Kyoto Common Lisp Report

Taiichi Yuasa and Masami Hagiya
Research Institute for Mathematical Sciences
Kyoto University

August 1985

Preface

Kyoto Common Lisp (KCL for short) is a full implementation of the Common
Lisp language described in the Common Lisp Reference Manual:

Common Lisp: The Language
by Guy L. Steele et al.
Digital Press, 1984

All Common Lisp functions, macros, and special forms are defined in KCL,
though a few of them have slightly different meanings from those described in
the Common Lisp Reference Manual. All such differences are described in this
report: If a Common Lisp function (or macro or special form) does not work
as described in the Common Lisp Reference Manual and if this report does
not describe the difference explicitly, then there must be a bug in KCL. All
Common Lisp variables and constants are defined in KCL exactly as described
in the Common Lisp Reference Manual.
Currently, there are four major versions of KCL:

1. KCL/AOS, under the AOS/VS operating system for Data General’s ECLIPSE
MYV series machines.

2. KCL/VAX, under the Unix 4.2 bsd operating system for Digital Equip-
ment, Corporation’s VAX 11 series machines.

3. KCL/SUN, under the Unix 4.2 bsd operating system for Sun Microsys-
tems’ Sun Workstation.

4. KCL/UST, under the Unix V (Uniplus’ version) operating system for
Sumitomo Electric Industries and Digital Computer Laboratory’s Usta-
tion E15.

KCL/ AOS is the original version of KCL, which was developed at the Research
Institute for Mathematical Sciences (RIMS), Kyoto University, with the coop-
eration of Nippon Data General Corporation. The other three versions, which
are collectively called KCL on Uniz, are transplanted versions of KCL/AOS.
This report is intended to complement the Common Lisp Reference Manual.
This report describes deviations of KCL from Common Lisp, those features
specific to KCL, and the implementation-dependent functions of Common Lisp.

Acknowledgements

The project of KCL was supported by many people affiliated with many in-
stitutions. We are very grateful especially to the following people for their
contributions to the KCL project.

First of all, we are grateful to the contributors to the design of Common
Lisp.

Prof. Reiji Nakajima at RIMS, Kyoto University, provided us with consid-
erable encouragement and moral support.

Nippon Data General Corporation (NDG) helped us implement KCL/AOS.
Mr. Teruo Yabe and Mr. Toshiyasu Harada joined us during the first stage of
the KCL project and did a lot of coding. Mr. Takashi Suzuki and Mr. Kibo
Kurokawa arranged the joint project. NDG is now supporting the distribution
of KCL/AOS.

Data General Corporation in the United States sent us materials necessary
to implement a Common Lisp system, such as the preliminary drafts of the
Common Lisp reference manual and benchmark tests for Common Lisp. For the
benchmark tests we are indebted to Dr. Richard Gabriel at Stanford University.

Dr. Daniel Weinreb at Symbolics answered most of our questions about the
language specification. He also sent us the definition of rationalize written by
Dr. Skef Wholey at CMU. We use this definition in KCL without any change.

Dr. Carl Hoffman at Symbolics checked the top-level of KCL and gave us
advice for improving KCL. He also found some bugs in KCL and fixed them for
us.

Mr. Naruhiko Kawamura at RIMS developed a Prolog system using the
earliest version of KCL/AOS. That was one of the first big projects with KCL
and he found many bugs.

Mr. Takashi Sakuragawa at RIMS hacked with KCL/AOS and gave us much
advice concerning those features specific to KCL.

Mr. Tatsuya Hagino at Edinburgh University developed Micro EMACS on
which FeCl2, the full-screen editor embedded in KCL/AOS, is based.

Mr. Kunihiko Nakamura at Kagawa University converted the assembly lan-
guage version of Micro EMACS into the C language, which happened to become
the prototype of FeCl2.

Prof. Akinori Yonezawa at Tokyo Institute of Technology encouraged us to
port KCL/AOS to the VAX 11.

Mr. Etsuya Shibayama at Tokyo Institute of Technology helped us while we
were working with the VAX 11 at the Institute.

Hagiwara Laboratory at Kyoto University offered (and is offering) their VAX
11 for finishing transplantation and maintaining KCL/VAX. We got also tech-
nical advice from people at Hagiwara Laboratory.

ii

Prof. Shuji Doshita at Kyoto University offered the SUN Workstation at
his Laboratory and gave us a lot of advice for transplantation to the SUN
Workstation.

Mr. Takashi Hattori at RIMS gave us useful information about the Motorola
68000, the CPU chip of SUN Workstation.

ii

Contents

1 How to Start and End a KCL Session 2
2 Data Types 5
2.1 Numbers.o 5
2.1.1 Integers e)
2.1.2 Ratios e 6
2.1.3 Floating-Point Numbers 6
2.1.4 Complex Numbers 8

2.2 Characters.o 8
2.2.1 Standard Characters 8
2.2.2 LineDivisions. e 8
2.2.3 Non-standard Characters 9
2.2.4 Character Attributes 9
2.2.5 String Characters L. 9

2.3 Symbolso 9
2.4 Listsand Conses i i i it i e e 9
2.5 ArTays 9
2.5.1 Vectors e 10
2.5.2 Strings 10
2.5.3 Bit-Vectors e 10

2.6 Hash Tables 10
2.7 Readtables 10
2.8 Packages 10
2.9 Pathnames 11
2.10 Streams 13
2.11 Random-States e 14
2.12 Structures e e e e e 14
2.13 Functions 14
2.14 Unreadable Data Objects 15
2.15 Overlap, Inclusion, and Disjointness of Types 15

iv

3 Input and Output
3.1 Read Macros
3.2 Input and Output Functions

4 Memory Management
4.1 TImplementation Types,
4.2 Heap and Relocatable Areas
4.3 The Garbage Collector
4.4 Allocation Functions
4.5 Storage Information 0oL 0oL

5 Debugging Facilities
5.1 The Tracer
5.2 The Steppero
5.3 Errorso e
54 The Break Loop
5.5 Describe and Inspecto Lo oo

6 The Compiler

7 Declarations
7.1 Declaration Specifiers L.
7.2 Significant Type Specifiers
7.3 Treatment of Type Declarations
7.3.1 Variable Allocations
7.3.2 Built-in Functions that Operate on Raw Data Directly . .
7.3.3 Arguments/Values Passing

8 Operating System Interface

9 Macros
9.1 System Macros o i
9.2 Defmacro Lambda-Lists

10 The C Language Interface
11 The Editor

A KCL Summary

16
16
16

19
19
21
22
23
24

27
27
28
28
29
34

36

40
41
46
47
48
49
o1

53

55
35
95

58

65

66

Chapter 1

How to Start and End a
KCL Session

KCL on Unix is invoked by the Shell command kcl.

% kcl
KCL (Kyoto Common Lisp) July 1, 1985

When invoked, KCL will print the banner and initialize the system. The date
in the KCL banner identifies the revision of KCL. “July 1, 1985” is the value
of the function lisp-implementation-version.

If there exists a file named init.1sp in the current working directory, KCL
successively evaluates the forms in the file, immediately after the system ini-
tialization. The user may set up his or her own KCL environment (e.g., the
memory configuration) with init.1sp.

After the initialization, KCL enters the top-level loop and prints the prompt
>

>
The prompt indicates that KCL is now ready to receive a form from the terminal
and to evaluate it.

Usually, the current package (i.e., the value of *package*) is the user pack-

age, and the prompt appears as above. If, however, the current package is other
than the user package, then the prompt will be prefixed by the package name.

package-name>
To exit from KCL, call the function bye (or by).

>(bye)
Bye.
4

Alternatively, you may type "D (control-D), i.e., press the key D while pressing
down the control key.

>"Dbye.
b

The top-level loop of KCL is almost the same as that defined in Section 20.2
of the Common Lisp Reference Manual. Since the input from the terminal is in
line mode, each top-level form should be followed by a newline. If more than
one value is returned by the evaluation of the top-level form, the values will be
printed successively. If no value is returned, then nothing will be printed.

>(values 1 2)
1
2

>(values)

>
When an error is signalled, control will enter the break loop.

>(defun foo (x) (bar x))
foo

>(defun bar (y) (bee y y))
bar

>(foo ’1lish)
Error: The function BEE is undefined.
Error signalled by BAR.

Broken at BAR.
>>

“>>’ in the last line is the prompt of the break loop. Like in the top-level loop,
the prompt will be prefixed by the current package name, if the current package
is other than the user package.

To go back to the top-level loop, type :q

>>:q

Top level.
>

See Section 5.4 for the details of the break loop.

In KCL on Unix, the terminal interrupt (usually caused by typing ~C (control-
C) or by typing DELETE) is a kind of error. It breaks the running program and
calls the break level loop.

Example:

>(defun foo () (do () (nil)))
foo

>(foo0)

~C

Correctable error: Console interrupt.
Signalled by DO.

Broken at FO0O.
>>

Chapter 2

Data Types

KCL supports all Common Lisp data types exactly as defined in the Common
Lisp Reference Manual. This chapter simply complements Chapter 2 of the
Common Lisp Reference Manual, by describing implementation dependent fea-
tures of Common Lisp data types. Each section in this chapter corresponds to
the section in Chapter 2 of the Common Lisp Reference Manual, with the same
section title.

2.1 Numbers

2.1.1 Integers

Fixnums in KCL are those integers in the range —23! to 23! —1, inclusive. Other
integers are bignums. Thus 25 factorial (25!)

15511210043330985984000000

is certainly a bignum in KCL.
Common Lisp constants related to integers have the following values in KCL.

2147483647 = 231 — 1

most-positive-fixnum

most-negative-fixnum = -2147483648 = —23!
boole-1 = 3
boole-2 =5

boole-and
boole-andcl = 4
boole-andc2 = 2
boole-cl = 12
boole-c2 = 10
boole-clr = 0

boole-eqv = 9
boole-ior = 7
boole-nand = 14
boole-nor = 8
boole-orcl = 13
boole-orc2 = 11
15
6

boole-set

boole-xor

See Chapter 12 of the Common Lisp Reference Manual for their meanings.

2.1.2 Ratios

There are no implementation-dependent features for ratios.

2.1.3 Floating-Point Numbers

KCL provides two distinct internal floating-point formats. One format is short;
the other is single and serves also as double and long. The data types single-float,
double-float, and long-float are considered to be identical, but short-float

is distinct. An expression such as (eql 1.0s0 1.0d0) is false, but (eql 1.0f0
1.0d0) is true. Similarly, (typep 1.0LO ’short-float) is false, but (typep
1.0LO ’single-float) is true. For output purposes all floating-point numbers
are assumed to be of short or single format.

The floating-point precisions are:

Format KCL/AOS KCL/VAX KCL/SUN KCL/UST

Short 24 bits 23 bits 24 bits 24 bits
Single 56 bits 55 bits 53 bits 53 bits
Double 56 bits 55 bits 53 bits 53 bits
Long 56 bits 55 bits 53 bits 53 bits

The floating-point exponent sizes are:

Format KCL/AOS KCL/VAX KCL/SUN KCL/UST

Short 7 bits 8 bits 8 bits 8 bits

Single 7 bits 8 bits 11 bits 11 bits
Double 7 bits 8 bits 11 bits 11 bits
Long 7 bits 8 bits 11 bits 11 bits

There is no “minus zero.” (eql 0.0 -0.0) is true.
Common Lisp constants related to floating-point numbers have the following
values in KCL.

most-positive-short-float
= - most-negative-short-float

= 7.237005s75 (KCL/AOS)
1.701412s38 (KCL/VAX)
3.402823s38 (KCL/SUN and KCL/UST)

least-positive-short-float
= - least-negative-short-float
= 5.397605s-79 (KCL/AOS)
2.938736s5-39 (KCL/VAX)
1.401298s-45 (KCL/SUN and KCL/UST)

most-positive-long-float

= most-positive-double-float

= most-positive-single-float

= - most-negative-long-float

= - most-negative-double-float
most-negative-single-float
.237005577332264£75 (KCL/AOS)
.701411834604692f38 (KCL/VAX)
.797693134862315£308 (KCL/SUN and KCL/UST)

e

least-positive-long-float

= least-positive-double-float

= least-positive-single-float

= - least-negative-long-float
least-negative-double-float
least-negative-single—-float
.397605346934027£-79 (KCL/AOS)
.938735877055719f-39 (KCL/VAX)
.940656458412469f-324 (KCL/SUN and KCL/UST)

SN o

short-float-epsilon
= 4.468372s-7 (KCL/AOS)
6.938894s5-18 (KCL/VAX)
2.980232s-8 (KCL/SUN and KCL/UST)

short-float-negative-epsilon
= 2.980232s-8 (KCL/AOS)
6.938894s-18 (KCL/VAX)
2.980232s-8 (KCL/SUN and KCL/UST)

long-float-epsilon

= double-float-epsilon

= single-float-epsilon
1.110223024625157f-16 (KCL/AOS)

6.938893903907228f-18 (KCL/VAX)
5.5511151231257827f-17 (KCL/SUN and KCL/UST)

long-float-negative-epsilon

= double-float-negative-epsilon
single-float-negative-epsilon
6.938893903907228f-18 (KCL/AOS)
6.938893903907228f-18 (KCL/VAX)
5.5511151231257827f-17 (KCL/SUN and KCL/UST)

pi = 3.141592653589793

See Chapter 12 of the Common Lisp Reference Manual for their meanings.

2.1.4 Complex Numbers

There are no implementation-dependent features for complex numbers.

2.2 Characters

2.2.1 Standard Characters

KCL supports all standard and semi-standard characters listed in Section 2.2.1
of the Common Lisp Reference Manual. Non-printing characters have the fol-
lowing character codes.

Character Code (in octal)
#\Space 040
#\Newline 012
#\Backspace 010

#\Tab 011
#\Linefeed 012
#\Page 014
#\Return 015
#\Rubout 177

Note that #\Linefeed is synonymous with #\Newline and thus is a mem-
ber of standard-char. Other semi-standard characters are not members of
standard-char.

2.2.2 Line Divisions

Since KCL represents the #\Newline character by a single code 12, problems
with line divisions discussed in Section 2.2.2 of the Common Lisp Reference
Manual cause no problem in KCL.

2.2.3 Non-standard Characters

KCL supports no additional non-standard characters.

2.2.4 Character Attributes

The bit and font fields of KCL characters are always 0.
Common Lisp constants related to characters have the following values in
KCL.

char-bits-1limit = 1
256
char-control-bit = 0O

char-code-limit

char-font-limit = 1
char-hyper-bit = 0
char-meta-bit = 0

char-super-bit = 0

See Chapter 13 of the Common Lisp Reference Manual for their meanings.

2.2.5 String Characters

Since the bit and font fields of KCL characters are always 0, string-char is
considered to be identical to character.

2.3 Symbols

The print name of a symbol may consist of up to 16777216 (i.e., the value of
array-total-size-1limit) characters. However, when a symbol is read, the
number of characters (not counting escape characters) in the print name is
limited to 2048.

2.4 Lists and Conses

There are no implementation-dependent features for lists and conses.

2.5 Arrays

KCL arrays can have up to 64 ranks.

When the value of the Common Lisp variable *print-array* (see Section
22.1.6 of the Common Lisp Reference Manual) is nil, then bit-vectors are
printed as #<a bit-vector>, other vectors are printed as #<a vector>, and
other arrays are printed as #<an array>.

Common Lisp constants related to arrays have the following values in KCL.

array-dimension-limit = 16777216
array-rank-limit = 64
array-total-size-limit = 16777216

See Section 17.1 of the Common Lisp Reference Manual for their meanings.

2.5.1 Vectors

In KCL, array elements are represented in one of six ways depending on the
type of the array.

Array Type FElement Representation
(array t) and (vector t) a cell pointer

(array fixnum) and (vector fixnum) 32 bit signed integer
(array string-char) and string 8 bit code

(array short-float) and (vector short-float) 32 bit floating point
(array long-float) and (vector long-float) 64 bit floating point
(array bit) and bit-vector 1 bit bit

2.5.2 Strings

A string may consists of up to 16777216 (i.e., the value of array-total-size-limit)
characters. However, when a string is read, the number of characters (not count-
ing escape characters) in the string is limited to 2048.

2.5.3 Bit-Vectors

There are no implementation-dependent features for bit-vectors.

2.6 Hash Tables

All hash tables are printed as #<a hash-table>.

2.7 Readtables

All readtables are printed as #<a readtable>.

2.8 Packages

The following packages are built into KCL.

lisp user keyword system compiler

10

The compiler package contains symbols used by the KCL compiler. Other

packages are described in Section 11.6 of the Common Lisp Reference Manual.

The system package has two nicknames sys and si; system:symbol may be

written as sys:symbol or si:symbol. Other packages have no nicknames.
Packages are printed as #<package-name package>.

2.9 Pathnames

KCL provides a # macro #" that reads a pathname: #"string" is equivalent to
(pathname "string"). For example,

#"foo.lsp"
is equivalent to
(pathname "foo.lsp")

The same format is used when a pathname is printed.

The initial value of the Common Lisp variable *default-pathname-defaults*
is #"" (or, equivalently, (pathname "")).

A pathname in the file system of Common Lisp consists of the following six
elements:

host device directory name type version

Among these elements, KCL does not use host, device, and version. That is,
when converting a namestring into a pathname, KCL turns these three elements
into nil. Conversely, when converting a pathname into a namestring, KCL
ignores these three elements.
In the sequel, we explain how KCL converts a namestring into a pathname.
If a namestring contains one or more periods ‘.’, the last period separates
the namestring into the file name and the filetype.

"foo.lsp"
name: "foo"
type: "1sp"
"a.b.c"
name: "a.b"
type: "c"

If a namestring ends with a period, the filetype becomes the null string.

||foo . "
name: "foo"
type: " (null string)

11

If a namestring begins with a period, the file name becomes nil.

" . lspll
name: nil
type: "1sp"
If a namestring contains no period, the filetype is nil.
I|fooll
name: "foo"
type: nil

In a pathname, the file directory is represented as a list.

"common/demo/foo.1lsp"

directory: ("common" "demo")
name: "foo"
type: "1sp"

If a namestring does not contain a directory, the directory component of the
pathname is nil.

"foo.lsp"
directory: nil
name: "foo"
type: "1sp"

In a pathname, the root directory is represented by the keyword :root.

"/usr/common/foo.1lsp"

directory: (:root "usr" "common'")
name: "foo"
type: "1sp"

)

The abbreviation symbols ‘.’ and ‘..’ may be used in a namestring.

"./demo/queen.lsp"

directory: (:current "demo")
name: "queen"
type: "1sp"

"../../demo/queen.1lsp"

directory: (:parent :parent "demo")

name: "queen"

type: "1sp"
:current and :parent represent the current directory and the parent directory,
respectively.

The part of a namestring after the last slash ‘/’ is always regarded as rep-
resenting the file name and the filetype. In order to represent a pathname with
both the name and the filetype nil, end the pathname with a slash.

12

"/usr/common/"

directory: (:root "usr" "common'")
name: nil
type: nil

"/usr/common/.lsp"

directory: (:root "usr" "common'")
name: nil
type: "1sp"

‘+’ in the place of file name or filetype becomes :wild.

II* .1Sp"
name: :wild
type: "1sp"
I|foo‘*ll
name: "foo"
type: :wild

2.10 Streams

Streams are printed in the following formats.
#<input stream file-name>
An input stream from the file file-name.
#<output stream file-name>
An output stream to the file file-name.
#<string-input stream from string>
An input stream generated by (make-string-input-stream string).
#<a string-output stream>
An output stream generated by the function make-string-output-stream.
#<a two-way stream>
A stream generated by the function make-two-way-stream.
#<an echo stream>
A bidirectional stream generated by the function make-echo-stream.

#<synonym stream to symbol >

13

The stream generated by (make-synonym-stream symbol).
#<a concatenated stream>

An input stream generated by the function make-concatenated-stream.
#<a broadcast stream>

An output stream generated by the function make-broadcast-stream.

2.11 Random-States

KCL provides a # macro #$ that reads a random state. #$integer is equivalent
to (make-random-state integer). The same format is used when a random
state is printed.

2.12 Structures

There are no implementation-dependent features for structures.

2.13 Functions

An interpreted function (including macro expansion functions) is represented in
one of the following formats.

(lambda lambda-list . body)

A lambda-expression with null lexical environment and with no im-
plicit block around it. This type of function typically appears when
> (lambda lambda-list . body) is evaluated.

(lambda-block block-name lambda-list . body)

A lambda-expression with null lexical environment but with an im-
plicit block around it. This type of function typically appears when
(defun function-name lambda-list . body) is evaluated. In this case,
block-name is identical to function-name.

(lambda-closure enwv; envs envs lambda-list . body)

A lambda-expression with lexical environments but with no im-
plicit block around it. This type of function typically appears when
#’ (lambda lambda-list . body) (or, equivalently, (function (lambda
lambda-list . body))) is evaluated. envq, enve, and envs represent
the variable bindings, the local function/macro definitions, and the
tag/block-name establishments, respectively, at the time the closure
was created.

14

(lambda-block-closure env; envs envs block-name lambda-list . body)

A lambda-expression with lexical environments and with an implicit
block around it. Local functions and local macros are represented in
this format. enwvy, envs, and enwvs represent the variable bindings,
the local function/macro bindings, and the tag/block-name estab-
lishments, respectively, at the time the local function/macro was
created by flet, labels, or macrolet. The block-name is identical
to the local function/macro name.

Compiled functions (including compiled macro-expansion functions) are printed
in the following formats.
#<compiled-function name>
or
#<compiled-closure nil>
Incidentally, the value of (symbol-function special-form-name) is a list,
(special . address)

if special-form-name names a special form.

Common Lisp constants related to functions have the following values in
KCL.

call-arguments-limit = 64

lambda-list-keywords (&optional &rest &key &allow-other-keys &aux
&whole &environment &body)

lambda-parameters-limit = 64

multiple-values-limit = 32

Refer to the Common Lisp Reference Manual for their meanings.

2.14 Unreadable Data Objects

There are no implementation-dependent features for unreadable data objects.

2.15 Overlap, Inclusion, and Disjointness of Types

In KCL, the types number and array are certainly subtypes of common, since
KCL does not extend the set of objects of these types.

15

Chapter 3

Input and Output

3.1 Read Macros

The following # macros are introduced in KCL.

#" #"string" reads a pathname.
#"string" is equivalent to (pathname "string").
#$ #$integer reads a random state.

#$integer is equivalent to (make-random-state integer).

The # macro #, works as described in the Common Lisp Reference Manual,
only if it is included in a constant object. The forms immediately after #, below
will be evaluated when the compiled code is loaded.

#,x

’(abc (d #,e £) g)
#(1 2 3 #,(+ abc) 5 6)
#C(0.0 #,(exp 1))

Otherwise, the effect of using #, is unpredictable. Note that, when interpreted
code is loaded, #, has the same effect as the # macro #..

3.2 Input and Output Functions

The input and output functions of KCL almost follow the definitions in Chapter
22 of the Common Lisp Reference Manual. Most of the differences come from
the fact that, in KCL, input from the terminal is always in line mode and binary
I/0 is not supported.

In KCL, *terminal-io* is a two-way stream from the standard input and to
the standard output. The echoing to the terminal is performed by the underlying

16

operating system. In particular, when a disk file is assigned to the standard
output, nothing will be echoed at the terminal.

Those functions that deviate from the definitions in the Common Lisp Ref-
erence Manual are listed below.

load pathname &key :print :verbose :if-does-not-exist [Function]

If pathname does not specify the filetype of the input file, then load
first tries to load a file with the filetype .o, i.e., the fasl file (see
Chapter 6). If it fails, then load tries to load a file with the filetype
.1sp. KCL assumes that .1lsp is the standard filetype for source
files. If it fails again, then load will load the specified file with no
filetype.

load recognizes a file as a fasl file if and only if the filetype of the
file is .o. Other files are assumed to be source files.

open [Function]

The argument to the keyword variable : element-type and :element-type
is always bound to the value string-char.

close [Function]
The keyword variable :abort is always ignored.

listen [Function]
listen always returns t.

read-char-no-hang [Function]
read-char-no-hang is equivalent to read-char.

clear-input [Function]
clear-output [Function]

clear-input and clear-output simply return nil without doing

anything.
read-byte [Function]
write-byte [Function]

These functions may operate on any stream. They read or write a
byte (8 bits) at a time.

princ [Function]
write-char [Function]
write-byte [Function]

17

These functions do not always flush the stream. The stream is
flushed when

1. a newline character is written, or

2. the input from the terminal is requested in the case
that these functions operate on *terminal-io*.

18

Chapter 4

Memory Management

4.1 Implementation Types

Each KCL object belongs to one of the 22 implementation types. The imple-
mentation types are shown in Table 4.1 with the corresponding Common Lisp
data types. In the table, the compiled functions are divided into two implemen-
tation types; cfun is the type of compiled functions without environment, and
cclosure is the type of compiled functions with environment (i.e., the type of
compiled closures). spice is the type of internal data used by KCL, and does
not correspond to any Common Lisp data type.

Each object is represented by a cell allocated in the heap area of the inter-
preter. The size of the cell is determined by the implementation type of the
object.

The implementation types are classified according to the size of the cells for
the objects of the type, as shown in Table 4.2. The size of the cells in the same
type class is the same.

For objects of the (implementation) types readtable, symbol, package,
array, hash-table, vector, bit-vector, stream, cclosure, string, cfun,
and structure, the cell is simply a header of the object. The body of the object
is allocated separately from the cell and is managed in a different manner. The
memory space occupied by the body of such an object is called a block. A block
is either contiguous or relocatable depending on the area in which it is allocated.
The difference between the two areas will be explained below. Table 4.3 lists
these types, along with the contents of the body and the kind of the block.

Usually, the body of an array, a vector, a bit-vector, or a string is allocated as
a relocatable block. In KCL, the function make-array takes an extra keyword
argument :static. If the :static argument is supplied with a non-nil value,
then the body of the array is allocated as a contiguous block.

19

Implementation Type

Common Lisp Data Type

cons cons
fixnum fixnum
bignum bignum
ratio ratio
short-float short-float
long-float long-float (= double-float = single-float)
complex complex
character character
symbol symbol
package package
hash-table hash-table
array (and array (nmot vector))
vector (and vector (not string) (not bit-vector))
string string
bit-vector bit-vector
structure structure
stream stream
random-state random-state
readtable readtable
cfun compiled-function without environment
cclosure compiled-function with environment
spice none
Table 4.1: Implementation Types
Class Implementation Types
1 cons bignum ratio long-float complex
2 fixnum short-float character random-state readtable spice
3 symbol package
4 array hash-table vector bit-vector stream pathname cclosure
) string cfun
6 structure

Table 4.2: Classification of Implementation Types

20

Type Body Block

readtable read table contiguous

symbol symbol name relocatable

package hash table contiguous

array array body relocatable or contiguous
hash-table hash table relocatable

vector vector body relocatable or contiguous
bit-vector bit-vector body relocatable or contiguous
stream I/0 buffer contiguous

cclosure code contiguous

string string body relocatable or contiguous
cfun code contiguous

structure structure body relocatable

Table 4.3: Types with Bodies

4.2 Heap and Relocatable Areas

The memory space of KCL is divided into two parts: the heap area and the
relocatable area. Both areas occupy a contiguous space in the memory.

Cells of KCL objects are allocated in the heap. KCL divides the heap into
pages (1 page = 2048 bytes), and each page consists of cells in the same type
class (see Table 4.2). Cells in different type classes are allocated in different
pages. Some blocks are also allocated in the heap: They are called contiguous
blocks. The pages for contiguous blocks contain only contiguous blocks. Thus
each page in the heap is either a page for cells in a particular type class, or a
page for contiguous blocks. Blocks not in the heap are called relocatable blocks
and are allocated in the relocatable area.

The user may specify the maximum number of pages that can be allocated
for each type class by calling the KCL specific function allocate. There is also
a limit on the number of pages for contiguous blocks; the limit can be altered by
calling the KCL specific function allocate-contiguous-pages. The size of the
relocatable area is specified by the KCL specific function allocate-relocatable-pages.
See Section 4.4 for these functions.

In some installations of KCL, the total amount of memory that KCL can
use is limited. In such cases, the entire memory may become exhausted before
the maximum number of pages for each type class, for contiguous blocks, or for
the relocatable area have been allocated.

The heap lies in a part of memory with lower address than the relocatable
area and there is a “hole” between the two areas (see Figure 4.1). On request
for a new page of heap, the page with the lowest address in the hole is used.
When the hole is exhausted, the relocatable area is shifted toward the higher
address space and a new hole of an appropriate size is created between the two

21

lower address higher address

heap hole relocatable area

Figure 4.1: Heap and Relocatable Area

areas.

4.3 The Garbage Collector

The garbage collector of KCL has three levels according to what it collects:
1. cells
2. cells and relocatable blocks
3. cells, relocatable blocks, and contiguous blocks.

In levels 2 and 3, the relocatable area is shifted to the higher address space to
reserve an appropriate number of pages in the hole.

For each type class, KCL keeps a free list of unused cells, and when the free
list is exhausted, a new page is allocated, or the garbage collector is invoked,
depending on whether the maximum number of pages for that class have been
allocated or not.

The garbage collector does not compactify the heap. That is, cells and
contiguous blocks are never moved to another place. Moreover, once a page
is allocated for a particular type class or for contiguous blocks, that page will
never be freed for other classes, even if the entire page becomes garbage.

On the other hand, the relocatable area is compactified during level 2 and
level 3 of garbage collection. A relocatable block is really relocatable.

The garbage collector is automatically invoked in one of the following situ-
ations. The number in the parentheses indicates the level of garbage collection
that is performed.

e The free list of a certain type class is exhausted after the maximum number
of pages have been allocated for that type class (1).

e The hole is exhausted (2).

e The relocatable area is exhausted after the maximum number of pages
have been allocated for the relocatable area (2).

e The contiguous blocks are exhausted after the maximum number of pages
have been allocated for contiguous blocks (3).

22

The garbage collector is also invoked by the following KCL specific function.
gbc [Function]

The garbage collector is invoked with the level specified by z. If z is
nil, the garbage collector is invoked for level 1 garbage collection.
If z is t, it is invoked for level 3 garbage collection. Otherwise, it is
invoked for level 2 garbage collection.

4.4 Allocation Functions

The following functions are used to set or inspect the (maximum) number of
pages for each type class, for contiguous blocks, or for relocatable blocks.

allocate type number [Function]

Sets the maximum number of pages for the type class of the imple-
mentation type type to number. If more than number pages have
already been allocated, an error is signalled.

allocated-pages type [Function|

Returns the number of pages currently allocated for the type class
of the implementation type type.

maximum-allocatable-pages type [Function]

Returns the current maximum number of pages for type class of the
implementation type type.

allocate-contiguous-pages number [Function]
Sets the maximum number of pages for contiguous blocks to number.
allocated-contiguous-pages [Function]
Returns the number of pages allocated for contiguous blocks.
maximum-contiguous-pages [Function]
Returns the current maximum number of pages for contiguous blocks.
allocate-relocatable-pages number [Function]

Sets the maximum number of pages for relocatable blocks to num-
ber. The relocatable area is expanded to number pages immediately.
Therefore,“the current maximum number” and “the number of pages
allocated” have the same meanings for relocatable blocks.

allocated-relocatable-pages [Function]

23

Returns the number of pages allocated for relocatable blocks.

If the pages for a particular type class are exhausted after the maximum
number of pages for that class have been allocated, and if there remain no free
cells (actually, if there remain very few cells), KCL behaves as directed by the
value of the KCL specific variable *ignore-maximum-pages*. If the value is
nil, then KCL signals a correctable error and enters the break loop. The user
can reset the maximum number by calling allocate and then continue the
execution of the program by typing :r.

Example:

>(make-1list 100000)

Correctable error: The storage for CONS is exhausted.
Currently, 531 pages are allocated.
Use ALLOCATE to expand the space.
Signalled by MAKE-LIST.

Broken at FUNCALL.
>>(allocate ’cons 1000)
t

>>:'r
(nil nil nil nil nil nil nil nil nil nil

The user can also reset the maximum number of pages for relocatable blocks
and for contiguous blocks in a similar manner. On the other hand, if the value
of *ignore-maximum-pages* is non-nil, then KCL automatically increments
the maximum number of pages for the class by 50 percent. The initial value of
ignore-maximum-pagesx is t.

4.5 Storage Information

room &optional z [Function)

The function room prints the storage information. The argument
z is simply ignored and the output of room is always in the same
format. room prints the following information:

e for each type class

— the number of pages so-far allocated for the type
class

— the maximum number of pages for the type class
— the percentage of used cells to cells so-far allocated

24

— the number of times the garbage collector has
been called to collect cells of the type class

— the implementation types that belong to the type

class

the number of pages actually allocated for contiguous

blocks

the maximum number of pages for contiguous blocks

the number of times the garbage collector has been
called to collect contiguous blocks

the number of pages in the hole

the maximum number of pages for relocatable blocks

the number of times the garbage collector has been
called to collect relocatable blocks

the total number of pages allocated for cells

the total number of pages allocated

the number of available pages

the number of pages KCL can use

The number of times the garbage collector has been called is not shown, if the
number is zero.

In the following example, the maximum of 531 pages have already been
allocated for the type class to which cons belongs, but only 16.9 percent of the
cells are actually used. The garbage collector was once invoked to collect cells
in this type class.

>(room)
531/531 16.9Y%
3/52 10.4Y%
47/65 73.6%
3/71 32.4%
46/96 98.8Y%
1/32 2.3%

17/512

14
50 47 .49

631 pages for cells

712 total pages

14840 pages available
16384 maximum pages

cons bignum ratio long-float complex
fixnum short-float character random-state
readtable spice

symbol package

array hash-table vector bit-vector stream
pathname cclosure

string cfun

structure

contiguous (3 blocks)

hole
relocatable

25

26

Chapter 5

Debugging Facilities

5.1 The Tracer

The tracer causes selected functions to be traced. When such a traced function
is invoked, it prints

level > (name arg, ... argy)
On return from a traced function, it prints
< level (name value; ... value,)

name is the name of the traced function, args are the arguments, and values are
the return values. level is a number which is incremented each time a traced
function is invoked and is decremented at the completion of the invocation.
Trace print-outs are indented according to the level.

In the current version of KCL, macros and special forms cannot be traced.

trace {function-name} * [Macro]

Causes one or more functions to be traced. function-names must be
symbols and they are not evaluated. If a function is called from a
compiled function, the call may not produce trace print-outs. If this
is the case, the simplest way to get trace print-outs is to recompile
the caller with a notinline declaration for the called function (see
Chapter 7). trace returns a name list of those functions that were
traced by the call to trace. If no function-name is given, trace
simply returns a name list of all the currently traced functions.

untrace {function-name}* [Macro]

Causes the specified functions to be not traced any more. function-
names must be symbols and they are not evaluated. untrace returns

27

a name list of those functions that were untraced by the call to
untrace. If no function-name is given, untrace will untrace all the
currently traced functions and will return a list of their names.

5.2 The Stepper

step form [Macro]

Starts evaluating the it form in the single-step mode. In this mode,
before any form is evaluated, the stepper will print the form and
prompt the user for a stepper command. The stepper binds the two
variables *print-level* and *print-length* both to 2, so that
the current form may not occupy too much space on the screen. A
stepper command will be executed when the user types the single
character for the command followed by the required arguments, if
any, and presses the newline key. If the user presses the newline key
without having typed any character, then the stepper will assume
that the stepper command n was abbreviated.

The stepper commands are:

n Next. Evaluates the current form in the single-step mode.

s Skip. Evaluates the current form in the ordinary mode.
The single-step mode will be resumed at completion of the
evaluation.

P Print. Pretty-prints the current form and then prompts
again.

f fn Function. Evaluates the current form in the ordinary mode

until the specified function fn is invoked. If the specified
function is not invoked at all, then this command has the
same effects as the ¢ command below.

q Quit. Evaluates the current form and any other forms in
the ordinary mode.

e form Eval. Evaluates the specified form in the ordinary mode
and prints the resulting values. Then prompts again with
the same current form.

? Help. Lists the stepper commands.
5.3 Errors
break-enable [Variable]

This variable is used to determine whether to enter the break loop
(see Section 5.4) when an error occurs. Even the function break

28

checks this variable. Initially, this variable is set to t, and thus an
error will invoke the break loop. If the value is nil, functions that
cause fatal errors, such as error, will just print an error message
and control will return to the top-level loop (or to the current break
loop, if already in the break loop). Functions that cause correctable
errors, such as cerror, will print an error message and a “continue
message”, and control will return to the next form. In KCL, back-
trace is not part of an error message, but a break loop command will
print backtrace. Therefore, if ¥break-enable* is nil, no backtrace
appears on the screen.

When the break loop is entered, *break-enable* will be bound to
nil.

5.4 The Break Loop

The break loop is a read-eval-print loop similar to the top-level loop. In addition
to ordinary Lisp forms, the break loop accepts various commands with which
the user can inspect and modify the state of the program execution. Each
break loop command is identified with a keyword (i.e., a symbol in the keyword
package). A break loop command is executed when the user inputs a list whose
first element is the keyword that identifies the command. The rest of the list is
the arguments to the command. They are evaluated before being passed to the
command. If the command needs no arguments, then the user may input only
the keyword. It is an error if the given keyword does not identify any command.
Any other input to the break loop is regarded as an ordinary Lisp form; the
form will be evaluated and the resulting values will be printed on the terminal.

There can be several instances of the break loop at the same time, and each
such instance is identified by a level number. When the break loop is entered
during execution in the top-level loop, the break loop instance is given the level
number 1. The break loop instance that is entered from the level n break loop
is given the level number n 4+ 1. The prompt of the level n break loop is n + 1
consecutive >’s, occasionally prefixed with the name of the current package.

The break loop keeps track of the invocation sequence of functions (including
special forms and macro expansion functions), which led up to the break loop
from the previous break loop (or from the top-level loop, if the current break
loop is level 1). The invocation sequence is maintained in a pushdown stack of
events. An event consists of an event function and an event environment. An
event function is:

1. an interpreted (i.e., not compiled) function (global function,
local function, lambda-expression, or closure),
2. a special form within an interpreted function,

3. a macro expansion function called from an interpreted function,

29

4. a compiled function called from an interpreted function, or

5. acompiled function called from another compiled function which
was compiled while the safety optimize level is 3 or with a
notinline declaration for the called function (see Chapter 7).

An event is pushed on the event stack when execution of its event function
begins, and is poped away at the completion of the execution. An event envi-
ronment is the “environment” of the event function at the time the next event is
pushed. Actually, an event environment is a pointer to the main stack of KCL.
For each interpreted event function (i.e., event function in classes 1, 2, and 3),
the pointer points to the first entry of the three contiguous main stack entries
that hold the lexical environment of the event function. For each compiled event
function (i.e., event function in classes 4 and 5), the pointer is set to the first
entry of the main stack area that is used locally by the compiled code. In most
cases, the first argument to the compiled function is saved in the first entry,
the second argument in the second entry, and so on. The local variables of the
function are allocated in the entries following the arguments. However, this is
not always the case. Refer to Section 7.3 for variable allocations in compiled
functions.

By break level commands, the user can choose one of the events as the
current event. If the current event function is an interpreted event function,
then the break loop evaluates Lisp forms in the lexical environment retrieved
from the event environment. In particular, local variables may be referenced by
the variable names, local functions and local macros may be invoked as usual,
established blocks may be exited from, and tags may be used as the destination
of go. If the current function is a compiled function, Lisp forms are evaluated
in the null environment.

Within the break loop, each event is represented by the event symbol. The
:backtrace command, for example, lists events in terms of their event symbols.
If the event function is a named function (global or local) or a macro expansion
function, then the function or macro name is used as the event symbol. If the
event function is a special form, then the name of the special form is used. If the
event function is a lambda-expression (or a closure), then the symbol lambda
(or lambda-closure) is used.

To suppress unnecessary information, the user can hide (or make invisible)
some of the events. Invisible events do not appear in the backtrace, for exam-
ple. Initially, only those events are invisible whose event symbols belong to the
system internal package system. When the break loop is entered, the last visible
event becomes the current event.

The break loop commands are described below. Some of the commands
allow abbreviation in the keywords that identify them. For example, the user
may abbreviate :current as :c. The break loop commands return no values at
all.

30

:current [Break Loop Command]
ic [Abbreviated Break Loop Command)]

Prints the event symbol of the current event.

:previous &optional n [Break Loop Command]
:p &optional n [Abbreviated Break Loop Command)]

Makes the n-th previous visible event the new current event. Invisi-
ble events are not counted. If there are less than n previous events,
then the first visible event in the invocation sequence becomes the
new current event. n must be a positive integer and the default is 1.

:next &optional n [Break Loop Command]
:n &optional n [Abbreviated Break Loop Command)]

Makes the n-th next visible event the new current event. If there
are less than n next events, then the last visible event in the invoca-
tion sequence becomes the new current event. n must be a positive
integer and the default is 1.

:backtrace [Break Loop Command]
:b [Abbreviated Break Loop Command)]

Prints the event symbols of all visible events in order. The symbol
of the current event is printed in upper-case letters and the event
symbols of other events are in lower-case.

:help [Break Loop Command]
:h [Abbreviated Break Loop Command)]

Lists the break loop commands.

:quit &optional n [Break Loop Command]
:q &optional n [Abbreviated Break Loop Command)]

Returns control to the level n break loop. If nis 0 or if n is omitted,
then control will return to the top-level loop. n must be a non-
negative integer smaller than the current break level.

:resume [Break Loop Command)]
T [Abbreviated Break Loop Command)]

Returns control to the caller of the break loop. If the break loop
has been entered from cerror, cerror returns nil as its value and
control will resume at that point. Otherwise, this command returns
control to the previous break loop (or to the top-level loop, if the
current break level is 1).

31

:variables [Break Loop Command]
v [Abbreviated Break Loop Command)]

Prints the names of the bound variables in the current environment.
To see the value of a bound variable, just type the variable name.

:functions [Break Loop Command]

Prints the names of the local functions and local macros in the cur-
rent environment. To see the definition of a local function or macro,
use the function special form in the usual way. That is, (function
name) will return the definition of the local function or macro whose
name is name. Local functions and local macros may be invoked as
usual.

:blocks [Break Loop Command]

Prints the names of the blocks established in the current environ-
ment. If a block block is established, then the return-from form
(return-from block value) works as usual. That is, the block form
that established block will return value as its value and control will
resume at that point.

:tags [Break Loop Command]

Prints the tags established in the current environment. If a tag tag
is established, then the go form (go tag) works as usual. That is,
control will resume at the position of tag in the surrounding tagbody.

:local &optional n [Break Loop Command]
:1 &optional n [Abbreviated Break Loop Command)]

If nis 0 or if it is omitted, then this command prints the value
stored in the main stack entry that is pointed to by the current
event environment. n is an offset from that entry. If n is positive,
then the value of the n-th next (i.e., toward the top of the main
stack) entry is printed. If n is negative, then the value of the n-th
previous (i.e., toward the bottom of the main stack) entry is printed.
n must be an integer. It is an error if the specified entry does not
lie between the bottom and the top of the stack.

:hide symbol [Break Loop Command]

Hides all events whose event symbol is symbol. In particular, by
(:hide ’lambda) and (:hide ’lambda-closure), all events be-
come invisible whose event functions are lambda-expressions and
closures, respectively. If the event symbol of the current event hap-
pens to be symbol, then the last previous visible event will become
the new current event. symbol must be a symbol.

32

Events of eval and evalhook may never become invisible and at-
tempts to hide them are simply ignored. It is always the case that
the first event function is either eval or evalhook. Keeping both of
them visible is the simplest way to avoid the silly attempts of the
user to hide all events.

:hide-package package [Break Loop Command]

Hides all events whose event symbol belongs to the package package.
package may be any object that represents a package, i.e., a package
object, a symbol, or a string. If the event symbol of the current
event happens to belong to the package package, then the last pre-
vious visible event will become the new current event. Even if 1isp
package was specified as package, events of eval and evalhook do
not become invisible. See the description of :hide above.

:unhide symbol [Break Loop Command)]

:unhide is the inverse command of :hide. If, however, symbol be-
longs to one of the :hide-package’d packages, events of symbol be-
come visible only after the package is :unhide-package’d. symbol
must be a symbol.

:unhide-package package [Break Loop Command]

:unhide-package is the inverse command of :hide-package. How-
ever, an event whose event symbol belongs to package becomes vis-
ible only after the symbol is :unhide’d, if the symbol was :hide’d
before. package may be any object that represents a package, i.e., a
package object, a symbol, or a string.

Example:

>(defun fact (x) (if (= x 0) one (* x (fact (1- x)))))
fact ;33 Wrong definition for fact, the factorial.

>(fact 6) ;3; Tries to calculate factorial 6.

Error: The variable ONE is unbound.
Error signalled by IF.

Broken at IF: ;;; Enters the break-loop.

>>:h ;;; Help.

:c(urrent) Shows the current function.
:p(revious) To the previous function.
:n(ext) To the next function.
:b(acktrace) Prints backtrace.

33

:h(elp) Help.

:q(uit) Returns to top-level.

:r (esume) Returns to the caller of break-level.
:1(ocal) Shows the n-th local value on the stack.
:v(ariables) Shows local variables.

:functions Shows local functions.

:blocks Shows block names.

:tags Shows tags.

: (un)hide (-package) (Un)hide a function (or a package).

>>:b ;;; Backtrace.
Backtrace: eval > fact > if > fact > if > fact > if > fact >
if > fact > if > fact > if > fact > IF

>>:p ;;; Moves to the previous event.
Broken at FACT.

>>:b ;;; Now inside of fact but outside of if.
Backtrace: eval > fact > if > fact > if > fact > if > fact >
if > fact > if > fact > if > FACT > if

>>:v ;3; Shows local variables.
Local variables: x.

>>x ;33 The value of x is 0.
0
>>:blocks ;;; Shows blocks.

Block names: fact.

>>(return-from fact 1) ;;; Returns from the fact block with value 1.
720 ;;; Now the correct answer.
> ;3; Top-level.

5.5 Describe and Inspect

describe object [Function]

Prints the information about object to the stream that is the value of
standard-output. The description of an object consists of several
fields, each of which is described in a recursive manner. For exam-
ple, a symbol may have fields such as home package, variable doc-
umentation, value, function documentation, function binding, type
documentation, deftype definition, properties.

34

inspect object [Function)

Prints the information about object in an interactive manner. The
output of inspect is similar to that of describe, but after printing
the label and the value of a field (the value itself is not describe’d),
it prompts the user to input a one-character command. The input to
inspect is taken from the stream that is the value of *query-iox*.
Normally, the inspection of object terminates after all of its fields
have been inspected. The following commands are supported:

n Next. Goes to the next level; the field is inspected recur-
sively.

s Skip. Skips the inspection of the field. inspect proceeds
to the next field.

p Print. Pretty-prints the field and prompts again.

u form Update. The form is evaluated and the field is replaced
by the resulting value. If the field cannot be updated, the
message “Not updated.” will be printed.

a Abort. Aborts the inspection of the current object. The
field and the rest of the fields are not inspected.

e form Eval. Evaluates the specified form in the null environment
and prints the resulting values. Then prompts again with
the same field.

q Quit. Aborts the entire inspection.

? Help. Lists the inspect commands.

35

Chapter 6

The Compiler

The KCL compiler translates a Lisp program stored in a source file into a C
language program, invokes the C language compiler to compile the C language
program, and then generates an object file, called fasl file (or o-file because of
the actual filetype). The compiled program in a fasl file is loaded by the function
load.

Ordinarily, the object program generated by the KCL compiler scarcely does
runtime error-checking for runtime efficiency. In addition, Lisp functions in
the same source file are linked together and some system functions are open-
coded in-line. To control runtime error checking, supply appropriate optimize
declarations (see Section 7.1).

The KCL compiler processes the eval-when special form exactly as specified
in the Common Lisp Reference Manual. However, all top-level forms in the
source file are normally processed in compile-time-too mode, not in not-compile-
time mode (see Section 5.3.3 of the Common Lisp Reference Manual). That is,
each top-level form top-level-form is processed as if it were surrounded by the
eval-when special form with the situations compile, load, and eval.

(eval-when (compile load eval) top-level-form)

There is no exception for this rule. Thus, for instance, in the example of
set-macro-character form in Section 5.3.3 of the Common Lisp Reference
Manual, the surrounding eval-when form is unnecessary in KCL. If it is de-
sired that each top-level form be processed in not-compile-time mode, change the
value of the KCL specific variable *eval-when-compile* as described below.

The KCL compiler is invoked by the functions compile-file, compile, and
disassemble described below. In addition, the KCL compiler may be invoked
directly by the Shell commands 1c or 1cl. These commands require the file
name of the source file as their argument. Both 1c and 1c1 simply add “.1sp”
to the file name argument to obtain the full name of the source file.

% lc filename

36

has the same effect as the compiler invocation (compile-file "filename") from
within KCL, and

% lci filename

has the same effects as (compile-file "filename" :o-file t :c-file t :h-file
t :data-file t).

compile-file input-pathname [Function]
&key :output-file :o-file :c-file :h-file :data-file
compile-file compiles the Lisp program stored in the file specified

by input-pathname, and generates a fasl file. Also compile-file
generates the following temporary files.

Temporary File Contents

c-file C version of the Lisp program
h-file The include file referenced in the c-file
data-file The Lisp data to be used at load time

If files of these names already exist, the old files will be deleted
first. Usually, these intermediate files are automatically deleted after
execution of compile-file.

The input-file is determined in the usual manner (see Section 2.9),
except that, if the filetype is not specified, then the default filetype
.1sp will be used. The keyword parameter :output-file defines
the default directory and the default name to be applied to the
output files (i.e., the fasl file and the temporary files). :output-file
itself defaults to input-pathname. That is, if :output-file is not
supplied, then the directory and the name of the input file will be
used as the default directory and the default name for the output
files. The filetypes of the output files are fixed as follows.

Output File Filetype

fasl file .0
c-file .C
h-file .h
data-file .data

Each output file can be specified by the corresponding keyword pa-
rameter. If the value of the keyword parameter is nil, then the
output file will be deleted after execution of compile-file. If the
value of the keyword parameter is t, then the output file will be
left in the default directory under the default name. Otherwise, the
output file will be left in the directory under the name specified by
the keyword parameter. The default value of :o-file is t, and the
default values of :c-file, :h-file, and :data-file are all nil.

37

Example:

(compile-file ’foo)

The source file is “F00.1sp” and the fasl
file is “F00.0” both in the current direc-
tory.

(compile-file ’foo.lish)

The source file is “F00.LISH” and the fasl
file is “F00.0".

(compile-file "/usr/mas/foo" :output-file "/usr/tai/baa")
The source file is “foo.1lsp” in the di-
rectory “/usr/mas”, and the fasl file is
“baa.o” in the directory “/usr/tai”.

compile name &optional definition [Function)

If definition is not supplied, name should be the name of a not-
yet-compiled function. In this case, compile compiles the function,
replaces the previous definition of name with the compiled function,
and returns name. If definition is supplied, it should be a lambda-
expression to be compiled and name should be a symbol. If name
is a non-nil symbol, then compile installs the compiled function as
the function definition of name and returns name. If name is nil,
then compile simply returns the compiled function.

The KCL compiler is essentially a file compiler, and forms to be
compiled are supposed to be stored in a file. Thus compile actually
creates a source file which contains the form designated by the ar-
guments. Then compile calls compile-file to get a fasl file, which
is then loaded into KCL. The source file and the fasl file are given
the names gazonk.lsp and gazonk.fasl, respectively. These files
are not deleted automatically after the execution of compile.

disassemble &optional thing &key :h-file :data-file [Function]

This function does not actually disassemble. It always calls the KCL
compiler and prints the contents of the c-file, i.e., the C language
code, generated by the KCL compiler. If thing is not supplied, or if
it is nil, then the previously compiled form by disassemble will be
compiled again. If thing is a symbol other than nil, then it must be
the name of a not-yet-compiled function, whose definition is to be
compiled. In this case, it is an error if the name is associated with
a special form or a macro. If thing is a lambda-expression (lambda
lambda-list . body), then disassemble first creates a function def-
inition (defun gazonk lambda-list . body) and this definition is
compiled. (The function name gazonk has no special meanings.

38

Indeed, the displayed code is essentially independent of the function
name.) Otherwise, thing itself will be compiled as a top-level form.
In any case, disassemble does not install the compiled function.
disassemble returns no value.

No intermediate h-file is created if the keyword parameter :h-file is
nil or if :h-file is not supplied. Otherwise, an intermediate h-file
is created under the name specified by :h-file. Similarly, the inter-
mediate data-file is specified by the keyword parameter :data-file.

eval-when-compile [Variable]

The compiler processes each top-level form in not-compile-time mode
if the value of this variable is nil, and in compile-time-too mode,
otherwise. See Section 5.3.3 of the Common Lisp Reference Manual
for these two modes. The initial value of this variable is t.

39

Chapter 7

Declarations

KCL supports all kinds of declarations described in the Common Lisp Reference
Manual. Any valid declaration will affect the KCL environment in some way
or another, although information obtained by declarations, other than special
declarations, is mainly used by the KCL compiler.

As described in the Common Lisp Reference Manual, Common Lisp declara-
tions are divided into two classes: proclamations and others. A proclamation is a
global declaration given by the function proclaim, the top-level macro defvar,
or the top-level macro defparameter. Once given, a proclamation remains ef-
fective during the KCL session unless it is shadowed by a local declaration or is
canceled by another proclamation. Any other declaration is a local declaration
and is given only by the special form declare. A local declaration remains
in effect only within the body of the construct that surrounds the declaration.
In the following nonsensical example borrowed from Chapter 9 of the Common
Lisp Reference Manual,

(defun nonsense (k x z)
(foo z x)
(let ((j (foo k x))
(x (* k k)))
(declare (inline foo) (special x z))
(foo x j 2)))

the inline and the special declarations both remain in effect within the sur-
rounding let form. In this case, we say that the let form is the surrounding
construct of these declarations.

proclamation decl-spec [Function]

This function is introduced to KCL so that the user can see cur-
rently effective proclamations. The argument decl-spec specifies the
proclamation to be checked. It may be any declaration specification

40

that can be a valid argument to the function proclaim. The func-
tion proclamation returns t if the specified proclamation is still in
effect. Otherwise, it returns nil. For example,

>(proclaim ’ (special *x*)) ;;; The variable *x* is
nil ;3; proclaimed to be globally special.

>(proclamation ’(special *x*))

t
>(defvar *yx*) ;33 Another way to proclaim a variable
nil ;3; to be globally special.

>(proclamation ’(special *y*))
t

the value-type form [Special Form)

The KCL interpreter does actually check whether the value of the
form conforms to the data type specified by value-type and signals
an error if the value does not. The type checking is performed by
the function typep. For example,

(the fixnum (foo))
is equivalent to

(let ((values (multiple-value-list (fo00))))
(cond ((endp values) (error "Too few return values."))
((not (endp (cdr values)))
(error "Too many return values."))
((typep (car values) ’fixnum) (car values))
(t (error "“s is not of type fixnum." (car values)))))

On the other hand, the KCL compiler uses the the special form to
obtain type information for compiled code optimization. No code
for runtime type-checking is embedded in the compiled code.

7.1 Declaration Specifiers

KCL recognizes all declaration specifiers defined in the Common Lisp Reference
Manual. The syntax of each such declaration specifier is exactly the same as
defined in the Common Lisp Reference Manual. In addition, KCL recognizes
the object declaration specifier which is specific to KCL.

special { variable-name }* [Declaration Specifier]

41

The interpreter and the compiler of KCL both treat special decla-
rations exactly as described in the Common Lisp Reference Manual.

type type { variable-name }* [Declaration Specifier]

A type proclamation (type type var; vary ...) specifies that the
dynamic values of the named variables are of the type type. A local
type declaration specifies that the variables mentioned are bound
by the surrounding construct and have values of the type type dur-
ing execution of the surrounding construct. The compiler issues a
warning if one of the named variables is not bound by the surround-
ing construct. The information given by type declarations is used
by the compiler to optimize the compiled code. The behavior of
the compiled code is unpredictable if a wrong type declaration is
supplied. The compiler detects certain wrong type declarations at
compile time. For example,

>(defun foo (x y)
(declare (fixnum x) (character y))
(setq x y)
o))

foo
>(compile ’foo0)

; (DEFUN FOO ...) is being compiled.
;; Warning: Type mismatches between X and Y.

See Section 7.3 for further information on type declarations.
type { variable-name }* [Declaration Specifier]

(type vary; vars ...) is equivalent to (type type var; vars ...), pro-
vided that type is one of the symbols in Table 4.1 of the Common Lisp
Reference Manual, other than function. Declaration specifications
that begin with function are regarded as function declarations
(see below).

function function-name argument-types . return-types [Declamtion Speciﬁer]

A function declaration is used to obtain type information for func-
tion call forms. That is, a function declaration specifies the ar-
gument and the return types of each form that calls the named
function.

(defun foo ()
(declare (function bar (character) fixnum))
(+ (bar (atcholil)) (bar (atcholi2))))

42

In this example, the function declaration specifies that the two
functions atcholil and atcholi2 both return character objects
when called within the body of foo, and that the function bar re-
turns fixnum objects when called within the body of foo. The type
information given by function declarations is used by the compiler
to optimize the compiled code. The behavior of the compiled code is
unpredictable if a wrong function declaration is supplied. The com-
piler detects certain wrong function declarations at compile time.
For example,

>(defun foo (x)
(declare (fixnum x)
(function bar (character) fixnum))
(bar x))
foo

>(compile ’foo0)

; (DEFUN FOO ...) is being compiled.
;; Warning: The type of the form X is not character.

However, the compiler does not check the number of arguments, and
thus, the following function definition will be compiled successfully
without any warnings.

(defun foo ()
(declare (function bar (character character) fixnum))
(+ (bar (atcholil)) (bar (atcholi2) (atcholi3) (atcholi4))))

For this definition, the compiler assumes that the three functions
atcholil, atcholi2, and atcholi3 will return fixnum objects. The
return type of atcholi4 is unknown at compile time.

The complete syntax of a function declaration is:

(function function-name
({ type }* [{ &optional | &rest | &key } { thing }*])
{ (values { type }*) | { type }* }

)

Although &optional, &rest, and &key markers may appear in the
list of argument types, only those types are recognized that appear
before any such markers and the rest of the list is simply ignored.
Note that functions with &optional, &rest, or &key parameters
may still be declared by function declarations because of the use
of function declarations mentioned above.

43

The values construct in the specification of return types is almost
useless: (function function-name argument-types (values type;
types ...)) is equivalent to (function function-name argment-types
type; types ...). We, the implementors of KCL, wonder why the
value construct was introduced in Common Lisp.

See Section 7.3 for further information on function declarations.
ftype function-type { function-name }* [Declaration Specifier]

function-type must be a list whose first element is the symbol function.
(ftype (function . rest) function-name; ... function-name,)

is equivalent to n consecutive function declarations (function function-
namey . rest) ... (function function-name, . rest).

notinline { function-name }* [Declaration Specifier]

(notinline function, functions ...) specifies that the compiler
should not compile the named functions in-line. Calls to the named
functions can be traced and an event (see Section 5.4) is pushed on
the event stack when any one of the named functions is invoked.

inline { function-name }* [Declaration Specifier]

An inline proclamation cancels currently effective notinline procla-
mations, and a local inline declaration locally shadows currently
effective notinline declarations.

>(defun foo (x)
(cons (car x)
(locally (declare (inline car)) (car x))))
foo

>(defun bar (x)
(cons (car x)
(locally (declare (inline car)) (car x))))

foo

>(proclaim ’(notinline car))
nil

>(compile ’foo)

>(proclaim ’(inline car))
nil

44

>(compile ’bar)

Usually, primitive functions such as car are compiled in-line. There-
fore, in this example, only the first call to car within foo is compiled
not in-line.

In general, the KCL compiler compiles functions in-line whenever
possible. Thus an inline declaration (inline function; functions
...) is worthless if none of the named functions have previously been
declared to be notinline.

ignore { variable-name }* [Declaration Specifier]

Usually, the compiler issues a warning if a lexical variable is never re-
ferred to. (ignore wary ... var,) causes the compiler not to issue a
warning even if the named variables are never referred to. The com-
piler issues a warning if one of the named variables is not bound by
the surrounding construct, or if a named variable is actually referred
to. ignore proclamations are simply ignored.

optimize { (quality value) | quality }* [Declaration Specifier]

KCL supports the four optimize qualities listed in the Common
Lisp Reference Manual. speed and compilation-speed are used
to set up the optimization switch of the C language compiler which
is invoked to compile the C language code generated by the KCL
compiler (see Chapter 6). (optimize (speed n)) and (optimize
(compilation-speed m)) are equivalent, where n and m are inte-
gers between 0 and 3, and m is equal to 3 —n. When a KCL session
is started, the speed quality is set to 3. That is, by default, the
compiler generates the fastest code in the longest compilation time.
The space quality specifies whether the code size is important or
not: The compiled code is a little bit larger and faster when com-
piled with the space quality 0, than when compiled with the space
quality 1, 2, or 3. When a KCL session is started, the space quality
is set to 0. The safety quality determines how much runtime er-
ror checking code should be embedded in the compiled code. If the
safety quality is 0, the compiled code scarcely does runtime error
checking. If the safety quality is 1, then the compiled code for a
function will check the number of arguments to the function at run-
time. If the safety quality is 2 or 3, then the compiled code does
full runtime error checking. In addition, the highest quality value 3
causes the compiler to treat all functions as if they were declared to
be notinline. When a KCL session is started, the safety quality
is set to 0.

45

declaration { name }* [Declaration Specifier]

A declaration declaration is used exactly as specified in the Com-
mon Lisp Reference Manual.

object { wvariable-name }* [Declaration Specifier]

This is the only declaration specifier that is specific to KCL. (object
vary ... vary) affects only variable bindings and specifies that the
named variables can be allocated in the C stack (see Section 7.3).
The compiler issues a warning if one of the named variables is not
bound by the surrounding construct. object proclamations are sim-
ply ignored.

7.2 Significant Type Specifiers
Whenever a declaration is encountered, each type specifier (if any) in the decla-

ration is converted to one of the following type specifiers, which are collectively
called the significant type specifiers.

fixnum

character

short-float

long-float

t —1+—— (array t) (vector t)

—— (array fixnum) ——— (vector fixnum)
—— (array string-char) string
—— (array short-float) —— (vector short-float)
—— (array long-float) ——— (vector long-float)
L—— (array bit) ——————— bit-vector

Here, the lines indicate subtype relations; the right type is a subtype of the left
type. For instance, (vector t) is a subtype of (array t) and t, and (array
t) itself is a subtype of t. However, (array t) and (array string-char) are
disjoint types.

The function subtypep is used for the conversion to significant type speci-
fiers: If the first value of (subtypep raw-type type) is t for one of the significant
type specifiers type, then the type specifier raw-type in the declaration is con-
verted to type. If there are more than one such significant type specifiers, then
the type specifier that is a subtype of other specifiers is selected. For exam-
ple, type specifiers fixnum, (mod 3), and (member O 1) are all converted to
fixnum, though they are also subtypes of t.

46

Because of this type specifier conversion, KCL may sometimes regard two
seemingly distinct declarations as the same. For example, the following type
declarations are completely equivalent, internally in KCL.

(declare (type fixnum x))
(declare (type (mod 3) x))

(declare (type (member 0 1) x))

Type specifiers in declaration specifications passed to the KCL specific func-
tion proclamation are also converted to significant type specifiers. Thus, for
example,

>(proclaim ’(function foo (fixnum) fixnum))
nil

>(proclamation ’(function foo ((mod 3)) (member O 1)))
t

>(proclamation ’(function foo (number) character))
nil

The first call to proclamation returns t because both (mod 3) and (member
0 1) are converted to fixnum before the function type of foo is checked.

7.3 Treatment of Type Declarations

KCL has several runtime stacks. One of them is called the walue stack which
is the “main stack” of KCL: Arguments to functions and resulting values of
functions are usually passed via the value stack, lexical variables in compiled
code are usually allocated on the value stack, and temporary values during
evaluation of nested expressions are usually saved on the value stack. However,
if appropriate declarations are supplied to the compiler, the compiled code will
use another stack called the C stack, which can be accessed more efficiently
than the value stack. In addition, arguments and resulting values passed via
the C stack, values of lexical variables allocated on the C stack, and temporary
values saved on the C stack may sometimes be represented as raw data instead
of pointers to heap-allocated cells. In KCL, even a fixnum object is usually
represented as a pointer to a fixnum cell in which the raw datum (i.e., the 32-
bit signed integer) for the fixnum is stored. Accessing such raw data on the
C stack results in faster compiled code, partly because no pointer deferencing
operation is necessary, and partly because no cell is newly allocated on the heap
when a new object is created. In contrast, any object on the value stack is
represented as a pointer to a heap-allocated cell.

47

One of the deficiencies of the use of the C stack is that raw data on the
C stack may sometimes need to be reallocated on the heap. Suppose, in the
following example, that the lexical variable x is allocated on the C stack and has
always a fixnum raw datum as its value. (The situations in which this occurs
will be explained later.)

(defun foo ()
(let ((x 0))

(bar x)

))
Also suppose that the function bar expects its argument to be passed via the
value stack rather than via the C stack. (This situation typically occurs when
foo and bar are defined in separate source files. See below.) On call to bar,
the compiled code of foo will allocate a fixnum cell on the heap and push the
pointer to this cell on the value stack as the argument to bar.

Another deficiency is that it is sometimes dangerous to allocate a cell pointer
onto the C stack. (This occurs when object declarations are supplied. See
below.) The garbage collector of KCL never takes care of cell pointers on the
C stack and thus a heap-allocated cell pointed to only from the C stack may
be recycled for further use, while the data in the cell is still in use. This is why
KCL usually uses the less efficient value stack. In contrast, objects on the value
stack are automatically protected against garbage collection. Note that raw

data on the C stack need not be protected against garbage collection because
they remain alive until the C stack is popped.

7.3.1 Variable Allocations

If a lexical variable is declared to be of fixnum, character, short-float,
long-float, or their subtypes, then it is allocated on the C stack rather than on
the value stack. In addition, the variable always has a raw datum as its value:
32 bit signed integer for fixnums, 8 bit character code with 24 bit padding for
characters (remember that the font and bit fields of KCL characters are always 0
), 32 bit floating point representation for short-floats, and 64 bit floating point
representation for long-floats. Similarly, if a lexical variable is named in an
object declaration (see Section 7.1), then it is allocated on the C stack but, in
this case, the variable always has a cell pointer as its value. The user is strongly
recommended to make sure that objects stored in such an object variable may
never be garbage collected unexpectedly. For example,

(do ((x (foo) (cdr x)))
((endp x))
(let ((y (car x)))

48

(declare (object y))
(bar y)))

this object declaration is completely safe because the value of the variable y
is always a substructure of the value of x, which in turn is protected against
garbage collection. Incidentally, loop variables of dolist may always be de-
clared as object variables, since the dolist form has essentially the same control
structure as the do form above. On the other hand, the result of evaluation of
the following form is unpredictable, because the cons cell pointed to from the
object variable z may be garbage collected before bar is called.

(let ((z (coms x y)))
(declare (object z))
(foo (comns x y))
(bar z))

Lexical variables that are not declared to be of fixnum, character, short-float,
long-float, or their subtypes, and that are not named in object declarations
are usually allocated on the value stack, but may possibly be allocated on the
C stack automatically by the compiler.

7.3.2 Built-in Functions that Operate on Raw Data Di-
rectly

Some built-in Common Lisp functions can directly operate on raw data, if ap-
propriate declarations are supplied. The addition function + is among such
functions.

(let ((x 1))
(declare (fixnum x))

(setq x (+ x 2))
)

In the compiled code for this let form, the raw fixnum datum (i.e., the 32 bit
signed integer) stored in x is simply incremented by 2 and the resulting 32 bit
signed integer is stored back into x. The compiler is sure that the addition for
32 bit signed integers will be performed on the call to +, because the arguments
are both fixnums and the return value must be also a fixnum since the value
is to be assigned to the fixnum variable. The knowledge of both the argument
types and the return type is necessary for this decision: Addition of two fixnums
may possibly produce a bignum and addition of two bignums may happen to
produce a fixnum value. If either the argument type or the return type were not
known to the compiler, the general addition function would be called to handle
the general case. In the following form, for example, the compiler cannot be sure

49

that the return value of the multiplication is a fixnum or that the arguments of
the addition are fixnums.

(setq x (+ (x x 3) 2))

In order to obtain the optimal code, a the special form should surround the
multiplication.

(setq x (+ (the fixnum (* x 3)) 2))

Built-in Common Lisp functions that can directly operate on raw data are:

1. arithmetic functions such as +, -, 1+, 1-, *, floor, mod, /, and expt.

2. predicates such as eq, eql, equal, zerop, plusp, minusp, =, /=, <, <=, >,
>=, char=, char/=, char<, char<=, char>, and char>=.

3. sequence processing functions that receive or return one or more fixnum
values, such as nth, nthcdr, length, and elt.

4. array access functions such as svref, char, schar, and aref (see below).
5. system-internal functions for array update (see below).

6. type-specific functions such as char-code, code-char, and float.

As mentioned in Section 2.5.1, array elements are represented in one of six
ways depending on the type of the array. By supplying appropriate array type
declarations, array access and update operations can handle raw data stored in
arrays. For example,

(let ((a (make-array n :element-type ’fixnum))
(sum 0))
(declare (type (array fixnum) a)
(fixnum sum))
(dotimes (i n) ;33 Array initialization.
(declare (fixnum i))
(setf (aref a i) 1))

(dotimes (i n) ;3; Summing up the elements.
(declare (fixnum i))
(setq sum (+ (aref a i) sum)))

)

The setf form replaces the i-th element of the array a by the raw fixnum value
of i. The aref form retrieves the raw fixnum datum stored in a. This raw da-
tum is then added to the raw fixnum value of the fixnum variable sum, producing

a0

the raw fixnum datum to be stored in sum. Similar raw data handling is possible
for arrays of types (array fixnum), (vector fixnum), (array string-char),
string, (array short-float), (vector short-float), (array long-float)
and (vector long-float).

7.3.3 Arguments/Values Passing

Function proclamations (function function-name (arg-type; arg-types ...)
return-type) or its equivalents give the compiler the chance to generate com-
piled code so that arguments to the named functions and resulting values of the
named functions will be passed via the C stack, thus increasing the efficiency
of calls to these functions. Such arguments/values passing via the C stack is
possible only if the called function is also defined in the same source file. This
is because the code for the called function must have two entries: One entry
for arguments/values passing via the C stack and another for ordinary argu-
ments/values passing via the value stack. (An ordinary function has only the
latter entry.) When the latter entry is used, the arguments on the value stack
are pushed onto the C stack and then the former entry is used to execute the
body of the function. On return from the function, the resulting value on the
C stack is pushed onto the value stack. This means that ordinary calls to these
functions are slower than calls to ordinary functions.

One of the merits of arguments/values passing via the C stack is that raw
data stored in C-stack-allocated variables can be passed directly to other func-
tions and raw data returned from functions may directly be saved in C-stack-
allocated variables or may directly be used as arguments to another function.
A good example of this follows.

(eval-when (compile)
(proclaim ’(function tak (fixnum fixnum fixnum) fixnum)))

(defun tak (x y z)
(declare (fixnum x y z))
(if (not (< y x))
z
(tak (tak (1- x) y z)
(tak (1- y) z %)
(tak (1- z) x y))))

;55 Call (tak 18 12 6).

When tak is called with the arguments 18, 12, and 6, the raw fixnum data
of the arguments are set to the parameters x, y, and z which are allocated on
the C stack. After that, only raw data on the C stack are used to perform the
execution: No cell pointers are newly allocated nor even referenced. Arguments
and resulting values for recursive calls to tak are passed via the C stack, and the

o1

built-in functions < and 1- directly operate on the raw data. Only at the return
from the top-level call of tak, the resulting raw data value (which happens to
be 7) is reallocated on the heap. Note that both the function proclamation
and the local fixnum declaration are necessary to obtain the optimal code. The
function proclamation is necessary for arguments/values passing via the C
stack and the fixnum declaration is necessary to allocate the parameters onto
the C stack.

92

Chapter 8

Operating System Interface

KCL provides the following facilities that are not defined in the Common Lisp
Reference Manual.

save filename [Function]

save saves the current memory image into a program file filename.
After saving the memory image, the KCL process terminates imme-
diately. To execute the saved program file, specify the full pathname
of the file, as indicated in the example below.

Example:

>(defun plus (x y) (+ x y))
plus

>(save "savefile")

%
% pwd

/usr/hagiya
% /usr/hagiya/savefile

>(plus 2 3)
5

>(bye)
Bye.
h

system string [Function]

33

Executes a Shell command as if string is an input to the Shell. On
return from the Shell command, system returns the exit code of the
command as an integer.

bye &optional ezit-code [Function]
by &optional ezit-code [Function]

Terminates KCL and returns the exit-code to the parent process.
exit-code must be an integer and its default value is 0.

54

Chapter 9

Macros

9.1 System Macros

The KCL interpreter implements the following system macros as if they were
special forms. That is, macro forms of the following macros are directly evalu-
ated without being macro-expanded.

and case cond decft defmacro defun

do dox* dolist dotimes incf locally
loop multiple-value-bind multiple-value-list
multiple-value-setq or pop prog
prog* progl prog2 psetq push return
setf unless when

For these macro forms, the functions macro-function and special-form-p
both return non-nil values: macro-function returns the macro expansion func-
tion and special-form-p returns t. Of course, functions such as macroexpand
and macroexpand-1 will successfully expand macro forms for these system
macros.

9.2 Defmacro Lambda-Lists

A defmacro lambda-list is a lambda-list-like construct that is used as the third
element in the defmacro form,

(defmacro name defmacro-lambda-list {declaration | doc-string}* {form}*)

The description of defmacro lambda-lists in the Common Lisp Reference Manual
is quite ambiguous. KCL employs the following syntax.
The complete syntax of a defmacro lambda-list is:

35

([&whole var]
[&environment var |
{ pseudo-var }*
[&optional { war | (pseudo-var [initform [pseudo-var]]) }*]
{ [{ &rest | &body } pseudo-var]
[&key { var | ({ var | (keyword pseudo-var) } [initform [pseudo-var]]) }*
[#allow-other-keys |]
[&aux { var | (pseudo-var [initform]) }*]
| . var}

)
where pseudo-var is either a symbol or a list of the following form:

({ pseudo-var }*
[&optional { war | (pseudo-var [initform [pseudo-var]]) }*]
{[{ &rest | &body } pseudo-var]
[&key { var | ({ var | (keyword pseudo-var) } [initform [pseudo-var]]) }*
[#allow-other-keys |]
[&aux { var | (pseudo-var [initform |) }*]
| . var}

)

The defmacro lambda-list keyword &whole may appear only at the top-level,
first in the defmacro lambda-list. It is not allowed within pseudo-var. Use of
the &whole keyword does not affect the processing of the rest of the defmacro
lambda-list:

(defmacro foo (&whole w x y) ...)
and
(defmacro foo (x y) ...)

both bind the variables x and y to the second and the third elements, respec-
tively, of macro forms of foo.

The defmacro lambda-list keyword &environment may appear only at the
top-level, first in the defmacro lambda-list if &whole is not supplied, or immedi-
ately after the variable that follows &whole, if &whole is supplied. &environment
is not allowed within pseudo-var. Like &whole, use of &environment does not
affect the processing of the rest of the defmacro lambda-list. If an &environment
parameter is supplied and if this parameter is not used at all, then the KCL com-
piler will issue a warning. To suppress the warning, just remove the parameter
from the defmacro lambda-list, or add an ignore declaration.

The defmacro lambda-list keyword &body is completely equivalent to the
&rest keyword. KCL takes no special action for &body parameters.

96

Although useless, KCL allows supplied-p parameters to be destructured.
This is useless because supplied-p parameters can never be bound to a non-
empty list. Our intention is to stick to the specification in the Common Lisp
Reference Manual as far as possible, even if it is silly to do so.

Like for ordinary lambda-lists, the interpreter detects invalid arguments to
macro expansion functions. When a parameter is destructured, the structure of
the corresponding argument is also checked. Such runtime argument checking
may or may not be embedded in compiled code, depending on the environment
when the code was generated. If the code was generated while the safety
optimize level is zero (that is, while the value of (proclamation ’ (optimize
(safety 0))) is t), then the generated code does not perform argument check-
ing at all. Otherwise, the compiled code does check the validity of arguments.

57

Chapter 10

The C Language Interface

This chapter describes the facility of KCL to interface the C language and KCL.
With this facility, the user can arrange his or her C language programs so that
they can be invoked from KCL. In addition, the user can write Lisp function
definitions in the C language to increase runtime efficiency.

The basic idea of interfacing the C language is this: As mentioned in Chapter
6, the KCL compiler, given a Lisp source file, creates an intermediate C language
program file, called c-file, which is then compiled by the C language compiler
to obtain the final fasl-file. Usually, the c-file consists of C language function
definitions. The first C language function in the c-file is the “initializer”, which is
executed when the fasl file is loaded, and the other C language functions are the
C versions of the Lisp functions (including macro expansion functions) defined
in the source file. By using the top-level macros Clines and defCfun described
below, the user can direct the compiler to insert his or her own C language
function definitions and/or C language preprocessor macros such as #define
and #include into the c-file. In order that such C language functions be invoked
from KCL, another top-level macro defentry is used. This macro defines a Lisp
function whose body consists of the calling sequence to the specified C language
function.

The C language function definitions are placed in the c-file in the order of
the corresponding Lisp functions defined in the source file. That is, the C code
for the first Lisp function comes first, the C code for the second Lisp function
comes second, and so on. If a Clines or defCfun macro form appears between
two Lisp function definitions in the source file, then the C code specified by the
macro is placed in between the C code for the Lisp functions.

We define some terminology here which is used throughout this Chapter. A
C-id is either a Lisp string consisting of a valid C language identifier, or a Lisp
symbol whose print-name, with all its alphabetic characters turned into lower
case, is a valid C identifier. Thus the symbol foo is equivalent to the string
"foo" when used as a C-id. Similarly, a C-ezpris a string or a symbol that may

a8

be regarded as a C language expression. A C-type is one of the Lisp symbols
int, char, float, double, and object. Each corresponds to a data type in the
C language; object is the type of Lisp objects and other C-types are primitive
data types in the C language.

Clines {string}* [Macro]

When the KCL compiler encounters a macro form (Clines string

. stringy), it simply outputs the strings into the c-file. The argu-
ments are not evaluated and each argument must be a string. Each
string may consist of any number of lines, and separate lines in the
string are placed in separate lines in the c-file. In addition, each
string opens a fresh line in the c-file, i.e., the first character in the
string is placed at the first column of a line. Therefore, C language
preprocessor commands such as #define and #include will be rec-
ognized as such by the C compiler, if the ‘#’ sign appears as the first
character of the string or as the first character of a line within the
string.

In order to clearly distinguish C code from other parts of Lisp pro-
grams, we, the implementors of KCL, make it our rule to start each
C code line with a percent sign ‘%’. We define % as a read macro
which returns the rest of the line as a string. For example,

;33 C version of TAK.
(Clines

% int tak(x, y, 2)

% int x, y, z;

% { if (y >= x) return(z);

% else return(tak(tak(x-1, y, z),

h tak(y-1, z, %),
% tak(z-1, x, y)));
h }

)

Of course, the user may instead enclose each C code line or the
whole C code with double quotes, but we recommend the use of the
percent sign read macro. Since the percent sign read macro is not
a standard read macro, the users must define this read macro by
themselves. We use the following definition.

(set-macro-character

#\%

#’ (lambda (stream char) (values (read-line stream)))))

99

Here, the lambda-expression returns the first value of read-1ine by
using values as a filter.

When interpreted, a Clines macro form expands to nil.
defentry function parameter-list C-function [Macro]

defentry defines a Lisp function whose body consists of the calling
sequence to a C language function. function is the name of the Lisp
function to be defined, and C-function specifies the C function to
be invoked. C-function must be either a list (type C-id) or C-id,
where type and C-id are the type and the name of the C function.
type must be a C-type or the symbol void which means that the C
function returns no value. (object C-id) may be abbreviated as
C-id. parameter-list is a list of C-types for the parameters of the C
function. For example, the following defentry form defines a Lisp
function tak from which the C function tak above is called.

(defentry tak (int int int) (int tak))

The Lisp function tak defined by this defentry form requires three
arguments. The arguments are converted to int values before they
are passed to the C function. On return from the C function, the
returned int value is converted to a Lisp integer (actually a fixnum)
and this fixnum will be returned as the value of the Lisp function.
See below for type conversion between Lisp and the C language.

A defentry form is treated in the above way only when it appears
as a top-level form of a Lisp source file. Otherwise, a defentry form
expands to nil.

defla name lambda-list {declaration | doc-string}* {form}* [Macro]

When interpreted, defla is exactly the same as defun. That is,
(defla mname lambda-list . body) expands to (defun name lambda-
list . body). However, defla forms are completely ignored by the
compiler; no C language code will be generated for defla forms.
The primary use of defla is to define a Lisp function in two ways
within a single Lisp source file; one in the C language and the other
in Lisp. defla is short for DEFine Lisp Alternative.

Suppose you have a Lisp source file whose contents are:

;33 C version of TAK.

(Clines
% int tak(x, y, z)
% int x, y, z;

60

y { if (y >= x) return(z);

VA else return(tak(tak(x-1, y, z),
v tak(y-1, z, x),
v tak(z-1, x, y)));
h }

)

;33 TAK calls the C function tak defined above.
(defentry tak (int int int) (int tak))
;35 The alternative Lisp definition of TAK.
(defla tak (x y z)
(if =y %)
z
(tak (tak (1- x) y z)
(tak (1- y) z %)
(tak (1- z) x y))))

When this file is loaded into KCL, the interpreter uses the Lisp
version of the tak definition. Once this file has been compiled, and
when the generated fasl file is loaded into KCL, a function call to
tak is actually the call to the C version of tak.

defCfun header n {element}* [Macro]

defCfun defines a C language function which calls Lisp functions
and/or which handles Lisp objects. header is a string consisting of
the C code for

1. the optional type-specifier of the C function,
2. the function-declarator of the C function, and

3. the type-decl-list of the parameters to the C function.

(For the C language terminology, refer to The C Programming Lan-
guage by Brian W. Kernighan and Dennis M. Ritchie.) The rest of
the C function definition, i.e., the function-statement, is given by
elements. Each element may be a string, in which case the string is
treated in the same way as the arguments to the Clines macro. Or
else, the element is a list ((name arg, ... arg,) placey ... placey,).
The compiler translates this list into a calling sequence to the Lisp
function whose name is name. As will be mentioned later, name
may be quote, but name may not be the name of any other special
form or a macro. The args specify the arguments to the function and
the places specify where the values should go. Thus the list-formed
element could be regarded as something like the Lisp form:

61

(multiple-value-setq
(place; ... placey,)
(name argy ... argn)) .

Each arg is a list (C-type C-expr), where C-expris any C language
expression of the type C-type. If type is object, then arg may be
written simply as C-expr. Similarly, each place is a list (C-type
C-expr), or it may be abbreviated as C-expr if C-type is object.
The C-expr in this case is any lvalue (in the terminology of the C
language), i.e., it may be any valid C language code that can be
written at the left side of an assignment.

The function call is performed as follows. The args are evaluated,
and the values are sent to the specified Lisp function after type
conversion from C to Lisp. On return from the called Lisp function,
each returned value is assigned to the corresponding place, i.e., the
first returned value goes to place;, the second to places, and so on.
If there are more places than the values returned, extra values of nil
are assigned to the remaining places. If there are more values than
places, the excess values are simply discarded. If necessary, Lisp-
to-C type conversion may take place before each returned value is
assigned.

If the Lisp function is called just for side-effects, then the list-formed
element may be abbreviated as a one-level list (name argy ... argy).

As a special case, if a list-formed element is of the form ((quote
value) place), the Lisp object value is assigned to place. Here value
may be any Lisp object.

The following defCfun form defines the C function silly which adds
100 to the value of the parameter x and prints the result in three
different ways. The second argument to defCfun will be described
later, and the user may ignore it.

(defCfun "silly(x) int x;" O

% int y;

((+ (Ant x) (int "100")) (int y))
% printf ("\n%d", y);
% y = x+100;

(print (int y))
(print (int "x+100"))
)

When a C function handles Lisp objects (i.e., data of type object),
the user should be careful enough so that the objects may not be
garbage-collected. This is because the garbage collector of KCL does
not take care of Lisp objects used in the C function. See the following

62

C function which is assumed to return a two-element list consisting
of its two arguments.

(defCfun "object list2(x,y) object x,y;" O
object z;
(’nil =z)
((cons y z) z)
((cons x z) z)
% return(z);

)

When invoked, 1ist2 first sets nil to the variable z, conses y to
z, and then conses x. Each time cons is called, a new cons cell is
allocated and the pointer to this cell is stored in z. However, there is
no way to inform the garbage collector that the cells are referenced
from the C variable z. Suppose that the cons cell allocated by the
first cons is the last cons cell available at that time. Then, during
execution of the second call to cons, the garbage collector begins to
run and, unfortunately, the cons cell in z will be destroyed so that
the cell can be recycled for further use.

To prevent a Lisp object from being unexpectedly garbage collected,
the user must save the object in some place that is recognized by
the garbage collector. The second parameter n to defCfun is used
to reserve n such places for each call to the C function. In the body
of the C function, these reserved places are referenced as vs[0], ...,
vs[n — 1]. The function 1ist2 above, therefore, should be revised
as follows.

(defCfun "object list2(x,y) object x,y;" 1
(’nil "vs[01")
((cons y "vs[0]1") "vs[0]")
((cons x "vs[0]") "ws[0]")

% Creturn(vs[0]);

)

Notice that return is replaced by Creturn. Creturn is similar
to return except that Creturn releases the reserved places on re-
turn from the function. In the C code within a defCfun form,
write “Creturn(walue);” instead of “return(walue);”, and write
“Cexit;” instead of “return;”.

Again, a defCfun form has the above meaning only when it appears
as a top-level form in a Lisp source file. Otherwise, the form expands
to nil.

63

KCL converts a Lisp object into a C language data by using the Common
Lisp function coerce: For the C-type int (or char), the object is first coerced
to a Lisp integer and the least significant 32-bit (or 8-bit) field is used as the
C int (or char). For the C-type float (or double), the object is coerced to a
short-float (or a long-float) and this value is used as the C float (or double).
Conversion from a C data into a Lisp object is obvious: C char, int, float,
and double become the equivalent Lisp character, fixnum, short-float, and long-
float, respectively.

Here we list the complete syntax of Clines, defentry, and defCfun macro
forms.

Clines—form:
(Clines { string }*)

defentry—form:
(defentry function-symbol
({ C-type }*)
{ C-function-name | ({ C-type | void } C-function-name) })

defCfun—form:
(defCfun string non-negative-integer
{ string
| (function-symbol { value }*)
| ((function-symbol { value }*) { place }*) })

value:
place:
{ C-expr | (C-type C-expr) }

C-function-name:
C-expr:
{ string | symbol }

C-type:
{ object | int | char | float | double }

64

Chapter 11

The Editor

KCL/AOS is equipped with a screen editor FeCl2 (Full-screen FEditor as a
Common Lisp TOOl). FeCl2 is an EMACS-like editor with facilities for Lisp
coding. FeCl2 is invoked from KCL by the function ed and the result of editing
can be passed to KCL directly. For the details of FeCl2 refer to The FeCi2
Editor Reference Manual.

ed &optional filename [Function]

ed invokes FeCl2 and sets the edit file of FeCI2 to filename. If the
filetype of the file is not explicitly specified, then the filename is first
merged into #".1lsp".

The FeCl2 editor is not supported by other versions of KCL. The function ed of
KCL/VAX, KCL/SUN, and KCL/UST calls the vi editor. If you hate vi, define
your own ed function using the function system described in Chapter 8.

65

Appendix A

KCL Summary

The following table lists all symbols defined in KCL. Each line has the following
form.

symbol [kind) remark

where kind is Function, Macro, Special (i.e., Special form name), Variable, Con-
stant, Symbol, or Keyword. In the table, some symbols are labeled both as a
macro and a special form name. This means that, although these symbols are
defined to be a macro name in the Common Lisp Reference Manual, KCL treats
them as if they were special forms (see Section 9.1). The pages in the remark
refer to pages in this report.

[Function]

[Variable]

*ok [Variable]
*okk [Variable]
+ [Function]
+ [Variable]
++ [Variable]
+++ [Variable]
- [Function)
- [Variable]
/ [Function]
/ [Variable]
// [Variable]
/17 [Variable]
= [Function]
1+ [Function]
1- [Function]

66

vl

>=

:abort

abs

acons

acos

acosh

adjoin

adjust-array

radjustable
adjustable-array-p
allocate
allocate-contiguous—-pages
allocated-contiguous-pages
allocated-pages
allocated-relocatable-pages
allocate-relocatable-pages
alpha-char-p
alphanumericp

and

append

:append

apply

applyhook

applyhookx

apropos

apropos-list

aref

:array

array-dimension
array-dimension-limit
array-dimensions
array-element-type
array-has-fill-pointer-p
array-in-bounds-p
array-rank
array-rank-limit
array-row-major-index
array-total-size
array-total-size-limit
arrayp

[Function]
[Function]
[Function)

&

unction]
Function)
Function)
Constant]
Function]
Function]
Constant]
Function)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[Variable]
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

67

. See pages 21 and 23.
. See pages 21 and 23.
. See page 23.
. See page 23.
. See page 23.
. See pages 21 and 23.

ash
asin
asinh
assert
assoc
assoc-if
assoc-if-not
atan
atanh
atom

:b

:backtrace

:base

bit
bit-and
bit-andcl
bit-andc2
bit-eqv
bit-ior
bit-nand
bit-nor
bit-not
bit-orci
bit-orc2
bit-vector-p
bit-xor
block
:blocks

boole
boole-1
boole-2
boole-and
boole-andcl
boole-andc?2
boole-cl
boole-c2
boole-clr
boole-eqv
boole-ior
boole-nand

[Function]

[Function]

[Function]

[Macro]

[Function)

[Function]

[Function]

[Function]

[Function)

[Function)

[Keyword] Abbreviate Break Loop Command.

See page 31.

[Keyword] Break Loop Command.
See page 31.

=
3
)
&
o}
=3,

[Keyword] Break Loop Command.
See page 32.

[Function]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]

68

boole-nor
boole-orcl
boole-orc2
boole-set
boole-xor
both-case-p
boundp
break
break-on-warningsx
break-enable
butlast
by
bye
byte
byte-position
byte-size

:C

caaaar
caaadr
caaar
caadar
caaddr
caadr
caar
cadaar
cadadr
cadar
caddar
cadddr
caddr
cadr
call-arguments-1limit
car
:case
case
catch
ccase
cdaaar
cdaadr
cdaar
cdadar
cdaddr

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Function)

[Function]

[Function] See page 28.
[Variable]

[Variable] Added. See page 28.
[Function]

[Function] Added. See pages 2 and 54.
[Function] Added. See pages 2 and 54.
[Function]

[Function]

[Function]

[Keyword] Abbreviated Break Loop Command.

See page 31.

[Function]
[Function]
[Function)
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function)
[Function]
[Function]
[Function]
[Function]
[Constant]
[Function)
[Keyword]
[Special, Macro]
[Special]
[Macro)
[Function]
[Function]
[Function]
[Function]
[Function]

69

cdadr

cdar

cddaar

cddadr

cddar

cdddar

cddddr

cdddr

cddr

cdr

ceiling

cerror

:c-file

char

char-bit
char-bits
char-bits-limit
char-code
char-code-limit
char-control-bit
char-downcase
char-equal
char-font
char-font-limit
char-greaterp
char-hyper-bit
char-int
char-lessp
char-meta-bit
char-name
char-not-equal
char-not-greaterp
char-not-lessp
char-super-bit
char-upcase
char/=

char<

char<=

char=

char>

char>=
character
characterp
check-type

[Function]
[Function]
[Function]
[Function]
[Function)
[Function]
[Function]
[Function]
[Function]
Function]

Function]
Function)]
Constant]

[Function)
[Function]
[Function]
[Function]
[Function]
[Function]
[Function)
[Macro]

70

:circle

cis
clear-input
clear-output
Clines

close
clrhash
code-char
coerce
commonp
compilation-speed
compile
compile-file
compiled-function-p
compiler-let
complex
complexp
:conc-name
concatenate
cond
conjugate
cons

consp
constantp
:constructor
:copier
copy-alist
copy-list
copy-readtable
copy-seq
copy-symbol
copy-tree
cos

cosh

count

:count
count-if
count-if-not
:create
ctypecase
.current

:data-file

Keyword]
Function)
Function] Different. See page 17.
Function] Different. See page 17.
Macro] Added. See page 59.
Function] Different. See page 17.
Function)]
Function)]
Function] See page 64.
Function]
Symbol] Optimize Quality. See page 45.
Function] See page 38.
Functzon] See page 37.

]

Function)
Function)
Function)]

unction]
unction]

}Yeyluord]

Keyword]

Macro]

[Keyword] Break Loop Command.
See pages 12 and 31.

[Keyword] Added. See pages 37 and 37.

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[17u7zctzo7ﬂ
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

71

debug-iox
decf
declaration

declare

decode-float
decode-universal-time
:default
default-pathname-defaults
:defaults

defCfun

defconstant

defentry
define-modify-macro
define-setf-method
defla

defmacro
defparameter

defsetf

defstruct

deftype

defun

defvar

delete
delete-duplicates
delete-file
delete-if
delete-if-not
denominator
deposit-field
describe

:device

digit-char
digit-char-p
:direction

directory

:directory
directory-namestring
disassemble
:displaced-index-offset
:displaced-to

do

dox*

[Variable]

[Special, Macro]

[Symbol] Declaration Specifier.
See page 46.

N
bS]
[«
o
S,
Q
&
S
S
S,

[Special, Macro] See page 60.
[Macro] See page 40.

[Function]

Function] See page 34.

72

do-all-symbols
do-external-symbols
do-symbols
documentation

dolist

dotimes
double-float-epsilon

double-float-negative-epsilon

dpb

dribble

ecase

ed

eighth
:element-type
elt

encode-universal-time

:end

:end1

:end?2

endp
enough-namestring
&environment

eq

eql

equal

equalp

error

rerror
error-output
:escape
etypecase

eval

evalhook
evalhook
eval-when
eval-when-compilex
evenp

every

exp

export

expt

:external

Special, Macro]

Special, Macro]

Constant]

[Constant]

[Function]

[Function]

[Macro)

[Function] Different. See page 65.
Function)

[
[Keyword] See page 17.
[
[

[
[
[
[Function]
[
[
[

Functzon]
[Keyword]

[Keyword]

[Function]

[Function)

[Symbol] Defmacro-lambda Keyword.
See page 56.

[Function]
[Function]
[Function)
[Function]
[Function] See page 29.
[Keyword)]

[Variable]

[Keyword)]

[Macro]

[Function] See pages 33 and 33.
[Function]

[Variable]

[Macro] See page 36.

[Variable] Added. See pages 36 and 39.
[Function)
[Function)
[Function)
[Function]
[Function]
[Keyword]

73

fboundp
fceiling
featuresx
ffloor

fifth
file-author
file-length
file-namestring
file-position
file-write-date
fill
fill-pointer
:fill-pointer
find
find-all-symbols
find-if
find-if-not
find-package
find-symbol
finish-output
first

flet

float
float-digits
float-precision
float-radix
float-sign
floatp

floor
fmakunbound
force-output
format

fourth
fresh-line
:from-end
fround
ftruncate

ftype

funcall
function

functionp

Function)]
Function)
Variable]
Function]
Function]
Function)
Function)
Function)
Function]
Function]
Function]
Function)]
Keyword]
Functzon]

Function]
Functwn]

Function
Function]
Function]
Function)
Function)
Functwn]

]
Function)]
]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[Function)
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Function]

[Symbol] Declaration Specifier.
See page 44.

[Function]

[Special] Also Declaration Specifier.
See page 42.

[Function]

74

:functions

gbc

ged

gensym

:gensym

gentemp

get

get-decoded-time
get-dispatch-macro-character
get-internal-real-time
get-internal-run-time
get-macro-character
get-output-stream-string
get-properties
get-setf-method
get-setf-method-multiple-value
get-universal-time

getf

gethash

go

graphic-char-p
hash-table-count
hash-table-p

:h

:help

:h-file
:hide

:hide-package

:host
host-namestring
identity

if
:if-does-not-exist
:if-exists

ignore

ignore-maximum-pagesx

[Keyword] Break Loop Command.
See page 32.

Function] Added. See page 23.
Function)

[Keyword] Abbreviated Break Loop Command.
See page 31.

[Keyword] Break Loop Command.
See page 31.

[Keyword] Added. See pages 37 and 37.
[Keyword] Break Loop Command.
See page 32.

[Keyword] Break Loop Command.
See page 33.

[Keyword]
[Function]

[Function]

[Special]

[Keyword]

[Keyword)]

[Symbol] Declaration Specifier.

See page 45.

[Variable] Added. See page 24.

75

imagpart [Function]

import [Function]

in-package [Function]

incf [Special, Macro]

:include [Keyword)]

:index [Keyword)]

:inherited [Keyword)]

:initial-contents [Keyword)]

:initial-element [Keyword]

:initial-offset [Keyword)]

:initial-value [Keyword]

inline [Symbol] Declaration Specifier.
See page 44.

input-stream-p [Function]

inspect [Function] See page 35

int-char [Function]

integer-decode-float [Function]

integer-length [Function]

integerp [Function]

intern [Function]

:intern [Keyword]

internal-time-units-per-second [Constant]

intersection [Function]

:io [Keyword)]

isqrt [Function]

:junk-allowed [Keyword]

:key [Keyword]

keywordp [Function]

:1 [Keyword] Abbreviated Break Loop Command.

See page 32.

labels [Special]

lambda-1list-keywords [Constant]

lambda-parameters-limit [Constant]

last [Function]

lcm [Function]

1db [Function]

ldb-test [Function]

1diff [Function)

least-negative-double-float [Constant]

least-negative-long-float [Constant]

least-negative-short-float [Constant]

least-negative-single-float [Constant]

least-positive-double-float [Constant]

76

least-positive-long-float
least-positive-short-float
least-positive-single-float
length

:length
let
letx*

:level
lisp-implementation-type
lisp-implementation-version
list
listx*
list-all-packages
list-length
listen
listp
load
load-verbosex

:local

locally

log

logand

logandcl
logandc2

logbitp

logcount

logeqv

logior

lognand

lognor

lognot

logorcl

logorc2

logtest

logxor
long-float-epsilon
long-float-negative-epsilon
long-site-name
loop
lower-case-p
machine-instance
machine-type

[Function]

[Function]

[Function] Different. See page 17.
[Function)

[Function] See pages 17 and 36.
[Variable]

[Keyword] Break Loop Command.

See page 32.

Function]
Special, Macro)
Function)]
Function]
Function]

7

machine-version
macro-function
macroexpand
macroexpand-1
macroexpand-hookx
macrolet

make-array
make-broadcast-stream
make-char
make-concatenated-stream

make-dispatch-macro-character

make-echo-stream
make-hash-table
make-list

make-package
make-pathname
make-random-state
make-sequence
make-string
make-string-input-stream
make-string-output-stream
make-symbol
make-synonym-stream
make-two-way-stream
makunbound

map

mapc

mapcan

mapcar

mapcon

maphash

mapl

maplist

mask-field

max
maximum-allocatable-pages
maximum-contiguous-pages
member

member-if

member-if-not

merge

merge-pathnames

min

minusp

=
S
o
<)
)
S,

dded. See page 23.
dded. See page 23.

>

mismatch
mod

modules
most-negative-double-float
most-negative-fixnum
most-negative-long-float
most-negative-short-float
most-negative-single-float
most-positive-double-float
most-positive-fixnum
most-positive-long-float
most-positive-short-float
most-positive-single-float
multiple-value-bind
multiple-value-call
multiple-value-list
multiple-value-progl
multiple-value-setq
multiple-values-1limit

‘n

:name

name-char
:named

namestring

nbutlast

nconc
:new-version
:next

nil
nintersection
ninth

not

notany
notevery
notinline

nreconc
nreverse
nset-difference
nset-exclusive-or
nstring-capitalize

[Function]
[Function]
[Variable]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Constant]
[Special, Macro]
[Special]
[Special, Macro]
[Special]
[Special, Macro]
[Constant]

[Keyword] Abbreviated Break Loop Command.

See page 31.
[Keyword]

[Function]
[Keyword)]
[Function]
[Function]
[Function)
[Keyword]
[Keyword] Break Loop Command.
See page 31.

[Constant]
[Function
[Function
[Function
[Function,
[Function]
[Symbol] Declaration Specifier.
See pages 27, 30, and 44.

]
]
]
]

[Function]
[Function]
[Function]
[Function]
[Function]

79

nstring-downcase

[
nstring-upcase [Function]
nsublis [Function]
nsubst [Function]
nsubst-if [Function]
nsubst-if-not [Function)
nsubstitute [Function)
nsubstitute-if [Function]
nsubstitute-if-not [Function]
nth [Function]
nthcdr [Function]
null [Function]
numberp [Function]
numerator [Function]
nunion [Function]
object [Symbol] Declaration Specifier. Added.
See pages 41, 46, and 48.
oddp [Function]
:o-file [Keyword] Added. See page 37.
open [Function] Different. See page 17.
optimize [Symbol] Declaration Specifier.
See page 45.
or [Special, Macro]
:output-file [Keyword] See page 37.
output-stream-p [Function]
:overwrite [Keyword)]
xpackage* [Variable] See page 2.
package-name [Function]
package-nicknames [Function)
package-shadowing-symbols [Function
package-use-list [Function]
package-used-by-list [Function]
packagep [Function]
pairlis [Function]
:parent [Keyword] Added. See page 12.
parse-integer [Function]
parse-namestring [Function]
pathname [Function]
pathname-device [Function]
pathname-directory [Function]
pathname-host [Function)
pathname-name [Function]
pathname-type [Function]

pathname-version
pathnamep
peek-char

phase

pi

plusp

pop

position
position-if
position-if-not
pprint

‘P

:predicate

:preserve-whitespace

ipretty
:previous

prinil
prinl-to-string
princ
princ-to-string
print

:print
print-array
print-basex
print-casex
print-circlex
print-escape
:print-function
*print-gensym
print-lengthx
print-levelx
print-pretty
print-radix
:probe
probe-file
proclaim
proclamation
prog

progx

progil

prog2

[Function]
[Function]
[Function]
[Function)
[Constant] See page 8.
[Function]
[Alacro]

[

[

[

[

Function]

Function]

[Keyword] Abbreviate Break Loop Command.
See page 31.

[Keyword)]

[Keyword)]

[Keyword]

[Keyword] Break Loop Command.
See page 31.

[Function]

[Function]

[Function] See page 17.

[Function]

[Function)

[Keyword] See page 17.
Variable] See page 9.
Variable]

Variable]
lﬁzr@able]

[

[

[

[

[

[

[Variable]

[Variable] See page 28.
[Varmble] See page 28.
[
[
[
[
[
[

Variable]

Function)

Function] See page 40.
Function] Added. See page 40.
[Special, Macro]

[Special, Macro]

[Special, Macro]

[Special, Macro]

81

progn
progv
provide
psetf
psetq
push
pushnew

‘q

query-iox
1quit

quote
ir

:radix

random
random-state
random-state-p
rassoc

rassoc-if
rassoc-if-not
rational
rationalize
rationalp

read

*read-basex
read-byte

read-char
read-char-no-hang
read-default-float-formatx
read-delimited-list
read-from-string
read-line
:read-only
read-preserving-whitespace
read-suppress
*readtablex
readtablep

realpart

reduce

:rehash-size
:rehash-threshold

[Special]

[Special]

[Function]

[Macro)

[Special, Macro]

[Special, Macro]

[Macro]

[Keyword] Abbreviated Break Loop Command.
See pages 3 and 31.

[Variable] See page 35.

[Keyword] Break Loop Command.
See page 31.

[Special] See page 61.

[Keyword] Abbreviated Break Loop Command.
See page 31.

Keyword]
Function)

Variable]

[

[

[

[

[

[

[

[

[

[

[

[Variable]

[Function] Different. See page 17.
[Function] See page 17.
[Function] Different. See page 17.
[Variable]

[
[
[
[
[
[
[
[
[
[
[
[

Function

]
]
]
]

Function
Keyword
Keyword

rem [Function]
remf [Macro]
remhash [Function]
remove [Function]
remove-duplicates [Function)
remove-if [Function]
remove-if-not [Function)
remprop [Function]
:rename [Keyword]
:rename-and-delete [Keyword]
rename-file [Function]
rename-package [Function]
replace [Function]
require [Function]
:resume [Keyword] Break Loop Command.
See page 31.
rest [Function]
return [Special, Macro]
return-from [Special] See page 32.
revappend [Function]
reverse [Function]
room [Function] See page 24.
:root [Function] Added. See page 12.
rotatef [Macro]
round [Function]
rplaca [Function]
rplacd [Function]
safety [Symbol] Optimize Quality.
See pages 30, 45, and 57.
save [Function] Added. See page 53.
sbit [Function]
scale-float [Function)
schar [Function)
search [Function]
second [Function]
set [Function]
set-char-bit [Function]
set-difference [Function]
set-dispatch-macro-character [Function]
set-exclusive-or [Function]
set-macro-character [Function]
set-syntax-from-char [Function]
[

setf

83

setq [Special]

seventh [Function]

shadow [Function]

shadowing-import [Function]

shiftf [Macro]

short-float-epsilon [Constant]

short-float-negative-epsilon [Constant]

short-site-name [Function]

signum [Function]

simple-bit-vector-p [Function]

simple-string-p [Function]

simple-vector-p [Function]

sin [Function]

single-float-epsilon [Constant]

single-float-negative-epsilon [Constant]

sinh [Function]

sixth [Function]

:size [Keyword]

sleep [Function]

software-type [Function]

software-version [Function]

some [Function]

sort [Function]

space [Symbol] Optimize Quality.
See page 45.

special [Symbol] Declaration Specifier.
See page 41.

special-form-p [Function]

speed [Symbol] Optimize Quality. See page 45.

sqrt [Function]

stable-sort [Function)

standard-char-p [Function]

standard-input [Variable]

standard-output [Variable] See page 34.

:start [Keyword)]

:startil [Keyword)]

:start2 [Keyword)]

:static [Keyword] Added. See page 19.

step [Macro] See page 28

:stream [Keyword]

stream-element-type [Function]

streamp [Function]

string [Function]

84

string-capitalize
string-char-p
string-downcase
string-equal
string-greaterp
string-left-trim
string-lessp
string-not-equal

string-not-greaterp

string-not-lessp
string-right-trim
string-trim
string-upcase
string/=
string<
string<=
string=

string>
string>=
stringp

sublis

subseq

subsetp

subst

subst-if
subst-if-not
substitute
substitute-if
substitute-if-not
subtypep
:supersede
svref

sxhash
symbol-function
symbol-name
symbol-package
symbol-plist
symbol-value
symbolp

system

t

:tags

TS
3
(o)
=y
=)
=

[Function]
[Function]
[Keyword)]
[Function)
[Function]
Functzon]

[
[
[
[Functwn]
[
[
[
[

]
Functzon]
]
t]

[Keyword] Break Loop Command.
See page 32.

85

tagbody
tailp

tan

tanh

tenth
terminal-iox

terpri
:test
:test-not
the

third
throw

time

trace
trace-output
tree—equal
truename
truncate

type

:type
type-of
typecase
typep
unexport
unintern
union

:unhide

:unhide-package

unless
unread-char
untrace
unuse-package
unwind-protect
upper-case-p
use-package

user-homedir-pathname

v

[Special] See page 32.
[Function]
[Function]
[Function]
[Function)
[Variable] Different.
See pages 16 and 18.

[Function]

[Keyword]

[Keyword]

[Special] See pages 41 and 50.

[Function)

[Special]

[Macro]

[Macro] See page 27.

[Variable]

[Function)

[Function]

[Function]

[Symbol] Declaration Specifier.
See pages 42 and 47.

[Keyword]

[Function]

[Macro]

[Function] See page 41.
[Function]
[Function]
[Function)
[Keyword] Break Loop Command.

See page 33.

[Keyword] Break Loop Command.
See page 33.

See page 32.

86

Keyword] Abbreviated Break Loop Command.

values
values-list
:variables

vector

vector-pop
vector-push
vector-push-extend
vectorp

:verbose

:version

warn

when

&whole

twild
with-input-from-string
with-open-file
with-open-stream
with-output-to-string
write

write-byte
write-char
write-line
write-string
write-to-string
y-or-n-p

yes—or-no-p

zerop

[Function] See pages 44 and 60.

[Function]

[Keyword] Break Loop Command.
See page 32.

[Symbol] Defmacro-lambda Keyword.

See page 56.

[Keyword] Added. See page 13.
[Macro]
[Macro]
[Macro]
[Macro]
[Function,
[Function
Function

]

] Different. See page 17.
[] See page 17.
[Function)
[Function]
[Function]
[Function]
[Function]
[Function)

87

