$-1109

STANFORD ARTIFICIAL INTELLIGENCE PROJECT February 1967

Memo No. 50
_Institute of Theoretical Physic
ITP-247
PROJECT MAC
REDUCE USERS' MANUAL A A e
MAY 4 idp7
by Anthony £. Hearn —_
DOCUMENT d()OM
Abstract: REDUCE is a program desigred for general algebraic

computations of interest to physicists and engineers,

Its capabilities include:

1) expansion and ordering of rational functions
of polynomials,

2) symbolic differentiatiocn,

3) substi*utions ir a wide varie=y of forms,

%) reduction of quotients of polynomials by
cancellation of common factors,

5) calculation of symbolic determinanis,

6) calculations of interest %o high energy physicists

including spin 1/2 and spiz 1 algebra.

3
in

The program is writ%en complesely +the language LISP
1.5 and may *herefors ke run with li%%tle modification
on any computer possessing a LISF 1.5 compiler or

interpreter.

Research sponsored by ke Air Force CGffice of Scientific Research,
Office of Aerospace Research, U,S. Air Force. under AFCSR Contract

AF L9(638}-.1389, Compu+ter %ime supported bty she Advanced Research

Project Agency of the Office of the Secrevary of Defense {SD-183).
K A
%; Q}})
W7

TABLE OF CONTENTS

SECTION 1

Introduction=====eme=ccrm oo e s o S SSss s s e
SECTION 2

Structure of Programs-----=ceececcccccecn e c e s e m e e e e — e oo o

2.1 Preliminary-==-==ceccsccccmccaccer e s e e o

2.2 Numbers==-===--sccccccecoccrnonnax L ettt

2.3 Variables==eesewececccccmccmncnnccnce e mcrcrar s ———

2.3.1 Reserved Variables====escececcccccccnncsccccncnneoneeax

2.4 Operators==-=srm--ceecccccmccceceeneee e e e e e e e e e —————

2.4.1 Special Operators==-======s-mecccccccemccmeeennenreen——

2.4 .2% Operators Used in High-Energy Physics~=eesesecccccca~a-

205 EXPI‘eSSiOIlS""'"-"-""--'-------------f--- -------- .a—-: ----------

2.5.1 Scalar Expressionss~==ee--ecreccccuecnrctcann e e —————

2.5.2% Vector Expressions~===ess-scccccercrccrcnmmccoonnmann==

2.5.3% Matrix Expressionse==-=-=--sseecccccccccncnncmncecacan-

2.5.4 Equivalence Expressions======semseccmmcncnoecameemcen=

2.6 Kernels=====-==eseeececcecccccscmmcacscameccecasseacneean—-

2.7 Functional Instructions====e=-===recccecmeccrconecnccnncen—"

2.7.1 SIMPLIFY (Or SM)===-==c-ccmmecn e e a e

2.7.2 Ordering of Variables=-=e==ceecrreccccccenccncwncacuan"

2.7.3 Substitution=-=======-cccccctccm st nm e e e cm e ccaa e

2.7.4 Substitutions of the First Kind====-e=---eescccccac-a-

2.7.5 Substitutions of the Second Kind=-=e=-=s--we-cccconc—co~-

2.7.6 Asympotic Constraints==-====sesscueemccceecmmacnecanax

2.7.7 Limitations in Use of MAKE and I[ET===-==-e-ccec—ccea-x

2.7.8 Cancellation of Common Factorse-=---e-c-ecscemacacaaas

2.7.9 Output of Expressions====~-=e-s-cerccccccnncoacccnccnnas

2.7.10 Further Manipulation of SIMPLIFY Output=====---cc-eec---

2.7.11 Adding Results of Process Calculations=====--cce-cece=-

2.7.12 Numerical Evaluation of Expressions=e=--=e=---c--c-cee---

2.7.13 Other ProCesSSeS==rrmer e cm e e e r e e c - —————

2 07 Olh‘*REmCE --

2.8 Spacing=e=-=-c--mcecmme e e e m e
SECTION 3

Examples===-==mmemmmmom e e e e e meeeeeemece—cee e e —eo -

3,1 Differentiation and Determinants====-ece-ccceeccccccercana"

3.2 Expansion of Polynomials~========ccccmecnecuccccccaccnocan

3.3% Calculation of Lowest Order Compton Scattering
Cross=-Sectione~=-==cescccccccu e nrancmcrcrerrr e e — e -

3.U4% Calculation of Basic Traces in Radiative Corrections
to Electron Positron Scattering=e=--cceccceccecencnnnaa-

QO3 V1 W1 T W

|
|

e e
N o N

=R
=W

MNPV
\n\n\nJ:—\Nl—’l—'%)@’;Olc—)l\g\'_r‘ll;'

n
[0))

TABLE OF CONTENTS (cont.)

SECTION &4

Summary of Systele===e=e-e-emceccmaccccac e rcnr e e
4.1 Instructions Normally Available in REDUCEw==me=-=seccoce-a=

k.2 Reserved VariableSe==ese-eecmeazes remcssmsmrnec s — - ——

4.3 REDUCE Diagnostic and Error MessageS-========e-ee-mcaeanen
k.3.,1 Terminal Error MessageSwe=w-wewscccmmccccnanmeennae——

4.,3.2 Diagnostic MessageSe~=====me-mmecocccencoccax ——————————

4.3.3 System Error MessageS==========mmeecccmcmccammacooa—oo

L.4 REDUCE Job Setupess-=ceesee-ccccasccaceccecenemeocnanan- --
L.4.1 REDUCE Job Setup for Stanford T090-meeeemcecccaccmaana=

4.4.2 REDUCE Job Setup for Stanford PDP=becccccamccccccceaa-

REFERENCES=wemencenecmcnmusneensnrunrcsmmom e e - o e 2 e -

SECTION 1. INTRODUCTION | o

REDUCE is a program designed for general algebraic computations of
interest to physicists and engineers. Its capabilities include:

1) expansion and ordering of rational functions of polynomials,

2) symbolic differentiation,

3) substitutions in a wide variety of forms,

L) reduction of quotients of polynomials by cancellation of common factors,

5) calculation of symbolic determinants,

6) calculations of interest to high energy physicists including spin 1/2

and spin 1 algebra.

(1)

The program 1s written completely in the language LISP 1.5 and may
therefore be run with little modification on any computer possessing a LISP
1.5 compiler or interpreter.
Versions of the program have operated at several batch-processing IBM
7090 installations, on the time-shared AN/FSQ-32 of System Development
Corporation, and the time-shared PDP-6 of the Stanford Artificial Intelligence
Project. This report is intended primafiiy for users of the system on the
latter machine (referred to as REDUCE2) and on the Stanford IBM 7090 (REDUCEL).
There are three levels at which REDUCE may be used and understood.
(1) For calculations using only the functions already in REDUCE. This regquires
no knowledge of LISP or the details of the REDUCE program. This operation,
which will be adequate for most users, is described in Section 2.

(2) To develop and use new functions written in terms of the primitives of

the REDUCE system. This requires a knowledge of LISP, but little knowledge

ITP-2k4T

of the details of the REDUCE prbgram, and is described in Part II of this
manual.

(3) To modify and develop the primitives of REDUCE, which requires a complete
knowledge of LISP and REDUCE. A description of the system for this purpose
will be published elsewhere.

Section 3 contains programs and output of sample calculations which have
been run on the Stanford PDP-6. Finally a summary of instructions available
and a list of possible diagnostic messages and reserved variables is given in
Section k.

Mosf sections contain details of a certain amount of matefial of
interest only to high~energy physicists. Knowledge of this is not necessary
for successful operation of the system. Sub-sections dealing only with this
material will be starred, and may beromitted by those not interested.

REDUCE 1s part of a larger system designed for semi-aﬁtomatic calcu~
lations involving Feynman diagrams in quantum electrodynamics and particle
physics, and described briefly in Reference (2). Those parts of the full
system dealing with Feynman graph generation and manipulation will also be
described in other publications.

The author would appreciate hearing from any users who experience
trouble with the system (please include copies of relevant input and output).
Acknowledgement of the use of REDUCE in any published calcﬁlations would

also be appreciated.

ITP-247

SECTION 2.
2.1 Preliminary

A REDUCE program consists of a set of functional instructions which are
evaluated sequentially by a computer. Examples of such instructions, which
are explained in this Section are:

MAKE X =Y + 2, Z(W) = Ww**2/T;

IET EPS(P,Q,R,S) =0 $

PUNCHIT $

SIMPLIFY (X**2 — y**2)/(X -Y)$
A program is terminated;by the instruction

END $

The arguments of these functions are expressions which in turn are

sequences of numbers, variables, operators and standard delimiters (such as

cormas and parentheses). The allowed form for these elements is as follows.

2.2 Numbers
Numbers in REDUCE statements may be of two types; integer and real.
Integers consist of a signed or unsigned sequence of 1-11 decimal digits
written without a decimal point.
e.g. =2, 5396 +32

Real numbers may be written in two ways;

i) as a signed or unsigned sequence of 1-9 decimal digits with an embedded
or terminating decimal point, but not beginning with a decimal point;
ii) as in i) followed by a decimal exponent which is written as the letter E

followed by a signed or unsigned integer.

ITP-247

€.8. 2. .
+32
0.32E2
320.E-1
are all representations of 32.
Not allowed: .5
-.52E3

The system normally uses integer arithmetic which is required by the
greatest common divisor algorithm. Under standard running conditions, a
real number is convefted into.fhe fatio of t&d integefs. A message will
also be printed to indicate the conversion,

e.g. 3.4 REPRESENTED AS 17/5.

In REDUCE2 it is possible to operate using real arithmetic, in which
case no check for greatest common divisors will be made. The declaration
FLOATIT should be used if this mode is required, while NOFLOAT returns the
system to integer arithmetic.

A distinct disadvantage of the present system is that single precision
arithmetic only is availablé. It is hﬁped that provision for multiple or
arbitrary precision arithmetic will be included in REDUCEZ in the near
future.

N.B. In REDUCEl, any real number within 107° of an integer is converted
automatically to that integer, and numbers with absolute value less than 10°°

are converted to zero. These restrictions do not apply to REDUCEZ2.

ITP-247

2.3 Variables
Variables in REDUCE are specified by name and type. There are two

types; scalar and vector.

Variable names consist of one to twenty-four alphanumeric characters

(i.e. alphabetic letters or numbers) the first of which must be alphabetic.
e.g. A, AZ, P1, Q23P,
AVERYIONGVARIABLE23k

Type specification 1is implicit for scalar variables, but must be

explicit for vectors. One way to do this is to use the declaration VECTOR.
e.g. VECTOR P1, Q23P $

specifies that Pl and Q23P are vector variables. The instructions INDEX

(Section 2.4.2) and MASS (Section 2,7.1k) also declare their arguments to be

vectors.

'2.3.1 Reserved variables

Several scalar and vector variables in REDUCE have a particular value

which cannot be changed by the user. These reserved variables should there-

fore be used only for the purpose intended. For example, the scalar variable
I is used to represent V-1l , and all occurrences of I¥¥2 will be replaced

by =1l. A list of reserved variables is given in Section 4.2.

2.4 Operators
Operators in the REDUCE system are also specified by name and type.

There are two types, infix and prefix.
Infix operators occur between their arguments.

e.g. A+ B-C, B¥2/C, (P.Q)

ITP-247

Such operators in the system are

. zgiiaiegzgi:c?szz gZZtion 2.4.2%) binary

*% exponentation binary

/ division binary

* multiplication n-ary

- subtraction (or unary minus) binary or unary
+ addition (or unary plus) n-ary

= equivalence binary

Parentheses may be used to specify the order of operation. If parentheses are
omitted, then the order of combination is by the precedence ordering giveﬁrb&
the above list (from innermost operations to outermost operations).

Prefix operators occur at the head of their arguments, which are
written as a.list enéiosed in parentheses and separafed by commas, as in
normal mathematical functions.

e.g. IL0G (X)
DET ((X,Y), (Y,X))
DF (X,X)
G (L,P,Q)

In REDUCEl, it is also possible to use the Stanford Burroughs B5500
AILGOL character set for operators. Thus the following operators are considered
equivalent.

* X (68 punch)
= - (058 punch)

The character ; (-68 punch) may also be used instead of $.

ITP-247

However, in order that the system can recognize * as the exponentiation
operator when reading ALGOL, the user must use the command BMODE NIL (before
the BEGIN card as explained in the job setup instructions) to affect this.
In REDUCE2, the symbol P may also be used to represent exponentiation.

Prefix operators in the system are

DET denotes determinant n-ary

DF partial differentiation of first argument with

respect to remaining arguments n-ary
I0G logarithm to base e unary
G gamma matrix expression . ' n-ary
EPS compietely aﬁiisymmetric tensor of degree four quaternary

These operators and the . operator are described below.

2.4.1 Special Operators

(a) DET
The operator DET is used to represent n X n determinants. DET
has n arguments interpreted as rows of the determinant each of which is
a list of n expressions. For example the determinant
ABC
DEF
GHJ

would be written

DET ((4,B,C), (D,E,F), (G,H,J))
N.B. If the determinant is larger than 8 X 8, the present routines (which
expand recursively in terms of minors of the first row) become prohibitively

slow.

ITP-2k4T

(b) DF
The operator DF is used to repreéent partial differentiation with
réspect to one or more variables. The first argument is the scalar expression
to be differentiated and the remaining are the differentiation variables,
the order of the variables specifying the order of differentiation

3
e.g. DF (E,X) = a*;Ez

3 3
DF (E,X,Y)= 3 ()

3%
ox2

DF (E,X,X)=

etc.
where E 1s any scalar expression.
If substitutions (Section 2.7.3) héve been declared for any variables in
E, then these substitutions are checked for dependence on the differentiation .
variables.

(c) Log
IOG is used to represent logarithms to base e, and i1s a function

of one argument, which is a scalar expréssion, Little effort is made by
the system to simplify IOG expressions. They are differentiated correctly,

but no attempt at combination or expansion is made.

*
2.4.2 Operators Used in High-Energy Physics

(a) _-

The - operator is a binary operator used to denote the scalar
product of two Lorentz four-vectors. In the present system, the index
handling routines all assume that Lorentz four-vectors are used, but these

routines could be rewritten to handle other cases.

ITP-247

Components of vectors can be represented by including representations
of unit vectors in the system. Thus if EO represents the unit vector
(1,0,0,0), (P-E0) represents P, the zero™? component of the four-vector

(3)

P. OQur metric and notation follows Bjorken and Drell. Similarly, an

arbitrary component P may be represented by (P.U). If contraction over

)
components of vectors is required then the instruction INDEX must be used.
Thus
INDEX U $
declares U as an index, and the simplification of
(p-U) * (Q-U)
would result in
(P-Q)
Arguments of INDEXVAre also flagged as vectors.
The metric tensor g,y MY be represented by (U-V). If contraction
over py and VvV is required, then U and V should be declared as indices.
During the index contraction phase, the system checks to see th;t all
indices declared are both matched and used in every term. If not, a terminal
error message results. If the user wishes to declare more indices than occur
in every term, the instruction IFLAG will turn off the check for redundant
indices, but not the check for unmatched indices.
The instruction REMIND V1...VN $ may be used to remove the index
(and vector) flags from the variables V1 through VN.
(v) _&

G 1is an n~ary operator used to denote a product of gamma matrices

ITP-247

10

contracted with Lorentz four-vectors. Gamma matrices are assoclated with
fermion lines in a Feynmen diagram. If more than one such line occurs,
then a different set of gamma matrices (operating in independent spin spaces)
is required to represent each line. To facilitate this, the first argument
of G is a line identification variable (not a number) used to distinguish
different lines.
Thus

G(L1,P) * G(L2,Q)
denotes the product of ? associated with a fermion line identified as L1,
and Q associated with another line identified as 12 and where P and
Q are Lorentz four-vectors. A product of gamma matrices associated with
the same line may be written in a contracted form.
Thus

¢(L1, P1, P2..., P3) = G(L1, P1) * G(L1l, P2)*...*G(Ll, P3)
The vector A 1is reserved in arguments of G +to denote the special gamma
matrix Vg ¢
Thus

G(L,A) = 7 associated with line -L

G(L,P,A) = P¥y, associated with line L.
Tu (associated with line L) may be written as G(L,U), with U flagged
as an index if contraction over u 1s required. The notation of Bjorken
and Drell(j) is assumed in all operations involving gamma matrices.

(¢) EPS

The operator EPS has four arguments, and is used only to denote

ITP-247

the completely antisymmetric tensor of order 4 and its contraction with
Lorentz four-vectors
Thus
equo- = 41 if u,v,p,0 is an even permutation of 0,1,2,3.
=1 if an odd permutation
0 otherwise
A contraction of the form euvpcppqo— may be written as EPS(U,V,P,Q),

and so on.

2.5 Expressions

REDUCE expressions may be of four types; scalar, vector, matrix and
equivalence and consist of syntatically allowed sequences of numbers,

variables, operators, left and right parentheses and commas.

2.5.1 A scalar expression follows the normal rules of algebra subject

to the following restrictions:
(1) numerical exponents only are allowed in expressions. Furthermore, only
integer exponents are permitted in the standard representation of expressions.
Again, this festriction is reguired by the greatest common divisor routines.
Conversion of expressions with real exponents to the required form is made
by the system and a message is printed to inform the user of this.
Examples of scalar expressions are:

X

X¥*3 —2%Y/(2%Z%%2 — DF(X,Z))

(P**2 + M¥%2)%*(1/2)*L0G(Y/M)

(2.5%X = y/1.2)*%1,2

ITP-247

 ——— .

*
2.5.2 Vector Expressions follow the normal rules of vector combination.

Thus the product of a scalar expression and a vector expression is a vector

expression, as are the sum and difference of vector expressions. If these

-rules are not followed, error messages occur indicating either the absence

of a vector variable, or the presence of too many vector variables in an
expression. Assuming P and Q have been declared vectors, the following
are vector expressions

P

P =2%Q

OXXXY*P — (P-Q)*Q/(3%Q-Q)

whereas P*Q and P/Q are not.

*
2.5.3 Matrix Expressions denote those expressions involving gamma

matrices. A gamma matrix is a U4 X 4 matrix, and so the product, sum.énd
difference of such expressiéns is égain a matrix expression. There are no
matrix variables in the system, and wherever a scalar variable appears in
a matrix expression without an associated gamma matrix, an dimplicit unit
L x L mafrix is assumed.

| e.g. G(L,P) + M denotes G(L,P) + M*(unit 4 X 4 matrix).

N.B. multiplication of matrix expressions is of course non-commutative.

2.5.4 Equivalence expressions contain the equivalence operator, = .

Their general form is

(scalar vector or matrix expression} = (scalar vector or matrix expression)

ITP-247

12

13

for example

X =L-2z/2
P =
A¥B = L4

The equivalence operator is binary, and so an expression of the form

is not allowed.

2.6 Kernels
A particular type of expression of great importance in the REDUCE

system is a kernel. It may be defined as one of the structures

{variable) (operator) (variable) for infix operators
or {operator)({variable),....{variable))for prefix operators
where (operator) is one of the operators ** ., G or EPS .

In cases where the arguments of these operators may be reordered,
the system puts the kernel arguments in a canonical order, based on the
intrinsic order of the variables (Section 2.7.2) and stores the kernels
uniquely. We therefore define a kernel form as an expression of the form
given above, whose arguments are not necessarily in the canonical order.

Examples of kernel forms are:

A%x2
P-Q

¢(L,pP,Q)

ITP-247

1L

whereas)
A*B
(A+B)**2
EPS(P,Q+R,S,T)
are not.

2.7 PFunctional Instructions

Functional instructions are instructions to the computer to perform
some operation. They consist of an instruction name, a list of arguments
(which may be empty), separated by commas, and an instruction terminator,
$ or ; . Nearly all functional instrﬁcfions-are descriﬁed in this
Section, but the user should consult Section 4.1 for a complete list.

Functional instructions may be divided roughly‘into two classes;
process instructions (or processes) whiéh perform symbolic operations on
their arguments and output results fo the user, and declaration ipstructions
which perform a variety of service operations prior to the call of a process
instruction, such as declaring variable types, setting flags controlling
output and setting up replacement tables. Process instructions may also
add to replacement tables as a by-product of their calculation.

We shall illustrate the use of these instructions by considering first

the process SIMPLIFY.

2.7.1 SIMPLIFY (or SM)

The argument of SIMPLIFY is a scalar or matrix expression. The main

purpose of SIMPLIFY is to reduce this argument by expansion and collection

ITP-247

15

of terms to a quotient of two standard polynomial forms. The standard form
used by the system is similar in structure to that of G. E. Collinsgu) In
addition, a standard ordering of variables is used in expressions, and this
may be specified by the user. During this reduction, various types of
substitutions may be made for variables and kernels in the expression. In
addition, derivatives, determinants, contractions of indices and traces of
gamma matrices are calculated if required. The result of these operations
is then printed and stored for later use if needed.

Roughly, the operations of SIMPLIF"Y or its argument follow the follow-
ing sequence: -

(1) Substitutions of the first kind (described in Section 2.7.4).

(2) Conversion to quotient of two standard polynomial forms,

including calculation of derivatives and determinants.

(3) Index contraction and traces of y-matrix expressions if required.

(4) Substitutions of second kind (Section 2.7.5).

(5) Cancellation of greatest common divisor, if required (Section 2.7.8).

(6) Output of results (Section 2.7.9).

A large number of declarations may be used in connection with SIMPLIFY
and most other processes. TFor example the instruction TITLE takes a single
argument which appears as a title on process output. Another simple example

is the instruction for ordering variables in expressions.

2.7.2 Ordering of variables 1is defined at read-in time, the variable with

the highest order being that read first. This order is retained throughout

the calculation. All variables in expressions are ordered in terms of their

ITP-2kT

16

intrinsic order, and the speed of a calculation and the size of expressions
can depend on this order. For this reason it is wise to give variables which
occur most frequently the highest order.

The instruction ORDER may be used to order variables, although the
position of variables as they are read in also determines their order.
Thus

ORDER X, Y, Z $

orders X ahead of Y, Y ahead of Z and all ahead of other variables in
expressions which follow. ORDER should be the first instruction in a calcu-
lation (unless FACTOR is also used [Section 2.7.9]), otherwise variables
introduced in earlier instructions will be ordered ahead of those in the
ORDER declaration.

Reserved variables (Section 5.2) already have an intrinsic order in
the system, and this cannot be changed by the user. In general, their order

is lower than any variable introduced by the user.

2.7.3 Substitutions

An important class of instructions are those which define substitutions
on variables and expressions in the argument of SIMPLIFY. These fall naturally
into two classes; substitutions on general expressions (substitutions of the
first kind) defined by the instruction MAKE and substitutions on standard

forms and quotients (substitutions of the second kind) defined by the instruction

LET.

2.7.4 Substitutions of First Kind

These substitutions are declared by the instruction MAKE. The argument

ITP-247

17

of MAKE is a list of equivalence expressions of the form

(1) (variable) = ({expression)
e.g. X = Y*¥*¥2 + 2
c = G(L,q) + M
or
(2) (variable)(({variable),(variable)...) = (expression)
e.g. F(U) =U+3
U,v) = ¢(L,U,V) -G(L,V,U)

In case (1), all occurrences of the variable on the left of the equivalence
sign are replaced by the expression on the right. Case (2) defines a
functional substitution. All occurrences of the functional name are considered
as a function with the declared number of arguments and the appropriate sub-
stitutions. If the number of arguments do not match an error occurs. For
example, with the above substitutions the expression

X*¥%2 + 2%¥X*F(Y+Z)
becomes
(Yxx2+2)*x242%(Y*2+2) *((Y+Z)+3)

If the left hand side df an equivalence expression is redefined by a
later call of the instruction, the previous expression is replaced by the
new one, and a diagnostic message printed to inform the user.

The instruction

CLEAR V1...VN $

may be used to remove the variables V1 through VN from the replacement
tables. In the case of functional definitions only the functional name
should appear in the arguments of CLEAR. If any of the variables V1 through

VN are not found, a diagnostic message is printed.

ITP-247

2.7.5 Substitutions of the Second Kind

These substitutions, which define replacements in standard forms, are
declared by the instruction LET. The argument of LET is a list of equivalence

expressions of the form:

I

(1) (variable) {expression)

(2) (kernel form) (expression)

Examples are

X = Y+ 2
P1 = Q — 2%M¥R/(M1+M2)
(P.R) = (S - Mxx2)/2
Y*%3 = 2%7 - 3

The implementation of these substitutions is very efficient, as they
are defined in terms of kernels which are stored uniguely.

In most cases, the instruction MAKE is sufficient for defining replace~
ments for scalar variables. However, if the instruction RSM is following,
LET must then be used, as explained in Section (2.7.10). 1In addition, LET
should be used in cases where it is obviously more efficient to make the
substitution after reduction to standard forms rather than before.

Substitutions of the form (2) allow additions of real exponents to the
system in a convenient manner. For example, suppose the expression

(P**2 + M¥*2)%¥0.5 (a)
is required in a calculation. By setting

X¥%2 = P¥¥2 + M¥*2 (b)

ITP-247

18

19

then X can be used tq represent the root, and the system will replace all
even powers of X by the appropriate number of powers of P¥¥2 + M¥¥2. Any
derivatives with respect to variables in such statements are made correctly.
If an expression of the form (a) is encountered during simplification, it is
automatically replaced by a new variable and a substitution of the form (b)
generated. A message is also printed to inform the user of this
e.g. (P**2 + M**2)**(1/4k) REPRESENTED BY GO123

The remarks on redefining equivalence expressions and the instruction

CLEAR in Section 2.7.4 also apply to LET.

2.7.6 Asympotic Constraints

In expansions of polynomials involving variables which are known to
be small, it is often desirable to throw away all powers of these variables
beyond a certain point to avoid excessive unnecessary computation. The
instruction LET may be used conveniently to do this. For example, if only
powers of X up to X' are needed, the instruction

IET X**8 =0 $

will inform the system to keep the required terms and delete all others.

2.7.7 ILimitations in use of MAKE and LET

There are several features of these instructions of which the user
should be aware.

First, no variable on the left of a replacement expression may appear
in the right of the same expression.
Thus

X=X+2,Y¥=Y

ITP-247

20

would be incorrect arguments of MAKE or LET.

Secondly, a check is made at the end of every instruction call for
variables or functions in the righthand side of each expression which are
themselves replaced in another substitution of the same kind. Thus a call
of

MAKE X=Y+2Z, Z=L+M$
would result in the X replacement being stored as

X=Y+L+M
If Z were redefined by a further call of MAKE, the replacement for X
would change accordingly. However a call of the instruction CLEAR Z $§
would not change the definition X, and a subsequent definition of Z would
have no effect on X.

As a consequence however of the checking facility of MAKE and ILET,
any implicit substitution of a variable in terms of itself is not allowed.
Thus

MAKE L=M+N, N=L+R$
is illegal. .

It should be noted that >MAKE and 'LET replacements are kept entirely
separate in the system and no checking for common substitutions is made between
them.

Lastly, there are several key variables which cannot appear in the
left half of substitutions. If one of these is used, a diagnostic message will
be printed stating that the replacement was not allowed. For example, system

prefix operators cannot appear in the left half of equivalence expressions.

ITP-247

21

2.7.8 Cancellation of Common Factors

Facilities are available in REDUCE for cancelling common factors.-in
the numerators and denominators of expressions, at the option of the user.
If required the system computes the greatest common divisor of the numerator
and denominator using an algorithm due to G. E. Collins(s) and cancels this
divisor from the relevant terms. Unfortunately, large integers outside the
single~precision range of the present system are often generated and will
result in a terminal error condition if encountered. It is hoped to remedy
this by introducing multiple or arbitrary precision arithmetic in the near
future. The instruction FACIT causes the system to check for common factors,
while NOFAC returns the system to its normal state.

A check is automatically made, however, for common kernels in the
denominators of expressions. These are divided into the numerator, which
may result in negative exponents appearing in printouts of results, even

though only positive powers are kept in standard forms.

2.7.9 Output of Expressions

A considerable amount of effort has been devoted in REDUCE to the
printing of expressions in the most convenient and readable form. For
example, infix operators are set off by spaces, the number of spaces being
(inversely) dependent on the precedence of the operator; thus ** has no
spaces each side whereas = has four. The standard form of output of an
expression is as a list of terms, single spaced and filling the whole print
line. However, the user has at his disposal a wide range of declarations

which modify the printing, none of which need be used if not reguired.

ITP-247

These are: -

(a) FACTOR. This instruction takes a list of scalar variables as argument.
FACTOR 1is not really a factoring command, but rather a separation command.
All terms involving fixed powers of the declared variables are printed as a
product of the fixed powers and a sum of the rest of the terms., An example
of such factorization is shown in Section 3.2. In order for the.rele?ant
algorithm to operate efficiently variables being factored should have
highest order. Thus the FACTOR command should be the first command in the

program (preceeding even an ORDER command) for efficient operation. The

instruction REMFAC V1,..VN $§ removes the factoring flag from the variables

V1l through VN.

(b) LISTIT. Often the output is easier to handle if each term is printed
on a separate line. The declaration LISTIT achieves this, and may be
turned off by using NOLIST.

(c) SPACEIT. This instruction with no arguments may be used to double
space output in REDUCEL only. NOSPACE,Asimilarly, returns printing to the
normal form.

(d) PUNCHIT and PFORT are punching instructions (with no arguments)

available in REDUCEL only. Punched output 1s designed for use as source

program in numerical calculations. The former instruction punches expressions

close-packed in ALGOL notation (compatible with Burroughs B5500 input),
whereas the latter punches FORTRAN IV-compatible output. Cards punched by
PUNCHIT may alsc be used as input in REDUCE calculations provided ALGOL

input has been declared (Section 2.4). Punching may be discontinued by using

NOPUNCH.

ITP-247

.22

2.7.10 Further Manipulation of SIMPLIFY Output may be achieved in a variety

of ways.

First, the results of all process calculations are saved as a quotient
of two standard polynomial forms which may be further reduced by the instruction
RSM. The user can make further substitutions (using LET), and change factor-
ization and output conditions before "resimplifying" the result. New sub-
stitutions of the first kind (using MAKE) will ha?e_no effect as all reductions
are made on standard forms.

After the expression has been "resimplified" its new value is stored in
the system and so the "reéiﬁplifiCatiSn"