PDP-11 L110
System Description
Forrest Howard
5/28/75

Core Allocation

D-Space Systems

e—_———— - ! x00000000 boundary

! .psect ddtpr ! 2

| e e !

! .psect datom !
e—_———— - ! x00000000 boundary
! .psect initcode ! 2

smallints also occupy the last 1280. bytes with the stacks.

i&d space

i space
| e e !
! .psect startc !
| e e !
! .psect shrcode !
! !
! !
| e e !
! .psect initcode !
| e e !

d space

! data !

! <blank> !
e—_———— - ! x00000000 boundary
! .psect dsubr ! 2

! ! 2

| e e !

! psect ddtpr !

| e e !

! psect datom !
e—_———— - ! x00000000 boundary
! .psect errorm ! 2

stacks

note all the data is non-sharable
smallints occupy the highest 1280. locations

One Page is 400 Octal Bytes.

As more core is needed by L110 for port buffers, or pages for
atoms , ints, or dtprs, the routine GLOBALLOC searches out core for
blank pages (such as those returned from ports when closed) and requests
more core from UNIX as needed.

The monitor automatically keeps track of the control stack and
allocates more core to it as needed.

The data region expands upwards (i.e. from 0 to 177776) in 400
Octal chunks.

The control stack expands down (towards 0).

One should note that the psects "initcode" and "errorm" go
away. Errorm has the text for the error message file; this file is
written out when a "pure" lisp (one that has not had a SAVEME done on
it) is called with more than one arguement (that is with more than just
its name as arg). The algorithim for this writing is to do a creat on
the errorfil path name; if this succeds, then write the entire psect
into it, and then close it. Obviously, this requires write permission
on the errorfile.

The initcode section is thrown away in data-space only lisp by
being overwritten by data that is added. 1In i&d lisp, it is eliminated
from the file by the SAVEME function.

Data Objects

INTEGERS--2 16 bit words as follow:

foo: - o— % ——e————————————
! <high 15 bits *2>!garbage collect bit !
! low 16 bits !

The instruction ASL x is used to clear the GC bit when forming an INTE-
GER; V bit will be set if the number cannot be represented.

The instruction ASR x will get the original number back; the
sign bit is retained.

As an assembly switch Small Integers can also be selected. These have
an address above -1280. Note that the address determines the value, not
the contents. For this reason, all integer manipulation should be done
thruogh the "useful numeric macros" (see below).

DOTTED PAIRS--2 16 bit words.

foo: - @ -—-—————

Note that all addresses in L110 are even, so that the 0 bit of the car
is never set, save by the garbage collector. The 0 bit of the cdr is
always 0.

Dotted Pairs always start on 0 or 4 byte boundaries.

ATOMS--length 3+<<length of print string>+1>/2 16 bit words

foo: @ 0-————
! plist!gc bit !
! tlb !
! function !
] ra n]
] e m]
] 0 's]

Plist is similar to car of dtpr.

Tlb is similar to cdr of dtpr.

Binary#Code

(For D Space)

The Length of Binary Code is Dependent on t;he number of instructions in

it.

If Type is 0 if Lambda and 1 if Nlambda then:

foco: - 8—FF-—-—
! Type*100000+Args*1000+<fooend-foo>
! anil
! jsr pc,chas(chanl)
]
! <code>
]
fooend: ! last word of code

(For I&D Space)

Length is always 3 16 bit words:

foco: - 8—FF-—-—

! type*100000+args*1000+!gc
! anil
! pointer to instruction space

Note that the Binary Code object is always in data space,
may point to instruction space.

although it

Ports--5 16 bit words

input: ! savedc ! fdsn*2!gc !
! ptr to next char !
! ptr to buffer start !
! chars left !
! length !

output: ! count ! 200!fdsn*2!gcbit !
! ptr to next char !
! ptr to buffer start !
! chars left !
! length !

Where count in output buffer is number of characters since last Terpr.

Savedc in input buffer is the character saved by savec.

Free list formats

fnumber:———————- >1 ! +—=>1 ! e -->! nil !

1 —— e -~ 1 " 1 1
e ! | [! | [!
e ! | [! | [!
fdtpri-————--———- > ! +-->1 ! .o -->! nil !
1 —— e -~ 1 " 1 1
e ! | [! | [!
[1 [1 o 1
fratom:—-—————- > ——te———> | ——te——> L. ! anil !
!length ! !length ! !length !
! ! ! ! ! !
! ! ! ! ! !
! ! e — ! e — !
! !
! !
e — !
e ! | [! | [!
fbed:——————————- >lsize ! +-->!size ! “en -->!size !
I e SR IR S ! nil !

For i&d space, bcd free size is ignored as it is all 3 words.

All lengths are in words.

Telling what things are

Each data object has a type code:

0 int
1 dtpr
2 atom
3 bcd
4 port

In addition, there are several other types:

-1 system code (not used)
-2 i-o buffer

-3 free page owned by us
-4 stack space

-5 owned by monitor

There is a code associated with each 400 Octal byte page of which there
are 400 Octal).

This type information is kept in the QMAP, which is 400 bytes long. To
get the type of the address 1000 in register jl, for example, then

Ldtype #1000,71

expands as:

mov #1000,71
clrb jl
swab jl

movb gmap(jl),jl

Note that due to the index, the second arguement to ldtype must be a
register.

If the object whose type we wish to know is already in a regis-
ter, and we want to clobber the very same register with the type code,
then

Ldtype Rx

will do the trick.

Stacks:

Stack pointers

SP=%6 is the control stack pointer.
NP=%5 is the name stack pointer.

LTOP (a core location) points to top of name stack before current func-
tion call.

CONVENTIONS

Namestack entrys are 4 byte entrys that are <atom, form> pairs. NP
points to the last form pushed on. NP-2 points to the last atom pushed
on. NPLIM is highest possible location to be used by namestack. Name
stack grows upwards.

Control stack entrys are of several types. The first is a standard even
address, i.e. return addresses, nstack addresses, etc. These are
ignored during garbage collection. The second type of entrys are odd
addresses. 0dd address imply that the address&l77776 is to be protected
during garbage collection. The user is cautioned not to push spurious
odd addresses on the stack. The third entry type is a Function Block:

sp-> ! eexit !
! function !
! o0ld ltop !
! form !
! caller !

The form and Function are protected. The fourth type of object is a
"saved register" block generated by break:

sp-> ! bksnag !
! np !
! ltop !
! j3 !
! j2 !
! jl !
! b !
! return !

None of these objects are garbage collected.

other snags recognized have to do with register saving, specifically,
the r4rres, r3rres, r2rres, and rlrres snags. their format is

-10-

sp-> ! rnrres !
! register !

e e e 0 0 o

! return address !

where there are n registers in between the snag and address. The insta-
lation of register saves blocks on the stack must be done carefully,
least the user find himself with an illegal object on top of the stack.
Simarily, in order to take the registers off, care must be exercised.

The prototype for using register snags is:

foo: save3 ;save three registers

oo e

end: saveret ;which is a mov (sp),pc
;which will flush regs + return to my caller

-11-

Debugging note

As implied earlier, each page for data objects must begin on a
400 byte boundary. When L110 is linked with DDT for debugging, it is
likely that the begining of the first page will not be on a 400 byte
boundary. Therefor the file filler.mll is used to pad out the data so
that the first atom (atmnil) is in the correct place.

-12-

Use of Saveme

The saveme command writes out the current lisp data enviroment to a file
in an executable format. This is usefull to produce a copy of Lisp that
is already initilized, has the non-primatives loaded, etc.

The function of saveme for data-space only systems is sim-
ple;make a file header, write out the text, and write out the data. For
I&D space systems, life is a little harder. There are two flavors of
output; one for Harvard I&D, the other for Bell I&D. Saveme has to know
the difference.

Secondly, saveme cannot directly write out instruction space.
Rather, it opens itself for reading. The pathname that it uses is
defined in the dstuf.mll file. It then uses the data-space information
and the file to build an executable file, minus the instruction space
code for initilization and for saveme itself.

A reset is then executed.

Previous to the saveme, and implicit resetio is preformed.

-13-

Major System Modules

Conversion

String to Number

Name: strnum
Args: String in strbuf, null terminated.
Return: a/ptr to Int

b/NIL

Number to String
Name: numstr
Arg: a/ptr to int
Return: a/NIL
b/Pointer to string, null terminated.

String to Atom

Name : Strat

Args: String in strbuf
b/length of strin in words
j2/hash index

Return: a/pointer to atom
b/garbage

io

all iO routines take a port on top of the name stack
NIL is the port for the tty.

Get a Character

Name: xXgetc

call: getc (macro expanding to call xgetc)
Return: next char of port in char.

Save a Character

Name: xXsavec
Call: savec (macro expanding to call xcavec)
Arg: char in CHAR

Return: nothing

Output a String

Name: putstr

Arg: ptr to asciz string in B
Return: Nil in b

Read an Atom

Name: Ratomr

Args: none

Return: a/pointer to form
clobbers all registers!!!!

Print Number, Atom, Port, Bcd
Names: numout,atmout,portout,bcdout

Arg: a/ptr to object
Return: a,b NIL
Form I/O

-14-

4)

>)

6)

Read a Form

Name: Reader

Arg: Port on top of nstk

Return: a/ptr to form
b,jl-j3 clobbered

Print a Form

Name: printr

Arg: a/ptr to form
port on top of np

Return: a,b NIL

Integer Handlers

Numga---Macro

Arg: a/ptr to INT

leaves: High 16 bits in A
Low 16 bits in B

Numgjl

same as above except leaves result in jl1,3j2
NumgaO--Macro

Arg: a/ptr to int

leaves floating representation of int in ACO

Numgal
same as above except leaves result in acl

Nmstore--Macro
Arg: a/high 16 bits of int
b/low 16 bits of int

Result: a/ptr to int
b/NIL

NmstacO--Macro
Arg: ACO has floating representation of int

Result: a/ptr to int

Atom Handlers

Get Atom
Name Gatom
Arg a/number of words needed for string

Result: a/pointer to atom with NILs in bindings
Dtpr Handlers

CONSA--Macro calling

Name : xconsa
Args: a/car
b/cdr

Return: a/pointer to dtpr

-15-

CONSB--Macro calling

Name: xconsb
Args: a/car
b/cdr

Return: b/pointer to dtpr

CONSBNIL--Macro calling

Name: xconsbn

Args: a/car

Return: b/pointer to dtpr with NIL as cdr.

Consa, consb, and consbnil all protect a and b from garbage
collection

d Allocate Dtpr
Name: gdtpr
Arg: none

Return: a/ptr to dtpr

-16-

Useful Macros

register save

savel -- puts j3 in register snag on stack
save2 -- puts j2+j2 in stack block

save3 --3j1,32,33

saved -- b,j1,32,33

saveret --Returns from register save

push X
puts x onto control stack

pop X
puts top entry of stack into x

npush X
pushs <NIL,x> onto stack

npop X
pops top entry(form) of stack into x

propush x
pushs x onto control stack and marks it for garbage collection

unpropop x
undoes propush and puts result in x

call X

jsr pc,x
ret

rts pc
car X,y

puts car of what x points to into y

cdr X,Y
puts cdr of what x points to into y

jmpifinil x,y,flag
generates code to test x=nil and branch to y if true.
flag is for nilas0#0, when previous operation mov
manipulated x so that condition codes were set

jmpiftrue X,y
generates code to test x=true and branch to y if so.

getca
calls getc, moves char to a

loadnil x
loads nil into x

retnil

<loadnil a
ret >

=-17-

rettrue

ldtype

cmptype

generm

noway:

error
error

rsect s

dispatc

the 5 i

outstr

Note!

<mov #atrue,a
ret >

y or ldtype x,y
loads the type of the first arg into y.
y must be a register

XIYIZ
using y as scratch generate code to compare the type of
the first arguement to z.

</delimited string/>

All sorts of perversions are preformed to get the string
into errorm psect, from which it will be written to the
errorfile. Most importantly, psect changes are made;
beware therefore for local symbols. The psect eventually
returned to is the psect of the last ".rsect" (see below).
A template for using this is:

generm </This is my error message/<12>//>
mov #tmp-<"pl errorm>,a
call geterr ;reads the error message file
call putstr ;return with b pointing
;to string or asciz
;string of digits (if
;file not available)

</nasty delimited message/>

</nastier delimited message/>,where

code is generated to call the error package, and return to
to "where" when continue is evaled (or to cantcont if blank).

ectname
This is esentally a psect directive, except that it assigns
a number corresponding to the "sectname" to a variable that
it keeps. This allows things like generm to leave the cur-
rent psect, screw around, and then return the user to the
place that he was in.

h
generates call to routine which returns:

dispatch

jmp 1s jif
jmp 28 jif
jmp 3$ jif
jmp 4s jif
jmp 5% jif

is int
is dtpr
is atom
is bcd
is port

O 0 0 0 0

nstructions following dispatch must be of the two word variety
X

generates code to print the string at label x

to port on top of np
The following macros will work only(!) if the ctable

constants are not redefined!!!

-18-

isalph x,y
generates code to branch to y if the contents of x(a register)
is alphabetic (more or less)

isnum X,y
generates code ... is -,0,1...9

issep X,y
generates code ... is space, tab, cr, 1f, ...

isbrk X,y
generates code if seperator or (,), ., [, or 1.

isalnum x,y
same as isalph
isnum

Xy
X,y

4

-19-

Control Flow

! global 1<
! allocate !

talloc !
!buffer!

-20-

v v v v !
__________________________________ !
! numout ! ! atmout ! !bcdout ! !portout! !
__________________________________ !

! ! ! ! !

v ! ! ! !

________]]]]
] numstr]]]]]
________ ! ! ! !

! ! ! ! !

v vV o ———— v v v

——————————————— putstr!-—————————————— — -

! read !
!
v
!getc! <———-eeo !ratomr e >lsavec!
]]
v v
! find ! ! strnum !
! !
v v
!strat! !nmstore!
]]
v v

!gatom! !gdtpr!

-21-

