion can result and a,ll will agree that the answer is 557. In order to 
arrive at this result, it is necessary to substitute the actual numbers for the 
variables, and then a.dd the two numbers (on an adding ma.chine, for instap,ce). 

One reason why there is no ambiguity in this case is that "a" and "b" are not 
acceptable inputs for an adding machine, and it is therefore obvious that they 
merely represent the actual arguments. In LISP, the situation can be much more 
complicated. An atomic symbol may be either a variable or an actual argument. 
To further complicate the Situation, an argument may be a variable when a func
tiona,l expression inside another functional expression is evaluated, as we have 
seen with nested LAMBDA expressions. Tbe intuitive approach is no longer ade
quate. In the examples so far, we have seen functions applied to specific 
arguments to get specific results. We have also provided for arbitrary arguments 
by means of bound variables with LAMBDA and PROG. 

16.1 BOUND VARIABLES 

RULE: An atom never stands for itself unless it is part of a quoted 
expression. (Note that T, F, NIL, and numbers are here considered 

. quoted expressions.) 

Tbe implication of this rule is that all non-quoted atoms are bound 
variables. This is true. But what does this mean! In the simplest form, 
it means that all non-quoted atoms have values other than their names, 
and we say that a value is "bound to the atom." This value can be a number, 
or an S-expression. The binding is in actuality an associa,tion of data 
internal to the LISP system that is recognized and manipulated by the LISP 
system when an expreSSion is evaluated. To understand bound variables 
adequately, we must examine more closely how data associations are con
structed internal toQ-32 LISP. 

Variables may be bound in one of two places, in a Special Cell associated 
with an a,tomic symbol, or on an internal binary last-in-first-out (LIFO) 
stack or table referred to as the pushdown list. We III look at atomic 
bindings first. 

16.2 ATOMIC BINDINGS 

Atomic symbols are themselves lists internally. Unless you know what 
you're dOing, it is fruitless to take the CAR, or CDR of an atom, but it 



14 June 1965 110 'lM-2337/010/00 

can be done, and is frequently done by "knowledgeable" internal LISP functions. 
The atomic structure of an a,tom is the repository for many things. It 
contains the Print Name of the atom in BCD. It contains a, Property List, 
which is a reserved list for storing useful collections of properties a 
programmer may wish to attach to an atom. (There are numerous functions 
available for manipulating property l1sts;howeve~, they are not covered 
in this Primer and you should refer to the LISP 1.5 Programmer's Manual* 
for a complete discussion of property list functions.) Lastly. for Q-32 
LISP, the atom structure includes a Special Cell that is reserved for 
binding values to the atom. 

A value is an address where the number or the beginning of an S-expression 
is located in memory 0 We therefore think. of the address as a pOinter. 
To bind a value to an atom, we store the pointer in the atom's Special 
Cell by using one of two functions, CSET and CSETQ; functions that are 
analogous to the PROG function SETQ. 

CSET acts like a, function of two variables, and ha.s the form 

(CSET el e2) 

el and e2 are S-expressions, a,nd each is evaluated. el must evaluate to 
an atomic symbol; e2 may eva,lua,te to a number, or S-expression. CSET 
then binds the value of e2 to the atomic symbol that is evaluated for el , 
and returns the value of elo For example, 

(LAMBDA ( ) (CSET (QUOTE PI) 3.14159» ( ) = PI 

binds the value 3.14159 to the atom PI. If we use CSET at the top level 
to Evalquote, el and e2 are of course quoted and to get the same binding 
we write 

CSET (PI 3.14159) 

When we use CSET within a LAMBDA or PROG expression, it is annoying to 
frequently have to quote the first argument. For convenience, we use 
CSETQ. CSETQ is like CSET, except CSE'!'Q always quotes its first argument, 
a,nd the Q in the name CSETQ reminds us of this fa,ct. Effectively, CSETQ 
is defined a,s: 

for the problem above, but using CSETQ, we get: 

(LAMBDA ( ) (CSETQ PI 3.14159» ( ) = PI 

* LISP 1.5 Programm.er's Manual, M.I.T. Technology Press, Cambridge, Massachusetts. 

c~ 



o· 

o 
.. 

. 0 

14 June 1965 111 TM-2337/:n%o 

Unlike CSET, we never use CSETQ at the top level sinc~ Evalquote quotes 
the arguments e and e • For el CSE~ would receive ~QUOTE el ) which 
is not an atom. l It ma~ be clearer with examples. Let's bind list {A} to 
atom LIS1 at the top level using CSET and CSETQ: 

CSET {LISl (A}) I Input expressions I CSETQ (LISl (A» 
I to Evalquote 

(QUOTE LIS1){ QUOTE (A» Transmitted 
arguments 

(CSET (QUOTE LIS1) (QUOTE (A») I Form evaluated 

(QUOTE LIS1) = LISl Evaluated 
(QUOTE (A» = (:rr- arguments 

LISl I Value 

I (QUOTE LIS1) (QUOTE (A) ) 

I (CSET{ QUOTE (QUOTE LIS1» 
{QUOTE (A) » 

I {QUOTE ( QUOTE LIS1» = (QUOTE LIS1) 
I (QUOTE (A» = (A) 

I Error, because the first 
I argument (QUOTE LIS1) is 
I non-atomic. 

Tbe only way to set or remove an a.tomic binding is by evaluation of a 
CSET, CSETQ, or in special cases discussed below, a SE~. As such, 
atomic bindings are the most permanent bindings available in LISP, and 
when atoms with a.tomic bindings are used as variables, they are called 
"global variables" or "constants." 

16.3 PUSHDOWN LIST BINDINGS 

The majority of bound variables in LISP 1.5 are variables bound on the 
pushdown list, and the principle way of binding variables on the push-
down list is through the use of LAMBDA expressions and LAMBDA conversion. 
Bindings on the pushdown list can also be established with PROG expressions 
and with SEQ. 

When we create a LAMBDA expression, we state all the LAMBDA variables in 
the list of variables following the word LAMBDA. In so dOing, we s~ that 
lithe variables are bound by the LAMBDA. n For example, in the following 
expression 

{LAMBDA (A B C) (LIST A B C» (l 2 3) (l) 
the variables A, B, and C are bound by the LAMBDA to the values 1, 2, and 
3, respectively. Internally at run time (when LA.MBJ)J,. conversion takes 
place), a block of cells on the pushdown list is reserved for LAMBDA 
variables, and the pOinters to the values 1, 2, and 3 are placed in 
these reserved cells in their proper place~. After evaluation, the reserved 
block of pushdown storage is released and the values bound to the variables 
A, B, and C are lost. Clearly then, LAMBDA conversion creates temporary 
bindings so that we may evaluate a defined function repeatedly with dif
ferent arguments • 



14 June 1965 112 TM-2337!OlO!OO 

Before we leave LAMBDA variables, note the term dummy variables. If we 
write 

(LAMBDA (X Y Z) (LIST X Y Z» (1 2 3) (2) 

the expression (2) would evaluate exactly as (1) above. More importantly, 
the systematic substitution of X, Y, and Z for A, B, and C, respectively, 
did nothing .to change the form or.meaning of the expression. This is the 
whole point of Church's LAMBDA notation. Thus, any atomic symbol (except 
T, F, numbers, and NIL) will suffice as a LAMBDA variable and so they are 
called dummy variables. 

The second most important way of putting variable bindings on the push
down lis"i; is by use of the PROG feature. ForQ-32 LISP, PROG variables 
are treated exactly like LAMBDA variables with the exception that PROG 
variables are always initially bound to NIL on the pushdown list. Whereas 
LAMBDA variables are bound implicitly through the mechanism of lambda
conversion and evaluation, PROG variables must be explicitly set by the 
programmer; th~ form SETQ being used for that purpose.SETQ, may also be 
used on LAMBDA variables. PROG variables are also dummy variables. 

CSET or CSETQ,m~ also be used with dummy variables. The bindings so created 
are not permanent, but temporary, analogous to SE'l'Q, bindings. However, 
CSET or CSETQ also set such dummy variables into a special state discussed 
further below. Suffice to say, use SETQ on dummy variables to produce 
temporary bindings. Use CSET or CSETQ on constants to produce permanent 
bindings. 

16.4 MULTI-LEVEL BINDINGS 

A good question about this time is, "What value is bound to a variable 
during recursion?" The answer is simple, but the mechanism is not so . 
simple. The values bound to variables during recursion (or during any 
multi-level nesting of the variables in a hierarchy of precedents) are 
the last computed values for these variables. The mechanisms of list 
processing permit the manipulation of LIFO storage, and values are 
effectively piled one atop the other. Thus, when a function is 
evaluated at a particular level, the current binding of a variable is 
the value at the "top of the heap," which is the most recent value 
computed. When returning from a function, this value is discarded and 
the previous value is exposed at the "top of the heap." For example, in 

FACTORIAL (3) 

(see the definition for FACTORIAL in the previous chapter) the dummy 
v8.riable N is bound by the LAMBDA on the pushdown list many times; once 
for each evaluation of FACTORIAL. As we descend deeper in the recurSion, 
we use more pushdown storage to bind each current value of N. 

~-~- ..... _._.- -------------------~~ ----

o 
D 



o o 

o 

o 

14 June 1965 

"Top of the hea.p" binding of N 

3 
2 
1 
o 
1 
2 
3 

113 

Value of Factorial 

descending 
descending 
descending 
1 ascending 
1 ascending 
2 ascending 
6 

TM.2337/010!OO 

Level 

top level = 1 
2 
3 
4 
3 
2 
1 

When we trace FACTORIAL, we are essentially printing the current binding 
of N at each level of the recursion. 

Of course, this only applies to variables bound on the pushdown list. 
The value of a variable bound in the Special Cellon its atom structure 
is always the same regardless of the level at which the variable is evalu
ated. That is why we call them global variables, or constants. 

16.5 FREE VARIABLES 

The next interesting question is, "can a variable be used in a function in 
which it is not bound as a. LAMBDA variable?" Yes. A variable used but 
not bound within the scope of' the current function is said to be a free 
variable. This is shown in the two expressions below. 

(LAMBDA NIL (CSmQ PI 3.14159» NIL 
(LAMBDA (R) (TIMES 2 PI R» (2) 

(1) 
(2) 

Expression (1) sets PI as a global variable. Expression (2) uses PI as 
a constant. Both expressions use PI as a free variable, since it is not 
a bound LAMBDA variable. 

F~ee variables must be bound in the Spec~al Cell attached to their atom 
name if' the proper binding is to be retrieved during evaluation. To 
convey this infor;mation to the Q-32 LISP compiler, you must declare free 
variables as special cases before they are used. If you use csm or CSETQ 
on free variables before they are referenced in functional expressions, 
you needn't take explicit action as CSET or CSETQ automatically make this 
special declaration for you. Otherwise, you must use the function SPECIAL. 

SPECIAL is a function of one argument, a list of all the variables used 
free in the functions being defined. ThuS;-

SPECIAL «PI DOG» 
would declare the atoms PI and DOG as special cases and any time PI or 
DOG is used as a free variable, values will be bound and retrieved from 
each atom's Special Cell. 



14 June 1965 114 TM-2337/0l0/ 00 

Quite frequently, you may wish to use an atom name as a free variable in one 
expression, and as a bound LAMBDA variable elsewhere. You may, therefore, 
un-Special any SPECtAL variables with the function UNSPECIAL. UNSPECIAL 
is the inverse in function but the same in form as SPECIAL. Thus, 

UNSPECIAL «PI DOG» 

removes the special status from the atoms PI and DOG. 

Free, SPECIAL variables are generally used as constants a.nd used as read 
only data in LAMBDA or PROG expressions. If you try to set such variables 
with CSET, CSETQ, or SETQ, you permanently change the constant, since you 
change the binding on the Special Cell. Be careful when doing any evalua
tion that you don't unintentionally reset your constants. 

16.6 SPECIAL VARIABLES AS LAMBDA OR PROG VARIABLES 

With conscious forethought, you may use SPECIAL variables (i.e., variables 
explicitly declared with SPECIAL, or implicitly declared wi,th CSET or 
csmQ) as bound LAMBllA or PROG variables without recourse to UNSPECIAL. 
When SPECIAL variables are used this way, they will act as du:mmy variables 
and their prior value will be unchanged afterward, i.e., after the expres
sion in which they are bound is evaluated. For example, if we evaluate 
these expressions in order, PI remains unchanged after the last expression 
is evaluated even though we use SETQ to temporarily bind PI to 5. 

csm (PI 3.14159) = PI 
(LAMBDA (R) (PROG (PI) 

(smQ PI 5) (RETURN (TIMES 2 PI R»» (6) = 60 
(LAMBDA () PI)() = ~_141SQ 
... " --'" -~ ", 

The slight-of-hand tha,t goes on interna,lly to achieve this effect may be 
of interest to you. When an expression is first entered during evaluation, 
all dummy variables (i.e., LAMBDA and PROG variables) are assigned loca
tions on the pushdown list, including any SPECIAL variables that are being 
used as du:mmy variables. During this assignment phase, the va,lues of a.ll 
dummy variables that are also SPECIAL variables are moved fram their Special 
Cells to their assigned pushdown list locations, and the old values in 
these pushdown list locations are placed in the Special Cells. Thus, the 
contents of the Special Cell arid the pushdown list location for each 
SPECIAL variable are interchanged. (Note that for PROG variables, which 
are initialized to NIL, NIL winds up in the Special Cell.) During evalu
ation of the expreSSion, all references to SPECIAL variables are references 
to the Special Cell, whereas all other du:mmy variable references a.re to the 
pushdown list. If recursion takes place, new pushdown list locations are 
allocated to all d~ variables, and swapping of pointers between Special 
Cells and these new pushdown list locations for SPECIAL variables is repeated. 
Finally, upon exiting the expression that was evaluated, the pOinters are 
swapped back between Special Cells and pushdown list locations, with the 
end result leaving the original values of the SPECIAL variables in their 
Special Cells Where they beleng. 

.' 



.. 
o 

o .. 

o 

14 June 1965 115 TM-2337/0l0/00 

16.7 CAUTIONS 

1. Never use T, F, numbers, or NIL as bound variables. 

2. Never use the same atom a.s both a. LAMBDA and PROG variable within 
the s~e expression. 

3. Declare variables SPECIAL when- they are used free and they are not 
bound by a prior CSEI' or CSEl'Q. 

4. UNSPECIAL free variables when they a,re no longer needed as free 
variables, as it will increase evaluation speed by eliminating 
unnecessary swapping of SPECIAL variable values. 

5. Alwa.ys use QUOTE when you want the literal name of something, 
rather than its value, except where quote is performed for you 
automatically, e.g., SEI'Q, CSEl'Q, GO, and top level arguments. 

6. Except that CSEl'Q returns as its value the value of its first 
argument, and SEl'Q returns as its value the value of its second 
argument, CsmQ and SmQ, bind variables exactly the same way; 
however, CSEl'Q a,lso makes its variables SPECIAL. On dUDJDJ.Y 
variables they make temporary bindings, and on free variables, 
they make permanent bindings. CSET is like OSEl'Qin this regard; 
however, CSEI' evaluates its first argument, whereas CSETQ quotes 
its first argument • 

7. Never try to smQ an unbound free variable (i. e., a variable 
that was never used previously withCSET, CSETQ, or as a 
dUlllDY variable) it will ca,use an error. 

16.8 EXERCISES 

1. Identity the dllllllDY variables, the LAMBDA variables, the PROG variables, 
the bound-variables, SPECIAL variables, and the free variables in the 
following expressions: 

CSET (PI 3.14159) 
UNSPECIAL «X Y Z A B If M» 
DEFINE « (TEST (LAMBDA (X Y Z)(PROO (A B) 

(RMURN (LIST A B Y If Z PI . 
«LAMBDA (Z)(CONS Z (LIST X M ») Y) »») » 

2. Evaluate CSET and UNSPECIAL above and then define the function TEST 
above on the computer and see the Q-32 error message: 

NOT DECLARED" 

returned for each occurrence of a non-SPECIAL free variable. Does 
the error diagnostic(s) agree with'Y'O'Ur answers in problem 11 



14 June 1965 116 TM-2337/010/00 

3. Evaluate 
TEST (1 2 3) 

4. Declare all free variables SPECIAL and redefine TEST. Any error 
messages? 
Evaluate 

TEST (1 2 3) 

Is there any difference between the evaluation of TEST here and 
in prob lem 3 '1 

5. Evaluate the following in order: 

1. CSET (K 1965) 
2. (LAMBDA 0 K) 0 
3. (LAMBDA (X) X)(K) 
4. (LAMBDA 0 (QpOTE K»O 
5. (LAMBDA () (ADDl K»() 

6. Evaluate the following in order: 

1. SPECIAL «Vl V2» 
2. (LAMBDA O(CSETQ Vl (QUOTE V2») () 
3. (LAMBDA () (CSETQ V2 (QUOTE Vl») () 
4. LIST (Vl V2) 
5. (LAMBDA ()(LIST Vl V2»() 

7 • Evaluate the following in order: 

1. (LAMBDA NIL (CSETQ PI 3.14159» NIL 

~: H:: ~ (~~~.L(PI)(SETQ PI 5)(RmURN PI») NIL 
4. (LAMBDA NIL PI) NIL 

8. Evaluate the following in order: 

1. (LAMBDA NIL (CSETQ PI 3.14159» NIL 
2. (LAMBDA NIL PI) NIL 
3. (LAMBDA NIL (PROG (PI) (CSEl'Q PI 5)(RETURN PI»} NIL 
4. (LAMBDA NIL PI) NIL 

9. Eva,luate the following expressions and see the bindings of PI at 
various levels of evaluation. 

CSET (PI 3.l4159) 
(LAMBDA () (PROG2 

«LAMBDA 0 (PROG (PI) 
(PRINT (LIST (QUOTE BEFORESETQ.) PI}} 
(SETQ PI l234) 
(PRINT (LIST (QUOTE AFTERSErrQ) PI»») 

(LIST (QUOTE PERMANENTVALUE) PI»}O 

., 



o o 

o 

14 June 1965 117 

(Page 118 Blank) 

10. Eva.luate the following in order: 

1. CSET (PI 3.14159) 
2. (LAMBDA ()(SETQ PI 5432l»() 
3. (LAMBDA () PIle) 

11. Evaluate the following in order: 

1. CSET (ABE LINCOLN) 
2. (LAMBDA (X) (SETQ X (QUOTE FREEDOM») (ABE) 
3. (LAMBDA () ABE)O 
4. LAMBDA (ABE)(SETQ ABE (QUOTE CIVILWAR») (BOOTH) 
5. (LAMBDA 0 ABE) 0 

12. Evaluate the following in order: 

1. CSET (PI 5) 
2. (LAMBDA (R)(TIMES 2 PI R»)(5) 
3. (LAMBDA (R) (PROG () 

(SETQ PI 3.14159) 
(RETURN (TIMES 2 PI R»»{5) 

4. {LAMBDA NIL PI)O 

13. Evaluate the following in order: 

1. UNSPECIAL ({PI ABE» 

TM.-2337/010/00 

2. (LAMBDA NIL (SPECIAL {LIST (Ql10TE PI){QUOTE ABE»» () 

14. Evaluate the following in order: 

1. CSET(ABE LINCOLN) 
2. CSET(JOEN' BOOTH) 
3. (LAMBDA NIL (SPlOOIAL (LIST ABE JOHN») () 

15. 1. CSET (ABE LINCOLN) 
2. CSm' (JOHN BOOTH) 
3. (LAMBDA (X Y)(LIST 

(LIST X lCSEr ABE (QUOTE PRESIDENT» LINCOLN) 
(LIST Y CSET JOHN (QUOTE ACTOR» BOOTH»){ABE JOHN) 

4. (LAMBDA A B)(LIST (LIST A ABE LINCOLN) 
(LIST B JOHN BOOTH»)(ABE JOHN) 

-------------------_.- _._---_._-



.. 

c:; 
iJ 



~ o 
.. 

o 

.. 

o 

14 June 1965 119 TM-2337/010!OO 

CHAPrER 17. INPUT-OUTPUT AND THE SUPERVISOR 

Input and output in LISP are handled principally by the two pseudo-functions 
READ and PRINT, which read and print one S-expression, respectively. Since 
input-output is extremely machine dependent, we sh81~ here, only concentrate 
on those machine independent primitives available on Q-32 LISP. 

READ NIL 

READ ;1.s a pseudo-function of no arguments. Its evaluation causes one S
expression to be read from theuser's Teletype, which is returned as the value 
of READ. READ signals for more input by ringing two bells. 

PRINT (s) 

PRINT is a pseudo-function of one argument s. Its eva.luation causes the one 
S-expression s to be printed on the user's Teletype. The S-expression s is 
also returned as the value of PRINT. 

PRINO (s) 

PRINO (sounds like PRIN-zero) is a pseudo-function of one argument an S-expression, 
s. Its evaluation causes the Print Name of all atoms in S-expression s to be 
entered into the print line, including characters for left and right parentheses 
and dot, wherever necessary, without terminating the print line. It is like 
PRINT in all respects, except it does not evalua.te TERPRI as its last internal 
function. PRINO uses PRINl below, and is 'used by PRINT. Its argument s is 
returned a.s its value. 

PRINl (a) 
PRINl is a pseudo-function of one argument, an atom, a. Its evaluation causes 
the Print Name on the property list of the atomic symbol a to be entered into 
the print line without terminating the print line. The argument of PRINl must 
be an atomic symbol, which is returned as its value. 

TERPRI NIL 

TERPRI, for TERminate PRInt line, is a pseudo-function of ~ arguments. Its 
evaluation termina.tes the print line and outputs the line on the user t s Teletype. 
If the line is already terminated, say, by an tmmediately preceding TERPRI or 
PRINT function, a blank line is printed. The value of TERPRI is NIL. PRINT 
uses both PRINl and TERPRI. 

TEREAD NIL 

TEREAD for TERminate READ, is a pseudo-function of no arguments. Its evaluation 
clears'the read line and terminates the print line byexecuting TERPRI. The 
value of TEREAD is NIL. 

BLANKS (n) 

BLANKS is a pseudo-function of one argument, a. number, n. Its evalua.tion causes 
n blanks to be entered into the print line without terminating the print line. 
The argument of BLANKS must be a number. BLANKS returns NIL as its value. 

_ .... _--_._._--------_ ..... _. --------------



14 June 1965 120 TM-2 337/010/00 

17.1 READING AND PRINTING 

The LISP READ program consists of tiYv basic parts. There is a. machine 
language routine to convert chara.cter strings into atoms. Its output is 
an atom read, with special atoms used for parentheses, period and other 
punctuation characters. A recursive subroutine CONS's these into list 
structure. When a character string is read, it must be compared with the 
character representa.tion of all a.toms seen so far, to determine whether 
this string is a new atom or a reference to one seen before. Therefore, 
there must be a means of rapid access to all the atoms in the system. 
There exists, therefore, a list ca.lled the object list, or OBLIST of all 
atoms. To speed up the search for comparisons, the OBLIST is usually 
organized as a list of a. hundred or so sublists or "buckets." The a.tans 
are distributed among the buckets by a computation upon their BCD repre
sentations (haSh coding), which yields a reasonably uniform and random 
distribution of atoms among the buckets. 

Manipulation of the OBLIST is the exclusive responsibility of the internal 
system, in much the same way as the JOVIAL dictiona.ry is the JOVIAL system's 
responsibility. Though long, about fifty Teletype lines, it is sometimes 
useful to see the current list of system atoms. The Q-32 LISP OBLIST can 
be printed by entering: 

CAR (OBLIST) 

Punctuation characters can be read and printed with Q-32 LISP. For 
printing, the following atoms are permanently bound to the Print Names as 
listed and will print as such; e.g., 

PRIIff I,.. .. • ,... .... \ I 
\p.J.IH.pnJ = I 

Atom Print Name 

LPAR ( 
RPAR ) 
BLANK space 
PERIOD • 
SLASH / 
EQSIGN = 
DOLLAR $ 
STAR * 

Since the current READ function uses many of these characters for syntactic 
analysis, they cannot be read directly. The -"$$ artifact," however, 
circumvents this difficulty. Any character string preceded by .$$ will be 
bracketed by the character following the second dolla.r Sign and that 
character's next occurrence. The character cannot be a blank. All 
characters between these "ad hoc" brackets will be taken a.s the Print Hame 
for an atomic symbol. That atom is a literal atom, i.e., no conversions 

-. 



o 

o 

,,-

o 

14 June 1965 121 TM-2337/010/00 

or translations take place, and can be used like all other non-numeric 
LISP atoms. Some examples are shown below. 

$$Artifact Atom Formed Bracket Character 

1. $$*NOW IS THE TIME* 
2. $$$123$ 
3. $$AATOMA 
"4. $$B B 
5. $$.«. 
6. $$( •• ( 

NOW IS THE TIME 
123 (in BCD not binary) 
ATOM 
space 
« 
• • 

* $ 
A 
B 
o 

( 

In example 3 above, $$AATOMA is internally equivalent to the atom ATOM. 
Thus, bindings for $$AATOMA are bindings for ATOM; e.g., 

17.2 EVALQT 

CSmQ ($$AATOMA 123) = ATOM 

(LAMBDA NIL ATOM) = 123 

Earlier, we learned of the existance of the Q-32 LISP supervisory program 
called Evalquote. Evalquote is the principle interface between a LISP 
user and the LISP system (PRINT and READ also permit direct user inter
action with the system), and is the· mechanism that permits top level 
expression evaluation. Evalquote is in reslity a LISP function, though 
not externally available. However, a similar function is available to 
Q-32 LISP users, appropriately named EVALQT. We introduce EVALQT at 
this time to demonstrate the power and flexibility of LISP to create 
other supervisors that emulate Evalquote. Before proceeding in that 
direction, let us define EVALQT and, thereby, review Eva.lquote. 

EVALQT is a function of two arguments, both S-expressions, of the form 

EVALQT (sl s2) 

The first s_rgument, s , is a functional expression or a function. The 
second argument, s2' ts a ~ of arguments required by the function or 
functional expression" sl. The arguments, 51 a.nd 8 2, s.re of the same form 
s-s input to Evalquote. If sl is an atom carrying a. functional definition, 
that definition, in the form of compiled code, is applied to the argu
ments in the list of arguments, s. If S iss functional expreSSion, 
the expression is compiled and t~enapplted to the arguments in the list 
of arguments, s.2. The value of EVALQT is tlie value of sl applied to the 
arguments in tne list of arguments, s2. -- _ 

Since s1 and s2 are identical inputs for Evalquote and EVALQT, at the 
top level we can evaluate s1 app+ied to s2 with either, e.g., if sl and 
s2 stand for Evalquote inpu~s, let si and s2 be their EVALQT counterparts. 

--------------------------------------------- ---



11r. June 1965 122 TM-2337/010/00 

Then, 

Eva.1quote EVALQT 

CAR ( (A B) ) = A 
"'--v-'~ 

EVALQT ( CAR ( (A B) ) ) = A 
~~~ 

81 82 sl si 52
----------...;,.

82

(LAMBDA (X) (CAR X» ((A B)) = A _______________ ""-v- EVALQT ((LAMBDA (X)(CAR X» ((A:8))) = A
~ ------------~

81 s2 s' s' 1 2

------------~--~--------52
EVALQT ~ also be used at other than the top level, e.g.,

(LAMBDA (X Y) (EVALQT X Y» (CAR ((A B) » = A
---- ~ ~ ~

sl si s2
--------.

s2

In this example, CAR is bound to X and «A B»· is bound to Y by LAMBDA
conversion. During evaluation of s1' X and Y are evaluated to CAR and
«A B», respectively, as the arguments of EVALQT. Like Evalquote, EVAJRr
then quotes each argument in the list «A B» and applies CAR to «A B».

17.3 SUPERVISORS

We can now examine a few examples that duplicate, in forma.t but not
in detail, the mechanism called Evalquote. Examine the following
expression:

DEFINE «
(SUPl (LAMBDA 0 (PROG 0

TAGl (PRINT (EVALQT (READ) (READ)))
(GO TAGl»» »

SUPl is a function of no arguments, yet it will evaluate expressions
exactlya.s does Evalquat'e. SUPl evaluates two explicit READ functions.
The first READ reads s , the function to be evaluated by SUPl. The
second READ reads s2' the list of arguments for Sle The values of these
two READ expressions are the arguments for EVALQT exactly as above. The
value of EVALQT is the value of sl applied to s2' and that value is the
argument of PRINT, which prints the value.

o
j>'

C -< ..

o

o
'4

~o

14 June 1965 123 TM-2337/010/00·

The program then loops for another evaluation. This program looks as if
it will loop continuously, and it will; but then it will evaluate a new
pair of S-expressions, sl s~ each loop and that is exactly what a super
visory program is supposed to do. (We can always return to Evalquote in
Q-32 LISP by (1) entering an escape character, the percent Sign (~),after
the bells in READ; (2) typing lSTOP and after the error messages and bells,
entering the quote mark (If), or; (3) depressing the "Break Key" a few
times and after the error messages and bells, entering the quote mark (If).)

The supervisor, SUPl above, needs improvement be cause it is quite sensi ti ve to
input errors and extra parentheses. Good housekeeping requires that we
re-initialize our read and print line each loop. Examine SUP2, below,
which performs similarly to SUP1, above, but with TEREAD used to re-initialize
I/O buffers.

DEFINE «
(SUP2 (LAMBDA O(PROG (X Y)

TAGl (TEREAD)

17.4 EVALl

(S~Q X (READ»
(smQY (READ»
(PRINT (EVALQT X Y»
(GO TAGl»» »

EVALl is another interesting Q-32 LISP function that may be used to
construct various supervisory programs. It is a function of one argu
ment, an S-expression that has the format of a lower -level fom. EVALl
will simply evaluate that form. No LAMBDAco!lversion or variable bindings
take place; therefore, the arguments of the form to be evaluated by EVALl
are not quoted, but must themselves be computed. For example, the form

(CAR (QUOTE (A»)

can be evaluated by:

EVALl ((CAR (QUOTE (A»)) -----.J _______________

The form (CAR (A»
is not acceptable, since the argument of CAR, (Ah is an explicit value,
not one that is computed. (QUOTE (A» performs properly since it evalu
ates to a legal argument of CAR. One could also use (LIST (QUOT.E A» in
this example.

The need to compute arguments for forms during evaluation is a responsi
bility common t() a.ll lower-level forms, not only for the argument of
EVAL1. The following rule is of value for understanding when such
computation is necessary.

14 June 1965 124 7!M.-2337/0l0!OO

RULE: Any atomic symbol immediately following a left parenthesis must
be a fUnction name that can be evaluated, with the following
exceptions:

1. Atoms in a quoted list, e.g., (QUOTE~· B».

2. LAMBDA and PROG variable s, e. g., (LAMBDA i! Y).

3. Variables used as predicates in conditional clauses of
COND, e. g., (COND.IT. F».

We can now write a supervisor using EVALl for evalua.ting lower level forms.

DEFINE « .
(SUP3 (LAMBDA () (PROG ()
TAGl (TEREAD)

(PRINT (EVALl (READ») (GO TAGl»» »
17.5 TOP LEVEL ANOMALIES

Some straightforward, but unexpected top-level phenomena derive directly
fram the operation of Evalquote. We list them here with a brief explana
tion.

1. Composition of functions cannot be used directlY at the top level
except within a. LAMBDA expression. For example, if we write

(CAR (QUOTE (A B C»)

we do not have a ~ of S-expressions for Evalquote. We could
evaluate this form with our SUP3 supervisor! however.

2. Bound. variables are never evaluated at the top level except within 8.

LAMBDA expression because all arguments are quoted, e.g.,

CSET (PI 3.14159) = PI
CAR «PI» = PI,

not 3.14159 since what CAR really sees is (QUOTE (PI». But

(wmDA NIL PI) NIL = 3.14159
since here PI is used free and will be evaluated. This is why top
level LAMBDA expressions are so important.

3. If more than one pair of S-expressions is presented to Evalquote, only
the first pair of S-expressions will be evaluated, since Evalquote
only takes two arguments, e.g.,

CAR «A B C» CDR «A B e» e
yields A. The CDR expression is never seen by Evalquote.

This feature allows the user to end a top-level expression with more
right parentheses than are necessa.ry as Evalquote stops reading as C
soon as the parentheses count out correctly in the second argument.
For example, the expression

CAR «A B C»»»»»»» = A

C)
'4

p

14 June 1965 125 TM-2337/0l0/00

4. If less than one pair of S-expressions is given to Evalquote, it
will demand more input by ringing the bell. This is a useful de
bugging tool and usual~ means one or more parentheses are missing
in the entered pair of expressions.

5. Expressions evaluated s.t the top level that explicitly PRINT their
values may have the values of the expressions output twice. Once by
the explicit call to PRINT, and once by Evalquote, which always prints
the value of the expression, e.g., .

ABeD
ABCD

PRINT (ABeD) yields

17.6 EXERCISES

Evaluate the following in order:

1.

2.

3.
4.

,5.

6.

PRINT ({LIST»

TERPRI NIL
TERPRI NIL

(LAMBDA(X Y){PROO{) (PRINl X){BLANKS 3)(PRINl Y)(TERPRI»)(ATOMl ATOM2)

READ NIL
after two bells enter:
(NOW HEAR THIS)

(LAMBDA (J) (CONS (READ) J» {(ANYTHING»
after two bells enter:
(INPUT)

{LAMBDA NIL (PROO (PI R)
(SETQ PI 3.14159)
TAG {SETQ R (READ»
{CONn {(EQUAL (QUOTE END) R) (ImrURN R»)
(PRINT (TIMES 2 PI R»
(GO TAG») NIL
after two bells enter a number for R. (Remember to insert a space
or comma before e to delimit atom.) Program returns computation
of (2)(PI){R) and then reads again.
You can stop the loop by entering:

END,€}
7. (LAMBDA () (LIST LPAR RPAR BLANK PERIOD SLASH EQSIGN OOLLAR STAR

(QUOTE $$* NOW HEAR THIS *)(QUOTE $$+ -533 .17+))) 0
8. CDR «A B C» CDR {(l 2 3» entered on one line.

9. 1. CSET{PERCENT $i.)
2. {LAMBDA () PERCENT)O
3. (LAMBDA (J) J){~)

14 June 1965 126 . TM-2337/010!00

10.

11.

12.

CAR «A B C»»»»»}»)
Define SUP2 as given in the examples above. Try SUP2 with these cases:
SUP2 () - -- - - - - - - - - to sta.:t"'t SUP2 looping
1. CAR «A B C)}
2. CDR «A B C»
3. CONS (A B)
4. CSET (PI 3.14159)
5. (LAMBDA () PI)(}
6. % - - - - - - - - - - - to exit SUP2
Define SUP3 as given earlier and try it with these cases:
SUP3{}
1. (CAR (LIST (QUOTE (A}»)
2. (CONS (QUOTE A)(QUOTE B})
3. (CSETQ K 3.14159)
4. (CONS K NIL)
5. (PROG (X}(PRINl (QUOTE X)(BLANKS 5)(PRINl (QUOTE SQUARE))(TERPRI}(TERPRI)

(SETQ X 0)
TAG1 (COND «EQUAL X 10}(RETURN (QUOTE END}»)

(PRINl X) (BLANKS 7) (PRINl (TIMES X X» (TERPRI)
(SETQ X (ADD1 X»
(GO TAG1»

6. %
13. Define SUP4, a supervisor that reads S-expression pairs ·in reverse

order from that accepted by Evalquote, i.e., s2 followed by sl'
Try these pairs:
1. «A B C» CAR, .
2. «A B C)} CDR,
" fA ""'\ ~" .). \,a 1j } ..I!i'<t~

4. (1 2 3 4) PLUS,
5. (K 3.14159) CSET
6. NIL (LAMBDA () K)
7. % .

14. Define SUP5, a supervisor that evaluates pairs like SUP2, but also:
1. Sa.ves the symbolic pairs.
2. Prints the pair for inspection after input, like an echo.
3. Queries your acceptance or rejection of the printed pair.
4. If you answer NO~ it loops for another pair.
5. If you answer YEts, SUP5

prints the pair, followed by an equal Sign, followed by the
value of the pair and then loops for another pair.

15. Write a program that prints a table of the following values for a
range of X specified at program run time.
X XSQUARE SQRTX RECIPX FACTORIALX

C)

o

o

14 June 1965 127 TM-2337/010/00

C1JAPIIER 18. MACROS

In a compiler-based LISP system such a,s Q-32 LISP, we must be concerned with
both compile time and run time activities of the system. When Evalquote evalu
ates DEFINE, we are talking about run time for the pseudo-function DEFINE. If
we are defining a function, for example LAST, we are talking about compile time
for LAST. In other words, one function I s run time is another function I s compile
time.

As we have already seen, functions can be compiled by DEFINE or by top level
evaluation of a LAMBDA expression. In the latter case, evaluation means first
compile and then run the compiled code with the supplied arguments. This is
often called "compiling at run t:Ime." This distinction is significant because
it enables compiled code to operate where previously an interpreter was necessary.
In particular, it affects the code that is compiled for a function tha.t enables
that function to retrieve the correct binding for variables at run time.

A classic problem for compilers is, how do you define a function of an indefi
nite number of arguments, such as PLUS? The key to the answer is that the
arguments are only indefin~te when you define the function, not when you run it.
If you could delay compilation until run time, at which time the number of argu
ments is definite, you can resolve this dilemma. In essence, this is what a,n
interpreter does. To resolve this problem in Q-32 LISP, we make use of macros
via the pseudo-function MACRO.*

18.1 MACRO EXPANSION

The function MACRO takes an argument list in the same forma,t as DEFINE,
e.g.,

MACRO « (name (LAMBDA (varia'Lles) fO~»
{name~ {LAMBDA

{name (LAMBDA (variables) form »» n n

As DEFINE, MACRO compiles each of these definitions. Now watch closely,
for here comes the difference. When a macro function (defined by MACRO)
is used in a LAMBDA expression, either a.t the top level or within a DEFINE,
the macro function is executed before the LAMBDA expression, of which it
is part, is compiled. The argument for the macro is the S-expression in
which it is used. In other words, the macro function is run before com
pile time for the new LAMBDA expression. What does this buy us? That
depends on the macro, but essentially it allows us to expand the LAMBDA
expression before it is compiled, by substituting, for a.ll occurrences of

* The Q-32 Macro system is based upon an idea, suggested by Tim Hart. See
Hart, T. P., "MACRO Definitions for LISP," Artificial Intelligence Project,
MIT Computation Center Memo 57, October 1963.

14 June 1965 128 TM-2337/010/00

the macro function and its arguments, other expressions tailored to the
particular use of the macro in the LAMBDA expression. We call this
macro expansion. For example, it permits us to define a "special form"
of an indefinite number of arguments by converting that special form to
a composition of nested function of just two arguments--the nesting being
determined by examination of the particular use of the special form in
the given LAMBDA expression.

Take for example

PLUS (Xl x2 ••• xn)

Here we have a special form of an indefinite number of arguments. But
when vle use PLUS, we always have a fixed number of arguments. Given 8.

function *PLUS, which takes the sum of its two arguments, we can expand

PLUS (Xl ~ x3 x4) = {*PLUS Xl (*PLUS x2 (*PLUS x3 x4»)
Thus the macro d.efinition of PLUS involves a body of code whose sole
purpose is to substitute an appropriate number of *PLUS's in the proper
places wherever PLUS appears in a LAMBDA expression being compiled. Then
after compilation, there is no trace of PLUS, but many *PLUS's. The
operating code, however, works exactly as desired. Let's examine the
macro definition for PLUS to see how this works.

MACRO ({
(PLUS {LAMBDA (L) {*EXPAND L (QUOTE *PLUS»»

»

*EXPAND is a system function used exclusively for expanding macros. It
has the format

*EXPAND (form fn)

where form is the expression to be expanded, as Labove, and fn is the
system function, a function of two variables, to be used in the expansion.
For

we get
*EXPAND ({PLUS Xl x2 x3 x4) *PLUS) = (*PLUS Xl (PLUS x2 x3 x4»'

Note that *EXPAND just expands the form by one *PLUS when it is executed.
When we then attempt to compile the new form

(*PLUS Xl (PLUS x2 x3 X4»

*EXPAND is called again to expand the inner PLUS, yielding

(*PLUS Xl (*PLUS x2 (PLUS X3 X4»)

c ,.

Q

o

D

14 June 1965 129 TM.-2337/010/00

BY repeated application of *EXPAND each time the macro PLUS is encountered,
we eventually a,rrive at the complete expanded form for PLUS regardless of
the number of arguments xn•

The definition for *EXPAND is straightforward and noted here for reference.

DEFINE «
(*EXPAND (LAMBDA (FORM FN)

(CONn «NULL (CDDR FORM» (CADR FORM»
(T (CONS FN

(CONS (CADR FORM)
(CONS (CONS (CAR FORM)(CDDR FORM» NIL»»») »

Note how nicely *EXPAND works for the last term of the expanSion, of say

(*PLUS ~ (*PLUS x2 (*PLUS x3 (PLUS x4»»

When entered because macro PLUS was encountered,

the
form = (PLUS x4)' fn = *PLUS

(CDDR form) = NIL, (CADR form) = xlj.
Thus the form

(PLUS x4)
gets replaced by just x4' yielding the final expanded expression

(*PLUS xl (*PLUS x2 (*PLUS x3 Xlj.»)

It should be clear now how elegant this ma.cro system is. To solve the
knotty problem of special forms of an indefinite number of argume~lts, all
we need are three things:

1. *EXPAND--a single LISP function availab1e on Q-32 LISP.
2. A function like the macro to be defined, but of just two arguments.

Such a two-argument function is easily defined in LISP.
3. A macro definition of the special form.

Macros must be defined before they are used. Once defined, macros
may be used within other macro definitions, thereby providing complete
generality of MACRO.

18.2 MACRO DEFINITIONS OF NEW FUNCTIONS

MACRO has utility in a.reas other than expansion of special forms. It can
be used to define functions not a,lready in the system. Take, for example,
the pseudo-function CSETQ. Assuming we have CSET, we can define CSETQ by:

MACRO «
(CSETQ (LAMBDA (FORM) (LIST (QUOTE csm)

(LIST (QUOTE QUOTE) (CADR FORM» (CADDR FORM»»
»

14 June 1965 130 TM.-2337/010/00

Then whenever the form
(CSNl'Q A B)

is encountered
(csm (QlJOTE A) B)

will be substituted and compiled.

18.3 EXERCISES

1. *TIMES exists as a function of two arguments whose value is the
product of its arguments. Define a macro function PROD, using
'*TIMES and *EXPAND such that

PROD (xl x2 ••• xn) = (*TIMES Xl (*TIMES x2 ••• (TIMES xn_l xn) ••• »

2. '*MAX and '*MIN exist a.s functional counterparts of MAX and MIN,
but only having two arguments. Define the macros MAXIMUM and MINIMUM.

3. In the next chapter, dealing with functional arguments, we will see
that we must always use the special form FUNCTION, when we wish to
quote a. functional expression a.ppearing as an a.rgument of another
functional expression; e.g.,

(LAMBDA (L) (MAPLIST L (FUNCTION (LAMBDA (J) (LIST J»») (1)
Define the macro FLAMBDA, which when used a.s in form (2),

(LAMBDA (L) (MAPLIST L (FLAMBDA (J) (LIST J»»
will expand form (2) to form (1).

(2)

4. If you define LIST as a macro and it's wrong, you can vrreck the
systeni. Therefore, define LISTl as a macro that does exactly what
LIST does.
HINT: Remember that

(CONS x 1 x) = (x l' x) n- n n- n
so the macro must produce

(CONS xn NIL)

as its last expansion. In other words, we want

LISTl (A B C) = (A B C)

and not (A B • C)

5. When printing multi-word messages in LISP, we a.lways print the
message as a parenthetical expression, Le., a list; e.g.,

(NOW HEAR THIS)

C~I
..

o

o

14 June 1965 131
(Page 132 Blank)

TM-2337/010/00

Define a macro PRINTQ that is a special form of an arbitrary number
of arguments that quotes its arguments and prints them (on one line
if they will fit) without parenthesizationj e.g.,

(LAMBDA () (PRINTQ NOW HEAR THIS» 0 = NOW HEAR THIS

HINT: Define PRINTQ as a mac.ro that uses an auxiliary function
PRINTQl which in turn uses PRINO on each argument of PRINTQ.

o

o

c~

....

C)

o

14 June 1965 133 TM-2337/0l0/00

CHAPl'ER 19. FUNCTIONAL ARGUMENTS

Mathematical~, it is possible to have functions as arguments of other functions.
For example, in arithmetic one could define a function

OPERATE (op a b)

where op is a functional argument that specifies which arithmetic operation is
to be performed on a and b. Thus

OPERATE (+ 3 4) = 7
OPERATE (* 3 4) = 12

In LISP, functional arguments are extremely useful and further expand the class
of LISP functions. We call the class of functions that take functional argu
ments, functionals.

19.1 SPECIAL FORM FUNCTION

When arguments of a function are transmitted to the function they are
always evaluated, except when they are quoted arguments. Quoted arguments
are transmitted unevaluated as "literals." When we use functionals, we
use functions and functional expressions as their arguments. At such
times, we wish to transmit these arguments unevaluated. The special form
FUNCTION is used for this purpose onQ-32 LISP. FUNCTION acts very much
like QUOTE, and in fact on other LISP systems, FUNCTION and QUOTE are
often interchangeable. Not so on Q-32 LISP, as FUNCTION must be used
with functiona.l arguments to signal the LISP system that a function is
being transmitted.

FUNCTION is a. special form that takes one argument, a function name or a
LAMBDA expression. It has the format

FUNCTION (fn)

We can see the application of FUNCTION and functions.ls by examining a
particularly powerful class of functionals prefixed with the name MAP.
These functionals are general~ alike, in that they all app~ a trans-
mitted functional argument to a. transmitted list. .

19.2 MAP

MAP is a function of two arguments of the form

MAP (x fn)

where the first argument x must be a. list, and the second argument fn must
be a function of one argument. MAP applies the function fn to list x and
to successive CDR's of list x until x is reduced to a single atom (usual~
NIL) which is returned a.s the value of MAP. MAP is defined by

14 June 1965 134

DEFINE « . .
(MAP (LAMBDA (X FN) (PROG (M)

(SmQ M X) .
TAGl {COND «ATOM M) (RETURN M»)

(n M)
(SEn'Q M (CDR M» (GO TAGl»» »

Examples:

rm-2337/0l0/00

1. (LAMBDA (L)(MAP L{FUNCTION PRINT»)«THIS IS (A LIST») =
(THIS IS (A LIST»
(IS (A LIST»
«A LIST»
NIL

2. csm (X «CDR X)(CAR X)(CONS (~OTE A)(QUOTE B»»
(LAMBDA O(MAP X (FUNCTION (LAMBDA (J)(PRINT (EVALl (CAR J»»») 0 =
((CAR X)(CONS (~OTE A)(QXJOTE B»)

. (CDR X)
(A • B)
NIL

In example (1), PRINT is the functional argument. Each line of' output
represents the application of' PRINT to successive CDR's of' the list
(THIS IS (A LIST». The f'inal NIL is the value of' MAP. In example (2),
the LAMBDA expression

(LAMBDA (J)(PRINT (EVALl (CAR J»»

is the functiona,l argument. 'l'ne dUDllllY variable J is bound to the successive
CDR's of' the list bound to K, i.e.,

«CDR X)(CAR X)(CONS (QXJOTE A)(QUOTE B»)

This is a list of forms evaluated by EVALl in the fUnctional ~gument.
The result of each such evaluation is returned by PRINT. The f'inal NIL
is the value of MAP.

19.3 MAPLIST

MAPLIST is a function that performs almost exactly as does MAP, except
MAPLIST returns as its value a LIST of the values of' the repeated eva.lua
tion of' tn applied to x.

MAPLIST is a function of' two arguments of' the form

MAPLIST (x tn)

where the f'irst argument, x, must be a list, and the second argument, f'n,
must be a function of' one argument. The. value of' MAPLIST is a new list

c~

o

o

14 June 1965 135 TM.-2337/010/00

of the eva.luation of each of the listed forms below:

«fn x) (fn (CDR x» (fn (CDDR x» ••• (fn (CD ••• DR x»)

A definition for MAPLIST (though not the one used by Q-32 LISP) can be
given as

DEFINE «
(MAPLIST (LAMBDA (X FN)

(CONn «NULL X) NIL)
(T (CONS (FN X) (MAPLIST (CDR X) FN»»» »

Examples:

DEFINE «
(SQlJARECAR (LAMBDA (X) (TDmS (CAR X) (CAR X»» »

1. (LAMBDA (J)(MAPLIST J(FUNCTION SQlJARECAR»)({l 2 3 4 5» = (1 4 9 16 25)
2. (LAMBDA (J)(MAPLIST J(FUNCTION CDR»)«A B C» = «B C) (C) NIL)
In these examples, SQUARECAR, and CDR are functiona.l arguments.

19.4 MAPCAR

The function MAPCAR is a function peculiar to Q-32 LISP. It is a function
like MAPLIST, in that it lists the values of functional argument fn
successively applied to the CADR's of list x. It differs from MAPLIST ..
in that it applies fn to each element of the list x; i.e., the CAR of
what fn is applied to in MAPLIST. MAPCAR could be defined by:

DEFINE {(
(MAPCAR (LAMBDA (X FN)

(CONn «NULL X) NIL)
(T (CONS (FN (CAR X»(MAPCAR (CDR X) FN»»» »

Examples:

1. (LAMBDA (J)(MAPCAR J (FUNCTION ADD1»)({O 1 2 3» = (l 2 3 4)
2. (LAMBDA (J) (MAPCAR J (FUNCTION (LAMBDA (L)

(COND «NUMBERP L) (TIMES L L»
(T L»»» «A 1 B 2 C 3» = (A 1 B 4 C 9)

In example (l) ADDl is the functional argument, and the total expression
a.dds one to each element in a list of numbers. In example (2), we have
a LAMBDA expression as the functiona.l argument. The complete expression
returns its input list with each numerical element replaced by its square.

------------------- ----.------ ---

14 June 1965 136 ~-2337/010/00

19.5 CAUTIONS

Most functionals (i.e., functions that take functional arguments) cannot
be used at the top level to Evalquote, since the functional arguments
must be evaluated~or compiled and evaluated. As we know, Evalquote quotes
the arguments when tra.nsmitting them to the function and thus the functional
arguments for functionals would not be evaluated. Therefore, use functionals
only in LAMBDA expressions.

19.6 EXERCISES

Evaluate the following:

1. (LAMBDA (L)(MAP L (FUNCTION PRINT») «TRY THIS SrnPLE CASE FIRST»
2. (LAMBDA (L) (MAPLIST L (FUNCTION PRINT») «NOW THIS ONE»
3. (LAMBDA (L)(MAPCAR L (FUNCTION PRINT») «AND LASTLY THIS ONE»
4. (LAMBDA (J)(MAPLIST J(FUNCTION

(LAMBDA (K)(SUBST (QUOTE ONE) 1 K»»)«l 2 3 1 4 15»
5. (LAMBDA (J)(MAPLIST J (FUNCTION

(LAMBDA (K) {MAPCAR K (FUNCTION LENGTH»»»
({(A){l 2}(A B C)(l 2 3 4»)

6. (LAMBDA (L) (MAPLIST L (FUNCTION {LAMBDA (J) {CONS (CAR J)
(CAR J»»»{(A BCD E»

7. (LAMBDA (L) (MAPCAR L (FUNCTION (LAMBDA (J)
{CONS J (QUOTE X»»»«A BCD E»

8. SPECIAL {(Y»
DEFINE «

(YOOT {LAMBDA (L Y) (MAPCAR L (FUNCTION (LAMBDA (J)
(CONS J Y»»» »

UNSPECIAL «Y»

Note: If we consider the functional argument here as a separate
function, it is evident that it contains a bound variable J, and
a free variable Y. This free variable requires a SPECIAL declara-
tion, even though it is bound in YDOT.

Try lDOT «A BCD E) Z)
YDOT «A BCD E) (1 2 3 4 5»

9. MAPCAR is a function of two arguments in which the second argument
is a function that takes one argument. Define functional MAPCAR2
as a function of three arguments in which the first two arguments are
lists of equal length and the last argument is a function that takes
two arguments; e.g.,

(LAMBDA {A B){MAPCAR2 A B (FUNCTION DIFFERENCE»)({5 6 7 8){l 2 3 4»
= (4 4 4 4)

{LAMBDA {A B){MAPCAR2 A B (FUNCTION CONS»)({ONE TWO THREE)(l 2 3»
= ({ONE • l)(TWO • 2){THREE • 3» C=n

o 14 June 1965 137
(Page 138 Blank)

10. Define a function using f'unctiona.ls called

TYPE (x)

TM-2337/010/00

where x is a list of items. The value of TYPE is a list of
type-descriptors of each top level element of x according to
the following schedule:

e.g.,

if fixed point number--FIX
if floating point number--FLT
if non-numeric atom--ATOM
if dotted pair of s.toms--DOTPAIR
if none of the above--LIST

TYPE «1.0 (A • B) (1 2 3) A12 46» = (FLT DOTPAIR LfsT ATOM FIX)

---_ .. _ _----

o

/,"--'

'~/

"

o

14 June 1965 139 rrM-2337/0l 0/ 00

CHAPI'ER 20. MErA-LANGUAGE

The preceding chapters have all dealt with the LISP programming language, or
S-expressions. Outside computers, however, a short-hand language is often used.
This language, often called IIsource language" or IIM-language,1I consists of
meta-expressions or M-expressions, the counterpart of S-expressions. The M
language is the one most frequently used for publication and program specification.

In this chapter we shall present the M-language and some straightforward rules
for conversion between M- and S-expressions.

20.1 MErA-LANGUAGE FEATURES

•

Function names and variable names use lower ca,se letters.

Quoted atoms use capital letters.

The arguments of a function are bound by square bra,ckets
and separated from each other by semicolons.

Compositions of functions may be written by using nested
sets of brackets.

A conditional expression has the form:

[Pl ~ eli P2 ~ e2; ••• ; Pn ~ en]

A LAMBDA expression has the form:

A [[args]] ; form]

A PROG form is given by:

prog[[args] i stat ement li statement2; ••• statementn]

Setting a FROG variable has the form:

U:=~i v:=v+l ; w:=cdr[w]

A quoted list is parenthesized.

Examples:

1. equal [x;y] = [atom[x] [atomCy] ~ eq[x;y]]' T =- FJ;
equal[car[x] i car[y]] ... eqUalt ~[xJ; cdr[y]] ; T ... Fl

2. member [x;y] = [null[y] F;
equalLx;carty]J T'
T member[x; cdr[y] j J

3. maplist [Xifn] = [null[x] NIL'
T cons [fn[xjimaplist[cdr[x];fn]]]

-~~---'~~~~~~~~~~

14 June 1965

4. length [l] = prog[[u;v];
v:::O;
u:=l;

. 140

A [null[uJ ... return [v]];
u:=cdr [u]; . v:=v+l ; go[A]]

20.2 TRANSLATION: M-EXPRESSIONS TO S-EXPRESSIONS

1M-2337/0l0/00

The following rules define a method of translating functions written in
the meta-language into S-expressions.

1. If the function is represented by its name, it is translated by
changing all of the letters to upper case, making it an atomic symbol;
e.g., "car" is translated to CAR.

2. If the function uses LAMBDA notation, then the expression

A.[[args]; form]

is translated into

(LAMBDA (args) form)

3. If the function begins With II label, " then

label [name; form]

is translated into

(LAl3EL name form)

4. A Variable, like a function name, is translated by using upper case
letters; e.g., "varl" is translated to VARl.

5. Constants, represented as capital letters, translate into quoted
expressions, except numbers, NIL, T, and F, e.g.,

6.

X to (QUOTE X)
NIL to NIL

F to NIL

The conditional expression

[Pl ... el ;
is translated into

... P ~ e] n n

(COND (P1 el) •••.. (Pn en»

C~I

c .

o

o

14 June 1965

Examples:

M-expressions

x·
X

(X)
car

car[x]
T
F

NIL
1234

car[cdr[yJ]
[atom[x] x;T car[xJ]

141

S-expressions

X
(QUOTE X)

(QUOTE (X»
CAR

(CAR X)
T

NIL
NIL

1234
(CAR (CDR Y»
(COND «ATOM X) X) (T (CAR X»)

TM-2337/Ol0/ 00

label[ff; A[[X];
[atom[x] x;
T ff[cax[x]]JJ]

(LABEL FF (LAMBDA (X) (CONn
«ATOM X) X)
(T (FF (CAR X»»»

20.3 EXERCISES

Evaluate the following M-expressions. To check your answers on Q-32
LISP, convert problems to S-expressions and evalua.te them with various
arguments.

1. [T A;T B]
2. [F A;T B]

3. [eq[A;AJ car [(A)J; T cdr [(B)J

4. [null[X] Y; null[()] NIL;T atom [A]J

5. [atom[xJ atom [x]; T eq[X;X]]

In the following problems, variables f,m,n,t,x,y, and z are bound
as follows:

f=F
m=AB
n=(AB • C)

t=T Z=Al3
X=((AB»
Y:{(AB • C»

all other variables are unbound and therefore undefined.

14 June 1965

Evaluate:

6. [eq[m,;z] ~ niT ~ x]

7. [f ~ A,iT ~ B;T ~ c]

8. [eq(AB;m] ... A,iT ... B]

9. '[atomEm] ~ A,iT ~ B]

10. [atom(n]'" A,;T ~ B]

11. [eq[m,icaar[xJJ ... Y,iT ~ w]

142

12. [[T'" F,; F ... TJ ... F; T ~ [F ~ T; T T]]

13. [[eq[ca.r[n]; cdar(y]J ... F; T ... TJ '1'; T ... zJ

TM-2337/010/00

14. [[eq[m,i zJ ~ eq(f;t],i T ... nu11[cdr(cdr[x]]J ... B; T ... e]

15. cons[cons[cons[f; t] ,; zJ ; xJ

Evalua.te by A.-conversion:

16. A.[[xJ,ixJ[A]

17. A.[[xJ;ca.r[(A)]J[(B)J

18. A.[[u;vJ;v][A,;BJ

19. A.[[x;yJ;cons[ca.r['1'];cdr(x]]][(A. B);(e • D)]

20. cons[A;[A.[[x;y];y][T,iF] ~ B; T ~ e]]

C)

· 14 June 1965

CHAPl'ER 2.

l. Yes
2. No.
3. Yes
4. Yes
5. No.
6. Yes
7. Yes
B. Yes
9. No.

10. No.
11. No.
12. No.
13. No.
14. Yes
15. Yes

APPENDIX A

EXERCISE ANSWERS

First character not a letter.

There are no parentheses in an atomic symbol.

This is 8. dotted pair.
First character not a letter.
Parentheses missing.
Parentheses missing.
Too many dots without proper parenthesization.

16. ONE

17.

lB.

19. (A. (B • «C. NIL) • (D • NIL»»

20. «(A. B) • (C • D» • (E «F. G) • H»)

TM-2337/0l0/00

144 TM-2337/010/00

CHAPTER 3.

l.
2.
3.
4.
5.
6.
7.
8.
9.

(ATOM • liIL)
«LISP. NIL) • NIL)
«{MORE • (YET • NIL» • NIL) • NIL)
(HOW • (Al3OUT • (THIS • NIL»)
(DONT • «Gm • «FOOLED • NIL) • "NIL» • NIL»
(Xl)
(NIL (Xl»
(KNOW THY SELF)
({BEFORE AND AFTER»
(A «B C»)
«A» = «A. NIL) • NIL)
(NIL NIL NIL) = (NIL • (NIL. (NIL • NIL»)
(A «B) B» = (A • «B. NIL) • (B • NIL»)
{«(NEST»» = ««NEST. NIL) • NIL) • NIL) • NIL)

10.
ll.
12.
13.
14.
15. («A) B) (C) D) = «(A. NIL) • (B • NIL» • «C. NIL) • (D • NIL»)

CHAPrER 4.

1. Yes
2. Yes
3. Yes
4. Yes
5. Yes
6. Yes
7. N~yields error messages:

(RPAR RQD AFTER .)
PRmT READl READl PRINO READl READ

Message (1) means right parenthesis required after dot.
Message (2) is an automatic backtrace of the internal functions
executed (from right to left) leading up to the error. The Q-32
a.lways provides a diagnostic ba.cktrace at an error condition.

8. Yes
9. Yes

10. Yes ««NIL»»
11. Yes, a.fter the missing right parenthesis is supplied.
12. Yes (AN • EXTRALONGATOMSTRING)
13. (A)
14. (NIL)
15. (A B C)
16. (A Be. D)
17. «A. Bn ..
18. ((A) (B))
19. «A B) (e»
20. {(x) (NIL • Y»

(1)
(2)

..

..

c.

o

o 14 June 1965 TM-2337/010/00

CHAPrER 5.

1. Yes
2. Yes (5 E)
3. Yes (E5 • 5)
4. Yes (1.0 • 1Q)
5. Yes
6. Yes 4.4000000000
7. Yes (A • 9)
8. Yes (B • 9.8999999999)
9. Yes (9.8999999999 • 9)

Note that the use of blanks to delimit the dot would remove user
confusion here. Q-32 LISP always assumes the second dot terminates a.
numerical field and treats the second dot as the dot for dot-notation.

10. Yes (1.2300000000 77Q3 27 2700000 3.2099999999E-8 ALPHA Q • 32)
11. (99.9000000000)
12. (NIL. 99.9000000000)
13. Not a legal S-expression as there are too many dots.

Yields error message:

(RPAR RQD AFTER .)

plus a backtrace.
14. (5 5.5 5Q5 5.5 500)
15. «13.1299999999) (25Q2»

CHAPTER 6.

1. LEFT
RIGHT 2.

3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.

(LEFT. RIGHT)
A
(A)
A
(A • B)
(SENTENCE IS A LIST)
«ABOUT THIS»
«OOT • PAIR2»
(CAR • CDR)
NIL
(CDR)
(CAR)
(A)
(75Q . 100)
1
(2.0 3.0 • 77Q)

14 June 1965 146 TM-2 337/010/00

19. «A. B»
20. {«{ALPHA»»

The relationship among CONS, CAR, and CDR is that CONS puts together tha.t
which CAR and CDR tear apart. More exactly, if the argument to CAR and to
CDR is the same S-expression, e.g., (LEFT. RIGHT) and the two arguments to
CONS are the values of the CAR and CDR of this S-expression, then the value
of CONS is the original S-expressioti, i.e., (CONS (CAR S)(CDR S» = S.

2l. CAR CDR CAR = CADAR
22. CAR CAR = CAAR
23. CAR CDR = CADR
24. CDR = CDR
25. CAR CDR CDR = CADDR
26. CAR CDR CDR CDR = CADDDR
27. CAR CAR = CAAR
28. CDR CAR = CDAR
29. CAR CAR CAR CDR = CAAADR
30. CAR CAR CDR = CAADR
31. CAR CDR CAR CDR = CADADR

CHAPl'ER 7.

l. ATOM
2. (LIST)
3. THREE
4. (EI:.EMENT LIST)
5. (VERY. GOOD)
6 • (ONE THEN • ANOTHER)
7. B
8. (B)
9. 3.1415900000

10 . 3.1415900000
11. ALPHA
12. Blifi'A
13. BETA
14. ALPHA
15. FIRST

CHA.PrER 8.

1. 43
2. LIST
3. NIL.
4. 43
5. NUMBER
6. y
7. « (LIST»)

G

o

o

14 June 1965 TM-2337/010/00

8. B
9. 123Q3

10. (A. B)
11. (LAMBDA (J) (CAR (CDR (CDR J»» ((1 2 3 4)) = 3
12. (LAMBDA (X) (CAR (CAR X») («A B C) D)) = A
13. (LAMBDA (Y) (CAR (CDR Y») («A B C) D)) = D
14. (LAMBDA (Z) (CDR (CAR Z») («A B C) D)) = (B C)
15. (LAMBDA (VARIABLE) (CAR (CDR (CAR VARIABLE»» («A B C) D)) = B
16. (A C)
17. (A C)
18. (A)
19. (C)
20. «B A) (D C»

CHAPTER 9.

1. X
2. J
3. (AN S EXPRESSION)
4. A
5. (J)
6. (QUOTE. EXPR)
7. (CAR (A • BETA» = A
8. (NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THE PARTY)
9. (A. B)

10. (LAMBDA (X) X)
11. (ONE TWO THREE)
12. (ONE TWO THREE)
13. (NIL F NIL F NIL F)
14. (F F F F F F)
15. «NIL F F) (T T T) (NIL NIL NIL) (123 123 123»

CH.APrER 10.

1. DEFINE « (FIRST {LAMBDA (X) (CAR X») »
FIRST ((A BCD E)) = A

2-4. DEFINE «

»

(SECOND (LAMBDA (Y) (CADR Y»)
(THIRD (LAMBDA (Z) (CAR (CDDR Z»»
(CADDDDR (LAMBDA (J) (CAR (CDDDDR J»»

SECOND ((A BCD E)) = B
THIRD ((A BCD E)) = C
CADDDDR ((A BCD E)) = E

14 June 1965 148 TM-2337!OlO!OO

5. DEFINE « (REVDOT (LAMBDA (J) (CONS (CDR J) (CAR J»» »
REVDOT ((A • B)) = (B • A)
~rDOT («A) • (B») = «B) • (A» = ({B) A)
REVDOT («(FIRST» • (LAST») = «LAST • {(F~RST») = «LAST) (FIRST»

CHAPTER 11.

l.
2.
3.
4.
5.
6.
7.
8.
9.

10.
ll.
12.
13.
14.
15.

16.
1,.,
.... I •

18.

(T F T F)
T
T
NIL
T
NIL
T
NIL
T
NIL
NIL
T
T
T
NIL, since HEAR is not a member of list (NOW (HEAR THIS». HEAR is a

member of the sublist (HEAR THIS), but MEMBER tests only for elements
at the top level of a list.

DEFINE « (NEGZEROP (LAMBDA (J) (AND (MINUSP J)(ZEROP J»» »
n~T1\TC'I I (I Ttlr\'rrr-r., IT l\'lIT"lT"\A /", "'(,.\ 1<r!<J" •• \ \. \. \. \.
...,=. "" \ \ \ ""'q,V.I. V \ .I.JH.IYJ.D.1J.H. \ A l. J \.c.1c\I A 1.) } J J J
DEFINE « (IMPLIES (LAMBDA (X Y.)(OR (EQ X Y) Y») »

19. This program can be easily wTitten with conditionals and recursion.
However, since the student has not learned these techniques, the following
expression is required.

DEFINE «
(INSEQ (LAMBDA (J)

»

«LAMBDA (V W X Y Z) (AND
(AND (NUMBERP V) (NUMBERP W) (NUMBERP X) (NUMBERP Y) (NUMBERP Z»
(OR (AND (LESSP V W)(LESSP W X) (LESSP X Y)(LESSP Y Z»

(AND (GREATERP V W)(GREATERP W X)(GREATERP X Y)(GREATERP Y Z»»)
(CAR J)(CADR J)(CADDR J)(CADDDR J)(CAR (CDDDDR J» »)

Note the use of nested LAMBDA expressions,her~permits us to bind V to the
first list element, W to the second, X to the third, etc. This practice
creates temporary storage for these pa.rtial results and simplifies the
total expression as well as reducing the total computation, since we need
compute these repeatedly- used arguments only once.

c:.

iJ

o

o

14 June 1965

20. DEFINE « (EQN (LAMBDA (X Y)(OR (EQ X Y)
(AND (NUMBERP X)
(EQUALN X Y»») »

CH.APrER 12.

TM-2337/010/00

1. True} Constant functions that always evaluate true regard.less of input.
2. True
3. T
4. 1
5. (COND ERROR A3)} Error A3 means COND is undefined, since there is no

Plus backtrace. "true ll clause for the conditional expression.
6. AJNALU (144) = 144

ABVALU (-14.4) = (MINUS. -14.399999999)
ABVALU (-0.0) = (MINUS. -0.0)
ABVALU (OQ) = OQ

7. DEFINE « (SMALLER (LAMBDA (A B)(COND «LESSP A B) A)(T B»» »
SMALLER (15 7) = 7
SMALLER (-15 7.02) = -15
SMALLER (+0 -0.0) = -0.0
SMALLER (lOQ 8) = 8

8. DEFINE « {EQUIV (LAMBDA {X Y)(COND «EQUAL X Y) T)(T F»» »
9. DEFINE ({ (EXOR {LAMBDA {X Y)(COND ({EQUAL X Y) F)(X T)(Y T»» »

CHAPTER 13.

1. 55
2. 95.858410000
3. 1024
4. 32768
5. 0.0
6. 0
7. 10.000000000
8. 9.9999999990
9. 18

10. 18.333333333
11. 1 i.e., number-theoretic remainder for fixed-point arguments ..
12 •. 9.3132257461E-10 i.e., floating-point residue for floating argumentsD
13. (18 1)
14. (18.333333333 9.313225746lE-10)
15. (18 1)
16. 123
17. -123
18. 0
19. 0
20. 5.0

14 June 1965 150 TM-2337 /010 /00

21.} RECIP not available at this t:iJne. It may be defined, however, by
22. DEFINE « (RECIP (LAMBDA (X) (QUOTIENT 1.0 X») »
23. 1. 2345678900E+8
24. 3.1415900000
25. 77777Q
26. 717375Q.
27. 765435Q
28. 715335Q
29. 12345Q
30. 204Ql
31. 16Ql
32. 34Q
33. DEFINE « (TRIPLE (LAMBDA (X)(PLUS X X X») »
34. DEFINE « (CUBE (LAMBDA (X)(TDfES X X X») »
35. DEFINE « (SDU'LEINTEREST (LAMBDA (PRINCIPAL RATE YEARS)

(TIMES PRINCIPAL (ADDl (TIMES YEARS RATE»») »
36. DEFINE « (ANNUALCOMPOUND (LAMBDA (p R Y)

(TIMES P (EXPl' (ADDl R) Y»» »
37. DEFINE « (TIMECOMPOUND (LAMBDA (p R Y T)

(TIMES P (EXPl' (ADDl (QUOTIENT R T» (TIMES T Y»») »
38. DEFINE « (TWOBY (LAMBDA (All A12 A21 A22)

(DIFFERENCE (TIMES All A22) (TIMES Al2 A21»» »
39. DEFINE « (THREEBY (LAMBDA (All A12 A13 A21 A22 A23 A31 A32 A33)

(PLUS (TIMES All (TWOBY A22 A23 A32. 'A33»
(MINUS (TIMES A12 (TWOBY A21 A23 A31 A33»)
(TIMES A13 (TWOBY A21 A22 A31 A32»») »

40. Dl!J!'IN.t!j « (SOLVE (LAMBDA (All A12 A13 A21 1.22 !l23 A31 A32 A33 Cl C2 (3)
«LAMBDA (U1 U2 U3 D)(LIST (CONS (QUOTE Ul)(QUOTIENT Ul D»

(CONS (QUOTE U2)(QUOT!~ U2 D»
(CONS (QUOTE U3)(QUOTIENT U3 D»»

(THREEBY Cl A12 Al3 C2 A22 A23 C3 A32 A33)
(THREEBY All Cl A13 A21 C2 A23 A31 C3 A33)
(THREEBY All A12 Cl A21 A22 C2 A31 A32 C3)
(THREEBY All A12 A13 A21 A22 A23 A31 A32 A33»» »

1. SOLVE (2 1 -2 1 1 1 -1 -2 3 -6 2 12) = «Ul • 1)(U2 • -2)(U3 • 3»
2. SOLVE (2 1 -2 2 1 3 -1 -2 3 5 6 12) = (Ul • 7)(U2 • -9)(U3 • 0»
3. SOLVE (15 15 15 7 1 -100 -50 1 1 15 -100 -16) = «Ul • 0)(U2 • 0)(U3 • 1»
4. SOLVE (1 2 -2 1 1 1 -2 -1 3 -12 6 2) = «Ul • 8)(U2 • -6)(U3 • 4»
5. SOLVE (-2 2 1 1 1 1 3 -1 -2 -24 49 9) = «Ul • 22)(U2 • -5)(U3 • 32»

· ' .,

o

0
~

0

14 June 1965 151 'l'M-2337/010/00

CHAPl'ER 14.

3. A
B
Z
NIL
NIL

4. X
E
NO
L

5. DEFINE « (TWIST (LAMBDA (S)(COND «ATOM S) S)

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

A
(B • A)
(C • (B • A» = (C B • A)
«(NIL. C) • B) • A)

(T (CONS (TWIST (CDR S»
(TWIST (CAR S»}}}» »

(NIL. (B • A)} = (NIL B • A)
DEFINE « (SUM (LAMBDA (X Y)(COND «ZEROP Y) X)(T (SUM (ADDl X)(SUBl Y»}») »
ARGS OF SUM
1
2
VALUE OF SUM
3
DEFINE « (PROD (LAMBDA (X Y) (CONn «ZEROP Y) 0)

(T (SUM X (PROD X (SUBl Y»»») »
DEFINE « (REMXY (LAMBDA (X Y) (COND «LESSP X Y) X)

«EQUAL X Y) 0)
(T (REMXY (DIFFERENCE X Y) Y»») »

DEFINE « (GCD (LAMBDA {X Y)(COND «GREATERP X Y) (GCD Y X»
((ZEROP (REMAINDER Y X» X)
(T (oeD X (REMAINDER Y X»»» »

DEFINE « (AMONG (LAMBDA (A L)(COND {(NULL L) NIL)
«EQ A (CAR L» T)
(T (AMONG A (CDR L»»» »

DEFINE {((INSIDE (LAMBDA (A E) (CONn «ATOM E) (EQ A E»
«INSIDE A (CAR E» T)
(T (INSIDE A (CDR E»»» »

DEFINE « (COPYN (LAMBDA (X N)(COND ({ZEROP N) NIL)
(T (CONS X (COPYN X (SUBl N»»») »

DEFINE « (LENGTHS (LAMBDA (L)(COND «NULL L) 0)
(T (ADDl {LENGTHS (CDR L»»)}) })

DEFINE {((UNIONS (LAMBDA (X Y) (COND {(NULL X) Y)
«MEMBER (CAR X) Y)(UNIONS (CDR X) Y»
(T (CONS {CAR X) (UNIONS (CDR X) Y»»» »

DEFINE « (INTERSECT (LAMBDA (X Y)(COND «NULL X) NIL)
«MEMBER (CAR X) Y)(CONS (CAR X)

(INTERSECT (CDR X) Y»)
(T (INTERSECT (CDR X) Y»») »

--- ._---_._-_ __ ...

152 ~-2331 /010 /00

16. DEFINE « (REvEasAL(LAMBDA {L)(COND «NULL L) NIL)
(T (APPEND (REVERSAL (CDR L»

(LIST (CAR L»»») »
11. DEFINE « (PAIRS (LAMBDA (Ll L2)(COND «NULL Ll) NIL)

(T (CONS (CONS (CAR Ll)(CAR L2»
(PAIRS (CDR Ll)(CDR L2»»») »

18. DEFINE « (DP.:Lm'E (LAMBDA (A L) (COND «NULL L) NIL)
«EQ A (CAR L» (CDR L»

19. DEFINE «
(T (CONS (CAR L) (DELETE A (CDR L»»») »

»

(INSEQ (LAMBDA (L) (OR (INSEQA L)(INSEQA (REVERSE L»»)
(INSEQA(LAMBDA (L)(COND «NULL L) T)

«NULL (CDR L» T)
«NOT (NUMBERP (CAR L») NIL)
«NOT (NUMBERP (CADR L») NIL)
«LESSP (CAR L)(CADR L» (INSEQA (CDR L»)
(T NIL»»

20. DEFINE « (REPLACE (LAMBDA (A B X)(COND «ATOM X) (CONn «EQ B X) A)(T X»)
(T (CONS (REPLACE A B (CAR xl)

(REPLACE A B (CDR X»»») »
CHAPTER 15.

1. DEFINE « (NEGCNT (LAMBDA (L)(PROG (X)
(SEI-Q X 0)

TAG1 (COND «NULL L) (ImroRN X»
11,,~wUS~ I~An T\\/~~ V IAnn, v\)\\
\ \,Vlll~ r \\.dU\ J.JII \O.l:rJ.-"" A \AU.LI.I. AI II
(SErQ L (CDR L»
(GO TAG1»» »

2. DEFINE « (CURVE (LAMBDA (A B C)(PROG (X)
(SETQ X (PLUS (TIMES B B) (TIMES -4 A C»)
(CONn «ZEROP X) (RErURN (QUOTE PARABOLA»)

«LESSP X 0) (RErURN (QOOTE ELLIPSE»»
(RETURN (QUOTE HYPERBOLA»») »

3. DEFINE « (LENGTHS (LAMBDA (M)(PROG (X)
(SErQ X 0)

LOC1 (COND «NULL MHRErURN X»)
(SErQ X (ADD1X)
(SErQ M (CDR M»
(GO LOC1»» »

4. DEFINE « (LAST (LAMBDA (L)(PROG (U)
Tl (CONn !(NULL L) (RETURN U»)

SErQ U (CAR L»
SmQ L (CDR L»

(GO Tl»» »

....
"

..

i1

o

o ..

o

14 June 1965 153

5-7. DEFINE «
(REVERSAL (LAMBDA (L) (PROG (Y)

T2 (CONn «NULL L) (RETURN Y»)
(SETQ Y (CONS (CAR L) Y»
(SETQ L (CDR L»
(GO T2»»
(PAIRS (LAMBDA (Ll L2) (PROG (X)

T3 (CONn «NULL Ll)(RETURN (REVERSE X»»
(SETQ X (CONS (CONS (CAR Ll)(CAR L2» X»
(SETQ Ll (CDR Ll»
(SETQ L2 (CDR L2»
(GO T3»»

(DELETE (LAMBDA (A L) (PROG (Z)
T4 (COND «NULL L)(REWRN (REVERSE Z»)

«EQ A (CAR L»(GO T5»)
(SETQ Z (CONS (CAR L) Z»

T5 (SETQ L (CDR L»

»
(GO T4»»

8. DEFINE « (PERMUT (LAMBDA (N R)

fJlIJ.-2337 /010 / 00

(QUOTIENT (FACTORIAL N) (FACTORIAL (DIFFERENCE N R»») »
DEFINE « (PERMUT (LAMBDA (N R) (PROG ()

(RETURN {QUOTIENT (FACTORIAL N)(FACTORIAL (DIFFERENCE N R»»») »
9. DEFINE « (cm.mIN (LAMBDA (N R)

(QUOTIENT (FACTORIAL N)(TIMES (FACTORIAL R)
(FACTORIAL (DIFFERENCE N R»»» »

DEFINE « (COMBIN (LAMBDA (N R) (PROG ()
(RETURN (QUOTIENT (FACTORIAL N)

(TIMES (FACTORIAL R)
(FACTORIAL (DIFFERENCE N R»»»» »

14 June 1965 154

10. DEFINE « (PASCAL (LAMBDA (N)(PROG (X R LINE)
(SETQ X 0)

OUTLOOP (SETQ R 0)
(CONn «LESSP N X) (RETURN NIL»)

INLOOP (COND «LESSP X R)(GO BUMPX»)
(SETQ LINE (CONS (COMBIN X R) LINE»
(SETQ R (ADDl R»
(GO INLOOP)

BUMPX (PRINT LINE)
(SETQ LINE NIL)
(SETQ X (ADDl X»
(GO OUTLOOP»» »

PASCAL(15)
(1)
(1 1)
(1 2 1)
(1 3 3 1)
(1 4 6 4 1)
(1 5 10 10 5 1)
(1 6 15 20 15 6 1)

~i ~ ~~ ~g ~6 ~~ ~81§ 1 j
(1 9 36 84 126126 84 36 9 1)
(1 10 45 120 210 252 210 120 45 10 1)
(1 11 55 165 330 462 462 330 165 55 11 1)
(1 12 66 220 495 792 924 792 495 220 66 12 1)
(1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1)

TM-2337/010/00

(1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1)
(1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1)
NIL

NOTE: PASCAL (16) is the largest triangle possible with this definition
since l6! is maximum fixed-point accuracy of Q-32.

'" .

o

o

14 June 1965 155 'l'M-2337/0l0/00

CHAPTER 16.

L
Bound Variables

Dunnny Variables

LAMBDA Variables PROG Variables SPECIAL Variables Free Variables

X A PI PI
Y B N
Z M

2. DEFINE gives the following output:

(N NOT DECLARED)
(M NOT DECLARED)
(TEST)
Though PI is also a free variable, CSET automatically declared PI SPECIAL.

3. TEST (1 2 3) = (NIL NIL 2 LA777777 3 3.1415900000 (2 1 LA777777»

The PROG variables A and B are always initialized to NIL, an~not being
changed, evaluate to NIL.
The top-level LAMBDA variables,x,Y, and Z,are bound to 1,2, and 3.>
respectively.
The nested LAMBDA variable,Z,does not conflict with the top-level
LAMBDA variable, Z, as the nested LAMBDA variable, Z, has its own pushdown
list location allocated. This Z is bound to the value of Y, the argu
ment of the nested LAMBDA expreSSion, which is 2.
PI evaluates to 3.14159.
M and N a.re unbound free variables, a potential error source. (Never
try to SETQ an unbound free variable.) Q-32 LISP evaluates M and N,
but finding no binding and hence no Print Name or S-expression, prints
an LA symboL An LA symbol is an error message which freely trans
lated means, "I do not recognize this entity as a meaningful LISP
expression so I will print its address prefixed by the letters LA, for
LISP address."

4. There are no error messages and

TEST (1 2 3)
here evaluates exactly as in problem 3. It would appear to the student
that,except for error messages, one needn't declare free variables SPECIAL.
In subsequent chapters we examine functions which take other functions,
including LAMBDA expressions, as arguments. Expressions that use such
functional arguments will evaluate differently when free variables are SPECIAL

14 June 1965 156 TM.-2337/010/00

than when free variables are not SPECIAL. Therefore, unless you under
stand what you are doing, all free variables should be declared SPECIAL
before they are used.

5. 1.
2.
3.
4.
5.

K
1965
K
K
1966

6. 1. (Vl V2)
2. Vl
3. V2
4. (Vl V2)
5. (V2 Vl)

7. 1. PI
2. 3.1415900000
3. 5 PI is bound temporarily.
4. 3.1415gooo00 PI is restored to its permanent binding.

8. 1. PI
2. 3.1415900000
3. 5 PI is bound temporarily.
4. 3.1415900000

9. PI

10.

11.

12.

13.

(BEFORESETQ NIL) All PROG variables are initially bound to NIL.
(AFTERSETQ 1234) PI is bound. temporarily •
(P~ALUE 3.1415900000) PI is restored to its permanent binding.
1. PI
2. 54321 .
3. 54321 SETQ makes permanent bindings as CSETQ if the first argument

of SETQ is a free and also a SPECIAL va~iable.
1.
2.

3.
4.

5.
1.
2.
3.

4.

1.
2.

ABE
FREEDOM Though X is bound to ABE by LAMBDA conversion, SE'l'Q quotes

its first argument X and temporarily binds :FREEI>CM to X.
LINCOLN The permanent binding of ABE remains unchanged.
CIVILWAR ABE is temporarily bound to BOOTH by LAMBDA conversion;

however, a.s in (2) SEl'Q quotes its firstargum.ent ABE and
temporarily binds CIVILWAR to ABE.

LINCOLN The permanent binding of ABE rema.ins unchanged.
PI PI is permanently bound to 5.
50
31.415900000 PI is permanently bound to 3.14159 by SETQ since SETQ

makes permanent bindings to SPECIAL variables used free.
3.14159QOOOO This evaluation verifies that permanent binding of PI

is 3.14159.
(PI ABE)
(PI ABE) SPECIAL and UNSPECIAL may be used at other than the top level

as all other LISP functions.

K

n

'ii

()

(J
d

14 June 1965 157 TM-2337/0l0/00

14. 1. ABE
2. JOHN ABE and JOHN made SPECIAL and permanently bound to LINCOLN and

BOOTH, respectively.
3. (LINCOLN BOOTH) Carrying problem 13 one step further, .A:BE and JOHN are

evaluated to LINCOLN and BOOTH, respectively, and
these values are made SPECIAL.

15. 1. ABE
2. JOHN ABE and JOHN made SPECIAL and permanently bound to LINCOLN and

BQOTH, respectively.
3. «ABE LINCOLN PRESIDENT)(JOHN BOOTH ACTOR»

ABE and JOHN temporarily bound to LAMBDA variables X and Y,
respectively, by LAMBDA conversion CSET evaluates its argu-
ments and permanently binds the value of its second argument to
the value of its first a.rgument. Hence, PRESIDENT is permanently
bound to the value of .A:BE, namely LINCOLN, and ACTOR is perma
nently bound to the value of JOHN, namely BOOTH. The answer is
the list of the values of each of these bindings.

4. «ABE LINCOLN PRESIDENT)(JOHN BOOTH ACTOR» This evaluation verifies
these permanent bindings.

CHAPTER 17.

1.

2.

(LIST)
(LIST)

NIL@.

@
NIL

3. ATOMl ATOM2
NIL

4. (NOW HEAR THIS)
5. «INPUT) ANYTHING)
6. For R=5 , 31.415900000

For R=50 , 314.15900000
For R=lO , 62.83180000
For END ,END
«) • I = $ * NOW HEAR THIS -533.17) 7.

8.
9.

(B C)
1. PERCENT This expression binds the BCD for % to the name PERCENT.

The $$ artifact is the only way to enter illegal read
che,racters. All Teletype characters but line feed and
carriage return can be entered this way.

2. %
3. Yields error message IMPROPER CHARACTER READ as % is still an

illegal read character.
10. A

14 June 1965 158 T1:!J.-2337/010/00

1l. 1. A
2. ~B C)
~ ,A .. B) oJ·

4. PI
5. 3.1415900000

12. 1. (A)
2. (A • B)
3. K
4. (3.1415900000)
5. X SQUARE

0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
END

13. DEFINE « ~

(sup4 (LAMBDA () (PROG (X Y) (~)
'"

TAG1 (TEREAD)
(SmQ X (READ»
(SETQ Y (READ»
(PRINT (EVALQT· Y X»
(GO TAG1»» »

1. A
2. (B C)
3. NIL
4. 10
5. K
6. 3.1415900000

14. DEFINE (~
(SUP5 LAMBDA () (PROG (X Y)
TAGl (TEREAD)

(smQ X (READ»
(SETQ Y (READ»
(PRINO X) (PRINO Y) (TERPRI)
(COND «EQ (QUOTE NO)(READ) ~ (GO TAG1»)
(PRINO X) (PRINO Y) (BLANKS 1 (PRINl EQSIGN) (BLANKS 1)
(PRINO (EVALQT X Y»
(TERPRI)
(GO TAG1»» »

c-' ~"~

o

p

o

14·June 1965 159

15. DEFINE « (PI (LAMBDA (X)(PROG (HI)
. (PRINT {QUOTE (ENTER MAX X»)

(SER'Q HI (READ»
{SETQ X (TIMES X 1.0»
{PRINT (QUOTE $$$

TM-2337/010/00

. X XSQUARE SQRTX RECIPX FACTORIALX
$»
TAGl (COND «LESSP HI X)(RETURN (QUOTE $$$LIMIT REACHED$»»

(PRINl X)(BLANKS 10)(PRINl (TIMES X X)){BLANKS l.O){PRINl (SQRT X))(BLANKS 3)
(PRINl (QUOT. IENT 1.0 X» {BLANKS 3)(PRINl (FACTORIAL X))(TERPRI)
{SER'Q X (ADDl X»
(GO TAGl»» »

CHAPl'ER 18.

1. MACRO « {PROD {LAMBDA {J)(*mcFAND J (QUPTE *TIMES»» »
2. MACRO«

(MAXIMUM (LAMBDA (J){*EXP/UID J (QUOTE «MAX»)}
. {MINIMtlM (LAMBDA (J){ *mcFAND J (QUOTE *MIN))))

)}

3. MACRO {{ {FLAMBDA (LAMBDA (J)
(LIST (QUOTE FUNCTION)

(CONS (QUOTE LAMBDA)(CDR J»}» »
4. MACRO «

(LIST2 (LAMBDA (J)(*mcFAND J(QUOTE CONS»»
(LISTl (LAMBDA (J)(APPEND (CONS (QUOTE LIST2)

(CDR J»
(QUOTE (NIL)}»)

})

We note here that given a for.m
(LISTl Xl x2 x3) (l.)

the macro LIST2 expands for.m (l) to

(LIST2 Xl x2 x3 NIL) (2)

and. with repeated application to

(CONS Xl {CONS x2 (CONS x3 NIL»)
Thus .the sole purpose of macro LISTl is to insert NIL as the l.a.st argument
of the form. If we used the macro definition for LIST2 only, we would
get a value of

rather than

the list we desire.

(~ x2 • X3)

(xl. x2 x3)

14 June 1965 160

5. DEFINE «
(PRINTQl (LAMBDA (J)(PROG (X Y)

(SEn'Q X J)
Tl (CONn «NULL X)(REn'URN (TERPRI»»

(PRINO (CAR X))(BLANKS 1)
(SEn'Q X (CDR X»
(00 Tl»» »

MACRO «
(PRINTQ (LAMBDA (J)(LIST(QUOTE: PRINTQ1)

(LIST (QUOTE QUOTE)
(CDR J»») »

The form
(PRINTQ NOW HEAR THIS)

TM-2337/010/00

after the ma.cro PRINTQ ha.s been executed, will be replaced by the form

(PRINTQ1 (QUOTE (NOW HEAR THIS»)

The function PRINTQ1 enters each element of its argument list into the
print line with PRINO, and executes a final TERPRI when the list is
empty.

CHAPrER 19.

le (TRY THIS SIMPLE CASE FIRST)
(THISSlMPLE CASE FIRST) .
(SIMPLE CASE FIRST)
(CASE FIRST) .
(FIRST)
NIL

2. (NOW THIS ONE)
(THIS ONE)
(ONE)
«NOW THIS ONE) (THIS ONE) (ONE»

3. AND
LASTLY
THIS
ONE
(AND LASTLY THIS ONE)

4. ({ONE 2 3 ONE 4 ONE 5)(2 3 ONE 4 ONE 5)(3 ONE 4 ONE 5)(ONE 4 ONE 5)

5.
o 6.
7.
8.

(4 ONE 5)(ONE 5)(5»
«1 2 3 4)(2 3 4)(3 4)(4»
«A. A)(B • B)(C • C)(D • D)(E • E»
«A. X)(B • x)(C • X)(D • X)(E 0 X»
«A. Z)(B • Z)(C • Z)(D • Z)(E • Z»
«A 1 2 3 4 5)(B 1 2 3 4 5)(C 1 2 3 4 5)(D 1 2 3 4 5)(E 1 2 3 4 5»

c~

;1

o

o

o

161
(Page 162 Blank)

TM-2337!010!OO 14 June 1965

9. DEFINE «
{MAPCAR2 (LAMBDA (X Y FN)

(COND «NULL X) NIL)
(T (CONS (FN (CAR X)(CAR Y»(MAPCAR2 (CDR X)(CDR Y) FN»»» »

10. DEFINE «
(TYPE (LAMBDA (J)(MAPCAR J (FUNCTION

(LAMBDA (K)(COND «NUMBERP K)(RErURN (COND «FIXP K)(QUOTE FIX»

CHAPTER 20.

1. A
2. B
3. A
4. NIL
5. T
6. (AB. C)
7. B
8. A
9. A

10. B
11. «AB. C»
12. T
13. AB
14. C

(T (QUOTE FLT»»)
«ATOM K) (QUOTE ATOM»
«EQ (ATOM (CAR K))(ATOM (CDR K»)(QUOTE DOTPAIR»
(T (QUOTE LIST»»»» »

15. «(F. T) • AB) • {(AB») = «(F. T) • AB) (AB»
16. A
17. A
18. B
19. (C. B)
20. (A. C)

" ;;

r
" "J

1

o

o
II

.0

14 June 1965 TM-2337/010/00

APPENDIX B

* INDEX

A

absolute value, 85
ABSVAL, 85
accura.cy, 74
ADD1, 84
AND, 76, 86
APPEND, 95
arguments, 51, 109
arithmetic functions, 83
arithmetic predica.tes, 75
$$ artifact, 120
atom, 17, 73
ATOM, 73
atomic bindings, 109, 111
atomic symbols, 17, 109

B

backtrace, 144
binding of variables, 61, 109, 111
BLANK, 120
BLANKS, 119
bound variables, 61, 109, 111, 115,

124, 136, 155
buckets, 120

CAAAAR, 49
CAAADR, 49
CAAR, 63
CADDDR, 49
CADDR, 47
CADAR, 63
CADR, 49, 63
CAR, 44, 146
CDAR, 63
CDDDDR, 49
CDR, 45, 146

C

. clauses, 79
clear the read lines, 119
composition of functions, 59, 124, 139
computation, 51
COND, 103, 140
conditional expressions, 79, 103, 139,

140
CONS, 44, 146
constant functions, 57
constants, 111, 113
CSET, 110, 112, 113, 115, 15;
CSETQ, 110, 112, 113, 115, 129, 156

D

decimal pOint, 40
decimal point or dotted pair

resolution, 41
DEFINE, 69, 127
DIFF, 12
DIFFERENCE, 83
DIVIDE, 84
DOLLAR, 120
dot notation, 17
dotted pair, 18
dummy variables, 112, 114, 155

E

element, 76
empty list, 26, 76
ENTlER, 85
EQ, 73
EQSIGN, 120
EQUAL, 74, 95
EQUALN, 74
escape character, 123
EVAL1, 11, 123
EVALQT, 66, 121

*In almost all cases, this index notes in order (most important references
first) the principle pages in which the subject is discussed. No reference
is listed for the first mention of a subject merely as an introduction to its
later principle presentation.

14 June 1965 164 TM-2337!010!OO

Evalquote, 66, 110, 121, 124, 136
evaluating a form, 55
evaluating composed functions, 59
evaluating DEFINE 70
evaluating LAMBDA expressions, 54
evaluation. 51
*EXP~, 128
EXPl', C54

F, 66
false, 73

F

fixed point numbers, 39, 83
FIXP, 75
FLOAT, 85
floating pOint, 83
floating point numbers, 40
floating point residue, 84
FLOATP, 75
flOvT of control, 102
form, 51, 101
forms and functions, 51
free variables, 113, 115, 136, 155
FUNCTION, 51, 109, 133
functional arguments, 133
functional expreSSions, 51, 54
function composition, 59
functionals, 133
function of no arguments, 57

G

global variables, Ill, 113
GO, 102
graphical interpretation of CAR

and CDR, 46
graphical representation of dotted

pairs, 18
graphical represents,tion of lists, 30
"GREATERP, 75

H

hash coding, 120

I

identity functions, 57
input-output, 119
integer, 83
integer numbers, 39

L

LABEL, 95, 140
LABEL notation, 95
LAMBDA, 52, 109, 139
LAMBDA conversion, 54, 111, 122, 123, 156,157
LAMBDA express~on, 52, 53, 111, 127, 139
LAMBDA express~on as the functional

argument, 135
LAMBDA notation, 51, 140
LAMBDA variables, 101, 115, 121, 155
LAST, 95
LEFTSHIFT, 86
LESSP, 76
level, 19, 22
LIFO, 109, 112
line boundaries, 37 C
LIST, 25, 67, 130, 134
list elements, 25
list notation, 25
LIST predicates, 76
location tags, 102
... "" '"" °OC J../\.JI.J'lU~lJ, u
logical AND, 86
logical arithmetic functions, 85
logical connectives, 76
logical exclusive OR, 86
logical OR, 85
LOGOR, 85
LOGXOR, 86
lower level, 19, 52
LPAR, 120

M

M-expressions, 139
M-language, 139
MACRO, 127
macro definitions of new functions, 129
macro expanSion, 127
macros, 127 ~

rr o

~,

()
i------

14 June 1965

MAP, 133
MAPCAR, 135
MAPLIST, 134
MAX, 130
meaning of QUOTE, 65
MEMBER, 76, 81
meta-expressions, 139
meta-language, 139
MIN, 84, 130
MINUS, 83
MINUSP, 75
*MAX, 130
'*MIN, 130

N

nested LAMBDA expressions, 60
NIL, 26, 66, 73, 76
NOT, 76
NULL, 76
NUMBERP, 75
numbers, 39, 66, 83
number theoretic remainder, 84
numerical a,rguments, 83

o
object list, 120
OBLIST, 120
octal, 83
octal numbers, 39
on-line operation, 35
OR, 76

P

parameters, 51
parentheses, 55, 56
PERIOD, 120
permanent bindings, 111, 112, 115

.PLUS, 83, 128
pointer, 18, 47, 110, 111
Polish prefix notation, 10
predicates, 79
predicate functions, 73
PRINO, 119
PRINl, 119
PRINT, 119
print name, 110, 119, 120, 155
procedures, 51

TM-2337/010/00

PROG, 109, 139
PROG expreSSions, 111
PROG variables, 101, 112, 115, 139, 155
PROG2, 104
program variables, 101
property list, 110, 119
property list functions, 110
pseudo-functions, 69, 119
pushdown list, 109, 111, 114
pushdown list bindings, 111
*PLUS, 128

Q

QUOTE, 65, 110, 115, 122, 123, 124, 133,
136, 140

QUOTE special ~ases) 66
QUOTIENT, 84

R

rapport with the supervisor, 43
READ, 119
reading and printing, 120
RECIP, 85
recurSion, 112
recursive functions, 91
redefining, 71
REMAINDER, 84
RETURN, 102
RPAR, 120

S

S-expressions, 17
scale factor, 39
scope, 53, 65, 103
separator, 26
sequence of statements, 101
sm, 101
SmQ, 101, 110, 112, 112, 115, 155, 156
SLASH, 120
SPECIAL, 113, 136, 155
special cell, 109, 113, 114
special form, 128
SPECIAL variables, 114, 115, 155
special variables as LAMBDA or PROG

variables, 114
SQRT, 85
square root, 85

14 June 1965

STAR, 120
statements, 101
sub-expression, 19
SUB1, 84
SUBLIS, 11
sub1ists, 25
subroutines, 51
supervisor, 43, 121, 122
sym~olic expressions, 17

T

T, 66, 73
temporary bindings, 111, 115
TEREAD, 119, 123
terminate the print .1ine, 119
terminator, 26
TERPRI, 119
the program feature, 101
TIMES, 84, 130
top level, 52, 136
top level anomalies, 124
TRACE, 96
transform dot notation to list

notation, 29
transform list notation to dot

notation, 27
translation M-expressions to

S-expressions, 140
true, 73
*'l'IMES, 130

166
(Last Page)

u
undefined, 73
UNSPECIAL, 114, 136
UNTRACE, 96

V

TM-2337/010/00

variable bindings, 61, 109, 111, 123
variables, 51
variables and their bindings, 109

Z

ZEROP, 75

11

,..

.. . S . t cr sifjc@tign eCUI1 y as . ,",
" '"

DOC;UMENT CONTItOL DATA· R&D
. (Se"curl'y cl.uW/:/lUOf! 01 tlt1". 1JI:t1tl! oitllb.'rllc' lin" inda./nla flllnot.t/an.mu,,' b •• ~t."d """/1 til. OW,." "port I" o, ... m./O .

I. qRIGI,,!AT1" <>. A!=Tj'\4ITY (p<!~ra,,, .I#hor) 'tr; ~BPOI'" n:cu .. 1 TV C I. ... " .. IC .. TION ' .

Un~la.ss:tfiM
Sy'stem Development CorpiOlration)) lb. GROUP .-.-:

:

o
Santa Mom(Clt5l.a Califormd:a ..

3. REPQRTTITLE
-"-'

..

LISP PRINTER '" A SELF .. TLJTO'R Ti'O'R Q",':(!)l,TR'P 1 .~ .
4. DESCRIPTIVE NOTES (~. 01 report-end /nclua/ved.tea) . .

5.·~UTHOR(S)·(L •• t nlllJ!e,llrst n~e,ltl"',,!>
..

.' .

.. We:1ssman p Co
e. REPO RT DA Til; ,,,. 'FO,.AL N.O. OF PAGIB. 17 •. NO. 0 .. "'IE ...

14 Jtme 1965 166
8~. CONTRACT QR C;~t.NT Nq. sn"'97 .t.. ORIC;INATQI't'IIRE:PORT NUMI!lIER(S)

T,M=2337/01.0/00
j

b. PROJECT.N\?

c. Ib,' &T::'~~8pCjlnNO(I). (An" ."'.r"Ulltbe .. "'~t m.,," •••• I",..d

d.

10. A'" A IL ABILITY/LIMITATION .NOTICES

Thi sdocument haS been cleared for open publication and ~. be disseminated .
by the Clearing House for Federal Scientific & Technical Information.

-,.
It. SU PPL, EMENTARyNoi'Es I,. SP'ONIiO"lftiOMII.ITA,.V .• CTIVITV .

13. ABSTRACT

This do~ument is a self-tu:torf'or LISP L5 progralll'.mingj parti cultarly for on-line
Q=32 LISP 1.5. Mliiltedal is orgGized into chapters thatj by discussion a.nd
e~ples, progressively expand the studentVs understanding of the language and
ability to write programs in the language •. A ca.refully selected and graduated
set of' exercises for use on ... line is provided as an integral part ot: each
chapter. Computer= che eked answers for each exercise are also provided as a
sep<arate appendix. The docun1ent is not an'emaustive treatise on LISP 1.5))
butj rather, a prl&ctiC21&1 primer that provides the serious student with a
solid foundation for understanding the programming lang~age a1}d system. He
ma" then easily supplement his knowledge from other sources suggested herein.
(au'lt'ilor)

,

o
DO 1~~~~4 1473 Unclassified

Security Classification

----------------~.---'-~~ .. -

Unclassified
Security Classification

LINK A LINK B LINK e
14

KEY WO~D~ ROLE WT ROL~ WT ROLE WT
~··~------------~~~·~'--~-----------t~~~~~~t-~~~Ir---1

LISP
Self-Tutor
Programming
Language
Computers
AN/FSQ-32

INSTRUCTIONS

l~ ORiGINATING ACTIVITY: Enter the name and address
of the contract'or, subcontractor, grantee, Department of De
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all security classification of the report. Indicate whether
"Restricted D,ata" is included. Marking is to be in accord
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di
rective 5200.10 and Armed.Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4. 'as author
;zed.

,I. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases ahould be unclassified.
If a meaningful title cannot be selected without classifica
t inn, show title classification in all capitals in parenthesis
10lml'diately following the litie.

.:. DESCRIPTIVE NOTES: If appropriate, enter the type of
iCIJo',t. c. g., interim, progress, summary, annual, or final.
Give' the inclusive dates when a specific reporting period is
c·ov£,Ted.

S. "UTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter tast name, first n!tltle, middle initial.
if :r.ilitary, show rank end br~nch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE.: Enter the date of the report as day,
'ionth. year; or m!lnth, year. If more than one date appears
'" tl", report, use date of .publication.

7", TOTAL NUMBER OF PAGES: The total page count
"i"'"1<1 follow nonnal pagination procedures, i.e., enter the
"",,,l,,.,, of pages containing information.

.'/, NUMBER OF REFERENCES: Enter the total number of
,.·t,·,pnces cited in the report.

>\.. CONTRACT OR GRANT NUMBER: If appropriate, enter
Ih" applicable number of the contract or grant under which
I to(' '('port was written.

db, Hc, & 8d. PROJECT NUMBER: Enter the appropriate
, •. tlitary department identification, such as project number,
o;;ubproject number, system numbers, task number, etc.

911. ORIGINATOR'S REPORT NUMBER(S): Enter the offi
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
9""igned any other report numbers (either by the oriQinator
Qr by the sponsor), also enter this number(s).

10. AVAlLABILITt/LIMITATION NOTICES: Enter any lim
ita t ions on further di~se'mination Of the report, other tbanthose

--~~-----------

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may o~tain copies of this
report (rom DDC"

(2)

(3)

(4)

"Foreign announcement and dissemination of this
report 'by DDC is not authodzed."

"U. S. Government agencies may obtain copies of
this report directly from DOC. Other qualified DOC
users shall request through

-------------------------------~----------- ."
flU. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request throu~h ..
--_.

(5) "All distribution of this report is controlled. Qual
ified DDC users shall request through

.. I
If the report has been furnished to the Office of TeC~nical

Services, Department of Commerce, for sale to the pubiic, indi
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for edditiona! explana
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pa"..
ing for) the research and development. Include address.

13. ABSTRACT: Enter an sbstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re
port. If additional space is required, a continuation sheet shall
be attached .

It is highly desirsblethat the abstrsct of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in
formation in the paragraph, represented as (T5). (5). (C). or (U).

There ls' no limitation on the length of the abstr.ct. How:
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words ere technically meaningful terms
or short phrases that chsracterize a report and msy be used as
index entries for cataloging the report. Key words mJist be
selected so that no security classification is required. identi
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con
text. The assignment of li,*s, rules, and weights is optional.

Upclassified
Security Classification

9

21

100

117

120

121

139

140

144

152

Line

19

6

Example 20,
line 4

Example 11,
line 4

25

6

10

11

12

Insert after
line 22

23

7
13

8

Corrections for TM-2337/010/00
LISP Primer

A Self-Tutor for Q-32 LISP 1.5

Correction

••• by Timothy P. Hart and Thomas Evans for the M-460

((«A • B) • (A • B» • (A • B» • (A • B»

••• of b in S-expression x.

4. (LAMBDA {ABE)(SETQ ABE (QUOTE CIVILWAR»)(BOOTH)

(LAMBDA () SLASH) = /

$$*ATOM*· ATOM *
In"example 3 above, $$*ATOM* is internally •••

Thus, bindings for $$*ATOM*" are bindings •••

CSETQ « $$*ATOM* 123) = ATOM

• PROG statement labels are capital letters

expression, except numbers, statement labels, NIL, T, and
F, e.g.,

7. (NIL Xl)

13. (A (B) B) = (A • «B. NIL) • (B • NIL»)

«(EQ.A (CAR L)) (DELETE A (CDR L»)

