

OpenLisp v11.6.0

Reference Manual

By C. Jullien - Eligis

4, villa des REINETTES

95390 Saint-Prix

France

Last modification 2022/09/06

OpenLisp Reference Manual Eligis

Page 2

OpenLisp Reference Manual Eligis

Page 3

CONTENTS

CONTENTS 3

1 Introduction 7
2 Presentation ... 8
3 Portability. ... 9
4 Credits. .. 9

5 Getting started 10

6 Language Extensions to ISLISP Standard 12
7 ISLISP Compatibility. ... 12
8 Controlling the reader and the printer. .. 12
9 Extended Dispatching Macro Character Syntax. .. 16
10 Control of Time of Evaluation. ... 17
11 Control Structures. .. 17
12 Evaluation Functions ... 21
13 Symbol Functions .. 21
14 Lists Class ... 25
15 Using Lists as Sets .. 26
16 Logical Operations on Numbers ... 31
17 Predicates on Numbers .. 34
18 Other predicate .. 35
19 String Construction and Manipulation .. 35
20 Vector Class Functions ... 37
21 Bit Vector Functions ... 38
22 Character Class Functions ... 39
23 Sequence Class Functions ... 41
24 A-List Functions .. 44
25 Rational Functions .. 45
26 Class Functions ... 46
27 Streams Functions ... 50
28 The Readtable .. 52

OpenLisp Reference Manual Eligis

Page 4

29 Input/Output Files ... 53
30 System and process functions ... 56
31 Socket Streams Functions ... 61
32 Miscellaneous Functions ... 70
33 Hash tables. ... 72
34 Regular expressions. .. 75
35 Windows registry. ... 76

36 OpenLisp Compiler 78
37 Compiler variables and functions. ... 78

38 Standalone applications 80
39 General principle. .. 80
40 Create your own project .. 80
41 Tuning and debugging your application .. 81

42 Executable core image 82

43 Standard Library 83
44 Module and Package Functions. .. 83
45 Defining Structures. .. 87
46 Sorting. .. 90
47 Date Library. ... 91
48 FASL (obsolete) Format. .. 92
49 Trace Library. .. 92
50 Internal Debugger. ... 93
51 Performance Analysis. .. 93
52 Pretty Printer. .. 94
53 GC Functions. ... 95
54 External Functions. ... 95
55 Multiple Values ... 97
56 Virtual Terminal. ... 99

57 OpenLisp Dynamic Server Page 101
58 Install OpenLisp as a NPH-CGI/1.1 compliant on-the-fly filter. .. 102

59 OpenLisp and mod_lisp 104
60 What is mod_lisp? ... 104
61 Preparing Apache with mod_lisp .. 104

62 GNU-Emacs integration 106
63 What is Emacs. .. 106
64 Install Emacs. .. 106
65 Use OpenLisp inside Emacs. ... 107
66 Special commands for OpenLisp mode .. 107

67 LAP Format 108

68 C mapping of Lisp objects 118
69 Internal representation ... 118
70 Objects creation ... 119
71 Calling Lisp code from C .. 119

72 Source file contents 121
73 Description for kernel files: ... 121
74 Complementary files: .. 122

References 124

OpenLisp Reference Manual Eligis

Page 5

General Index 127

OpenLisp Reference Manual Eligis

Page 6

OpenLisp Reference Manual Eligis

Page 7

1 Introduction

OpenLisp is a KISS (Keep It Small and Simple) full conforming implementation of ISO/IEC 13816:2007
ISLISP Language, the International Standard version of Lisp. Entirely written in C, OpenLisp is essentially a
very fast interpreter that competes in speed with some CLtL compilers. It also has an incremental compiler that
generates portable LAP code across supported platforms. It is written in ISO C for the kernel and using POSIX
like interface for the operating System when available. In the usual case, a new UNIX port is as simple as "make
POSIX".

The goal of OpenLisp is to provide an efficient, modern and complete Lisp System for those whom want
embedded Lisp processing in more conventional applications written in C, C++ or even Visual Basic. Even if
OpenLisp can be used with a toplevel loop and with all goodies that an old-timer lisp user enjoy, it is more
tailored to be transparently integrated in a native C or C++ applications. For this purpose, OpenLisp is
distributed mainly as a Lisp library (or DLL on Microsoft world) that you can integrate into your main
application. The memory footprint is very small with less than 200 Kbytes for the complete kernel and less than
400 Kbytes for a usable Lisp System data. There is no limit on the maximum memory that the System can use.
With little efforts, you can exchange data between C and Lisp. OpenLisp extends the ISLISP standard to ease
port from other Lisp Language, mainly Common Lisp. The kernel can be compiled to support the IS0/IEC
10646-1 (16 bits) character sets instead of the IS0 8859-1 (8 bits) character sets. It also provides a consistent
interface to communicate using Lisp streams with BSD, POSIX sockets and/or WinSocks sockets or distributed
architectures using DCOM or CORBA.

OpenLisp Reference Manual Eligis

Page 8

2 Presentation

LISP is one of the oldest programming languages, invented in 1960 by John McCarthy in order to write
programs for Artificial Intelligence easily. OpenLisp is the first LISP specially designed to fully comform the
international standard ISO/IEC 13816:2007(E) : Programming language ISLISP. This standard is the result of
cooperative efforts by the design committee.

The following factors influenced the establishment of design goals for ISLISP:

A desire of the international LISP community to standardize on those features of LISP upon which there is
widespread agreement.
The existence of the incompatible dialects COMMON-LISP, EULISP, LE-LISP, and SCHEME (mentioned in
alphabetical order).
A desire to affirm LISP as an industrial language.
This led to the following design goals for ISLISP:

ISLISP shall be compatible with existing LISP dialects where feasible.
ISLISP shall have as a primary goal to provide basic functionality.
ISLISP shall be object-oriented.
ISLISP shall be designed with extensibility in mind.
ISLISP shall give priority to industrial needs over academic needs.
ISLISP shall promote efficient implementations and applications.

OpenLisp meets all the above goals. Since OpenLisp is not a package added to an existing Lisp, the first
source for its documentation should be ISO/IEC 13816:2007(E): Programming Language ISLISP or the
equivalent Public Domain definition that comes with this documentation. To extend the goal of compatibility
with other Lisp implementations, OpenLisp has extended the ISLISP standard to provide more functions that
will help portability across different Lisp System. As much as possible, those functions should be avoided if you
want the maximal portability. This document describes only added functions to ISLISP Standard.

OpenLisp Reference Manual Eligis

Page 9

3 Portability.

OpenLisp kernel is entirely written in C using, when available, only ISO/IEC 9899:1990 C Programming
Language features and functions. Using proper directives in header files, it can also be transparently integrated
with C++. It supports also older compilers (read K&R). Input/output routines rely on C ISO (C Standard
Language-Dependent System Support) and for advanced features on UNIX, ISO/IEC 9945-1:1990 (Strictly
Conforming POSIX.1 Application). The system depend features are grouped in file physio.c (PHYSical I/O)
it can be optimized on a specific system. For example, NT port uses the Virtual Memory allocator. The Garbage
Collector, a classic mark & sweep, is also written in C and tests, at runtime (or sometimes at compile time) the
features of the underline hardware (stack, alignments, virtual memory, segmented memory, threads…).

OpenLisp has been ported on almost all modern processors from 16 to 64 bits architecture (Intel 16/32 bits,
Intel Itanium, Sparc 32 bits et UltraSparc 64 bits, Motorola 68k and 88k, RS6000, PowerPC, MIPS R3x00,
R4x00, R10000 32/64 bits, HP PA, Alpha mode 32/64 bits, ARM, ARM64,Vax, IBM MVS).

On all those systems, the compiler has been configured to produce the maximum level of warnings and
OpenLisp is still warning free!! That way, a new port of OpenLisp is very easy. Typically, on new Unix
system, it as easy as just:

./configure; make

All the kernel functions are written in C, only environment functions like pretty, sort, and useful macros are
written in Lisp. OpenLisp load a file named startup.lsp that, in turns, defines most of other packages as
autoload features.

4 Credits.

OpenLisp is an original development that uses two optional libraries:
• BigNum package developed jointly by INRIA and Digital PRL.
• Regular expressions package based on Henry Spencer regexp source code.

OpenLisp Reference Manual Eligis

Page 10

5 Getting started

Internally, OpenLisp has 6 different zones (cons, symbol, string, vector, float, heap) to store its objects. Each
zone is configurable by 4 Kb page chunk. When you launch OpenLisp, it uses some « standard » size which
may change on System and/or processor type. On plain old MS-DOS it will not be the same as OSF1 using an
Alpha 64 bits processor. The room Lisp function may be used to fix the total amount of memory you need for
each zone. Generally, float and integer numbers are always coded in the address of the object, so you can leave
the zone empty (i.e. 0).

On most modern systems (Windows and above, nearly all unix implementations), OpenLisp can allocate
memory using virtual memory routines. It means that you generally don’t care to specify how much cons,
symbol, string, vector, float or heap you need. The memory zones can grow automatically. For systems with
virtual memory, you can reserve a minimal number of mega-bytes for page objects and heap. Note that reserve
does not mean allocate.

To change the default startup size for each zone, you can use the following options (remember that the size you
give allocate a 4 Kb page for the object). Note also that, since a symbol has also a print name, the string zone
must be greater than the symbol zone.

Set startup zones:

--cons number of 4 Kb pages for <cons> zone (2 pointers)
--symbol number of 4 Kb pages for <symbol> zone (8 pointers)
--string number of 4 Kb pages for <string> zone (2 pointers)
--vector number of 4 Kb pages for vectors, objects, arrays zones (2 pointers)
--float number of 4 Kb pages for <float> zone (0/2 pointers)
--heap number of Kb to store internal representation of objects.

OpenLisp Reference Manual Eligis

Page 11

All options:

--eval/-e expr run expr and exit.
--rational force use of rational numbers.
--norational don’t use rational numbers.
--bf floats are boxed and internal representation is a double.
--uf floats are unboxed and internal representation is either 31 or 63bits.
--emacs allows OpenLisp to run as GNU Emacs lisp-inferior-mode.
--keep keep OpenLisp running when a file is given as an argument.
--last print the last result when a file is given as an argument.
--islisp enforce ISLISP behavior.
--noinit don't load startup files.
--novm don’t use virtual allocation routine, force standard malloc.
--odsp OpenLisp Dynamic Server Page mode loading.
--quiet quiet mode loading.
--shell shell mode loading.
--quit exit with code 0 after option processing.
--disable-debugger disable debugger and exit on error.
--utf8 utf8 terminal input/output.
--version displays OpenLisp version and exit.
--vheap minimal number of Mb that VM reserves for heap.
--vpage minimal number of Mb that VM reserves for objects pages.
--vhratio heap ratio from VM page size. Ex: 40 means 40% of VM page size.
-D run as daemon (see run-as-daemon function).
-- next arguments are passed to user’s program.

% openlisp –cons 100 –symbol 32 –string 48 –vector 32 –heap 512

On Windows and most unix systems, the heap grows dynamically as needed. This way, you can start with a
minimal zone (i.e.: 30 Kb) that will expand during execution.

On nearly all systems, OpenLisp can save memory images that can restored at any time (see the definition of
save-core and restore-core). When a core image has been saved, you can restore it directly from
command line with the –r option.

-r restore a core image.

% openlisp –r image.cor

You can also load and/or execute a lisp file at startup by adding the file as command line argument.

% openlisp demo/myfile.lsp

You can install OpenLisp anywhere on the System. By default, OpenLisp will search its files in the following
directories in order: lib, fsl, bench and contrib are sub-directories of the current directory. If OpenLisp
has been installed in /lisp directory you must have the following tree:

/lisp/bench
/lisp/contrib
/lisp/lib
/lisp/net

If you want to launch OpenLisp anywhere you must add OpenLisp directory to your PATH and set the
environment variable named OPENLISP install directory.

% set OPENLISP=/lisp

OpenLisp Reference Manual Eligis

Page 12

6 Language Extensions to ISLISP Standard

7 ISLISP Compatibility.

OpenLisp can issue warnings when ISLISP semantic extensions are used (function redefinition, setq at
toplevel…). By default, (warning level 0) no warnings are displayed.

warning-level dynamic-variable

warning-level dynamic variable (default value 0) set the level of warning raised by the system. Current
values are 0 for no warnings and 1 for ISLISP extensions used.

8 Controlling the reader and the printer.

OpenLisp is case insensitive by default but we can change this behavior using the preserve-read-case
function.

(preserve-case-flag flag) -> <boolean> macro

(preserve-case-flag t) don’t change the character case to a neutral character representation. With this
mode, Foo and FOO are two different symbols. Called with nil, this function restores the standard neutral
convention. With no argument at all, it returns the current value in use.

prompt dynamic variable

prompt dynamic variable can be used to control the prompt reader.

OpenLisp Reference Manual Eligis

Page 13

Example:

? (dynamic-let ((*prompt* "Your guess> "))
 (read))
Your guess> 10
= 10
?

system-path -> <list> dynamic variable

This variable is set to the directories list used by OpenLisp when trying to load a library file.

load-verbose -> <boolean> dynamic variable

When t, each loaded files are printed on to console.

read-base dynamic variable

The dynamic value of *read-base* controls the interpretation of tokens by read as being integers. Its value is
the radix in which integers are to be read; the value may be any integer from 2 to 36 (inclusive) and is normally
10 (decimal radix). Its value affects only the reading of integers.

read-suppress dynamic variable

This dynamic variable is intended primarily to support the operation of the read-time conditional notations #+
and #-. If it is nil, the Lisp reader operates normally. If the value of *read-suppress* is t, read, read-
delimited-list, and read-from-string all return nil when they complete successfully; however,
they continue to parse the representation of an object in the normal way, in order to skip over the object, and
continue to indicate end of file in the normal way. Except as noted below, any standardized reader macro that is
defined to read a following object or token will do so, but not signal an error if the object read is not of an
appropriate type or syntax.

Example:

? (dynamic-let ((*read-suppress* t))
 (read-from-string "(1 . 2 . 3)") ;; read without error
= nil
?

print-base dynamic variable

The dynamic value of *print-base* determines in what radix the printer will print rationals. This may be
any integer from 2 to 36, inclusive; the default value is 10 (decimal radix). For radices above 10, letters of the
alphabet are used to represent digits above 9.

print-radix dynamic variable

The dynamic value of *print-radix* (default false) controls the printing of rationals. If the value of
print-radix is true, the printer will print a radix specifier to indicate the radix in which it is printing a
rational number. The radix specifier is always printed using lowercase letters. If *print-base* is 2, 8, or 16,
then the radix specifier used is #b, #o, or #x, respectively.

Example:

? (for ((i 2 (1+ i)))
 ((> i 36))
 (dynamic-let ((*print-base* i)
 (*print-radix* t))

OpenLisp Reference Manual Eligis

Page 14

 (format (standard-output) "~a~%" 76876786/27865)))
#b100100101010000101111110010/110110011011001
#3r12100122202010101/1102020001
#4r10211100233302/12303121
#5r124140024121/1342430
#6r11343423014/333001
#7r1622304400/144145
#o445205762/66331
#9r170582111/42201
#10r76876786/27865
#11r3a438738/19a32
#12r218b4a6a/14161
#13r12c0892c/c8b6
#14ra2d2470/a225
#15r6b38491/83ca
#x4950bf2/6cd9
#17r3327aaf/5b72
#18r24c5g0a/4e01
#19r1c0h31c/413b
#20r1409bj6/39d5
#21rih62g7/303j
#22rek3i78/2dcd
#23rblgagm/26fc
#24r9fh2fa/2091
#25r7lk2lb/1jef
#26r6c5p1c/1f5j
#27r59hk3a/1b61
#28r4d213e/17f5
#29r3lk34j/143p
#30r34r8jg/10sp
#31r2l7gka/sur
#32r29a2vi/r6p
#33r1vr6uj/pjd
#34r1nhwdw/o3j
#35r1g81jl/mq5
#36r19rqia/li1

read-level dynamic variable

When *read-level* dynamic variable is not nil, (the default) the reader prints a string showing the
current read level.

Example:

? (defun foo ()
1> (progn
2> (print 'foo)
2> t)))
= foo
?

print-escape dynamic variable

When this dynamic variable is nil, then escape characters are not output when an expression is printed.

print-nil-as-list dynamic variable

print-nil-as-list dynamic variable can be used to control how nil is printed. By default, nil is
printed as a symbol (i.e. using 3 letters ’n’ ’i’ ’l’). If the value of this dynamic variables is t, nil is
printed as the empty list (i.e. ()).

OpenLisp Reference Manual Eligis

Page 15

Example:

? nil
= nil
? (setf (dynamic *print-nil-as-list*) t)
= t
? nil
= ()
? (setf (dynamic *print-nil-as-list*) nil)
= nil
? nil
= nil

print-level dynamic variable

print-level dynamic variable can be used to limit the depth for which an expression is printed.

Example:

? (dynamic-let ((*print-level* 3))
 (print '(1 (2 (3 (4 (5))))))
 t)
(1 (2 (... ...)))
= t

print-length dynamic variable

print-length dynamic variable can be used to limit the length for which an expression is printed.

Example:

? (dynamic-let ((*print-length* 3))
 (print '(1 2 3 4 5))
 t)
(1 2 3 ...)
= t

print-package dynamic variable

print-package dynamic variable, when non-nil, directs the Lisp printer to show the package of each
printed symbols.

Example:

? (dynamic-let ((*print-package* t))
 (print '(car system :test foo))
 t)
(islisp:car openlisp:system keyword:test user:foo)
= t

last-error -> <condition> dynamic variable

last-error dynamic variable is the last condition (if any) raised by the system.

default-encoding -> <symbol> dynamic variable

OpenLisp Reference Manual Eligis

Page 16

Define default file encoding. It currentlty supports <character>, <wide-character> and <utf8-
character>.

9 Extended Dispatching Macro Character Syntax.

OpenLisp extends standard syntax introduced by the # character. These take the general form of a #, a second
character that identifies the syntax, and following arguments in some form. If the second character is a letter,
then case is not important; #A and #a are considered to be equivalent.

#s(..) defines a structure (see defstruct)
#+, #- read-time conditional
#. read-time evaluation
#! line comment, useful as shell extension
#& FASL reference (see FASL)

#s The syntax #s(name slot1 value1 slot2 value2 ...) denotes a structure. This is
legal only if name is the name of a structure already defined by defstruct and if the
structure has a standard constructor macro, which it normally will.

#+ The #+ syntax provides a read-time conditionalization facility; the syntax is
 #+feature form

If feature is "true", then this syntax represents a Lisp object whose printed representation is form. If
feature is "false", then this syntax is effectively whitespace; it is as if it did not appear.

The rules for interpreting a feature expression are as follows:

feature

If a symbol naming a feature is used as a feature expression, the feature expression succeeds if
that feature is present; otherwise it fails.

(not feature-conditional)

A not feature expression succeeds if its argument feature-conditional fails; otherwise, it
succeeds.

(and feature-conditional*)

An and feature expression succeeds if all of its argument feature-conditionals succeed;
otherwise, it fails.

(or feature-conditional*)

An or feature expression succeeds if any of its argument feature-conditionals succeed;
otherwise, it fails.

#- #-feature form is equivalent to #+(not feature) form.

#! #! simply ignore the rest of the line. This syntax is useful when you want to create unix shell in
Lisp. Assuming that openlisp is in your path, you can execute a file:
#!/usr/bin/env openlisp –shell
(format (standard-output) "(fib 20) = ~s~%" (fib 20))

that computes some value in Lisp.

OpenLisp Reference Manual Eligis

Page 17

#. #.foo is read as the object resulting from the evaluation of the Lisp object represented by foo, which
may be the printed representation of any Lisp object. The evaluation is done during the read process,
when the #. construct is encountered.

#n=obj The syntax #n= obj reads as whatever Lisp object has obj as its printed representation. However, that

object is labelled by n, a required unsigned decimal integer, for possible reference by the syntax #n#
(below). The scope of the label is the expression being read by the outermost call to read. Within this
expression the same label may not appear twice.

#n# The syntax #n#, where n is a required unsigned decimal integer, serves as a reference to some object

labelled by #n=; that is, #n# represents a pointer to the same identical (eq) object labelled by #n=.
This permits notation of structures with shared or circular substructure.

#&n #&n returns the nth value of a predefined internal vector. This syntax, related to LAP format, should not

be used for another purpose. Now obsolete and may be removed in a future version.

10 Control of Time of Evaluation.

The eval-when special form allows pieces of code to be executed only at compile time, only at load time, or
when interpreted but not compiled.

(eval-when (situation*) form*) -> <object> special form

The body of an eval-when form is processed as an implicit progn, but only in the situations listed. Each
situation must be a symbol, either compile, load, or eval.

eval specifies that the interpreter should process the body. compile specifies that the compiler should
evaluate the body at compile time in the compilation context. load specifies that the compiler should arrange to
evaluate the forms in the body when the compiled file containing the eval-when form is loaded.

Example:

(eval-when (eval compile)
 ;; the following macros are not used once compiled
 (defmacro …)
)

11 Control Structures.

(when test form*) -> <object> macro

(when test form1 form2 ...) first evaluates test. If the result is nil, then no form is evaluated, and
nil is returned. Otherwise the forms constitute an implicit progn and are evaluated sequentially from left to
right, and the value of the last one is returned.
(when p a b c) == (and p (progn a b c))
(when p a b c) == (cond (p a b c))
(when p a b c) == (if p (progn a b c) nil)
(when p a b c) == (unless (not p) a b c)
As a matter of style, when is normally used to conditionally produce some side effects, and the value of the
when form is normally not used. If the value is relevant, then it may be stylistically more appropriate to use and
or if.

OpenLisp Reference Manual Eligis

Page 18

(unless test form*) -> <object> macro

(unless test form1 form2 ...) first evaluates test. If the result is not nil, then the forms are not
evaluated, and nil is returned. Otherwise the forms constitute an implicit progn and are evaluated sequentially
from left to right, and the value of the last one is returned.
(unless p a b c) == (cond ((not p) a b c))
(unless p a b c) == (if p nil (progn a b c))
(unless p a b c) == (when (not p) a b c)
As a matter of style, unless is normally used to conditionally produce some side effects, and the value of the
unless form is normally not used. If the value is relevant, then it may be stylistically more appropriate to use
if.

(do ((var init [step])*) (end-test result*) body) -> <object> special form

The do special form provides a generalized iteration facility, with an arbitrary number of ``index variables.''
These variables are bound within the iteration and stepped in parallel in specified ways. They may be used both
to generate successive values of interest (such as successive integers) or to accumulate results. When an end
condition is met, the iteration terminates with a specified value. In OpenLisp, this special form is an alias to the
ISLISP for special form.

(do* ((var init [step])*) (end-test result*) body) -> <object> special form

do* is exactly like do except that the bindings and steppings of the variables are performed sequentially rather
than in parallel. In OpenLisp, this special form is an alias to the ISLISP for* special form.

(dolist ((var listform [resultform])*) body) -> <object> macro

dolist provides straightforward iteration over the elements of a list. First dolist evaluates the form listform,
which should produce a list. It then executes the body once for each element in the list, in order, with the
variable var bound to the element. Then resultform (a single form, not an implicit progn) is evaluated, and the
result is the value of the dolist form. (When the resultform is evaluated, the control variable var is still bound
and has the value nil.) If resultform is omitted, the result is nil.

Example:

(dolist (x '(a b c d)) (format t "~s " x)) => nil
 after printing ``a b c d '' (note the trailing space)

(dotimes ((var countform [resultform])*) body) -> <object> macro

dotimes provides straightforward iteration over a sequence of integers. It evaluates the form countform, which
should produce an integer. It then performs progbody once for each integer from zero (inclusive) to count
(exclusive), in order, with the variable var bound to the integer; if the value of countform is zero or negative,
then the body is performed zero times. Finally, resultform (a single form, not an implicit progn) is evaluated,
and the result is the value of the dotimes form. (When the resultform is evaluated, the control variable var is
still bound and has as its value the number of times the body was executed.) If resultform is omitted, the result is
nil.

(typecase ((class-name*) form*)* [(t form*)]) -> <object> macro

typecase is a conditional that chooses one of its clauses by examining the class-name of an object. Its form is
as follows:
(typecase keyform
 ((class-name-1) form-1-1 form -1-2 ...)
 ((class-name -2) form -2-1 ...)
 ((class-name -3) form -3-1 ...)

OpenLisp Reference Manual Eligis

Page 19

 ...
 (t consequent-t-1 ...))

Structurally typecase is much like case, selecting one clause and then executing all consequents of that
clause.

(ecase ((clause*) form*)*) -> <object> macro

ecase is similar to case, but no explicit default clause is permitted. If no clause is satisfied, ecase signals an
error with a message constructed from the clauses.

(dynamic-let* ((var form)*) body*) -> <object> special form

This function works much as let*, but for dynamic variables.

(prog1 first rest) -> <object> special form

prog1 is similar to progn, but it returns the value of its first form. All the argument forms are executed
sequentially; the value of the first form is saved while all the others are executed and is then returned.
prog1 is most commonly used to evaluate an expression with side effects and to return a value that must be
computed before the side effects happen.

Example:

(prog1 (car x) (setf (car x) 'foo))

alters the car of x to be foo and returns the old car of x.

(psetq var1 val1 … varn valn) -> <object> special form

A psetq form is just like a setq form, except that the assignments happen in parallel. First all of the forms are
evaluated, and then the variables are set to the resulting values. The value of the psetq form is nil. For
example:

Example:

(setq a 1)
(setq b 2)
(psetq a b b a)
a => 2
b => 1

In this example, the values of a and b are exchanged by using parallel assignment.

(defsetf place form*) -> <object> function

Defines a new place that can be used by setf special form.

(incf place) -> <integer> macro
(decf place) -> <integer> macro

The number produced by the form delta is added to (incf) or subtracted from (decf) the number in the
generalized variable named by place, and the sum is stored back into place and returned. The form place may be
any form acceptable as a generalized variable to setf. If delta is not supplied, then the number in place is
changed by 1.

Example:

OpenLisp Reference Manual Eligis

Page 20

(setq n 0) => 0
(incf n) => 1 and now n => 1
(decf n 3) => -2 and now n => -2
(decf n -5) => 3 and now n => 3
(decf n) => 2 and now n => 2

The effect of (incf place delta) is roughly equivalent to
(setf place (+ place delta))
except that the latter would evaluate any subforms of place twice, whereas incf takes care to evaluate them
only once. Moreover, for certain place forms incf may be significantly more efficient than the setf version.

(push item place) -> <object> macro

The form place should be the name of a generalized variable containing a list; item may refer to any Lisp object.
The item is consed onto the front of the list, and the augmented list is stored back into place and returned. The
form place may be any form acceptable as a generalized variable to setf. If the list held in place is viewed as a
push-down stack, then push pushes an element onto the top of the stack.

Example:

(setq x '(a (b c) d)) => (a (b c) d)
(push 5 (cadr x)) => (5 b c)
x => (a (5 b c) d)

The effect of (push item place) is roughly equivalent to (setf place (cons item place)) except that
the latter would evaluate any subforms of place twice, while push takes care to evaluate them only once.
Moreover, for certain place forms push may be significantly more efficient than the setf version.

(pushnew item place [:test test-function])) -> <object> macro

The form place should be the name of a generalized variable containing a list; item may refer to any Lisp object.
If the item is not already a member of the list (as determined by comparisons using the :test predicate, which
defaults to eql), then the item is consed onto the front of the list, and the augmented list is stored back into
place and returned; otherwise the unaugmented list is returned. The form place may be any form acceptable as a
generalized variable to setf. If the list held in place is viewed as a set, then pushnew adjoins an element to
the set; see adjoin.

Example:

(setq x '(a (b c) d)) => (a (b c) d)
(pushnew 5 (cadr x)) => (5 b c)
x => (a (5 b c) d)
(pushnew 'b (cadr x)) => (5 b c)
x => (a (5 b c) d)

(pop place) -> <object> macro

The form place should be the name of a generalized variable containing a list. The result of pop is the car of
the contents of place, and as a side effect the cdr of the contents is stored back into place. The form place may
be any form acceptable as a generalized variable to setf. If the list held in place is viewed as a push-down
stack, then pop pops an element from the top of the stack and returns it.

Example:

(setq stack '(a b c)) => (a b c)
(pop stack) => a

OpenLisp Reference Manual Eligis

Page 21

stack => (b c)

12 Evaluation Functions

(eval form [environment]) -> <object> function

The form is evaluated in the current dynamic environment and a null lexical environment. Whatever results from
the evaluation is returned from the call to eval. If an optional 2nd argument is given, it must be an
environmment objet as created by the-environnment function. In that case, the expression form is
evaluated in this lexical environment instead of null lexical environment (this feature is only supported by
OpenLisp).
Note that when you write a call to eval two levels of evaluation occur on the argument form you write. First
the argument form is evaluated, as for arguments to any function, by the usual argument evaluation mechanism
(which involves an implicit use of eval). Then the argument is passed to the eval function, where another
evaluation occurs.

Example:

(eval (list 'cdr (car '((quote (a . b)) c)))) => b

The argument form (list 'cdr (car '((quote (a . b)) c))) is evaluated in the usual way to
produce the argument (cdr (quote (a . b))); this is then given to eval because eval is being called
explicitly, and eval evaluates its argument (cdr (quote (a . b))) to produce b.
If all that is required for some application is to obtain the current dynamic value of a given symbol, the function
symbol-value may be more efficient than eval.

(the-environment) -> <environment> function

Returns an object of type <environment> that contains the current lexical closure. This object can be passed
as the optional second argument of eval.

(constantp object) -> <boolean> function

If the predicate constantp is true of an object, then that object, when considered as a form to be evaluated,
always evaluates to the same thing; it is a constant. This includes self-evaluating objects such as numbers,
characters, strings, vectors, as well as all constant symbols declared by defconstant, such as nil, t, and
pi. In addition, a list whose car is quote, such as (quote foo), is considered to be a constant. You
can’t change the value of symbol declared with defconstant.
If constantp is false of an object, then that object, considered as a form, might or might not always evaluate
to the same thing.

13 Symbol Functions

The following table shows the symbol access and modification functions. The set-functions (setq is not a
set-function) are functions that take two arguments, the first argument is new value and the second argument is
the symbol that will be changed by this call. Those functions are particularly useful for implementing interpreters
for languages embedded in Lisp. The assignment primitive may be used with setf and the access form. Note
that there is no function to access or modify the current lexical value of a symbol.

Symbol slot Define form Access form Modification form Test form Unbound form
name - symbol-name - - -
property list - symbol-plist set-symbol-plist - -
package defpackage symbol-package set-symbol-package - -
function defun symbol-function set-symbol-function fboundp fmakunbound
macro defmacro macro-function set-macro-function macro-function fmakunbound
dynamic value defdynamic symbol-value set-symbol-value boundp makunbound

OpenLisp Reference Manual Eligis

Page 22

global value defglobal symbol-global set-symbol-global gboundp gmakunbound
constant value defconstant symbol-global - constantp gmakunbound

(symbol-function symbol) -> <object> function
(set-symbol-function function symbol) -> <object> function
(setf (symbol-function symbol) function) -> <object> function

symbol-function returns a copy of the current global function definition named by symbol. An error is
signaled if the symbol has no function definition; see fboundp. Note that the definition may be a function or
may be an object representing a special form or macro. In the latter case, however, it is an error to attempt to
invoke the object as a function. The corresponding assignment primitive is set-symbol-function;
alternatively, symbol-function may be used with setf.
If it is desired to process macros, special forms, and functions equally well, as when writing an interpreter, it is
best first to test the symbol with macro-function and special-form-p and then to invoke the functional
value only if these two tests both yield false.

(macro-function symbol) -> <object> function
(set-macro-function function symbol) -> <object> function
(setf (macro-function symbol) function) -> <object> macro

The argument must be a symbol. If the symbol has a global definition that is a macro definition, then the
expansion function (a function of two arguments, the macro-call form and an environment) is returned. If the
symbol has no global function definition, or has a definition as an ordinary function or as a special form but not
as a macro, then nil is returned. The function macroexpand is the best way to invoke the expansion function.
The corresponding assignment primitive is set-macro-function; alternatively, macro-function may
be used with setf.
It is possible for both macro-function and special-form-p to be true of a symbol. This is possible
because an implementation is permitted to implement any macro also as a special form for speed.

(symbol-name symbol) -> <object> function

This returns the print name of the symbol symbol. OpenLisp neutral character set is lower character.

Example:

(symbol-name 'xyz) => "xyz"
(symbol-name 'Foo) => "foo"
(symbol-name '|Foo|) => "Foo"

It is an extremely bad idea to modify a string being used as the print name of a symbol. Such a modification may
tremendously confuse the function read and the package system.

(symbol-package symbol) -> <object> function
(set-symbol-package package symbol) -> <object> function
(setf (symbol-package symbol) package) -> <object> macro

Given a symbol sym, symbol-package returns the contents of the package cell of that symbol. This will be a
package object or nil.

(symbol-plist symbol) -> <object> function
(set-symbol-plist plist symbol) -> <object> function
(setf (symbol-plist symbol) plist) -> <object> macro

This returns the list that contains the property pairs of symbol; the contents of the property-list cell are extracted
and returned. setf may be used with symbol-plist to destructively replace the entire property list of a
symbol. This is a relatively dangerous operation, as it may destroy important information that the

OpenLisp Reference Manual Eligis

Page 23

implementation may happen to store in property lists. Also, care must be taken that the new property list is in
fact a list of even length.

(symbol-value symbol) -> <object> function
(set-symbol-value value symbol) -> <object> function
(setf (symbol-value symbol) value) -> <object> macro

symbol-value returns the current value of the dynamic (special) variable named by symbol (introduced by
defdynamic). An error occurs if the symbol has no dynamic value; see boundp. This function is particularly
useful for implementing interpreters for languages embedded in Lisp. The corresponding assignment primitive is
set; alternatively, symbol-value may be used with setf.

(symbol-global symbol) -> <object> function
(set-symbol-global value symbol) -> <object> function
(setf (symbol-global symbol) value) -> <object> macro

symbol-global returns the current value of the global variable named by symbol (introduced by
defglobal). An error occurs if the symbol has no global value; see gboundp. Note that constant symbols are
really variables that cannot be changed, and so symbol-global may be used to get the value of a named
constant. In particular, symbol-global of a keyword will return that keyword.
symbol-global cannot access the value of a lexical variable.
This function is particularly useful for implementing interpreters for languages embedded in Lisp. The
corresponding assignment primitive is set-symbol-global; alternatively, symbol-global may be used
with setf.

(symbol-access symbol) -> <keyword> function

Returns symbol package visibility, either :internal or :external.

(set-dynamic value symbol) -> <object> special form
(setf (dynamic symbol) value) -> <object> macro

set-dynamic allows alteration of the value of a dynamic variable. set-dynamic causes the dynamic
variable named by symbol to take on value as its value. It is an error to set the dynamic value of a symbol not
declared by defdynamic or dynamic-let.

(set symbol value) -> <object> function

set allows alteration of the value of a dynamic variable. set causes the dynamic variable named by symbol to
take on value as its value.

(synonym symbol new-symbol) -> <object> function

Creates a new symbol new-symbol with exactly the same properties of symbol symbol.

(remove-symbol symb) -> <object> function

Removes all the properties associated with the symbol symbol so that the next GC can collect it. This function
always returns t.

(concat symbol1 … symbolN) -> <symbol> function

Creates and returns a new symbol whose print name is the concatenation of symbol1 .. symbolN. The new symbol
is returned.

(special-form-p symbol) -> <object> function

OpenLisp Reference Manual Eligis

Page 24

The function special-form-p takes a symbol. If the symbol globally names a special form, then a non-nil
value is returned; otherwise nil is returned. A returned non-nil value is typically a function of
implementation-dependent nature that can be used to interpret (evaluate) the special form.
It is possible for both special-form-p and macro-function to be true of a symbol. This is possible
because an implementation is permitted to implement any macro also as a special form for speed.

(function-type symbol) -> <symbol> function

Returns a symbol which describe the type of the function of symbol symbol with the following values :

subr0 a standard library function with 0 argument.
subr1 a standard library function with 1 argument.
subr2 a standard library function with 2 arguments.
subr3 a standard library function with 3 arguments.
subrn a standard library function with n arguments.
subrm a standard library macro.
special-form a pre-definied special form.
expr an interpreted function.
macro a macro-function.
cpfun a LAP compiled function.
cpmacro a LAP compiled macro-function.
cpsubrn a C compiled function.
slot-access a structure access function.
<generic-function> a generic function.
nil no function definition is associated to this symbol.

(function-definition symbol) -> <object> function

Returns, if it exists, the function definition associated to the symbol symbol or nil otherwise.

(boundp symbol) -> <object> function

boundp is true if the dynamic (special) variable named by symbol has a value; otherwise, it returns nil.

(gboundp symbol) -> <object> function

gboundp is true if the global variable named by symbol has a value; otherwise, it returns nil.

(fboundp symbol) -> <object> function

fboundp is true if the symbol has a global function definition. Note that fboundp is true when the symbol
names a special form or macro. macro-function and special-form-p may be used to test for these
cases.

(makunbound symbol) -> <object> function

makunbound causes the dynamic variable named by symbol to become unbound (have no value).

Example:

(setf (dynamic a) 1)
(dynamic a) => 1
(makunbound 'a)
(dynamic a) => causes an error

(defun foo (x) (+ x 1))

OpenLisp Reference Manual Eligis

Page 25

(foo 4) => 5
(fmakunbound 'foo)
(foo 4) => causes an error

(gmakunbound symbol) -> <object> function

gmakunbound causes the global variable named by symbol to become unbound (have no global value).

Example:

(setf a 1)
a => 1
(gmakunbound 'a)
a => causes an error

(fmakunbound symbol) -> <object> function

fmakunbound causes the function value of function named by symbol to become unbound (have no function
value).

Example:

(defun foo (x) (+ x 1))
(foo 4) => 5
(fmakunbound 'foo)
(foo 4) => causes an error

(macroexpand-1 form) -> <object> function
(macroexpand form) -> <object> function
(macroexpand-all form) -> <object> function

If form is a macro call, then macroexpand-1 will expand the macro call once and return the expansion. If
form is not a macro call, then nil is returned.
A form is considered to be a macro call only if it is a cons whose car is a symbol that names a macro. Only
global macro definitions (as established by defmacro) are considered.
macroexpand is similar to macroexpand-1, but repeatedly expands form until no more expansion can be
made.
macroexpand-all is similar to macroexpand, but recursively expands form until no more expansion can
be made.

14 Lists Class

ISLISP extensions to the <list> class.

(caar cons) -> <object> function
(cadr cons) -> <object> function
(cdar cons) -> <object> function
(cddr cons) -> <object> function
(caaar cons) -> <object> function
(caadr cons) -> <object> function
(cadar cons) -> <object> function
(caddr cons) -> <object> function
(cdaar cons) -> <object> function
(cdadr cons) -> <object> function
(cddar cons) -> <object> function
(cdddr cons) -> <object> function

OpenLisp Reference Manual Eligis

Page 26

(caaaar cons) -> <object> function
(caaadr cons) -> <object> function
(caadar cons) -> <object> function
(caaddr cons) -> <object> function
(cadaar cons) -> <object> function
(cadadr cons) -> <object> function
(caddar cons) -> <object> function
(cadddr cons) -> <object> function
(cdaaar cons) -> <object> function
(cdaadr cons) -> <object> function
(cdadar cons) -> <object> function
(cdaddr cons) -> <object> function
(cddaar cons) -> <object> function
(cddadr cons) -> <object> function
(cdddar cons) -> <object> function
(cddddr cons) -> <object> function

All of the compositions of up to four car and cdr operations are defined as separate functions. The names of
these functions begin with c and end with r, and in between is a sequence of a and d letters corresponding to
the composition performed by the function. For example:

(cddadr x) is the same as (cdr (cdr (car (cdr x))))

If the argument is regarded as a list, then cadr returns the second element of the list, caddr the third, and
cadddr the fourth. If the first element of a list is a list, then caar is the first element of the sublist, cdar is the
rest of that sublist, and cadar is the second element of the sublist, and so on.
As a matter of style, it is often preferable to define a function or macro to access part of a complicated data
structure, rather than to use a long car/cdr string. For example, one might define a macro to extract the list of
parameter variables from a lambda-expression:

(defmacro lambda-vars (lambda-exp) `(cadr ,lambda-exp))

and then use lambda-vars for this purpose instead of cadr.
Any of these functions may be used to specify a place for setf.

15 Using Lists as Sets

OpenLisp includes functions that allow a list of items to be treated as a set. There are functions to add, remove,
and search for items in a list, based on various criteria.

(member object list [:test test-function]) -> <boolean> function
(member-if fun list) -> <boolean> function
(member-if-not fun list) -> <boolean> function

The list is searched for an element that satisfies the test. If none is found, nil is returned; otherwise, the tail of
list beginning with the first element that satisfied the test is returned. The list is searched on the top level only.
These functions are suitable for use as predicates.

Example:

(member 'snerd '(a b c d)) => nil
(member-if #'numberp '(a #\Space 5.3 foo)) => (5.3 foo)
(member '(a)
 '(g (a y) (a) d (a) f) :test #’equal) => ((a) d e (a) f)

(adjoin item list [:test test-function]) -> <object> function

OpenLisp Reference Manual Eligis

Page 27

adjoin is used to add an element to a set, provided that it is not already a member. The equality test is eq
unless a test-function is provided.
(adjoin item list) == (if (member item list) list (cons item list))

(last list) -> <object> function

last returns the last cons (not the last element!) of list. If list is (), it returns ().

Example:

(setq x '(a b c d)) => (a b c d)
(last x) => (d)
(setf (cdr (last x)) '(e f)) => (e f)
x => '(a b c d e f)
(last '(a b c . d)) => (c . d)

(list* arg1 .. argN) -> <list> function

list* is like list except that the last cons of the constructed list is ``dotted.'' The last argument to list* is
used as the cdr of the last cons constructed; this need not be an atom. If it is not an atom, then the effect is to add
several new elements to the front of a list.

Example:

(list* 'a 'b 'c 'd) => (a b c . d)
This is like
(cons 'a (cons 'b (cons 'c 'd)))
Also:
(list* 'a 'b 'c '(d e f)) => (a b c d e f)
(list* x) == x

(copy-list list) -> <list> function

This returns a list that is equal to list, but not eq. Only the top level of list structure is copied; that is, copy-
list copies in the cdr direction but not in the car direction. If the list is ``dotted,'' that is, (cdr (last
list)) is a non-nil atom, this will be true of the returned list also. See also copy-seq and copy-tree.

(copy-alist list) -> <list> function

copy-alist is for copying association lists. The top level of list structure of list is copied, just as for copy-
list. In addition, each element of list that is a cons is replaced in the copy by a new cons with the same car and
cdr.

(copy-tree object) -> <list> function

copy-tree is for copying trees of conses. The argument object may be any Lisp object. If it is not a cons, it is
returned; otherwise the result is a new cons of the results of calling copy-tree on the car and cdr of the
argument. In other words, all conses in the tree are copied recursively, stopping only when non-conses are
encountered. Circularities and the sharing of substructure are not preserved.

(endp list) -> <boolean> function

The predicate endp is the recommended way to test for the end of a list. It is false of conses, true of nil, and an
error for all other arguments.

(list-length list) -> <object> function

OpenLisp Reference Manual Eligis

Page 28

list-length returns, as an integer, the length of list. list-length differs from length
when the list is circular; length may fail to return, whereas list-length will return nil.

(first list) -> <object> function
(second list) -> <object> function
(third list) -> <object> function
(fourth list) -> <object> function
(fifth list) -> <object> function
(sixth list) -> <object> function
(seventh list) -> <object> function
(eighth list) -> <object> function
(ninth list) -> <object> function
(tenth list) -> <object> function

These functions are sometimes convenient for accessing particular elements of a list. first is
the same as car, second is the same as cadr, third is the same as caddr, and so on except
that error is not raised if list has fewer elements. Note that the ordinal numbering used here is
one-origin, as opposed to the zero-origin numbering used by nth.

setf may be used with each of these functions to store into the indicated position of a list.

(rest list) -> <list> function

rest means the same as cdr but mnemonically complements first. setf may be used with rest to
replace the cdr of a list with a new value. If list is nil, rest returns nil.

(butlast list [n]) -> <list> function

This creates and returns a list with the same elements as list, excepting the last n elements. n defaults to 1. The
argument is not destroyed. If the list has fewer than n elements, then () is returned.

Example:

(butlast '(a b c d)) => (a b c)
(butlast '((a b) (c d))) => ((a b))
(butlast '(a)) => ()
(butlast nil) => ()

(nbutlast list [n]) -> <list> function

This is the destructive version of butlast; it changes the cdr of the cons n+1 from the end of the list to nil. n
defaults to 1. If the list has fewer than n elements, then nbutlast returns (), and the argument is not
modified. (Therefore one normally writes (setq a (nbutlast a)) rather than simply (nbutlast a).)

Example:

(setq foo '(a b c d)) => (a b c d)
(nbutlast foo) => (a b c)
foo => (a b c)
(nbutlast '(a)) => ()
(nbutlast 'nil) => ()

(ldiff list sublist) -> <list> function

OpenLisp Reference Manual Eligis

Page 29

list should be a list, and sublist should be a sublist of list, that is, one of the conses that make up list. ldiff
(meaning ``list difference'') will return a new (freshly consed) list, whose elements are those elements of list that
appear before sublist. If sublist is not a tail of list (and in particular if sublist is nil), then a copy of the entire
list is returned. The argument list is not destroyed.

Example:

(setq x '(a b c d e)) => (a b c d e)
(setq y (cdddr x)) => (d e)
(ldiff x y) => (a b c)
(ldiff '(a b c d) '(c d)) => (a b c d)
 since the sublist was not eq to any part of the list.

(nth n list) -> <object> function

(nth n list) returns the nth element of list, where the car of the list is the ``zeroth'' element. The argument
n must be a non-negative integer. If the length of the list is not greater than n, then the result is (), that is, nil.

Example:

(nth 0 '(foo bar gack)) => foo
(nth 1 '(foo bar gack)) => bar
(nth 3 '(foo bar gack)) => ()

nth may be used to specify a place to setf; when nth is used in this way, the argument n must be less than
the length of the list.
Note: that the arguments to nth are reversed from the order used by most other sequence selector functions such
as elt.

(nthcdr n list) -> <list> function

(nthcdr n list) performs the cdr operation n times on list, and returns the result.

Example:

(nthcdr 0 '(a b c)) => (a b c)
(nthcdr 2 '(a b c)) => (c)
(nthcdr 4 '(a b c)) => ()

In other words, it returns the nth cdr of the list.

(rplaca cons x) -> <object> function

(rplaca cons x) changes the car of cons to x and returns (the modified) cons. cons must be a cons, but x
may be any Lisp object.

Example:

(setq g '(a b c)) => (a b c)
(rplaca (cdr g) 'd) => (d c)
g => (a d c)

(rplacd cons x) -> <object> function

(rplacd cons x) changes the cdr of cons to x and returns (the modified) cons. cons must be a cons, but x
may be any Lisp object.

Example:

OpenLisp Reference Manual Eligis

Page 30

(setq g '(a b c)) => (a b c)
(rplacd g 'd) => (a . d)
g => (a . d)

(rplac cons a d) -> <object> function

(rplac cons x y) changes the car of cons to x and the cdr of cons to y. It returns the modified cons. cons
must be a cons, but y may be any Lisp object.

Example:

(setq g '(a b c)) => (a b c)
(rplac g 1 (list 2 3)) => (1 2 3)
g => (1 2 3)

(displace cons1 cons2) -> <object> function

(displace cons1 cons2) changes the car of cons1 with the car of cons2 and the cdr of cons1 with the cdr
of cons2. It returns the modified cons1.

(revappend x y) -> <object> function

(revappend x y) is exactly the same as (append (reverse x) y) except that it is potentially more
efficient. Both x and y should be lists. The argument x is copied, not destroyed. Compare this with nreconc,
which destroys its first argument.

(nconc l1 .. lN) -> <object> function

nconc takes lists as arguments. It returns a list that is the arguments concatenated together. The arguments are
changed rather than copied. (Compare this with append, which copies arguments rather than destroying them.)

Example:

(setq x '(a b c))
(setq y '(d e f))
(nconc x y) => (a b c d e f)
x => (a b c d e f)

Note : in the example, that the value of x is now different, since its last cons has been rplacd'd to the value of
y. If one were then to evaluate (nconc x y) again, it would yield a piece of ``circular'' list structure, whose
printed representation would be (a b c d e f d e f d e f ...), repeating forever.

Examples :

(nconc) nil ;No side effects
(nconc nil . r) (nconc . r)
(nconc x) x
(nconc x y) (let ((p x) (q y))
 (setf (cdr (last p)) q)
 p)
(nconc x y . r) (nconc (nconc x y) . r)

(nconc1 list x) -> <object> function

nconc1 takes a list list and an atom x. It returns a list that is the list list concatenated with (list x).

OpenLisp Reference Manual Eligis

Page 31

(nreconc x y) -> <object> function

(nreconc x y) is exactly the same as (nconc (nreverse x) y) except that it is potentially more
efficient. Both x and y should be lists. The argument x is destroyed. Compare this with revappend.

Example:

(setq planets '(jupiter mars earth venus mercury))
(setq more-planets '(saturn uranus pluto neptune))
(nreconc more-planets planets)
=> (neptune pluto uranus saturn jupiter mars earth venus mercury)
 and now the value of more-planets is not well defined

(cirlist l1 .. lN) -> <object> function

cirlist takes a list of arguments. It returns a circurlar list made of those arguments.

Example:

(setq x '(a b c))
(cirlist x 1 2) => ((a b c) 1 2 (a b c) 1 2 (a b c) 1 2 …)
x => (a b c)

(subst new old tree) -> <object> function

(subst new old tree) makes a copy of tree, substituting new for every subtree or leaf of tree (whether
the subtree or leaf is a car or a cdr of its parent) such that old and the subtree or leaf satisfy the test. It returns the
modified copy of tree. The original tree is unchanged, but the result tree may share with parts of the argument
tree.

Example:

(subst 'tempest 'hurricane
 '(shakespeare wrote (the hurricane)))
 => (shakespeare wrote (the tempest))

(subst 'foo 'nil '(shakespeare wrote (twelfth night)))
 => (shakespeare wrote (twelfth night . foo) . foo)

(subst '(a . cons) '(old . pair)
 '((old . spice) ((old . shoes) old . pair) (old . pair))
 :test #'equal)
 => ((old . spice) ((old . shoes) a . cons) (a . cons))

(nsubst new old tree) -> <object> function

nsubst is a destructive version of subst. The list structure of tree is altered by destructively replacing with
new each leaf or subtree of the tree such that old and the leaf or subtree satisfy the test.

16 Logical Operations on Numbers

The logical operations in this section require integers as arguments; it is an error to supply a non-integer as an
argument. The functions all treat integers as if they were represented in two's-complement notation.
The logical operations provide a convenient way to represent an infinite vector of bits. Let such a conceptual
vector be indexed by the non-negative integers. Then bit j is assigned a ``weight''. Assume that only a finite
number of bits are 1's or only a finite number of bits are 0's. A vector with only a finite number of one-bits is

OpenLisp Reference Manual Eligis

Page 32

represented as the sum of the weights of the one-bits, a positive integer. A vector with only a finite number of
zero-bits is represented as -1 minus the sum of the weights of the zero-bits, a negative integer.
This method of using integers to represent bit-vectors can in turn be used to represent sets. Suppose that some
(possibly countably infinite) universe of discourse for sets is mapped into the non-negative integers. Then a set
can be represented as a bit vector; an element is in the set if the bit whose index corresponds to that element is a
one-bit. In this way all finite sets can be represented (by positive integers), as well as all sets whose complements
are finite (by negative integers). The functions logior, logand, and logxor defined below then compute
the union, intersection, and symmetric difference operations on sets represented in this way.

(logior n1 .. nN) -> <integer> function

This returns the bit-wise logical inclusive or of its arguments. If no argument is given, then the result is zero,
which is an identity for this operation.

(logand n1 .. nN) -> <integer> function]

This returns the bit-wise logical and of its arguments. If no argument is given, then the result is -1, which is an
identity for this operation.

(logandc1 n1 n2) -> <integer> function]
(logandc2 n1. n2) -> <integer> function]
(logorc2 n1 n2) -> <integer> function]
(logorc2 n1 n2) -> <integer> function]

Return the following equivances:

(logandc1 n1 n2) == (logand (lognot n1) n2)
(logandc2 n1 n2) == (logand n1 (lognot n2))
(logorc1 n1 n2) == (logior (lognot n1) n2)
(logorc2 n1 n2) == (logior n1 (lognot n2))

(logxor n1 .. nN) -> <integer> function]

This returns the bit-wise logical exclusive or of its arguments. If no argument is given, then the result is zero,
which is an identity for this operation.

(logeqv n1 .. nN) -> <integer> function

This returns the bit-wise logical equivalence (also known as exclusive nor) of its arguments. If no argument is
given, then the result is -1, which is an identity for this operation.

(lognot n) -> <integer> function

This returns the bit-wise logical not of its argument. Every bit of the result is the complement of the
corresponding bit in the argument.
(logbitp j (lognot x)) == (not (logbitp j x))

(lognand n1 n2) -> <integer> function
(lognor n1 n2) -> <integer> function

These are the other two non-trivial bit-wise logical operations on two arguments. Because they are not
associative, they take exactly two arguments rather than any non-negative number of arguments.
(lognand n1 n2) == (lognot (logand n1 n2))
(lognor n1 n2) == (lognot (logior n1 n2))

(logtest n1 n2) -> <integer> function

OpenLisp Reference Manual Eligis

Page 33

logtest is a predicate that is true if any of the bits designated by the 1's in n1 are 1's in n2.
(logtest x y) == (not (zerop (logand x y)))

(logbitp integer index) -> <integer> function

logbitp is true if the bit in integer whose index is index (that is, its weight is
(logbitp 2 6) is true
(logbitp 0 6) is false
(logbitp k n) == (ldb-test (byte 1 k) n)

(logcount n) -> <integer> function

This function returns the number of bits in n. The result is always a non-negative integer.

(ash integer count) -> <integer> function

This function shifts integer arithmetically left by count bit positions if count is positive, or right by -count bit
positions if count is negative. The sign of the result is always the same as the sign of integer.

(1+ number) -> <integer> function
(1- number) -> <integer> function

(1+ x) is the same as (+ x 1).
(1- x) is the same as (- x 1). Note that the short name may be confusing: (1- x) does not mean 1-x;
rather, it means x-1.

(rem n1 n2) -> <integer> function

rem performs the remainder of two integer arguments.

Example:

(rem 13 4) => 1
(rem -13 4) => -1
(rem 13 -4) => 1
(rem -13 -4) => -1
(rem 13.4 1) => 0.4
(rem -13.4 1) => -0.4

(random n) -> <number> function

(random n) accepts a positive number n and returns a number of the same kind between zero (inclusive) and
n (exclusive). The number n may be an integer or a floating-point number. An approximately uniform choice
distribution is used. If n is an integer, each of the possible results occurs with (approximate) probability
1/n.

(set-random n) -> <integer> function

set-random changes the state of internal random routines using non-negative
integer n to generate the next random number. You can typically use the
clock value for that purpose.

(integer-length n) -> <integer> function

This function is useful in two different ways. First, if n is non-negative, then its value can be represented in
unsigned binary form in a field whose width in bits is no smaller than (integer-length n). Second,

OpenLisp Reference Manual Eligis

Page 34

regardless of the sign of n, its value can be represented in signed binary two's-complement form in a field whose
width in bits is no smaller than (+ (integer-length n) 1).

Example:

(integer-length 0) => 0
(integer-length 1) => 1
(integer-length 3) => 2
(integer-length 4) => 3
(integer-length 7) => 3
(integer-length -1) => 0
(integer-length -4) => 2
(integer-length -7) => 3
(integer-length -8) => 3

17 Predicates on Numbers

"*most-positive-unboxed* -> <integer> constant

The maximal unboxed positive integer. The value depends on architecture.

"*most-negative-unboxed* -> <integer> constant

The maximal unboxed negative integer. The value depends on architecture.

"*most-positive-boxed* -> <integer> constant

The maximal boxed positive integer. The value depends on architecture.

"*most-negative-boxed* -> <integer> constant

The maximal boxed negative integer. The value depends on architecture.

(zerop n) -> <boolean> function

This predicate is true if number is zero (the integer zero, a floating-point zero, or a complex zero), and is false
otherwise. Regardless of whether an implementation provides distinct representations for positive and negative
floating-point zeros, (zerop -0.0) is always true. It is an error if the argument number is not a number.

(plusp n) -> <boolean> function

This predicate is true if number is strictly greater than zero, and is false otherwise. It is an error if the argument
number is not a non-complex number.

(minusp n) -> <boolean> function

This predicate is true if number is strictly less than zero, and is false otherwise. Regardless of whether an
implementation provides distinct representations for positive and negative floating-point zeros, (minusp -
0.0) is always false.

(evenp n) -> <boolean> function

This predicate is true if n is even (divisible by 2), and false otherwise.

(oddp n) -> <boolean> function

OpenLisp Reference Manual Eligis

Page 35

This predicate is true if n is odd (not divisible by 2), and false otherwise.

(bignump n) -> <boolean> function

This predicate is true if number is bignum.

(rationalp n) -> <boolean> function

This predicate is true if number is a rational number.

18 Other predicate

(atom o) -> <boolean> function

The predicate atom is true if its argument is not a cons, and otherwise is false. Note that (atom '()) is true,
because () == nil.

(type-of object) -> <class> function

(type-of object) returns class of which the object is a member. If the argument is a user-defined named
structure created by defclass or defstruct, then type-of will return the type name of that structure.
type-of is an alias of class-of ISLISP special form (see its definition in ISLISP document).

(externalp object) -> <boolean> function

Returns t if object is an external pointer (i.e. a C ou C++ pointer) or nil otherwise.

(conditionp object) -> <boolean> function

conditionp is true if its argument is a condition, and otherwise is false.

19 String Construction and Manipulation

A string is a specialized vector (one-dimensional array) whose elements are characters. Any string-specific
function defined in this chapter whose name begins with the prefix string will accept a symbol instead of a
string as an argument provided that the operation never modifies that argument; the print name of the symbol is
used. In this respect the string-specific sequence operations are not simply specializations of generic versions;
the generic sequence operations never accept symbols as sequences. This slight inelegance is permitted in the
name of pragmatic utility. One may get the effect of having a generic sequence function operate on either
symbols or strings by applying the coercion function string to any argument whose data type is in doubt.

(string-equal str1 str2) -> <boolean> function
(string-lessp str1 str2) -> <boolean> function
(string-greaterp str1 str2) -> <boolean> function
(string-not-greaterp str1 str2) -> <boolean> function
(string-not-lessp str1 str2) -> <boolean> function
(string-not-equal str1 str2) -> <boolean> function

These are exactly like string=, string<, string>, string<=, string>=, and string/=,
respectively, except that distinctions between uppercase and lowercase letters are ignored. It is as if char-
lessp were used instead of char< for comparing characters.

(char string index) -> <character> function

OpenLisp Reference Manual Eligis

Page 36

The given index must be a non-negative integer less than the length of string, which must be a string. The
character at position index of the string is returned as a character object.

(set-char char string index) -> <character> function
(setf (char string index) char) -> <character> special operator

The given index must be a non-negative integer less than the length of string, which must be a string and char
which must be a character. The character at position index of the string is modified by character object.

(string-downcase string) -> <object> function
(string-upcase string) -> <string> function
(string-capitalize string) -> <string> function

string-upcase returns a string just like string with all lowercase characters replaced by the corresponding
uppercase characters. More precisely, each character of the result string is produced by applying the function
char-upcase to the corresponding character of string.
string-downcase is similar, except that uppercase characters are converted to lowercase characters (using
char-downcase). The argument is not destroyed. However, if no characters in the argument require
conversion, the result may be either the argument or a copy of it, at the implementation's discretion. string-
capitalize produces a copy of string such that, for every word in the copy, the first character of the word, if
case-modifiable, is uppercase and any other case-modifiable characters in the word are lowercase. For the
purposes of string-capitalize, a word is defined to be a consecutive subsequence consisting of
alphanumeric characters or digits, delimited at each end either by a non-alphanumeric character or by an end of
the string.

Example:

(string-upcase "Dr. Livingstone, I presume?")
 => "DR. LIVINGSTONE, I PRESUME?"
(string-downcase "Dr. Livingstone, I presume?")
 => "dr. livingstone, i presume?"
(string-upcase "Dr. Livingstone, I presume?" :start 6 :end 10)
 => "Dr. LiVINGstone, I presume?"
(string-capitalize " hello ")
 => " Hello "

(nstring-downcase string) -> <string> function
(nstring-upcase string) -> <string> function
(nstring-capitalize string) -> <string> function

These three functions are just like string-upcase, string-downcase and string-captitalize but
destructively modify the argument string by altering case-modifiable characters as necessary.

(string-trim character-bag string) -> <string> function
(string-left-trim character-bag string) -> <string> function
(string-right-trim character-bag string) -> <string> function

string-trim returns a substring of string, with all characters in character-bag stripped off the beginning and
end. The function string-left-trim is similar but strips characters off only the beginning; string-
right-trim strips off only the end. The argument character-bag may be any sequence containing characters.

Example:
(string-trim '(#\Space #\Tab #\Newline) " garbanzo beans
 ") => "garbanzo beans"
(string-trim " (*)" " (*three (silly) words*) ")
 => "three (silly) words"

OpenLisp Reference Manual Eligis

Page 37

(string-left-trim " (*)" " (*three (silly) words*) ")
 => "three (silly) words*) "
(string-right-trim " (*)" " (*three (silly) words*) ")
 => " (*three (silly) words"

If no characters need to be trimmed from the string, then the argument string itself is returned.

(string-split character-bag string [keep]) -> <list> function

string-split returns a list of strings using all characters in character-bag as word delimiter for string
string. The argument character-bag may be any sequence containing characters. If the optional argument keep is
non-nil, blank strings are preserved.

Example:
(string-split '(#\Space #\.) " garbanzo beans.")
 => ("garbanzo" "beans")
(string-split "." "computer.eligis.com")

ð ("computer" "eligis" "com")
(string-split ";" "1;;3")
 => ("1" "3")
(string-split ";" "1;;3" t)
 => ("1" "" "3")

(string-replace regex to string) -> <string> function

string-replace replaces each substring of string that matches regex with to.

Example:
(string-replace "f[o]+" "bar" "A string with foo")
 => "A string with bar"

20 Vector Class Functions

(svref vector index) -> <object> function

The first argument must be a simple general vector, that is, an object of type <general-vector>. The
element of the vector specified by the integer index is returned. The index must be non-negative and less than the
length of the vector. setf may be used with svref to destructively replace a simple-vector element with a new
value. svref is identical to aref except that it requires its first argument to be a simple vector. svref may be
faster than aref in situations where it is applicable.

(svset vector item object) -> <object> function

svset is identical to set-aref except that it requires its first argument to be a simple vector. svset may be
faster than set-aref in situations where it is applicable.

(vector-type vector [type]) -> <symbol> function
(setf (vector-type vector) type) -> <symbol> function

vector-type is internally used to tag standard vectors. This function is used the object system and structure
packages.

OpenLisp Reference Manual Eligis

Page 38

21 Bit Vector Functions

A bit vector (or generalized boolean) is a special vector type that contains only 1 or 0. It is internally optimized
to use less space and is potentially faster. A bit vector is of type <simple-bit-vector> which is a direct
subtype of <general-vector>. The complete class precedence list is hence: <object>, <basic-
array>, <basic-array*>, <general-array*>, <basic-vector>, <general-vector>,
<simple-bit-vector>. As such, all operations valid for a <general-vector>, especially sequence
operations, are also valid for a <simple-bit-vector>.

The #[n]*bb … bb syntax represents a <simple-bit-vector> where n is the vector dimension and b is
either 1 or 0.

#* bit vector of 0 elements ()
#*1001 bit vector of 4 elements (1, 0, 0, 1)
#8* bit vector of 8 elements (0, 0, 0, 0, 0, 0, 0, 0)
#8*10010 bit vector of 8 elements (1, 0, 0, 1, 0, 0, 0, 0)
#8*10011 bit vector of 8 elements (1, 0, 0, 1, 1, 1, 1, 1)

(create-simple-bit-vector n [init]) -> <simple-bit-vector> function
(make-instance '<simple-bit-vector> n [init]) -> <simple-bit-vector> function

Create a <simple-bit-vector> of n elements initialized to init (either 1 or 0). If init is not supplied, 0 is
used.

Example:
(create-simple-bit-vector 8) => #*00000000
(create-simple-bit-vector 8 0) => #*00000000
(create-simple-bit-vector 8 1) => #*11111111
(create-simple-bit-vector 8 t) => error!

(create-simple-bit-vector-p object) -> <boolean> function

Return t if object is of type <simple-bit-vector> , nil otherwise.

(bit vector index) -> <integer> function

The first argument must be a simple bit vector, that is, an object of type <simple-bit-vector>. The
element of the vector specified by the integer index is returned. The index must be non-negative and less than the
length of the vector. setf may be used with bit to destructively replace a simple-vector element with a new
value.

Example:
(defglobal x #8*) => #*00000000
(bit x 2) => 0
(setf (bit x 2) 1) => 1
(bit x 2) => 1
x => #*00100000

(set-bit object vector item) -> <integer> function
(setf (bit vector item) object) -> <integer> function

set-bit is identical to set-elt except that it requires its vector argument to be a simple bit vector. set-
bit may be faster than set-elt in situations where it is applicable. The object is either 1 or 0

(bit-and bv1 bv2 [opt-arg]) -> <simple-bit-vector> function

OpenLisp Reference Manual Eligis

Page 39

(bit-andc1 bv1 bv2 [opt-arg]) -> <simple-bit-vector> function
(bit-andc2 bv1 bv2 [opt-arg]) -> <simple-bit-vector> function
(bit-eqv bv1 bv2 [opt-arg]) -> <simple-bit-vector> function
(bit-ior bv1 bv2 [opt-arg]) -> <simple-bit-vector> function
(bit-nand bv1 bv2 [opt-arg]) -> <simple-bit-vector> function
(bit-nor bv1 bv2 [opt-arg]) -> <simple-bit-vector> function
(bit-orc1 bv1 bv2 [opt-arg]) -> <simple-bit-vector> function
(bit-orc2 bv1 bv2 [opt-arg]) -> <simple-bit-vector> function
(bit-xor bv1 bv2 [opt-arg]) -> <simple-bit-vector> function
(bit-not bv [opt-arg]) -> <simple-bit-vector> function

These functions perform bit-wise logical operations on bv1 and bv2 and return a <simple-bit-vector>
such that any given bit of the result is produced by operating on corresponding bits from each of the arguments.
In the case of bit-not, a <simple-bit-vector> is returned that contains a copy of bv with all the bits
inverted. If opt-arg is of type <simple-bit-vector>) the contents of the result are destructively placed into
opt-arg. If opt-arg is the symbol t, bv or bv1 is replaced with the result; if opt-arg is nil or omitted, a
<simple-bit-vector> is created to contain the result.

22 Character Class Functions

(char-equal c1 c2) -> <boolean> function
(char-not-equal c1 c2) -> <boolean> function
(char-lessp c1 c2) -> <boolean> function
(char-not-lessp c1 c2) -> <boolean> function
(char-greaterp c1 c2) -> <boolean> function
(char-not-greaterp c1 c2) -> <boolean> function

The predicate char-equal is like char=, and similarly for the others, except according to a different ordering
such that differences of bits attributes and case are ignored.

For the standard characters, the ordering is such that A=a, B=b, and so on, up to Z=z, and furthermore either
9<A or Z<0.

Example:

(char-equal #\A #\a) => t
(char= #\A #\a) => nil
(char-equal #\A #\Control-A) => nil ;; strange, but this is true in Common Lisp

(upper-case-p char) -> <boolean> function
(lower-case-p char) -> <boolean> function
(both-case-p char) -> <boolean> function

The argument char must be a character object.
upper-case-p is true if the argument is an uppercase character, and otherwise is false.
lower-case-p is true if the argument is a lowercase character, and otherwise is false.
both-case-p is true if the argument is an uppercase character and there is a corresponding lowercase
character (which can be obtained using char-downcase), or if the argument is a lowercase character and
there is a corresponding uppercase character (which can be obtained using char-upcase).
If a character is either uppercase or lowercase, it is necessarily alphabetic (and therefore is graphic, and therefore
has a zero bits attribute). Of the standard characters (as defined by standard-char-p), the letters A through
Z are uppercase and a through z are lowercase.

(standard-char-p char) -> <boolean> function

OpenLisp Reference Manual Eligis

Page 40

The argument char must be a character object. standard-char-p is true if the argument is an ASCII
character (in the range 0x00 – 0x7F).

Example:

(standard-char-p #\a) => t
(standard-char-p #\é) => nil

(graphic-char-p char) -> <boolean> function

The argument char must be a character object. graphic-char-p is true if the argument is a “graphic”
(printing) character, and false if it is a “non-graphic” (formatting or control) character. Graphic characters have a
standard textual representation as a single glyph, such as A or * or =. By convention, the space character is
considered to be graphic.

(alpha-char-p char) -> <boolean> function

The argument char must be a character object. alpha-char-p is true if the argument is an alphabetic
character, and otherwise is false. Of the standard characters (as defined by standard-char-p), the letters A
through Z and a through z are alphabetic.

(alphanumericp char) -> < boolean> function

The argument char must be a character object. alphanumericp is true if char is either alphabetic or numeric.
By definition,
(alphanumericp x) == (or (alpha-char-p x) (not (null (digit-char-p x))))
Of the standard characters (as defined by standard-char-p), the characters 0 through 9, A through Z, and a
through z are alphanumeric.

(digit-char-p char [radix]) -> <integer> function

The argument char must be a character object, and radix (default value 10) must be a non-negative integer. If
char is not a digit then digit-char-p is false; otherwise it returns a non-negative integer that is the ``weight''
of char in that radix. Of the standard characters, the characters 0 through 9 are digits. The weights of 0 through
9 are the integers 0 through 9, and of A through Z (and also a through z) are 10 through 35. digit-char-p
returns the weight for one of these digits if and only if its weight is strictly less than radix.

(char-upcase char) -> < character> function
(char-downcase char) -> < character> function

The argument char must be a character object. char-upcase attempts to convert its argument to an uppercase
equivalent; char-downcase attempts to convert its argument to a lowercase equivalent.

(char-int char) -> <integer> function

The argument char must be a character object. char-int returns a non-negative integer encoding the
character object.
(char= c1 c2) == (= (char-int c1) (char-int c2))
for characters c1 and c2.

(int-char c) -> <character> function

The argument must be a non-negative integer. int-char returns a character object c such that (char-int
c) is equal to integer, if possible; otherwise int-char returns false.

OpenLisp Reference Manual Eligis

Page 41

23 Sequence Class Functions

Some of sequence functions accept an optional test function. If this test function is not provided eq is used.

(make-sequence sequence-type size [initial-element]) -> <sequence> function

This returns a sequence of type type and of length size, each of whose elements has been initialized to the initial-
element argument. If specified, the initial-element argument must be an object that can be an element of a
sequence of type type.

Example:

(make-sequence '<string> 10 #\A) -> "AAAAAAAAAA"
(make-sequence '<list> 5) -> (nil nil nil nil nil)
(make-sequence '<list> 5 2) -> (2 2 2 2 2)

(count item sequence [:test test-function]) -> <integer> function
(count-if predicate sequence) -> <integer> function
(count-if-not predicate sequence) -> <integer> function

The result is always a non-negative integer, the number of elements in the specified subsequence of sequence
satisfying the test.
Example:

(count-if #'zerop #(2 0 3 0 4)) -> 2
(count-if-not #'lower-case-p "Some String") -> 2

(copy-seq sequence) -> <sequence> function

A copy is made of the argument sequence; the result is equal to the argument but not eq to it.
(copy-seq x) == (subseq x 0)
but the name copy-seq is more perspicuous when applicable.

(reduce function sequence) -> <object> function

The reduce function combines all the elements of a sequence using a binary operation; for example, using +
one can add up all the elements.
The specified subsequence of the sequence is combined or “reduced” using the function, which must accept two
arguments. The reduction is left-associative.

Example:

(reduce #'+ '(1 2 3 4)) -> 10
(reduce #'list '(1 2 3 4)) -> (((1 2) 3) 4)

(concatenate result-type seq1 … seqN) -> <object> function

The result is a new sequence that contains all the elements of all the sequences in order. All of the sequences are
copied from; the result does not share any structure with any of the argument sequences (in this concatenate
differs from append). The type of the result is specified by result-type, which must be a subtype of
<sequence>, as for the function coerce. It must be possible for every element of the argument sequences to be
an element of a sequence of type result-type.

If only one sequence argument is provided and it has the type specified by result-type, con

 is required to copy the argument rather than simply returning it. If a copy is not required, but only possibly type
conversion, then the convert special form may be appropriate.

OpenLisp Reference Manual Eligis

Page 42

(map result-type function seq1 … seqN) -> <object> function

The function must take as many arguments as there are sequences provided; at least one sequence must be
provided. The result of map is a sequence such that element j is the result of applying function to element j of
each of the argument sequences. The result sequence is as long as the shortest of the input sequences.

If the function has side effects, it can count on being called first on all the elements numbered 0, then on all those
numbered 1, and so on.

The type of the result sequence is specified by the argument result-type (which must be a subtype of the type
<sequence>). In addition, one may specify nil for the result type, meaning that no result sequence is to be
produced; in this case the function is invoked only for effect, and map returns nil. This gives an effect similar
to that of mapc.

(some predicate seq1 … seqN) -> <object> function

some returns as soon as any invocation of predicate returns a non-nil value; some returns that value. If the
end of a sequence is reached, some returns nil. Thus, considered as a predicate, it is true if some invocation of
predicate is true.

(every predicate seq1 ..seqN) -> <object> function

every returns nil as soon as any invocation of predicate returns nil. If the end of a sequence is reached,
every returns a non-nil value. Thus, considered as a predicate, it is true if every invocation of predicate is
true.

(notany predicate seq1 ..seqN) -> <object> function

notany returns nil as soon as any invocation of predicate returns a non-nil value. If the end of a sequence is
reached, notany returns a non-nil value. Thus, considered as a predicate, it is true if no invocation of
predicate is true.

(notevery predicate seq1 .. seqN) -> <object> function

notevery returns a non-nil value as soon as any invocation of predicate returns nil. If the end of a
sequence is reached, notevery returns nil. Thus, considered as a predicate, it is true if not every invocation
of predicate is true.

(find item sequence [:test test-function]) -> <object> function
(find-if predicate sequence) -> <object> function
(find-if-not predicate sequence) -> <object> function

If the sequence contains an element satisfying the test, then the leftmost such element is returned; otherwise nil
is returned.

(position item sequence [:test test-function]) -> <integer> function
(position-if predicate sequence) -> <integer> function
(position-if-not predicate sequence) -> <integer> function

If the sequence contains an element satisfying the test, then the index within the sequence of the leftmost such
element is returned as a non-negative integer; otherwise nil is returned.

(substitute newitem olditem sequence [:test test-function]) -> <object> function
(substitute-if newitem predicate sequence) -> <object> function
(substitute-if-not newitem predicate sequence) -> <object> function

OpenLisp Reference Manual Eligis

Page 43

The result is a sequence of the same kind as the argument sequence that has the same elements except that those
satisfying the test (see above) have been replaced by newitem. This is a non-destructive operation; the result is a
copy of the input sequence, save that some elements are changed.

Example:

(substitute 1 2 '(1 2 3 4)) => (1 1 3 4)
(substitute 1 2 '()) => ()
(substitute 'foo 2 '(1 2 3 4)) => (1 foo 3 4)
(substitute 1 2 #(1 2 3 4)) => #(1 1 3 4)
(substitute 1 2 #()) => #()
(substitute #\1 #\2 "1234") => "1134"
(substitute #\1 #\2 "") => ""

(nsubstitute newitem olditem sequence [:test test-function]) -> <object> function
(nsubstitute-if newitem predicate sequence) -> <object> function
(nsubstitute-if-not newitem predicate sequence) -> <object> function

This is the destructive counterpart to substitute. The result is a sequence of the same kind as the argument
sequence that has the same elements except that those satisfying the test (see above) have been replaced by
newitem. This is a destructive operation. The argument sequence may be destroyed and used to construct the
result; however, the result may or may not be eq to sequence.

(remove object sequence [:test test-function]) -> <object> function
(remove-if predicate sequence) -> <object> function
(remove-if-not predicate sequence) -> <object> function

The result is a sequence of the same kind as the argument sequence that has the same elements except that those
satisfying the test function (default is eq) have been removed. This is a non-destructive operation; the result is a
copy of the input sequence, save that some elements are not copied. Elements not removed occur in the same
order in the result as they did in the argument.

(delete object list [:test test-function]) -> <object> function
(delete-if predicate sequence) -> <object> function
(delete-if-not predicate sequence) -> <object> function

This is the destructive counterpart to remove. The result is a sequence of the same kind as the argument
sequence that has the same elements except that those satisfying the test function (default is eq) have been
deleted. This is a destructive operation. The argument sequence may be destroyed and used to construct the
result; however, the result may or may not be eq to sequence. Elements not deleted occur in the same order in
the result as they did in the argument.

(remove-duplicates sequence) -> <object> function
(delete-duplicates sequence) -> <object> function

The elements of sequence are compared pairwise, and if any two match, then the one occurring earlier in the
sequence is discarded. The result is a sequence of the same kind as the argument sequence with enough elements
removed so that no two of the remaining elements match. The order of the elements remaining in the result is the
same as the order in which they appear in sequence.
remove-duplicates is the non-destructive version of this operation. The result of remove-duplicates
may share with the argument sequence; a list result may share a tail with an input list, and the result may be eq
to the input sequence if no elements need to be removed.
delete-duplicates may destroy the argument sequence.

(intersection list-1 list-2 [:test test-function]) -> <object> function

OpenLisp Reference Manual Eligis

Page 44

(intersection list-1 list-2 [:test test-function]) -> <object> function

The intersection and nintersection functions return a list that contains every element that occurs in
both list-1 and list-2. nintersection is the destructive version of intersection. It performs the same
operation, but may destroy list-1 using its cells to construct the result. list-2 is not destroyed. The
intersection operation is described as follows. For all possible ordered pairs consisting of one element
from list-1 and one element from list-2, :test is used to determine whether it satisfies the test. The first
argument to the :test function is an element of list-1; the second argument is an element of list-2. If :test is
not supplied, eql is used.

(union list-1 list-2 [:test test-function]) -> <object> function
(union list-1 list-2 [:test test-function]) -> <object> function

The union and nunion functions return a list that contains every element that occurs in either list-1 or list-2.

For all possible ordered pairs consisting of one element from list-1 and one element from list-2, :test is used
to determine whether they satisfy the test. The first argument to the :test function is the part of the element of
list-; the second argument is the part of the element of list-2.

For every matching pair, one of the two elements of the pair will be in the result. Any element from either list-1
or list-2 that matches no element of the other will appear in the result.

If there is a duplication between list-1 and list-2, only one of the duplicate instances will be in the result. If either
list-1 or list-2 has duplicate entries within it, the redundant entries might or might not appear in the result.

The order of elements in the result do not have to reflect the ordering of list-1 or list-2 in any way. The result list
may be eq to either list-1 or list-2 if appropriate.

(search sequence1 sequence2 [:test test-function]) -> <integer> function

A search is conducted for a subsequence of sequence2 that element-wise matches sequence1 (using eql). If
there is no such subsequence, the result is nil; if there is, the result is the index into sequence2 of the leftmost
element of the leftmost such matching subsequence.

(mismatch sequence1 sequence2 [:test test-function]) -> <integer> function

The specified subsequences of sequence1 and sequence2 are compared element-wise. If they are of equal length
and match in every element, the result is nil. Otherwise, the result is a non-negative integer. This result is the
index within sequence1 of the leftmost position at which the two subsequences fail to match; or, if one
subsequence is shorter than a matching prefix of the other, the result is the index relative to sequence1 beyond
the last position tested.

24 A-List Functions

An association list, or a-list, is a data structure used very frequently in Lisp. An a-list is a list of pairs (conses);
each pair is an association. The car of a pair is called the key, and the cdr is called the datum.
An advantage of the a-list representation is that an a-list can be incrementally augmented simply by adding new
entries to the front. Moreover, because the searching function assoc searches the a-list in order, new entries
can ``shadow'' old entries. If an a-list is viewed as a mapping from keys to data, then the mapping can be not
only augmented but also altered in a non-destructive manner by adding new entries to the front of the a-list.
Sometimes an a-list represents a bijective mapping, and it is desirable to retrieve a key given a datum. It is
permissible to let nil be an element of an a-list in place of a pair. Such an element is not considered to be a pair
but is simply passed over when the a-list is searched by assoc.

(acons key datum a-list) -> <list> function

OpenLisp Reference Manual Eligis

Page 45

acons constructs a new association list by adding the pair (key . datum) to the old a-list.
(acons x y a) == (cons (cons x y) a)

(pairlis keys data [a-list]) -> <list> function

pairlis takes two lists and makes an association list that associates elements of the first list to corresponding
elements of the second list. It is an error if the two lists keys and data are not of the same length. If the optional
argument a-list is provided, then the new pairs are added to the front of it.
The new pairs may appear in the resulting a-list in any order; in particular, either forward or backward order is
permitted. Therefore the result of the call
(pairlis '(one two) '(1 2) '((three . 3) (four . 19)))
might be
((one . 1) (two . 2) (three . 3) (four . 19))
but could equally well be
((two . 2) (one . 1) (three . 3) (four . 19))

(sublis a-list s) -> <list> function

sublis makes substitutions for objects in a tree (a structure of conses). The first argument to sublis is an
association list. The second argument is the tree in which substitutions are to be made, as for subst. sublis
looks at all subtrees and leaves of the tree; if a subtree or leaf appears as a key in the association list (that is, the
key and the subtree or leaf satisfy the test), it is replaced by the object with which it is associated. This operation
is non-destructive. In effect, sublis can perform several subst operations simultaneously.

Example:

(sublis '((x . 100) (z . zprime))
 '(plus x (minus g z x p) 4 . x))
 => (plus 100 (minus g zprime 100 p) 4 . 100)

(assoc item a-list) -> <list> function
(assoc-if fn a-list) -> <list> function
(assoc-if-not fn a-list) -> <list> function

Each of these searches the association list a-list. The value is the first pair in the a-list such that the car of the
pair satisfies the test, or nil if there is no such pair in the a-list.

(cassoc item a-list) -> <list> function

cassoc returns the value associated to item in a-list or nil is no association exists.

(rassoc item a-list) -> <list> function
(rassoc-if fn a-list) -> <list> function
(rassoc-if-not fn a-list) -> <list> function

rassoc is the reverse form of assoc; it searches for a pair whose cdr satisfies the test, rather than the car. If
the a-list is considered to be a mapping, then rassoc treats the a-list as representing the inverse mapping. For
example:
(rassoc 'a '((a . b) (b . c) (c . a) (z . a))) => (c . a)*

25 Rational Functions

OpenLisp can optionally be compiled with rational numbers support. The following functions are defined even
without rational support.

OpenLisp Reference Manual Eligis

Page 46

rational -> <object> feature

rational feature is defined if the current implementation supports rational numbers.

(rational number) -> <number> function
(rationalize number) -> <number> function

Each of these functions converts any number to a rational number. If the argument is already rational, it is
returned. Without rational support, these functions are equivalent to truncate.

(numerator rational) -> <integer> function
(denominator rational) -> <integer> function

These functions take a rational number and return as an integer the numerator or denominator of the canonical
reduced form of the rational. The numerator of an integer is that integer; the denominator of an integer is 1.

(/ number+) -> <number> function

When implementation supports rational numbers, / will produce a ratio if the mathematical quotient of two
integers is not an exact integer.

Examples:
(/ 12 4) -> 3
(/ 13 4) -> 13/4
(/ -8) -> -1/8
(/ 3 4 5) -> 3/20

26 Class Functions

As Common Lisp compatible extension, OpenLisp defclass macro supports :allocation slot option.
It controls the kind of slot that is defined. If the value of the :allocation slot option is :instance (which
is the default), a local slot is created. If the value of :allocation is :class, a shared slot is created. A
shared slot defined by a class is accessible in all instances of that class :class :allocation slot declaration
option.

A shared slot can be shadowed. For example, if a class C1 defines a slot named S whose value for the
:allocation slot option is :class, that slot is accessible in instances of C1 and all of its subclasses.
However, if C2 is a subclass of C1 and also defines a slot named S, C1’s slot is not shared by instances of C2
and its subclasses. When a class C1 defines a shared slot, any subclass C2 of C1 will share this single slot unless
the defclass form for C2 specifies a slot of the same name or there is a superclass of C2 that precedes C1 in
the class precedence list of C2 that defines a slot of the same name.

Example:

(defclass <person> ()
 ((name :initarg :name :accessor name :allocation :instance) ;; default
 (species
 :initform 'homo-sapiens
 :accessor species
 :allocation :class)))

(create-class class-name super-class) -> <class> function

OpenLisp Reference Manual Eligis

Page 47

Returns a new class object with name class-name that is a subclass of super-class. User classes must inherit,
directly or indirectly of <standard-class> class. System classes must inherit, directly or indirectly of
<built-in-class> class.

(class-name class) -> <class> function

The function class-name takes a class object and returns its name. The class argument is a class object. The
name of the given class is returned.

(class-metaclass class) -> <class> function

The function class-metaclass takes a class object and returns its metaclass. The class argument is a class
object. The metaclass object of the given class is returned.

(class-precedence-list class) -> <list> function

The function class-precedence-list takes a class object and returns its class precedent list. The class
argument is a class object.

(class-abstract-p class) -> <boolean> function

The function class-abstract-p takes a class object and returns t if the class argument is an abstract-class
class object (i.e. we the class is non-instanciable), or nil otherwise.

(class-size class) -> <integer> function

The function class-size takes a class object and returns the size of element for this class.

(class-direct-superclasses class) -> <list> function

The function class-direct-superclasses takes a class object and returns the list of superclasses of this
class.

(class-initargs class) -> <list> function

class-initargs is an internal function that returns the names of initargs of the given class. It returns nil if
no information is available for this class.

(class-slot-descriptions class) -> <list> function

The function class-slot-descriptions takes a class object and returns the list of its slot descriptions.

Example:

(defclass <foo> ()
 ((x :initform 0
 :accessor yab-x
 :initarg x))) => <foo>

(defclass <bar> (<foo>)
 ((y :accessor yab-y
 :initarg y-value))) => <bar>

(class-direct-superclasses (class <foo>)) => nil
(class-direct-superclasses (class <bar>)) => (<foo>)
(class-precedence-list <foo>) => (<foo>

OpenLisp Reference Manual Eligis

Page 48

 <standard-object>
 <object>)
(class-precedence-list <bar>) => (<bar>
 <foo>
 <standard-object>
 <object>)
(class-size (class <foo>)) => 1 ;; one local slot
(class-size (class <bar>)) => 2 ;; one local slot + one inherited slot.
(class-initargs (class <foo>)) => (x)
(class-initargs (class <bar>)) => (x y-value)
(class-slot-descriptions (class <foo>)) => ((x :initform 0
 :accessor yab-x
 :initarg x))
(class-slot-descriptions (class <bar>)) => ((y :accessor yab-y
 :initarg y-value))

(class-shared-slots class) -> <list> function

The function class-shared-slots takes a class object and returns the list of its shared slots.

(find-class symbol [errorp]) -> <object> function

The first argument to find-class is a symbol. If there is no such class and the errorp argument is not
supplied or is non-nil, find-class signals an error. If there is no such class and the errorp argument is nil,
find-class returns nil. The default value of errorp is t.
The result of find-class is the class object named by the given symbol.
The class associated with a particular symbol can be changed by using setf with find-class. The results
are undefined if the user attempts to change the class associated with a symbol that is defined as a built-in type.

(create-class-info fileds initforms initargs slot-spec sc-list) -> <vector> function

create-class-info is an internal function that creates a class info structure using supplied values.

(allocate-object class) -> <object> function

Returns a new instance of class class where all slots are non-initialize (i.e. #<unbound-value>). This
instance is generally used by the generic function initialize-object.

(default-initialize-object instance keys class) -> <object> function

This function, called by primary method of generic function initialize-object, initialize instance
instance with keys which list ((keyword1 value1) … ((keywordN valuen)). Third parameter class, if non-
nil, must be the class of instance.

(slot-value object slot) -> <object> function
(set-slot-value value object slot-name) -> <object> function
(setf (slot-value object slot-name) value) -> <object> function

The function slot-value returns the value contained in the slot slot-name of the given object. If there is no
slot with that name, slot-missing is called. If the slot is unbound, slot-unbound is called. The macro
setf can be used with slot-value to change the value of a slot (calling set-lot-value function). The
arguments are the object and the name of the given slot. The result is the value contained in the given slot.

(slot-boundp object slot) -> <boolean> function

OpenLisp Reference Manual Eligis

Page 49

The function slot-boundp tests whether a specific slot in an instance is bound. The arguments are the
instance and the name of the slot. The function slot-boundp returns true or false. This function allows for
writing :after methods on initialize-object in order to initialize only those slots that have not already
been bound.

(slot-index instance index) -> <object> function

This internal function returns the slot value at position index for the object object. If this slot is unbound, the
generic function slot-unbound is called with two arguments instance and slot. The default behavior of
slot-unbound is to signal an error slot-unbound.

(set-slot-index value instance slot) -> <object> function
(setf (slot-index instance index) value) -> <object> function

This internal function and the seft form return the slot value at position index for the object object. If this slot
is unbound, the generic function slot-unbound is called with two arguments instance and slot. The default
behavior of slot-unbound is to signal an error slot-unbound.

(slot-makunbound instance slot-name) -> <object> function

The function slot-makunbound restores a slot in an instance to the unbound state. The arguments to slot-
makunbound are the instance and the name of the slot. The instance is returned as the result.

(slot-exists-p object slot-name) -> <object> function

The function slot-exists-p tests whether the specified object has a slot of the given name. The object
argument is any object. The slot-name argument is a symbol. The function slot-exists-p returns true or
false.

(slot-unbound class instance slot-name) -> <object> generic function

The generic function slot-unbound is called when an unbound slot is read in an instance whose metaclass is
<standard-class>. The default method signals an error. The generic function slot-unbound is not
intended to be called by programmers. Programmers may write methods for it. The function slot-unbound is
called only by the function <slot-value. The arguments to slot-unbound are the class of the instance
whose slot was accessed, the instance itself, and the name of the slot. If a method written for slot-unbound
returns values, these values get returned as the values of the original function invocation. An unbound slot may
occur if no :initform form was specified for the slot and the slot value has not been set, or if slot-
makunbound has been called on the slot.

(print-object class instance stream) -> <object> generic function

The generic function print-object writes the printed representation of class-instance to stream. The
function print-object is called by the OpenLisp printer; it should not be called by the user.

Each implementation is required to provide a method on the class <standard-object> and on the class
<standard-structure>. There must be always an applicable method. Users may write methods for
print-object for their own classes if they do not wish to inherit an implementation-dependent method.

The method on the class <standard-structure> prints the object in the default #s(…) notation;

(print-unreadable-object (obj st :type x :identity y) . body) -> <object> macro

The macro print-unreadable-object outputs a printed representation of object obj on stream st,
beginning with '#<' and ending with '>'. Everything output to stream by the body body forms is enclosed in the
angle brackets. If optional :type argument is true, the output from forms is preceded by a brief description of

OpenLisp Reference Manual Eligis

Page 50

the object's type and a space character. If optional :identity argument is true, the output from forms is
followed by a space character and a representation of the object's identity, typically a storage address.

Example:

(defmethod print-object ((obj <myobj>) stream)
 (print-unreadable-object (obj stream :type t :identity t)
 (format stream "myobj: ~s" (id obj))))

27 Streams Functions

(format stream fmt exp1 .. expN) -> <object> function

As an extension to the ISLISP standard, OpenLisp provides the following directives to the format function.

ISLISP :

~w[,d]G print the next argument (a float) with w characters and d characters

after the dot.
~w[,d]E print the next argument (a float) with w characters and d characters

after the dot.
~w[,d]F print the next argument (a float) with w characters and d characters

after the dot.
~wD print the next argument (an integer) with w characters after the dot.
~[:[@]]P plural. If arg is not eql to the integer 1, a lowercase s is printed; if arg

is eql to 1, nothing is printed. (Notice that if arg is a floating-point
1.0, the “s” is printed.) ~:P prints a lowercase “s” if the last
argument was not 1. ~@P prints “y” if the argument is 1, or “ies” if it
is not. ~:@P does the same thing, but backs up first.

~[n][:@]]* the next arg is ignored. ~n* ignores the next n arguments. ~:*
“ignores backwards”. ~n@* is an “absolute goto” rather than a
“relative goto”. It goes to the nth arg, where 0 means the first one; n
defaults to 0.

Sometimes a prefix parameter is used to specify a character, for instance the padding character in a right- or left-
justifying operation. In this case a single quote (') followed by the desired character may be used as a prefix
parameter, to mean the character object that is the character following the single quote. For example, you can use
~5,'0d to print an integer in decimal radix in five columns with leading zeros, or ~5,'*d to get leading asterisks.

In place of a prefix parameter to a directive, you can put the letter V (or v), which takes an argument from
arguments for use as a parameter to the directive. Normally this should be an integer or character object, as
appropriate. This feature allows variable-width fields and the like. If the argument used by a V parameter is nil,
the effect is as if the parameter had been omitted.

(format-user-type stream object level) -> <object> function

This function outputs user objects (as defined by defclass or defstruct) to the stream stream. level is an
integer indicating the current depth (to be compared against *print-level*). The printing function should
observe the values of such printer-control variables as *print-escape*. By default, format-user-type
prints objet as #<new-type @address>. format-user-type always returns object.

(prin object*) -> <object> function
(princ object*) -> <object> function
(print object*) -> <object> function

OpenLisp Reference Manual Eligis

Page 51

prin outputs the printed representation of object* to (output-stream). Escape characters are used as
appropriate. Roughly speaking, the output from prin is suitable for input to the function read. prin returns
the last object as its value. printc is just like prin except that the output has no escape characters. print is
like prin except that a newline is output after the last argument is printed.

Note : this is a major difference with CLtL equivalent name.

(terpri) -> <null> function

The function terpri outputs a newline to (output-stream). It is identical in effect to (write-char
#\newline output-stream); however, terpri always returns nil.

(write-to-string object [escape]) -> <string> function

The object is effectively printed and the characters that would be output are made into a string, which is returned.
If optional argument escape is non-nil, the string contains escape characters.

(read-from-string string [eof-error-p[eof-value]]) -> <object> function

The characters of string are given successively to the Lisp reader, and the Lisp object built by the reader is
returned. Macro characters and so on will all take effect. As with other reading functions, the arguments eof-
error-p and eof-value control the action if the end of the (sub)string is reached before the operation is completed;
reaching the end of the string is treated as any other end-of-file event.

(read-delimited-list char [stream]) -> <object> function

This reads objects from stream until the next character after an object’s representation (ignoring whitespace
characters and comments) is char. (The char should not have whitespace syntax in the current readtable.) A list
of the objects read is returned.

(unread-char character [input-stream]) -> <null> function

unread-char puts the character onto the front of input-stream. The character must be the same character that
was most recently read from the input-stream. The input-stream “backs up” over this character; when a character
is next read from input-stream, it will be the specified character followed by the previous contents of input-
stream. unread-char returns nil.
One may apply unread-char only to the character most recently read from input-stream. Moreover, one may
not invoke unread-char twice consecutively without an intervening read-char operation. The result is
that one may back up only by one character, and one may not insert any characters into the input stream that
were not already there.

(stream-element-class stream) -> <object> function

Returns the element class used to open stream. It returns nil if stream is not an opened stream.

Example:

(with-open-input-file (istream file '<wide-character>)
 (stream-element-class istream)) => <wide-character>

(interactive-stream-p stream) -> <object> function

The intent is to distinguish between interactive and batch (background, command-file) operations. Some
characteristics that might distinguish a stream as interactive:

OpenLisp Reference Manual Eligis

Page 52

• The stream is connected to a person (or the equivalent) in such a way that the program can prompt for
information and expect to receive input that might depend on the prompt.

• The program is expected to prompt for input and to support “normal input editing protocol” for that
operating environment.

• A call to read-char might hang waiting for the user to type something rather than quickly returning a
character or an end-of-file indication.

 28 The Readtable

There is a data structure called the readtable that is used to control the reader. It contains information about the
syntax of each character. It is set up to give the standard ISLisp meanings to all the characters, but the user can
change the meanings of characters to alter and customize the syntax of characters. It is also possible to have
several readtables describing different syntaxes and to switch from one to another by binding the dynamic
variable *readtable*.

readtable -> <readtable> dynamic variable

The dynamic value of *readtable* is the current readtable. The initial value of this is a readtable set up for
standard ISLisp syntax. You can bind this variable to temporarily change the readtable being used.
To program the reader for a different syntax, a set of functions are provided for manipulating readtables.
Normally, you should begin with a copy of the standard ISLisp readtable and then customize the individual
characters within that copy.

(copy-readtable [[from-readtable] to-readtable]) -> <object> function

A copy is made of from-readtable, which defaults to the current readtable (the value of the dynamic variable
readtable). If from-readtable is nil, then a copy of a standard ISLisp readtable is made.

For example

(setf (dynamic *readtable*) (copy-readtable nil))

will restore the input syntax to standard Common Lisp syntax, even if the original readtable has been clobbered
(assuming it is not so badly clobbered that you cannot type in the above expression!). On the other hand,

(setf (dynamic *readtable*) (copy-readtable))

will merely replace the current readtable with a copy of itself.
If to-readtable is unsupplied or nil, a fresh copy is made. Otherwise, to-readtable must be a readtable, which is
destructively copied into.

(readtablep object) -> <boolean> function

readtablep is true if its argument is a readtable, and otherwise is false.

(set-syntax-from-char to-char from-char [[to-readtable from-readtable]]) -> <boolean>function

This makes the syntax of to-char in to-readtable be the same as the syntax of from-char in from-readtable. The
to-readtable defaults to the current readtable (the value of the global variable *readtable*), and from-
readtable defaults to nil, meaning to use the syntaxes from the standard ISLisp readtable.
set-syntax-from-char function returns t.

(set-macro-character char function[[non-terminating-p] readtable]) -> <object> function
(get-macro-character char[readtable]) -> <function> function

OpenLisp Reference Manual Eligis

Page 53

set-macro-character causes char to be a macro character that when seen by read causes function to be
called.
get-macro-character returns the function associated with char.

The function is called with two arguments, stream and char. The stream is the input stream, and char is the
macro character itself. In the simplest case, function may return a Lisp object. This object is taken to be that
whose printed representation was the macro character and any following characters read by the function. As an
example, a plausible definition of the standard single quote character is:

If non-terminating-p optional argument is not nil (it defaults to nil), then it will be a non-terminating macro
character: it may be embedded within extended tokens.

In each case, readtable defaults to the current readtable. If readtable is nil, standard readtable is used.

(defun single-quote-reader (stream char)
 (list 'quote (read stream t nil)))

(set-macro-character #\' #'single-quote-reader)

(make-dispatch-macro-character char [[non-terminating-p] readtable]) -> <boolean>function

This causes the character char to be a dispatching macro character in readtable (which defaults to the current
readtable). make-dispatch-macro-character returns t.

If non-terminating-p optional argument is not nil (it defaults to nil), then it will be a non-terminating macro
character: it may be embedded within extended tokens.

(set-dispatch-macro-character disp-char sub-char function [readtable]) -> <boolean>function
(get-dispatch-macro-character disp-char sub-char [readtable]) -> <function> function

set-dispatch-macro-character causes function to be called when the disp-char followed by sub-char
is read. The readtable defaults to the current readtable. The arguments and return values for function are the
same as for normal macro characters except that function gets sub-char, not disp-char, as its second argument
and also receives a third argument that is the non-negative integer whose decimal representation appeared
between disp-char and sub-char, or nil if no decimal integer appeared there.
The sub-char may not be one of the ten decimal digits; they are always reserved for specifying an infix integer
argument. Moreover, if sub-char is a lowercase character (see lower-case-p), its uppercase equivalent is
used instead. (This is how the rule is enforced that the case of a dispatch sub-character doesn't matter.)
set-dispatch-macro-character returns t.
get-dispatch-macro-character returns the macro-character function for sub-char under disp-char, or
nil if there is no function associated with sub-char. If readtable is nil, standard readtable is used
If the sub-char is one of the ten decimal digits 0 1 2 3 4 5 6 7 8 9, get-dispatch-macro-character
always returns nil. If sub-char is a lowercase character, its uppercase equivalent is used instead.

29 Input/Output Files

(delete-file file) -> <boolean> function

The specified file is deleted. The file may be a string, a pathname, or a stream. If it is an open stream associated
with a file, then the stream itself and the file associated with it are affected (if the file system permits).

(copy-file file1 file2) -> <object> function

The specified file1 is copied to file2 (which must be a file name).

OpenLisp Reference Manual Eligis

Page 54

(append-file file1 file2) -> <object> function

The specified file2 is appended to file1 (which must be a file name).

(rename-file file new-name) -> <object> function

The specified file is renamed to new-name (which must be a file name).

(encode-file file newfile) -> <object> function

The specified file is encode into newfile so that it can be loaded using load-binary.

(load filename [[verbose] filemode]) -> <object> function

This function loads the file named by filename into the Lisp environment. It is assumed that a text (character file)
can be automatically distinguished from an object (binary) file by some appropriate implementation-dependent
means, possibly by the file type. If filemode is <wide-character>, the file is opened in binary mode and it
assumes that the file contains UNICODE characters. If filemode is <utf8-character>, it assumes that the
file contains UNICODE characters UTF-8 encoded.

(libload filename [verbose]) -> <object> function

This function loads the file named by filename into the Lisp environment. It is assumed that a text (character file)
can be automatically distinguished from an object (binary) file by some appropriate implementation-dependent
means, possibly by the file type. The defaults for filename are taken from the dynamic variable *system-
path*. The verbose argument (which defaults to the value of dynamic variable *load-verbose*), if true,
permits libload to print a message in the form of a comment (that is, with a leading semicolon) to
(standard-output) indicating what file is being loaded and other useful information.

(load-dynamic-module filename) -> <object> function

This function loads the compiled module named by filename (a DLL in Windows) into the Lisp environment. It
returns the handle associated to this module.

(unload-dynamic-module module-handle) -> <object> function

This function unloads the compiled module associated with module-handle from the Lisp environment. After
completion, functions previously defined by this module are removed. The behavior is undefined if you try to
call a function from a removed module.

(load-binary filename) -> <object> function

This function loads the file named by filename into the Lisp environment. It is assumed that this is a binary file
by some appropriate implementation-dependent means, possibly by the file type.

(load-stdlib cpflag [verbose]) -> <object> function

This function loads the standard environment (files may depend on implementation). If cpflag is t, files are
loaded in compiled format. When verbose is non-nil, the name of loaded files is printed.

(search-in-path filename [path-list] ext]) -> <string> function

Search for filename (a string or a symbol) in the default *system-path* dynamic variable directory list or, if
supplied, in path-list list. If filename was given without extension, .lsp, .lap and .fsl extensions will be used to try
to find a valid filename. When a third argument is provided, it names the requested extension. If a valid filename
is found; it returns the relative pathname of the file or nil if none is found.

OpenLisp Reference Manual Eligis

Page 55

(search-in-path "foo") -> nil

;; On a unix system:
(search-in-path "foo" '("../user" "../module")) -> "../module/foo.lap"
(search-in-path "foo" '("../user" "../module") ".c") -> "../module/foo.c"
;; On a windows system:
(search-in-path "foo" '("../user" "../module")) -> "..\module\foo.lap"
(search-in-path "foo" '("../user" "../module") ".c") -> "..\module\foo.c"

(local-pathname path) -> <object> function

Converts portable pathname path to local pathname. Portable pathnames are described using ‘unix’ syntax (i.e.
path are delimited using ‘/’).

;; On a unix system:
(local-pathname "/usr/local/openlisp") -> "/usr/local/openlisp"

;; On a windows system:
(local-pathname "/usr/local/openlisp") -> "\usr\local\openlisp"

(expand-pathanme path) -> <object> function

On most systems (posix, unix, Windows…), this function returns the list of files in path directory. nil is
returned if this feature is not available or if path is not a valid directory.

(current-directory) -> <stringt> function

On most systems (posix, unix and Windows…), this function returns the current directory.

(directoryp path) -> <boolean> function

On most systems (posix, unix, Windows…), this function returns t only if path is a directory.

(change-directory path) -> <boolean> function

On most systems (posix, unix, Windows…), this function change the current directory.

(create-directory path) -> <boolean> function

On most systems (posix, unix, Windows…), this function creates a new directory named path. It returns t on
success and nil otherwise.

(remove-directory path) -> <boolean> function

On most systems (posix, unix, Windows…), this function removes the directory named path. The behavior is
undefined if the directory is not empty. It returns t on success and nil otherwise.

(save-core filename) -> <object> function

On most systems (posix, unix, Windows…), this function saves in the file named filename the data of current
running lisp image. This image can be restored at later time by restore-core function.

(restore-core filename) -> <object> function

OpenLisp Reference Manual Eligis

Page 56

On most systems (posix, unix, Windows…), this function restores from the file named filename the data of an
old lisp image saved by save-core function.

(core-init-std) -> <object> function

This function is called right after the restore-core function. It may be redefined to automatically call your
own code.

30 System and process functions

(machine-info) -> <general-vector> function

On most systems, this function returns a vector describing the hardware platform on which the OpenLisp is
running on (system name, machine name, version, subversion, processor, openlisp version…). If information is
not available for a given slot, its value is nil.

(time form) -> <object> function

This evaluates form and returns the time spent to evaluate form. The nature and format of the information is
implementation-dependent. However, implementations are encouraged to provide such information as elapsed
real time.

(sleep second) -> <object> function

(sleep n) causes execution to cease and become dormant for approximately n milliseconds of real time,
whereupon execution is resumed. The argument may be any non-negative number. sleep returns nil. NOTE:
on some systems, the timer may be rounded to the nearest second.

(alarm ms loop) -> <boolean> function

alarm sets a timer that will excute a user redefinable clock function after ms milliseconds. If loop parameter
is non-nil, the execution is indefinitely repeated each ms milliseconds. NOTE: on some systems, the timer may
be rounded to the nearest second.

(clock) -> <object> function

clock is the default function called when alarm is set (by calling alarm function). Its aim is to be redefined by
user before alarm is called.

Example:

(defun clock ()
 (throw 'timeout))

(defun game ()
 (alarm 60000 nil)
 (catch 'timeout
 (loop-game))
 (print "Game over!"))

(file-mode filename) -> <integer> function

file-mode returns the file access mode for file filename. The mode should be understood as an octal value
(consult your operating system manual for allowed values).

OpenLisp Reference Manual Eligis

Page 57

Example:

(format (standard-output) "~O" (file-mode "logfile.txt")) -> #o664

(set-file-mode mode filename) -> <object> function
(setf (file-mode filename) mode) -> <object> function

Change file access mode for file filename. The mode should be given as an octal value (consult your operating
system manual for allowed values). It returns t on success and nil otherwise.

Example:

(set-file-mode "logfile.txt" #o664) => t
(setf (file-mode "logfile.txt") #o664) => t

(file-date filename date tz-flag) -> <date> function

file-date returns the file lats modification date for file filename. If date is already a <date> object (as
returned by make-date), the structure is filled with the values of file last modification date, when set to nil, a
new <date> structure is allocated. If tz-flag is :localtime, the returned values are for the computer current
local time. When tz-flag is :gmt, the returned values are for GMT.

Example:

(format (standard-output) "~A" (file-date "logfile.txt" nil :gmt))

=> "Sun, 14 Aug 2005 12:10:49 GMT"

(quit [n]) -> no value is returned function
(end [n]) -> no value is returned function

Returns to the operating system. If an optional integer argument is provided, it is returned to the operating
system.

(system-errno) -> <integer> function

Returns to system errno value of the last system call that returns an error. This value depends of the operating
system and the system called.

(getenv env-var) -> <object> function

The getenv function searches the environment list for a string of the form "name=value", and returns the string
containing the value for the specified name. If the specified name cannot be found, nil is returned.

(putenv string) -> <boolean> function

The putenv function uses the string argument to set environment variable values. The string argument should
be a string of the form "name=value". The putenv function makes the value of the environment variable name
equal to value by altering an existing variable or creating a new one. In either case, the string becomes part of the
environment. It returns t if the variable has been set nil otherwise.

(set-locale locale) -> <string> function

If a valid locale string is given, the locale is changed and it returns the complete locate string name. Using nil,
it returns the current locate settings and the empty string "" resets locale to the system default settings. If the
locale is invalid, the function returns nil current locale settings of the program are not changed.

Example:

OpenLisp Reference Manual Eligis

Page 58

(set-locale "Fra") => "French_France.1252"
(set-locale "") => "French_France.1252"
(set-locale "Japanese") => "Japanese_Japan.932"
(set-locale nil) =>
"LC_COLLATE=French_France.1252;LC_CTYPE=French_France.1252;LC_MONETARY=Fren
ch_France.1252;LC_NUMERIC=C;LC_TIME=French_France.1252"

At startup, locale can be sets automatically by defining an environment variable named OLLOCALE. The same
result of the above call can be obtained by setting:

set OLLOCALE=Fra
set OLLOCALE=Japanese

(get-input-code-page) -> <integer> function

This function returns the current console input code page or nil if current input locale is unknown.

(set-input-code-page code-page) -> <boolean> function

This function tries to change the console current input code page to the integer value code-page. It returns t. on
success or nil if current input locale is not changed.

(get-output-code-page) -> <integer> function

This function returns the current console output code page or nil if current input locale is unknown.

(set-output-code-page code-page) -> <boolean> function

This function tries to change the current console output code page to the integer value code-page. It returns t. on
success or nil if current input locale is not changed.

(line-argument [n]) -> <object> function
(system-argument [n]) -> <object> function

line-argument returns, when available, the nth string argument passed from the command line interpreter. In
general, argument 0 is the command itself. If n exceeds the bounds of valid argument nil is returned. With no
arguments, line-argument returns a vector of all arguments. That way, (length (line-argument))
is an idiom that computes the total number of arguments. When a Lisp file is given, it is interpreted as the
command parameter.

system-argument is much like line-argument but never interprets program when a lisp file is passed as
argument. It returns the exact vector of arguments as passed on command line.

If you launch OpenLisp with:

% openlisp –-cons 100 foo.lsp a b

you’ll get:

(line-argument 0) => foo.lsp
(line-argument 1) => "a"
(line-argument 2) => "b"
(line-argument 3) => nil
(line-argument) => #("foo.lsp" "a" "b")
(length (line-argument)) => 3

(system-argument 0) => openlisp

OpenLisp Reference Manual Eligis

Page 59

(system-argument 1) => -cons
(system-argument 2) => 100
(system-argument 3) => foo.lsp
(system-argument 4) => "a"
(system-argument 5) => "b"
(system-argument 6) => nil
(system-argument) => #(openlisp –cons 100 foo.lsp "a" "b")
(length (system-argument)) => 6

In UNIX style, the $ macro-character uses line-argument returned values and is defined as follow:

* Expands to the positional parameters, starting from one as a vector. That is, $* is equivalent to #($1 $2...).
@ Expands to the positional parameters, starting from one as a list. That is, $@ is equivalent to ($1 $2...).
Expands to the number of positional parameters in decimal.
$ Expands to the process ID of the shell (or 1000 if not supported by the OS).
0 Expands to the name of the shell script. This is set at shell initialization.
var Expands to the nth parameter of the value of var.

With the same example as above, you’ll get:

$* => #("a" "b")
$@ => ("a" "b")
$# => 2
$$ => 12642
$0 => "foo.lsp"
$1 => "a"
$2 => "b"

(system-argument [n]) -> <string> function

system-argument is much like line-argument but never interprets program when a lisp file is passed as
argument. It returns the exact vector of arguments as passed on command line.

(system-name) -> <symbol> function]

Returns the symbol corresponding of the operating system (examples : unix, posix, ms-dos, windows, nt,
os2, ...). This value can be used with #- or #+ reader directives.

(comline cmd) -> <integer> function

This function passes the string cmd to the underlining operating system and returns the value that is returned by
the command interpreter. It returns the value 0 only if the command interpreter returns the value 0. A return
value of – 1 indicates an error.

(spawn fmt [arg1 … argn]) -> <integer> function

This function combines the format string fmt and arguments argi. Then, spawn passes the resulting string to the
underlining operating system and returns the value that is returned by the command interpreter. It returns the
value 0 only if the command interpreter returns the value 0. A return value of – 1 indicates an error.

(spawn "cp ~A ~A.BAK" file file) => 0

(fork) -> <integer> function

UNIX Only!! The fork function creates a child process that differs from the parent process only in its PID and
PPID, and in the fact that resource utilizations are set to 0. File locks and pending signals are not inherited. On
success, the PID of the child process is returned in the parent's thread of execution, and a 0 is returned in the

OpenLisp Reference Manual Eligis

Page 60

child's thread of execution. On failure, a -1 will be returned in the parent's context, no child process will be
created.

(wait) -> <integer> function

UNIX Only!! The wait function suspends execution of the current process until a child has exited, or until a
signal is delivered whose action is to terminate the current process or to call a signal handling function. If a child
has already exited by the time of the call (a so-called "zombie" process), the function returns immediately. Any
system resources used by the child are freed. It returns the process ID of the child which exited or -1 on error. It
also returns –1 if this feature is not available (i.e. WIN32).

(waitpid <pid>[<nohang>]) -> <integer> function

The waitpid function suspends execution of the current process until a child as specified by the <pid>
argument has exited, or until a signal is delivered whose action is to terminate the current process or to call a
signal handling function. If a child has already exited by the time of the call (a so-called "zombie" process), the
function returns immediately. Any system resources used by the child are freed. It returns the process ID of the
child which exited or -1 on error. It also returns –1 if this feature is not available.

The value of <pid> can be one of:

< -1 to wait for any child process whose process group ID is equal to the absolute value of pid.
-1 to wait for any child process; this is the same behavior which wait exhibits.
0 to wait for any child process whose process group ID is equal to that of the calling process.
> 0 to wait for the child whose process ID is equal to the value of <pid>.

If the optional argument nohang is non-nil this functions returns immediately if no child has exited.

(getpid) -> <integer> function

getpid returns the process ID of the current process. (This is often used by routines that generate unique
temporary file names.). It returns 1000 if this feature is not available.

(getid) -> <integer> function

UNIX Only!! getuid returns the real user ID of the current process. It returns -1 if this feature is not available
(i.e. WIN32).

(setuid <uid>) -> <boolean> function

UNIX Only!! setuid sets the effective user ID of the current process. If the effective userid of the caller is root,
the real and saved user ID's are also set. It returns t on success and nil on error. It also returns nil if this
feature is not available (i.e. WIN32).

(kill <pid> <sig>) -> <integer> function

UNIX Only!! The kill function can be used to send any signal to any process group or process. It returns 0 on
success and –1 on error. It also returns –1 if this feature is not available.

if <pid> is positive, then signal <sig> is sent to <pid>.
if <pid> equals 0, then <sig> is sent to every process in the process group of the current process.
if <pid> equals -1, then <sig> is sent to every process except for the first one.
if <pid> is less than -1, then <sig> is sent to every process in the process group (abs <pid>).
if <sig> is 0, then no signal is sent, but error checking is still performed.

Windows Only!! The kill function can be used to terminate process having a PID equals to <pid>. If allowed,
the process will exit with <sig> as return code.

OpenLisp Reference Manual Eligis

Page 61

(run-as-daemon [outfile}) -> <boolean> function

UNIX Only!! The run-as-daemon function can be used to run the OpenLisp process as a daemon process.
Without parameter, standard streams are closed and reopened to a null stream (/dev/null). If an optional string
outfile is provided, (standard-output) and (error-output) streams will be redirected to that file. It
returns t on success and nil on error. It also returns nil if this feature is not available (i.e. WIN32).
Alternatively, this feature is provided by launching OpenLisp with the –D flag.

(daemonp) -> <boolean> function

UNIX Only!! The daemonp function returns t if the current image runs as a daemon process or nil otherwise.

(get-priority <which> <who>) -> <integer> function
(set-priority <which> <who> <prio>) -> <integer> function

UNIX Only!! The scheduling priority of the process, process group, or user, as indicated by <which> and
<who> is obtained with the get-priority call and set with the set-priority call. <which> is one of 0
(PRIO_PROCESS), 1 (PRIO_PGRP), or 2 (PRIO_USER), and <who> is interpreted relative to <which> (a
process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID for
PRIO_USER). A zero value for <who> denotes (respectively) the calling process, the process group of the
calling process, or the real user ID of the calling process. For set-priority call, <prio> is a value in the
range -20 to 20. The default priority is 0; lower priorities cause more favorable scheduling.

Windows Only!! The scheduling priority of the process is obtained with the get-priority call and set with
the set-priority. <which> and <who> are ignored on Windows. For set-priority call, <prio> is a
value in the range -20 to 20. The default priority is 0; lower priorities cause more favorable scheduling.

31 Socket Streams Functions

A socket is a communication endpoint — an object through which a Sockets application sends or receives
packets of data across a network. A socket has a type and is associated with a running process, and it may have a
name. Currently, sockets generally exchange data only with other sockets in the same "communication domain,"
which uses the Internet Protocol Suite. Both kinds of sockets are bi-directional: they are data flows that can be
communicated in both directions simultaneously (full-duplex). Two socket types are available:
Stream sockets provide for a data flow without record boundaries — a stream of bytes. Streams are guaranteed to
be delivered and to be correctly sequenced and unduplicated.
Datagram sockets support a record-oriented data flow that is not guaranteed to be delivered and may not be
sequenced as sent or unduplicated.
"Sequenced" means that packets are delivered in the order sent. "Unduplicated" means that you get a particular
packet only once.

ISLISP streams (<stream> class) have been extender to support sockets (<socket> class) as a subtype of
streams. This way, we can use standard I/O functions that need <stream> with <socket> (read, read-
byte, read-char, …) for input and (write-char, print, format-xxx) for output.

The current C implementation uses POSIX when available « Protocol Independent Interface (PII) - P1003.1g »
or WinSock on Windows systems.

socket -> <object> feature

socket feature is defined if the current implementation supports sockets.

default-ip-version -> <symbol> dynamic variable

OpenLisp Reference Manual Eligis

Page 62

This dynamic variable, which is either :ipv4 (default) or :ipv6, contains the default value used for IP
addresses.

(socketp object) -> <boolean> function

Returns t si object is a socket (<socket> class) or nil otherwise.

(socket [ype [ipver]) -> <socket> function

socket function creates a socket that is bound to a specific service provider. This function returns nil if the
socket has not been created. The type parameter is either :tcp or :udp. The ipver parameter is either :ipv4
(default) or :ipv6.

(socket-address type port address) -> <socket-address> function

socket-address function creates a internet address where type is either :ipv4 or :ipv6, port is the port
and address is the internet address. The return value may be use to send-to.

(bind socket ip port) -> <socket> function

The bind function shall assign a local socket address ip and port port to a socket identified by descriptor socket
that has no local socket address assigned. Sockets created with the socket function are initially unnamed; they
are identified only by their address family. When ip is t, it binds the socket to all available interfaces (i.e.
INADDR_ANY). If operation succeeds, it returns socket and raises an error otherwise.

(connect socket netaddr service protocol [ipver]) -> <boolean> function

connect function establishes a connection (client interface) to a specifed unconnected socket socket with the
service service at address netaddr and using the protocol protocol. If service is passed as an integer it is used as
the port number that will be used by the socket. In that case, protocol is simply ignored. If protocol is nil, the
first service found with service name is used. The ipver parameter is either :ipv4 (default) or :ipv6. The
function returns t if the socket socket is correctly connected or nil otherwise. Service names are set in a file
names service which can be in directory /etc or /etc/inet for UNIX Systems. On Windows, you can find it
in \windows\system32\drivers\etc. For example, if there is a service named « testtcp » using protocol
« tcp », you can connect to a server at adress IP 193.57.0.1 with :

Example:

;; services contains:
testtcp 8192/tcp

;; in Lisp:

(let ((client (socket)))
 (connect client "193.57.0.1" "testtcp" "tcp")
 ;; talk to the server
)

;; we can also call port 8192

(let ((client (socket)))
 (connect client "193.57.0.1" 8192)
 ;; talk to the server
)

(listen socket [backlog]) -> <integer> function

OpenLisp Reference Manual Eligis

Page 63

To accept connections, a socket is first created with the socket function and willing to accept incoming
connexions with listen. Then the connections are accepted with the accept function. The backlog
parameter defines the maximum length for the queue of pending connections. If not supplied, the system
maximal value is used. Sockets that are connection oriented are used with listen. The socket socket is put into
"passive'' mode where incoming connection requests are acknowledged and queued pending acceptance by the
process.
The listen function is typically used by servers that can have more than one connection request at a time. If a
connection request arrives and the queue is full, the client will receive an error. If there are no available socket
descriptors, listen attempts to continue to function. If descriptors become available, a later call to listen or
accept will refill the queue to the current or most recent "backlog'', if possible, and resume listening for
incoming connections.
An application can call listen more than once on the same socket. This has the effect of updating the current
backlog for the listening socket. Should there be more pending connections than the new backlog value, the
excess pending connections will be reset and dropped.

Example :

;; services contains :
testtcp 8192/tcp

;; in Lisp :

(let ((server (socket :tcp)))
 (listen server)
 ;; server can accept clients
)

(select n infd readfd writefd exceptfd timeo) -> <integer> function

The select function is used to determine the status of one or more sockets. For each socket, the caller can
request the n first informations on read, write or error status. The set of sockets for which a given status is
requested is indicated by infd vector. The sockets contained within the infd structures must be associated with a
single service provider. Upon return, the vectors are updated to reflect the subset of these sockets that meet the
specified condition. The select function returns the number of sockets meeting the conditions. A set of
vectors is provided for manipulating an infd vector. The parameter readfds identifies the sockets that are to be
checked for readability. If the socket is currently in the listen state, it will be marked as readable if an
incoming connection request has been received such that an accept is guaranteed to complete without
blocking. For other sockets, readability means that queued data is available for reading such that a call to
receive or receive-from is guaranteed not to block.
For connection-oriented sockets, readability can also indicate that a request to close the socket has been received
from the peer. If the virtual circuit was closed gracefully, then a receive will return immediately with zero
bytes read. If the virtual circuit was reset, then a receive will complete immediately with an error code. The
parameter writefds identifies the sockets that are to be checked for writability. If a socket is processing a
connect call (nonblocking), a socket is writable if the connection establishment successfully completes. If the
socket is not processing a connect call, writability means a send or send-to are guaranteed to succeed.
The parameter exceptfds identifies the sockets that are to be checked for the presence of out-of-band data or any
exceptional error conditions.
Any of the parameters, readfds, writefds, or exceptfds, can be given as nil. At least one must be non-nil, and any
non-nil descriptor set must contain at least one handle to a socket. timeout is the maximum time for select to
wait, or nil for blocking operation.

(let ((select-vector (create-vector 8 ()))
 (read-vector (create-vector 8 ()))
 (write-vector (create-vector 8 ())))
 (select-clear select-vector)
 (select-add sock1 select-vector)

OpenLisp Reference Manual Eligis

Page 64

 (select 1
 select-vector
 read-vector
 write-vector
 ()
 5.0)
 (select-remove sock1 select-vector))

(select-clear socket-vector) -> <object> function

This function clears the vector socket-vector with nil in all entries.

(select-add socket socket-vector) -> <boolean> function

This function adds the socket socket to vector socket-vector and returns t if socket has been set in socket-vector
or nil if socket-vector is full or if vector was already in socket-vector.

(select-remove socket socket-vector) -> <boolean> function

This function removes the socket socket from vector socket-vector and returns t if socket has been removed
from socket-vector or nil if vector was not in socket-vector.

(select-test socket socket-vector) -> <boolean> function

This function tests if the socket socket is set in vector socket-vector. It returns t if socket is in socket-vector or
nil otherwise.

(poll nfds fds timeout[readfds [writefds]]) -> <integer> function

poll performs a similar task to select: it waits for one of a set of descriptors to become ready to perform I/O.
The set of descriptors to be monitored is specified in the fds lisp vector. The timeout argument specifies the
number of milliseconds that poll should block waiting for a file descriptor to become ready. The call will block
until either: a socket descriptor becomes ready; the call is interrupted by a signal handler; or the timeout expires.
When supplied and not-nil, readfds and writefds are lisp vector having the same size as fds which are filed on
return by descriptors having pending read (in readfds) or pending write (in writefds). poll returns the total
number of pending I/O in both readfds and writefds. When timeout expires, poll return 0.

(defglobal *service* 8192)
(defglobal *protocol* nil)
(defglobal *host* (get-host-address (get-host-name)))
(defglobal *max-fd* 8)

(defun simple-server-with-poll ()
 (with-server-socket (server *service* *protocol*)
 (let ((fdinput (create-vector *max-fd* ()))
 (fdread (create-vector *max-fd* ()))
 (fdwrite (create-vector *max-fd* ())) ;; not used here
 (res ()))
 (with-client-socket (client *host* *service* *protocol*)
 ;; send info to server
 (send client "Foo " 4)
 (send client "Bar " 4)
 (format client "Gee ")
 (setf (elt fdinput 3) server)
 ;; launch server and get info.
 (case (poll *max-fd* fdinput 100 fdread)
 ((-1) 'error)

OpenLisp Reference Manual Eligis

Page 65

 ((0) 'time-out)
 (t (for ((i 0 (1+ i)))
 ((>= i *max-fd*))
 (when (elt fdread i)
 (let ((s (accept server)))
 (setq res (list (read s)
 (read s)
 (read s)))
 (close s))
 (shutdown server 2))
 (when (elt fdwrite i)
 (format t "Write pending on ~a~%"
 server)))
 res))))))

(simple-server-with-poll) => (foo bar gee)

(accept socket) -> <socket> function

The accept function (server interface) extracts the first connection on the queue of pending connections on
socket socket. It then creates a new socket and returns a handle to the new socket. The newly created socket is
the socket that will handle the actual the connection and has the same properties as socket socket.

Example:

(let ((server (socket))
 (client ()))
 (listen server "testtcp" "tcp" "193.57.0.1")
 ;; server can accept new clients
 (setq client (accept server))
 ;; connection between server and client
)

(send socket buffer [len]) -> <integer> function
(send-to socket buffer [len [to]]) -> <integer> function

The send (:tcp) and send-to (:tcp or :udp) functions are used to write outgoing data in buffer with len bytes
on a connected socket socket. If len is not supplied, the buffer length is used. For message-oriented sockets, care
must be taken not to exceed the maximum packet size of the underlying provider, which can be obtained by
using getsockopt. If no buffer space is available within the transport system to hold the data to be transmitted,
send will block unless the socket has been placed in a nonblocking mode. On nonblocking stream-oriented
sockets, the number of bytes written can be between 1 and the requested length, depending on buffer availability
on both client and server machines. Both functions return the length of data send from buffer. If to is given and
non-nil, it must be a valid <socket-address> object where buffer is sent to.

(receive socket buffer [len]) -> <integer> function
(receive-from socket buffer [len]) -> <integer> function

The receive "tcp" and receive-from "udp" functions are used to read incoming data on connection-
oriented sockets, or connectionless sockets. When using a connection-oriented protocol, the sockets must be
connected before calling receive. When using a connectionless protocol, the sockets must be bound before
calling receive.
For connection-oriented sockets, calling receive will return as much information as is currently available - up
to the size of the buffer or len if this optional argument is supplied. Both functions return the length of data read
in buffer.

(subscribe-multicast-group socket ip port) -> <integer> function

OpenLisp Reference Manual Eligis

Page 66

Joins the socket to the supplied multicast group on ip port. The ip address must belong to a valid multicast
address (i.e. in the range 224.0.0.0 through 239.255.255.255)

(close socket) -> <boolean> function

Since sockets inherit from <stream>, the ISLISP close function has been extended to also close the socket
socket.

(shutdown socket how) -> <object> function

The shutdown function is used on all types of sockets to disable reception, transmission, or both for the socket
socket. If the how parameter is 0 (SD_RECEIVE in C), subsequent calls to the receive function on the socket
will be disallowed. This has no effect on the lower protocol layers. For TCP sockets, if there is still data queued
on the socket waiting to be received, or data arrives subsequently, the connection is reset, since the data cannot
be delivered to the user. For UDP sockets, incoming datagrams are accepted and queued. In no case will an
ICMP error packet be generated. If the how parameter is 1 (SD_SEND in C), subsequent calls to the send
function are disallowed. For TCP sockets, a FIN will be sent. Setting how to 2 (SD_BOTH in C) disables both
sends and receives as described above. The shutdown function does not close the socket. Any resources
attached to the socket will not be freed until close is invoked. To assure that all data is sent and received on a
connected socket before it is closed, an application should use shutdown to close connection before calling
close.

(get-host-name) -> <string> function

The get-host-name function returns the name of the local host. The host name is returned as a string. The
form of the host name is dependent on the Sockets provider ¾ it can be a simple host name, or it can be a fully
qualified domain name.

(get-host-address host [ipver]) -> <string> function

Return a new string which is the first IP address found for the host. The ipver parameter is either :ipv4
(default) or :ipv6.

Example:

(get-host-address "coltrane" :ipv4)
 => "193.57.0.1"
(get-host-address "coltrane" :ipv6)
 => "fe80::2cae:14c:19e1:c8ec"

(get-host-address-list host [ipver]) -> <list> function

Return a list of all IP address strings for the host. The ipver parameter is either :ipv4 (default) or :ipv6.

Example:

(get-host-address-list "coltrane" :ipv4)
 => ("193.57.0.1" "192.168.111.1" "192.168.42.1")
(get-host-address-list "coltrane" :ipv6)
 => ("fe80::2cae:14c:19e1:c8ec"
 "fe80::c572:15f7:8d6c:787b
 "fe80::b021:4c3a:bb6a:ec51"
 "2002:c139:1::c139:1")

(get-proto-by-name protocol) -> <string> function

OpenLisp Reference Manual Eligis

Page 67

Return a new string that is the port number for protocol protocol.

(get-sock-name socket) -> <string> function

Return a new string that is the IP address for the computer using socket.

(get-peer-name socket) -> <string> function

Return a new string that is the IP addresse for the computer using socket.

(net-to-host-short num) -> <integer> function
(host-to-net-short num) -> <integer> function
(net-to-host-long num) -> <integer> function
(host-to-net-long num) -> <integer> function

Those 4 functions are used to convert 16 bits (short) and 32 bits (long) num integers between local machine
(host) and remote (net).

(socket-nonblocking socket flag) -> <boolean> function

When available, socket-nonblocking sets the socket socket in non-blocking mode if flag is t or in
blocking mode when flag is nil. It returns t, only if operation succeeds. By default, sockets are created in
blocking mode and accept creates a new socket with the same properties as the connected socket.

;; set server to nonblocking
(socket-nonblocking server t)
(setq client (accept server))
;; reset server and client to blocking
(socket-nonblocking server nil)
(socket-nonblocking client nil)

(socket-ip-version socket) -> <symbol> function

Retuns the ip version (either :ipv4 or :ipv6) of socket socket.

(socket-keepalive socket flag) -> <boolean> function

When available, socket-keepalive sets the socket socket to periodically pool the remote host if flag is t or
remove this mode when flag is nil. This option causes a packet (called a 'keepalive probe') to be sent to the
remote system if a long time (by default, more than 2 hours) passes with no other data being sent or received.
This packet is designed to provoke an ACK response from the peer. This enables detection of a peer which has
become unreachable (e.g. powered off or disconnected from the net). It returns t, only if operation succeeds. By
default, sockets are not created in this mode.

(setq client (accept server))
;; set client to pool server
(socket-keepalive client t)
…
(socket-keepalive client nil)

(socket-multicast-loopback socket flag) -> <boolean> function

When available, socket-multicast-loopback controls whether data sent by an application on the local
computer (not necessarily by the same socket) in a multicast session will be received by a socket joined to the
multicast destination group on the loopback interface. A value of t causes multicast data sent by an application
on the local computer to be delivered to a listening socket on the loopback interface. A value of nil prevents

OpenLisp Reference Manual Eligis

Page 68

multicast data sent by an application on the local computer from being delivered to a listening socket on the
loopback interface. It is enabled by default. It returns t, only if operation succeeds.

(socket-nodelay socket flag) -> <boolean> function

When available, socket-nodelay specifies whether TCP socket socket should follow the Nagle algorithm
for deciding when to send data. By default, sockets are not created in this mode. The Nagle algorithm says that
we should delay sending partial packets in hopes of getting more data. There are bad interactions between
persistent connections and Nagle`s algorithm that have very severe performance penalties. Setting flag to t force
TCP to always send data immediately. It should be used when there is an application using TCP for a
request/response. To return to default behavior set flag to nil. This function returns t, only if operation
succeeds.

(setq client (accept server))
;; set client to pool server
(socket-nodelay client t)
…
(socket-nodelay client nil)

(socket-receive-timeout socket timeout) -> <boolean> function

When available, socket-receive-timeout sets the socket socket receive timeout to timeout seconds. It
returns t, only if operation succeeds.

(socket-receive-timeout client 1.0)

(socket-send-timeout socket timeout) -> <boolean> function

When available, socket-send-timeout sets the socket socket receive timeout to timeout seconds. It returns
t, only if operation succeeds.

(socket-send-timeout client 1.0)

(with-client-socket (socket netaddr service protocol [ipver]) forms*) -> <object> macro

This macro creates a new socket and connect it to the service service using protocole protocol at address netaddr.
The ipver parameter is either :ipv4 (default) or :ipv6. The the forms forms are executed in order. The last
evaluated form is returned and the socket is automatically closed. This macro is very used to talk easily with a
server using the standard input/ouput functions.

Example:

(defmacro with-client-socket (socket &rest body)
 `(let ((,(car socket) (socket)))
 (when ,(car socket)
 (unwind-protect (when ,`(connect ,@socket)
 ,@body)
 (close ,(car socket))))))

(defun simplest-client (exp)
 ;; Client side
 (with-client-socket (st "193.57.0.1" "testtcp" "tcp")
 ;; send an expression to the server
 (format st "~a~%" exp)
 ;; read the result
 (let ((res))
 (while (not (eq res 'eof))

OpenLisp Reference Manual Eligis

Page 69

 (setq res (read st () 'eof))
 (unless (eq res 'eof)
 (print res))))))

(defun daytime ()
 (with-client-socket (st "127.0.0.1" "daytime" "tcp")
 (read-line st () ‘eof)))

(daytime) => "Sunday, May 31, 1998 13:50:35"

(with-server-socket (socket service protocol [ipver]) forms*) -> <object> macro

This macro creates a new socket and connect it to the service service using protocol protocol. The ipver
parameter is either :ipv4 (default) or :ipv6. The forms forms are executed in order. The last evaluated form
is returned and the socket is automatically closed. This macro is very used to talk easily with a client using the
standard input/ouput functions.

(defmacro with-server-socket (socket &rest body)
 `(let ((,(car socket) (socket)))
 (when ,(car socket)
 (unwind-protect (when ,`(listen ,@socket)
 ,@body)
 (close ,(car socket))))))

(defun simplest-server ()
 ;; Server side (server addr : 193.57.0.1)
 (with-server-socket (server "testtcp" "tcp")
 (let ((fds (create-vector 16 ()))
 (fdr (create-vector 16 ()))
 (fdw (create-vector 16 ())))
 (select-clear fds)
 (select-add server fs)
 (while (eq (select 1 fds fdr fdw () 5.0) 0)
 (print "Waiting"))
 (let ((client (accept server)))
 ;; Talk with client using standard I/O.
 (with-standard-input client
 (with-standard-output client
 (print (eval (read))))))
 (close client)
 (select-remove server fds))))

The following code shoes a complete example of socket interface:

;;
;; This code runs on your server
;;

(defglobal *host* (get-host-address 'coltrane)) ;; server name
(defglobal *service* 'testtcp) ;; service name
(defglobal *protocol* 'tcp)) ;; protocol name

(defglobal *running* t)

(defun test-stream-server-socket ()
 ;; example to test server in TCP or UDP protocol
 (let ((buf (create-string 128))
 (socket ())

OpenLisp Reference Manual Eligis

Page 70

 (client ())
 (len 0)
 (file1 "src/version.h")
 (file2 "version.h"))
 (setq socket (socket))
 (when (listen socket *service* *protocol*)
 (print "Server : " (get-host-name))
 (print "Service : " (get-service-by-name *service*))
 (print "Protocol : " (get-proto-by-name *protocol*))
 (print "Socket : " socket)
 (print "----------")
 (setq *running* t)
 (while *running*
 (print "Waiting for connexion ... ")
 (setq client (accept socket))
 (print "Socket " client " on "
 (get-peer-name client))
 (if (eq *protocol* 'tcp)
 (setq len (receive client buf 20))
 (setq len (receive-from client buf 20)))
 (case-using #'equal (subseq buf 0 len)
 (("file") ;; Send file to the client
)
 (("stop") (print "Closed by "
 (get-peer-name client))
 (setq *running* ()))
 (t (print 'error)))
 (print "Done with socket " client)
 (close client)))))

32 Miscellaneous Functions

islisp-version constant

Returns an integer constant that is the current version of ISLISP standard implemented by OpenLisp. Currently,
this variable has the value 200710.

(system) -> <object> function

Always returns the symbol openlisp.

(version) -> <float> function

Returns current version of OpenLisp (always a float).

(banner) -> <boolean> function

Display standard OpenLisp banner. This function is only usefull to display the standard welcome message in a
core image used with execore (see also core-init-std function).

(pointer-size) -> <integer> function

This function returns the size in bytes of a Lisp pointer. This value is 4 on 32 bits machines and 8 for 64 bits
machines.

print-stat -> <boolean> dynamic variable

OpenLisp Reference Manual Eligis

Page 71

When this dynamic variable is set to t, the toplevel will print the time spent to evaluate the latest expression as
well as the number of GC called for this evaluation.

(gc [t]) -> <integer> function

Force a call to the Garbage Collector. If a flag t is given, gc returns a list that contains the total number of GC
for the different object types and the number of free objects for types <cons>, <symbol>, <string>,
<general-vector>, <float> and <heap>. Otherwise, gc returns the total number of Garbage Collector
made.

(gc-count) -> <integer> function

Return the number of GC made from the start.

(gc-low-threshold [ratio]) -> <float> function

Return (or change if an argument is provided) the GC low memory threshold for which the GC will try to
allocate more memory. By defaut, this value is 0.10 (meaning allocate memory when only 10% of this zone
remains free after GC).

(gc-growing-factor [ratio]) -> <float> function

Return (or change if an argument is provided) the GC growing factor used when more memory is needed (see
gc-low-threshold). By defaut, this value is 0.33 (meaning allocate 1/3 memory more).

(gc-max-objects [nbobj]) -> <integer> function

Return (or change if an argument is provided) the maximum number of objects after which GC will not try to
allocate more memory, even if it consider low memory condtion. If this value is 0 (default value), GC will
always check if more memory is required.

(gc-min-objects [nbobj]) -> <integer> function

Return (or change if an argument is provided) the minimum number of objects that must be free after GC. For
each zone, the GC will try to allocate more memory if less than this number of objects are free. By defaut, this
value is 1024.

(gc-compact-threshold [nbobj]) -> <integer> function

Return (or change if an argument is provided) the filling threshold for heap zone compaction. Value must be in
range [0.0 100.0]. The default value is 0.0 meaning always compact. When you change the threshold, it returns
the previous value. Hint: don’t try to go far beyond 0.6 or 0.7.

(gc-free-unused-memory force-gc keep) -> <object> function

When the implementation supports virtual memory, calling this function will try to reduce the amount of
memory already allocated. If force-gc is non-nil, a GC is made; keep is amount of heap to keep free.

(gc-free-unused-memory t 0) ;; will try to free all possible memory from heap

(gcinfo [n]) -> <object> function

Without arguments, gcinfo returns the information available after the last Garbage Collector was called. With
an argument, it returns the information that was available at startup. This function is generally used to make
statistics of memory usage.

OpenLisp Reference Manual Eligis

Page 72

(before-gc-hook n type) -> <object> function
(after-gc-hook n type) -> <object> function

before-gc-hook is always called before a gc is made. It receives n the total number of gc made from the
beginning and type the type of object for which the current gc is called. The same way, after-gc-hook is
always called with the same arguments after gc is made. A user can redefine those two functions but, as a strong
advice, before-gc-hook should not allocate any memory. Especially, macros the code may contain must be
expanded before the first GC is called. You can ensure this by calling manually something like (before-gc-
hook -1 nil) right after the function is defined.

Example:

(defglobal gc-verbose nil)

(defun before-gc-hook (n type)
 (when (and (>= n 0) gc-verbose)
 (format t "BEFORE GC: ~A ~A~%" n type)))

(before-gc-hook -1 nil) ;; ensure all macros are expanded before first GC.

(oblist [[package] access]) -> <list> function

Returns the list of all symbols defined in the system. If package is given, only symbols in this package are
returned. If access is :external (default :internal), only exported symbols in this package are returned.

(character-size) -> <integer> function

This function returns the size in bytes of a Lisp character. This value is 1 on implementations that support only
ASCII codes and 2 on implementations that support UNICODE characters.

(lambda-list-hook <definition> <defname>) -> <list> function

If defined, this function is called each time a new function, macro of lambda is created. It receives function
definition and returns a user modified definition. The second argument is the define function name. It may be
used to add additional function behavior like non-standard function keywords, document-string processing or
pre-processor optimizations.
(see contrib/defhook.lsp example).

33 Hash tables.

A hash table is a Lisp object that can efficiently map a given Lisp object to another Lisp object. Each hash table
has a set of entries, each of which associates a particular key with a particular value. The basic functions that
deal with hash tables can create entries, delete entries, and find the value that is associated with a given key.
Finding the value is very fast, even if there are many entries, because hashing is used; this is an important
advantage of hash tables over property lists.
A given hash table can associate only one value with a given key; if you try to add a second value, it will replace
the first. Also, adding a value to a hash table is a destructive operation; the hash table is modified. By contrast,
association lists can be augmented non-destructively.
Hash tables come in two kinds, the difference being whether the keys are compared with eq, eql, or equal. In
other words, there are hash tables that hash on Lisp objects (using eq) and there are hash tables that hash on tree
structure (using equal).
Hash tables are created with the function make-hash-table which takes various options. To look up a key
and find the associated value, use gethash. New entries are added to hash tables using setf with gethash.
To remove an entry, use remhash.

We have the following class relations:

OpenLisp Reference Manual Eligis

Page 73

<object>
 <hash-table>

When a hash table is first created, it has a size, which is the maximum number of entries it can hold. Usually the
actual capacity of the table is somewhat less, since the hashing is not perfectly collision-free. With the maximum
possible bad luck, the capacity could be very much less, but this rarely happens. If so many entries are added that
the capacity is exceeded, the hash table will automatically grow, and the entries will be rehashed (new hash
values will be recomputed, and everything will be rearranged so that the fast hash lookup still works). This is
transparent to the caller; it all happens automatically.

(make-hash-table [:size size] [:rehash-threshold threshold] [:rehash-size rsize]
[:test test-function]) -> <hash-table> function

make-hash-table create This function creates and returns a new hash table. The :test argument
determines how keys are compared; it must be one of the three values #'eq, #'eql, or #'equal, or one of
the three symbols eq, eql, or equal. If no test is specified, eq is assumed (Common Lisp assumes eql
instead)..
The :size argument (a non-negative integer) sets the initial size of the hash table, in entries. (The actual size
may be rounded up from the size you specify to the next “good” size, for example to make it a prime number.).
You won't necessarily be able to store precisely this many entries into the table before it overflows and becomes
bigger, but this argument does serve as a hint to the implementation of approximately how many entries you
intend to store.

The :rehash-size argument specifies how much to increase the size of the hash table when it becomes full.
This can be an integer greater than zero, which is the number of entries to add, or it can be a floating-point
number greater than 1, which is the ratio of the new size to the old size. The default value for this argument is
1.5.

The :rehash-threshold argument specifies how full the hash table can get before it must grow. It may be
any real number between 0 and 1, inclusive. It indicates the maximum desired level of hash table occupancy.
An implementation is permitted to ignore this argument. The default value for this argument is 0.75.

(hash-table-p hash-table) -> <object> function

hash-table-p is true if its argument is a hash table, and otherwise is false.

(hash-table-count hash-table) -> <integer> function

This returns the number of entries in the hash-table. When a hash table is first created or has been cleared, the
number of entries is zero.

(hash-table-test hash-table) -> <object> function

hash-table-test returns the test function (as symbol) of a hash table.

(hash-table-size hash-table) -> <integer> function

hash-table-size returns the current size of a hash table.

(hash-table-rehash-size hash-table) -> <object> function

hash-table-rehash-size returns the current rehash size.

(hash-table-rehash-threshold hash-table) -> <object> function

hash-table-rehash-threshold returns the current rehash threshold.

OpenLisp Reference Manual Eligis

Page 74

(gethash key hash-table [default]) -> <object> function

gethash finds the entry in hash-table whose key is key and returns the associated value. If there is no such
entry, gethash returns default, which is nil if not specified.
gethash actually returns two values, the second being a predicate value that is true if an entry was found, and
false if no entry was found.
setf may be used with gethash to make new entries in a hash table. If an entry with the specified key already
exists, it is removed before the new entry is added. The default argument may be specified to gethash in this
context; it is ignored by setf but may be useful in such macros as incf that are related to setf:
(incf (gethash a-key table 0))
means approximately the same as
(setf (gethash a-key table 0) (+ (gethash a-key table 0) 1))
which in turn would be treated as simply
(setf (gethash a-key table) (+ (gethash a-key table 0) 1))

(puthash key hash-table value) -> <object> function
(setf (gethash key hash-table [default]) value) -> <object> function

setf may be used with gethash to make new entries in a hash table using puthash. If an entry with the
specified key already exists, it is removed before the new entry is added. The default argument may be specified
to gethash in this context; it is ignored by setf but may be useful in such macros as incf that are related to
setf.

(remhash key hash-table) -> <object> function

remhash removes any entry for key in hash-table. This is a predicate that is true if there was an entry or false if
there was not.

(clrhash hash-table) -> <object> function

This removes all the entries from hash-table and returns the hash table itself.

(rehash hash-table count) -> <object> function

Rebuilts hash-table with a number of keys equals to count.

(sxhash object [n]) -> <object> function

sxhash computes a hash code for an object and returns the hash code as a non-negative fixnum. A property of
sxhash is that (equal x y) implies (= (sxhash x) (sxhash y)).
The manner in which the hash code is computed is implementation-dependent but independent of the particular
``incarnation'' or ``core image.'' Hash values produced by sxhash may be written out to files, for example, and
meaningfully read in again into an instance of the same implementation. The function sxhash is a convenient
tool for the user who needs to create more complicated hashed data structures than are provided by hash-
table objects.

(hash object [n]) -> <object> function

hash computes a hash code for a symbol and returns the hash code as a non-negative fixnum. A property of
hash is that (equal x y) implies (= (hash x) (hash y)).

(maphash function hash-table) -> <null> function

For each entry in hash-table, maphash calls function on two arguments: the key of the entry and the value of
the entry; maphash then returns nil. If entries are added to or deleted from the hash table while a maphash is

OpenLisp Reference Manual Eligis

Page 75

in progress, the results are unpredictable, with one exception: if the function calls remhash to remove the entry
currently being processed by the function, or performs a setf of gethash on that entry to change the
associated value, then those operations will have the intended effect.

Example:

;;; Alter every entry in MY-HASH-TABLE, replacing the value with
;;; its square root. Entries with negative values are removed.
(maphash #'(lambda (key val)
 (if (minusp val)
 (remhash key my-hash-table)
 (setf (gethash key my-hash-table) (sqrt val))))
 my-hash-table)

34 Regular expressions.

OpenLisp has optional module that implements regular expression search. A regular expression is an object of
type <regexp> that has been compiled from a pattern string using regcomp function. This regular expression
is then matched against a string (or a symbol) using regexe function. If a match is found, regexe returns t.
If a match is found and a vector of 2 elements is passed as a third argument it is filled with the indexes that
match the expression. A simpler function, regmatch, is simply the combination of regcomp and regexe in
only one call.

A regular expression is zero or more branches, separated by '|'. It matches anything that matches one of the
branches.

A branch is zero or more pieces, concatenated. It matches a match for the first, followed by a match for the
second, etc.

A piece is an atom possibly followed by '*', '+', or '?'. An atom followed by '*' matches a sequence of 0
or more matches of the atom. An atom followed by '+' matches a sequence of 1 or more matches of the atom. An
atom followed by '?' matches a match of the atom, or the null string.

An atom is a regular expression in parentheses (matching a match for the regular expression), a range (see
below), '.' (matching any single character), '^' (matching the null string at the beginning of the input string),
'$' (matching the null string at the end of the input string), '\\' followed by a single character (matching that
character), or a single character with no other significance (matching that character).

A range is a sequence of characters enclosed in '[]'. It normally matches any single character from the
sequence. If the sequence begins with '^', it matches any single character not from the rest of the sequence. If
two characters in the sequence are separated by '\-', this is shorthand for the full list of ASCII characters
between them (e.g. '[0-9]' matches any decimal digit). To include a literal ']' in the sequence, make it the
first character (following a possible '^'). To include a literal '\-', make it the first or last character.

(regexp-p object) -> <boolean> function

Returns t if object is a computed regular expression (of type <regexp>), nil otherwise.

(regcomp regular-expression) -> <regexp> function

Compute regular-expression in an internal format and returns a <regexp> object.

(regexe regexp string retvect [start]) -> <regexp> function

Match string against regexp starting at start position (default 0). It returns t if expression string match
expression and nil otherwise. The third argument retvect can be nil or a vector of two elements. In that case,
it is filled with the included lower and excluded upper indexes of the match.

OpenLisp Reference Manual Eligis

Page 76

Example:

(defglobal x (regcomp "[A-Z]*")) => x
(regexp-p x) => t
(regexe x "ABCAB" nil) => t
(regexe x "abcab" nil) => nil
(defglobal y #(0 0)) => y
(regexe x "ABCAB" y) => t
y => #(0 5)
(regexe x "ABCAB" y 1) => t
y => #(1 5)

(rematch string1 string2 [start]) -> <boolean> function

Match string1 against string2 starting at start position (default 0). It returns t if expression string string2 match
the regular expression string1 and nil otherwise.

(regmatch "^[A-Z]oo" "Foo Bar") => t
(regmatch "^[A-Z]" "Foo Bar" 2) => nil
(regmatch "^[A-Z]" "Foo Bar" 4) => t

35 Windows registry.

On most Windows ports, OpenLisp has an optional registry module to manage keys and values stored in
Windows registry. The registry is a system-defined database in which applications and system components store
and retrieve configuration data. The data stored in the registry varies according to the version of Microsoft
Windows. Applications use the registry API to retrieve, modify, or delete registry data.
The system defines predefined keys that are always open. Predefined keys help an application navigate in the
registry and make it possible to develop tools that allow a system administrator to manipulate categories of data.
OpenLisp defines the following symbols for those predefined keys:

HKEY_CLASSES_ROOT Registry entries subordinate to this key define types (or classes) of

documents and the properties associated with those types. Shell and COM
applications use the information stored under this key.

HKEY_CURRENT_CONFI
G

Contains information about the current hardware profile of the local
computer system. The information under HKEY_CURRENT_CONFIG
describes only the differences between the current hardware configuration
and the standard configuration. Information about the standard hardware
configuration is stored under the Software and System keys of
HKEY_LOCAL_MACHINE.

HKEY_LOCAL_MACHINE Registry entries subordinate to this key define the physical state of the
computer, including data about the bus type, system memory, and
installed hardware and software. It contains subkeys that hold current
configuration data, including Plug and Play information, network logon
preferences, network security information, software-related information
(such as server names and the location of the server), and other system
information.

HKEY_USERS Registry entries subordinate to this key define the default user
configuration for new users on the local computer and the user
configuration for the current user.

(reg-create-key <key> <subkey> <name>) -> <object> function

This function creates the specified registry key. If the key already exists in the registry, the function opens it.

(reg-delete-key <key> <subkey> <name>) -> <object> function

OpenLisp Reference Manual Eligis

Page 77

This function deletes a subkey, including all of its values.

(reg-enum-key <key> <subkey>) -> <object> function

This function returns a list of subkeys for the given key.

(reg-get-value <key> <subkey> <name>) -> <object> function

This function returns the value associated with <name> in the subkey entry.

(reg-set-value <key> <subkey> <name> <value>) -> <object> function

This function set (or change) the value associated with <name> in the subkey entry.

(reg-rem-value <key> <subkey> <name>) -> <object> function

This function removes the value associated with <name> in the subkey entry.

(reg-get-type <key> <subkey> <name>) -> <integer> function

This function returns an integer value that represents the value type assosciated to <name>.

(reg-get-typename <key> <subkey> <name>) -> <string> function

This function returns a new string that represents the value type name assosciated <name>.

(reg-enum-value <key> <subkey>) -> <object> function

This function returns a list of entries strings for the given subkey.

OpenLisp Reference Manual Eligis

Page 78

36 OpenLisp Compiler

OpenLisp has a compiler that translates Lisp expressions into compiled equivalent form. The code is faster and
less expensive in memory.

37 Compiler variables and functions.

compile-verbose -> <integer> variable

This dynamic variable provides the default for the :verbose argument to compile-file. Its initial value is
0.

(compile name [definition]) -> <function> function

If definition is supplied, it should be a lambda-expression, the interpreted function to be compiled. If it is not
supplied, then name should be a symbol with a definition that is a lambda-expression; that definition is compiled
and the resulting compiled code is put back into the symbol as its function definition.

(compile-file infile [:output-file outfile] [:verbose flag] [:print flag] [:cdata flag])
-> <function> function

The infile should be a Lisp source file; its contents are compiled and written as a binary object file.

The :output-file argument may be used to specify an output pathname; it defaults in a manner appropriate
to the implementation's file system conventions. By default, compiled files have .lap suffix.

The :verbose argument (which defaults to the value of dynamic variable *compile-verbose*), if true,
permits compile-file to print a message in the form of a comment to (standard-output) indicating
what file is being compiled and other useful information.

The :print argument (which defaults to the value of *compile-print*), if true, causes information about
top-level forms in the file being compiled to be printed (standard-output).

OpenLisp Reference Manual Eligis

Page 79

The :cc argument (which defaults to the value of *compile-to-c*) permits compile-file to generate C
file instead of lap file.

The :cdata argument (which defaults to the value of *compile-to-c*) permits compile-file to
generate C file instead of lap file. It assumes that the file mainly contains data. The generated code is generally
smaller than with :cc option but it is suitable only for small data (i.e. 2 or 3 lines). It may also hang some
compilers that limit constant strings.

(disassemble name) -> <null> function

The argument should be a function object, a lambda-expression, or a symbol with a function definition. If the
relevant function is not a compiled function, it is first compiled. In any case, the compiled code is then “reverse-
assembled” and printed out in a symbolic format. When disassemble compiles a function, it never installs
the resulting compiled-function object in the symbol-function of a symbol. This is primarily useful for
debugging the compiler.

OpenLisp Reference Manual Eligis

Page 80

38 Standalone applications

As C or FORTRAN compilers, OpenLisp (unlike most other Lisp systems) can produce standalone
executables. You can also make a new library from your code that you can embed with standard OpenLisp
libries in a C or C++ program. For that, you must have the same C/C++ compiler used to create OpenLisp
system.

39 General principle.

Here are the required steps to compile your own Lisp code into a standalone executable:
• compile Lisp files to C (foo.lsp -> foo.c)
• compile the generated C files to machine code object (foo.c -> foo.obj or foo.o)
• link the object files with Lisp kernel and Lisp standard libraries (foo.obj -> foo.exe or foo)

A new application is created by creating a new copy of an existing application directory and naming it app
(where app is the application name). The basic http application is useful as a template for creating new
applications.

40 Create your own project

To help you, OpenLisp contains some projects with associated Makefiles that show you how to achieve this
goal. For example, the http directory contains a little project for a simple HTTP server entirely written in Lisp.

To make your own project named “app”:

• make a new directory openlisp-X.Y.0/app
• change directory to openlisp-X.Y.0/app
• copy Makefile file from openlisp-X.Y.0/http
• edit Makefile to add your own files and set MODDIR to your source directory ‘”.”. If the files are

located in the same “app” directory.
• call “make compile” to compile in C your lisp files.
• call “make” to actually build a new library that contains your compile application and a new

executable that contains a strandard OpenLisp environment and your compile function ready to
use.

OpenLisp Reference Manual Eligis

Page 81

The Microsoft VC++ Makefile looks like:

Makefile for LAP->C generated files (c) C. Jullien 2005/06/11

Module name and files.

MODNAME = http
MODDIR = .
MODGEN = .
MODREG = utf8 cgi httpd
MODCPFLAGS = :cc
MODCCOPT = -DOLLAPOPTIMIZE
MODLIST = httpserv.obj
MODOPT = -D_ODSP -D_NOBANNER -D_USEROPTIONS

!if "$(OPENLISP)" == ""
!include "../src/common.mak"
!include "../src/module.mak"
!else
!include "$(OPENLISP)/src/common.mak"
!include "$(OPENLISP)/src/module.mak"
!endif

Where:

MODNAME is the name of binary (http.exe)
MODREG is the list a standard library module to register (utf8, cgi and httpd)
MODLIST is the list of Lisp file to be compiled for this project (i.e. Lisp filename with no extension).
MODOPT is the list of optional flags to pass to the C compile (hide banner, allow user options)
MODCCOPT is the flag to change compile code behavior (see below).
MODCPFLAG is an optional Lisp compiler flag :data means that Lisp code mainly contains data.
MODDIR is the relative path of source files. “.” if the Lisp source file are in the same directory.

To generate your own standalone executable you just have to run:

$ make compile && make # unix syntax
C:> nmake compile && nmake # Windows syntax

41 Tuning and debugging your application

There are some usefull flags you can add in MODCCOPT variable to change the behaviour of your compiled code.
Please note that those flags are mutually exclusive.

OLLAPOPTIMIZE This flag produce the fastest code but does less checking. Use it only when your

application is fully tested.
OLLAPTRACE This flag add an optional module trace that you can dynamically activate when an

environment variable called OLCHECKMODULE is set. A simple message is shown when
each compiled module is initialized. It’s usefull to detect which module is loaded.

OLLAPTIMETRACE When this flag is set, each compile function is automatically profiled. At any time you
can call one of the profile functions (see profiling section) to see the number of calls and
the time spent in a function.

OpenLisp Reference Manual Eligis

Page 82

42 Executable core image

You can create another kind of executable using a feature named ‘execore’. An execore just combines the
OpenLisp binary file and a core image in a single file that you can call as any other standard executable file.

To create and execore, you must create a core image using save-core function (see related section). Then,
using the execore shell script, you can combine this core and OpenLisp with the following command:

$ execore uxlisp mycore.cor mybin # unix syntax
C:>execore openlisp.exe mycore.cor mybin.exe # Windows syntax

OpenLisp Reference Manual Eligis

Page 83

43 Standard Library

44 Module and Package Functions.

A module is a Lisp subsystem that is loaded from one or more files. A module is normally loaded as a single
unit, regardless of how many files are involved. A module may consist of one package or several packages. The
file-loading process is necessarily implementation-dependent and OpenLisp provides some very simple
portable machinery for naming modules, for keeping track of which modules have been loaded, and for loading
modules as a unit. Features can be used with conditionnal reader forms #+ et #-.

modules -> <list> dynamic variable

The variable *modules* is a list of names of the modules that have been loaded into the Lisp system so far.
This list is used by the functions provide and require.

(require module-name [pathname*]) -> <object> function
(provide module-name) -> <object> function

Each module has a unique name (a string). The provide and require functions accept either a string or a
symbol as the module-name argument. If a symbol is provided, its print name is used as the module name. If the
module consists of a single package, it is customary for the package and module names to be the same.
The provide function adds a new module name to the list of modules maintained in the variable *modules*,
thereby indicating that the module in question has been loaded.
The require function tests whether a module is already present (using a case-sensitive comparison); if the
module is not present, require proceeds to load the appropriate file or set of files. The pathname argument, if
present, is a single pathname or a list of pathnames whose files are to be loaded in order, left to right. If the
pathname argument is nil or is not provided, the system will attempt to determine, in some system-dependent
manner, which files to load. This will typically involve some central registry of module names and the associated
file lists.

(featurep feature) -> <object> function

Test if the feature feature is present in the system.

OpenLisp Reference Manual Eligis

Page 84

package -> <symbol> dynamic variable

The value of this dynamic variable must be a symbol; this symbol is said to be the current package. The initial
value of *package* is the user package.

(packagep package) -> <symbol> function

Returns t if package is a package objetc type, nil otherwise.

(create-package package-name)-> <symbol> dynamic variable

This creates and returns a new package with the specified package name. As described above, this argument may
be either a string or a symbol.

(find-package name) -> <symbol> function

The name must be a string that is the name for a package. This argument may also be a symbol, in which case
the symbol's print name is used. The package with that name is returned; if no such package exists, find-
package returns nil. The matching of names observes case (as in string=).

(package-name package) -> <symbol> function

The argument must be a package. This function returns the string that names that package. The package
argument may be either a package object or a package name

(package-nickames package) -> <symbol> function

The argument must be a package. This function returns the list of nickname strings for that package, not
including the primary name.

(package-use-list package) -> <symbol> function

A list of other packages used by the argument package is returned. The package argument may be either a
package object or a package name.

(package-used-by-list package) -> <symbol> function

A list of other packages that use the argument package is returned. The package argument may be either a
package object or a package name.

(package-shadowing-symbols package) -> <symbol> function

A list is returned of symbols that have been declared as shadowing symbols in this package by shadow. All
symbols on this list are present in the specified package. The package argument may be either a package object
or a package name.

(list-all-packages) -> <symbol> function

This function returns a list of all packages that currently exist in the Lisp system.

(delete-package package) -> <symbol> function

The delete-package function deletes the specified package from all package system data structures. The
package argument may be either a package or the name of a package.

OpenLisp Reference Manual Eligis

Page 85

(in-package package-name) -> <symbol> function

The in-package function is intended to be placed at the start of a file containing a subsystem that is to be
loaded into some package other than user.
This function sets *package* to is set to package-name. This binding will remain in force until changed by the
user (perhaps with another in-package call) or until the *package* variable reverts to its old value at the
completion of a load operation.

(use-package packages-to-use [package]) -> <symbol> function

The packages-to-use argument should be a list of package names, or possibly a single package or package name.
These packages are added to the use-list of package if they are not there already. All external symbols in the
packages to use become accessible in package as internal symbols. It is an error to try to use the keyword
package. use-package returns the previous package.

(export symbols [package]) -> <symbol> function

The symbols argument should be a list of symbols, or possibly a single symbol. These symbols become
accessible as external symbols in package package. export returns t.
By convention, a call to export listing all exported symbols is placed near the start of a file to advertise which
of the symbols mentioned in the file are intended to be used by other programs.

(import symbols [package]) -> <symbol> function

The argument should be a list of symbols, or possibly a single symbol. These symbols become internal symbols
in package package and can therefore be referred to without having to use qualified-name (colon) syntax.
import signals a correctable error if any of the imported symbols has the same name as some distinct symbol
already accessible in the package. import returns t.

(shadowing-import symbols [package]) -> <symbol> function

This is like import, but it does not signal an error even if the importation of a symbol would shadow some
symbol already accessible in the package. In addition to being imported, the symbol is placed on the shadowing-
symbols list of package. shadowing-import returns t.
shadowing-import should be used with caution. It changes the state of the package system in such a way
that the consistency rules do not hold across the change.

(shadow symbols [package]) -> <symbol> function

The argument should be a list of symbols, or possibly a single symbol. The print name of each symbol is
extracted, and the specified package is searched for a symbol of that name. If such a symbol is present in this
package, then nothing is done. Otherwise, a new symbol is created with this print name, and it is inserted in the
package as an internal symbol. The symbol is also placed on the shadowing-symbols list of the package.
shadow returns t.

(intern string [package]) -> <symbol> function

The package, which defaults to the current package, is searched for a symbol with the name specified by the
string argument. If a symbol with the specified name is found, it is returned. If no such symbol is found, one is
created and is installed in the specified package as an internal symbol (as an external symbol if the package is the
keyword package); the specified package becomes the home package of the created symbol.

(unintern symbol [package]) -> <symbol> function

If the specified symbol is present in the specified package, it is removed from that package and also from the
package's shadowing-symbols list if it is present there. Moreover, if the package is the home package for the

OpenLisp Reference Manual Eligis

Page 86

symbol, the symbol is made to have no home package. Note that in some circumstances the symbol may
continue to be accessible in the specified package by inheritance. unintern returns t if it actually removed a
symbol, and nil otherwise.

(find-all-symbols symbol-name) -> <symbol> function

find-all-symbols searches every package in the system to find every symbol whose print name is the
specified string. A list of all such symbols found is returned. This search is case-sensitive. If the argument is a
symbol, its print name supplies the string to be searched for.

(defpackage defined-package-name {option}*) -> <symbol> macro

This creates a new package, or modifies an existing one, whose name is defined-package-name. The defined-
package-name may be a string or a symbol; if it is a symbol, only its print name matters, and not what package,
if any, the symbol happens to be in. The newly created or modified package is returned as the value of the
defpackage form.
Each standard option is a list of a keyword (the name of the option) and associated arguments. No part of a
defpackage form is evaluated. More than one option of the same kind may occur within the same
defpackage form.
The standard options for defpackage are as follows. In every case, any option argument called package-name
or symbol-name may be a string or a symbol; if it is a symbol, only its print name matters, and not what package,
if any, the symbol happens to be in.
(:import {symbol-name}*)

Symbols with the specified names are located in the global package. These symbols are imported into the
package being defined, just as with the function import.

(:nicknames {package-name}*)

The specified names become nicknames of the package being defined.

(:import-from package-name {symbol-name}*)

Symbols with the specified names are located in the specified package. These symbols are imported into the
package being defined, just as with the function import.

(:export {symbol-name}*)

Symbols with the specified names are located or created in the package being defined and then exported,
just as with the function export.

(:shadow {symbol-name}*)

Symbols with the specified names are created as shadows in the package being defined, just as with the
function shadow.

(:use {package-name}*)

The package being defined is made to ``use'' the packages specified by this option, just as with the function
use-package. If no :use option is supplied, then a default list is assumed.

The order in which options appear in a defpackage form does not matter; part of the convenience of
defpackage is that it sorts out the options into the correct order for processing. Options are processed in the
following order:

:shadow
:use
:import

OpenLisp Reference Manual Eligis

Page 87

:import-from
:export

If no package named defined-package-name already exists, defpackage creates it. If such a package does
already exist, then no new package is created. The existing package is modified, if possible, to reflect the new
definition. The results are undefined if the new definition is not consistent with the current state of the package.
An error is signaled if the same symbol-name argument (in the sense of comparing names with string=)
appears more than once among the arguments to all the :shadow, :import, :import-from, and
:intern options.
An error is signaled if the same symbol-name argument (in the sense of comparing names with string=)
appears more than once among the arguments to all the :intern and :export options.
Other kinds of name conflicts are handled in the same manner that the underlying operations import, and
export would handle them.

45 Defining Structures.

OpenLisp provides a facility for creating named record structures with named components. In effect, the user
can define a new data type; every data structure of that type has components with specified names. Constructor,
access, and assignment constructs are automatically defined when the data type is defined
All structures are defined through the defstruct construct. A call to defstruct defines a new data type
whose instances have named slots. Structures are generally faster than object created by defclass.
Two syntaxes, Common Lisp that is the default and Le-Lisp (not described there), can be used as the same time.
Only the Common Lisp syntax allows inheritance. Slots use an optimized internal mechanism faster than vector
access. As a general advice, structure names should be defined with enclosed < > character since a structure can
be seen as a new type. Those two extra characters are not taken to generate access functions. That way, the
structure named <foo> wil generate make-foo, foo-p, … instead of make-<foo> or <foo>-p,…

structure-standard-names dynamic variable

This dynamic variable is set to t when Common Lisp compatibility is in use (default). To generate structure
names in the same way as Le-Lisp, you must set it to nil.

defstruct -> <symbol> feature

defstruct feature is present when the defstruct functions have been loaded in the System.

(defstruct struct [slot-description]*) -> <object> macro

This defines a record-structure data type. A general call to defstruct looks like the following example.

(defstruct (name option-1 option-2 ... option-m)
 slot-description-1
 slot-description-2
 ...
 slot-description-n)

The name must be a symbol; it becomes the name of a new data type consisting of all instances of the structure.
The function instancep will accept and use this name as appropriate. The name is returned as the value of the
defstruct form.
Usually no options are needed at all. If no options are specified, then one may write simply name instead of
(name) after the word defstruct.

Each slot-description-j is of the form
(slot-name default-init slot-option-name-1 slot-option-value-1 slot-option-
name-2 slot-option-value-2 ... slot-option-name-kj slot-option-value-kj)
Each slot-name must be a symbol; an access function is defined for each slot. If no options and no default-init
are specified, then one may write simply slot-name instead of (slot-name) as the slot description.

OpenLisp Reference Manual Eligis

Page 88

The default-init is a form that is evaluated each time a structure is to be constructed; the value is used as the
initial value of the slot.
If no default-init is specified, then the initial contents of the slot are undefined and implementation-dependent.
defstruct not only defines an access function for each slot, but also arranges for setf to work properly on
such access functions, defines a predicate named name-p, defines a constructor function named make-name,
and defines a copier function named copy-name.

Note: when the name is surrounded with < and >, those two characters are not used for generated names.

Each slot-description in a defstruct form may specify one or more slot-options. A slot-option consists of a
pair of a keyword and a value (which is not a form to be evaluated, but the value itself).

Example:

(defstruct <ship>
 (x-position 0.0)
 (y-position 0.0)
 (x-velocity 0.0)
 (y-velocity 0.0)
 (mass *default-ship-mass*))

The only slot-option is:
:read-only

The option :read-only x, where x is not nil, specifies that this slot may not be altered; it will always
contain the value specified at construction time. setf will not accept the access function for this slot. If x is
nil, this slot-option has no effect. Note that the argument form x is not evaluated.

Note that it is impossible to specify a slot-option unless a default value is specified first.
:conc-name

This provides for automatic prefixing of names of access functions. It is conventional to begin the names of
all the access functions of a structure with a specific prefix, the name of the structure followed by a hyphen.
This is the default behavior.

The argument to the :conc-name option specifies an alternative prefix to be used. (If a hyphen is to be
used as a separator, it must be specified as part of the prefix.) If nil is specified as an argument, then no
prefix is used; then the names of the access functions are the same as the slot-names, and it is up to the user
to name the slots reasonably.

Note that no matter what is specified for :conc-name, with a constructor function one uses slot keywords
that match the slot-names, with no prefix attached. On the other hand, one uses the access-function name
when using setf.

Example:
(defstruct <door> knob-color width material)
(setq my-door
 (make-door :knob-color 'red :width 5.0))
(door-width my-door) => 5.0
(setf (door-width my-door) 43.7)
(door-width my-door) => 43.7
(door-knob-color my-door) => red

:constructor

This option takes one argument, a symbol, which specifies the name of the constructor function. If the
argument is not provided or if the option itself is not provided, the name of the constructor is produced by
concatenating the string "make-" and the name of the structure. If the argument is provided and is nil, no
constructor function is defined.

OpenLisp Reference Manual Eligis

Page 89

:copier

This option takes one argument, a symbol, which specifies the name of the copier function. If the argument
is not provided or if the option itself is not provided, the name of the copier is produced by concatenating
the string "copy-" and the name of the structure, putting the name in whatever package is current at the
time the defstruct form is processed. If the argument is provided and is nil, no copier function is
defined.

The automatically defined copier function simply makes a new structure and transfers all components
verbatim from the argument into the newly created structure. No attempt is made to make copies of the
components. Corresponding components of the old and new structures will therefore be eql.

:predicate

This option takes one argument, which specifies the name of the type predicate. If the argument is not
provided or if the option itself is not provided, the name of the predicate is made by concatenating the name
of the structure to the string "-P". If the argument is provided and is nil, no predicate is defined. A
predicate can be defined only if the structure is ``named''

:include

This option is used for building a new structure definition as an extension of an old structure definition. As
an example, suppose you have a structure called <person> that looks like this:
(defstruct <person> name age sex)

Now suppose you want to make a new structure to represent an astronaut. Since astronauts are people too,
you would like them also to have the attributes of name, age, and sex, and you would like Lisp functions
that operate on person structures to operate just as well on astronaut structures. You can do this by
defining astronaut with the :include option, as follows:
(defstruct (<astronaut> (:include <person>)
 (:conc-name astro-))
 helmet-size
 (favorite-beverage 'tang))

The :include option causes the structure being defined to have the same slots as the included structure.
This is done in such a way that the access functions for the included structure will also work on the structure
being defined. In this example, an astronaut will therefore have five slots: the three defined in person
and the two defined in astronaut itself. The access functions defined by the person structure can be
applied to instances of the astronaut structure, and they will work correctly. Moreover, astronaut
will have its own access functions for components defined by the person structure. The following
examples illustrate how you can use astronaut structures:
(setq x (make-astronaut :name 'buzz
 :age 45
 :sex t
 :helmet-size 17.5))

(person-name x) => buzz
(astro-name x) => buzz
(astro-favorite-beverage x) => tang

The difference between the access functions person-name and astro-name is that person-name
may be correctly applied to any person, including an astronaut, while astro-name may be correctly
applied only to an astronaut. (An implementation may or may not check for incorrect use of access
functions.)

At most one :include option may be specified in a single defstruct form. The argument to the
:include option is required and must be the name of some previously defined structure.

The structure name of the including structure definition becomes the name of a data type, of course, and
therefore a valid type specifier recognizable by instancep; moreover, it becomes a subtype of the
included structure. In the above example, <astronaut> is a subtype of <person>; hence

OpenLisp Reference Manual Eligis

Page 90

(instancep (make-astronaut) (class <person>))

is true, indicating that all operations on persons will also work on astronauts.

The following is an advanced feature of the :include option. Sometimes, when one structure includes
another, the default values or slot-options for the slots that came from the included structure are not what
you want. The new structure can specify default values or slot-options for the included slots different from
those the included structure specifies, by giving the :include option as
(:include name slot-description-1 slot-description-2 ...)

Each slot-description-j must have a slot-name or slot-keyword that is the same as that of some slot in the
included structure. If slot-description-j has no default-init, then in the new structure the slot will have no
initial value. Otherwise its initial value form will be replaced by the default-init in slot-description-j. A
normally writable slot may be made read-only. If a slot is read-only in the included structure, then it must
also be so in the including structure. If a type is specified for a slot, it must be the same as, or a subtype of,
the type specified in the included structure. If it is a strict subtype, the implementation may or may not
choose to error-check assignments.

For example, if we had wanted to define astronaut so that the default age for an astronaut is 45, then we
could have said:
(defstruct (<astronaut> (:include <person> (age 45)))
 helmet-size
 (favorite-beverage 'tang))

:print-function

The argument to the :print-function option should be a function of three arguments, in a form
acceptable to the function special form, to be used to print structures of this type. When a structure of
this type is to be printed, the function is called on three arguments: the structure to be printed, a stream to
print to, and an integer indicating the current depth (to be compared against *print-level*). If the
:print-function option is not specified then a default printing function is provided for the structure
that will print out all its slots using #S syntax.

(structurep object) -> <object> macro

structurep returns t if object is an instance of structure (i.e. if object is an instance of <standard-
structure> class).

46 Sorting.

These functions may destructively modify argument sequences in order to put a sequence into sorted order or to
merge two already sorted sequences.

sort -> <symbol> feature

sort feature is present when the sort functions have been loaded in the System.

(sort sequence predicate) -> <object> function

The sequence is destructively sorted according to an order determined by the predicate. The predicate should
take two arguments, and return non-nil if and only if the first argument is strictly less than the second (in some
appropriate sense). If the first argument is greater than or equal to the second (in the appropriate sense), then the
predicate should return nil.
The sort function determines the relationship between two elements by giving keys extracted from the
elements to the predicate.
The sorting operation performed by sort is not guaranteed stable. Elements considered equal by the predicate
may or may not stay in their original order. (The predicate is assumed to consider two elements x and y to be
equal if (funcall predicate x y) and (funcall predicate y x) are both false.).

OpenLisp Reference Manual Eligis

Page 91

The sorting operation may be destructive in all cases. In the case of an array argument, this is accomplished by
permuting the elements in place. In the case of a list, the list is destructively reordered in the same manner as for
nreverse. Thus if the argument should not be destroyed, the user must sort a copy of the argument.

47 Date Library.

Date library can be used to retrieve date informations from the unformatted vector (of type <date>) returned by
get-internal-date function. This feature is Y2C compliant.

date feature

date feature is present when the date functions have been loaded in the System.

(get-internal-date date tz-flag) -> <date> function

Returns a <date> object. If date is already a <date> object (as returned by make-date), the structure filled
with the values of current date, when set to nil, a new <date> structure is allocated. If tz-flag is
:localtime, the returned values are for the computer current local time. When tz-flag is :gmt, the returned
values are for GMT.

(date-month date [value]) -> <object> function
(date-day date [value]) -> <object> function
(date-year date [value]) -> <object> function
(date-hour date [value]) -> <object> function
(date-min date [value]) -> <object> function
(date-sec date [value]) -> <object> function
(date-week-day date [value]) -> <object> function
(date-year-day date [value]) -> <object> function
(date-daylight-saving date [value]) -> <object> function
(date-tz date [value]) -> <object> function
(date-time date [value]) -> <object> function

With one argument, those functions return (month, day, year, hour, min, sec, weekday, year-day,
daylight-saving, tz and time) from a date object date. The optional second argument may be used to
alter the value. year-day and daylight-saving are reserved for future use.

(date-p date) -> <boolean> function

Returns t if date is a date object or nil otherwise.

(date-difference date1 date2) -> <integer> function

Returns the difference in seconds of two date objects.

(date= date1 date2) -> <boolean> function
(date/= date1 date2) -> <boolean> function
(date> date1 date2) -> <boolean> function
(date>= date1 date2) -> <boolean> function
(date< date1 date2) -> <boolean> function
(date<= date1 date2) -> <boolean> function

Compare two dates.

(date-string date) -> <string> function

OpenLisp Reference Manual Eligis

Page 92

Returns a new human readable string with date information extracted from date object date.

Example:

(date-string (get-internal-date nil :localtime))

ð "Sun Nov 22 1998 – 11:13:09"

(date-to-time date) -> <integer> function

Returns an integer which is the number of seconds from system EPOCH.

(time-to-date time) -> <date> function

Returns a date from time which is the number of seconds from system EPOCH. If time is 0, it returns the current
GMT date.

48 FASL (obsolete) Format.

FASL (FASt Load) is an obsolete compressed format that can be used to reduce the time spent to read a file.
Specially, symbols are only read once and the then only references to those symbols are used on all other places
in the file. The sharp #&nnn syntax is use to make a reference to nnnnth element of internal fasl table. You can
expect from 50 to more 100 % saving in both size and load time for that file. As convention, fasl files are placed
in fasl directory and have .fsl as extension. The libload function first tries to find an existing fasl file for
loading.

fasl -> <symbol> feature

fasl feature is present when the fasl functions have been loaded in the System.

(fasl-dump file-in file-out) -> <object> function

Convert Lisp file file-in in the corresponding fasl format file named file-out.

(fasl-table [symb-table]) -> <object> function

Internal function that sets or returns the current table used to read the current FALS-file. You should not call this
function directly.

49 Trace Library.

The utilities described in this section are sufficiently complex and sufficiently dependent on the host
environment that their complete definition is beyond the scope of this book. However, they are also sufficiently
useful to warrant mention here. It is expected that every implementation will provide some version of these
utilities, however clever or however simple.

trace feature

trace feature is present when the profile functions have been loaded in the System.

(trace fn*) -> <object> function

Invoking trace with one or more function-names (symbols) causes the functions named to be traced.
Henceforth, whenever such a function is invoked, information about the call, the arguments passed, and the
eventually returned values, if any, will be printed to the stream that is the value of (standard-output).

OpenLisp Reference Manual Eligis

Page 93

(untrace fn*) -> <object> function

Invoking untrace with one or more function names will cause those functions not to be traced any more.
Calling untrace with no argument forms will cause all currently traced functions to be no longer traced.

50 Internal Debugger.

OpenLisp has a simplified debugger that can be used to find the bugs of a program. Although it does not have
all the appreciated features of a modern graphic debugger, it can be useful to keep tracks of simple bugs. Since
the memory is more than limited on pure 16 bits MS-DOS, the debugger is not available for this environment.

debug -> <symbol> feature

debug is a feature indicating that the library has been loaded by the system. You can force this feature to be
present by calling the function debug.

(debug flag) -> <symbol> function

(debug t) makes the internal debugger active. (debug nil) removes activation of the debugger on errors.
Under the control of the debugger toplevel loop, you can use the following keyword commands:

? print this help.
:e print environment.
:b print current block.
:c continue (if error is continuable).
:d print stack depth.
:h print history of calls.
:m print error message.
:q quit the debugger.
:s print stack dump.
:t print top stack history.
:u up one block.
:v print bindings.
:x exit from OpenLisp.

Many commands may be run at the same time. That way, :ubv goes one block up; display this block and
accessible variable form the current lexical point.

(stack-trace [max-depth]) -> <list> function

Returns a list that contains the current function calls. The option max-depth limits the number of calls that this
function returns. You can call stack-trace in an error handler to display informations of the calling
sequence up to the function where error occurs.

51 Performance Analysis.

The profiler is an analysis tool that you can use to examine the run-time behavior of your programs. By using
profiler information, you can determine which sections of your code are working efficiently. The profiler can
produce informations showing areas of code that are not being executed or that are taking a long time to execute.
Because profiling is a tuning process, you should use the profiler to make your programs run better, not to find
bugs. Once your program is fairly stable, you should start profiling to see where your code could perform better.
Use the profiler to determine whether, an algorithm is effective (timing), a function is being called too many or
too few times with respect to the problem domain (counting), or a piece of code is being covered by software
testing procedures (coverage).

OpenLisp Reference Manual Eligis

Page 94

The profiler can be run from within the development environment.

profile -> <symbol> feature

profile feature is present when the profile functions have been loaded in the System.

(profile fn) -> <object> function

Invoking profile with one function-name (symbol) causes the function named fn to be profiled. Henceforth,
whenever such a function is invoked, information about the time of the call will be stored in an internal buffer.

(unprofile fn) -> <object> function

Invoking unprofile with one or more function names will cause those functions not to be profiled any more.
Calling unprofile with no argument forms will cause all currently profiled functions to be no longer traced.

(profile-all) -> <object> function

Invoking profile-all causes all interpreted functions to be profiled. Henceforth, whenever such a function
is invoked, information about the time of the call will be stored in an internal buffer.

(unprofile-all) -> <object> function

Invoking unprofile-all removes profiling for all functions.

(profile-log log-type) -> <object> function

Sort and display time and use informations about profiled functions denpening of log-type value :

time sort by execution time.
call sort by call number.
notused only display unused functions.

52 Pretty Printer.

Pretty print library is used to re-format complex Lisp expressions in a more readable form.

print-pretty -> <boolean> dynamic variable

Controls whether the OpenLisp printer calls the pretty printer.

If it is false, the pretty printer is not used and a minimum of whitespace is output when printing an expression.

If it is true, the pretty printer is used, and the OpenLisp printer will endeavor to insert extra whitespace
where appropriate to make expressions more readable.

print-pretty has an effect even when the value of *print-escape* is false.

pretty -> <symbol> feature

pretty feature is present when the pretty-printer functions have been loaded in the System.

(pretty fn [stream]) -> <object> function
^Vfn -> <object> macro character

OpenLisp Reference Manual Eligis

Page 95

Format function named fn on the stream stream. If the second argument stream is not given, output goes to
(standard-output).

(pprint form [stream]) -> <object> function

Format any Lisp expression form on the stream stream. If the second argument stream is not given, output goes
to (standard-output).

53 GC Functions.

The utilities described in this section are sufficiently complex and sufficiently dependent on the host
environment that their complete definition is beyond the scope of this book. However, they are also sufficiently
useful to warrant mention here. It is expected that every implementation will provide some version of these
utilities, however clever or however simple.

gc-stats -> <symbol> feature

gc-stats feature is present when the gc functions have been loaded in the System.

(room [flag]) -> <object> function

room prints (using values returned by gc and gcinfo), to the stream (standard-output), information
about the state of internal storage and its management. This might include descriptions of the amount of memory
in use and the degree of memory compaction, possibly broken down by internal data type if that is appropriate.
The nature and format of the printed information is implementation-dependent. The intent is to provide
information that may help a user to tune a program to a particular implementation.
(room nil) prints out a minimal amount of information. (room t) prints out a maximal amount of
information. Simply (room) prints out an intermediate amount of information that is likely to be useful.

Example :

? (room t)
System name: openlisp, pointer size: 4
Type Call Init MemInit Used MemUsed Free MemFree Free%
user 1 0 0 0 0 0 0 100%
cons 0 39280 314240 1607 12856 37673 301384 95%
symbol 0 3904 124928 549 17568 3355 107360 85%
string 0 3928 31424 580 4640 3348 26784 85%
vector 0 3928 31424 260 2080 3668 29344 93%
float 0 0 0 0 0 0 0 100%
integer 0 0 0 0 0 0 0 100%
heap 0 122880 122880 10836 10836 112044 112044 91%
Total 1 0 624896 0 47980 0 576916 92%
;; elapsed time = 0.22s, (1 gc).
= t

54 External Functions.

OpenLisp provides a simple way to write your own module without to worry about internal representation.
With simple declaration, a C wrapper file will be generated for you (see external.lsp library). Calling
external-module lisp function will generate this stub. The current version only supports the following C
types : int, double, char, char *, void * and bool which are mapped to <integer>, <float>,
<character>, <string>, <external>, <boolean> respectively. The generated stub file will
automatically convert arguments in both directions.

external -> <symbol> feature

OpenLisp Reference Manual Eligis

Page 96

external feature is present when the external definition functions have been loaded in the System.

(external-module module stub headers [decl*]) -> <object> function

This function creates two files that are used to extend OpenLisp with an external module named module written
in C (or C++). The first generated file named stub.h contends declaration for the sub functions as well as a
function named olmoduleinit() that is used to initialize this module. The second file, named stub.c has
the definition for the stub functions that will be called by Lisp. decl is a list of optional filenames to be inclued
by stub.c . When headers is non-nil, it contains a list of header files to be inclued. Each declared function decl
has one the following form:

(retval external-name (arg-type1 ... arg-typen))
(retval (external-name lisp-name) (arg-type1 ... arg-typen))
(retval (accessor lisp-name) var)

The first line declares an external function external-name and returning a value of list type retval. This function
accepts n Lisp parameter arg-typei. In that case, Lisp will use the same name as in C. The second line, declares
the same function but given a different Lisp name lisp-name. The third line declares an accessor function
(:reader :writer) to a global C variable.

Only the following types are yet supported for retval and arg-typei:

Lisp type C type Meaning
<integer> int or long native integer type
<float> double floating point number
<string> char* null terminated C string
<character> char 8 bits character
<external> void* external pointers
<null> void only used as a return type (always nil)
<boolean> int map 0 to nil and t to all other values
<object> void* uninterpreted pointer

You can also declare global pointer, float and integer constants that match C object that are globally defined
(possibly with a #define) using the :constant declaration:

(:constant <type> (lisp-symbol-name c-name) [:if-defined])

or

(:constant <type> c-name [:if-defined])

With the latest form, the Lisp symbol name is the same as in C.
If :if-defined is supplied as 4th argulent, definition may not exist and is surrounded by #if defined(c-
name) .. #endif.

Example :

(external-module foo stubfoo (<bar.h> "gee.h")
(:constant <integer> (|*MAX-FOO*| |MAX_FOO|)
(:constant <float> |MAX_BAR| :if-defined)
(:constant <external> (*stdout* stdout))
(<integer> (:reader get-current-value) |current|)
(<integer> |Foo| (<integer> <float> <string>))
(<external> |bar| ())
(<object> (|yab| yab-function) ())
(<integer> |gee| (<integer> <integer> <integer> <integer>)))

OpenLisp Reference Manual Eligis

Page 97

You can include some C code in a special :code section:

(external-module foo stubfoo (<bar.h> "gee.h")
(:code
 "static void"
 "myfun(…)"
 "{"
 "}"
)

55 Multiple Values

Normally, multiple values are not used by OpenLisp itself. This package is provided to help tansition from
other Lisp dialects.
Special forms are required both to produce multiple values and to receive them. If the caller of a function does
not request multiple values, but the called function produces multiple values, then the first value is given to the
caller and all others are discarded; if the called function produces zero values, then the caller gets nil as a
value.
The primary primitive for producing multiple values is values, which takes any number of arguments and
returns that many values. If the last form in the body of a function is a values with three arguments, then a call
to that function will return three values. No built-in can return multiple values.
The special forms and macros for receiving multiple values are as follows

multiple-values -> <symbols> feature

multiple-values feature is present when the multiple values functions have been loaded in the System.

multiple-value-limit -> <integer> constant

The value of multiple-values-limit is a positive integer that is the upper exclusive bound on the
number of values that may be returned from a function. This bound depends on the implementation but will not
be smaller than 20.

(values arg1 .. argN) -> <object> function

All of the arguments are returned, in order, as values.

Example:

(defun polar (x y)
 (values (sqrt (+ (* x x) (* y y))) (atan y x)))

(multiple-value-bind (r theta) (polar 3.0 4.0)
 (vector r theta))
 => #(5.0 0.9272952)
The expression (values) returns zero values. This is the standard idiom for returning no values from a
function.
Sometimes it is desirable to indicate explicitly that a function will return exactly one value. For example, the
function
(defun foo (x y)
 (values (+ x y) y))

It may be that the second value makes no sense, or that for efficiency reasons it is desired not to compute the
second value. The values function is the standard idiom for indicating that only one value is to be returned.

(defun foo (x y)

OpenLisp Reference Manual Eligis

Page 98

 (values (bar (+ x y) y)))

This works because values returns exactly one value for each of its argument forms; as for any function call, if
any argument form to values produces more than one value, all but the first are discarded.
There is absolutely no way for a caller to distinguish between returning a single value in the ordinary manner and
returning exactly one ``multiple value.'' For example, the values returned by the expressions (+ 1 2) and
(values (+ 1 2)) are identical in every respect: the single value 3.

(values-list list) -> <object> function

All of the elements of list are returned as multiple values. For example:
(values-list (list a b c)) == (values a b c)
In general,
(values-list list) == (apply #'values list)
but values-list may be clearer or more efficient.

(multiple-value-list form) -> <object> macro

multiple-value-list evaluates form and returns a list of the multiple values it returned.

Example:

(multiple-value-list (values -3 4)) => (-3 4)

multiple-value-list and values-list are therefore inverses of each other.

(multiple-value-call fun body*) -> <object> macro

multiple-value-call first evaluates function to obtain a function and then evaluates all of the forms. All
the values of the forms are gathered together (not just one value from each) and are all given as arguments to the
function. The result of multiple-value-call is whatever is returned by the function.

Example:

(+ (values 5 3) (values 1 4)) => 6 ;; (+ 5 1)
(multiple-value-call #'+ (values 5 3) (values 1 4))
 => 12 ;; (+ 5 3 1 4)

(multiple-value-list form) == (multiple-value-call #'list form)

(multiple-value-prog1 fisrt body*) -> <object> macro

multiple-value-prog1 evaluates the first form and saves all the values produced by that form. It then
evaluates the other forms from left to right, discarding their values. The values produced by the first form are
returned by multiple-value-prog1. See prog1, which always returns a single value.

(multiple-value-bind variables form body*) -> <object> macro

The values-form is evaluated, and each of the variables var is bound to the respective value returned by that
form. If there are more variables than values returned, extra values of nil are given to the remaining variables.
If there are more values than variables, the excess values are simply discarded. The variables are bound to the
values over the execution of the forms, which make up an implicit progn.

Example:

(multiple-value-bind (x) (values 5 3) (list x)) => (5)
(multiple-value-bind (x y) (values 5 3) (list x y)) => (5 3)
(multiple-value-bind (x y z) (values 5 3) (list x y z)) => (5 3 nil)

OpenLisp Reference Manual Eligis

Page 99

(multiple-value-setq variables form) -> <object> macro

The variables must be a list of variables. The form is evaluated, and the variables are set (not bound) to the
values returned by that form. If there are more variables than values returned, extra values of nil are assigned
to the remaining variables. If there are more values than variables, the excess values are simply discarded.
multiple-value-setq always returns a single value, which is the first value returned by form, or nil if
form produces zero values.

(nth-value n form) -> <object> macro

The argument forms n and form are both evaluated. The value of n must be a non-negative integer, and the form
may produce any number of values. The integer n is used as a zero-based index into the list of values. Value n of
the form is returned as the single value of the nth-value form; nil is returned if the form produces no more
than n values.

56 Virtual Terminal.

On some systems (MS-DOS, NT, 9x and Windows), OpenLisp has been extended to support a kind of Virtual
Character Mode Terminal (virtty). It can be used to build very simple interface such as editor (see
lib/mine.lsp) or simple game (see contrib/hanoi.lsp). This module, not part of “standard
OpenLisp”, should not be used to write real interfaces. For that purpose, graphic C/C++ generators should be
considered. That way, OpenLisp has been successfully integrated with Windows API, Microsoft MFC and Ilog
Views class library. Functionalities of this module are taken after the virtty package form Le-Lisp.

virtty -> <symbol> feature

virtty feature is present when the virtual terminal functions have been loaded in the System.

(typrologue) -> <object> function

Set the terminal in some “special mode” suitable for drawing characters.

(tyepilogue) -> <object> function

Reset the terminal to the “standard mode”.

(tyxmax) -> <object> function

Returns the maximum number of character that can fit on a single line starting from 0 (i.e. a 80 characters width
will return 79).

(tyymax) -> <object> function

Returns the maximum number of character that can fit on a single column starting from 0 (i.e. a 25 characters
height will return 24).

(tycls) -> <object> function

Clears the entire screen.

(tycleol) -> <object> function

Clears the current line form point to end of line.

OpenLisp Reference Manual Eligis

Page 100

(tyflush) -> <object> function

Flush unsent characters.

(tybeep) -> <object> function

Sounds the beeper.

(tyi) -> <object> function

Reads a single character without echo.

(tys) -> <object> function

Tests whether or not a character can be read form keyboard.

(tycn char) -> <object> function

Draws character char at current position.

(tycursor x y) -> <object> function

Moves the cursort to x, y location on screen.

(tyshowcursor flag) -> <object> function

Hides, if flag is false or shoes if flag is true the hardware cursor.

(tyo o) -> <object> function

Draws the object o (a character, a string or a list of characters) at current position.

(tyco x y o) -> <object> function

Draws the object o (a character, a string or a list of characters) at position x, y.

(tystring string n) -> <object> function

Draws the first n characters of string string at current position.

(tyattrib n) -> <object> function

Set, if flag is t, or reset if flag is nil the drawing attribute (it can be another color, a blinking mode, …).

OpenLisp Reference Manual Eligis

Page 101

57 OpenLisp Dynamic Server Page

OpenLisp has a special mode called ODSP “OpenLisp Dynamic Server Page” that allows you to generate
dynamic HTML/XML page with embedded lisp code. And ODSP page is a standard HTML/XML text page
where code between <?openlisp and ?> tags is handled directly by OpenLisp. When OpenLisp is in
ODSP mode, it echoes to console the HTML/XML page up to <?openlisp tag. The code is then evaluated
until and end tag ?> is encountered. Then, echo of standard HTML/XML continues until the next <?openlisp
tag or the end of file.

You can start ODSP mode with –odsp flag on the command line like:

$ openlisp –odsp file.odsp

or, on systems with unix shell, by directly calling file.odsp if you add line like:

#!/usr/bin/env openlisp –odsp

on top of your HTML/XML file.

Example:

#!/usr/bin/env openlisp -odsp
<?xml version="1.0" encoding="UTF-8"?>
<!-- OpenLisp Dynamic Server Page Sample - (c) C. Jullien 2001/09/12 -->

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
 <title>OpenLisp Dynamic Server Page Sample</title>
 <meta http-equiv="Content-Type" content="text/html" />
 <meta http-equiv="Pragma" content="no-cache" />
 <meta name="Generator" content="OpenLisp Dynamic Server Page" />
 <meta name="robots" content="noindex,follow" />

OpenLisp Reference Manual Eligis

Page 102

</head>

<body>
 <p>
 Openlisp v<?openlisp (prin (version)) ?> Dynamic Server Page,
 computes Fib serie:
 <table border="1"
 bordercolor="#000000"
 cellpadding="4"
 cellspacing="1">
 <tbody>
 <?openlisp

 ;; nice way to WEB around!!!

 (require 'cgi) ;; not really needed for this sample

 (defun fib (n)
 ;; Standard function with integer argument
 (cond ((= n 1) 1)
 ((= n 2) 1)
 (t (+ (fib (1- n)) (fib (- n 2))))))

 (for ((i 10 (1+ i)))
 ((> i 20))
 (format (standard-output)
 "<tr><td>(fib ~D)</td><td>~D</td></tr>~%" i (fib i)))

 ?>
 </tbody>
 </table>
 </p>
</body>

</html>

58 Install OpenLisp as a NPH-CGI/1.1 compliant on-the-fly filter.

This is the standard method of using OpenLisp as a SSSL (Server-Side-Scripting-Language).
Here the original OpenLisp interpreter gets used by just installing the stand-alone program "openlisp" as a on-
the-fly filter for Apache. This shell is NPH (No-Parse-Headers) CGI module. It means that it must process
headers itself.

First, you must install the stand-alone program OpenLisp.

In short:

 $./configure --prefix=/path/to/openlisp/
 $ make
 $ make install

Create the following nph-openlisp (you MUST! start this name with nph-) script to the CGI directory of
Apache and use the NPH-CGI/1.1 compliant interface:

#!/bin/sh
#ident "@(#)nph-openlisp (c) C. Jullien 2001/09/18"

OpenLisp NPH-CGI/1.1 Apache compliant on-the-fly filter.

OpenLisp Reference Manual Eligis

Page 103

echo HTTP/1.0 200 Script results follow
echo Server: OpenLisp Dynamic Server Page
echo Content-Type: text/html

exec /usr/bin/env openlisp -odsp $PATH_TRANSLATED

Change permissions:

 $ chown root /path/to/apache/cgi-bin/nph-openlisp
 $ chmod u+s /path/to/apache/cgi-bin/nph-openlisp

Finally configure Apache to process all pages with extension '.odsp' via the OpenLisp NPH-CGI/1.1
program. To accomplish this you have to add the following to your httpd.conf file of Apache (on Red Hat
distribution, this file is located at /etc/httpd/conf/httpd.conf):

 AddType application/x-httpd-openlisp .odsp .osp .lsp .lap
 Action application/x-httpd-openlisp /cgi-bin/nph-openlisp

You must restart Apache by calling apachectl restart or, on Red Hat, service http restart.

Now test it by copying the file from the tst/test.odsp of the OpenLisp distribution to an area that is
accessible by Apache and request the file test.odsp through your WEB browser. It should be implicitly
piped on-the-fly through the OpenLisp system.

OpenLisp Reference Manual Eligis

Page 104

59 OpenLisp and mod_lisp

60 What is mod_lisp?

mod_lisp is an Apache (http://httpd.apache.org/) module to write dynamic web servers and applications. The
source (FreeBSD style license), lisp examples and pre-compiled binaries for FreeBSD, Linux and Win32 are on
the mod_lisp web site (http://www.fractalconcept.com/asp/mod_lisp).

61 Preparing Apache with mod_lisp

You must make the mod_lisp2.c source code and, from mod_lisp OpenLisp directory, run “make” or
execute the following command:

$ apxs -i -c mod_lisp2.c

The apxs command comes from Apache development package. If you use a Red Hat Linux distribution, you
can use:

$ yum install httpd-devel

to install this package.

After compiling, follow the procedure in the mod_lisp documentation to properly edit httpd.conf to load
the library and call the lisp handler. In the case of this site, the handler location is lispy:

 LoadModule mod_lisp modules/mod_lisp2.so
 ...
 ...
 AddModule mod_lisp.c
 ...
 ...
 LispServer IP.IP.IP.IP 3000 "lisp"
 ...

OpenLisp Reference Manual Eligis

Page 105

 ...
 < Location /lisp >
 SetHandler lisp-handler
 </Location >

Restart apache (apachectl restart), launch OpenLisp with modlisp-openlisp.lsp and try the
service.

;; OpenLisp v8.4.0 (Build: 3874) by C. Jullien [Sep 24 2006 - 20:01:59]
;; Copyright (c) 1988-2006.
;; System 'linux' (32-bit) on 'fc5.eligis.com', ASCII.
;; Reading startup ..
;; God thank you, OpenLisp is back again!
? (load "modlisp-openlisp.lsp")
;; elapsed time = 0.059s, (0 gc).
= modlisp-openlisp.lsp
? (modlisp-server)

Any url using “lisp” like “http://127.0.0.1/lisp/foo” will be redirected to your lisp process.

OpenLisp Reference Manual Eligis

Page 106

62 GNU-Emacs integration

63 What is Emacs.

Emacs is a family of editors that have a long common story with Lisp. As such, Emacs is the preferred Lisp
source code editor for most Lisp developers; however, it is not easy for an Emacs neophyte to get an Emacs
environment set up and configured properly for Lisp development. The GNU Emacs editor
(http://www.gnu.org/software/emacs/) has been customized to provide an efficient IDE environment for
OpenLisp.

64 Install Emacs.

You can find a GNU Emacs precompiled distribution for most operating systems including Linux and Windows.
For example, on Windows you can download EmacsW32 and binaries on
http://ourcomments.org/Emacs/EmacsW32.html. Edit or create an .emacs initialization file and add the following
lines at the bottom:

(custom-set-variables
 ;; custom-set-variables was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
 '(safe-local-variable-values
 (quote ((Syntax . EmacsLisp)
 (Mode . LISP)
 (Package . LISP)
 (Base . 10)
 (Syntax . ISLISP)))))

(defun check-openlisp (path)
 ;; check if openlisp.el exists and load it.
 (let ((path (getenv path))
 (found nil)

OpenLisp Reference Manual Eligis

Page 107

 (openlisp nil))
 (when path
 (setq openlisp (concat path "/emacs/openlisp.el"))
 (when (file-exists-p openlisp)
 (load openlisp)
 (setf found t)))
 found))

(or
 (check-openlisp "HOME")
 (check-openlisp "HOMEPATH")
 (check-openlisp "OPENLISP"))

65 Use OpenLisp inside Emacs.

Emacs is mainly used as a text editor to create or modify your lisp files but you can also use Emacs to execute
and debug your programs. The OpenLisp REPL (Read Eval Print Loop) can be run inside an Emacs windows
and with appropriate key bindings, you can interact between your source code and OpenLisp topelevel. To run
OpenLisp inside Emacs, Execute “M-x run-lisp” where M-x is the sequence Escape followed by small ‘x’ to
get a new Emacs Windows with fully functional OpenLisp system. It’s generally convenient to have two
Windows, one for edition the other one to run your code inside Lisp.

66 Special commands for OpenLisp mode

When you edit your Lisp code, Emacs has the specific key binding to interact with OpenLisp:

C-xC-e Evaluate Lisp expression
C-xC-h Evaluate buffer
C-xC-m Macroexpand expression
C-xC-z Go to OpenLisp window
C-cC-e Evalute defun form
C-cC-r Evaluate region
C-cC-c Compile defun
C-cC-z Go to OpenLisp window
C-cC-l Load file
C-cC-k Compile file

OpenLisp Reference Manual Eligis

Page 108

67 LAP Format

The compiler uses an internal LAP (Lisp Assembly Processor) format for the compiled code. At load time, this
format is converted in a form suitable for execution. This chapter describes the format of this virtual assembler.
Internally, the LAP machine uses 4 public registers named A1, A2, A3, A4 and an internal register named A0
which cannot be used by any instruction. By default, instructions that produce a result store the value in A1
register.

(ADD reg reg/imm) LAP function

Add in A1 the contents of first register (an integer) with the value of reg/imm.

(ADD1 reg) LAP function

Increment in A1 the contents of register (an integer value) by one.

(ADJSTK n) LAP function

Adjust the stack by the value of the positive integer n. A1 is not modified by this instruction.

(ASSOC reg reg/imm) LAP function

Returns in A1 the assoc pair of reg in A-List in reg/imm.

(BLOCK label) LAP function

Setup a new BLOCK block with tag named label. A1 is not modified by this instruction.

(CAAR reg) LAP function

Returns in A1 the caar of register reg.

(CAAR reg) LAP function

OpenLisp Reference Manual Eligis

Page 109

Returns in A1 the cadr of register reg.

(CALL n) LAP function

Calls a pushed function with n – 1 arguments pushed from left to right. The result is stored in A1. After this call,
the stack is cleared by the number of pushed values.

(CALL-REG fname [[reg1] reg2]) LAP function

Calls a function fname with optional register arguments in reg1 and reg2. Returns result in A1.

(CALL-SUBR fname [[reg1] reg2]) LAP function

Calls a subrX function fname with optional register arguments in reg1 and reg2. Returns result in A1.

(CAR reg) LAP function

Returns in A1 the car of register reg.

(CATCH label) LAP function

Setup a new CATCH block with tag named label. A1 is not modified by this instruction.

(CDAR reg) LAP function

Returns in A1 the cdar of register reg.

(CDDR reg) LAP function

Returns in A1 the cddr of register reg.

(CDR reg) LAP function

Returns in A1 the cdr of register reg.

(CHECKTYPE n) LAP function

Check if register A1 is of type n. If A1 satisfies the type n, upon return A1 has the value t and nil otherwise.
 0 symbolp
 1 consp
 2 numberp
 3 integerp
 4 floatp
 5 atom
 6 functionp
 7 characterp
 8 stringp
 9 classp
 10 vectorp
 11 arrayp
 12 bignump
 13 variablep
 14 streamp
 15 boundp
 16 socketp

(CLOSURE symb) LAP function

OpenLisp Reference Manual Eligis

Page 110

Returns in A1 a closure for the function named symb.

(CONS reg reg/imm) LAP function

Cons in A1 the contents of first register with the value of reg/imm.

(CONVERT n) LAP function

Convert register A1 to type numbered n. Returns result in A1.
 0 <character>
 1 <float>
 2 <general-vector>
 3 <integer>
 4 <list>
 5 <string>
 6 <symbol>
 7 <external>
 8 <rational>
 9 <simple-bit-vector>

(DECR-REF n1 n2) LAP function

Decrement the value of local variable at offset n2 from the block n1. A1 contains the modified value.

(DECR-SREF offset) LAP function

Decrement the stack value at offset (positive value means function parameter, negative value means local
variable).

(DIV reg reg/imm) LAP function

Divide in A1 the contents of first register with the value of reg/imm.

(DIVN reg reg/imm) LAP function

Integer divide in A1 the contents of first register with the value of reg/imm.

(DREF reg symb) LAP function

Loads in register reg the dynamic value of symbol symb.

(DSET symb) LAP function

Sets the dynamic value of symbol symb with the value of register A1.

(DYNAMIC-LET symb) LAP function

Setup a new dynamic block of n variables pushed on stack. A1 is not modified by this instruction.

(ELT reg reg/imm) LAP function

Loads in A1 the element of vector in reg at position reg/imm.

(END) LAP function

This pseudo-instruction terminates the LAP instruction list. It must be the last instruction of a function.

OpenLisp Reference Manual Eligis

Page 111

(ENTER n1 n2) LAP function

Enter a new function block with n1 parameters and n2 local variables. A1 is not modified by this instruction.

(EQ reg reg/imm) LAP function

Compares in A1 if reg and reg/imm are the same object.

(EQUAL reg reg/imm) LAP function

Compares in A1 if reg and reg/imm are equal.

(EQN reg reg/imm) LAP function

Returns in A1 if reg and reg/imm are the same integer.

(EXIT-BLOCK) LAP function

Exit from a BLOCK block. A1 is not modified by this instruction.

(EXIT-CATCH) LAP function

Exit from a CATCH block. A1 is not modified by this instruction.

(EXIT-DYNAMIC n) LAP function

Exit from a DYNAMIC block with n argumenst. A1 is not modified by this instruction.

(EXIT-HANDLER) LAP function

Exit from a HANDLER block. A1 is not modified by this instruction.

(EXIT-PROTECT) LAP function

Exit from a PROTECT block. A1 is not modified by this instruction.

(FENTRY n1 n2 n3) LAP function

Declares and entry function with n1 parameters, n2 is non-0 if the function has been declared with &rest. The
last parameter n3 is the number of local parameters on the stack.

(FUNCTION-VALUE symb) LAP function

Returns the functional object associated with the symbol symb.

(GADD reg reg/imm) LAP function

Add in A1 the contents of first register (any number type) with the value of reg/imm.

(GADD1 reg) LAP function

Increment in A1 the contents of first register (any number type).

(GDIV reg reg/imm) LAP function

OpenLisp Reference Manual Eligis

Page 112

Divide in A1 the contents of first register (any number type) with the value of reg/imm.

(GDECR-REF n1 n2) LAP function

Decrement the value of local variable at offset n2 from the block n1. A1 contains the modified value.

(GDECR-SREF offset) LAP function

Decrement the stack value at offset (positive value means function parameter, negative value means local
variable).

(GE n) LAP function

Compares in A1 if the n integer arguments pushed on stacks are greater or equal pair wise.

(GEQN reg req/imm) LAP function

Returns in A1 if reg and reg/imm are the same number.

(GGE n) LAP function

Compares in A1 if the n numeric arguments pushed on stacks are greater or equal pair wise.

(GGT n) LAP function

Compares in A1 if the n numeric arguments pushed on stacks are greater pair wise.

(GINCR-REF n1 n2) LAP function

Increment the value of local variable at offset n2 from the block n1. A1 contains the modified value.

(GINCR-SREF offset) LAP function

Increment the stack value at offset (positive value means function parameter, negative value means local
variable).

(GLE n) LAP function

Compares if the n numeric arguments pushed on stacks are less than or equal pair wise.

(GLT n) LAP function

Compares if the n numeric arguments pushed on stacks are less than pair wise.

(GMUL reg reg/imm) LAP function

Multiply in A1 the contents of first register (any number type) with the value of reg/imm.

(GNEQN reg req/imm) LAP function

Returns in A1 if reg and reg/imm are the two distinct number.

(GREF reg symb) LAP function

Returns in register reg the global value of symbol symb.

OpenLisp Reference Manual Eligis

Page 113

(GSET symb) LAP function

Sets the global value of symbol symb with A1.

(GSUB reg reg/imm) LAP function

Substract in A1 the contents of first register (any number type) with the value of reg/imm.

(GSUB1 reg) LAP function

Decrement in A1 the contents of first register (any number type).

(GT n) LAP function

Compares in A1 if the n integer arguments pushed on stacks are greater pair wise.

(INCR-REF n1 n2) LAP function

Increment the integer value of local variable at offset n2 from the block n1. A1 contains the modified value.

(INCR-SREF offset) LAP function

Increment the integer stack value at offset (positive value means function parameter, negative value means local
variable).

(JEQ label cst) LAP function

Jumps to label label if A1 is equal to constant cst.

(JNEQ label cst) LAP function

Jumps to label label if A1 is not equal to constant cst.

(JNIL symb) LAP function

Jumps to label symb if A1 is null.

(JTRUE symb) LAP function

Jumps to label symb if A1 is not null.

(JUMP symb) LAP function

Jumps to label symb.

(LE n) LAP function

Compares if the n arguments pushed on stacks are less or equal pair wise.

(EQ reg reg/imm) LAP function

Compares in A1 if reg and reg/imm are the same object.

(LEAVE n) LAP function

Leave from a function with n local arguments. A1 is not modified by this instruction.

OpenLisp Reference Manual Eligis

Page 114

(LENGTH reg) LAP function

Returns in A1 the length of object pointed by reg.

(LENTRY n1 n2 n3) LAP function

Declares a local function with n1 actual parameters, n2 is non-0 if the function has been declared with &rest. The
last parameter n3 is the number of local parameters on the stack.

(LIST n) LAP function

Creates in A1 a list with the n arguments pushed on stack. The stack is cleared by this instruction.

(LOCAL-CALL n) LAP function

Calls a local function (as created by labels or flet) with n arguments pushed on stack. The result is stored in A1.
After this call, the stack is cleared by the number of pushed values.

(LOCAL n) LAP function

Returns in A1 the value of nth local variable.

(LREF n1 n2) LAP function

Loads in A1 the value of variable at offset n2 in display n1.

(LSET n1 n2) LAP function

Sets with the value in A1 the variable at offset n2 in display n1.

(LT n) LAP function

Compares if the n arguments pushed on stacks are less than pair wise.

(MENTRY n1 n2 n3) LAP function

Declares a macro function with n1 actual parameters, n2 is non-0 if the function has been declared with &rest.
The last parameter n3 is the number of local parameters on the stack.

(MOVE reg reg/imm) LAP function

Copy the into the first register the value of reg/imm.

(MUL reg reg/imm) LAP function

Copy the into A1 the value of the first register the value of reg/imm.

(NEQ reg reg/imm) LAP function

Compares in A1 if reg and reg/imm are not the same object.

(NEQN reg reg/imm) LAP function

Copy the into the first register the value of reg/imm.

OpenLisp Reference Manual Eligis

Page 115

(NEXT-REF n1 n2) LAP function

Makes the value of local variable at offset n2 from the block n1 point to its CDR. A1 contains the modified
value.

(NEXT-SREF offset) LAP function

Advance in the list, the stack value at offset (positive value means function parameter, negative value means
local variable).

(NOP) LAP function

No operation.

(NULL reg) LAP function

Returns t in A1 if the value of register reg is null and nil otherwise.

(PARAM n) LAP function

Returns in A1 the value of nth local variable.

(POP reg) LAP function

Remove into the register reg the top of the stack.

(PROTECT reg) LAP function

Setup a new UNWIND-PROTECT block with the cleanup function set in register reg.

(PUSH reg/imm) LAP function

Push on the stack the value of reg/imm. A1 is not modified by this instruction.

(PUSH-FUNCTION symb) LAP function

Push on the stack the functional value of symbol sym. A1 is not modified by this instruction.

(PUSH-LOCAL symb) LAP function

Push on the stack the functional value of a locally defined function sym. A1 is not modified by this instruction.

(PUSH-REF n1 n2) LAP function

Push on the stack the value of local variable at offset n2 from the block n1. A1 is not modified by this
instruction.

(PUSH-DREF symbol) LAP function

Push on the stack the value of dynamic variable named symbol. A1 is not modified by this instruction.

(PUSH-GREF symbol) LAP function

Push on the stack the value of global variable named symbol. A1 is not modified by this instruction.

(PUSH-SREF offset) LAP function

OpenLisp Reference Manual Eligis

Page 116

Push the stack value at offset (positive value means function parameter, negative value means local variable).

(RECURSE n) LAP function

Call recursively the current function with n argument pushed on the stack.

(RETURN-FROM label) LAP function

Return from label label.

(RETURN) LAP function

Return form the current function. A1 is not modified by this instruction.

(SET-CAR reg reg/imm) LAP function

Change the car of register reg/imm with value of reg.

(SET-CDR reg reg/imm) LAP function

Change the cdr of register reg/imm with value of reg.

(SET-ELT reg1/imm reg2 reg3/imm) LAP function

Set the value form reg1/imm into the sequence reg2 indexed by reg3/imm.

(SET-LOCAL n) LAP function

Set the value of nth local variable with the content of A1 register.

(SET-PARAM n) LAP function

Set the value of nth function parameter with the content of A1 register.

(SUB reg reg/imm) LAP function

Subtract in A1 the first register value with the value of reg/imm.

(SUB1 reg) LAP function

Subtract 1 on A1 the register value of reg.

(TAILREC n) LAP function

Call tail-recursively the current function with n argument pushed on the stack. This instruction does not return.

(THROW reg reg/imm) LAP function

Throw value reg/imm form the CATCH block reg.

(TRACE imm) LAP function

Display the immediate value imm.

OpenLisp Reference Manual Eligis

Page 117

(WITH-HANDLER reg) LAP function

Setup a WITH-HANDLER block with the handler function in register reg.

OpenLisp Reference Manual Eligis

Page 118

68 C mapping of Lisp objects

This chapter explains some OpenLisp internals.

69 Internal representation

The type of a basic lisp object is determined directly by its address. OpenLisp uses a “low tag” scheme
that codes the objet type in the 4th lowest bits of its address. Given a 32 bits processor you have the
following representation.

 31-28 27 - 24 23 - 20 19 - 16 15 - 12 11 – 8 7 - 4 3 2 1 0

 X X X X X X X 0 0 0 0 INTEGER
 X X X X X X X 0 0 0 1 FLOAT
 X X X X X X X 0 0 1 0 STRING
 X X X X X X X 0 0 1 1 FLOAT
 X X X X X X X 0 1 0 0 CONS
 X X X X X X X 0 1 0 1 FLOAT
 X X X X X X X 0 1 1 0 VECTOR
 X X X X X X X 0 1 1 1 FLOAT
 X X X X X X X 1 0 0 0 SYMBOL
 X X X X X X X 1 0 0 1 FLOAT
 X X X X X X X 1 0 1 0 STRING
 X X X X X X X 1 0 1 1 FLOAT
 X X X X X X X 1 1 0 0 CONS
 X X X X X X X 1 1 0 1 FLOAT
 X X X X X X X 1 1 1 0 VECTOR
 X X X X X X X 1 1 1 1 FLOAT

That way, using a fast mask operation, we can know the exact type of an object:

FLOAT F (obj & 0x00000001) != 0x01
INTEGER F (obj & 0x0000000F) == 0x00
CONS F (obj & 0x00000007) == 0x04
SYMBOL F (obj & 0x0000000F) == 0x08
STRING F (obj & 0x00000007) == 0x02
VECTOR F (obj & 0x00000007) == 0x06

OpenLisp Reference Manual Eligis

Page 119

As you may notice, integers don’t allocate space but are limited to range +/-2n-5. There is also a “boxed”
integer representation to store values out of this range. Generally, complex types like streams, hash
tables, external pointers… use a basic vector object with the specific type in its extended type field.
Concrete implementation details are beyond the scope of this document.

64bit processors, because of wider alignment, use five bits for tags but the general principle remains the
same.

70 Objects creation

POINTER
olnewsymbol(CLCHAR *name);

Returns the symbol object in current package with print name name. If this symbol exists, it is
simply returned. Otherwise a new object is created.
Example:

mysym = olnewsymbol(nil, LCSTR("mysymb"));

POINTER
olallocstring(POINTER len, POINTER init);

Returns a new lisp string of len characters all initialized to init (a character object).

POINTER
olallocvector(POINTER len, POINTER init);

Returns a new lisp vector of len objects all initialized to init (any lisp object).

POINTER
olcons(POINTER car, POINTER cdr);

Returns a new dotted-pair (car . cdr).

POINTER
olmakefixnum(int i);

Returns a new lisp integer from C integer i.

POINTER
olmakefloat(DOUBLE f);

Returns a new lisp float from C float f.

71 Calling Lisp code from C

POINTER
olevalbuffer(LCHAR *lispexp);

Call the internal evaluator with lispexp which should be a string that correspond to a valid Lisp
expression.

LCHAR *
olstringevalbuffer(LCHAR *lispexp, LCHAR *res, int size);

OpenLisp Reference Manual Eligis

Page 120

Call the internal evaluator with lispexp which should be a string that correspond to a valid Lisp
expression. The result is stored in the given res string buffer having a length of size characters. If
res is NULL, size is ignored and the string is allocated using olhookalloc (malloc in general).
Only in that case, the returned string must be free by the caller using olhookfree function.

Example1:

#define OLPRMAXBUF 1024

LCHAR buf[OLPRMAXBUF];
LCHAR *res;

res = olstringevalbuffer(LCSTR("(fib 20)"), buf, OLPRMAXBUF);

Example2:

LCHAR *res;

res = olstringevalbuffer(LCSTR("(fib 20)"), NULL, 0);
...
olhookfree(res);

POINTER
ollispcall(POINTER fun, POINTER arg1, ..., POINTER argN);

When you have direct access to the function and its arguments, ollispcall is much more
efficient. It calls fun function using a mechanism similar to funcall.

Example:

fib20 = olevalbuffer(LCSTR("(fib 20)"));

or

fibfn = olmakesymbol(nil, LCSTR("fib"));
fib20 = ollispcall(fibfn, olmakefix(20));

OpenLisp Reference Manual Eligis

Page 121

72 Source file contents

OpenLisp is written in several C source files. Some of them (olinit, gc, eval, function ..) are part of
the kernel and should never be modified, some other (openlisp, toplevel, debug, ..) are there to provide a
usable “standard” Lisp environment. Last, the remaining files are only provided as “demonstrations” of
OpenLisp extensibility and integration with other environments.

73 Description for kernel files:

bignum.c This file contains the bignum specific code.

bitvect.c This file contains the <simple-bit-vector> specific code.

charutil.c This file contains char internal routines. It mainly deal with UTF-8 encoding.

class.c This file contains the definition of OpenLisp Object system and generic functions.

error.c This file contains the condition system.

function.c This file contains the most standard functions as defined by ISLISP standard (cons, length,
elt, ..). Functions are defined in the same order as in ISO/IEC 13816:2007(E) ISLISP Programming
Language document.

gc.c This file contains the memory allocation scheme and the Garbage Collector.

hash.c This file implements hash-table functions.

lap.c This file contains the LAP code interpreter.

memory.c This file allocates memory and initializes OpenLisp memory zone. On some systems (mostly
WIN32 and unix with mmap), it deals with the virtual memory manager to provide dynamic zone allocations and
extensions.

OpenLisp Reference Manual Eligis

Page 122

misc.c This file implements OpenLisp extensions to ISLISP standard (cadr, cddr, delete,
reverse…).

module.c This file implements the OpenLisp module facility (require, provide).

number.c This file implements integer, float and mixed arithmetic functions. When the C macro named
_IEEE31 is defined (default), OpenLisp uses a float representation based on 31 bits (or 63 bits) + 1 bit tag.
That way, floats are not allocated and the float itself is coded in the address.

olinit.c This file is used to bootstrap OpenLisp, it allocates memory and create the standard symbols
binding.

physio.c This file contains the only system dependent code. It mainly deals with low-level I/O and
advanced system features. It mostly relies on ISO C and POSIX features but can also contains specific code that
uses the system API (i.e. NT, System V).

packages.c This file contains the package management routines.

print.c This file implements ouput functions (mainly format and related functions).

rational.c This file contains the rational specific code.

read.c This file implements input functions (mainly read and related functions)

sockets.c This file implements, when available, sockets extensions to streams functions.

streams.c This file implements streams functions.

types.c This file implements type checking for standard Lisp objects.

eval.c This file implements the evaluator (mainly eval function).

openlisp.c This file is the standard entry point of OpenLisp. It contains main and launch OpenLisp
and its toplevel loop.

toplevel.c This file implements the standard toplevel loop.

74 Complementary files:

The following files are not always needed when OpenLisp is used as a transparent Lisp engine used from
C/C++ code.

debug.c This file implement the internal debugger.

evalbuf.c This file contains functions that help communication between C and Lisp.

odsp.c This file implements the OpenLisp Dynamic Server Page.

olsimple.c This file is an example how OpenLisp can be used from a standard C/C++ code. It works in
character mode as well as with Windows API (Windows 3.x, Windows 9x or Windows NT).

reglisp.c This file implements regular expression functions.

xmllisp.c This file implements simple a xml lisp reader..

dos/graphics.c This file implements a minimal set of functions to display graphics on MS-DOS (now
obsolete).

OpenLisp Reference Manual Eligis

Page 123

dos/dosterm.c This file implements the virtty functions for MS-DOS.

nt/ntterm.c This file implements the virtty functions for NT/9x.

win/windows.c This file implements the virtty and graphics functions for Windows API (16/32
bits).

win/winterm.c This file implements a graphic toplevel under Windows.

x11/x11.c This file implements a graphic functions for X11.

OpenLisp Reference Manual Eligis

Page 124

References

[ABE85] Abelson & Sussman, Structure and Interpretation of Computer Programs, The MIT Press,
McGraw Hill Book Company, 1985.

[BOE95] Boehm, H., Dynamic Memory Allocation and Garbage Collection, Computers in Physics, 3,
May/June 1995, pp. 297-303.

[C90] ISO/IEC 9899:1990, Programming Language - C, 1990.

[CHA85a] Jérôme Chailloux, Le-Lisp version 15, le manuel de référence; documentation INRIA, Février
1985.

[CHA85b] Jérôme Chailloux, La machine virtuelle LLM3, rapport technique N° 55, INRIA, Juin 1985.

[CPP98] ISO/IEC, 14882:1998(E) - Programming Language - C++. September 1998.

[DEL91] Vincent Delacour, Gestion mémoire automatique pour langages de programmation de haut
niveau, Thèse d'Université PARIS VI - 14 Juin 1991.

[GAB85] Richard P. Gabriel, Performance and Evaluation of Lisp Systems; Research Reports and Notes
- Computer Systems Series, The MIT Press, 1985.

[I3E85] IEEE standard 754-1985, IEEE standard for binary floating point arithmetic. IEEE New York
1985.

[ILO92] ILOG, Le-Lisp version 16, le manuel de référence; Février 1992.

[ILO94] ILOG, ILOG Talk, Reference Manual, Version 3.13, 1995.

[ISA99] ISO, IS0/IEC 10967-2:1998, Information technology – Language independant arithmetic –
Part 2: Elementary numerical functions. 1998.

[ISC87] ISO, IS0 8859-1:1987, Information processing – 8 bit single-byte coded graphic character sets
– Part 1: Latin alphabet N°1. 1987.

OpenLisp Reference Manual Eligis

Page 125

[ISU93] ISO, IS0/IEC 10646-1:1993, Information technology – Universal Multiple-Octet Coded
Character Set (UCS) – Part 1: Architecture and Basic Multilingual Plane. 1993.

[ISL97] ISO, ISO/IEC 13816:1997(E) Programming Language ISLISP. 1997.

[ISL07] ISO, ISO/IEC 13816:2007(E) Programming Language ISLISP. 2007.

[IZU98] N. Izumi and T. Ito: Interpreter and Compiler of the ISO Standard Lisp ISLISP, Proc National
Convention of Information Processing Society of Japan, Vol.1, pp.323 – 324 (1998)

[JUL86] Christian Jullien, Le-Cool : Un langage orienté objet à hiérarchie multiple pour la
représentation des connaissances en Intelligence Artificielle. Thèse de doctorat de 3ème cycle.

[JUL91] Christian Jullien, MLisp 1.7, manuel de référence. (unpublished).

[KEE89] Keen, Sonya E, Object-Oriented Programming in Common Lisp : A Programmer’s Guide to
CLOS, Addison-Wesley, 1989.

[MCA62] John McCarthy, LISP 1.5 Programmer’s Manual, The Computation Center and Research
Laboratory of Electronics. Massachusetts Institute of Technology, 1962.

[PIT01] Kent M. Pitman, Condition Handling in the Lisp Language Family, 2001 appears in Advances
in Exception Handling Techniques.

[PEY87] Simon L. Peyton Jones, The Implementation of Functional Programming Languages, 1987
Prentice-Hall International Series In Computer Science.

[POS1-90] ISO/IEC 9945-1:1990, Information technology - Portable Operating System Interface (POSIX)
- Part 1 : System Application Program Interface (API) [C Language], 1990.

[POS2-93] ISO/IEC 9945-2:1993, Information technology - Portable Operating System Interface (POSIX)
- Part 2 : Shell and Utilities [Volume I & II], 1993.

[PSG-95] ISO/IEC 9945-1g:1995, Information technology - Portable Operating System Interface
(POSIX) - Part xx : Protocol Independent Interface (PII) [P1003.1g/D6.1], 1995.

[QUE92] Christian Queinnec, Sémantique des dialectes de Lisp, X & INRIA (non publié).

[QUE94] Christian Queinnec, Les Langages Lisp, InterEditions, 1994.

[SCH67] H. Schorr and W. M. Waite. An efficient Machine-Indépendant Procedure for Garbage
Collection in Various List Structures. Communications of the ACM, 10(8) :501-506, 1997.

[SER94] Manuel Serrano. Vers une compilation portable et performante des langages fonctionnels.
Thèse d'Université PARIS VI.

[SEG92] Robert SEDGEWICK. Algorithms in C++. Addison Wesley, 1992.

[SOK93] Microsoft. SOCKETS REFERENCE MANUAL, VERSION 1.1, 1992-1995.

[SPI90] Eric Spir. Gestion dynamique de la mémoire dans les langages de programmation -
application à Lisp, 1990.

[STE90] Guy Lewis Steele Jr. COMMON LISP: The Language, Digital Press, second edition, 1990.

[VOC85] ISO/IEC 2382/15, Data processing - Vocabulary - Part 15 : Programming languages, First
edition - 1985-11-01.

OpenLisp Reference Manual Eligis

Page 126

[W&H84] Winston & Horn. Lisp (second edition). Addison Wesley, 1984.

[X3J91] X3J13. Working Draft: ANSI - Programming Language COMMON LISP.

[YUA91] Taiichi Yusa & Alt., The Kernel Lisp Language for ISO Lisp Standardization - The Japanese
Proposal, (unpublished).

OpenLisp Reference Manual Eligis

Page 127

General Index

CONTENTS!3

1 Introduction!7
2 Presentation!8
3 Portability.!9
4 Credits.!9

5 Getting started!10

6 Language Extensions to ISLISP Standard!12
7 ISLISP Compatibility.!12
8 Controlling the reader and the printer.!12
9 Extended Dispatching Macro Character Syntax.!16
10 Control of Time of Evaluation.!17
11 Control Structures.!17
12 Evaluation Functions!21
13 Symbol Functions!21
14 Lists Class!25
15 Using Lists as Sets!26
16 Logical Operations on Numbers!31
17 Predicates on Numbers!34
18 Other predicate!35
19 String Construction and Manipulation!35
20 Vector Class Functions!37
21 Bit Vector Functions!38
22 Character Class Functions!39
23 Sequence Class Functions!41
24 A-List Functions!44
25 Rational Functions!45
26 Class Functions!46

OpenLisp Reference Manual Eligis

Page 128

27 Streams Functions!50
28 The Readtable!52
29 Input/Output Files!53
30 System and process functions!56
31 Socket Streams Functions!61
32 Miscellaneous Functions!70
33 Hash tables.!72
34 Regular expressions.!75
35 Windows registry.!76

36 OpenLisp Compiler!78
37 Compiler variables and functions.!78

38 Standalone applications!80
39 General principle.!80
40 Create your own project!80
41 Tuning and debugging your application!81

42 Executable core image!82

43 Standard Library!83
44 Module and Package Functions.!83
45 Defining Structures.!87
46 Sorting.!90
47 Date Library.!91
48 FASL (obsolete) Format.!92
49 Trace Library.!92
50 Internal Debugger.!93
51 Performance Analysis.!93
52 Pretty Printer.!94
53 GC Functions.!95
54 External Functions.!95
55 Multiple Values!97
56 Virtual Terminal.!99

57 OpenLisp Dynamic Server Page!101
58 Install OpenLisp as a NPH-CGI/1.1 compliant on-the-fly filter.!102

59 OpenLisp and mod_lisp!104
60 What is mod_lisp?!104
61 Preparing Apache with mod_lisp!104

62 GNU-Emacs integration!106
63 What is Emacs.!106
64 Install Emacs.!106
65 Use OpenLisp inside Emacs.!107
66 Special commands for OpenLisp mode!107

67 LAP Format!108

68 C mapping of Lisp objects!118
69 Internal representation!118
70 Objects creation!119
71 Calling Lisp code from C!119

72 Source file contents!121
73 Description for kernel files:!121
74 Complementary files:!122

OpenLisp Reference Manual Eligis

Page 129

References!124

General Index!127

