C a

;##+ (builld #icg.bulld-module-lists)
;#++ (build.compile ¢icg.bulld-module-lists)

(:= #icg.build-module-1ist+* *(

1deal-code-generator:schedule
%d:al-code-generatur:lachine-description

(:= sbuild-module-list+ (append #build-module-list+ sicg.build-module-1lists))

1
PS:<C.S.BULLDOG. IDEAL-CODE-GENERATOR>BUILD.LSP.1

¢

: s=== (1f-1gt cond-jump)
; (1f-fgt cond-junp)
; This module provides a “description” of the ideal machine. For now, (1f-ige cond-]ump)
; that consists only of resource vectors. (11-fge cond-junp)
: (1f-1le cond-juep)
: (12-fle cond-juop)
(11-11% cond-jump)
(eval-when (compile) (11-11t cond-jump)
(build °*(interpreter:naddr)))))
(declare (special #operator:resource-group*)) (declare (special #resource-group:resource-vecs))
(:= ®=operator:resource-group* °((:= *resource-group:resource-vecs* °(
(goto (0))
(goto goto) (assign (0))
(logical (o))
(assign assign) (1add (0))
(vioad agsign) (1oul (0))
(vatore assign) (1div (o0))
(fadd (0))
(inot logical) (fmul (0))
(iand logical) (fdiv (0))
(tor logical) (comparison (0))
(cond-junp (0))
(1add 1add) (oiscellaneous (0))
(isub 1add)))
(izmul igul)
e
(idiv idiv) Jake
;**+ (OPER:RESOURCE-VEC OPER)
(fadd fadq) sk
(fsudb fadd) ;##» Returns the resource vector of an operation.
JeEd
(foul fmul) R
(faiv taiv) (defun oper:resource-vec (oper)
(let ((resource-group (operator:resource-group (oper:operator oper))))
(1eq comparison) (cadr (assoc resource-group *resource-group:resource-vecs))))
(feq copparison)
(ine comparison)
(fne copparison) T
(igt copparison) b
(fgt comparison) ;#+% (OPERATOR:RESOURCE-GROUP OPERATOR)
(1ge comparison) il
(fge comparison) ;#%% Returns the resource group of an operator.
(11e comparison) L
(fle comparison) i
(11t comparison)
(f1v comparison) (defun operator:resource-group (operator)
(imin comparison) (let (((() resource-group)
(fain comparison) (assoc operator *Operator:resource-groups)))
(inax comparison) (|| resource-group
(fmax comparison) 'miscellaneous)))
(1abs comparison)
(2abs comparison)
(truego cond-jump) i
(falsego cond-juap) ;#¢+ (LIST-VECTOR-SUM Vi V2)
(if-ieq cond-juamp) B
(1f-feq cond-jump) ;*#3% Sums up two lists as “vectors"™., If one is longer than the other, it 1is
(if-ine cond-jump) ;*#+ padded with 0s.
(1f-fne cond-jump) hhdd
1 2

PS:<C.S.BULLDOG. IDEAL-CODE-GENERATOR>MACHINE-DESCRIPTION.LSP.7

¢ ¢

1%

(defun list-vector-sum (vi v2)

(loop (initial rest-vi vi
rest-v2 v2)

(while (|| rest-vi rest-v2))

(save

(+ (if rest-vi (car rest-vi) 0)
(1f rest-v2 (car rest-v2) 0)))
(next rest-vi (cdr rest-vi)
rest-v2 (cdr rest-v2))))

3
PS:<C.S.BULLDOG. IDEAL-CODE-GENERATOR>MACHINE-DESCRIPTION.LSP.7

S

¢

Ideal Code Generator Scheduler

parallel NADDR (infinite registers, as many NADDR operations per cycle
as specified in MACHINE-DESCRIPTION, usually infinite).

E This module ipplements a code generator for the “ideal™ machine --

(eval-when (compile)
(build ‘*(interpreter:naddr)))

Jeee

R

;#%+ A TRACE-ELEMENT represents all the information about a single element

JREs
JhEe
*

of a trace.

(def-struct trace-element

gource

trace-direction
bookkeeper-record
trace-position

(succeasors
() suppress)

reasons

(predecessora
() suppress)

(pred-distances
) suppress)

(nun-preds-left 0)
(depth 0)
(height 0)

priority

release-tine

Jeee
(e
BT
Jees
JEke
(ks

iRk

ETY)
1T
Jees
1l
Hil
;e
H Ll
Rl
T
1l
I
R
I
BRI

NADDR source ingtruction

For conditional jumps only, the direction
that the trace takes (RIGHT or LEFT).

Bookkeeper token handed us (we don’t look
at it)

Position on the original trace.

The successors of this element on the data
precedence DAG; a 1ist of TRACE-ELEMENTs.

List of the types of conflict between each
each successor and this element; one of
either OPERAND- or
POSSIBLE-OPERAND-CONFLICT, or
CONDITIONAL-CONFLICT.

The predecessors of this element on the
data precedence DAG; a list of
TRACE-ELEMENTs.

List corresponding to :PREDECESSORS, each
element the "distance" of the corresponding
predecessor from this element. A distance
of 6 means that predecessor must be
scheduled at least 5 cycles earlier than
this element.

Nuaber of predecessors left unscheduled
(for consistency check only).

Depth of thia element in the data precedence
DAG.

Helight of this element in the data
precedence DAG.

Scheduling priority of this element.
Earliest cycle at which this could be

JEEE

;#*+ gcheduled.
Rl

cycle ;##+ The cycle
R

) R

SRR

nusber that this element has

been scheduled in.

e
S EEE
s kR
e

Miscellaneous global variables that

should be declare somewhere.

T

(dec

lare (special
*tr.space-nodes
*tr.trace-pickers

TEEE
HEl

from the trace picker
from the trace picker

P EEE
TRk
ML L
L EEE
T RER
S EES
T2
Ll
1)
JEEE

SCH.MAX-SCHEDULE-SIZE#
SCH.SCHEDULE-SIZE#
SCH.SCHEDULE#

i3 the

is the size

*tr.windows ;##+ froa the trace picker
#gch.critical-path-length# ;¢## critical path length of the current
J#%+ trace’s DAG.
gch.cond-jump-counts ;#*¢ nuober of cond jumps in the current
TR
*tr.dag-hook# R11
;b§.generate—coda—hook# H b
T
JEEE
;##% *SCH.TRACE-ELEMENTS* is the list of all the trace element records.

paxioum 8ize of the schedule.

of the current schedule.

i3 the array of trace elements in the schedule,

indexed by cycle.

SCH.RESOURCES

is the array of resources used by the elements,

indexed by cycls.
in each cycle.

(INITIALIZE-CODE-GENERATOR)

(SCH.SCHED.INITIALIZE) re-initializes the schedule.

‘dk%
.

(dec

lare (special
¢gch.trace-elementss
¢sch.schedules
¢sch.resourcess
+ach.pax-schedule-sizes
#sch.gchedule-sizes

))

(defun initialize-code-generator ()

(sch.asched-initialize))

(defun sch.sched-initialize ()

(:= sach.trace-elementss* ())
(:= #ach.schedule-size* 0)

(if (! (boundp ‘ssch.max-schedule-sizes)) (then

(:= ssch.pax-schedule-size* 200)

(1f (Il (! (boundp ‘#sch.schedules))

))

1

2

PS:<C.S.BULLDOG. IDEAL-CODE-GENERATOR>SCHEDULE.LSP.17

e

(!= spch.pax-schedule-size+ (vectorlength ssch.schedulex)))
(then
(msg O "SCHEDULE: Re-intialize the schedule to a maximum size of *
#ach.nax-schedule-gize * elements.” t)
(:= *sch.schedule* (makevector #sch.max-schedule-size*))
(:= *ach.resources* (makevector *sch.max-schedule-size*)))
(else
(loop (incr 1 from O to (+ -1 *sch.max-schedule-sizesx)) (do
(:= ([] #*sch.schedules 1) ())
(:= ([] #sch.resources* 1) ()))))))

JREk

;#*% (GENERATE-CODE BEFORE-LIVE SOURCE-RECORD-LIST AFTER-LIVE)
TEER

;#%% Ag documented in DOC:CODE-GEN-INTERFACE.DOC.

TEEE

Ll

(defun generate-cods (before-live source-record-1ist after-live)
(1f »tr.generate-code-hook*
(funcall *tr.generate-code-hook* source-record-list))

(sch.sched-initialize)

(:= #*gch.trace-elementss
(sch.convert-to-trace-elements source-record-list))

(sch.build-the-dag sgch.trace-elenentss)
(sch.set-helghts-and-depths *ach.trace-elementsas)
(sch.set-release-times s#gch.trace-elementas)
(sch.assign-priorities sgch.trace-elementas)
(:= =gch.trace-elements*

(sch.top-sort-by-priorities #sch.trace-elementss))

(1f =tr.dag-hooks
(funcall *tr.dag-hook#
(1| *sch.trace-elements* ‘empty-trace)))

(sch.schedule #sch.trace-elesentas)
*ideal-code-generator-schedule-duaay)

1Rk
;##+ (SCHEDULE:LENGTH SCHEDULE)
;#%% (SCHEDULE: [] SCHEDULE I)

;##* (SCHEDULE:JOIN SCHEDULE I)

;#%% (SCHEDULE:SPLIT SCHEDULE I JUMP-NUMBER)
1ERE

;*+% As documented in DOC:CODE-GEN-INTERFACE.DOC.
JERE

.

(defun schedule:length (schedule)
*ach.achedule-sizes)

(defun schedule:[] (schedule 1)
(for (elem in ([] #*sch.achedule* (+ -1 1))) (save
*(.(trace-element:source elen
,(trace-element:bookkeaper-record elem)))))

(defun schedule:join (schedule i)
*(E;lsg ;.(sensyn) A))

(defun schedule:split (schedule i jump-number)
“(E?e; ;.(gensym} | ,]nnp-number?)

TEER
(EEE

;#** (SCHEDULE:PRINT SCHEDULE)

FTL

;#%% Prints out the schedule in a pretty way.
ThEE

SRR

(defun schedule:print (schedule)
(msg 0 t)
(loop (incr 1 from O to (+ -1 sach.schedule-sizes)) (do
(msg (§ (+11) 8) *]*®
(h (for (elem in ([] #ach.achedule* 1)) (save
(trace-element:source elem))))

t))))
LEE
JEEE
;#+% (SCH.CONVERT-TO-TRACE-ELEMENTS SOURCE-RECORD-LIST)
It

;##% Converts a list like that received by GENERATE-CODE, with the elements
;e*% of the form:

EEE (SOURCE TRACE-DIRECTION BOOKKEEPER-RECORD LIVE-OFF)

;##» into a list of TRACE-ELEMENTS containing the appropriate information.

je

(defun sch.convert-to-trace-elements (source-record-list)
(loop (initial result (;
i 0
(for (source trace-direction bookkeeper-record live-off) in
source-record-list)
(when (f| (! (oper:property? source 'pseudo-op))
(menq (oper:operator source) °(def-block dcl esc agsert))))

(do
(push result
(trace-elenent:nev source gource
trace-direction trace-direction
bookkeeper-record bookkeeper-record
trace-position 1))
(:=1(+11)))
(result (dreverse result))))
[
TEEE
;##% (SCH.BUILD-THE-DAG TRACE-ELEMENTS)
JEEE

;##* Bullds the DAG representing the data precedence graph of the trace
:##* in TRACE-ELEMENTS. Calls the disambiguator interface (see
;*#% DOC:DISAMB.DOC) to determine the data precedence relations.

JkRE

3

4

PS:<C.S.BULLDOG. IDEAL-CODE-GENERATOR>SCHEDULE.LSP. 17

C

é?‘

hkk

(defun sch.build-the-dag (trace-elements)

;#++ Tell the disambiguator that the compactor is about to
;*+% gtart picking a new trace from NADDR program. The
;*#* individual operations of the trace are presented via
;##+ the function PREDECESSORS.

(start-trace)

;¢#% For each element of trace, hand it to PREDECESSORS and
;### get back the lists of equal and strict predecessors.
;#*# Add in corresponding edges between the trace elements.

(loop (initial strict-predgreason-list ()
equal-predéreason-list ())

Eror elem in trace-elenments)

do

(desetq (equal-pred&reason-1ist strict-pred&reason-1ist)
(sch.get-predecessors elem))

;*##+ If either we're saving space by generating no split
;¢#* coplea, or 1f we're doing basic-block compaction

;*#** only, we want to stop cond-jumps from going ahead
;##x of earlier trace elements by crocking up equal edges
;#*+ from the junps to all previous elements in the trace.
;##* If we're just preserving source order of cond-jumps,
;%% we put equal edges between each cond-jump.

(it (&% (oper:property? (trace-element:source elem) °‘conditional-jump)
(|T (== str.space-modes ‘nsc)
(== sur.space-mode+ ‘cjo)
(== str.trace-pickers °bd)))
(then
(loop (for prev-elem in trace-elements)
¢ (wvhile (!== prev-elem elem))
do
(1f (& (! (assoc prev-elem strict-pred&reason-list))
(Il (!== str.space-mode* ‘cjo)
(oper:property? (trace-element:source prev-elem)
*conditional-jump)))
(then
(push equal-predéreason-list '(,prev-elea ()))))))))

;#** for each astrict predecessor, make the predecessor point
;#s* this element, this element point at the predecessor, and
;#*% record the distance between the two as 1.

(for ((pred-elem reason) in strict-predereason-11st) (do
(push (trace-element:successors pred-elen) elenm)
(push (trace-element:reasons pred-elem) reason)
(push (trace-element:predecessors elem) pred-elea)
(push (trace-element:pred-distances elem) 1)

(++ (trace-element:num-preds-left elem))))

;*%% do the same thing for the equal predecessors, except
;#*% that the distance is 0.

(for ((pred-elem reason) in equal-predereason-list) (do
(push (trace-element:successors pred-elea) eleam)

(push (trace-element:reasons pred-elem) reason)
(push (trace-element:predecessors elem) pred-elen)
(push (trace-element:pred-distances elem) 0)

(++ (trace-element:nun-preds-left elem))))

)))
S
JhER
;#*% (SCH.GET-PREDECESSORS ELEM)
shER

;##+ Gives the disambiguator the next ELEMent in the trace, and asks for
;#%% 1ts predecessors. Returns a 2-element list:

I

L (EQUAL-PREDAREASON-LIST STRICT-PREDEREASCON-LIST)

ihEe

;##+ Both sublists are lists of pairs of the fora:

JhER

i1 (PRED-ELEM REASON)

Ml

;¢¢¢ where PRED-ELEM 18 a predecessor and REASON is one of

;#+& OPERAND-CONFLICT, POSSIBLE-OPERAND-CONFLICT, or CONDITIONAL-CONFLICT.
Vs
JEeE

(defun sch.get-predecessors (elem)
(let (?equsl—pradtreason—llst)
(strict-predareason-list ())
(predecessors-result

(predecessors (trace-element:source elem)
(trace-element:trace-direction elem)
elem)))

(for ((pred-elem reason elem-operand elem-type pred-operand pred-type)
2 in predecessors-result)
do
(if (sch.equal-predecessor? reason elea-type pred-type) (then
((push equal-pred&reason-list *‘(,pred-elem ,reason)))
else
(push strict-pred&reason-list *(,pred-elem ,reason))))))

*(,equal-predéreason-1ist ,strict-pred&reason-list)))

;#%* (SCH.EQUAL-PREDECESSOR? REASON ELEM-TYPE PRED-TYPE)

;### Returns true if REASON, ELEM-TYPE, and PRED-TYPE describe a predecessor
;**x that 18 an "equal" predecessor (can be done in the same cycle).

;##% REASON is one of OPERAND-, CONDITIONAL-, or POSSIBLE-OPERAND-CONFLICT.
;##* ELEM-TYPE and PRED-TYPE are one of READ, WRITTEN, or CONDITIONAL-READ.
1l

;#*# Does an awful lot more than it has to, for consistency checking.

Ll

il

(defun sch.equal-predeceasor? (reason elem-type pred-type)
(caseq reason

((operand-conflict possible-operand-conflict)

5

6

PS:<C.S.BULLDOG. IDEAL~CODE-GENERATOR>SCHEDULE.LSP. 17

¢

(* ((2& (== ’written elem-type)
0)(== ‘written pred-type))
((22 (== "written elem-type)
y (== ‘read pred-type))
t
((&2 (== ‘read elen-type)
(== ‘written pred-type))
¢ 0)
t

(error (list reason elem-type pred-type
*SCH.GET-PREDECESSORS: Invalid operand types.®)))))

(conditional-conflict
(r ((e& (== ‘written elen-type)
== 'conditional-read pred-type))
0)

(t
(error (list reason elem-type pred-type
“SCH.GET-PREDECESSORS: Invalid operand types.")))))

(t
(error (list reason "SCH.EQUAL-PREDECESSOR?: Invalid REASON.")))))

ihE
JEEkE
;##% (SCH.SCHEDULE TRACE-ELEMENTS)
1 EEE
;##+% Makes a schedule from TRACE-ELEMENTS (sorted in priority-topological
;##% order). The elements are placed in the array *SCH.SCHEDULE+ and
;##+ the resources used by the elements in a cycle in the array
;*##» *SCH.RESOURCES*. Scheduling is done by taking each element in turn

;¢*+ and finding the earliest possible cycle in which it could be

;#*# gcheduled. This 18 done by starting at the release time of the
;#** glement and searching forward until a resource-compatible cycle is
;+++ found.

ML

ML

(defun sch.schedule (trace-slements)

;#*+ for each trace element (in priority-sorted topological order)
;##+ place 1t on the schedule at the earliest time allowed.
(for (elem in trace-elements) (do
(aggert (= 0 (trace-element:nun-preds-left elem)))

(loo? (step cycle from (trace-element:actual-release-time elem)) (do
if (sch.resource-compatible elem cycle) (then
(sch.place-on-schedule elem cycle)
(return ())))))))

;#%+ gort the elements in each cycle by trace order;
;##+ junps must be sorted in source (trace) order.
cycle from 0 to (+ -1 *sch.schedule-sizes)) (do

the n-vay

BT

il

;##x (SCH.PLACE-ON-SCHEDULE ELEM CYCLE)

Jhee

;*#*#+ Place a trace element on the schedule at cycle CYCLE.
JEEe

pe

(defun ach.place-on-schedule (elem cycle)
(:= #sch.schedule-size* (max #*sch.schedule-size* (+ 1 cycle))})

(:= (trace-element:cycle elem) cycle)
(push ([] *sch.schedule* cycle) elem)

(:= ([] *#sch.resourcea* cycle)
(1ist-vector-sum ([] *sch.resources+ cycle)
(trace-element:resource-vec elea)))

(for (succ-elem in (trace—element:successors elem)) (do
(trace-element:num-preds-left succ-elem))))

0)
LB
il
;#¢+ (SCH.ASSIGN-PRIORITES TRACE-ELEMENTS)
1
;#s% Agglgns priorities to each of the trace elements, guarranteeing that
;*##% each element has priority strictly less than ita predecessors.
il

JREE

(defun ach.assign-priorities (trace-elements)
(for (elem in trace-elements) (do
(:= (trace-element:priority elem)

(trace-element:height elem)))))
JeE
(ead
;#*# (SCH.TOP-SORT-BY-PRIORITIES TRACE-ELEMENTS)
Y

;%% Destructively sorts TRACE-ELEMENTS by priority order (the priorities

;### guarrantee a topological order).
R

.
(defun sch.top-sort-by-priorities (trace-elements)
(aort trace-elements
#°(laobda (eleml elem2)
(> (trace-element:priority elemi)
(trace-element:priority elem2)))))

(loo% (ste e
= ([T *gch.schedules cycle) H i
(sort ([] #sch.aschedules* cycle) ;#¢+ (SCH.SET-HEIGHTS-AND-DEPTHS TRACE-ELEMENTS)
#'(lazbda (eleml elem2) H1l)
(< (trace-element:trace-position elemi) ;##+ Calculates the height and depth of every element, and also
(trace-element:trace-position elem2))))))) ;#*+ sach.max-height#, #sch.max-depth#, #sch.critical-path-lengths, and
) ;#** xgch,cond-jump-count#.
il
;‘*‘
7 8

PS:<C.S.BULLDOG. IDEAL-CODE-GENERATOR>SCHEDULE.LSP.17

-fun sch.set-heights-and-depths (trace-elements)
(:= #sch.critical-path-length* 0O)
(:= *sch.cond-jump-count* 0)

;#%* for each element (in forward topological order), calculate
;#** the depth of the element as 1 + the maximum depth of its
;*¥** predecesssors. Also count the number of conditional jumps,
;#** record the critical path length.

(tor (elea in trace-elements) (do
(12 (! (trace-element:predecessors elem)) (then
(:= (trace—element:depth elem) 0))
(else
(:= (trace-element:depth elem)
(+ 1 (loop (initial max-pred-depth 0)
Efor pred-elem in (trace-element:predecessors elem))
do
(:= max-pred-depth
(max max-pred-depth
(trace-element:depth pred-elem))))
(result max-pred-depth)))) g)

(:= #gch.critical-path-length+
(max *ach.critical-path-length+ (trace-element:depth elem)))

(1f (memq (oper:group (trace-element:source elem))
*(cond-juep if-then-else))
(++ *sch.cond-jump-count*))))

;#%% for each element (in reverse topological order), calculate
;### the height of the element as 1 + the maximum height of
;#%% all its successors.

(:= trace-elements (dreverse trace-elements))
(for (elem in trace-elements) (do
(12 (! (trace-element:successors elem)) (then
(:= (trace—element:height elem) 0))
(else
(:= (trace—element:helght elem)
(+ 1 (loop (initial max-succ-height 0)
Eror succ-elem in (trace-element:successors elem))
do
(:= max-succ-height
(nax max-succ-height
(trace-element:height succ-elem))))
(result max-succ-height)))) f)))
§:= trace-elements (dreverse trace-elements))

;#++ (SCH.SET-RELEASE-TIMES TRACE-ELEMENTS)

il

;¥*# Sets the :RELEASE-TIME of each trace element to be O, unless we are

;*#*+ doing "mininmum-release-time® space saving, in which case the release
;##* time of conditional jumps is calculated according to an obscure

;##% forpoula (see the description of 'MRT space-saving mode). To prevent
;#*% junps from gathering at the end, since we don"t have 2¢%n way jumps

;#*% yot, we make sure that there is room for each jump 2t the end.

BT

JRE¥
(defun sch.set-release-times (trace-elements)
(let ((max-depth 0)

(junps-left #sch.cond-jump-counts))

(for (elem in trace-elements) (do

(1¢ (!== #vr.space-mode+ ‘mrt) (then
(:= (trace-element:release-time elem) 0))
(else
(:= max-depth (max max-depth (trace-element:depth elem)))

(1f (memq (oper:group (trace-element;source elem))
*(cond-jump if-then-else))

(then
:= jumps-left (+ -1 jumps-left))
(:= (trace-element:release-time elem)
(max 0 (- (min max-depth
(- #ach.critical-path-lengths
jumps-left))
ttr.windowt?))
(else
:= (trace-element:release-time elen) 0)))))))))
iR
DRk
;*#%% (SCH.RESOURCE-COMPATIBLE ELEM CYCLE)
JREE

;#*s Returns true 1if trace-element ELEM is resource compatible with the
;*** elements already scheduled in cycle CYCLE.
il

(defun sch.resource-compatible (elem cycle)
(for-every (elem-resource in (trace-element:resource-vec elem))
(cycle-resource in ([] *ech.resourcea* cycle))
(<= (+ elea-resource cycle-resource) 1.0)))

;#%% (TRACE-ELEMENT:ACTUAL-RELEASE-TIME ELEM)

;*** Returns the actual release time of an element by taking the maximum
;#*+ of its :RELEASE-TIME and and the times specified by its
;#*¢ :PRED-DISTANCES (the time of each predecessor plus the distance from
;#** that predecessor that this element should be scheduled).

21

(defun trace—element:actual-release-time (elem)
(let ((release-time (trace-element:release-time elem)))

(for (pred-elem in (trace-element:predecessors elem))
(d (distance in (trace—element:pred-distances elem))
]

(:= release-tine
(pax release-time
(+ (trace-element:cycle pred-elem) distance)))))

release-time))

9

10

PS:<C.S.BULLDOG. IDEAL-CODE~-GENERATOR>SCHEDULE.LSP. 17

¢ ¢

1
JREE

;*##» (TRACE-ELEMENT :RESOURCE-VEC ELEM)

TREE

;*#% Returns the resource vector of a trace element.
LkEE
LR

(defun trace-element:resource-vec (elem)
(oper:resource-vec (trace-element:source elem)))

11
PS:<C.S.BULLDOG. IDEAL-CODE-GENERATOR>SCHEDULE.LSP.17

IhER
R

;*¢¢ Each hook function is called with before compaction starts to
;#++ initialize it. Then it is called with each trace.

REE

;##+ *TR.GENERATE-CODE-HOOK+ is called with the same values that
iHES GENERATE-CODE 1s.

ThEE

;¥*¢ «TR.DAG-HCOK#* is called with the top-sorted list of
PR TRACE-ELEMENTS constructed by the ideal
Hh code-generator’'s GENERATE-CODE.

IkEE

i

;**¢ Sample hook functions for accaasinf the trace hooks in the compactor.
)

(declare (special
*tr.generate-code-hook#
;b§.dag-hoott

(defvar #st.all-tracess ())
(defvar *gt.all-dags* ())

(defun st.generate-code-hook (trace)
(if (! trace)
(:= sst.all-tracess ())
(:= *st.all-tracess
(append1l #st.all-tracest¢ trace))))

(]

(:= str.generate-code-hook+ 'st.generate-code-hook)

(defun st.dag-hook (trace)
(11 (! trace)
(:= #at.all-dags* ())
(:= #st.all-dagas
(append! #st.all-dags+ trace))))

(:= str.dag-hook* 'st.dag-hook)

1

PS:<C.S.BULLDOG. IDFAL-CODE-GENERATOR>SAMPLE-HOOKS .LSP .2

