STANFORD ARTIFICIAL INTELLIGENCE REPORT May, 1969
MEMO AI- 90

STANDARD LISP*

by

Anthony C. Hearn¥*

ABSTRACT: A uniform subset of LISP 1.5 capable of assembly under
a wide range of existing compilers and interpreters is
described.

*Research sponsored in part by the Air Force Office of Scientific Research,
Office of Aerospace Research, U.S. Air Force, under AFOSR Contract No.
FLL4620-68-C-0075, and in part by the Advanced Research Projects Agency of
the Secretary of Defense (SD-183).

*¥Alfred P. Sloan Foundation Fellow.

C

SECTION 1. INTRODUCTION

When it was first formulated in 1960, (1) the programming language
LISP was a truly machine independent language. However, even the earliest
computer implementation encountered problems in input-output control and
the handling of free variables which were not considered in the original
paper. Successive implementations of LISP on more sophisticated machines
have solved such problems by independent methods and introduced extensions
of the language peculiar to those machines. Consequently, a LISP user
now faces considerable difficulty in moving a program from one machine
to another and is often involved in weeks of debugging in the process.
As a possible solution to this problem, this paper is an attempt to pro-
vide a uniform subset of LISP 1.5 and its variants as it exists today.
The version of LISP described, which we call Standard LISP, is suffi-
ciently restricted in form so that programs written in it can run under
any LISP system upwardly éompatible with LISP 1.5 as described in the
LISP 1.5 Programmer's Manual (2). As function names vary from system to
system and input-output control is different, some modification of the
code is of course necessary before function definitions can be success-
fully compiled in any given system. However, this modification is per-
formed automatically by a preprocessor, which is custom built for a
particular system. This preprocessor is a LISP program which is loaded
before any Standard LISP programs are run, and could be built auto-
matically into a system if only Standard LISP programs are run. Parts
of this preprocessor are similar for all systems, but some of its
peculiar to a given implementation. Standard LISP preprocessors have
been written for SHARE LISP for the IBM 7090 series machines, Stanford

LISP/360 for IBM System 360 machines, Stanford AI LISP 1.6 for the

PDP-6 and PDP-10, BBN LISP for the SDS 940 and Texﬁs LISP for the
CDC 6600. For convenience in exposition we shall refer to the first
four systems as SHARE LISP, LISP/360, PDP LISP and BBN LISP respectively.

In Section 2 of this paper; the structure of Standard LISP programs
is described. Standard LISP conforms as closely as possible to LISP 1.5
as defined in the LISP 1.5 Programmer's Manual, and the necessary
deviations and extensions are described in detail. In Section 3, the
structure of the Standard LISP Preprocessor is described, and the pre-
processor for LISP/360 is given in Appendix A as an example. The
translation of general LISP programs into Standard LISP is also dis-
cussed in Section 3., A listing of all functions defined in Standard
LISP is given in Appendix B, and a function for reading Standard LISP
programs is given finally in Appendix C.

The naming of new functions in a language and their definition is
of course a very subjective matter, but little justification will be
offered for their choice. The author would however appreciate hearing
from gnyone with criticisms or suggestions for improvements in the

formulation.

SECTION 2. STRUCTURE OF STANDARD LISP PROGRAMS

2.1 Preliminary

In order to achieve the greatest possible compatibility with exist-
ing LISP systems, Standard LISP is based as closely as possible on the
language described in the LISP 1.5 Programmer's Manual. However, there
are six main areas where Standard LISP makes significant departures from
the description in the Manual in order to offer maximum flexibility in
programming. These areas are as follows:

(i) Handling of free variables and constants
(ii) Functional arguments

(iii) Character reading and printing
) External file management
(v) Function and MACRO definitions
) Array handling

Each of these modifications will be described in detail in sub~
sequent parts of this Section. A number of additional limitations
forced on Standard LISP programmers because of deficiencies in the
design of various systems are also given in this Section.

Several functions given in the LISP 1.5 Programmer's Manual have

‘been redefined in Standard LISP for maximum compatibility with other

systems and several additional functions of proven utility have been
included. These functions are defined in detail in Appendix B and are
therefore not discussed in this Section.

2.2 Free Variables

One area in which the greatest differences between various LISP
implementations can be seen is in the handling of free variables. Most

systems allow the use of a special cell (usually under an APVAL or VALUE

property) for storing those free variables which are global to all func-
tions or are constant in the system. In systems with compilers there is
in addition a mechanism for storing and retrieving free variables in
compiled functions on a push-down stack. However, communication between
a free variable in a compiled and an interpreted function is not possiﬁle
in general in such a system, as the mechanism for handling each is dif-
ferent. Two systems (PDP LISP and BBN LISP) solve this problem by making
all interpreter variables SPECIAL and using a push-down-stack rather than
an ALIST for storing their bindings. Standard LISP, however, cannot
assume that such communication is possible and therefore imposes certain
limitations in the use of free variables on the user. 1In order to pro-
vide a partial solution, however, three classes of free variables are
recognized, each of which is handled differently by the preprocessing
stage of an assembly. The three classes are:

(i) Constant variables or constants are variables which are

global to all functions and whose value remains fixed during the life of
a given system.

(ii) Global variables are variables which are global to all func-
tions in that they do not appear in the variable list of any LAMBDA or
PROG expression.

(1ii) Extended variables are variables which are bound in a LAMBDA

or PROG variable list of some function, but free in another.

Consiant variables are declared by the function CONSTANT during the

preprocessing stage. CONSTANT takes a list of pairs of constants and
their values as its arguments, and is defined in Standard LISP as
constant[u] = deflist[u;CONSTANT]

The preprocessor replaces all such constants by the list

(QUOTE<value>)
on assembly. This mechanism provides a convenienr wethod for compensating
for system differences in the handling of atomic symbols containing
arbitrary characters. For example, the atom 'AN ATOM' would be written
as $$3AN ATOM$ in SHARE LISP and LISP/360, and as AN/ ATOM in PDP LISP,
s0 such a string cannot be introduced directly intoc a standard LIéP
program. However, the programmer can use a free variable ANATOM for example
2o represent this string, and the appropriate value for the atom declared
during the setup stage. Any necessary character value objects, such as
CobMbis and LPAR, for example, should also be declared using CONSTANT. An
example of the call of CONSTANT for LISP/360 would be:

CONSTANT (((CoMMA $$3,%) (LPAR 3($) (ANATOM 3AN ATOMS)))

Ciobal variables differ from extended variables in that only one fixed cell

L& newsssary to store the value pointer for the variable, and therefore no
pmsh~dmwn~stack/ ALIST conflict arises. Thus it is possible to communicate
betwesn such variables in interpreted and compiied functions provided that
references to such variables in interpreted code are chzaged to references

to the particular cell where the value pointer is stoved. In most systems,
any such variables which appear in compiled functions must be declared
SPECIAL before compilation. The SPECIAL declaration initializes such
variables to NIL and sets up the necessary cell for storing the value pointer.
Standard LISP introduces two functions GTS and PIS which allow the programmer
to get oy ononge the value of these special cells directly. In SHARE LISP
for example these functions are defined as follows:

gts{u] = cdar|prop Ju; SPECIAL ;)[NIL;error[cons[u;(NOT SPECIAL)1111]

pts[u;v] = rplacdcar[prop[u;SPECIAL;)[NIL;list[put{u;SPECIAL;1ist[NIL]]1]1]1]];v]

in other systems, equivalent definitions are always possible. If a given

®

function definition is to be interpreted and not compiled, then the pre-
processor changes every reference to global variables in the definition
to calls to GTS and PTS. No action is necessary by the preprocessor if
the function is compiled.

Extended variables are the only class of free variables which

impose limitations on the user. In all systems known to the author such
variables require SPECIAL declaration before compilation of functions
using them. However, it is not in general possible to mix interpreted
and compiled functions using these variables, and so functions con-
taining such variables should either be all compiled or all interpreted.
All references to global and extended variables are made directly
to the variable in Standard LISP unless the user wishes to make an
explicit call using GTIS. Similarly all changes should bermade using
SETQ, or PIS for explicit references. The functions CSET, CSETQ and
SET are consequently not defined or available in Standard LISP.

2.3 The Free Variables ALIST and OBLIST

Many systems allow the user to reference the ALIST and OBLIST
directly. However, the structure and referencing (and even existence)
of these lists vary so much from system to system that no direct
reference can be made in Standard LISP. The interpreter functions EVAL
and APPILY are however still available as *EVAL and *APPLY, *EVAL takes
a single form as argument and returns its evaluated value. *APPLY takes
two arguments, a function and a list of arguments for that function,
respectively and returns the value of applying the function to the argu-
ment list. Thus in SHARE LISP these two functions are defined as:

xeval[u] = eval[ujalist[]]

xapply[u;v] = apply[u;v;alist[]]

where alist [] is defined by

IAP (((ALIST SUBR §)(CLA $ALIST)(TRA 1 4)) NIL)

2.4+ Functional Arguments

Incorporating functional arguments in LISP systems poses many
design problems which are still not completely resolved. However, most
systems recognize the difference between a call to a functional argument
which is essentially a quoted function definition, and one in which
the form of the functional argument changes during the evaluation, as
given in Saunders' famous example (3) for instance. Standard LISP uses
the PDP LISP technique for distinguishing between these two types of
calls, viz., a quoted definition is referred to by FUNCTION and a modifi-
able form by *FUNCTION. The uses of QUOTE to define functional arguments
is not allowed. The preprocessor can of course modify these forms to
whatever particular calling method is used in the relevant system. Free
variables in functional arguments which are not constants fequire SPECIAL

or COMMON declarations in most compiler systems. These declarations are

made in a user-defined initialization stage of the preprocessor as described

in Section 3.

2.5 Character Reading and Printing

In its purest formulation, the constituent characters of a LISP atom
have no inherent meaning. However many applications of LISP require the
inspection and manipulation of these characters and the ability to create
new atoms from a list of characters. It is also often necessary to read
and write individual characters and exercise some controi over the format
of output.

Standard LISP introduces the following functions for this purpose.

All can be readily defined in most systems.

C

readch[]
princ[u]

explode[u]

compress[u]

liter[u]

digit[u]

otll[u]

pos(]

spaces[n]

In order to achieve compatibility with all systems it is necessary

to make a special distinction between character atoms as such and ordi-

nary atoms.

returned by EXPLODE.

Reads and returns one character from the input buffer.

Adds the character string u to the output buffer. Returns u.
Returns a list of the constituent character atoms comprising
the literal atom u. u may be an integer, but not a floating

point number, as various systems use different print repre-

sentations for these.

Creates an atom (literal atom or number) from the list of
characters u, adds it to the OBLIST if one exists, and
returns the atom.

A predicate function which is true if u is one of the
character atoms A through Z and false otherwise.

A predicate function which is true if u is one of the
character atoms O through 9.

If u = NIL then this function returns the current length
of the output buffer line, otherwise it sets the buffer
length to u,

Returns the number of characters presently in the output
buffer.

Adds n spaces to the output buffer and returns NIL.

A character atom is one returned by READCH or in the list

with character atoms as arguments and COMPRESS can only take a list of

character atoms. Character atoms do not possess property lists in the

usual sense and bear no relation to the ordinary atom of the same name.

The functions LITER, and DIGIT should only be used

Thus the character atom A is not equal in any sense to the atom A or
the character atom 1 to the LISP number 1. If particular character
atoms are needed in a program, they should be iﬁcluded as constants
(e.g., ONE) in the main program and appropriately defined in the pre-
processor. Alternatively, they can be created using EXPLODE.

2.6 File Management

The ability of most modern operating systems to handle varying
input and output devices for data was not foreseen in the original
definition of LISP., Standard LISP therefore includes the following
functions to handle such file management. It is assumed that in each
system there is a standard input and output device initially offered
to the user.
open [u; INPUT] Declares the file u as an input file.
open[u;OUTPUT] Declares the file u as an output file.
rds[ul Declares that all input now comes from the file u. If
u is NIL, then the standard input device is selected.
If u is not NIL, then u must have previously been
declared through an OPEN statement as an input file.

wrs[u] Declares that all output now goes to the file u. If u
is NIL, then the standard output device is selected.
If u is not NIL, then u must have been previously
declared through an OPEN statement as an output file.

close [u] Closes the file u. If u is an output file, then the
necessary end-of-file marks are written.

The form of the argument u for these functions will vary from
system to system. In some, it will be an atom specifying the name of a

file in some unique manner. In others it will be a list giving details

10

of device, filename, project/programmer numbers, etc. However, the
differences should not affect the design of programs or their calling
sequences.

2.7 User-defined Functions and Macros

Most LISP systems provide the user with a function DEFINE for
introducing function definitions into the system. However, the action
of DEFINE varies markedly from system to system. In SHARE LISP-like
systems, the definition is added to the property list of the function
name with an indicator EXPR. Other systems use CAR of the function
name as a pointer to the definition and in some cases compile the func-
tion directly into the system. A Standard LISP function DEFINE is also
available for introducing user~defined functions into the system, but as
its action varies from system to system its definition must be included
in the system preprocessor. The Standard LISP DEFINE normally includes
a call to the system compiler, but this may be varied as required. 1In
addition, DEFINE calls the preprocessor translator which modifies the
function definition before incorporation in the system as we shall
explain in detail in Section 3.

Special forms introduced as FEXPRs and FSUBRs may also be defined
in Standard LISP. As the preprocessor also modifies the definitions of
these forms, a special function DEFEXPR, whose argument has the same
form as DEFINE, is provided for introducing them.

The advantages of FEXPRs and FSUBRs are not universally recog-
nized among LISP system designers, and the current tendency is to
incorporate a macro defining facility in order to reduce execution
time in compiled code. In line with this trend, Standard LISP also

includes a function MACRO similar in form to that described by

11

C

C

C

_/

Weissman (4). As with DEFINE and DEFEXPR, the argument list is modi-
fied by the preprocessor and the code is compiled if required. 1In
systems with no macro handling facility the preprocessor can be used
to expand any macros found in a function definition at DEFINE time as
shown in Appendix A. On the other hand, if the system has no FEXPR or
FSUBR facility, such forms can be handled with macros or again by the
preprocessor. Consequently, all macros and special forms must be in
the system before defining any function which uses them.

Because function definitions are stored différently from system to
system, Standard LISP includes a function GETD for retrieving a function
definition when required. With interpreted code, GETD returns a pointer
to the S-expression definition of the function. If the function has
been compiled, GETD still returns a non-NIL value so that a test for
an existing function definition can be made, but it is not possible to
interpret this value in Standard LISP,.

2.8 Array Handling

Many LISP systems recently developed allow for the definition of
arrays in which the elements may be numbers as well as pointers to S-
expressions. In order to maintain our downwards compatibility with
SHARE LISP, however, Standard LISP restricts arrays to the LIST array
described in the LISP 1.5 Programmer's Manual. Consequently the word
LIST in the SHARE LISP array declaration is redundant, and is omitted
in Standard LISP. Thus ARRAY is a function of one argument which is a
list of arrays to be declared. Each item is a list containing the
name of the array and its dimensions, an example being

array [((ALPHA (7 10)) ((BETA (3 4 5))]

12

@

(

_/

After ARRAY has been executed, the arrays declared exist and their
elements are all set to NIL. Indices always range from O to n-1l.

On the other hand, Standard LISP provides two distinct functions
for setting array elements and getting their values. SETEL is a func-
tion of two arguments, the first a list consisting of the array name
and the relevant coordinates, and the second the value of the element.
Similarly, GETEL is a function of one argument which returns the value
of an element. For example, to set the (3,4) element of the array
ALPHA to A, we write

setel [(ALPHA 3 4) ; A]
and to get the value of the (0,1,2) element of BETA we write

getel [(BETA O 1 2)]

2.9 Standard LISP Program Restrictions

In order to achieve compatibility with as many systems as possible,

the following additional restrictions and features must be borne in mind

when writing programs in Standard LISP.

(i) The programmer is talking to EVAIQUOTE rather than EVAL.
Moreover, there are no OVERLORD cards in the SHARE LISP
sense, so that a special reading function may be required
in some systems. A suitable function to do this is given
in Appendix C.

(ii) Literal atoms are limited to 24 characters. Decimal
integers are restricted to 7 digits (j223), floating
point numbers to 8 digits plus an optional signed or
unsigned exponent less in magnitude than 37. Numbers
relating to other bases are not allowed explicitly and

must be included as constants.

13

O

(v)

(vi)

(vii)

(viii)

(ix)

Functions may not have more than five arguments and be
compiled in PDP LISP.

A GO statement may only occur at thé top level of a PROG
or as one of the value parts in a top level COND statement
within a PROG (otherwise the function will not compile in
the 7090 and LISP/360 systems).

The atom NIL represents falsity; F is not available for
this purpose. Furthermore, all S-expressions other than
NIL are considered to be true in predicate tests.

A COND form must terminate with a pair (T <form>) unless
the COND occurs within a PROG form.

Free variables should not have the same name as a function
in the program (otherwise some compilers will fail).

No atom may have more than 24 characters.

Because the Standard LISP function DEFINE includes a call
to the preprocessor, all FEXPRS and MACROS must be in the
system before defining any function which uses them.

LABEL is not defined in Standard LISP.

1

SECTION 3. THE STANDARD LISP PREPROCESSOR
3.1 Preliminary
The Standard LISP preprocessor is a LISP program which is respon-
sible for modifying any functions or MACROS defined in Standard LISP
so that they conform with the particular properties of the system in
which they are being assembled. The preprocessor is written directly
in the particular LISP language under consideration and we cannot there-
fore describe in detail its form for each system. However, the general
characteristics remain the same and we shall describe them here.
The preprocessor divides naturally into three parts as follows:
(i) The translator, which modifies the S-expression definitions
of functions before they are compiled or interpreted.
(ii) Definition of functions in Standard LISP not implemented in
the particular system.
(iii) A user supplied initialization section where free variables
are declared.

3.2 The Translator

The Standard LISP translator is a recursive function TRANS which
modifies the code of any function or macro introduced into the system.
TRANS takes two arguments, the first being the expressiom to be modi-
fied and the second NIL if the function is to be compiled and T if not.
The code for the LISP/360 translator is given in Appendix A. This code
is intended only as a guide for writing preprocessors for other systems,
but in most cases it will not require revision except as indicated
below.

In order to use the function TRANS, it is necessary to define in

the preprocessor the functions DEFINE, DEFEXPR and MACRO. These functions

15

O

O

call an auxiliary function DEF1 which performs four separate actions on
each definition considered.

(1) It checks each function name for a flag LOSE. If the flag
is found, it does not introduce the function into the system. 1In this
way any functions not needed in a particular implementation of a large
system may be excluded without modifying the main program.

(ii) If the function has no such flag, DEFl now checks for the
existence of a functional property indicator. If it finds one, a
message

(*%¥%% <function name> REDEFINED)
is printed. This is very useful in checking for conflicts between LISP
system functions and Standard LISP functions. If a conflict is found,
the relevant function can be renamed using the NEWNAM mechanism described
below.

(iii) It now applies the function TRANS to the function name and
its definition. The explicit action of TRANS is described below.

(iv) The function is now compiled into the system, using in
most systems the equivalent of the function COM1l of the SHARE LISP
compiler, or interpreted if the function has the flag NOCOMP on its

property list or a global variable NOCMP is true. This code may need

modification in some systems. In LISP/560, COM1 takes three arguments,

the first the function name, the second the definition of the function
if it is an EXPR (or NIL) and the third the definition if it is an
FEXPR (or NIL).

The necessary flags for functions which are not to be included in
an assembly or are not to be compiled are added by the functions LOSE

and NOCOMP respectively. Each of these functions takes a list of

16

O

function names as argument. Their definitions are given in Appendix A,
and their use is obvious.

As an alternative to flagging those functions which are not to be
compiled, it may sometimes prove useful to interpret a whole batch of
functions. In this case, the global variable NOCMP can be turned on and
off by the function NOCOM also defined in Appendix A.

After all functions have been considered in a given DEFINE or MACRO
statement, a list of those functions which have been compiled into the
system is returned (excluding those 'lost').

3.% Modifications to Code Performed by TRANS

Besides replacing any constants declared by CONSTANT with the cor-
responding quoted values as described in Section 2.2, and expanding any
FEXPRs or macros in systems without facilities for handling them, TRANS
performs two other types of code modification on any definition given
to it., These modifications are declared in advance by the functions
NEWNAM and NEWFORM.

NEWNAM, 1like CONSTANT, takes a list of pairs of atoms which it
gives to DEFLIST with the indicator NEWNAM. TIf TRANS meets any atoms
with this property in a functional position, it replaces them by the
corresponding value. This mechanism is useful for two purposes:

(i) To rename those functions in a Standard LISP program whose
names conflict with LISP system functions. In some cases, however, it
will be necessary to define the renamed Standard LISP function in terms
of the function with the old name in the LISP system. This can be done
using the NEWFORM mechanism described below, or by renaming the func-
tions with the NEWNAM mechanism and then defining them without applying

the translator to their definition. An example of this is the function

17

O

EXPLODE in the LISP/360 Preprocessor in Appendix A.

(ii) To rename those functions in a Standard LISP program whose
definitions coincide with system functions of a different name.
Examples of this may be found in the call of NEWNAM in the LISP/360
Preprocessor.

NEWFORM takes a list of pairs of atoms and lambda functional
definitions which it gives to DEFLIST with the indicator NEWFORM. When
TRANS meets an atom in a functional position with such a property it
modifies its translated arguments according to the prescription given
by the lambda expression. Thismechanism again has two uses:

(i) To redefine Standard LISP functions in terms of LISP system
functions whose definitions (and maybe even name) coincide, but the
arguments are in a different order. For example, PDP LISP contains a
function PUTPROP which is the same as the Standard LISP function PUT
except that the second and third arguments are in the opposite order.
So in assembling Standard LISP programs in this system, NEWFORM has an
entry

(puT (IAMBDA (U V W) (PUTPROP U W V)))

We note, however, that this translation will not be correct if a
form depends upon the order of its arguments for its effect. For
example, the Standard LISP form

(PUT U (SETQ V (QUOTE NO)) V)
would not translate correctly into PDP LISP using the NEWFORM entry above.

(ii) To 'open compile' functions with a short definition in the
particular LISP implementation. Examples of this are shown in the LISP/56O
preprocessor,

If the second argument of TRANS is true, indicating that the function

18

is not to be compiled, then the translator checks for occurrences of
special variables appearing alone or as the first argument of SETQ. 1In
the former cases, it replaces the code by a call to PTS and in the
latter a call to GTS. In some systems, however, it may be easier to
declare such variables as COMMON and use CSETQ to set their values. A
check for common variables is therefore included in the definition of
TRANS for illustrative purposes.

3. Translator Associated Functions

In addition to the functions described above, references are made
to the functions SUBLIS, PAIR and DEFLIST defined in Standard LISP. If
these functions are not present in a given system, their definitions
must be included with the translator, as with SUBLIS in the LISP/36O
Translator in Appendix A.

3,5 Standard LISP Functions Not in System

No LISP system yet written contains all Standard LISP functions
exactly as we have defined them, and it will therefore be necessary to
include such definitions in the preprocessor, either as a function
definition compiled directly into the system without using TRANS, or by
using the NEWNAM and NEWFORM mechanisms described earlier. Examples of
this are shown in Appendix A.

3.6 User-supplied Preprocessor Section

The final section of the preprocessor initializes a user's free
variables and must be supplied by the user for a given program. This
section will contain the table of constants which the programmer uses
as a call to CONSTANT, and also any necessary declaration of other free
variables which the system requires. These latter declarations cannot

form part of the Standard LISP program, as the declaration mechanism

19

O

O

varies from system to system. However, Standard LISP does allow use of
a function SPECIAL to declare any free variables in function definitions
generated by a user's program so that these functions may be compiled

at the time of definition if required.

3.7 Program Translator

Because Standard LISP provides only a subset of the functions
available in any given LISP system, it is not possible to automate com-
pletely the translation of any given LISP program into Standard LISP.
However, it is usually only the system functions which deal with machine
dependent properties which cannot be translated so that most programs
can be converted fairly readily.

A program translator from PDP LISP to Standard LISP for example
has been designed on similar lines to the Standard LISP preprocessor
described in this Section. Apart from using reversed entries in the
NEWNAM and NEWFORM tables, the program translator checks for three par-
ticular features in the PDP LISP program being converted.

(i) Any quoted expressions are checked for characters which
are neither letters or digits. If any are found, the quoted expression
is replaced by a generated symbol.

(ii) Any forms containing functions with extended properties are
converted by explicit routines designed for these functions. For
example, a COND form can have more than one consequent in each term in
PDP LISP, so that each COND expression must be checked and changed when
necessary.

(iii) If a function is found which is not translatable, the form
in which it occurs is replaced by a generated symbol.

Whenever replacement by a generated symbol occurs, the programmer

20

O

is informed of this on his console. 1In addition, the generated symbol
and its equivalent are placed on a table which is printed at the end of
the translation. This table is searched for the prior existence of a
non-translatable form before a new symbol is generated. In case (i)
above, the generated symbol and its equivalent become CONSTANT entries
in the Standard LISP preprocessor. In case (iii), the symbols can be
replaced (using an editing program) by whatever Standard LISP form the
programmer decides upon.

Program translators will be constructed for other systems as the

need arises.

21

CONCLUSION

The formulation of LISP presented in this paper offers the user a
language which may be run on most machines with a minimum of fuss. It
has been successfully used to run one very large LISP progranP in five
different LISP systems without difficulty. We hope that this attempt
at standardization will also have some influence on the design of new

LISP systems and make easier the description of LISP algorithms and

programs in the literature.

22

O

REFERENCES

John McCarthy, Comm of the ACM, 3, 184 (1960).
John McCarthy, Paul W, Abrahams, Daniel J. Edwards, Timothy P. Hart,

Michael I. Levin, LISP 1.5 Programmer's Manual, MIT Press, 1965.

Robert Saunders, LISP - On the Programming System, in The Programming

Language LISP: Its Operation and Applications, edited by E. C.

Berkeley and D. G. Bobrow, MIT Press, (1964).

Clark Weissman, LISP 1.5 Primer, Dickenson, 1967.

Anthony C. Hearn, REDUCE - A User Oriented Interactive System for

Algebraic Simplification, in Interactive Systems for Experimental

Applied Mathematics, (Academic Press, New York, 1968).

23

O

APPENDIX A

=

PROCES S OR **x

%% T H F S TANDA E
F 6] ¥* % %

R D LI SP P
*Ex O R LI spPs 3

e}

DEFLIST (((COMMENT (LAMBDA (U A) NIL))) FEXPR)
COMMENT (STANDARD LISP TRANSLATOR)

SPECIAL ((NOCMP))

(LAMBDA (U) (COMPILE (DEFINE Ul) (I

(DEFINE (LAMBDA (U)
(LEF1 U (QUOTE EXPR)})))

(DEFEXPR (LAMBLA (U)
(DEF1 U (QUOTE FEXPR)))

(MACRC (LAMBDA (U)
(DEF1 U (QUOTE MACROI)

{(DEF1 (LAMBDA (U V)
{(PROG (W X Y Z)
A (COND ((NULL U) (RETURN Y)))
(SETQ X (CAAR U))
(COND ((FLAGP X (QUOTE LOSE)) (GO BR))
((CETD X)

(PRINT (LIST (QUOTE *¥3#x%) X (QUOTE RELEFINEL))I))
(SETQ Y (NCONC Y (LIST X)h)

{SETQ w (OR NOCMP (FLAGP X (QUOTE NOCOMP 1))
(SETQ X (LIST (TRANS X NIL) (TRANS (CAWAR 1) NOCCMP)))
(COND ((OR W (EQ V (QUOTE MACRO?)) (DEFLIST (LIST x) Vv))
(T (COM1 (CAR X)
(AND (EQ V (QUOTE EXPR)) (CADR X))

(AND (EQ V (QUOTE FEXPR)) (CADR X)1)))
B (SETQ U (CDR U))
tGO AY)))

(TRANS (LAMEDA (U V)
(COMD CENULL Uy NIL)
((ATOM U) (COND ((NUMBERP U) U)
((AND V (GET U (QUOTE SPECIAL))
{(LIST (QUOTE GTSH)Y (LIST (QUOTE WUOTED) W)
(T ((LAMBRA (X)
(COND (X (LIST (QUOTE QUOTL) X))
(T (LLAMBDA (Y)
(COND (Y Y) (T Ull})
(GET U (QUOTE NEWNAM)Y) 1)))
(GET U (QUOTE CONSTANT)) }))
{{ATOM (CAR U)
(COND ({EQ (CAR U) (QUOTE QUOTE)) U)
((AND V (EQ (CAR U) (QUOTE SETQ}))
(APPEND (COND ((GET (CALR U) (QUOTE SPECIAL))
(LIST (QUOTE PTS)H
(LIST (QUOTE QUOTE) (CADR Ul

((FLAGP (CAUR 1)) (GUNTE COMMOMN))
(LIST (QUOTE CSETQ!Y (CAUR)
. (T (LTIST (QUOTF SETO) (CADR U I
{ TRANS }CAUDR Uy 1Y) . ..
(T (PROG (X)
(RETURN. (COND - :
((SETQ X (GET (CAR U) (QUDTF NEWFOR)))
(SUBLIS (PALIR (CADR X) (MAPTR (COR U) V))
(CADDR X)) '
((SETG X (GFT (CAR U) (QUOTE NEWNAM)))
(CONS X (MAPTR (CDR U) V))) ‘
((SETO X (GET (CAR 1J) (QUOTE MACRO)) L
{ TRANS (APPLY X (CDR 1y} NIL)))
(T (CONS (CAR U) (MAPTR (CDR U) VI)))1))))
(T (MAPTR U V1))))

(MAPTR (LAMBDA (U V)
(COND ((ATOM U) (TRANS I V))
(T (CONS (TRANS (CAR U) V) (MARPTR (LDR y) viri))»)

(CONSTANT (LAMBDA (1))
(DEFLIST U (QUOTF CONSTANTI))

(LOSE (LAMBDA (U)
(FLAG U (QUOTE LOSE)))

(MEWFORM (LAMRDA (1))
(DEFLIST U (QUOTF NFWFORMI)))

(NEWMAM (LAMBRDA (U)
(DEFLIST U (QUOTFE NEWNAM))))

(NOCOMP (LAMBDA (1)
(FLAG U (QUOTE NOCOMP))))

(MOCOM (LAM3DA (U)
(SETG NOCMP U)))
1)

UNSPECTIAL ((NOCMP))
CLAMPDA (U) (COMPILE (DEFLIST U (QUOTE EXPRIDID)) (L

(PETD (LAMFDA (U)
(OF (GET U (QUOTF EXPR))
(GFT U (QUOTE FFXPR))
{GET U (QUOTE SURR))
(GET U (QUOTE FSUBR))
(GET U (QUOTE MACRO))))

C(SURLTS (LAMRDA (U V)
(ZOML CONULL W)Y V)
(T ((LAMBDA (X))
(COMD (X (CDR X))
{ (ATOM V) V)
(T (CONS (SUBLIS U (CAR V1)) (SutLIs u (CLR VI
(SASSOC Vv 1) NIL)IDI) D))
V)

Cntls

1)

NEWN

)

NEWF

I
)

o

DL

TANT ((

(BILANK $$%)
(CONMMA 35B4%)
(DOLLAR 33%/3/)
(LPAR $3%(3)
{(RPAR $3%)8%)
(STAR $di%%)

4

AM

(DIGIT DIGP)
(EXPLOLE XEXPLOWLF)
(LITER LETP)

(OPEMN *QPE®M)

(OTLL *OTLL)
(PRINC PRINIL)

(RDS *RDS)

(SPACFES XTAH)

(WMRS #*WRS)
(¥FUNCTION FUNCTTION)

ORM (A
(¥APPLY (LARLEUA (U V) (APPLY UV ALIST)))
(CARAAAR (LAMLLA (U) (CRAR ({anR U I))
(CAAADR (LAMBLA () (CAAR (CADR W)
(CAAUAR (LAMIELA (U (CAAR (CHAR L)
(CAADLDR (LAMPDRA (U) (CAARK (CDDR U))
(CAUAAR (LAMULA (U) (CALRK (CAAR 1))
(CADADR (LAMsOA (UY (CADKR (CADR Ui
(CADUAR (LANMIA (U) (CADE (CuAR Ul
(CADIDR (LAMBLA (U) (CADR (CDDR W)
(COAAAR (LAM LA (U) (Cusll (CAAR UD)
}
)
)
)
)

(CDAADR (LAMmiA (U) (CoAk (CADR 1)y) y)
(CDADAR (LANZDA (L) (COAR (CUAR U) 1))
(CDALDR (LAMEOLA (W) (COAR (CDDR U) 1))
(CDLUAAR (LAMEUA (U) (CLibk (CAAR U)))
(CODLALR (LLAFFLA () (CLDR (CADR U)YI)))

(CODDAR (LAWMEPUA (L) (ColbR (CDAR L1 1))

(COLLLUR (LAMCLA (W) (CUbR (CODR U)I))) ’
(UIVIVE (LAME WA (U V)Y {CCNS (QUOTIENT U V) (REMAINUcR U V))))
(ERRORSET (LANMBOA (U VI (LIST W)))

(PUT (LAMPUA (1 V W) (PROG2 (DEFLIST (LIST (LIST U W) v) w)))
{GENEYM (LAMEDA NIL (UGENSYMLT (QUOTE %% Gb))r))

(ONEP (LLAM3DA (N)Y (Duunl N 1))

(ROADCH (LAMUALA NIL (REALCH NTL)))

SENT (STAMDARG 1ISP FUNCTBRONS DEFINELU ITM TeRMS OF SYSTEM

FUNMCTIONS OF THE SAME MAME)
EMT (THE FOLLOWING LIST IS USED RY EXPLODHL DEFINED 2ELOW)
IST CUINASL (0D o 2%20%) (1 o 25913) (2 o 2332%) (3 o 2bi32)

(4 o HED4E) (H o DIDHE) (6 o 5DHBAT) (T o DHHTH)
(8 o $338%) (9 o H249%))) 1) SPuClAL '

O

@

(LAMBDA (U) (COMPILE (DEFLIST U (QUOTE EXPRI)I)I)

(*EXPLODE (LAMBDA (W)
(COND ((NUMBERP U) (EXPLODN 1))
(T (EXPLODE w)i)

(EXPLODN (LAMBDA (U)
(COND ((ZEROP U) (LIST (QUOTE $330U%)))
(ENOT (FIXP U)) (ERROR (LIST (QUOTE EXPLODN) U)))
({MINUSP U) (CONS (QUOTE $$3-%) (EXPLODN (MINUS Ul
(T (EXPLODNI 113))))

(FXPLODN1 (LAMBDA (U)

{(PROG (X Y Z)

A (COND ((ZEROP U) (RETURN Z)))
(SETQ X (REMAINDER 1) 101))
{SETQ Y NASL)

B (COND ((EQUAL X (CAAR Y)) (GO Cl))
(SETO Y (CDR Y))

(GO B)

C (SETQ Z (CONS (CDAR YY) 7))
(SETQ U (QUOTIENT U 10))

(GO A))))

(*#OPEN {(LAMBDA (U V)
(PRQG2 (OPEN U (QUOTF ((LRECL o 80) (BLKSIZE « 80))) v)
Ui

(*RDS (LAMBDA (U)
{COND ((NULL U) (RDS (QUOTE LISPIN)))
(T (RDS U}

{*WRS (LAMBDA (U)
{COND ((NULL U) (WRS (QUOTE LISPOUT)))
(T (PROG NIL (OTLL 72) (ASA NIL) (WRS U))}))))
1)

UNSPECIAL ((NASL))
COMMENT (STANDARD LISP FUNCTIONS NOT DEFINED IN LISP 360)
DFFINE

(COPY (LAMBDA (U)
(COND ((ATOM W) W)
(T (CONS (COPY (CAR U)) (COPY (CDR W)I))))))

{COMPRESS (LAMBDA (U)
(PROGZ2 (COND ((DIGIT (CAR U)) (MAPCAR U (FUNCTION RNUMB))
(T (MAPCAR U (FUNCTION RLIT))))
(MKATOMY)))

(4TS (LAMRDA (U)
((LAMBDA (X)
(COND ((NULL X) (ERROR (LIST (QUOTE GTS) ull))
{T (CAR X))
(GET U (QUOTE SPECIAL))Y))

(PTS (LAMBDA (U V)

(CAR ((LAMBDA (X) (COND ({NULL X) (PUT U (QUOTE SPECIAL) (LIST v)))

(T (RPLACA X V1))

(GET U (QUOTE SPECIAL))I I
(MAP (LAMBDA (U PI)
(PROG NIL
A (COND ((NULL U) (RETURN NIL)))
(PI U)
(SETQ U (CDR W)
(GO A))))

(MAPCON (LAMBDA (U PI1)
(COND ((NULL uU) NIL)
(T (NCONC (PI (1) (MAPCON (CDR yU) PIN) I

(REVERSE (LAMRBDA (U)
(PROG (V)
A (COND ((MULL U) (RETURN V)))
(SETQ Vv (CONS (CAR U) v}
(SETQ U (COR U))
(GO A))))

(SUBST (LAMRDA (U V W)
(COND ((EQUAL V W) 1)
((ATOM W) W)
(T (CONS (SUBST U v (CAR W)} (SUBST U V (CDR W)Y)))))

(*EVAL (LAMBDA (U)
(EVAL U ALIST)))
1R

NDFFEXPR ({

(PROGN (LAMBDA (U A)
{PROG NIL
A (COND ((NULL (CDR U)) (RETURN (EVAL (CAR U) NILY/))
(EVAL (CAR U) NIL)
(SETQ U (CDR U))
(GO AY)))
1)

COMMENT (THE FUNCTIONS POS AND *OTLL AND THE ARRAY FUNCTIONS ARE
DEFINED IN LAP AND NOT INCLUDED IN THIS LISTING)

CAMMENT (E N D N F L I SsP 3 6 U PREPROCESSOR)

APPENDIX B
THE FOLLOWING FUNCTIONS DEFINED IN THE LISP 1.5 PROGRAMMER'S

MANUAL ARE AVAILABLE IN STANDARD LISP

ADD1 LENGTH PRIN1
AND LESSP PRINT
APPEND LIST PROG
ATOM LITER PROG2
CAR...CDDDDR LOGAND QUOTE
COND LOGOR QUOTIENT
CONS LOGXOR READ
COPY MAP RECIP
DEFLIST MAPCON REMAINDER
DIFFERENCE MAPLIST REMFLAG
DIGIT MAX REMPROP
EQ MEMBER RETURN
EQUAL MIN REVERSE
ERROR MINUS , RPLACA
EXPT MINUSP RPLACD
FIXP NCONC SASSOC
FLAG NOT SUB1
FLOATP NULL SUBLIS
GET NUMBERP SUBST
GO ONEP TERPRI
GREATERP OR TIMES
LEFTSHIFT PAIR : ZEROP
PLUS

The following functions defined in Standard LISP have the same
names but different properties from the LISP 1.5 Programmer's Manual
definitions. These changes are necessary in order to provide for maxi-
mum compatibility with other system definitions.
array [u] initializes arrays. Same definition as for

SHARE LISP except that 'LIST' is omitted.
define [u] introduces function definitions into system,
Returns a list of function names introduced.
divide [u;v] returns cons [quotient [u;v] ; remainder
[u;v]] where u and v are integers.
errorset [u;v] if an error occurs during the evaluation of

u, NIL is returned. The error message is

function| u]

gensym []

setq [u;v]

special [u]

printed if and only if v is T.

If no error occurs, list [u] is returned.
In systems which lack this facility, error-
set [u;v] may be replaced by list [u], but
no error recovery is then possible except
at the top level.

defines a quoted functional argument
creates a new atom (e.g., GP123), adds it to
the OBLIST if one exists and returns atom.
sets the PROG or free variable u to the
value of v. Returns value of v.
initiglizes the list of u of free wvariables

for compilation. Returns u.

The following additional functions are defined in Standard LISP:

close [filename]

compress [u]

defexpr [u]

delete [u;V]

explode [u]

closes filename by writing appropriate end-
of-file marks, etc. Returns filename.

creates an atom (literal atom or number) from
list of characters u, adds it to the OBLIST
if one exists, and returns the atom,
introduces special form definitions (as FEXPRs
or FSUBRs) into system. Returns a list of
function names introduced.

deletes the first top level occurrence of the
S-expression u from the list v.

returns a list of the constituent characters
of atom u. Must also work for integers. e.g.

explode [123] = (1 2 3).

fix [u]

flagp [u;v]

float [u]

getd [u]

getel [[U;m]_’ . :mn]]

gts [u]

macro [u]

mapcar [u;fn]

open [filename; stat]

princ [u]

pos []

progn [ul,...,un]

pts [u;v]

returns integer part of number u.

returns T if atom u has flag v on its
property list, otherwise NIL.

Returns floating point equivalent of number
u,

returns pointer to definition of u, if u
is a function or macro, and NIL otherwise.
returns (ml,...,mn) element of array named
u.

returns ('gets') the value of the special
atom u.

introduces macro definitions into system.
Returns a list of macro names introduced.

if null [u] then NIL else cons [fn[car[u]];

mapcar [cdr [u];fn]].

opens a file named filename on some exter-
nal device. stat = INPUT or OUTPUT. Returns
filename.

adds character string u to output buffer.
Returns u.

returns number of characters presently in
output buffer, Initialized to zero at every
call of TERPRI,

evaluates forms LEEREERLN and returns value
of u .

u is declared special if not already. PTS

then gives u the special value v and returns v.

put [u; ind; prop] puts prop on property list of u with indi-
cator ind. Returns prop.

rds [filenamel selects filename as input device. All in-
put now comes from filename. Returns
filename.

setel [[u;ml,...,mn]; v] sets (ml,...,mn) element of array named u
to v. Returns v.

spaces [n] adds n spaces to output buffer. Returns n.

wrs [filename] selects filename as output device. All
output now goes to filename. Returns
filename.

*apply [u;v] applies function u to list of arguments
v, and returns result.

*eval [u] evaluates expression u (using current
ALIST if one exists) and returns value.

*function [u] defines a functional argument whose form

may change during evaluation.

O

APPENDIX C
The following function may be used to assemble a Standard LISP
program in systems with QVERLORD directives or EVAL listen loops. It
is assumed that the atom STOP occurs at the end of the program.

(SREAD (LAMBDA NIL

(PROG (X Y)
A (TERPRI)
(CoND

((NULL (SETQ X (ERRORSET (READ) T))) (GO ERR))
((EQ (SETQ X (CAR X)) (QUOTE STOP)) (GO B))
((OR (NULL (SETQ Y (ERRORSET (READ) T)))
(EQ (SETQ Y (CAR Y)) (QUOTE STOP)
(PRINC (QUOTE $$$FUNCIION... $))
(PRINT X)
(TERPRI)
(TERPRI)
(PRINC (QUOTE SARGUMENTS... $))
(PRINT Y)
(TERPRI)
(TERPRI)
(SETQ Y (ERRORSET (¥APPLY X Y) T))
(COND ((NULL Y) (GO A)))
(TERPRI)
(PRINC (QUOTE $$$VALUE... $))
(PRINT (CAR Y))
(GO A)
ERR (TERPRI)
(PRINC (QUOTE $$$READ ERROR$))
B (RETURN (QUOTE $$$*$)))))

)) (GO ERR)))

