
Top Level, Inc.
When you're ready for the future™

Parallel Comm.on Lisp for the 90's

The increase in computational resources required for today's more ambitious and real-time oriented applications is
making effective utilization of multiprocessor computer systems essential. The current generation of shared-memory
multiprocessors offers the potential for an order-of-magnitude increase in computational power over single-processor
systems. A .critical component in achieving this potential is a parallel programming language that is both efficient
and easy to use.

Top Level Common Lisp (TopCL) is an extended Common Lisp designed and implemented specifically for the
effective utilization of parallel computer systems. Based on research at the University of Massachusetts at Amherst,
TopCL is now commercially available and supported through Top Level, Inc. Top Level Common Lisp is currently
available on the Encore Multimax and Sequent Symmetry shared-memory multiprocessors.

Three key capabilities of TopCL make it especially suited for exploitation of parallel computers. As with a
Common Lisp, TopCL provides an extensible programming language that allows higher-level parallel constructs
to be defined that are appropriate for particular types of problems. The run-time type-checking of Common Lisp
readily allows the use of the future construct, providing implicit synchronization of parallel activity. Finally, TopCL
provides four grain sizes of parallel operators. This promotes efficiency by allowing both fine-grained parallelism
when certain capabilities are not needed, as well as larger-grained parallelism when more capabilities (with their
associated overheads) are required.

The Future of Common Lisp

The use of parallelism to solve a problem can be characterized by three components: (1) breaking up a task into
smaller pieces that can be performed in parallel (the fork), (2) insuring these pieces have the necessary resources
to do the work, and (3) combining their results (the join). Since TopCL provides for user-specified parallelism, the
programmer is responsible for deciding when to fork. The type of fork used specifies what kind of resources are
needed. A join occurs implicitly through the use of future objects.

When a computation is forked, it is represented by (referenced through) a future object. Until its computation
completes, the future object is undetermined. Once the computation completes, the future object "becomes" the
value returned. The future is now determined and is consequently indistinguishable from this value.

When a strict operation encounters a future object, it implicitly forces the future object to be determined, and
will wait until the value becomes available before continuing. Strict operations involve looking at the actually value
or data-type of an object. For example, addition requires its arguments to be numbers. Since this synchronization
occurs implicitly (below the level of the language), existing programs can use future objects without any knowledge
that computation is occurring in parallel.

Through use of the future construct, TopCL provides a natural and powerful way to deal with the added
complexity of parallel programming.

From Small-Grained to Large-Grained

To use parallelism effectively, the associated overhead must not be prohibitive. If it takes more than two seconds
to perform two one-second computations in parallel, there is clearly no advantage in doing so. To avoid this, the
overhead in using parallel computation should be as small as possible. However, if a pair of computations takes
a long time, proportionately more overhead can be incurred to run them in parallel and still gain performance

. improvements.
TopCL defines four different fork operators with different overheads and properties. These are the Thread, the

Task, the Process, and the Node.

I,

196 North Pleasant Street • Amherst, Massachusetts 01002 • (413) 256-6405

The Thread is the lowest-overhead fork provided. In the current implementation, a thread has a creation overhead
of approximately 8 function callsl . A thread is assumed to be a short computation, and therefore the system may
choose not to compute it in parallel if no free computing resource is available.

The next level of fork is the Task. Its creation overhead is roughly 300 function calls. It has its own control
stack and can therefore 'De time-shared as well as executed in parallel. It also maintains its own binding stack and
therefore enjoys a more well-defined computational context ..

The next level of fork is the Process. Its creation overhead j':1mps to roughly 40,000 function calls. A process is
a task with additional capabilities, such as maintaining its own free-storage pool, handling interrupts, and calling
out to external routines.

The largest level of fork is the Node. Its creation overhead jumps to 750,000 function calls. A node maintains
its own address space, and thus any objects accessible to a node must be copied. This allows node-level parallelism
to potentially utilize an entire computing network. A node can function as either a single computation or as a
computational server.

Obtaining Real Performance Improvement

To demonstrate the potential for performance imr rovement, a nu~ber of benchmark programs were modified to run
in TopCL. The Fibonacci function was modified to compute its arguments in parallel using threads. The run-time
improved sixfold using 10 processors. The TAK function using threads showed a 2-3 times speedup with 4 processors.
The Triangle benchmark demonstrated a 12 times speedup using 16 processors.

While such small benchmark programs provide a common base for understanding and demonstrating potential,
the important question i3whether parallelism is applicable·in real-world' programs. One such program immediately
available was the TopCL compiler itself .. The compiler was parallelized using a three-process pipeline. One process
reads forms from the input file, a second . compiles them,· and a third assembles and writes the output file. Using
this strategy, the compiler runs up to three times faster than is possible with a single-processor system. Typical
results show it cutting compile time in half. We have also used TopCL to make parallelism available to users of
the Generic Blackboard System (GBB) In an example vision application, the parallel GBB program achieved fairly
linear speedup, leveling out at just over an eightfold speedup with 12 processors. Experiments with a parallelized
OPS5 program have showed 5to 10 time speedups compared with single processor times.

The Best of the Lisp World

The developnlent and debugging capabilities possible with a Common Lisp system are widely recognized as un­
matched by any other programming environment. These capabilities are critical for the success of a parallel pro­
gramming system.

The TopCL system was developed using a Texas Instruments Explorer Lisp Machine. Leveraging on this envi­
ronment, Top Level, Inc. provides a powerful debugging and development interface to TopCL. Also ported to the
Symbolics Lisp Machines, the interface allows a developer to pause and continue all computation on the multipro­
cessor. Inspector windows can be used to look at 'backtraces of all existing tasks, determine what future objects are
being waited for, as well as inspect any lisp object. All through a point-elick-drag interface. With our support of
X-windows through CLX, this same level of interface will soon be available using a low-cost X-station.

Top Level also supports the Common Lisp Object System (CLOS), which defines a very powerful object-oriented
programming model that can substantially reduce software development time.

The superior development environment possible· with a Common Lisp system, combined with the efficient, ex­
tensible, and powerful parallel constructs of TopCL can bring the power of a multiprocessor to your most demanding
·applications.

Copyright e 1989,1990 Top Level, Inc. TopeL is a trademark of Top Level, Inc. GBB it a trademark of Blackboard Technology Group, Inc. Explorer

is a trademark of Texa. Instrument. Incorporated. Symbolic. i. a trademark of Symbolic., Inc.

1 A function-call unit is the time needed to call a function with no arguments, and return with no useful value.

2

Top Level, Inc.
When you're readyfor the future™

Top Level Common LispTM
A Parallel Common Lisp

While others have been tal~ing about the potential of parallelism,
we've been working to make it a reality.

Three years of dedicated research and development at the University of Mas­
sachusetts at Amherst have culminated in the first high-performance parallel
implementation of Common Lisp for shared-memory multiprocessors. With
the commercial availability of Top Level Common Lisp, we've raised the
Common Lisp standard to a new level.

Top Level Common Lisp was designed and implemented specifically to sup­
port efficient u~e of parallel computer systems. Integrating both distributed
and shared-memory parallelism, Top Level Common Lisp provides four dif­
ferent levels or grain-sizes of parallel operators, allowing full utilization of the
potential parallelism of an application. Each level uses the future c<,?nstruct,
which provides implicit synchronization of parallel activity. Unlike systems
that "graft" futures on top, Top Level maintains high performance for serial
programs by supporting futures at the lowest level of the implementation.

But Top Level Common Lisp is more than just a parallel programming lan­
guage. It also has advanced features you have come to expect from a Lisp
system, such as a full editing command interface, a powerful debugger, an
inspector, an interface to C programs, a fully developed module facility, and
many more features. Top Level, Inc. is committed to the X-window stan­
dard, and is will provide a robust windowing environment that will match
the high level of functionality available today with current Lisp Machines -
one that can be used for both development and delivery.

And if you have already invested in the Texas Instruments Explorer or Sym­
bolics Lisp Machine, Top Level Common Lisp has even more benefits. Instead
of compromising your development environment, Top Level, Inc. advances
the state of the art by using existing Lisp Machines to provide a powerful
debugging and development interface to Top Level Common Lisp.

The combination of this environment with the computational resources of
Top Level Common Lisp on the Encore or Sequent multiprocessor delivers
an unprecedented high performance Lisp system.

196 North Pleasant Street • Amherst, Massachusetts 01002 • (413) 256-6405

........

I·
I

Top Le'vel, Inc.
When you're ready for the future™

Top Level Common Lisp
Parallel Common Lisp for the Real World

Modern Lisp Systems

From its beginnings in the 1950s, Lisp has evolved from a research tool found in university laboratories to
a powerful and efficient language with a standardized dialect in Common Lisp. Its superior development
environment can dramatically reduce deyelopment time compared with traditional programming languages.
With the recent standardization of the Common Lisp Obj~ct System, a Common ·Lisp system provides
one of the most powerful and productive programming languages -available today. Advances in compiler
technology and·· an emphasis on speed now yield Common Lisp implementations that are fast enough to
be used as delivery vehicles for many software projects. With the ever-increasing speeds and memory
capacities of modern computer systems,· the small performance advantage of traditional programming
languages pales in comparison with the superior ·development environment of a Common Lisp system.

Parallel Programming

Despite the seemingly endless advances in processor technology, the speed of light imposes a reallimi­
tation on processor speeds. As this limitation is approached, it is inevitable that some form of parallel
computation must be employed to produce faSter programs. While characteristics of parallel architectures
can vary widely, the two basic architectures are shared-memory multiprocessors and distributed-memory
multicomputers. A shared-memory architecture eliminates explicit sharing and provides a model of com­
putation closer to existing serial systems, and thus appears ID!Jst promising for immediate exploitation.
Although a shared-memory programming model is easily exploitable, a distributed-memory system can
provide vast computational resources. From networks of workstations to hundreds-of-processor multicom­
puters, the potential of these distributed resources cannot be ignored. Therefore Top Level Common
Lisp is designed for both shared- and distributed-memory parallel programming. With the integration of
shared- and distributed-memory parallel computing, Top Level Common Lisp promises to finally give the
programmer the full computational power available in a computing environment.

However, early experience has shown that writing and debugging parallel programs can be more dif­
ficult than with serial versions. A good programming environment and language for supporting parallel
programming is essential for effective utilization of multiprocessor systems. The superior development
environment and extensibility of Common Lisp makes it the clear choice for use in a multiprocessing
system ..

The Future .of Common Lisp

There have been many proposals for the parallelization of Lisp. One of the most powerful ideas is that
of-jutuTY;s. When a fork is performed, the fork operation immediately returns a future object that will
eventually receive the result of the computation. This future object can be used-freely as any other object
in the system while its value is being computed. If at any time the value of the future object is required,
the operation waits for the computation to complete. The run-time type-checking inherent in Lisp systems
makes this possible since objects can be manipulated without regard to their type. The future mechanism

196 ~orth Pleasant Street· Amherst, Massachusetts 01002· (413) 256-6405

is a powerful construct that is completely transparent to a program, providing implicit and automatic
synchronization not possible with traditional, strongly typed languages.

In addition to the future mechanism, Top Level Common Lisp supports four different levels ?r grain­
sizes of parallel constr~cts, each with different capabilites and overhead. This allows full utilization of the
parallel potential of a program .

. Finally, the ability to extend Lisp provides an important capability for a parallel language. Common
. parallel constructs can be defined with complex macro definitions. These macros expand into appropriate
lower-level code, freeing the programmer from lower-level details. In fact, macros allow programmers to
essentially construct their own parallel programming language using the parallel primitives provided by
Top Level Common Lisp.

A Parallel Common Lisp

Until Top Level Common Lisp, the power of Common Lisp systems had been restricted t'o serial imple­
mentations. Anyone needing or wanting to exploit parallel programming has been forced to struggle with
other languages, use slow simulation or interpreter systems, or has been told to wait ~ .. and wait. With
the commercial availability of Top Level Common Lisp, the future is finally here.

Top Level Common Lisp is a complete and high-performance implementation of Common Lisp. Unlike
previous Lisp implementations, it was designed from the start for efficient execution of parallel. Lisp
programs. Futures are supported at the lowest level of the implementation, unlike the strategy of "grafting"
them on top, which slows down programs that don't use futures. In addition, our compiler uses parallelism
to run up to three times faster than is possible using- a serial Lisp.

Unprecedented for Lisp systems, our debugger runs outside the address space being debugged -
reducing behavior changes introduced by debugging and eliminating debugger deadlock which occurs when
an internal debugger requires resources or locks held by the tasks being debugged. By allowing our debugger
to run outside the multiprocessor, Top Level provides a development interface that runs on either a TI
Explorer or Symbolics Lisp Machine, protecting your existing investments in programmer productivity.

Top Level Common Lisp is more than just a parallel Common Lisp system. It also has the features
you expect in modern Lisp systems, such as an optimizing compiler, powerful debugger, tracing and
stepping facilities, an interface to C code, a fully developed module construct for manipulating program
files, an inspector. that allows the display and updating of data structures, object-oriented capabilities,
and X-windows support. .

·To· find qut more about how Top Level can make parallelism work for you, give us a call at (413)
256-6405. .

CopyrigM ©1989 Top' Level. Inc.

Symbolics is a trademark of Symbolics Inc.

Explorer is a trademark of Texa.s Instruments Inc.

