
C)

The views, conclusions, or recommendations expressed in this document do not neces­
sarily reflect the official views or policies of agencies of the United States Government.

This document was produced by SDC in performance of contract ___;0;:;,;· D;;;."_·9""7.L.-__ _

System Development Corporation / 2500 Colorado Ave. / Santa Monica, California

LISP II PROJECT

MEMO NO. 4:LAP

AUTHOR }11 1 J:£,.!.i::
M. J.Jevin

TECHNICAL
S. L.

RELEASE
S. M.

for
D. L. Drukey

DATE 2/19/65 PAGE 1 OF~PAGES

ABSTRACT: This is the fourth in a series of working memos documenting LISP II
development, The position of the LAP assembly language compiler in the LISP
II system is specified by flow chart--including alternative approaches to
converting a source language into a running program. The LAP terminology is
defined.

I. OVERVIEW OF LISP II

U There are five distinct processes that are involved in converting source
language into a running program.

Source
Language

in
characters

Assembly
Language
as List­
Structure

Fini te-Stat3a-'

Machine

Tokens
Internal

Syntax> I Language as
Translator List-

Structures

,.L/ __ --=C~o~n:!:c~ur<±!:..:r!:..!e;;<!nl!.t!L....lQol.,Jp~e ... rl..Jai!o..t.w.JL..!' O.JJnL.l.-_-./

Relocatable Lap ________ ~:>~I Binary Loader Running
Program

There are various alternative routes not shown in this diagram.

A·2450 10/62

Compiler 7

19 February 1965 2 TM-226o!OOl!OO

1. LISP II internal language can be input as S-expressions,
bypassing the syntax translator.

External
S-express­
ions

Compiler)
etc.

Finite-State Tokens S-Expression
Machine I Reader

/ Concurrent Operation ,//

.... ,
Internal
Language
as List-
Structure

2. Internal language may be generated by a program that produces
programs. There is no input in this case.

... Program . ,
/

Internal
Language
as List­
Structure

Compiler
) etc.

3. Assembly language may be introduced as source language, or
S-expressions; or generated internally.

[]p~ Source I
Language

Lap
etc.

Finite-State
Hachine

Tokens J
/ Concurrent-oP~illOn

Lap as
S-express­
ion

Program

Finite-State
Machine

Syntax
Translator

./

/"

Tokens

/ Concurrent Operation
~----------------------~

---------------- --- -

Assembly
Language
as List-

...

n

Cj

19 February 1965 3 TM-226o/001/00

II ASSEMBLY LANGUAGE

The argument of LAP is assembly language as an S-expression. The value of LAP
is relocatable binary which is an array. Unlike most assemblers, the input
to LAP is not a linear list but a nested list with indefinite depth. In
internal language its syntax is as follows:

(assembly language) ~~= (part)n)

(part) :~= (instruction) I (macro) I (pseudo=instruction) 1 (label)

A label is an identifier. It gives a symbolic name to the following part.

A macro is a list beginning with its key word. It is expanded to a list of
parts which is concatenated into place. Thus a macro which looks like a
single instruction can be expanded into several instructions inserted at the
same level.

(instraction) ~~= (op-code) (field)n)

The op~code is an identifier naming an instruction, e.go J BSX. The number
of fields is machine-dependent. They are evaluated, shifted left if appropriate,
and logically oried into place.

The types of field are:

1. A number

2. $ meaning current location

3. An identifier which could have several meanings as a symbol

4. (QUOTE a) where a is an S-expression. This produces a quote cell,

5. A list of fields which is evaluated as their sum.

Each pseudo-instraction is a special case.

19 February 1965 4 TM-2260/001/00

1. (ORG (field»

An assembly has ORG only if it is absolute and is going directly
into core. Each ORG starts the subsequent program assembling
at the location specified by the field.

2. (FUNCTION (name) (formal parameter list) (part)n)

This pseudo-instruction generates code for a closed subroutine.
The declarative information following the word FUNCTION is of the
same format as if this were a declaration of a function in
internal language.

a. A brick is planned with space for all parameters.
They can then be referenced symbolically within the
parts that follow.

b. Instructions are generated for establishing a brick
using MO~.

c. The parts are assembled.

d. The exit for the subroutine is assembled.

3. (PROG (program variable list) (part)n)

This is similar to FUNCTION, but creates open code corresponding
to a block rather than a procedure.

In the case of (FUNCTION (name) (formal parameter list)
(PROG (program variable list) (code)n» where the PROG is the
only part within the FUNCTION, only one brick is created
serving both purposes.

4. «number»

This assembles into a number.

The definition of fields for function names, own variables, and
global variables is left unspecified in this memo.

n

(j

,

o

o

19 February 1965

III. LAP IN SOURCE LANGUAGE

5
(Last page)

LAP (part) ; (part) ; ••• END

1. Labels are followed by colons.

2. Parts are separated by semi-colons.

3. Fields are separated by commas or spaces.

4. (procedure heading) [; (part)}n END

'lM-226%cl/oo

e.g., REAL FUNCTION FN(U, V); REAL'U; (part) ; (part) END FN

5. (block heading) {; (part)}n END

e.g., A: BEGIN (4) REAL U, V; GLOBAL V, Wj (part) END (4) A

IV. RELOCATABLE BINARY

ARRAY HEADER

INDEX TO ITEMS
BELOW

BINARY

RELOCATION BITS

QUOI'ED DATA

	Levin-LispII-LAP-TM2260.001.000001_a
	Levin-LispII-LAP-TM2260.001.000001_b
	Levin-LispII-LAP-TM2260.001.000002_a
	Levin-LispII-LAP-TM2260.001.000002_b
	Levin-LispII-LAP-TM2260.001.000003_a
	Levin-LispII-LAP-TM2260.001.000003_b

