\u)c3 '64

<%

< PRELIMINARY SPECIFICATIONS FOR BEN 940‘LISP
) ~
Daniel G. Bobrow Danrel L. Mur p‘\\y /

‘Q I. Internal Storage

A. Polnters
There will be a maximum of 16 pointer types of"
obJjects in the 940 LISP System. These are (numbered in octal)

00. S-expressions (non-atomic)

0l. Identifiers (literal atoms)

02. Small Integers

03. Boxed Large Integers

04, Boxed Floating Point Numbers

05. Compiled Function Lambda Type

06. Compiled Function - Lambda Type - Indef Args
O7. Compiled Function Mu Type - Args Paired
10. Compiled Function - Mu Type - List of Args
1ll. Compiled Functlon Macro

12, Array - Pointers

13. Array - Integers

14, Array - FP #'s

15. Strings - Packed Character Arrays

16.

17. Pushdown List Pointers

; B Each pointer will be contained in one 940 word of 24
bits. Bits 0 and 1 will be nominally empty, and may in some

cases be used by the system (e.g. blt O for garbage collection)

or perhaps even the user (in S-expressions). The four bits

2-5 will contain the type number for this pointer. The 18
bits 6-23 will contain an effective address (in the LISP
drum flle) where the referenced information is stored. The
structure of each store is described below.

B. Allocation of Storage

Allocation of storage for each éntity in the system
will be made as it 1s required. Pages of 256 words will be
allocated as necessary. Since the type information 1is
carried along with each poilnter, these blocks may be assigned
anywhere in the 256K address, with no need to maintain any
order to retaln the cgntiguity of types of spaces. A map of
the type assignment to pages will be kept for system use.
Some compromise will be made, but is not yet specified,
between garbage collectlion and addition of new storage when
storage of an& kind runs out.

There will be a number of varieties of garbage collec~-
tion in the system. The first to be implemented will be a

standard "stop the world, I want to collect" type. Then we

will have a smart compacter using secondary storage. Finally

we hope to implement an incremental garbage collector.

C. Identifiers (Literal Atoms)

An ldentifier has assoclated with it four canonical
cells: 1) a valge cell 2) a property list cell 3) a
function definition cell 4) a pname pointer cell. The
position of each cell can be computed from the drum address
given for the atom. These cells will not be conseclutive.
Value cells will be collected on separate pages of value
cells, and siﬁilarly for the other 3 cells. The pointer to
an atom will be a pointer to its value cell. As in our
current system, the car of atom will yield the contents of

the value cell, and cdr the property list. The functions

getd and putd will read from and write in the function cell.
A function getname will get the string which is the pname.
In a single user system, the positlion of the prlist,
pname and function cells may be able to be computed arith-
metically from the address of the value cell, In a multi-
user LISP, where p-names are shared; there will probably be

a double mapping for atom addresses.

D. S-expressions (list cells)

Each 1list cell is a consecutive pair of 24 bit words.,
The firét word of eacﬁ pair contains the car pointer, the
second the cdr pointer. Since each pointer only takes up
22 bits, there are two bits (bit 1 in each word) to which
the user will have access, kk to mark, check and unmark. Bit
O of each cell will be reserved for system use. The pointers
may be of any of the 16 types. Thus one can have 1lists of
pushdown pointers, arrays, functions, etc.

E. Numbers

18 18

Small integers between =2 and 27 -1 will be repre-

sented directly by pointers. The 18 bit pointer will be
the number -~ offset by a constant yet to be determined.

18 will-be stored 1in single

Boxed large integers 1 x 13> 2
words in a page of such numbers. Boxed floating point inte-

gers will be stored in double words in standard 940 floating

point format.

F. Function Types

There will be a compiler which will compile each of

the five types of function in the system. The types of these
functions can be recognized from the S-expressions, and

N
therefore will not KMeed to be marked specially for the inter-

preter. The types must be marked for compiled code., We will

describe these five types in Section II.
All compiled functions, of all types, are in approx-

imately the followlng format shown in Flgure 1.

e e oo o SONHAS 4bt

| [rgee T veastr_
! ' ‘;’fﬁﬂ' Y pna Aesp

'0*‘!3\'\
cedt | rel2

(S

| redn

start || .
Code

absolute
fe-(—ove nee

a, wa Ms‘);{.g%

st e oyadey
vt redevente
- MAV*\J‘\!S

. Figure 1: Format of a Compiled Function

The type 1s one of the five types of fen.

Length = length of total block (must be < 212)

Start = start of code relative to beginning of block

Pointer origin = start of pointer literals referred to

from complled code

rell,...,reln = locations relative to the start of the
code which must be relocated (address
adjusted) when loaded into core
G. Arrays
Arrays must be of uniform type, pointers, integers,
or floating point npmbers.j Pointers may be of any type.
Arrays addressed by a two word block which gives their type,
length and starting position.' Three new functions (Array
Length type) will allocate space for an array and return a
pointer to it; (ELT array ptr n) will give the value of the
nth element of the array pointed to; and (SETA érray ptr n
value) will store a value in tﬁe nth element of the array.
Note that arrays do not have names, buﬁ are structures which
are polnted to like l1llists., SETA evaluateg its arguments.
Any contiguous subblock of an array may be an array also.
CAR and CDR may be defined for array in the obvious way.
H. Strings
Strings are arrays of packed characters, Basic

string functions have not yet been defined but it might be

1

nice if CAR, CDR, RPLACA and RPLACD were extended in the

obvious way.

I. Pushdown List Structure

In this syétem we expect to have four pushdown lists.
They will contéin 1) Pointers 2) Control Information for
function calls, etc. 3) Un#oxed Integers and 4) will be
used for temporary stbrage of unboxed numbers for the arlith-
metic X routines, and for unboxed arguments of functlions which
are unboxed numbers, We wlll discuss that in detall later,

These Hwe PDL's mey be tombimed F0 conmverve
Let us now conslder only PDL 1 and 2.

(ov e S')°V¢\3¢.

Figure 2 shows the pushdown 1list near the beginning
of a new'page of each pushdown list after the functibn F has
Favet and E;
been entered with %weo arguments X;&m& Y, three cells of
temporary -storage have been used for computing arguments
for the function G} and the function H has been entered,
which has one argument»hﬁ The expression which is the body

of H 1s about to be evaluated. i.e., the function F looks

like

(zaMBDA (X Y) ... (G €1 ex e3 (H e))...

out

OL-
9__1.___>

PoL=1
v

-\
PO L PO L -2
' ENO oF PAGE ENDAE PAGE
Peevriouy PAGE ADDRESS PREVioUSs PAGE ROORESS
LANMED A ALIP Fune 3)om Ca))\wq 13
v Pag.-#-ovx VA F'unc}rol;
X Hdptr a_ul,{!ﬁ* "'ﬁd g FParas
:’* oot oy | opp-3l oeoi-al
o RS E
% Peyiha n w F
Ve v L \ 9
LhMROA " BL\P v2 [o O |
-6 PDL—'2 P———— — 1
: —_— Y
(o)
T
O
Ty
N
T3
LAMADA BdLP
- H
W,
Vi
O
(&)
- 1Y Y ‘
, ‘ ‘Prow? Yo
F'gwez ?MSMOOwn L,S)- '.Sfruc,)\y\v'& Alow
’ -e\)a\uq‘)'e - F

Express o n o H

F = (Lamada (x Y 2] ... e T, T2 s (H

Four system cells contain the polnters to the current
pushdown 1ist positions. Complled code knows the position
of its arguments. The interpreter searches the stack for

the appropriate variable name and gets the value from the

other cel\ 1nThe parv C dhe LAMBDA BL)P withavalue w\m\:{x .s.Ht‘:e
preceding=cedd., If it hits e=mewe it knows that it is na e

Cuvve n} (u\\f,*ﬂnl
‘

looking for the value of a free variable. The stack is

LBMBDD BL)e at 1 he
constructed so that there is a zweo guaranteed to be Iwwthe
top o % any ,S‘“hc_"‘\oy’ ‘l.c‘req..)
bcxtcw’*%&&—eﬁwehewuvaekvmand’Hb variable bindings run

across page boundaries. The latter is accomplished by

moving the bindings to the top of a new page when a function

'is entered which has cross boundary bindings. The zeroes
o Jewvmpovarvy ve se)ts

in the name position of PDL—lAare,guaranteed by 1nitializing

a stack block to zeroes in those positions, and having the

function return reset them to zero upon exit (which it can

U p e Ahe LAmBor RLIP
do by scanning émm—fo—themnextmaore from the current stack

o,

position).,

J. Free and Speeial Variables

When a variable is determined to be a free variable

(after a search down the PDL in the interpreter, or.at com~-
plle time for compiled fens), the following actiénvtakes
place. First, tﬂe contents of the ValueJcell are obtalned,

If the system bit (bit 0) is on, then this varlable has been
bound SPECIAL and the value is that Jjust found. We describe
the syntax for binding k variables as SPECiAL's in Section II.
If the system bit 1s off, then an upward search of the PDL

is maée to find the value. Thls 1s done eéqh time such a
variable is referenced in the interpreter. For compiled

code a new pailr is sét up with the name of the free variable,
and with value of PDL pointer to the original binding. All
references to the value of thls variable are im made indirectly
through this pointer through the hap.

K. The Funarg Device

Functional arguments wlll be passed smEE cons-ed with_
a PDL-l'pointer-which preserves 1ts context. Searches for
free variables will Eegin from the point specified on PDLfl
instead of the currept list. This ékip of part of the PDL

will be preserved on PDL-1 by a special BLIP followed by the

~10-

PDL pointer which Will cause the search procedure to go back
to the referenced portion of the stack. It may be that the
ENDO¥PAGE mark may work as that BLIP.

L. Unboxed Numbers as Args

Unboxed numbers on stacks 3 and 4 may be passed down
as afguments to functions, and unboxed numbers may be re-
turﬁed as values. The LISP syntax for this is}described in
Section II. The names of these argﬁments are put on PDL-1
bound to PDL pointers to the appropriate places on PDL-3

and PDL-4. Thus these variables may be used free (but not

. bound SPECIAL).

-11-

II. Changes to the LISP Syntax and Semantics

A. Function Types

The function types in the new system are an ex-
pansion of the types in current LISP. They are separated
into these types to give independence and flexibility in
binding arguments to variables, having an indefinite number
of arguments for a function, and having arguments evaluated
or not

1) Lambda expressions - standard type

(LAMBDA (X Y 2Z) . . .)
This is the usual lambda expfession which expects its argu-
ments to be evaluated and bound to each variable name in the
1ist of variables following the LAMBDA.

2) ,Lambda expressions with an indefinite number of

arguments, e.g.

-12-

These arguments are evaluated and put on the pushdown list

with no names attached. The atom following the LAMEDA,

N

in this casq/'is bound to the number of such arguments passed.

The function (NTHARG m) will return the value of the nth

argument provided 1< m<N.

3)

)

5)

Mu expressions - Args palred
This is one of two types of expression which
provide unevaluated arguments
(MU (x Y 2) e, ey . .‘.)
The arguménts of the above function will be

bound (unevaluated) to X Y and Z, and e, ete.

will be evaluated as usual.
My Mu expfessions - args unpaired
(MUX e ey . . .)
The list following function name will be bound
to the atom X, with no evaluation.
Macro expressions
(MACRO X € €5 . .)

Treated exactly as 4) 1.e. (MU X . . .) except

-13-

that the results of the computation are evaluated
again. When compiling)macros are expanded at
compile time.

B. Number of Arguments and Express

As with PDP-1 LISP, funétions which LAMBDA expressions
etc. may be given fewer arguments than expected, and the system
will fill in NIL, g, or @8, ¥ as appropriate, A LAMBDA été.
expression may be followed b& any number of expressions and
all will be evaluated - the value of the fen wkikk will be
the last evaluatgd. Conditional expressions have as elements
lists of ohe or more expressions, and if the first is not
NIL when evaluated, then all are evaluated in sequence and
the value 1s the last evaluated., The same is done for
SELECT and SELECTQ.

C. SPECIAL variables

Following the list of variables following a LAMBDA
or PROG, one may insert a call to the pseudofunction SPECBIND.

The list of variables following the SPECBIND which must appear

e.g. Xand Y in (SPECBIND X Y)

[14-

in the current 1list of LAMBDA or PROG variables are con-

sidered to be bound SPECIAL. The current binding of these

variables (X and Y in this case) are exchanged with the
contents of the value cell; and the system bit in the value
cell and in the variable names X and Y on PDL 1 are turned
on. In a function return cleanup the bit in the name indi-

cates that a swap back must take place. Since the old value

and status of system bit are saved, the swap restores the

old status exactly. SPECBIND must be used for each REzErx
occurrence (in each function) in which a variable (say X or Y)
are to be bound as SPECIAL.

D. Numerical Arguments and Values

In this system, the onus will be put on the user

to provide information about which arguments and/or values

are unboxed numbers, and he must be sure he is correct or
funny errors are liable to occur. The systemm may correct
certaln obvious errors, but nothing is guaranteed.

Functions may expect pointer integer or floating

polnt arguments, but only in that order, i.e., youlmay have

-15-

P pointer arguments and then m integers and g_iiakimg floating
point numbers, but only in that order (p=~0 m=>0 n=0).
In the function definiﬁion you tell the function to expect
these numerical arguments by following the list of LAMBDA
variables by calls to the functions FIXV and FPV, e.g.

(x vy N VV)
if FOO is defined by (LAMBDA €=} (FIXV N) (FPV U V). . .
then FOO will expect two pointer args X and Y, one integer
arg N and two fldating point afgs U and V. After the 1list
of PROG variable, calls to FIXWP and FPVP will create tempor-

‘“\Cﬁer
ary variables of the appropriate type initialized toA¢ are o

Erochmy Vernt
Beo B. No conversions in arithmetic will be done on unboxed
numbers unless explicitly requested.

In addition to telling a called function where to
expect 1ts arguments, you must in the cell of such a function
tell the calling function where to put the arguments. The
pseudo-functions ISFIX and ISFP tell a calling function to
put arg on PDL-3 and PDL-4 respect;vely. Thﬁs a call to FOO

might look like

(FOO A B (ISFIX T) (ISFP B) (ISFP 's))

	1.tif
	11.tif
	12.tif
	13.tif
	14.tif
	15.tif
	16.tif
	17.tif
	18.tif
	19.tif
	110.tif
	111.tif
	112.tif
	113.tif
	114.tif
	115.tif

