€

¢

BOOKKEEPER

This module implements the bookkeeping part of trace scheduling -- that
part which, given a trace and a schedule for the trace, unsplices the
trace from the MI flow graph and splices in the schedule, generating
compensation code and keeping track of live variables and USE/DEFs.

(TR.INITIALIZE~-BOOKKEEP)
Initializes this module by clearing out global state.

(TR.BOOKKEEP)
Perforams bookkeeping on the current trace and its schedule. The
bookkeeping is broken up into several main passes.

Each main pass 18 described in detall at 1ts source; here 13 a summary of
the passes:

(BK . RECORD-THE-TRACE)
Records the trace on a vector for easy access later on.

(BK . BUFFER-THE-TRACE)
Igolates the trace from the rest of the MI flow graph by splicing in
duzmies on each edge entering and exiting the edge. These dummies
act as sentinels and make the implementation much easier.

(BK.COALESCE)
Coalesces the machine operations in each cycle of the schedule into
a compacted MI; the compacted MIs are stored on a vector for easy
access.

(BK .FIX-SUCCESSORS)
Sets the successors of each coalesced, compacted MI and generates
split compensation code and DEFs at each split,

(BK . FIX-PREDECESSORS)
Sets the predecessors of each coalesced, compacted MI and generates
rejoin compensation code and USEs at each join.

(BK .PROPAGATE-LIVE-VARIABLES)
Performs incremental live analysis on all the rejoin and split
compensation code and USE/DEFs generated during bookkeeping.

(BK . MISCELLANEQUS-CLEAN-UP)
Miscellaneous clean ups not deserving of a separate pass.

s Ma B B B s Be s BeBs B e B s Bs WA BE s bs B Wa e mE Be s WA W4 We B e B WS W4 W4 mE ME WS WL WE W B4 W B4 We We We WE WS

(eval-when (compile load)
(include trace:declarations))

(declare (special

s«bk.use-def-pis* ;#%+ Ligt of all MIs representing DEFs and
;#+» USEs created for current schedule.
*bk.dunay-pig+ ;#%+ List of all dumay MIs created for the

;*#*% current schedule.
#bk.nev-pernanent-mis* ;#++ List of new non-dumay MIz made for current
;#%+ gchedule.

sbk.rejoin-dunniess ;*#%% Liagt of dummy MIs bufferring rejoins.
bk.split-dunnies# ;##¢ List of dummy MIs buffering splits.
bk.cycle:pis ;#2% A vector of coalesced MIs corresponding

;*#%% t0 *TR.SCHEDULE#,

(def

(det

b L

*bk.trace-pos:mis ;#%% A vector of elements on the trace.
bk.trace-pos:rejoin-cycle

;##% A vector for deciding where rejoins go.
;**% Count of the USEs and DEFs spliced into
;*x% the MI graph.

bk.uge-def-count#

))

un tr.initialize-bookkeep ()

(:= *tr.rejoin-count*

(:= #*tr.split-count# 0)

(:= str.partial-rejoin-count+ 0)

(:= #tr.partial-split-count* O0)

(:= *bk.use-def-counts# 0)

(:= *bk.dummy-mis* Q)

(:= *bk.rejoin-dumnmies* Q)

(:= *bkx.split-dummiess 0)

(:= #bk.new-permanent-mis* ())

(:= *bk.use-def-mis* QO)

(:= #bk.cycle:mis)
(:= sbk.trace-pos:mi* 0O)
Ei=)tbt.traca-pos:ra]oin-cyclat 0O

un tr.bookkeep ()
(tr.initialize-bookkeep)
(bk.record-the-trace)
(bk.buffer-the-trace)
(bx.coalesce)
(bk.f1x-successora)
(bk.fix-predecessors)
(bk.propagate-live-variables)
(bx.miscellaneous-clean-up)

0)

ShEE
T
T
11
sERk
sk
shEE
SRR
JEER
R
JEEE

(BK .RECORD-THE~TRACE)

Records the trace in *TR.TRACE-MIS* in the array *BK.TRACE-POS:MIs.
The :TRACE-PRED and :TRACE-SUCC fields of each trace MI are get to
be the predecessor and successor trace MIs. The :TRACE-PRED of the
first MI is set to be () (causing all of its predecessors to be
treated as off-trace predecessors). The :TRACE-SUCC of the last

MI 18 set to be ite first successor (just so that we have both an
on-trace and off-trace successor for later code).

JEEE

(defun bk.record-the-trace ()

(:= *bk.trace-pos:mi+ (makevector (+ 1 *tr.trace-sizes)))

(loop (for trace-mi in *tr.trace-mis+)
(incr trace-pos from 1)
» (initial prev-trace-mi ())
0
(:= ([] *bk.trace-pos:mi* trace-pos) trace-pi)

1
PS:<C.S.BULLDOG.TRACE>BOOKKEEPER.LSP.1

g?—a

.

(mi:trace-pos trace-mi) trace-pos)
(mi:trace-pred trace-mi) prev-trace-mi)
(mi:trace-succ trace-mi) ())

prev-trace-mi (then

(:= (mi:trace-succ prev-trace-ml) trace-mi))))
(next prev-trace-ami trace-mi))

Lo B LI}

1

P L L LY

(let ((last-mi ([] *bk.trace-pos:mi* str.trace-sizes)))
(:= (mi:trace-succ last-mi) (car (mi:succs last-mi))))

0)

R L
2l

;*¥++ (BK.BUFFER-THE-TRACE)

(S

;**x This “"buffers" the trace with dummy MIs that act as algorithmic
;#*+ gentinels. A dummy is spliced in between every conditional jump
;#** on the trace and its off-trace successor. A dusmy is also spliced
;*#*# in between a join point in the trace and all the MIs that jump to
;**+ that single point. The edge into the beginning of the trace is
;#+# considered a rejoin and buffered as such; all the edges leaving the
;e## last MI of the trace are considered off-trace split edges and also
s#%+ buffered.

L EEE

;#*+** One of the dummies joining to the beginning of the trace is

;#+» distinguished as the “"on-trace® predecessor of the first trace MI.
;*¥#% Likewise, one of the dummies buffering the edges from the end is
;##+ distinguished as the “on-trace" successor of the last MI. This
;*¢* guarrantees that every conditional jump on the trace has an on-trace
;#%% and off-trace successor.

Bl

;#*+ But isolating the trace with dummies, we are guarranteed that every
;#¥##% flow edge coming into and out of the trace has its tall or head off
;#*+ the trace, and that every trace MI is jumped to by at most one

;#*s off-trace predecesaor.

ML 2

;#+* This buffering makes several things tractable, e.g. the handling
;##+ of jumps on the trace that rejoin back to the trace and the merging
;*¥*#* of N+l-way juops.

iees

;*** Rejoin dummies have the outgoing live variables stored in the

;*#s% :COPY-LIVE-OUT field. Similarly, split dummies have the incoming
;#%% live variables stored in :COPY-LIVE-OUT. (Do we need the rejoin
;##% live info?) After producing the split and rejoin coples, we propagate
:*#*% the live info from the split dummies up into the split coples.

il

¥R
(defun bk.buffer-the-trace ()

(loop (incr trace-pos from 1 to #tr.trace-sizes)
i (bind trace-mi ([] *bk.trace-pos:mi* trace-pos))
o
(12 (1| (ei:rejoin? trace-mi)
(== 1 trace-pos))
(then
(bk.mi:buffer-rejoin trace-mi)))

(1 (mi:cond-jump? trace-mi) (then

(bk.ai:buffer-split trace-mi (mi:off-trace-direction trace-mi))))))

(let ((first-mi ([} *bk.trace-pos:mi* 1))
(last-a1 ([] *bk.trace-pos:ml# *tr.trace-sizes)))

(bk.mi:buffer-split last-mi ‘left)

(:= (mi:trace-pred first-ni)
(car (ol:preds first-mi)))
:= (mi:trace-succ last-pi)
(car (mi:succs last-ml))))
0O
s#ggss===
R
;#¢+ (BK.MI:BUFFER-REJOIN REJOINED-MI)
B

;##+ Ingerts a buffering dummy between an MI on the trace, REJOINED-MI,
;#++ and all of its off-trace predecessors. The live information 1s
;##* recorded on the dumamy.

1l

(defun bk.mi:buffer-rejoin (rejoined-mi)
(let ((dummy (bk.mi:new-dunmmy)))
(push sbk.rejoin-dummies* dunmy)
(bk.splice (mi:off-trace-preds rejoined-mi)
dunny
rejoined-ai)
E;=)(?1:copy-11ve—onu dumny) (mi:live-in rejoined-mi))

1
il

;#%% (BK.MI:BUFFER-SPLIT SPLIT-MI DIRECTION)
(%R

;#*+ Ingerts a buffering dummy between a condition jump MI on the trace,
;#*++ SPLIT-MI, and one of its successors; DIRECTION (LEFT or RIGHT)
;#+* gpecifies which successor. The live information is recorded on
;##* the dunomy.

il

L ¥

(defun bk.mi:buffer-split (split-mi direction)
(let ((duanmy (bk.ai:new-dumay))
(edge-1ive (mi:live-out-on-edge split-mi direction)))
(push *bk.split-dunmies+ duzmay)
(bk.splice (11st split-pi)
dumny
(11 (== 'left direction)
(car (mi:succs split-mi))
(cadr (mi:succs split-mi))))

(:= (mi:copy-live-out dumay) edge-live)
0))

1 ¥E

(R

;*#++ (BK.COALESCE)

(EEe

;#*+ This takes the schedule of pachine operations and for each cycle
;### in the schedule constructs a compacted MI that represents the machine
;**# operations of the cycle. Each such “coalesced® MI is marked as
;### compacted and placed in the vector mapping #BK.CYCLE:MIs+ (the mapping

3
PS:<C.S.BULLDOG.TRACE>BOOKKEEPER.LSP. 1

http://bk.nl
http://bk.nl
http://bk.nl

C

¢

;#*+ 18 1-based, of course).
(R

;##% An enpty, permanent compacted MI is always added to the end of the
;#*# gchedule. This gives rejoins to the "end of the schedule® a place
;#%# to jump to and insures that even enpty schedules are reprsented by
;#*% one compacted MI (helping to nmaintain the asgsertion that all the
;##s» predecessors of DEFs and all the successors of USEs are compacted).
Rat

T pp—

(defun. bk.coalesce ()
(:= sbk.cycle:mi* (makevector (+ 2 *tr.schedule-sizes)))

;#%% Coalesce each cycle of the schedule.

(looi (iner cycle from 1 to #tr.schedule-sizes) (do
(:= ([] *bk.cycle:mi* cycle)
(bk.mi:coalesce (schedule:[] #tr.schedules cycle)))

(loop (for mi in (mi:constituents ([] #*bk.cycle:mi* cycle))) (do
(1f @l (then
(12 (! (pi:first-cycle mi))
(:= (mi:first-cycle mi) cycle))
(:= (mi:last-cycle mi) cyele)))))))

;%%¢ Add the an empty permanent MI to the end of the schedule.
;#*+ This MI 1s made to point at the on-trace dumay buffering
;##s the end of the trace, and the dummy made to point at the
;#** MI. This 18 done here since it won't follow out nicely in
;**+ later passes.

(105’((last-mi (bk.mi:coalesce ()))
(last-dunny (mi:trace-succ ([] *bk.trace-pos:mi# *tr.trace-size+))))
(:= ([] #bk.cycle:mi* (+ 1 str.schedule-sizes))
last-mi)
(:= (pi:succs last-mi) (118t last-dumay))
(:= (wi:preds last-dumny) (list last-mi)))

0)
iee
Ty
;#++ (BK.FIX-SUCCESSORS)
B

;#s% Fixes all the successors of the coalesced MIs on the schedule,
;#*% gplicing in split compensation code and DEFs where necessary.
H 1

(defun bk.fix-successors ()

(loop (incr cycle from 1 to str.schedule-sizes) (do
%ht.uchedule~n1:tiz-succa ([] *bk.cycle:mi* cycls) cycle)))

(let ((last-mi ([] *bk.cycle:mis (+ 1 str.schedule-sizes))))
(bk.splice-def&partial-schedule
last-ni
(schedule:split #tr.schedules* (+ 1 #tr.schedule-sizes))
(car (mi:succs last-mi))))

0

R

BRI

;#%+ (BK.SCHEDULE-MI:FIX-SUCCS MI CYCLE)

JEEE

;*##* Fixes the successors of the coalesced MI av a given cycle, generating
;*##* gplit compensation code and a DEF if it 13 a split.

S EER

* —————

(defun bk.schedule-pi:fix-succs (mi cycle)
(let ((juop-mis (bk.mi:cond-jump-constituents mi cycle)))

;#*+ The successors of the new MI are those of the original

;#*x conditional Jumps, with the conditional jumps' trace

;*##* guccessors replaced by the next scheduled instruction. Ve
;#*% update the predecessors of the off-trace MIs being jumped
;##* to, but not the predecessors of the on-trace MIs, which will
;##+ be done 1n the next pass.

(looﬁ (tor jump-ni in jump-pis)
(bind succ-mi (mi:off-trace-succ jump-mi))
” (initial succ-list ()) f
o
(push succ-list succ-mi)
¢ (i= (oi:preds succ-mi) (top-level-substq mi jump-mi R&E)))
t
res%pnsh succ-118t ([] sbk.cycle:mis (+ 1 cycle)))
(:= (pi:sucecs mi) (drevergse succ-list))))

;##* Check to ses i1f any elements were before the conditonal jump
;**% on the trace, but have now been scheduled below. For each,
;#** call it ABOVE-MI, we make a copy of it for placement before
;##+ each off-trace follower. Note that these ABOVE-MIs are formed
;#%% 1n reverse trace order, necessary since data precedence oust
;#%+ be preserved in the sequence of copled instructions. Thus
;#%+ the DECR in the loop below. After the copies are made, we
;##+ gplice in the DEF and partial schedule of multi-cycle

;#¢% operations that spanned the split point that the code

;### generator told us about.

JeEs

;#++ Before splicing each split edge looks like:

(ke

;##¢ pl -> dummy -> off-trace

11

;ees After, 1t looks like:

AL

;¢%% pl -> partial-sched -> def -> split-copies -> dunmy -> off-trace

(loop (for jump-ni in jump-nis)
(incr junp-number from 1?
(bind jumping-2i mi
junped-to-mi (mi:off-trace-succ juop-mi)
partial-scheduleddef
((schedule:split #tr.schedules cycle jump-number))
do
(loop (decr cycle2 from (- (mi:trace-pos jump-mi) 1) to 1)
¢ (bind above-mi ([] *bk.trace-pos:mi* cycle2))
do

(17 (& (mi:first-cycle above-mi)
(> (mi:first-cycle above-mi) cycle))

;#%# gcheduled?
(then

5
PS:<C.S.BULLDOG.TRACE>BOOKKEEPER.LSP.1

http://bk.nl
http://bk.nl
http://bk.nl

«

(:= jupped-to-mi (bk.splice (1list jumping-mi)
(bk.mi:copy above-mi ‘split)
jupped-to-mi))

(++ *tr.split-counts)

(bk.print-copy-after-nessage above-mi jump-ai)))))

(bk.splice-def&partial-schedule
juaping-mi
partial-scheduleidef
jupped-to-ni)))

0))
v
;##+ (BK.SPLICE-DEF&PARTIAL-SCHEDULE COALESCED-MI (DEF PARTIAL-SCHEDULE)
H b OFF-TRACE-MI)
JEea

;##% Splices a partial schedule and def as returned by SCHEDULE:SPLIT

;**% between a coalesced Bi on the newly formed schedule and its off-trace
;*%% guccegsor.

TS

e

(defun bk.splice-def&partial-schedule
(coalesced-mi (def partial-schedule) off-trace-mi)

(let ((jumped-to-mi off-trace-mi))
(1f def (then
(:= {unpad—to-nl
bk.splice (list coalesced-mi)
(bk.ni:new-use-def def)
jupped-to-pi))))

(1f partial-schedule (then
(:= str.partial-split-counts
(+ &2& (schedule:length partial-schedule)))
(loop (decr cycle from (schedule:length partial-schedule) to 1) (do
(:= junped-to-mi
(bk.splice (list coalesced-mi)
(bk.ni:coalesce (schedule:[] partial-schedule

cycle))
jusped-to-mi))))))
Junped-to-a1))

(hE
T

;##% (BK.PRINT-COPY-AFTER-MESSAGE COPIED-OP JUMP-OP)
IhEE

;#+% Used for debugging.

R

1 ¥

(defun bk.print-copy-after-message (copied-op jump-op)

(1f str.print-copying?+ (then
(nsg O t t "A new copy of " (mi:source copled-op)
®, schedule in cyclea *
(mi:first-cycle copied-op) ":" (mi:last-cycle copied-op) "," ¢

“was produced to follow the jump *

(ni:source jump-op)

“, Bchedule in cycles *

(gi;f}rst—cycle jump-op) “:* (mi:last-cycle Jjump-op) “.%
v

ETT]

Tewn

;#+* (BK.FIX-PREDECESSORS)

JEEE

;*** Fixes all the predecessors of the coalesced MIs on the schedule,

;#+* generating rejoln compensation code and USEs for MIs that are jolns.
ThER

(defun bk.fix-predecessors ()
(bk.build-trace-pos:rejoin-cycle)

;#*+ We can be sure that each MI 1s Jumped to by at least its
;#** gcheduled predecessor. Recall that the last MI in the
;#*% schedule 18 an empty MI.

(luoé (incr cycle from 2 to (+ #*tr.schedule-sizes 1))
(bind mi ([] sbk.cycle:mis cycle)
o pred-mi ([] *bk.cycle:mis (- cycle 1)))
o
(:= (ai:preds mi) (1ist pred-mi))))

;#++ Now fix up all the normal rejoins, including the rejoin to the
;*#%#* the top of the schedule.

(looﬁ (for rejoining-ni in #*bk.rejoin-dummies*) (do
(bk.rejoining-mi:fix-rejoin rejoining-mi)))

;#%* (BK.REJOINING-MI:FIX-REJOIN REJOINING-MI)

;*%# Fixes a rejoin from the off-trace REJOINING-MI to somewhere in the
;#%% gchedule. A rejoin point is selected at the highest point in the

;#%% gchedule such that all the operations scheduled below that point

;**% vere also below the original rejoin point. The rejoin from

;#%% REJOINING-MI is made. Then we copy into the rejoin all the operations
;#%» that have poved in the schedule up above the rejoin point. This

;**# 1g complicated when a conditional jump is copied --— we might have

;**% to copy some stuff onto the "off-trace® edge of the copied conditional
;#%% jump as well,

Ll

;##2 Note how having a special empty MI at the end of the schedule makes
;#+* things work out nice -- we always have a spot "at the end of the

;##% gchedule® to make a rejoin to.

R 1)

M
.

(defun bk.rejoining-ai:fix-rejoin (rejoining-mi)

(let#((trace-rejoined-mi (car (mi:succs rejoining-mi)))

7
PS:<C.S.BULLDOG.TRACE>BOOKKEEPER.LSP.1

8

http://bk.nl

¢

'

(rejoin-cycle

(bk.trace-mi:rejoin-cycle trace-rejoined-ni))
(rejoined-mi

([] sbk.cycle:mi* rejoin-cycle))

(:= (mi:succs rejoining-mi) (1ist rejoined-mi))
(push (mi:preds rejoined-mi) rejoining-ni)

;#%% Finally, figure out which operations were scheduled too early
;#%s for the rejoin, but really need to be jumped to. Make sure
;#*+ that they are copled before the rejoin, so they get executed
;#%% too. After the copies are nade, we splice in the DEF and

;#%% partial schedule of multi-cycle operations that spanned the
;##+ join point that the code generator told us about. Each join
;*#+# edge then looks like:

JEE

;##% off-trace-->joln-coples-->use-->partial-schedule-->rejoined-ni

(loop (imcr trace-pos from (mi:trace-pos trace-rejoined-mi)
to str.trace-sizes)
((bind below-mi ([] *bk.trace-pos:mi* trace-pos))
do
(1f (2& (mi:first-cycle below-mi) ;#*#* scheduled?
X (< (mi:last-cycle below-ni) rejoin-cycle))
then
(:= rejoining-mi (bk.copy-into-rejoin rejoining-mi
below-ami
trace-rejoined-si
rejoined-pi
rejoin-cycle))))))

(bk.splice-usekpartial-schedule
rejoining-mi
(schedule:join *tr.schedule* rejoin-cycle)
r;joined—ni)

E¢;t

;#¢s (BK.COPY-INTO-REJOIN REJOINING-MI MI-TO-COPY TRACE-REJOINED-MI
M REJOINED-MI REJOIN-CYCLE)

T

;##* This coples a source MI up into a rejoin, doing the necessary extra
;**+ copying for conditional jumps.

Rt

;*#s REJOINING-MI

;% MI-TO-COPY

;*#*# TRACE-REJOINED-MI
;#%% REJOINED-MI

;#+¢ REJOIN-CYLE

S e

;*##+ The MI copled into the rejoin 1s returned.
e 1]

s

The MI jumping into the trace/schedule.

The MI to copy into the rejoln.

The original MI in the trace that was joined to.
The new MI in the schedule that 1s joined to.
The cycle in the schedule of the rejoin.

(defun bk.copy-into-rejoin
(rejoining-mi mi-to-copy trace-rejoined-mi rejoined-mi rejoin-cycle)

(let ((copied-mi (bk.mi:copy mi-to-copy "join)))
(bk.splice (118t rejoining-mi) copied-mi rejoined-ai)

(++ str.rejoin-counts*) :
(bk.print-copy-before-message mi-to-copy trace-rejoined-mi)

;#+x If a condition jump 18 copied up into the rejoin, then on
;##+ the “off-trace® edge of the copy, we need to copy in all
;#*# operations which were originally between the rejoin and the
;#*¢ conditional on the trace, but haven't been copled up into
;*#%+ the rejoin.

(1f (ai:cond-jump? mi-to-copy) (then
(loop (incr trace-pos from (mi:trace-pos trace-rejoined-ni)
to (- (mi:trace-pos ni—to-copg) 1))
(bind below-mi ([] sbk.trace-pos:mi* trace-pos))
(initial pred-mi copled-mi)
(when (&2 (mi:first-cycle below-mi) ;##+ scheduled?
" (* (< (m1:last-cycle below-ni) rejoin-cycle))))
do
(:= pred-mi (bk.splice (list pred-mi)
(bk.ni:copy below-mi °join)
(ni:off-trace-succ mi-to-copy)))
(++ str.rejoin-counts)
(bk.print-copy-before-message mi-to-copy trace-rejoined-ni)))))

copied-mi))

ML

Bl

;#** (BK,.SPLICE-USEAPARTIAL-SCHEDULE USE PARITAL-SCHEDULE)

1%e

;#*% Splices a partial schedule and a use ag returned by SCHEDULE:JOIN
;*** between an off-trace MI on a joln and the coalesced MI that is joined
;¢** t0 on the nhewly formed schedule. Returns the MI in the join that
;##% now joins to the schedule (either a USE or else the last cycle of
;##% the partial schedule).

a1

1ERE

(defun bk.splice-use&partial-schedule
(off-trace-ni (use partial-schedule) coalesced-al)

(let ((joining-mi off-trace-ml))

(if use (then
(:= joining-mi
(bk.splice (list joining-mi)
(bk.pi:new-use-def use)
coalesced-mi))))

(12 partial-schedule (then
(:= str.partial-rejoin-counts
(+ £2& (schedule:length partial-schedule)))
Eloop (iner cycle from 1 to (schedule:length partial-schedule))
do

(:= joining-mi
(bk.splice (1ist joining-mi)
(bk.mi:coalesce (schedule:[] parti§1;schednln
cycle
coalesced-al)))))) y

joining-mi))

ML

9
PS:<C.S.BULLDOG.TRACE>BOOKKEEPER.LSP.1

10

http://bk.nl
http://bk.nl

'g/‘\

;##* (BK.PRINT-COPY-BEFORE-MESSAGE COPIED-MI REJOIN-MI)
JREE

;#%% Uged for debugging.

BT

(defun bk.print-copy-before-message (copled-ml rejoin-mi)
(1f str.print-copying?+ (then
(meg O t &t "A new copy of *®

(21:source copied-mi)
“, schedule in cycles *
(ni:first-cycle copied-mi) ":* (mi:last-cycle copied-ni)
*, was produced to precede the rejoin at *
(nl:source rejoin-mi) *."

t)))
0)
1Rk
LEEE
;### (BK.TRACE-MI:REJOIN-CYCLE MI)
11

;#++ Finds the point in the schedule where we can make a rejoln that was
;*sx originally to MI (an operation on the trace). That point 1s the
;#** highest point in the schedule below which are only operations which
;¥%* were originally below MI in the trace.

(defun bk.trace-mi:rejoin-cycle (mi)
([] sbk.trace-pos:rejoin-cycle+ (mi:trace-pos mi)))

1]
Rl

;*#x (BUILD-TRACE-POS:REJOIN-CYCLE)

ThkkE

;#*# Builds the array *BK.TRACE-POS:REJOIN-CYCLE+, amazingly enough.

;##% T-P:R-C(t) = ¢ 1ff c is the earliest legal cycle in the schedule
:#*+ at which a join originally at trace position t can be made; o.g.

;#*% given a join originally at trace position t, we make the join at

;##% cycle ¢ in the schedule. T-P:R-C 18 calculated by observing:

il

;##% Let Tc be the minimum trace position of all the operatlons scheduled
;##% at cycle ¢ or later. Joins to trace positions after Tc must be remade
;*#% at cycle c+l or later.

TkEd

(defun bk.build-trace-pos:rejoin-cycle ()
(:= *bk.trace-pos:rejoin-cycle+ (makevector (+ 1 str.trace-sizes)))

(loop (initial new-min-trace-pos #*tr.trace-sizes
oin-trace-pon str.trace-sizes)
Edecr cycle from #*tr.schedule-size+ to 1)
do
(loop (for elt in (mi:constituents ([] *bk.cycle:mi* cycle)))
((when elt)
do

(:= new-ain-trace-pos
(ain new-min-trace-pos (mi:trace-pos elt)))))

(loop (incr trace-pos from (+ 1 new-min-trace-pos)

to min-trace-pos)

(do

(:= ([] *bk.trace-pos:rejoin-cycle* trace-pos)

(+ 1 cycle)) ?)
(:= nin-trace-pos new-min-trace-poa))
(result

(loop (incr trace-pos from 1 to min-trace-pos) (do

(:= ([] #bk.trace-pos:rejoin-cycle* trace-pos) 1)))))

0
Rl
(kR
;#%+ (BK.PROPAGATE-LIVE-VARIABLES)
MLl
;**% This calculates live variables for all the split and join copies
;*#% that were made. The live info is propogated up from the buffering
;#*» gplit dummies up into the split coples; and from the USEs at joins
;*#¢# up into the join coples.
s
(EE

(defun bk.propagate-live-variables ()

(let ((to-do ()))

;*##* Sat the :COPY-LIVE-OUT of all USE MIa to be the set of
;+#++ of names constained in the USE.

(looi (for use-pl in =*bk.use-def-miss)
¢ vhen (== ’'use (pi:operator use-mi)))
do

(:= (mi:copy-live-out use-mi)
(for ((var loc) in (oper:part (mi:oper use-mi) °'body)) (save
var)))))

;##% Initialize TO-DD to be all the predecessors of the split
;**% dunmies and USE MIs that are uncompacted. Those
;*#*% uncomppacted predecessors are either copies or USE/DEFs.

(1005 (for split-mi in sbk.split-dummies*) (do
(loop (for pred-mi in (mi:preds split-zi))
(when (! (mi:compacted? pred-mi)))
¢ (when (! (memq to-do pred-mi)))
do
(push to-do pred-mi)))))

(loop (for use-mi in *bk.use-def-mist)
& (when (== ’'use (ml:operator use-mi)))
o
(loop (for pred-mi in (mi:preds uge-mi))
(when (! (mi:compacted? pred-mi)))
((when (! (memq to-do pred-mi)))
do
(push to-do pred-mi)))))

;##% Repeatedly pick an MI from TO-DO, all of whose successors
;*%# have known live info. Caclulate the live info of that
;**+ MI and remove it from TO-DO. If the predecessor of MI
;**+ 1 uncompacted, add it to TO-DO. This loop could probably
;**+ be aade much more efficient 1f need be.

11
PS:<C.S.BULLDOG.TRACE>BOOKKEEPER.LSP. 1

12

€

&

(loop (while to-do)
(initial o1 ())
(do

(:= ot
(100? (for possible-ni in to-do) (do
it (for-every (succ-mi in (mi:succs possible-mi))
(!== str.unknown-copy-live-out#
(@i:copy-live-out succ-mi)))
{then
(return possible-mi))))
(result ())))

;### Ve better have found an MI and it better be a copy
;##+ or USE/DEF and 1t better have one predecessor.

(asgert (& mi
== 1 (length (mi:preds mi)))
(Il (mi:copy-type mi)
(menq (mi:operator mi) ‘(use def)))))

(:= (mi:copy-live-out mi)
(loop (for succ-mil in (mi:succs mi))
(reduce unionq () (mi:live-in succ-mi))))

(:= to-do (top-level-removeq mi to-do))
(loop (for pred-mi in (mi:preds mi))
(vhen (! (mi:compacted? pred-mi)))
@ (vhen (! (memq to-do pred-mi)))
]
(push to-do pred-mi)))))

0))

e
.

il

;#** (BK.MISCELLANEOUS-CLEAN-UP)

SRR

;%*x Performs miscellaneous clean ups that aren’t degerving of a separate
;#%% pass,

(R

(defun bk.miscellaneous-clean-up ()
;**# Digpose of the source MIs on the trace:
(:= str.gs (set-diffq str.gs str.trace-niss))
;#** Digpose of the dummy list:
(1005 (for mi in #*bk.dummy-mis*) (do
(bk.unsplice mi)))
(:= str.ss (et-diffq *tr.s+ s¢bk.duanmy-nis*))
(:= *bk.dumay-nis+ ())
;#*s Update the expect value of each nev element:
(looi (tor =i in tbx.neu-fe;nnnenu—uiatj (do

(ai:find-expect ai)
(:= *bk.new-permanent-mis* ())

;*** Remove any new USEs that have no uncompacted predecessors,

;*++ and any DEFs that have no uncompacted successors. They are
;##+ ugeless.

(loop (for use-def-mi in #*bk.use-def-miss) (do
(1t (for-every (mi in (1f (== 'use (mi:operator use-def-mi))
(m1:preds use-def-nmi)
(zi:succs use-def-mi)))
(mi:compacted? mi))
(then
(-- *bk.use-def-count#)
(bk.unsplice use-def-mi)
(:= #tr.s* (top-level-removeq uge-def-ai *tr.ss))))))

(:= »bk.uge-def-nig+ ())

;##¢ Clear out the constituents field, which contains only old
;e*+ MIs which we won't want to use again, 80 we can gc em.

(looﬁ (iner cycle from 1 to #tr.schedule-sizes) (do
(:= (mi:constituents ([] sbk.cycle:mi* cycle)) ())))

;##% Clear out the successors and predecessors of the trace elements

;¥%% just in case.

(loop (for mi in etr.trace-miss+) (do
(:= (mi:preds mi) ())
(:= (ni:suceca mi) ())

(:= (mi:trace-succ mi) ())

(:= (mi:trace-pred mi) ())))

;#*% If requested, add (TRACE 1) to each compacted instruction.
(11 ;tr.genaraho-brace-lnfo?t (then
(loop (incr cycle from 1 to str.schedule-sizes) (do
(push (mi:source ([] #bk.cycle:mi# cycle))
*(trace ,*tr.trace-numbers))))))

;**+ Now we knov howv many new elements we've generated, 80 we
;**+ update *tr.ops-left*. Don't need the rejoin list anymore,
;#¥% alther:

(:= #tr.opas-lefts (+ &&&
(+ str.rejoin-count+
(+ str.split-counts
»bk.use-def-counts))))
(:= str.rejoin-totals (+ &2k *tr.rejoin-counts))
(:= «tr.split-totals (+ 222 +tr.split-counts))
(:= str.partial-rejoin-totals (+ &% str.partial-rejoin-counts¢))
(:= str.partial-split-totals (+ E&& *tr.partial-split-counts))
(:= s#bk.rejoin-dummiess ())
(:= #bk.split-dunmiess ())
0)
JEER
ML
;#*# (BK.MI:COALESCE CYCLE-LIST)
ML

;#*+ Makes a new compacted MI representing the machine operations of a

;¢*% cycle in the achedule. CYCLE-LIST represents & cycle in the schedule,

;#4% and 19 18 a list of pairs of the form:
JEEs

13
PS:<C.S.BULLDOG.TRACE>BOOKKEEPER.LSP. 1

14

¢

ThRR (MACHINE-OPERATION SOURCE-MI)
(HEE

;*#** where SOURCE-MI represents the source operation that caused

;#*» MACHINE-OPERATION to be generated (SOURCE-MI may be ()). The new
;#+% MI is marked as compacted, its :SOURCE 1s set to be the list of

;#** pachine operations in the cycle, its :CONSTITUENTS the SOURCE-MIs,
;#+* and its :TRACE-DIRECTION to be a list of LEFT/RIGHT indicating which
;#** vay the trace goes for that machine operation (significant only for
;#*% jumps).

JEEE

1) —mmem

(defun bk.mi:coalesce (cycle-list)
(let ((new-ml (mi:new

number (++ *tr.mi-numbers)
trace str.trace-nuobers
cogpacted? t)))

(push str.ss new-ai)
(push #bk.new-peraanent-mis+ new-mi)

(loop (for (oper source-mi) in cycle-1list)
) (initial current-prob 1.0)
do

(push (mi:source new-mi) oper)
(push (mi:constituents new-mi) source-mi)

(1f (&z& source-ni
(mi:cond-jump? source-mi))
(then
(push (mi:trace-direction new-mi)
(pi:on-trace-direction source-mi))
(:= current-prob
(* current-prob
(nr.edge-prob source-mi
(ai:off-trace-succ source-mi))))
(push (mi:edge-prob mew-mi) current-probd))))

(result
(push Eni:edga-prob new-pi)
-1.0

(loop (for prob in (wi:edge-prod new-mi))
(initial sum 0.0)
(next sum (+ sum prob))
(result sum))))
(:= (ai:edge-prob new-ni)
(dreverse (mi:edge-prob new-mi)))
(:= (@i:source new-mi)
(dreverse (mi:source new-mi)))
(:= (@l:constituents new-mi)
(dreverse (mi:constituents new-mi)))
(:= (mi:trace-direction new-pi)
(dreverse (mi:trace-direction new-smi)))))

nev-gi))

s

JEE%

;#*» (BK.MI:COPY OLD-MI COPY-TYPE)

it

;#*s Makes a copy of an MI suitable for splicing soaevhere else; none

;#*+ of the successor or predecessor fields are set. The copy is recorded
;### on *TR.S* and *bk.new-permanent-miss. COPY-TYPE should be either

;##* SPLIT or JOIN.
JREe

TR

(defun bk.mi:copy (old-mi copy-type)
(let ((new-mi (mi:new

nuober (++ *tr.mi-numbers)
constituents (1ist old-mi)
gource (nl:source old-mi)
copy-type copy-type

trace str.trace-nuaober#
compacted? ()

edge—-prob (oi:edge-prod old-oi

(push #tr.s+ new-ai)
(push #bk.new-permsanent-mis+ new-pi)

3)))

new-mi))
%
iaes
;ee¢ (BK.MI:NEW-DUMMY)
tens

;#+» Makes a new dummy MI which 1s marked as compacted.
;###* recorded on *TR.S+ and *BK.DUMMY-MIS+.
12

The dunny is

JHEE

(defun bk.al:new-dummy ()
(let ((new-mi (mi:new

number (++ str.mi-nusbers)
constituents ()
trace #tr.trace-nuabers

compacted? t)))

(push *tr.s* newv-ni)
(push *bk.dumny-pis* new-ni)
new-pi))

;#%% (BK . MI:NEW-USE-DEF USE-OR-DEF)

;*#*% Makes a new MI for a use or def.
B

;‘t-

(defun bk.mi:new-use-def (use-or-def)
(let ((new-mi (mi:new

nuaber (++ str.oi-nuobers)
gource (118t use-or-def)
coppacted? ()
trace *tr.trace-nuabers
edge-prob *(1.0)) }))
(:= »bk.use-def-count* (+ 1 *bk.use-def-count+))
(push str.ss new-pi)

(push #bk.new-perzanent-mis¢ new-pi)
(push ¢bk.use-def-mis* new-pi)

new-oi))

15
PS:<C.S.BULLDOG.TRACE>BOOKKEEPER.LSP. 1

16

C

;%% (BK.MI:COND-JUMP-CONSTITUENTS MI MI-CYCLE)

;#%* Returns those source MI constituents of a a coalesced MI that are
;#*» conditional jumps. For these purposes, a multi-cycle cond-jump is
;#** congldered a constituent of only its last cycle.

11

R

(defun bk.mi:cond-jump-constituents (mi mi-cycle)
(loop (for source-mi in (mi:constituents mi))
(initial result ())
(do
(12 (&k source-mi
(n1:cond-]junp? source-mi)
== pi-cycle (mi:last-cycle source-mi)))
(then
(push result source-pi))))
(result
(dreverse result))))

JEEE

;##s (BK.SPLICE PREDS TARGET SUCC)

JEEE

;##» Takes a 1ist of args (PREDS), an MI (TARGET), and another

;¢*+ MI, the SUCC. It 1s assumed that each pred 1s in preds of succ.
;#** SPLICE replaces succ with the target on the succs of each pred.

;#** If gucc 18 not a successor of some pred, then no change occurs for
;e** that pred. The preds of succ is changed so that all of the

;%% elements of of pred are removed, and the target is inserted (I know,
;##% this is a dumb comment, just repeating the code...).

T ¥R

;**3 If TARGET 18 unconpacted, SFLICE assumes that we have a copy of a
;*##* new MI which has just been built from a 1ist of trace elements. That
;##% i3, it expects the elements of the list (MI:CONSTITUENTS TARGET)
;*#*% to have trace successors and preds., If one of the elements of the
;##% 1ist 19 a cond. jump, the off trace flowsus are are preserved in
;#*+ the copy.

LR

;#++ If TARGET 15 compacted, then we make SUCC be the successor of TARGET,
;¥x: always.

S EER

;#*% The effect of all this, and the corresponding changes to the

;#** predsksu of target, 1s to insert target in the flow between all

;*** the preds and the succ. preds are a list while succ only one elt
;#*% because 1t happened to be more convenient to use 1t that way.

JEEE

A
(defun bk.splice (preds target succ)

(assert (subset? preds (mi:preds succ)))
(assert (not (memq target (mi:preds suce))))

;e*+ First have target replace succ as the successor of each
;**+ ¢lement of pred. Then make pred the predecessor list of

;#%% target.

(tor'(pred in preds) (do
(:= (mi:succs pred)
(top-level-substq target succ (mi:succs pred)))))

(:= (mi:preds target) preds)

;**% Remove all the preds from the predecessor list of succ, and
;*##+ replace them with target.

(:= Eui:preds succ) (set-diffq (mi:preds succ) preds))
(push (mi:preds succ) target)

;*++ Finally, make succ the successor of target. If target 1s
;*%% to represent an uncompacted conditional jump, it should still
;*#%% jupp to all the off-trace elements, and we need to update
;#%% their preds’s. We assume that we're only splicing 2-way

;#%+ {uops.

(1f (22 (! (mi:compacted? target))
(oi:constituents target))
(then
(assert (<= (length (mi:constituents target)) 1))
(let ((jump-elt (car (mi:constituents target))))
(:= (mi:succs target)
(top-level-gubstq succ
(m1:trace-succ jump-elt)
(mi:succs jump-elt)))
(for (target-succ in
(top-level-removeq succ (mi:succs target)))

(do
: (push (mi:preds target-succ) target)))))
elae
(:= (ml:succs target) (1list suce))))

target)
e
;#s» (BK.UNSPLICE TARGET)
Jeee

;#*% Undoes the effects of a splice of the element. We don’t need

;%#¢ to give the preds and succ, since they can be determined from the target
;¢##+ plone. When the succa of the target is more than one element, there
;##% 18 an error; for some reason, I feel it necessary to test for this one,
;#++ and report on it.

Hi

(defun bk.unsplice (target)
(assert (! (cdr (mi:succs target))))

(let ((preds (ami:preds target))
(succ (car (mi:succs target))))

(for (pred in preds) (do
(:= (mi:succs pred)

(top-level-substq succ target (mi:succa pred)))))

17
PS:<C.S.BULLDOG.TRACE>BOOKKEEPER.LSP. 1

i8

:= (ml:preds succ)
(unionq preds (top-level-removeq target (mi:preds succ))))

(:= (oi:succs targes) ())
E:= (?1:prads target) ())

19
PS:<C.S.BULLDOG.TRACE>BOOKKEEPER.LSP.1

¢

¢4 (build *tr.build-module-list#)
+*% (build.compile #tr.build-module-lists)

(:= #tr.build-module-list* *(
trace:mi

trace:naddr-rec
trace:nls-to-pnaddr

trace:trace-picker
trace:bookkeeper
trace:display
trace:compact
;r?ce:compacb-upblons

(:= sbuild-module-list* (append ¢bulld-module-list# #*tr.build-module-1lists))

1
PS:<C.S.BULLDOG.TRACE>BUILD.LSP.4

¢ ¢

(eval-when (compile load)
(include trace:declarations))

i1 Initialization of all the trace modules. This is all gross organization,
;+s but 1t will have to do until the bookkeeper is rewrltten.

(defun tr.initialize ()

(tr.initialize-bookkeep) ;:; Initialize the bookkeeper.

(tr.initialize-trace-picker) ;i Initialize the trace picker.

(initialize-code-generator) s+ Initialize the code generator.

(:= str.s» 0) ;i All known MIs.

(:= *tr.mi-numbers 0) ;i; Counts the new mi’s.

(:= str.rejoin-totals 0) :+: How many rejoin MIs total

(:= «tr.rejoin-count# 0) ;+:; How many rejoin MIs this trace

(:= str.split-totals O0) ;+; How many split MIs total

(:= *tr.split-count* O0) ;i: How many split MIs this trace

(:= #tr.partial-rejoin-totals 0) ;;; How many partial-schedule rejoin MIs
i total

(:= str.partial-rejoin-count* 0) ;;; How many partial-schedule rejoin MIs
R this trace

(:= str.partial-split-totals O0) ;.; How many partial-schedule split MIs
HHH total

(:= str.partial-split-count# O) ;;; How many partial-schedule split MIs
HHH this trace

(:= *tr.total-cycles# 0) :;; How many cycles in final sched

(:= str.schedules ()) ::; Clear out any old schedule,

+:: Initialize the hook functions

(1f str.generate-code-hook+

(funcall *tr.generate-code-hooks ()))
(1f +tr.dag-hooks

(funcall *tr.dag-hook* ()))

(defun compact (naddr)

(let ((str.space-modet* #tr.space-modes) ;;; Dynamically bind these vars
(str.windows str.vindows)) ;i: in case we change them during
:;; coppaction below -- dynamic
;:; binding will restore their values.

;;: Initialization (done once per setting of #tr.s+):
(tr.initialize)
(set-conpactor-flags) ::: Sets flags for space-saving,
i:: display methodology, etc.
(tr.get-+tr.s+ naddr) :;; Bullds the global 1ist *tr.ss
(:= str.svart-length* (length *tr.s+));;; Saved for final print-out

(:= str.ops-lefts ;;: For running total of ops
(loop (for elt in #tr.se) ::: still needing compaction.

(initial ops 0)

(do

(12 (! (mi:compacted? elt))
(++ ops)))

(result ops)))

::: Scheduling loop:

:i: supporting information.

(loop (iner str.trace-numbers from 1)

(do

(if (&& str.delayed-space-mode#
(= str.trace-nuambers #tr.delayed-space-mode-traces))
(then
(msg 0 t t "Now using delayed space mode//window *
str.delayed-space-mode+ *//" str.delayed-windows t)

(:= str.space-mode# #tr.delayed-space-nodes)
(:= str.window* str.delayed-windows)))
(tr.pick-trace)) :::; Build the next trace.
(while *tr.trace-miss) ;:; While there are uncompacted

(do

;i opa left.
(tr.display-trace-info str.trace-nusbers*)

(1f (1f (comsp #tr.break-before-schedulings)
(member str.trace-number# str.break-before-scheduling#)
*tr.break-before-schedulings+)
(then
(break-point before-scheduling)))

(com.schedule) ;:: Schedule the trace.
(tr.display-one-schedule)

(tr.bookkeep) ;:: Add nev ops wherever
i:; necessary.
(1f (1f (consp *tr.break-after-bookkeepings
(member #tr.trace-number# str,break-after-bookkeepings*)
str.break-after-bookkeepinge)
(then
)(break-poinh after-bookkeeping)))

(result

(tr.display-vhole-sched-info #tr.trace-numbers)))

str.gs))

(defun set-compactor-flags QO

(assert (member #tr.display-levels ‘(0128486)))
(assert (memq *tr.space-modes *(nil mrt nsc cjo)))
(assert (memq +tr.delayed-space-mode+ '(nil mrt nsc cjo)))
Easgurt (nember #tr.trace-pickers *(normal bb 1liberal)))
)

(defun com.schedule ()
(let*((first-mi (car »tr.trace-miss))

(1ive-before (mi:live-in first-mi))
(last-ml (last-elt *tr.trace-miss))
(live-after

1
PS:<C.S.BULLDOG. TRACE>COMPACT.LSP. 10

¢ (ni:1ive-out-on-edge last-mi (al:on-trace-direction last-mi)))
trace
(for (m1 in #*tr.trace-miss*) (save
*(,(car (ei:source mi))
.(n1:on-trace-direction mi)
.ol
.(1f (mi:cond-jump? mi)
E?islivg—out—?n-edge ni (mi:off-trace-direction m1))
))

(tr.display-generate—code-arguments live-before trace live-after)
(:= *tr.schedule* (generate—code live-before trace live-after))
(:= str.schedule-size* (schedule:length #tr.schedules))

(:= *tr.total-cycless (+ #tr.total-cycless *tr.schedule-sizes))
0))

3
PS:<C.S.BULLDOG. TRACE>COMPACT.LSP. 10

C

: COMPACT OPTIONS
: This module contains the definitions of options dealing with the trace
; compactor.

(eval-when (coampile)
(build '(utilities:options)))

(def-option str.display-levels 4 trace: *
Controls how much 1s printed out during compaction.
0 - absolutely nothing.
- only final stats.
= 1like 1, but dumps a histogram of uncompacted MIs left during
scheduling. What fun.
trace info for each trace, no schedule.
= trace info + schedule for each trace.
= All of 4, plus the elements of each trace.

bt N~
1

")

(def-option #tr.space-mode+ () trace: ®
Controls the way that space saving is done.

) no space saving.

*MRT mininum release times. Won't let juaps get scheduled until the
source order preceeding opas could have been scheduled, had there
been no resource conflicts.

'NSC no splice copies. Refuses to schedule jumps until all the source
order preceeding ops HAVE been scheduled. Thus no splice coples
could ever be generated.

'CJO preserve the source order of conditional juops by not allowing

"y a conditional %o move above a previous conditional.

(def-option #tr.window+ () trace: "

When *TR.SPACE-MODE+# = °MRT 18 used, +TR.WINDOW* is subtracted from the
calculated release time. Yes, Virginia, you can set *TR.WINDOW# to -100
ggd get a lot of empty cycles.

(def-option str.delayed-space-mode+ () trace: *

If *TR.DELAYED-SPACE-MODE+ is non-(), then starting with trace
*TR . DELAYED-SPACE-MODE-TRACE+, the *TR.DELAYED-SPACE-MODE*+ and
:;R.DELAXED—UINDDH‘ replace *TR.SPACE-MODE+ and *TR.WINDOW=.

(def-option str.delayed-window* () trace: *
§;e *TR.DELAYED-SPACE-MODE* .

(def-option str.delayed-space-mode-traces 2 trace: *
s)eo *TR .DELAYED-SPACE~MODE* .
-

(def-option #tr.trace-picker* ‘normal trace: ®

Controls the way that traces are picked.

*NORMAL conservatively goes past splits and joins.

*BB basic block compaction only.

'LIBERAL goes past splits and joins whenever it canm,

) ignoring edge-probabllity and just using expect.
L]

(def-option #tr.generate-trace-info?* () trace: *

Dumps certain trace—-information into the output parallel NADDR.
() do nothing.

T put (TRACE 1) in each compacted instruction.

(def-option str.generate-code-hook+ () trace: *®
Undocumented, sorry.
")

(def-option #tr.dag-hooks () trace: *®
U?doculented. sorry.
-

(def-option #tr.break-before-scheduling* () trace: ®

If T then the compactor will stop at a breakpoint right before the current
trace 18 scheduled (given to the codegenerator). If it is a liat of trace
ngnhers. then the compactor will stop only on those traces.

-

(def-option *tr.break-after-bookkeeping* () trace: *

If T then the compactor will stop at a breakpoint right after the current
trace has been compacted and munged by the bookkeeper (i.e. right before
picking the next trace. If it is a list of trace numbers, then the
cgnpactor will stop only on those traces.

L]

(def-option str.print-copyingP+ () trace: *

I T then the bookkeeper will print out information about all join and
nglit copies as they are made.

-

1

PS:<C.S.BULLDOG.TRACE>COMPACT-OPTIONS.LSP.8

Coppiler Declarations.
Any module that needs these declarations must do:

(INCLUDE TRACE:DECLARATIONS)

e ma mE s s s ma s

(eval-when (compile)

(build *(
utilities:sharp-sharp
trace:mi
;n§a§preter:naddr

(declare (special
*#Lr.break-before-schedulings
tr.break-after-bookkeeping
tr.dag-hook#
tr.delayed-space-node
*tr.delayed-windows
*tr.delayed-space-pode-traces
*tr.display-levels
*ir.generate-code~hooks#
str.generate-trace-infots
#tr.mi-nunbers
str.ops-lefts*
tr.partial-rejoin-count
*tr.partial-rejoin-totals
str.partial-split-counts
*tr.partial-split-totals
*tr.print-copying?s
str.rejoin-counts*
str.rejoin-totals
*tr.schedule-sizes
str.schedules
*tr.space-nodes
tr.split-count#
*tr.split-totals
#tr.start-lengths*
str.ae
*tr.total-cycles#
str.trace-nuobers*
#*tr.trace-pickers
str.trace-nis*
$tr.trace-glzes
#tr.unknown-copy-live-out#
;t§.u1ndoua

1
PS:<C.S.BULLDOG.TRACE>DECLARATIONS.LSP.10

C

(eval-when (compile load)
(include trace:declarations))

(defun tr.display-trace-info (traceno)
(caseq *tr.display-levels

(2
(1f (= traceno 1) (then
(zsg 0 t “Histogram of total MIs left (# = 10 MIs):")))

(msg 0)
(loop (incr 1 from 1 to #tr.opa-left+ by 10) (do
(print *#))))

((348

(msg 0 t "Trace No.: " traceno ™ Trace size: " str.trace-sizes

(msg oper)))
(msg &)))))

(defun tr.display-whole-sched-info (traceno)

(cas?q *tr.display-level#

(1238 465)
(esg 0t ¢

“FINAL SCHEDULING TOTALS: * (c (daytime)) ¢
“Length of original sequence:" (t 35)

*Total
*"Total
*Total
"Total
"Total
"Total

(t 85)

rejoin coples:®
] 1 (t 85)

split coples:*

partial-rejoin copies:® (t 85)
partial-split copies:* (t 86)
traces:" (v 85)

cycles scheduled:"® (t 86)

*tr.start-lengths
*tr.rejoin-totals
tr.split-total

1
t
t

str.partial-rejoln-total+ ¢

str.partial-split-

(+ -1 traceno
tr.total-cycles

totals t
t
t)))

* Offtrace OPs left: " str.ops-lefts t) 0)
(msg *"Trace elements: * (h (mi-list:numbers *tr.trace-miss)
10000 10000))
(zsg 0 "Rejoin//split copies from last trace: "
str.rejoin-count* *//* str.split-counts+ t)
(msg 0 "Partial-rejoin//split copies from last trace: "
0) str.partial-rejoin-count* *//" #tr.partial-split-count* t)))
(defun tr.display-generate-code-arguments
(live-before source-record-1ist live-after)
(1f (== 5 str.display-levels) (then
(msg 0 v "Arguments passed GENERATE-CODE:" t
“LIVE-BEFORE = * (h live-before 100 100) &
"LIVE-AFTER = * (h live-after 100 100) t)
(loop (for (oper direction mi off-1ive) in source-record-1ist)
(incr 1 from 1)
(do
(meg (J £ 8) *//" () (mi:number pi) 4) °: =
(h oper 100 100) (t 85) »
() direction -7) = *®
(§ (ai:trace mi) 8) = ™
(h off-1ive 100 100) t)))
(esg t))))
(defun tr.display-one-schedule ()
(caseq str.display-levels
((4 5)
(zsg 0 "Schedule:* t)
(loop (iner cycleno from 1 to *tr.schedule-sizes) (do
(msg 0 v () cycleno 8 #/-) =--»)
(tor ((oper source-ei) in (schedule:[] *tr.schedules cycleno))
do
(12 (> (flatsize orer) (chrct)) (then
(psg 0 " "))
1 2

PS:<C.S.BULLDOG.TRACE>DISPLAY.LSP. 11

C

C

. MI

.
»
.
.
.
.

An MI (micro-instruction) represents either an uncompacted source operation
or else a compacted instruction. Taken as a group the MIs form the
flow graph used by the trace scheduler.

(def-struct mi :

; The following fields are filled in when a record 1s made from a source
. instruction and handed to the compactor in the first place, and when
; & new record is made from old ones.

nuaber ; A unique number used for naming this MI.

source ; The 1ist of the single source NADDR operation this
; represents (if uncompacted) or the list of machine
: operations in the instruction (if compacted).

expect E The relative probability of the MI's execution.

(succa ; A 1list of the MIs to which control could next

() suppressed); flow from this one. SU is for successor.

(preds
() suprress)

A 118t of the MIs from which control could have flowed
to this one. PR is for predecessor.

edge-prob An assoc 1list. Having (m4 .6) on p2’'s list means
that m4 13 a successor with probability .6 of being
Junped to next after the execution of mé4. All of
the probs on the list should total i, though that's
not necessary for the code to work correctly.
Functions edge-prob and edge-prob:set manipulate
the list.

conpacted? True if the MI represents a compacted machine
instruction or if the trace-scheduler no longer
wants to consider this record for scheduling. False
if if this represents an uncoampacted source
operation.

I e

The following depend upon the choice of a trace and are filled in after
an operation has been placed on a trace:

(trace-succ : The next element on the current trace.
() suppressed)

(trace-pred ; The previous element on the current trace.
() suppressed)

trace-pos ; Which element (i-based) of the current trace this is.

first-cycle ; First and last cycles of the generated pachine

e e ome me we

last-cycle machine operations corresponding to this source

operation.
trace-direction ; Used in an MI built from several MIs compacted
together. Used when n > O cond-jumps are compacted
to form part of the MI. A list containing n

: to the succs in the same position in the list
succs (which 1s itself, however, of length n+1).
; Also corresponds to the cond-jumps in the MI:SOURCE
; field, which is expected to have its cond-jumps
; in source order. A LEFT in the field indicates
; that the juop is to the next trace element if true,

off-trace if false. RIGHT 1s the reverse.

E elements, each LEFT or RIGHT and each corresponding

The following fields are used during bookkeeping:

(constituents As a new MI is being formed out of a list of ops
which were scheduled in the same cycle, this field
() suprress); buffers the list of those opsa.
For uncompacted MIs only, one of:
- if this MI is an original source instructions.
JOIN - if this MI 1s a rejoin copy.
SPLIT - 1f this MI 18 a split copy.

copy-type

e ms mawE mE wE s owr wE W e

(copy-live-out ;

*tr.unknown-copy-live-outs)
For uncompacted rejoin or split copy MIs only; this
contains the variables live on exit from the MI.
For original source MIs, we get the live info from
the flow analysis.
trace This field is used for picture drawing and debugging
only. It is the number of the trace that produced
this MI. If the MI i1s compacted, then it is the
nupber of the trace that compacted it; if
uncompacted, it 18 the trace made it or () for
original source MIs.

T T T TR T TR TR TR T

The following is used during the translation of MIs to NADDR.

.
.

hranslated-to-soérce
; Contains the actual pnaddr produced froam the MI.

(MI:OPERATOR MI)
For uncompacted MIs, the NADDR operator.

(MI:OPER MI)
For uncompacted MIs, the NADDR operation.

(MI:COND-JUMP? MI)
True if MI represents a conditional jump (has more than one successor).

() for compacted MIs.

() for compacted MIs.

|

PS:<C.S.BULLDOG.TRACE>MI.LSP.1

c

(MI:REJOIN? MI)
True if MI 18 Jumped to by other MIs (has more than one predecessor).

(MI-LIST:NUMBERS MI-LIST)
Takes a 118t of MIs and returns a corresponding list of their numbers.

#8MI 38
Returns the MI numbered 386.

(MI:LIVE-OUT MI)
Returns the list of names live on exit from MI.

(MI:LIVE-IN MI)
Returns the 1liat of names live on entrance to MI.

(MI:LIVE-OUT-ON-EDGE MI DIRECTION)
Returns the list of variables live on entrance to one of MI's
successors. DIRECTION is LEFT or RIGHT or (), selecting either
the left or right successor of MI or neither successor.

(MI:ON-TRACE-DIRECTION MI)

(MI:OFF-TRACE-DIRECTION MI)
These functions return which way (LEFT or RIGHT) the on-trace and
off-trace edges of an MI go (LEFT always for a non-conditional-jump).
If MI has no on-trace successor marked yet, the trace is assumed
t0o go to the left.

(MI:0OFF-TRACE-SUCC MI)
The off-trace successor of MI. Valid only during bookkeeping.

(MI:OFF-TRACE-PREDS MI)
The list of off-trace predecessors of MI. Valid only during
bookkeeping.

W WA e W WA B W RS WS I WS B B Br B BE B e W B N Bd B s Ws W e ws EE s EamswE e EE oW

(eval-when (coapile)
(build *(
utilities:sharp-sharp.
interpreter:naddr)))

(defvar *tr.unknown-copy-live-outs (cons ‘#+tr.unknown-copy-live-outs))
E:s- Special marker showing that we don't know the value of
;**# MI:COPY-LIVE-OUT field.

(defun mi:operator (mi)
(assert (mi:is mi))
(1t Egi:conpactcd? oi)

(oper:operator (car (mi:source mi)))))
(defun mi:oper (mi)
(assert (oi:1s mi))
(12 (mi:compacted? =mi)
(car (mi:source mi))))
(defun mi:cond-jump? (mi)

(assert (mi:is mi))
(> (length (mi:succa m1)) 1))

(defun mi:rejoin? (mi)
(assert (@i:is mi))
(> (length (mi:preds mi)) 1))

(defun mi-list:numbers (mi-list)

(for (mi in mi-1list) (save
(assert (mi:is mi))
(oi:nuaber mi))))

(def-sharp-sharp oi
‘ (a1-with-nunber ,(read)))

(declare (special *tr.ss))
(defun mi-with-number (number)
(loop (for elt in #tr.s+) (do
(1f (= (pl:number elt) number) (then
(return elt))))
(result nil)))

(defun mi:live-out (mi)
(asgerv (&2 (mi:is mi)
(! (2i:compacted? mi))))
(1f (== etr.unknown-copy-live-outs (nl:co;}-livu-ont ai))
(oper:live-out (car (mi:source mi))
(oi:copy-live-out mi)))

(defun mi:1ive-in (mi)
(assert (&& (mi:1s mi)
(1l (! (mi:compacted? mi))
(! (mi:source al)))))

iess MI 13 either uncoapacted or else it is & dumay MI.

(1f (== str.unknown-copy-live-outs (ni:cop§-11vn-ont #i)) (then
(oper:live-in (car (ai:source mi)))

(else
(unionq
(top~level-rezoveq (oper:part (car (ai:source ai)) ‘written)
(ei:copy-live-out mi))
(loop (for-each-oper-operand-read (car (mi:source mi)) name)
(save name))) ;))

(defun mi:live-out-on-edge (mi direction)
(asgert (& (mi:1s mi)
(! (si:compacted? mi))
(memq direction '(left right))))

(? ((== str.unknown-copy-live-out* (mi:copy-live-out mi))
(oper:live-out-on-ggge (car (mi:source mi)) direction))

((! (msi:cond-junp? mi))
(a1:copy-live-out mi))

(

t
(intersectionqg

3
PS:<C.S.BULLDOG.TRACE>MI.LSP.1

(ni:copy-live-out mi)
(mi:live-1in
(caseq direction
(left (car (mi:succs ml))
(right (cadr (mi:succs mi))))))))))

(defun mi:on-trace-direction (mi)
(aggert (mi:is oi))
(12 (1] (! (ni:trace-succ mi))
(== (car (mi:succs mi)) (ei:trace-succ mi)))
'left
‘right))

(defun mi:off-trace-direction (mi)
(assert (mi:is mi))
(assert (== 2 (length (mi:succs mi))))

(12 (1] (! (mi:trace-succ mi))
(== (car (mi:succs 11)) (mi:trace-succ mi)))
‘right
*left))

(defun mi:off-trace-succ (mi)
(assert (mi:is mi))
(1f (== (mi:trace-succ mi) (car (mi:succs mi)))
(cadr (mi:succs ml))
(car (mi:succs mi))))

(defun mi:off-trace-preds (mi)
(assert (mi:is mi))
(top-level-removeq (mi:trace-pred mi) (mi:preds mi)))

5
PS:<C.S.BULLDOG.TRACE>MI.LSP.1

c

¢

; To convert a list of mi‘s (such as returned by the compacter) into
; parallel naddr (PNADDR):

(nis->pnaddr mi-list)

; The conversion is very simple minded-- preorder traversal of the
; flow graph, starting at the one node that has the (START) source.
. Each node is visited only once (using the MI:TRANSLATED-TO-SOURCE
; flag to remember visits).

: It 15 assumed that there are one or two flow successor for each MI.
; Conditional boolean jumps (TRUEGO, FALSEGO) are converted into the
. parallel naddr form with two explicit labels, 1ike the if-then-else
; haddr operations.

: This module convert compacted microinstructions into parallel naddr code.

.
.
.
.
.
.
.
.
.
.
.
.
»
.
.
.
.
.
.
.
.
.

(aval-when (coapile load)
(include trace:declarations))

(declare (special
;n;s-bo-dot ;es+ gtack of mi’s possibly not yet processed

T
MLl

(defun mis->pnaddr (mi-list)
(asgert (listp mi-list))
(:= spis-to-do* ())

(let ((pnaddr-streas ())
(pnaddr 0l)

;### no predecessors, push 1t on our to-do stack.

(for (mi in mi-1list)
(do (:= (mi:translated-to-source mi) ())
(1f (== °*def-block (caar (mi:source mi)))
(push *ais-to-do* mi))))

;#*+ while there are untranslated mi’'s, do
L convert each one to pnaddr

(loop
(initial mi ())
(wvhile epis-to-dos)
(do (pop *mis-to-dos mi)
(if (! (msi:translated-to-gource mi)) (themn
(if (:= pnaddr (mi:pnaddr mi))
(push pnaddr-stream pnaddr))))))

(dreverse pnaddr-stream)))

;*#** Translate the list of mi’s, MI-LIST, into & a parallel naddr progras.

;%8¢ clear the "translated® flag of every mi, and if it has

LERE
;#++ Translate the single mi MI into a parallel naddr statement. As a
;##% gide effect, push on #MIS-TO-DO* the successors of this nl. Only
:#4% the labels of source naddr statements are changed (for jumps).
;#*+ The new instruction is also placed in the translated-to-source
;e#+ field of the ml.

(defun mi:pnaddr (=i)
(asgsert (mi:i1s mi))

(:= (mi:translated-to-source ni) t)

(let ((popers 0)
(cond-oper ())
(trace-dir (mi:trace~direction mi))
(succs (ai:succs mi)))

(case fapar:gron (car (mi:source mi)))
(?dat-block) T
t

(push popers *‘(label ,(mi:pnaddr-label mi)))))
;#¢% translate each of the source naddr statements

(for (oﬁor in (mi:source mi))
(do (caseq (oper:group oper)
(goto)

(def-block
(:= poparas (reverse oper))) ;s¢¢ sigh, hack

(cond-junp
(push cond-oper
*(,(oper:operator oper)
, (oper:part oper ‘readl)
., (oper:part oper ‘read2)
,(oper:part oper °probability)
,(1f (== (car trace-dir) 'right)

,(1f (== (car trace-dir) ‘'left)

(pop succs)
(pop trace-dir))

(1¢2-then-else
(push cond-oper
*(,(oper:operator oper)
, (oper:part oper ‘readi)
, (oper:part oper ‘read2)
. (oper:part oper ‘probability)
. (12 (== (car trace-dir) °‘right)

,(1f (== (car trace-dir) ‘left)

{pop succs)
(go; trace-dir))

1

PS:<C.S.BULLDOG.TRACE>MIS-TO-PNADDR.LSP.6

;##+ generate a label for thism MI if this isn't a DEF-BLOCK.

(then (mi:pnaddr-label (car succs))))
(then (pi:pnaddr-label (car succs))))))

(then (mi:pnaddr-label (car succs))))
(then (mi:pnaddr-label (car succa))))))

C

(t
(push popers oper)))))

;#** record the conditional jump, if any, as a COND

(it cona—oper (then
(push cond-oper *‘(goto ,(mi:pnaddr-label (car succs))))
(push popers °(® ,(dreverse cond-oper)))))

;#*+ push the successors on the stack

(:= succs (mi:succe mi)) ;##+ in case you forgot (ha ha).
(for (succ in succs)
(do (17 (! (ai:translated-to-source succ))
(push *mis-to-dot succ))))

;##+ Hack, 1f there 1s one successor and it°s already
;### been translated, we need to do an explicit GOTO.
;##+ O.w. it will be done next, it's code will follow
;¢#+ ippmediately.

(11 (28 (= 1 (length succs))
(mi:translated-to-source (car succs)))
(push popers ‘(goto ,(mi:pnaddr-label (car succs)))))

;:; (mi:translated-to-gource mi) (dreverse popers))

ek

;#¢¢ Return the label of an MI.
Rl

(defun mi:pnaddr-label (mi)
(assert (mi:is oi))
(atomconcat ‘'l (mi:number mi)))

3
PS:<C.S.BULLDOG.TRACE>MIS-TO-PNADDR.LSP.6

c

c

J. Fisher
11/30/81

. N-ADDRESS CODE INTO COMPACTION RECORDS TRANSLATION.

(eval-when (compile load)
(include trace:declarations))

(declare (special
*nr.xref-lists

(defun tr.get—+tr.s+ (naddr)
(nr.naddr-to-records naddr))

i+ hr.naddr-to-records does the actual conversion. First, an end statement
:+: 18 provided by nr.cleanly-end-program if none exists. Then records are
;i formed, but these have actual names rather than pointers where other
::: records belong (i.e. as flow successors) and have namea, not the needed
i:: numbers, for registers. A final routine fixes that...
(defun nr.naddr-to-records (naddr-list)

(nr.form-records (nr.cleanly-end-program naddr-list))

(nr.replace-names-with-pointers)

(nr.build-flow-prs)

(nr.eliminate-gotos)

(nr.set-all-edge-probabilities)

(nr.calculate-expects)

(:= #*ar.xref-11st+ ())
nil)

:: To form recorda, we the following. The list is processed statement
::; by statement. If the statement 18 not a label or an expect, a record ia
;i built by a call to nr.make-new-record. Then all the labels that referred
:: to this statement are placed in the label table as doing so.

:: When a label i1s encountered, it 1s placed on the currently active list,

where labels are accumulated until an operative statement is encountered.

: SPECIAL CASES:
= Unknown opcodes are ignored.
= Little error checking is done, but missing labels are reported.

(defun nr.form-records (naddr-list)

{:
{:

(let ((active-labels nil)
(stat-count 0)
(current-record nil))

#tr.g+ nil)
snr.xref-1list+ nil)

(for (stat in naddr-list)
(do

(cond
((nr.type-of-stat-that-makes-records stat)
(++ stat-count)
(:= current-record (nr.make-new-record

stat stat-count))
(push #tr.s+ current-record)
(nr.put-xref stat-count current-record)
(for (1lab in active-labels)
(do (nr.put-xref lab current-record)))
(:= active-labels nil))
((== *label (oper:operator stat))
(push active-labels (oper:part stat ‘labell) })))))

nil)

;:; An end statement is provided if none exists. Thus problems like end

;. labels and fall throughs are OK.

(naddr-11st)

(defun nr.cleanly-end-prograas
4 asve '(engg))

(1f (not (equal (last-elt naddr-1ist)
(then (nconc naddr-list "((end))
(else naddr-list)

;:: In mi:succs of each formed record, we have a name for each follower.
;:: This is changed to be the actual pointer.

(defun nr.replace-names-with-pointers ()
(for Eelt in str.g*)
do

(:= (mi:succes elt) (mapcar 'ar.get-xref (mi:succs elt)))

)]
;i3 Little gelf-evident syntactic sugar utilities:

(defun nr.type-of-stat-that-makes-records (atat)
(menq (oper:group stat)
*(two-in-one-out one-in-one-out vload vstore if-then-else
goto esc live end stop trace-fence loop-end loop-start
def-block dcl assert use def loop-assign)))

Self evident storage routines to cross-reference names of registers va.
numbers, and labels vs. statements.

(defun nr.put-xref (lab mi)
(push #nr.xref-lists (1ist labd ai)))

(defun nr.get-xref (lab)
(let ((result (cadr (assoc# lab snr.xref-1lists))))
(if result result
(else (error (list lab "NR.GET-XREF: Missing label.®))))))

;:: nr.make-new-record produces a record out of a single naddr statement. The
;:: flelds are default set to the values that work for the two-in and one-in

; two-out cases, and are changed where necessary for the other cases.

(defun nr.make-new-record (stat nuamber)

(let* ((name nupber)
(fall-through (+ 1 nuaber))
(ai (mi:new
gource (118t stat)
nuaber (++ str.mi-nuabers)
suces (list fall-through))))

i
PS:<C.S.BULLDOG.TRACE>NADDR-REC.LSP.12

C

c

;:: change default field values for special operators
(caseq (oper:group stat)

(cond-junmp
(:= (mi:succs ni)
*(,(oper:part stat 'labell)
.(I? (oper:part stat 'label2)
fall-through))))

(1f-then-else
(:= (mi:guccs ml)
'{.(ofnr:parn stat 'labell)
.(Il (oper:part stat ‘label2)
fall-through))))

(goto
(:= (mi:succs mi1) (list (cadr stat))))

((live def-block eac)
(:= (oi:compacted? pl) t))

((end stop)
(mi:succs m1) ())
(ai:compacted? m1) t)))

(:

oi))

;:: We've bullt only flowsus, 8o here we build the
;i 8ot of flowprs...

(defun nr.build-flow-prs ()
(for (a in *tr.ss)
(do
(for (succ in (mi:suces mn))

d
(;nsh (ni:preds suce) m))))))

:;; THE FOLLOWING IS THE STUFF RELATED TO FILLING IN THE EXPECT AND JUMP
;:: JUMP PROBABILITY FIELDS

;+: He's making a 1list (ta ta), checking it twice (la la).

(defun nr.calculate-expects ()

(for (elt in (reverse »tr.ss))
(do (pi:find-expect elt))))

;. Bl:find-expect retrieves the mi:expect value of an MI, or forces

;.: 8 calculation of it 1f it hasn’t been done yet. Because of possible
::; flakiness in various codegenerators, we guarrantee the expect 1s at
::: least a tiny number.

(defun mi:find-expect (elt)

(1f (! (mi:expect elt)) (then

(1f (! (mi:preds elt)) (then

(:= (@l:expect elt) 1.0))
(else
:= (ml:expect elt) 1.0) ;::; protect against circularity
(mi:expect elt)
(loop (for pred in (mi:preda elt))
(when (! (trace-fence:is pred)))

(initial expect 0.0)

(do
(:= expect (+ expect
(if (oi:cond-jump? pred)
(+ (pi:find-expect pred)
(nr.edge-prob pred elt))
(pi:find-expect pred)))))
(result expect)))))

(iz (loop-start:is elt) (then
(:= %ni:uxpecu elt)
(¢ (mi:expect elt) (mi:iteration-count elt))))

(else (if (loop-end:is elt) (then
(let ((loop-start (nr.find-loop-start (loop-end:name elt))))
(:= (mi:expect elt)
(// (ai:find-expect loop-start)
(oi:iteration-count loop-start))))))))

(:= (ai:expect elt) (max 1.0E-80 (mi:expect elt)))))
(ni:expect elt))

(defun mi:iteration-count (elt)
(caddar (ai:source elt)))

(defun nr.find-loop-start (naze)

(loop
(for elt in #tr.as)

o
(12 (22
(loop-start:is elt)
(eq (loop-start:name elt) naame))
(return elt)))
(result nil)))

(defun loop-start:is (elt)
(== 'loop-start (oper:operator (car (mi:source elt)))))

(defun trace-fence:is (elt)
(== 'trace-fence (oper:operator (car (mi:source elt)))))

(defun loop-start:name (elt)
(oper:part (car (mi:source elt)) ‘labell))

(defun loop-end:is (elt)
(== 'loop-end (oper:operator (car (mi:source elt)))))

(defun loop-end:nazme (elt)
(oper:part (car (mi:source elt)) ‘"labell))

3
PS:<C.S.BULLDOG.TRACE>NADDR-REC.LSP.12

c

:;: Edge prod is formed here, and passed along when copies are made in the
;:; bookkeeping phase.

(defun nr.edge-prob (pred succ)
(assert (memq succ (mi:succs pred)))

(loop
(for next-succ in (mi:succs pred))
(for next-edge-prod in (mi:edge-prob pred))
(do (1f (== succ next-succ)
(then (return next-edge-prob))))))

(defun nr.set-all-edge-probabilities ()

(for (elt in *vr.s*)
(do
(1f (mi:cond-jump? elt)
(then
(:= (mi:edge-prob elt)
: *(.(oi-jump:prob elt) ,(- 1.0 (mi-jump:prod elt)))))
else
(:= (oi:edge-prob elt) *(1.0)))))))

(defun mi-jump:prob (elt)
(oper:part (car (mi:source elt)) ‘probability))

TLLEEREERRRRER RN RE R RN RN RN R R R RN RE R RN RN R R RN RN R R R RN R R R RS R R RN DR RS
::: Here we attempt to eliminate all the goto statements. It is remarkably
;:: easy 1f this really works... It is only difficult in that we are altering
ii: *tr.s+ at the same time that we’'re running through 1t.

P
'y

(defun nr.eliminate-gotos ()

(loop
(initial goto-mi (nr.find-goto-ml))
(while goto-mi)
(do (bx.unsplice goto-mi)
(:= str.ss (set-diffq *tr.s* (list goto-mi))))
(next goto-mi (nr.find-goto-mi))))

(defun nr.find-goto-oi ()
(loop
(for elt in «tr.ss)
(do
(1f (eq (oper:group (car (mi:source elt))) ‘°goto)
(return elt)))
(result nil)))

5
PS:<C.S.BULLDOG.TRACE>NADDR-REC.LSP.12

g’“

TRACE PICKER

This module implements the picking of the next trace of uncompacted MIs from
the MI flow graph.

(TR.INITIALIZE-TRACE-PICKER)
Initializes the module by clearing *TR.TRACE-MISs.

(TR.PICK-TRACE)
Picks the next trace from the flow graph, setting *TR.TRACE-MIS# to
be the trace and *TR.TRACE-SIZE+ the size of the trace and
decrementing *TR.OPS-LEFT#. TR.TRACE-MIS* 1s set to be () 1f there
are no uncompacted MIs left.

Traces are picked by first finding the uncompacted MI with the largest
:EXPECT value; that MI becomes the seed of the trace. The trace picker
then moves forward, incrementally growing the trace from the end. To
find the next MI, it looks at the current end of the trace and finds
the successor that meets the trace criteria and adds it to the end of
the trace. After growing forward, the trace picker grows the trace
backwards analogously.

Whichever direction we are growing the trace, the same criteria are
used to see if an edge between two MIs belongs to the trace. Suppose
we have two MIs, PRED-MI and SUCC-MI. If we are growing the trace
forward, PRED-MI is the current end of the trace. If we are growing
the trace backward, then SUCC-MI is the current beginning of the trace.
In either case, we look at the edge from PRED-MI to SUCC-MI; both of
the MIs must be uncompacted.

The setting of *TR.TRACE-PICKERs deternines which edge criteria are used:

NORMAL
The edge from PRED-MI to SUCC-MI has the highest edge probability
of all exits from PRED-MI.

The edge from PRED-MI to SUCC-MI is the most likely to be
executed of all the predecessor edges coming into SUCC-MI.
is, the edge contributes the most :EXPECT to SUCC-MI of all
of the predecessor edges.

That

BB
“Basic block"™ -- traces consist exactly of basic blocks.

LIBERAL
PRED-MI has the highest :EXPECT of all the predecessors of SUCC-MI.

SUCC-MI has the highest :EXPECT of all the successors of PRED-MI.
In all three criteria, PRED-MI and SUCC-MI must be uncompacted. To

guarrantee that a TRACE-FENCE pseudo-op cam only occur at the end of
a trace, PRED-MI can’'t be a TRACE-FENCE pseudo-op.

WEME WA ML WL W WL L RS NS WE WL WL WA MG B WS N RS RS e WS WA WE WA WS BT WA B WS WA WA WA WS r Br Be Be W mr W wE s s ha WA W N s e wr BE ww vy mr o

(eval-vhen (compile load)
(include trace:declarations))

tr.trace-nis ())

(:=
0)

(defun tr.pick-trace ()
(let ((seed-mi (tp.mi-list:max-expect-mi str.s+)))

(:= str.trace-oiss ())

;#+* Gobble MIs forward from the seed, marking the :TRACE-POS
;##% field of picked MIs so that we won't pick them again.

(loop (initial next-mi seed-ni)
(while next-mi)
(do
(:= (mi:trace-pos next-ml) t)
(push str.trace-mis+ next-mi))
(next next-mi (tp.oi:next-forward-trace-mi next-mi)))

;##% Reverse the trace and remove the seed from the front.

(:= str.trace-mis+ (dreverse &&2))
(pop *tr.trace-miss)

;#++ Gobble MIs backward from the seed.

(loop (initial next-ml seed-mi)
(while next-ni)
(do
(:= (@i:trace-pos next-mi) t)
(push etr.trace-pis* next-ol))
(next next-mi (tp.mi:next-backward-trace-mi next-mi)))

;#¢+% Set the trace slze and number of operations left.

(:= str.trace-sizes (length *tr.trace-miss))
(:= str.ops-left* (- str.ops-left* str.trace-sizes))
0))
MLt
JEEE
;#+% (TP.MI:NEXT-FORWARD-TRACE-MI MI)
JEEE
;#+¢ MI 18 assumed to be already on the trace. Returns the successor
;#+#s of MI that should be on the trace. If there is no appropriate
;##+ guccessor, () is returned.
JEEE

i

(defun tp.mi:next-forward-trace-pi (ol)
(loop (for succ-ml in (mi:succs mi)) (do
(12 (2% (! (oi:trace-pos succ-mi))
(tp.pred-pi:succ-mi:right-edge? mi succ-mi))
(then
(return succ-pi))))
(result ())))

TT]
+ F¥

ML

;##+ (TP.MI:NEXT-BACKWARD-TRACE-MI MI)
(defun tr.initialize-trace-picker () seen
1 2

PS:<C.S.BULLDOG.TRACE>TRACE-PICKER.LSP.1

http://tp.nl
http://tp.nl

@?‘

«

;¢#+ MI 18 assumed to be already on the trace. Returns the predecessor
;**#+ of MI that should be on the trace. If there is no appropriate
;#%% guccessor, () is returned.

B

ML

(defun tp.mi:next-backward-trace-mi (mi)
(loop (for pred-mi in (mi:preds mi)) (do
(1f (22 (! (mi:trace-pos pred-mi))
(tp.pred-mi:succ-mi:right-edge? pred-mi mi))
(then
(return pred-mi))))
(result ())))

b
HiL

;¢*+ (TP.PRED-MI:SUCC-MI:RIGHT-EDGE? PRED-MI SUCC-MI)

ML

;*#*+ One of PRED-MI and SUCC-MI are already on the trace. Returns true
i##+ if the edge from PRED-MI to SUCC-MI meets the trace picking criteria
;#*¢ and thus should be part of the trace.

ML 2

i
(defun tp.pred-mi:succ-pi:right-edge? (pred-mi succ-noi)

(1f (1] (! pred-mi)
(! succ-mi)
(ni:compacted? pred-mi)
(mi:compacted? succ-mi)
== *trace-fence (mi:operator pred-mi)))
(then
nil)

(else
(caseq str.trace-pickers
(normal
(2 (>= (nr.edge-prob pred-mi succ-mi) .5)

;#¢ See 1f PRED-MI contributes the most of all
;*+ of SUCC-MI'S predecessors

(= (+ (nr.edgo-prob pred-mi succ-mi)
(ai:expect pred-mi))

(loop (for next-pred-mi in (mi:preds succ-mi))
(initial pax-expect 0.0)
(bind expect (* (nr.edge-prob next-pred-mi
succ-ni)
((2i:expect next-pred-mi)))
do
(12 (> expect max-expect) (then
(:= pax-expect expect))))
(result max-expect)))‘?)

(bd
(ez2 (! (mi:cond-jump? d-ni
(! (nl:rajoi%? 4 g:::-:t; ;))

(1iberal
(k& (== succ-mi

(tp.mi-list:max-expect-ni (mi:succs pred-mi)))
== pred-oi
gtp.ni—list:na:—axpact-nl (pi:preds succ-mi)))})))))

JEEE
Rt

;##* (TP.MI-LIST:MAX-EXPECT-MI MI-LIST)

SR

;**+ Returns the uncompacted MI in MI-LIST with the largest :EXPECT value.
;#++ Returns () 1if there 1s no such uncompacted MI.

JEER

BRIl

(defun tp.mi-list:max-expect-mi (mi-list)
(loop (for mi in mi-1ist)
(initial max-expect -1
max-elt-so-far ())
(do
(17 (22 (! (pi:compacted? mi))
(> (ai:expect mi) max-expect))
(then
(:= max-expect (mi:expect mi))
(:= nax-elt-so-far nig)))
(result max-elt-so-far)))

3
PQ--¢CC_ Q RIIT.IDNG TRACFEFSTRACE=PTCKFR.TISP.1

