CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

Revised Internal Design of Spice Lisp

Skef Wholey
Scott E. Fahlman
Joseph Ginder

20 December 1983

DRAFT

Spice Document S026 [Revised]
Keywords and index categories: Lisp _
Location of machine-readable file: CM UC::<Wholcy.Australia)Rcvguts.Ms_s

Copyright © 1983 Carncgic-Mellon University

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA Order

3597, monitored by the Air Force Avionics l.aboratory under contract F33615-78-C-1551. The views and

conclusions contained in this document are those of the authors and should not be interpreted as representing

Cw the official policies, cither expressed or implied, of the Defense Advanced Rescarch Projects Agency or the
* U.S. Government. :

REVISED INTERNAL DESIGN OF SPICE LISP

Ca Table of Contents

1. Introduction

1.1. Scope and Purpose
1.2. Notational Conventions

2. Data Types and Object Formats

2.1. Lisp Objccts
2.2. Table of Type Codes
2.3. Table of Spacc Codes
2.4. Immcdiate Data Typc Descriptions
2.5. Pointer-Type Objects and Spaces
2.6. Forwarding Pointers
2.7. System and Stack Spaces
2.8. Vectors and Arrays
2.8.1. General Vectors
2.8.2. Integer Vectors
2.8.3. Arrays
2.9. Symbols Known to the Microcode
3. Runtime Fnvironment

3.1. Control Registers
3.2. Function Objcct Format
3.3. Control-Stack Format
\ 3.3.1. Call Frames
C/’ . 3.3.2. Catch Frames
3.4. Binding-Stack Format
4. Storage Management

4.]1. The Transporter
4.2. The Scavenger
4.3. Purification

5. Macro Instruction Set

5.1. Macro-Instruction Formats

5.2. Instructions
5.2.1. Allocation
5.2.2. Stack Manipulation
5.2.3. List Manipulation
5.2.4. Symbol Manipulation
5.2.5. Array Manipulation
5.2.6. Type Predicates
5.2.7. Arithmetic and Logic
5.2.8. Branching «@nd Dispatching
5.2.9. Function Call and Return
5.2.10. Miscellaneous
§.2.11. Sysierm Hacking

6. Control Comventions
6.1. Functon Calls

WO O 0000 WL & fWwWiw WK N

REVISED INTERNAL DESIGN OF SPICE LISP

6.1.1. Starting a Function Call
6.1.2. Finishing a Function Call
6.1.3. Returning from a Function Call
6.1.4. Returning Multiple-Values
6.2. Non-l.ocal Exits
6.3. Escaping to Macrocode
6.4. Errors
6.5. Trapping to the Accent Kernel
6.6. Interrupts
Appendix 1. Fasload File Format
1.1. General
1.2. Strategy .
1.3. Fasload Language
Appendix I1. The Opcode Definition File
Index

47
48
48
49
51
33
57
57
39
59

60
61

69
81

REVISED INTERNAL DESIGN OF SPICE 1ISP 1

Acknowledgments

The following people have been contributors to this and carlicr versions of the design of the Spice Lisp
instruction set: Guy L. Stecle Jr.. Gail E. Kaiser. Walter van Roggen, Ncal Feinberg, Jim large, and Rob

Mac! .achlan. The original instruction sct was looscly based on the MI'T Lisp Machine instruction set.

T'he FASI. file format was designed by.Guy L. Stecle Jr. and Walter van Roggen, and the appendix on this

subject is their document with very few modifications.

REVISED INTERNAL DESIGN OF SPICE T ISP ’ 2
1. Introduction

1.1. Scope and Purpose

NOTE: This document describes a new implementation of Spice Lisp as it is to be implemented on the
PERQ. running the Spice operating system., Accent. 'T'his new design is undergoing rapid change,-and for the
present is not guaranteed to accurately describe any past, present, or future implementation of Spice Lisp. All

questions and comments on this material should be directed to Skef Wholey (Wholey@CMU-CS-C).

This document specifies the instruction sct and virtual memory architecture of the PERQ Spice Lisp
system. ‘T'his is a working document, and it will change frequently as the system is developed and maintained.

If some detail of the system docs not agree with what is specified here, it is to be considered a bug.

Spice Lisp will be impiecmented on other microcodable machines, and implementations of Common Lisp
based on Spice Lisp exist for conventional machines with fixed instructions sets. These other

implementations are very different intcfnally and are described in other documents.

1.2. Notational Conventions

Spice Lisp objects are 32 bits long. The low-order bit of each word is numbered 0: the high-order bit is
numbered 31. If a word is broken into smaller units, these are packed into the word from right to left. For
cxample, if we break a word into bytes, byte 0 would occupy bits 0-7, ‘bytc 1 would occupy 8-15. byte 2 would
occupy 16-23, and byte 3 would occupy 24-31. In these conventions we follow the convehtions of the VAX;

the PDP-10 family follows the opposite convention, packing and numbering left to right.

All Spice Lisp documentation uses decimal as the default radix: other radices will be indicated by a

subscript (as in 778) or by a clear statcment of what radix is in use.

REVISED INTERNAL DESIGN QI~'SI’I(15 11SP 3
2. Data Types and Object Formats

2.1. Lisp Objects

I.isp objects are 32 bits long. They come in 32 basic types. divided into three classes: immediate data types.

pointer types. and forwarding pointer types. ‘The storage formats arc as follows:

Immediate Data Types: :
31 27 26 . 0

- e o o e = = " " " s e % P = s S W M= e e e me e am m s = = = A SR R e . R S m e e P e e a w e -

Pointer and Forwarding Types:

31 27 26 25 24 1 0
| Type Code (5) | Space Code (2) | Pointer (24) | Unused (1) |
2.2. Table of Type Codes
Code Type Class Explanation
0 Misc Immediate Trap object, stacks, system tables
1 Bit-Vector Pointer Vector of bits
2 Integer-Vector Pointer Vector of integers
3 String Pointer Character string
4 Bignum N Pointer Bignum .

5 Long-Float Pointer: Long float

6 Complex Pointer Complex number

7 Ratio Pointer Ratio

8 General-Vector Pointer. Vector of Lisp objects

9 Function Pointer Compiled function header

10 - Array Pointer Array header

11 Symbol Pointer Symbol

12 List Pointer Cons cell

13-15 Unused :

16 + Fixnum Immediate Fixnum >= 0

17 - Fixnum Immediate Fixnum < 0 .

18 + Short-Float Immediate Short float >= 0

19 - Short-fFloat Immediate .Short float < 0

20 Character Immediate Character object

21 Values-Marker Immediate Multiple values marker

22 Call-Header Immediate- Control stack call frame header
23 Catch-Header Immediate Control stack catch frame header
24 Catch-A11 Immediate Catch-A11 object

25 GC-Forward - Forward Object in newspace of same type

26-31 Unusad

REVISED INTERNAL DESIGN OF SPICE LISP 4

Code Space

(:»,h. 2.3. Table of Space Codes

Explanation

0 Dynamic-0 Storage normally garbage collected. space 0.
1 Dynamic-1 Storage normally garbage collected, space 1.
2 Static - Permanent objects, never moved or reclaimed.
3 " Read-Only Objects never moved, reclaimed, or altered.

2.4. Immediate Data Type Descriptions .

Misc

Fixnum

Short-Float

Reserved for assorted internal values, Bits 25-26 specify a sub-type code.

0 'Trap Ilegal object trap. If you fetch one of these, it’s an error except under
very specialized conditions. Note that a word of all zeros is of this type,
so this is uscful for trapping references to uninitialized memory. This
value also is used in symbo': to flag an undefined value or definition.

1 Control-Stack-Pointer .
The low 25 bits are a pointer into the control stack. This is a word
pointer that points to the proper virtual memory address. Pointers of
this form arc returned by certain system routines for use by debugging
programs. '

2 Binding-Stack-Pointer
The low 25 bits are a pointer into the binding stack. This is a word
pointer that points to the proper virtual memory address. Pointers of
this form are returned by certain system routines for use by debugging
programs.

3 System-Tablc-Pointer
‘The low 25 bits are a pointer into an arca of memory uscd for system
tables. This is a word pointer into an arca of the address space reserved
for data sent and received in Accent messages.

A 28-bit two's cdmplement integer. The sign bit is stored as part of the type code.

As with fixnums, the sign bit is stored as part of the type code. The format of short floating
point number can be viewced as follows:

- - . " D - > W D WP e N D D s W e - D WS e S S s S o e W P W e W - - W . e S S w wn

The sign of the mantissa is moved to the left so that these flonums can be compared just
like fixnums. The exponent is the binary two's complement exponent of the number, plus
128; then, if the mantissa is negative, the bits of the exponent field are inverted. The
mantissa is a 21-bit two’'s complement number with the sign moved to bit 27 and the

h
\,

O

REVISFD INTERNAL DESIGN O SPICE LISP ' S

Character

Valucs-Marker

Call-Hcader

Catch-Header

Catch-All

leading significant bit (which is always the complement of the sign bit and hence carrics no
information) swripped off. ‘T'he short flonum representing 0.0 has 07s in bits 0 - 27, It s
illegal for the sign bit to be 1 with all the other bits equal to 0. 'This ecncoding gives a range
of about 107® 0 107 and about 6 digits of accuracy. Note that long-flonums are
available for those wanting more accuracy, but they are less efficient to use because they
generate garbage that must be collected later.

A character object holding a character code. control bits, and font in the following format:

i S I Vg S T O

Used to mark the presence of multiple values on the stack. 'The low 16 bits indicate how
many valucs arc being returned. Note then, that only 65535 values can be returned from a
multiple-values producing form. These are pushed in order, then the Values-Marker is
pushed.

Marks the start of cach call frame on the control stack. The low-order 27 bits are used as a
place to stash information for certain special kinds of calls. ‘

For a normal function call, as created by the CALL or CALL-0 instruction, the low 27 bits
arc always 0.

Bit 22, if 1, indicates an “‘escape to macro” call frame, created when a macro-instruction
cannot be completed entirely within the microcode. In this casc, bits 16-17 indicate where
the result is supposed to go (sce section 6.3).

Bit 21, if 1, indicates a call frame that will accept multiple valucs to be returned. Such
frames arc-created by Call-Multiple, and causc Return to take certain special actions. Sce
section 6.1.3 for details. o

Bits 22 and 21 are mutually exclusive. It is undefined-what happens when both of these are
on at once. ' : .

Marks a catch frame on the control stack. If bit 21 is on, this indicates that the catching

form will accept multiple values. See section 6.2 for details.

Objcct used as the catch tag for unwind-protects. Special things happen when a catch
frame with this as its tag is encountered during a throw. Sce section 6.2 for details.

2.5. Pointer-Type Objects and Spaces

- Each of the pointer-type lisp objects points into a different space in virtual memory. There are scparaté

spaces for Bit-Vectors, Symbols, Lists, and so on. The 5-bit type-code provides the high-order virtual address

bits for the object, followed by the 2-bit space code, followed by the 25-bit pointer address. This gives a 31-bit

REVISED INTERNAL DESIGN OF SPICE ISP : 6

virtual address to a 32-bit word; since the PERQ is a word-addressed machine, the low-order bit will be 0, and
under Accent, the high order bit will be 0 (because the operating system lives in the upper half of the address
spacc). ‘This leaves us with a 30-bit virtual address. In cffect we have carved a 30-bit space into a fixed set of

24-bit subspacces. not all of which are used.

The space code divides cach of the type spaces into four sub-spaces. as shown in the table above. At any
given time, one of the dynamic spaccs is considered ncwspace, while the other is oldspace. T'he garbage
collector continuously moves accessible objects from oldspace into newspace. When oldspace contains. no
more accessible objects it is considered empty. A “flip” can then be done, turning the old newspacc into the
new oldspace. All type-spaces are flipped at once. Allocation of new dynamic objects always occurs in 4

newspace.

Optionally, the user (or system functions) may allocate objects in static or rcad-only space. Such objccts are
never reclaimed once they are allocated -- they occupy the space in which they were initially allocated for the
lifctime of the Lisp process. The advantage of static allocation is that the GC never has to move these objects,
thercby saving a significant amount of work, cspecially if the objects are large. Objccts in read-only space are
static, in that they are never moved or reclaimed: in addition, they cannot be altered once they are set up.
Pointers in read-only space may only point to read-only or static space, never to dynamic space. This saves
even more work, since rcad-only space does not necd to be scavenged, and pages of rcad-only matcrial do not

need to be written back onto the disk during paging.

Objects in a particular type-space will contain cither pointers to garbage-collectable objects or words of raw
non-garbage-collectable bits, but not both. Similarly, a space will contain cither fixed-length objects or
variable-length objects, but not both. A variable-length object always contains a 24-bit length field right-
justified in the first word, with the fixnum type-code in the high-order four bits. The remaining four bits can
be used for sub-type information. The length ficld gives the size of the object in 32-bit wérds. including the .
header word. The garbage colicctor needs this information when the object is moved, and it is also useful for

bounds checking.

The format of objects in cach space arc as follows:

Symbol Each symbol is represented as a fixed-length block of boxed Lisp cells. The number of
cells per symbol is S, in the following order:

Value cell for shallow binding.

Definition cell: a function or Tist.

Property 1ist: a list of attribute-value pairs.
Print name: a string. _

Package: the obarray holding this symbol.

H W - O

C

REVISED INTERNAT DESIGN OF SPIC1E TISP 7

[.ist

Genceral-Vector

Integer-Vector

Bit-Vector

Bignum

l.ong-Float

Ratio

Complex

Array

String

A fixed-length block of two boxed Lisp cells, the CAR and the CDR.

Vector of lisp objects. any length. The first word is a fixnum giving the number of words
allocated for the vector (up o 24 bits). ‘The highest legal index is this number minus 2.
The second word is vector entry 0, and additional entries arc allocated contiguously in
virtual memory. General vectors are sometimes called G-Vectors. (Sce section 2.8 for
further details.)

Vector of integers, any length. The 24 low bits of the first word give the allocated length in
32-bit words. The low-order 28 bits of the sccond word gives the length of the vector in
entries, whatever the length of the individual entries may be. 'The high-order 4 bits of the
sccond word contain access-type information that yields, among other things, the number
of bits per entry. Entry 0 is right-justified in the third word of the vector. Bits per entry
will normaily be powers of 2, so they will fit ncatly into 32-bit words. but if nccessary some
empty spacce may be left at the high-order end of cach word. Integer vectors are sometimes
called I-Vectors. (Sec scction 2.8 for details.)

Vector of bits, any length. Bit-Vectors are represented in a form identical to [-Vectors, but
live in a diffcrent space for efficiency reasons.

Bignums arc infinite-precision integers. represented in a format identical to I-Vectors.
Each bignum is stored as a series of 8-bit bytes, with the low-order byte stored first. The
representation is two's complement. but the sign of the number is redundantly encoded in
the subtype field of the bignum: positive bignums are sub-type 0, ncgative bignums sub-
type L. The access-type code is always 8-Bit.

[.ong floats are.stored as two consccutive words of bits, in the following format:

- e - W WP . P G A Wy S S VR GRS G e AR W M AP WD e R W R W D R GE WP ED AR e G W W S e S e R W W W . W e S S e W R W = W
- . w w m w w n w e e - = Te s e e M W W e W A = N e s M e s e e e

The exponent is biased by 1023. Exponents of 0 and 2047 arc reserved. The most
significant bit of the fraction is stripped off since it is always the complement of the sign
bit, and carries no information.

Ratios are stored as two consccutive words of Lisp objects, which should both be integers.

Complex numbers are stored as two consecutive words of Lisp objects, which should both
be numbers. '

This is actually a header which holds the accessing information and other information
about the array. The actual array contents are held in a vector (cither an I-Vector or.
G-Vector) pointed to by an entry in the header. .The header is identical in format to a
G-Vector. For details on what the array header contains, see section 2.8.3.

A vector of bytes. Identical in form to I-Vectors with the access type always 8-Bit.

‘:j>

0

REVISED INTEFRNAL DESIGN OF SPICE 1ISP ’ 8

.

However, instead of accepting and returning fixnums. string accesses accept and return
character objects. Only the 8-bit code field is actually stored. and the returned character
object always has bit and font values of 0.

Function A compiled Spice Lisp function consists of both lisp objects and raw bits for the code. The
Lisp objects are stored in the Function space in a format identical to that used for gencral
vectors, with a 24-bit length ficld in the first word. This object contains assorted
parameters needed by the calling machinery. a pointer to an 8-bit I-Vector containing the
compiled byte codes, a number of pointers to symbols used as special variables within the
function, and a number of lisp objects used as constants by the function. For details of the
code format and definitions of the byte codes. see section §.1.

2.6. Forwarding Pointers

GC-Forward When a data structure is transported into newspace, a GC-Forward pointer is left behind in
the first word of the oldspace object. This points to the same type-space in which it is
found. For example, a GC-Forward in G-Vector spacc points to a structure in the G-
Vector newspace. GC-Forward pointers arc only found in oldspace.

2.7. System and Stack Spaces

The virtual addresses below 08000000 16 arc not occupicd by Lisp objects, since I.isp objects with type code

0 arc immediate objects. Some of this space is used for other purposes by Lisp. The current allocations are as

follows:

Address (base 16) Use

00000000 - O1FFFFFF Microcode tables
02000000 - OQO3FFFFFF Control .Stack
04000000 - OSFFFFFF Binding Stack
06000000 - O7FFFFFF System tables

Microcode tables for a given process are never accessed by l.isp-level code from that process (the SAVE
function looks at the allocation table of another L.isp process). These tables contain allocation information for
the various spaces and pbimcrs to functions that are called when escapes o macrocode are done. There are

currently two microcode tabies: -

Address (base 16) Use
00010000 - 00010100 Allocation table
00020000 - 00020100 Escape function table

The format of the allocation table is described in chapter 4, and the format of the cscape function table is

described in section 6.3.

The control stack grows upward (toward higher addresses) in memory, and is a framed stack. It contains

REVISED INTERNAL DESIGN Ol SPICY: 1LISP 9

only general Lisp objects (with some random things cncoded as fixnums or Misc codes). Every object pointed
to by an entry on this stack is kept alive. The frame for a function call contains an arca for the function’s
arguments. an arca for local variablces. a pointer to the caller’s frame, and a pointer into the binding stack. The

frame for a Catch form contains similar information. ‘T'he precise stack format can be found in chapter 3.

The special binding stack also grows upward. "This stack is used to hold previous valuces of special variables
that have been bound. It grows and shrinks with the depth of the binding environment, as reflected in the

control stack. -'T'his stack contains symbol-value pairs, with only boxed 1.isp objccts present.

System table space is used to interface lLisp to the operating system. This is the only part of the address
space that contains invalid memory, so all Accent messages received will appear in this space. Since files are
sent and received in messages, all files will be mapped into this space. Data in system table spacc may be

accessed and altered by the instructions described in section 5.2.11.

There are significant performance advantages to be gaincd by aligning all objects on the PERQ’s “quad-
word” (64-bit) boundaries. This happens automatically for conses, long-floats, complex numbers, and ratios,
which are all two Lisp-words long. For all other pointer-type objects, the allocator makes sure that the object
starts on a quad-word boundary, wasting a word with a Misc-Trap code if necessary. 'Thus, every pointer
(except possibly for stack and system arca pointers) will have its two low-order bits 0. User-level code should

never have to notice this distinction.

2.8. Vectors and Arrays

Common [.isp arrays can be represented in a few different ways in Spice Lisp -- different representations
have different performance advantages. Simple general vcciors. simple vectors of integers, and simple strings
arc basic Spice Lisp data types. and access to these structures is quicker than access to non-simple (or
“complex™) arrays. However, all muiti-dimensional arrays in Spice L.isp are complex arrays, so references to

these is-always through a header structure.

2.8.1. General Vectors

G-Vectors contain Lisp objects. The format is as follows:

| Fixnum code (4) | Subtype (4) | Allocated length (24) A |

P R e e et e e e m e e - . e e e R e e e cm_ et e e e, ae .- -

- - - - - D oy > > = - D WS " S WD B . M P WP Mo W P MR T WP WP W W e . A W A WD MDD S W S N D W W . W we e W w -

Note that the subtype field overlaps the type field -- this means that thé subtype can change the sign bit of

REVISED INTERNAL DESIGN O SPICE 1ISP 10

the fixnum. The first word of the vector is a header indicating its length: the remaining words hold the boxed
entries of the vector, one entry per 32-bit word. The header word is of type fixnum. [t contains a 3-bit
subtype ficld. which is used w indicate several special types of general vectors. At present, the following

subtype codes arc defined:

0 Normal. Used for assorted things.

l Named structure crcuicd by DEFSTRUCT, with type name in cntry 0.
2 EQ Hash Tabie. last rchashed in dynamic-0 space.

3 FQ Hash Table, last rchashed in dynamic-1 space.

4 FEQ Hash Tablc, must be rehashed.

_Following the subtype is a 24-bit ficld indicating how many 32-bit words are allocated for this vector,
including the header word. [.egal indices into the vector range from zero to the number in the allocated
length field minus 2, inclusive. The index is checked on every access to the vector. Entry 0 is stored in the

second word of the vector, and subscquent entrics follow contiguously in virtual memory.

Once a vector has been allocated, it is possible to reduce its length by using the Shrink-Vector instruction,

but never to increase its length, even back to the original size. since the space freed by the reduction may have

. been reclaimed. This reduction simply stores a new smaller value in the length field of the header word.

[t is not an crror to create a vector of length 0, though it will always be an out-of-bounds crror to access such
an object. The maximum possible length for a general vector is 2%4-2 entries, and that is only possible if no

other general vectors are present in the space.

AObjccts of type Function and Array are identical in format to gencral vectors, though they have their own

spaces. In both cases, only 0 is currently used in the sub-type ficld of the header word.

2.8.2. Integer Vectors

I-Vectors contain unboxed items of data. and their format is more complex. The data items come in a
variety of lengths, but are of constant length within a given vector. Data going to and from an [-Vector are
passed as Fixnums, right justified. Internally these integers are stored in packed form, filling 32-bit words

without any type-codes or other overhead. The format is as follows:

NOOEsE WN O

REVISFDINTERNAL DESIGN Ol SPICE T ISP ' 11

- e e e e = - . . = = = " . Y= P e s e s T = e e = e e - e T e e m ew e e e

| Fixnum code (4) | Subtype (4) | Allocated length (24) |

- e e v e - = T e . = wn - = e A n e . - " e S MR W T e W e M M e W w w we we w w w as
- - n wn o " - " - i e - - - - e W e v b - e R R M an e n T mm M - S . - e 4a dm - - e -

B R i S e e]

Note that the subtype ficld overlaps the type ficld -- this mecans that the subtype can change the sign bit of
the fixnum. ‘The first word of an [-Vector contains the Fixnum type-code in the op 4 bits, a 4-bit subtype
code in the next four bits, and the total allocated length of the vector (in 32-bit words) in the low-order 24

bits. At present, the following subtype codes arc defined:

0 Normal. Used for assorted things.

1 Code. This is the code-vector for a function object.

The second word of the vector is the one that is looked at every time the vector is accessed. The low-order
28 bits of this word contain the number of valid entries in the vector, regardless of how long each entry is.
The lowest legal index into the vector is always 0; the highest legal index is onc less than this number-of-
entries ficld from the second word. These bounds are checked on every access. Once a vector is allocated, it
can be reduced in size but not increased. The Shrink-Vector instruction changes both the allocated length

ficld and the number-of-entrics field of an integer vector.

The high-order 4 bits of the sccond word contain an access-type code which indicates how many bits are

occupied by cach item (and therefore how many items arc packed into a 32-bit word). The encoding is as

follows:
1-Bit 8 Unused
2-Bit 9 Unused
4-Bit 10 Unused
8-Bit 11 Unused
16-8it 12 Unused
Unused 13 Unused
Unused 14 Unused

Unused 15 Unused

In [-Vectors, the data items are packed into the third and subsequent words of the vector. Item 0 is right
justified in the third word, item 1 is to its left, and so on until the allocated number of items has been
accommodated. All of the currently-defined access types happen to pack neatly into 32-bit words, but if this
should not be the case, some unused bits would remain at the left side of each word. No éttcmpt will be made

to split items between words to use up these odd bits. When allocated. an I-Vector is initialized to all 0's.

REVISED INTERNAL DESIGN OF SPICE 1 ISP ‘ 12

As with G-Vectors, it is not an crror to create an I-Vector of length 0. but it will always be an error to access
such a vector. The maximum possible length of an [-Vector is 2281 cntries or 2%*-3 words. whichever is

smaller.

Objects of type String arc identical in format to 1-Vectors, though they have their own space. Strings always
have subtype 0 and access-type 3 (8-Bit). Strings differ from normal [-Vectors in that the accessing

instructions accept and return objects of type Character rather than Fixnum.

Bignums arc also identical in format and operation to 1-Vectors, though they may also be operated on

~ directly by microcoded routines. For details of the currently-defined sub-types and their access-codes, see

section 2.95.

2.8.3. Arrays

An array header is identical in form to a G-Vector. like any G-Vector, its first word contains a fixnum
type-code, a 4-bit subtype code, and a 24-bit total length field (this is the length of the array header, not of the
vector that holds the data). At prcscni. the subtype code is always 0. Thc entries in the header-vector are

interpreted as follows:

0 Data Vector This is a pointer to the I-Vector, G-Vector, or string that contains the actual data of the
array. In a multi-dimensional array, the supplicd indices are converted into a single 1-D
index which is used to access the data vector in the usual way.

1 Number of Flements
This is a fixnum indicating the number of clements for which there is spacc in the data
vector. : ‘

2 Fill Pointer This is a fixnum indicating how many clements of the data vector arc actually considered to
be in use. Normally this is initiali-ed to the same value as the Number of Elements field,
but in some array applications it will be given a smaller value. Any access beyond the fill
pointer is illegal.

3 Displacement This fixnum valuc is added to the final code-vector index after the index arithmetic is done
but before the access occurs. Used for mapping a portion of one array into another. For
most arrays, this is 0.

4 Range of First Index
This is the number of index values along the first dimension, or one greater than the largest
legal value of this index (since the arrays are always zero-based). A fixnum in the range 0
o 2241 If any of the indices has a range of 0, the array is legal but will contain no data
and accesses to it will always be out of range. In a 0-dimension array, this cntry will not be
present.

5 - N Ranges of Subsequent Dimensions

REVISED INTERNAL DESIGN OF SPICE ISP 13

‘The number of dimensions of an array can be determined by looking at the length of the array header. The

rank will be this number minus 6. 'I'he maximum array rank is 65535 - 6, or 65529.

The ranges of all indices are checked on cvery. access, during the conversion to a single data-vector index.
In this conversion. cach index is added to the accumulating total, then the total is multiplied by the range of
the following dimension. the next index is added in. and so on. In other words. if the data vector is scanned

lincarly, the last array index is the une that varies most rapidly, then the index before it, and so on.

2.9. Symbols Known to the Microcode

A large number of symbols will be pre-defined when a Spice Lisp system is fired up. A few of these are so
fundamental to the operation of the system that their addresses have to be assembled into the microcode.

These symbols are listed here. All of these symbols are in static space, so they will not be moving around.

NIL. SCOOOOOOI 6 The value of NIL. is always NIL.; it is an crror to alter it. NIL is unique among
symbols in that you can takc its CAR and CDR, viclding NII. in cither case.

T _ 5C00000C ; The valuc of T is always T it is an error to alter it.

%SP-1nternal-Apply
5C00001816 The function stored in the definition cell of this symbol is called by the
microcode whenever compiled code calls an interpreted function. Sce scction 6.1.2 for
details. :

%SP-Internal-Error
5C000024] 6 ‘The function stored in the definition cell of this symbol is called whenever an
crror is detected during the exccution of a byte instruction. See scction 6.4 for details.

%SP-Software-Interrupt-Handler ;
5C0000301 6 The function stored in the definition cell of this symbol is called whenever a
“software intcrrupt occurs. See scction 6.6 for details.

%SP-Internal-Throw-Tag
5C00003C16 This symbol is bound to the tag being thrown when a Catch-All frame is
encountered on the stack. See scction 6.2 for details.

REVISEFD INTERNAT DESIGN QI SPICE TSP - ' 14

3. Runtime Environment

3.1. Control Registers

‘T'o describe the instructions in chapter 5 and the complicated control conventions in chapter 6 requires that

we talk about a number of “machine registers.” All of thesc registers will be treated as if they contain 32-bit

|.isp objects.

Control-Stack-Pointer

TOS

The stack pointer for the control stack. an object of type Misc-Control-Stack-Pointer.
Points to the first unused word in Control-Stack space: this upward growing stack uses a
writc-increment/decrement-read discipline.

'The top cntry of the control stack, which is kept in a register for cfficiency. References to
local variables are faster if they can assume that the local in question is on the stack in main
memory and that it has not popped up into the TOS register. To ensure this, the compiler
adds an cxtra local variable to cach function, so that none of the locals that are actually
uscd can ever pop into TOS. '

Binding-Stack-Pointer

Active-Frame

Opcn-Frame

" Active-Catch

Active-Function

Active-Code

PC

The stack pointer for the special variable binding stack, an object of type Misc-Binding-
Stack-Pointer. ‘The binding stack follows the same writc-increment/decrement-read
discipline as the control stack.

An object of type Misc-Control-Stack-Pointer which points to the first word of the call
frame for the currently executing function. The virtual address of the start of the
arguments and locals arca of the active frame is this pointer plus a constant (see section
3.3). '

An object of type Misc-Control-Stack-Pointer which points to the first word of the call
frame currently being built (i.c. whose arguments are being evaluated).

An object of type Misc-Control-Stack-Pointer which points to the first word of the most
recent catch frame built,

The compiled function object for the function that is currently being exccuted. The virtual
address of the start of the symbols and constants arca of the current function is this pointer
plus a constant (sce scction 3.2).

The I-Vector of instructions for the currently executing function.

A pointer into [-Vector space that indicates the next quadword from which the instruction
buffer will be filled. This and the hardware BPC determine thc next instruction to be
executed. When a PC is pushed on the stack by a Call or Catch instruction, it is stored in
the form of a 16-bit offset from the base of the Active-Code vector and the BPC:

>

C

REVISED INTERNAL DESIGN OF SPICE LISP ’ 15

| Trap type code (5) | Unused (7) | BPC (4) | Offset (16) |

3.2. Function Object Format

Each compiled function is represented in the machine as a Function Object. This is identical in form o a
G-Vector of lisp objects. and is treated as such by the garbage collector, but it cxists in a special function
space. (There is no particular reason for this distinction. We may decide later to store these t.hings in
G-Vector space, if we become short on spaces or have some rcason to belicve that this would improve paging
behavior.) Usually, the function objects and code vectors will be kept in read-only spacce, but nothing should
depend on this: some applications may create, compile, and destroy functions often enough to make dynamic

allocation of function objccts worthwhile.

The function object contains a vector of header information nceded by the function-calling mechanism: a
pointer to the I-Vector that holds the actual code. Following this is the so-called “éymbols and constants” -
arca. The first few entries in this area are fixnums that give the offsets into the code vector for various -
numbers of supplied arguments. Following this begin the true symbols and constants uscd by the function.
Any symbol uscd by the code as a special variable or the name of another function will appear here. Fixnum
constants in the range of -256 to +255 can be generated within the byte code. and so do not need to be stored

in the constants arca as full-word constants.

After the one-word G-Vector header, the entries of the function object are as follows:

0 A fixnum with bit fields as follows:
0 - 14: Number of symbols/constants in this fn object (0 to 32K-1).
This number includes the optional-arg offsets.
15 - 26: Not used. : '
27: 0 => A11 args evaled. 1 => This is a FEXPR.

1 Pointer to the unboxed Code vector holding the macro-instructions.
2 A fixnum with bit fields as follows:
0. - 7: The minimum legal number of args (0 to 255).
8 - 15: The maximum number of args, not counting &rest (0 to 255).
16 - 26: Number of local variables allocated on stack (0 to 2047).
27: 0 => No &rest arg. 1 => One &rest arg.
3 Name of this function (a symbol).
4 Vector of argument names, in order, for debugging use.

5 The symbols and. constants area starts here.
This word is entry 0 of the symbol/constant area.
The first few entries in this area are fixnums representing
the code-vector entry points for various numbers of
optional arguments. See section 6.1.2.

REVISED INTERNAL DISIGN OF SPICE1LISP 16

3.3. Control-Stack Format

The Spice Lisp control stack is a framed stack. Call frames. which hold information for function calls, are
intermixed with catch frames. which hold information used for non-local exits. In addition, the control stack

is used as a scratchpad for random computations.

3.3.1. Call Frames

At any given time, the machine contains pointers to the current top of the control stack. the start of the
current active frame (in which the current function is.cxccuting), and the start of the most recent open frame.
In addition, therc is a pointer to the current top of the special binding stack. An open frame is onc which has
been partially built, but which is still having arguments for it computed. When all the arguments have been
computed and saved on the frame, the function is then started. This means that the cail frame is completed,
becomes the current active frame, and the function is executed. At this time, special variables may be bound
and the old valucs are saved on the binding stack. Upon return, the active frame is popped away and the
result is cither sent as an argument to some previously opened frame or goes to some other destination. The

binding stack is popped and old values are restored.

The active frame contains pointers to the previously-active frame, to the most recent open frame, and to the
point to which the binding stack will be popped on cxit, among other things. Following this is a vector of
storage locations for the function's arguments and local variables. Space is allocated for the maximum

number of arguments that the function can take, regardless of how many are actually supplied.

“In an open frame, the structure is built up to the point where the arguments are stored. Thus, as arguments
are computed, they can simply be pushed on the stack. When the function is finally started, the remainder of
the frame is built. A call frame looks like this:)

Header word. Type Call-Frame-Header.

Function object or EXPR for this call.

Pointer to previous active frame. Type Misc-Control-Stack-Ptr.
Pointer to previous open frame. Type Misc-Control-Stack-Ptr.
Pointer to previous binding stack. Type Misc-Binding-Stack-Ptr.
Saved PC of caller. A fixnum.

Args-and-locals area starts here. This is entry 0.

DOV WM~ O

The first slot is pointed to by the Active-Frame register if this frame is currently active, and by the Open-

Frame register if this frame is the currently opened frame.

REVISED INTERNAL DISIGN OF SPIC1E T ISP) 17

v, 3:3.2.Catch Frames .
C/ Catch frames contain much of the same information that call frames do, and have a very similar format. A
catch frame holds the function object for the current function, a stack pointer to the current active and open
frames, a pointer to the current top of the binding stack, and a pointer to the previous catch frame. When a
Throw occurs, an operation cquivalent to returning from this catch frame (as if it were a call frame) is
performed. and the stacks are unwound to the proper place for continued execution in the current function.

A catch frame looks like this:

Header word. Type Catch-Frame-Header.
Function object for this call.

Pointer to current active frame.
Pointer to current open frame.

Pointer to current binding stack.
Destination PC for a Throw.

Tag caught by this catch frame.
Pointer to previous catch frame.

NGO E WN - O

The conventions used to manipulate call and catch frames are described in chapter 6.

3.4. Binding-Stack Format

(\“""Mj Each cntry of the binding-stack consists of two boxed (32-bit) words. Pushed first is a pointer to the symbol
e being bound. Pushed sccond is- the symbol's old value (any boxed item) that is to be restored when the

- binding is popped.

REVISED INTERNAL DESIGN OF SPICTE LISP 18

4. Storage Management

New objects are allocated from the lowest unused addresses within the specificd space. Fach allocation call
specifics how many words are wanted, and a Free-Storage pointer is incremented by that amount. ‘There is
one of these Free-Storage pointers for cach space. and it points to the lowest free address in the space. There

is also a Clean- Spacc pointer associated with cach space that is used during garbage collection. 'These pointers

are stored in a mblc in the microcode table arca which is indexed by type and space code. 'The address of the »

Free-Storage pointer for a given space is _

(+ alloc-table-base (1sh type 4) (1sh space 2)).
The address of the Clean-Space pointer is

(+ a]loé-taMe-base (1sh type 4) (1sh space 2) 2).

PERQ Spice Lisp uses a stop-and-copy garbage collector to reclaim storage. The Collect-Garbage
instruction performs a full GC. The algorithni used is a degencrate form of Baker’s incremental garbage

collection scheme. When the Collect-Garbage instruction is executed, the following happens:

1. The current newspace becomes oldspace, and the current oldspace becomes newspace.

2. The newspace Free-Storage and Clean-Space pointers are initialized to point to the beginning of
their spaces.

3. The contents of the “registers inside the barrier” are transported. There are only three such
registers: Active-Function. Active-Code. and TOS. However. the PC is stored internally as an
absolute address, so it must be recomputcd if the code vector in Active-Code is transported. This
is casily done by subtracting Active-Code from PC before it is transported. and adding it back in
afterwards. Because the Active-Code vector will be transported from a quadword boundary to a
quadword boundary, the PERQ's internal BPC necedn't be modified. -

4. 'The control stack and binding stack are scavenged.
5. Each static pointer space is scavenged.
6. Each new dynamic space is scavenged. The scavenging of the dynamic spaces is donc until an

entire pass through all of them does not result in anything being transported. At Lhns point, every
live object is in newspace. :

A Lisp-level GC function must return the oldspace pages to Accent.

4.1. The Transporter

The transporter moves objects from oldspace to newspace. It is given an address 4, which contains the
object to be transported, B. If B is an immediate object, a pointer into static space, a pointer into read-only

space, or a pointer into newspace, the transporter does nothing.

_ 3

O

REVISED INTERNAL DESIGN OF SPICE LISP . 19

If B is a pointer into oldspace. the object it points to must be moved. It may. however, alrcady have been
moved. Fetch the first word of B, and call it C. If C'is a GC-forwarding pointer, we form a new pointer with

the type code of B and the low 27 bits ot (. Write this into A.

If C'is not a GC-forwarding pointer. we must copy the object the B points to. Allocate a new object of the
same siz¢ in newspacc. and copy the contents. Replace ¢ with a GC-forwarding pointer to the new structure,

and writc the address of the new structure back into A.

Hash tables maintained with an EQ rclation need special treatment by the transporter. Whenever a
G-Vector with subtype 2 or 3 is transported to newspace, its subtype code is changed to 4. The Lisp-level
hash-table functions will sce that the subtype code has changed, and re-hash the cntries before any access is

made.

4.2. The Scavenger

The scavenger looks through an area of pointers for pointers into oldspace, transporting the objects they
point to into ncwspace. The stacks and static spaces need to be scavenged once, but the new dynamic spaces
nced to be scavenged repeatedly, since new objects will be allocated while garbagc collection is in progress.
To keep track of how much a dynamic spacc has becn scavenged, a Clean-Space pointer is maintained. The
Clean-Space pointer points to the next word to be scavenged. Each call to the scavenger scavenges the area
between the Clean-Space pointer and the Free-Storage pointer. 'The Clean-Space pointer is then sct to the
Free-Storage pointer. When all Clean-Space pointers are cqual to their Free-Storage pointers, GC is

complete.

To maintain (and create) locality of list structures, list spaéc is trecated specially. Two separate Clean-Space
pointers arc maintaincd for list space: one for cars and one for cdrs. The scavenger works on the Clean-Cdr
pointer unless it is at the Free;Storage pointer, in which case it works on the Clcan-Car pointer. When
Clean-Car, Clecan-Cdr, and the Frec-Storage pointer for list space coincide, list space has been compictely

scavenged.

4.3. Purification

Garbage is created when the files that make up a Spice Lisp system arc loaded. Many functions are needed
only for initialization and bbotstrapping (e.g. the “one-shot” functions produccd by the compiled for random
forms between function definition), and these can be thrown away once a full system is built. Most of the
functions in the system, however, will be used after initialization. Rather than bend over backwards to make

the compiler dump some functions in read-only space and others in dynamic space (which involves dumping

®

-

REVISED INTERNAL DESIGN OF SPHCE LISP ’ 20

their constants in the proper spaces, also). we will dump everyrhing into dynamic space. and use the following

storage allocation feature to move what we need after initialization into read-only and static space.

The Set-Newspace-For-"T'ype instruction lets us sct the free pointer of the next newspace to dynamic or
rcad-only space instcad of the corresponding dynamic space. When the next GC happens, objects in
newspace will be transported to this other space (static or read-only) instcad of dynamic space. Carc must be
taken, of course, to ensure that objects in rcad-only space point only to static or rcad-only space. Probably the

following should be used for “purifying” a system:
(set-newspace-for-type
(set-newspace-for-type
(set-newspace-for-type
(set-newspace-for-type

2) ; bit-vectors to static
2) ; likewise for i-vectors
2) ; and strings
2) ; and bignums

OO NN WN -
~N
A

{set-newspace-for-type and long-floats
(set-newspace-for-type 3) ; complexes can be read-only
(set-newspace-for-type 3) ; as can ratios
(set-newspace-for-type 2) ; g-vectors should be static
(set-newspace-for-type 3) ; functions should be read-only
(set-newspace-for-type 10 3) ; arrays can be, also
(set-newspace-for-type 11 2) ; symbols should be static

(set-newspace-for-type 12 2) ; as should conses.

REVISED INTERNAL DESIGN OF SPICE ISP 21

~ 5. Macro Instruction Set
(J ‘T'he intent is that this instruction set should be a very direct mapping from the S-expression source it is
derived from. ‘There should therefore never be any Lcmpunioh for users to write macrocode by hand; all of
the system that is not in microcode should be written in 1.isp. Since the compiler will run both in Spice Lisp

and in Maclisp, we need not hand-code things even for bootstrapping.

5.1. Macro-Instruction Formats

‘I'here are three ways in which instructions fetch their arguments and store their results.

1. Most instructions pop all of their operands off of the stack and push a result back onto the stack,
behaving like little Lisp functions. There are some instructions that will take their last operand
from a place other than the stack (an immediate constant, a local variable, etc).

2. Some instructions modify a value in place. This value is sometimes the top of the stack, but could
be a local variable. argument, or special variable. In the descriptions of the instructions below,
thesc instructions opcrate on a pscudo-operand £, the cffective address, which is specificd as part
of the opcode. '

3. Finally, é few instructions pop the top of the stack but leave no result. The Pop. Branch, and
Dispatch instructions do this.

All non-branching Spice Lisp instructions are made up of 1 or 2 opcode bytes, that contain an implicit
effective address, and 0 to 2 bytes following the opcode that are used as part of the cffective address.
Branching instructions have 1 or 2 bytes of opcode followed by a 1 or 2 byte branch offsct. 'The possible

effective addresses (and their use of additional effective address bytes) are these:

Stack The operand is taken from the stack. Then the operation takes place, in some cases
pushing a rcsult onto the stack. No cffective address bytes arc fetched. The names of
instructions that take all stack operands are not suffixed with an effective address specifier,
as others are. These instructions are called “basic™ instructions. In most cascs, the
compiler-writer need concern. himsclf with only these forms of an instruction. The
pecphole optimizer will replace sequences of stack referencing instructions with
instructions with differcrent addressing modes if the resulting sequence is faster.

Positive Short Integer Constant : ,
A byte is fetched and is converted to a positive fixnum in the range 0 to 255. This is used
as the operand. The *-PSIC” suffix on an instruction name is used for instructions with
positive short integer constant opcrands. Some instructions imply a particular short integer
without a second byte. These are suffixed with “-PSICn™ where n is the short integer. A
" short integer constant may never be used as a result effective address, of course.

A byte is fetched and is converted to a negative fixnum in the range -1 to -256. This is used

O Negative Short Integer Constant
as the operand. The “-NSIC” suffix on an instruction name is used for instructions with

REVISED INTERNAT DESIGN OF SPICE 1 ISP 22

negative short integer constant operands.

Arguments & 1.ocals

In most cases, onc byte is fetched and used as an unsigned offset (0 - 255) into the
arguments and local variables arca of the currently active call frame (*-AL™ suffix). The
contents of this cell are used as the operand. For a few instructions, two bytes are fetched
o form a 16-bit offset (0 - 65535). In fetching this double offset, the low-order byte comes
in first ("-1.ongAl." suffix). Some instructions imply a particular offset without the need
for another offsct byte. ‘Thesc instructions are thosc that arc suffixed with *-Al.n” where n
is an integer which denotes the implied offset. When uscd as a result cffective address. the
result is stored in the specified slot of the call frame.

Constants In most cascs. onc byte is fetched and used as an unsigned offset (0 - 255) into the vector of
symbols and constants in the code object of the current function. The constant in this cell
is used directly (*-C™ suffix). For a few instructions, the next two bytes arc fetched to form
a 16-bit unsigned offset (0 - 65535) (*-L.ongC™ suffix). In fetching this double offsct, the
low-order byte comes in first. Sometimes an instruction implies an offsct into the symbols
and constants vector without the need of another byte for the offset. In these instances
when the offset is implied. the instruction will have the suffix “-Cn"™ where n is an mtcger
denoting the offsct. Constants may not be used as a result cffective address.

Symbols In most cases. one byte is fetched and used as an unsigned offset (0 - 255) into the vector of
symbols and constants in the code object of the current function. The constant in this cell
is supposed to be a symbol pointer, and the opcerand is fetched from its value cell (*-S™
suffix). If the value is Misc-Trap, an unbound variablc crror is signalled. For some
instructions, the next two bytes are fetched to form a 16-bit offset ("-[.ongS™ suffix). In
fetching this double offset, the low-order hyte comes-in first. Somctimes an instruction
implies an offset into the symbols and constants vector without the need of another byte
for thc offsct. In these instances when the offset is implied, the instruction will have the
suffix “-Sn™ where n is an integer denoting the offset. When a symbol is used as a rcsult
cffective address, its value cell is set to the result.

Ignore Spccified with a “-Ignore™ suffix. This may be uscd only as a result effective address.

In the following listing, the effective address is called /" and its contents are called “CE™. The opcodes for
these instructions are defined in a file read by the microassemblcr, compiler, crror system, and disassembler.
This filc lives on CMU-CS-C as PRVA:<S1isp.Compiler.New-And-Improved>Instrdefs.S1isp

and CMU-Badgeras>S1isp>Instrdefs.Lisp. Itisincluded in this document as an appendix.

5.2. Instructions

There are 11 classcs of instructions: allocation, stack manipulation, list manipulation, symbol manipulation,
array manipulation, type predicate, arithmetic and logical, branching and dispatching, function call and
return, miscellancous, and system hacking. A number of the instructions below combine the effect of two or

more simpler instructions, and are part of the instruction set for cfficiency reasons. It is envisioned that the

C

REVISEDY INTERNAL DESIGN OF SPICE LISP ' . 23

compiler will generate code using the stack forms of most instructions. with lots of Push and Pop instructions
to get operands and store results. An optimizing assembler will then collapse sequences of these simple
instructions into the faster, more compact complex instructions. Each basic instruction is flagged with an

asterisk (‘).

5.2.1. Allocation

All non-immediate objects arc allocated in the “current allocation space,” which is dynamic space, static
spacce. or read-only space. ‘The current allocation space is initially dynamic space, but can be changed by
using the Set-Allocation-Space instruction below. The current allocation space can be determined by using
the Get-Allocation-Space instruction. Onc usually wants to change the allocation space around some section

of code; an unwind protect should be used to insure that the allocation space is restored to some safe value. .

Get-Allocation-Space () pushes 0, 2, or 3 if the current allocation space is dynamic, static, or read-only
respectively.

Gct-/\llocation-Space'

Set-Allocation-Space (X) sets the current allocation space to dynamic, static, or read-only if X is 0, 2, or 3
respectively. Pushes X, '
Set-Allocation-Space”

Alloc-Bit-Vector (l.ength) pushes a new bit-vector Length bits long, which is allocated in the current
allocation space. [.ength must be a positive fixnum. '
Alloc-Bit-Vector™ | . ' _ -

Alloc-1-Vector (length A) pushes a new i-Vcctor Length bytes long, with the access code specified by 4.
Length and A must be positive fixnums.
Alloc-1-Vector™

Alloc-String (Length) pushces a new string /.ength characters long. /.ength must be a fixnum.
Alloc-String' A

Alloc-Bignum (Length) pushes a new bignum Length 8-bit bytes long. Length must bea fixnum,
Alloc-Bignum” ‘ o

Make-Complex (Realpart Imagpart) pushes a new complex number with the specified Realpart and
Imagpart. Realpart and Imagpart should be the same type of non-complex number.
Makc-Complex'

REVISED INTERNAL DESIGN OF SPICI 1ISP 24

Make-Ratio (Numerator Denominator) pushcs a new ratio with the specified Numerator and Denominator.
Numerator and Denominator should be intcgers.
. »
Make-Ratio

Alloc-G-Vector (l.ength Initial-I-lement) pushes a new G-Vector with length clements initialized to
Initial- Element. [.ength should be a fixnum.
Alloc-G-Vector

Vector (E1t, Ilr ... i Length - 1 Length) pushes a new G-Vector containing the specified /.ength clements.
l.ength should be a fixnum,

Vcctor‘
Vector-PSIC

Alloc-Function (/.ength) pushes a new function with Length elements. Length should be a fixnum.
Alloc-Function”

Alloc-rArray (F.ength) pushes a new array with Length clements. Length should be a fixnum.
A]loc-Array'

Alloc-Symbol (Print- Name) pushes a new symbol with the print-name as Print-Name. The value is initially
Misc-Trap, the definition is Misc-"Trap, the property list and the package arc initially NI.. The symbol is not
intcrned by this operation -- that is donc in macrocode. Print-Name should be a simple-string.

Alloc-Symbol®

Cons (Car Cdr) pushes a new cons with the specified Car and Cdr.
Cons®

Set-1.Push (Car F) pushes a new cons with the specified Car and CE aS the cdr. and stores the cons back
into E.

Set-LPush-AL

Set-LPush-S

List (Elto Elt [EIICE .} Length) pushes a new list containing the Length elements. Length should be
fixnum.
List™
List-PSIC

C

REVISED INTERNAL DESIGN OF SPICE LISP 25

List* (Flty Elty ... Eli ., Tength) pushes a list* formed by the C'I” clements onto the stack. /.engrh should

be a fixnum.

i.ist““
List*-PSIC

5.2.2. Stack Manipulation
Push (/) pushes C'I< onto the stack.

Push-PSIC”
Push-PSICO
Push-PSIC1
Push-PSIC2
Push-PSIC3
Psuh-NSIC®
Push-AL®
Push-AL0D
Push-ALl
Push-AL2

. Push-AL3
Push-AlL4
Push-ALS
Push-AL6
Push-AL7 .
Push-L.ongAL
Push-C”
Push-l.ongC'
Push-S"
Push-L.ongS’

Pop (/) pops the stack into £.

P_op-AL'
Pop-ALO
Pop-ALl
Pop-AL2
Pop-AL3
Pop-AL4
Pop-ALS
Pop-AL6
Pop-AL7
Pop-LongAL'
Pop-S°
Pop-LongS'
Pop~Ignore"

Exchange () exchanges the top two elements of the stack.

REVISFD INTERNAL DESIGN QFF SPICTE 1 ISP ‘ 26

(:’:m F.xchangc‘

Copy (I9) copics the top of stack to £,

Copy‘
Copy-Al.

NPop (N). If N is positive, N items arc popped off of the stack. If N is negative, NII. is pushed onto the

stack -V times. N must be a fixnum.

NP()p-SLack'
NPop-PSIC
NPop-NSIC

Bind-Null (£) pushes CE (which must be a symbol) and its current value onto the binding stack, and sets
the value cell of CE to NIL.

Bind-Null®
Bind-Null-C

)

Ca ' Bind (Value Symbol) pushes Symbol (which must be a symbol) and its current value onto the binding stack,
and sets the value cell of Symbol to Value.

Bind"
Bind-C

Unbind (V) undoes the top N bindings on the binding stack.

Unbind”
Unbind-PSIC

5.2.3. List Manipulation
Cuxxr(L). The cxxr of L is pushed onto the stack. L should be a list or NIL.

Car’
Car-AL
Cdr’
Cdr-AL
Cadr’
Cadr-AL
Cddr’
Cddr-AL
Al Cdar’
Cdar:AL

Caar

o,

REVISED INTERNAL DESIGN OF SPICE ISP ' ' 27

Caar-Al

Set-Cxxr (I9). The cxxr of C'Fis stored in £. CI should be cither a list or NII..

Set-Cdr-Al.
Sct-Cdr-S
Sct-Cddr-Al.
Sct-Cddr-S

Set-1.pop (£). The car of (I is pushed onto the stack: the cdr of C'F is stored in /. (' should be a list or
NIiL. ' ' ‘

Set-1.pop-Al.
Set-1.pop-S

Spread (£) pushes the elements of the list CE onto the stack in left-to-right order.

, Spread'
Sprecad-AL

Replace-Cxr (List Value) sets the cxr of the List to Value and pushes Value on the stack.

Replace-Car’
Replace-Car-AL
chlace-Cdr‘
Replace-Cdr-Al

Endp (X) pushes T if X is NIL, or NIL if X is acons. Otherwise an error is signalicd.

Endp'
-Endp-AL

Assoc (/.ist Item).pushes the first cons in the association-list /isz whosc car is FQL. to /tem. [fthe = part of
the EQL comparison bugs out (and it can if the numbers arc too complicated), a Lisp-level Assoc function is

called with the current cdr of the List. Assq pushes the first cons in the association-list List whose car is EQ to

Item.
Assoc
Assq”
Member (List Item) pushes the first cons in the list List whose car is EQL to /tem. Ifthe = part of the EQL
comparison bugs out, a Lisp-level Member function is called with the current cdr of the List. Memq pushes
the first cons in List whose car is EQ to the /tem. ‘

Member®

REVISED INTERNAT DESIGN OFF SPICE LISP 28

Mcmq'

GetF (List Indicator Defaulr) scarches for the Indicator in the list List, cddring down as the Common Lisp
form GetF would. If Indicator is found, its associated vaiue is pushed, otherwisc Default is pushed.
Getk”

5.2.4. Symbol Manipulation ,
Get-Value (Symbol) pushes the value of Symbol (which must be a symbol) onto the stack. An error is
signalled if C'I7 is unbound.
Get-Value

Sct-Value (Symbol Value) sets the value cell of the symbol Symbol to Value. Value is left on the top of the
stack.

-

Set-Value®

Get-Definition (Symbol) pushes the definition of the symbol Symbol onto the stack. If Symbol is
undefined, an crror is signalled.
Get-Definition”
Get-Definition-C

Sct-Definition (Symbol Definition) sets the definition of the symbél Symbol to Definition. Definition is left
on the top of the stack.

Set-Definition”
Set-Definition-C

Get-Plist (Symbol) pushes the property list of the symbol Symbol onto the stack.

Get-Plist”
Get-Plist-C

Set-Plist (Symbol Plist) scts the property list of the symbol Symbol to Plist. Plist is left on the top of the
stack.
Set-Plist”
Set-Plist-C

Get-Pname (Symbol) pushes the print name of the symbol Symbol onto the stack.

Get-Pname”

REVISED INTERNAL DESIGN OF SPICE 18P ' 29

\ Get-Package (Symbol) pushes the package cell of the symbol Symbol onto the stack.
C Get-Package”

Sct-Package (Symbol Package) scts the package cell of the symbol Symbol w Package. Package is left on
the top of the stack. '
Scl—Package'-

Boundp (Symbol) pushes 1'if the symbol Symbol is bound: NII. otherwisc.

Boundp‘
Boundp-C

FBoundp (Symbol) pushes I' if the symbol Symbol is defined: NII. otherwise.

FBoundp'
FBoundp-C

5.2.5. Array Manipulation
Common Lisp arrays have many manifestations in Spice Lisp. The Spice Lisp data types Bit-Vector,
C Integer-Vector, String, General-Vector, and Array are used to implement the collection of data types the
//‘

Common L.isp manual calls “arrays.”

In the following instruction descriptions, “simple-array™ means an array implemented in Spice L.isp as a
Bit-Vector, I-Vector, String, or G-Vector. “Complex-array™ means an array implemented as a Spice Lisp
Array object. -“Com‘plex-bit-v_cctor" mecans a bit-vector implemented as a Spice Lisp array: similar remarks

~ apply for “complex-string™ and so forth.

Vector-1.ength (Vector) pushes the length of the one-dimensional Common l.isp array Vector. G-Vector-
Length, Simple-String-Length, and Simple-Bit-Vector-Length push the lengths of G-Vectors, Spice Lisp
strings, and Spice Lisp Bit-Vectors respectively. Vector should be a vector of the appropriate type. .

Vcctor-l-cngth' .
G-Vector-Length

Simplc-String~Length' .
Simplec-Bit-Vector-Length

Get-Vector-Subtype (Vector) pushes the subtype ﬁe}d of the vector Vector as an integer. Vector should be a

vector of some sort.

‘) Get-Vector-Subtype”

@,

REVISED INTERNAL DESIGN OF SPICE LISP : 30

Sct-Vector-Subtype (Vector A) sets the subtype ficld of the vector Vector to A, which must be an fixnum.

Sct-Vector-Subtype”

Get-Vector-Access-Code (Vector) pushes the access code of the |-Vector (or Bit-Vector) Vector as an
integer,

Get-Vector-Access-Code”

Shrink-Vector (Vector Length) scts the length ficld and the number-of-entrics ficld of the vector Vector

© Length. If the vector contains Lisp objects. entrics beyond the new cnd are set to Misc-I'rap. Pushes the

shortened vector. length should be a fixnum. Onc cannot shrink array headers or function headers.
Shrink-Vector '

Typed-Vref (A Vector) pushes the I'th clement of the [-Vector Vector by indexing into it as if its
access-code were 4. A and / should be fixnums. '
’I‘yped-Vrcf'

Typed-Vsct (4 Vector I Value) sets the I'th element of the I-Vector Vector to Value indexing into Vector as
if its access-code were A. A, [, and Value should be fixnums. Value is pushed onto the stack.
Typed-Vset‘

Header-1.ength (Object) pushes the number of Lisp objects in the header of the function or array Object.
This is used to find the number of dimensions of an array or the number of constants in a function.

Hcadcr~l.ength‘

Header-Ref (Object I) pushes the I'th clement of the function or array hcader Object. / must be a fixnum.
Hcader-Ref"

Header-Set (Object 1 Value) sets the I'th clement of the function of array hcader Object 10 Value, and
pushes Value. I must be a fixnum.
Header-Set”

The names of the instructions used to reference and set elements of arrays are somewhat based on the
Common Lisp function names. The SVref, SBit, and SChar instructions perform the same operation as their
Common Lisp namcsakes -- referencing elements of simple-vectors, simple-bit-vectors, and simple-strings
respectively. Arefl references any kind of one dimensional array. The names of setting functions are derived
by replacing “ref” with “set”, “char” with “charset”, and “bit” with “bitset.”

REVISED INTERNAL DESIGN OF SPICE ISP 31

Arcfl (Array) pushes the T'th clement of the one-dimensional array Array. SVref pushes an element of a

A
C Y, G-Vector: SChar an clement of a string: Sbit an clement of a Bit-Vector. / should be a fixnum.

Arefl”
Arefl-Al.
SVref
SVref-PSIC

- SVref-Al.
SVref-PSICO
SVref-PSICI
SVref-PSIC2
SVref-PSIC3
SVref-PSIC4
SVref-PSICS
SChar’
SChar-AL
SBit”

Asctl (Array I Value) scts the I'th clement of the one-dimensional array Array to Value. SVsct sets an
clement of a G-Vector; SCharset an element of a string: SBitset an clement of a Bit-Vector. I should be a

fixnum and Value is pushed on the stack.

C Asetl”

Asctl-AL
SVset
SVset-Al
SCharset”
SCharset-AL
SBitset”

SVset* (Array Value I) sets the 'th element of the G-Vector Array to Value. The operands to the
instruction are arranged so that the index can be specified as part of the cffective address. This could not be
done in general, of course, because order of evaluation must be preserved. but for constant indicces (as used in
structure accesses) this problem does not come up.

SVsct*-PSIC

SVset*-PSICO
SVset*-PSIC1
SVset*-PSIC2
SVset*-PSIC3

SVsct*-PSIC4
SVset*-PSICS

O CAref2 (Array 11 I2) pushes the element (//, /2) of the two-dimensional array Array onto the stack. // and
12 should be fixnums. CAref3 pushes the'element (717, 12, 13).

O

REVISED INTERNAL DESIGN OF SPICEE ISP ' ’ 32

CAref2
CAref3

CAsct2 (Array 11 12 Value) sets the clement (/7, 12) of the two-dimensional array Array to Value and

pushes Vulue on the stack. /7 and 12 should be fixnums. CAsct3 sets the clement (/. 12, 13).

CAset2
CAsctl

Bit-Bash (VI V2 V3 Op). VI, V2, and V3 should be bit-vectors and Op should be a fixnum. The clements
of the bit vector ¥3 arc filled with the result of Op'ing the corresponding clements of V/ and V2. Op should
be a Boole-style number (see the Boole instruction in scction 5.2.7).

Bit-Bash”

The rest of the instructions in this section implement special cases of sequence or string operations. Where

an operand is referred to as a string, it may actually be an 8-bit I-Vector or system area pointer.,

Byte-BLLT (Src-String Src-Start Dst-String Dst-Start Dst-End) moves bytes from Src-String into Dst-String
between Dsr-Start (inclusive) and Dst-I-nd (exclusive). Dst-Start - Dst- End bytes are moved. I'f the substrings
specified overlap, “the right thing happens,” i.e. ail the characters are moved to the right place. This
instruction corresponds to the Common Lisp function REPLLACE when the sequences are simple-strings.

Byte-BLT"

Find-Character (String Start I:'nd'Chaiacter) scarches String for the Character from Start t0 End. If the
character is found, the corresponding index into'String,is returned, otherwise NIL is returned. This
instruction corresponds to the Common Lisp function FIND when the scqﬁence is a simple-string.

Find-Character’ ’

Find-Character-With-Attribute (String Start End Table Mask) The codes of the characters 6f String from
Start to End are uscd as indices into the Table, which is an I-Vector of 8-bit bytes. When the number picked
up from the table bitwise ANDed with Mask is non-zcro, the current index into the String is returned.

Find-Character-With-Auribute’ |

SXHash-Simple-String (String Length) Computes the hash code of the first Length characters of String and
pushes it on the stack. This corresponds to the Common Lisp function SXHASH when the object is a
simple-string. The Length operand can be Nil, in which case the length of the string is calculated in
microcode.

SXHash-Simple-String” 5

O

REVISED INTERNAL DESIGN O SPICE LISP 33

5.2.6. Type Predicates
Bit-Vector-P (Object) pushes ‘T if Object is a Common Lisp bit-vector or NIL if it is not.
Bit-Vector-P*

Simple-Bit-Vector-P (Object) pushes ‘I if Object is a Spice 1.isp bit-vector or NIL. if it is not.
Simple-Bit-Vector-P”

Simple-Integer-Vector-P (Object) pushes T if Object is a Spice Lisp 1-Vector or NIL. if it is not.

Simple-Integer-Vector-P

StringP (Object) pushes 1" if Object is a Common Lisp string or NI, if it is not.
StringP‘

Simple-String-P (Object) pushes T if Object is a Spice Lisp string or NIL if it is not.
Simple-String-P°

BignumP (Object) pushes T if OQbject is a bignum or NIL if it is not.
BignumP‘

L.ong-Float-P (Object) pushes T if Object is a long-float or NIL if it is not.
l.ong-Float-P.

ComplexP (Object) pushes T if Object is a complex number or NIL if it is not.
ComplcxP‘

RatioP (Object) pushes T if Object is a ratio or NIL if it is not.
RatioP”

IntegerP (Object) pushes T if Object is a fixnum or bignum or NIL if it is not.
lntcgch'

RationalP (Object) pushes T if Object is a fixnum, bignum, or ratio.
RationalP”

FloatP (Object) pushes T if Object is a short-float or long-float.
FloatP”

REVISED INTERNAL DESIGN OF SPICE 1ISP 34

C NumberP (Object) pushes T if Object is a number or NIL if it is not.

NumberP®

General-Vector-P (Objecr) pushes 1 if Object is a Common Lisp general vector or NIL if it is not.

-
Genceral-Vector-P

Simple-Vector-P (Objecr) pushes T if Object is a Spice Lisp G-Vector or NIL if it is not.
Simplc-Vccwr-P'

Compiled-Function-P (Objecr) pushes T if Object is a compiled function or NII. if it is not.

C ompilcd-Function-P'

ArrayP (Object) pushes 1 if Object is a Common Lisp array or NIL if it is not.
ArrayP'

VectorP (Object) pushes T if Object is a Common Lisp vector of NIL if it is not.
VectorP”

O Complex-Array-P (Object) pushes T if Object is a Spice Lisp array or NIL if it is not.
Complex—Array-P'

SymbolP (Object) pushes T if Object is a symbol or NIL if it is not.
SymbolP'

ListP (Object) pushes T if Object is a cons or NIL. or NIL if it is not.
ListP”

ConsP (Object) pushes T if Object is a cons or NIL if it is not.
ConsP"

FixnumP (Object) pushes T if Object is a fixnum or NIL if it is not.
FixnumP" ‘

Short-Float-P (Object) pushes T if Object is a short-float or NIL if it is not.
Short-Float-P"

CharacterP (Object) pushes T if Object is a character or NIL if it is not.

REVISED INTERNAL DESIGN OV SPICE 1 ISP : 35

O CharacterP”

5.2.7. Arithmetic and Logic
Integer-1.ength (Objecr) pushcs the integer-iength (as defined in the Common Lisp manual) of the integer
Object onto the stack.

Integer-1 .cngth'
Integer-l.ength-Al.

Float-Short (Objecr) pushes a short-float corresponding to the number Object.
Float-Short”

Float-1.ong (Number) pushes a long float formed by cocrcing Number to a long float. This corresponds to
the Common Lisp function Float when given a long float as its sccond argument.

Float- Long'

Realpart (Number) pushes the realpart of the Number.
Rcalpart‘

C’ Imagpart (Number) pushes the imagpart of the Number.
Imagpart'

Numerator (Number) pushes the numcrator of the rational Number.

-
‘Numerator

Denominator (Number) pushes the denominator of the rational Number.

. -
Denominator

Decode-Float (Number) performs the Common Lisp Decode-Float function, lcaving 3 values and a Values-
Marker on the stack.
Decode-Float”

Scale-Float (Number X) performs the Common Lisp Scale-Float function, pushing the result on the stack.

Scale-Float”

= (X Y) pushes T if X and Y are numerically cqual, or NIL if they are not. If an integer is comparcd with a
flonum, the intcger is floated first; if a short flonum is compared with a long flonum, the short one is. first "

extended. Flonums must be exactly identical (after conversion) for a non-null comparison. < and > are

O:

C

REVISED INTERNAL DESIGN OF SPICE 1 ISP 36

similar.

>-Al
>-PSIC

Truncate (N X) performs the Common Lisp TRUNCA'TE operation. There are 3 cases depending on X

o If X is fixnum 1. push three items: a fixnum or bignum representing the integer part of N
(rounded toward 0), then cither 0 if N was aircady an intcger or the fractional part of N
represented as a flonum or ratio with the same type as N, then Values-Marker 2 to mimic a
multiple return of two values.

o If X and N arc both fixnums or bignums and X is not 1, divide N by X. Push three items: the
integer quoticnt (a fixnum or bignum), the integer remainder, and Values-Marker 2.

o If cither X or N is a flonum or ratio, push a fixnum or bignum quotient (the true quoticnt rounded
toward 0), then a flonum or ratio remainder, then push Valucs-Marker 2. The type of the
remainder is determined by the same type-coercion rules as for +. The value of the remainder is
cqual to N - X' * Quotient.

If Truncate uscs the escape-to-macro mechanism (sce scction 6.3). it builds a multiple-value frame header

rather than an escape hcader.

Truncate.
Truncate-AL
Truncate-PSIC

+ (N X) pushes N+ X. *, and / are similar.
+.
+-AL
+-PSIC
i--PSlCl
-=AL
--PSIC
--.PSICI
L]

*-AL
":PSIC
/
/-AL

REVISED INTERNAL DESIGN OF SPICIE 11SP 37
/-PSIC

I+ (F)stores CIY + 1 into F.
1 +-Al.

1- () stores CI7- 1into £,
1--AlL

-Negate (M) pushes -N.

Negate
Ncgate-Al.

Abs (N) pushes |N|.

Abs’
Abs-AL

f.ogand (N X) pushés the bitwise and of the integers N and X. Logior and l.ogxor arc analagous.

Loganq'
Logior .
Logxor

[Lognot (N) pushes the bitwise complement of N.

Lognof

Boole (Op X Y) performs the Common L.isp Boole operation Op on X, and Y. The Boole constants for
Spice Lisp are these:

boole-clir
boole-set
boole-1
boole-2
boole-c1i
boole-c2
boole-and
" boole-ior
boole-xor
_boole-eqv
boole-nand 10
boole-nor 11
boole-andcl 12
boole-andc2 13
boole-orcl 14
boole-orc2 15

OO NdNDODOOEWNFO

REVISED INTERNAL DESIGN O SPICE T ISP ' 38

Ash (N X) performs.the C.omm(m I.isp ASH operation on N and X.

Ash”
Ash-PSIC

1.db (S P N). All args arc intcgers: .S and /” are non-negative. Performs the Common Lisp L.DB operation
with S and 7 being the size and position of the byte specifier.
l.db"

Mask-Fiecld (S £ N) performs the Common [.isp Mask-Field operation With S and 2 being the size and
position of the byte specifier.
Mask-Field”

Dpb (V' S P N) performs the Common Lisp DPB operation with S and P being the size and position of the
byte specifier. '
Dpb’
(:) Deposit-Ficld (V' S P N) performs the Common Lisp Deposit-Ficld operation with S and P as the size and -
pbsition of the byte specifier.
Deposit-Field”

I.sh (N X) pushes a fixnum that is N shiftcd left by X bits, with 0's shifted in on the right._ If X is negative, N
is shifted to the right with 0's coming in on the left. Both N and X should be fixnums.

Lsh®
L.sh-PSIC

Logldb (S P N). All args are fixnums. S and 2 specify a “byte” or bit-field of any length within M. This is
extracted and is pushed right-justificd as a fixnum. S is the length of the ficld in bits; £ is thc number of bits
from the right of N to the beginning of the specificd ficld. 2 = 0 means that the ficld starts at bit 0 of ¥, and
so on. Itis an crror if the specified field is not entirely within the 28 bits of N |

Logldb”

Logdpb (V' S P N). All args are fixnums. Pushes a number cqual to N, but with the field specified by P and
S replaced by the S low-order bits of V. It is an error if the field docs not fit into the 28 bits of V.
Logdpb" '

C\
o

REVISED INTERNAL DESIGN OF SPICE LISP 19

5.2.8. Branching and Dispatching
Branch instructions add or subtract a 1 or 2 byte a relative offset to the PC after the branch instruction and
the offset bytes have been fetched. The opecode determines the direction of the branch and the number of

offsct bytes to be fetched.

Branch-Forward ((Offset) adds the 1 byte Offser to the PC. I.ong-Branch-Forward adds a 2 byte OffSer.

Branch-Backward and 1.ong-Branch-Backward subtract 1 or 2 byte Qffsets. '
Branch-Forward” .
l.ong-Branch-Forward

Branch-Backward” .
l.ong-Branch-Backward

Branch-Null (Offer) pops the top item off the stack and branches if it is NIL; Branch-Not-Null branches if
it is not null.
‘Branch-Null-Forward” .
l,ong—Branch-Null-Forwarg
Branch-Not-Null-Forward. .
Long-Branc‘h-Not-Null;Forward
Branch-Null-Backward .
lLong-Branch-Null-Backward

Branch-Not-Null-Backward" .
L.ong-Branch-Not-Null-Backward

Branch-Save-Not-Null (Offser) looks at the value in TOS. - If it is Nil, the stack it is popped off the stack and
we fall through. Otherwise the stack is left as is and we take the branch,
 Branch-Save-Not-Null-Forward” .
l.ong-Branch-Save-Not-Null-Forward

Branch-Save-Not-Null-Backward” .
l.ong-Branch-Save-Not-Null-Backward

Dispatch (). The top of stack (TOS) is used as an index into a dispatch table located in the current code
vector. The next byic in the ins&uction is a limit. If TOS is not a fixnum, a fixnum less than 0, or a fixnum
greater than or equal to the limit, no branch happens and we fall through, continuing with the next
instruction. If TOS is within the specified bounds, however, it is added to a 16-bit number formed by
fetching the next 1 or 2 bytes from the instruction stream. This result is used as an index into the code vector,
and a 16-bit word is fetched from that memory location. The offset into the current code vector is set to this
word. The stack is popped whether or not we branch. |

Dispatch‘ .
Long-Dispatch

REVISED INTERNAT DESIGN OF SPICE LISP V 40

5.2.9. Function Call and Return
Call (/). " must be some sort of cxecutable function: a function object. a lambda-cxpression, or a symbol
with onc of these stored in its function cell. A call frame for this function is opened. This is explained in
more detail in the next chapter.
Call”

Call-C
Call-AlL.

Call-0 (/). /" must be an exccutable function, as above, but is a function of 0 arguments. Thus, there is no
need to collect arguments. ‘The call frame is opened and activated in' a single instruction.
Call-0"

Call-0-C
Cail-0-AL

Call-Multiple (7). Just like a Call instruction, but it sets bit 21 of the frame header word to indicate that
multiple values will be accepted. Sce section 6.1.4.
Call-Multiple”

Cail-Multiple-C
Call-Multiple-AL

Start-Call () closes the currently open call frame, and initiates a function call. See section 6.1.2 for details.
Start-Call”

Push-l.ast (X) pushes X as an argument, closcs the currently open call frame, and initiates a function call.

Sce section 6.1.2 for details.

Push-Last-AL
Push-[.ast-C
Push-Last-S
Push-l_ast-PSI1C

Return (X). Recturn from the current function call. After the current frame is popped off the stack, X is
pushed as the resuit being returned. Sec scction 6.1.3 for more details.
Return”

Return-C -
Return-AL

Escape-Return (X). If the current call frame has an escape frame header, this works like a normal return,

but the value X is put in the destination indicated in the header rather than just being returned on the stack.

REVISED INTERNAL DESIGN OFF SPICE | 1SP ' 41
If the current frame is not an cscape frame, just return the single value on the stack as a ..ormal return would.

=
Escape-Return

Break-Return (). If the header of the current call frame indicates a break frame, do a Return, but push no
return valuc on the stack. If the current frame is not an cscape frame, return NIIL..

Break-Return”

Catch () builds a'catch frame. The top of stack should hold the tag caught by this catch frame, and the next
entry on the stack should be a saved-format PC (which will come from the constants vector of the function).
Sce section 6.2 for details.

Catch’

Catch-Multiple () builds a multiple-value catch frame. The top of stack should hold the tag caught by this
catch frame, and the next entry on the stack should be a saved-format PC. Sce section 6.2 for details.
Catch-Multiple”

Catch-All () builds a catch frame whose tag is the special Catch-All object. The top of stack should hold the
saved-format PC, which is the address to branch to if this frame is thrown through. Sec section 6.2 for details.

Catch-All"

Throw (X). Xis the throw-tag, normally a symbol. The valuc to be returned, either single or multiple, is on
the top of the stack. Scc scction 6.2 for a description of how this instruction works.

Throw
Throw-C

5.2.10. Miscellaneous
Eq (X Y) pushes T if X and Y are the same object, NII. otherwise.

®

Eq
Eq-AL
Eq-C

Eql (X Y) pushes T if X and Y are the same object or if X and Y are numbers of the same type with the
same value, NIL otherwise,

Eql"
Eql-AL

REVISED INTERNAL DESIGN O1F SPICE LISP ‘ 42

Fql-C

~"'««

Set-Null (/) sets '/ to NIL..

Set-Nult”
Set-Null-Al.

Set-'I' (I sets Cl o1,
Set- 1"
Set-'T-Al
Set-0 (F) sets CE t0 0.
Set-0°
Set-0-AL
Make-Predicate (X) pushes NIL if X is NIL or T if it is not. -

Make-Predicate”
Makec-Predicate-AL

/
Not-Predicate (X) pushes T if X'is NIL or NIL if it is not. \

Not-Predicate”
Not-Predicate-AL

Valucsﬂ‘o-N (V). V mustbe a Values-Marker. Returns the numbcr of valucs in~dicatcd in the IoW 24 bits of
V as a fixnum.
Values-To-N

N-To-Values (N). Nis a fixnum. Returns a Values-Marker with the same low-order 24 bits as V.
N-To-Values

Force-Values (). If the top of the stack is a Valucs-Marker, do nothing; if not, push Va]ucS-Marker 1.

Force-Values

Flush-Values (). If the top of the stack is a Values-Marker, remove this marker; if not, do nothing.
Flush-Values

REVISED INTERNAL DESIGN O SPICHE LISP ’ 43

5.2.11. System Ilacking
Get-Type (Object) pushes the five type bits of the Objecrt as a fixnum.

Gct-’l'ype.
Get-Type-Al

Get-Spacce ((bject) pushes the two space bits of Object as a fixnum.,

Gct-Space'

Make-Immediate-"T'ype (X" A) pushes an object whose type bits are the integer A and whosce other bits come
from the immediate object or pointer X. A should be an immcdiate type code.

Makc~lmmcdia(e-’l‘ypc‘

8bit-System-Ref (X /). If X is an I-Vector, pushes the 7'th byte of X, indexing into X as an 8-bit I-Vector. If
X is a system arca pointer, pushes the I'th byte beyond X as a fixnum., / must be a fixnum.
8bit-System-Ref

8bit-System-Set (X [V). If X is an I-Vector, Sets the -I'th clement of X to V, indexing into X as an 8-bit
I-Vector. If X is a system arca pointer, sets the ['th byte beyond X to V.
8bit-System-Set

16bit-System-Ref (X /). If X is an I-Vector, pushes the I'th 16-bit word of X, indexing into X as a 16-bit
[-Vector. If X is a system arca pointer, pushes the I'th word beyond X as a fixnum. 7 must be a fixnum.
16bit-System-Ref

16bit-System-Set (X 7 V). If X is an 1-Vector, scts the I'th clement of X to V, indexing into X as a 16-bit
I-Vector. If X' is a system area pointer, sets the 'th word beyond X to V.
16bit-System-Sct

Collect-Garbage () causes a stop-and-copy GC to be performed.
Collect-Garbage

Newspace-Bit () pushes 0 if newspace is currently space 0 or 1 if it is 1.

Newspace-Bit

Set-Newspace-For-Type (type space) sets the next newspace free pointer for the type corresponding to the
fype number to the space corresponding to the space number. There is about onc uscful thing that you can do

with this instruction; see section 4.3. There are a number of not-so-useful but very fun things that you can do

REVISED INTERNAL DESIGN OF SPICE LISP) 4

with this instruction that are not documented here.

Set-Newspace-For-Type

Kernel-Trap (Argblock Code) is for communication with the Accent Kernel. C'ode is the type of trap
desired (a fixnum), and Argblock is an [-Vector containing assorted argument information. See section 6.5 for
details.

Kernel-I'rap

Halt () stops the exccution of Lisp. If continued. T is pushed on the stack.
Halt

Arg-In-Framc (N F). N is a fixnum, I”is a control stack pointer as returned by the Active-Call-Frame and
Open-Call-Frame instructions. Pushes the item in slot N of the args-and-locals area of call frame F.

Arg-In-Frame

Active-Call-Frame () pushes a control-stack pointer to the start of the currently active call frame. This will
be of type Misc-Control-Stack-Pointer.

Active-Call-Frame

Active-Catch-Frame () pushes the control-stack pointer to the start of the currently active catch frame. This
is Nil if there is no active catch.

Active-Catch-Frame

Set-Call-Frame (P). P must be a control stack pointer, This becomes the current active call frame pointer.

Set-Call-Frame

Currcnt-Opch-F rame () pushes a control-stack pointer to the start of the currently open call frame. This
will be of type Misc-Control-Stack-Pointer.

Current-Open-Frame

Set-Open-Frame (P). P must be a control stack pointer. This becomcs the current open frame pointer.

Set-Open-Frame

Current-Stack-Pointer () pushes Lhé Misc-Control-Stack-Pointer that points to the current top of the stack
(before the result of this operation is pushed). Note: by definition, this points to the first unused word of the
stack, not to the last thing pushed. The stack manipulation instructions make it appear as if the stack is all in
contiguous virtual memory, despite the fact that the TOS register will be holding the top word of the stack.

REVISED INTERNAL DESIGN O SPICE 1 ISP 45

Current-Stack-Pointer

Current-Binding-Pointer () pushes a Misc-Binding-Stack-Pointer that points to the first word above the
current top of the binding stack.

Current-Binding-Pointer

Read-Conurol-Stack (/). /" must be a control stack pointer. Pushes the Lisp object that resides at this -
location. If the addressed object is totally outside the current stack, this is an crror.

Read-Control-Stack

Write-Control-Stack (/7 V). Fis a stack pointer, ¥ is any Lisp object. Writes V into the location addressed.
If the addressed cell is totally outside the current stack, this is an error. Obviously, this should only be used
by carefully written and debugged system code, since you can destroy the world by using this instruction.

Write-Control-Stack

Read-Binding-Stack (B). B must be a binding stack pointer. Reads and returns the Lisp object at this
location. An crror if the location specified is outside the current binding stack.
Read-Binding-Stack

Write-Binding-Stack (B V). B must be a binding stack pointer. Writes V into the specified location. An
crror if the location specificd is outside the current binding stack.
Write-Binding-Stack

REVISED INTERNAL DESIGN O SPICE 1ISP 46

6. Control Conventions @

6.1. Function Calls

6.1.1. Starting a Function Call

The Call and Call-Multiple instructions open a call frame on the control stack, but do not transfer control to
the called function. 'The arguments for the function arc then cvaluated and pushed on the stack, and the call
is started by a Push-L.ast instruction. Call-Multiple scts bit 21, the multiple-values-accepted bit, of the call
frame to indicate that it will accept multiple-values. Cail-0 opens the call frame and docs the cquivalent of a
Start-Call instruction (sce below) to start the called function. All these instructions take the function to be
called as CE.

If CE is a symbol, we fetch the contents of the symbol’s definition cell. If it is a Misc-Trap or another
symbol, we signal an error. Otherwise, we go on with this definition as the function. We do not allow chains

of symbols defined as other symbols. If CE is a compiled function, we perform the following steps:

1. Note the current value of the Control-Stack-Pointer rcgis;er.

2. Push a Call-Frame-Header on control stack (with bit 21 sct if this is a Call-Mulitiple). SN
3. Push CE (the function being called). |

4. Push the Active-Frame register.

5. Push the Open-Frame register.

6. Push Binding-Stack-Pointer.

7. Push Fixnum -1 or some other casy-to-gencrate .vah‘xc. ‘This will later be filled with caller's PC.

8. Open-Frame <= = Stack frame pointer saved in step 1.

The open frame is now rcady to have arguments pushed.

If CE is a list, it is probably a lambda-cxpression or interpreted lexical closure. The call proceeds as above,

with the list stored in the function slot of the new frame. The arguments are pﬁshcd normally, and %SP-

Internal-Apply will be called when the Push-Last is executed. %SP-Internal-Apply verifics that this function

is a lambda or lexical closure.

If CE is anything clse, an Tllegal-Function error is signalled.

C

REVISED INTERNAL DESIGN OFF SPICT ISP : ‘ 47

C 6.1.2. Finishing a Function Call
,/) Push-l.ast pushes a final argument X and starts the function responsible for the current open frame.
Start-Call just starts the function. Call-0 opens the frame and performs the equivalent of a Start-Call

immecdiately. since there are no arguments to push.

We look at the function entry of the current open ‘frame. If this contains a compiled function object,

proceed as follows:

1. Insert the current PC (points to the NEX'I' instruction of the caller’s code vector) in the PC slot of
the open frame.

2. Active-Function <= = Called function (from slot 1 of open frame).
3. Active-Code <= = Code vector for new active function.
4. Active-Frame <= = Open-Frame

5. Note number of args pushed by caller. Let this be K. We must now compljte the proper entry
point in the called function's code vector as a function of K and the number of args the called
function wants.

a. If number of args < minimum, signal an error.
O : b. If number of args > maximum and no &REST arg is allowed, signal an error.

c. If number of args > maximum and a &RES'T arg is present, pop cxcess args into a list, push
this list back on stack as the &REST arg, and start at offset 0.

d. If number of args is between min and max (inclusive), get the starting offset from the
appropriate slot of the called function’s function object. This is stored as a fixnum in slot K
- MIN + 6 of the function object.

6. Sct up the new-PC to point at the right place in the code vector and return to the macro-code
exccution loop to run the new function. This involves setting up PC, the BPC, and refilling the
instruction buffer. ‘

If the object in the function entry is a list instead of a function object, we must call %SP-Internal-Apply to

interpret the function with the given arguments. We procceed as follows:

1. Note the number of args pushed in the current open frame (call this N) and the frame pointer for
this frame (call it F). Also remember the lambda-expression in this frame (call it L).

2. Perform steps 1 - 4 of the sequence above for a normal Start-Call.

3. Perform the equivalent of a Call-Multiple instruction with the symbol %SP-Internal-Apply as CE.
(:D (This symbol is in a fixed location known to the microcode. See section 2.9.)

IR
RS

kW ->' < r‘i‘]’q
;’(é’ "

b
bid
+

REVISED INTERNAL DESIGN OI' SPICE 1ISP 48

4. Push [, N, and F in that order as the three arguments to %SP-Intcrnal-Apply.

Fj
\%\ .

5. Perform the equivalent of a Push-1.ast-Stack to start the call.
%SP-Intcrnal-Apply. a function of three arguments, now cvaluates the call to the lambda-cxpression or
interpreted lexical closure 1., obtaining the arguments from the frame pointed o by F. Thesc arguments are
obtained using the Arg-In-Frame instruction. Prior to rcturning %SP-Internal-Apply scts the Active-Frame

register to F, so that it rcturns from frame F,

6.1.3. Returning from a Function Call |

Return returns from the current function, popping the stack frame and pushing some number of returned
values. If CF is a Values-Marker but bit 21 is not on in the current call frame, only one value is returned. If

bit 21 is on, cither multiple valucs or a single value will be returned. The steps are as follows:

1. Pop binding stack back to value saved in slot S of the active control frame. For cach symbol/value
pair popped off the binding stack, restore that value for the symbol.

2. Temp <= = Previous active frame from slot 3 of current frame.

3. Open-Frame <= = Saved value in current frame.

4. PC <= = Saved valuc in current frame. This rcquires setting up the internal PC, the BPC, and TN
the instruction buffer. : .
5. Active-Function < = = Saved value from previous frame. A pointer to this frame is in Temp.
6. Active-Code <= = Code Vector obtained from entry in restored Active-Function object.
7. Pop current frame off stack:
Control-Stack-Pointer {= = Active-Frame.
Active-Frame <= = Temp.
Pop top of stack into TOS register. Since the active frame is inside
the barrier, make surc the new top frame has been scavenged, or do it now.
8. Push the return value onto the stack.
9. Resume cxccution of function popped to.
6.1.4. Returning Multiple-Values }
If bit 21 is on in the current frame and a Values-Marker indicating N values is on the top of the stack, we
proceed as follows:
1. Note the value of the current stack pointer (after CE is popped off if it came from the stack) as
OLDSP.
2. Perform steps 1 - 7 of the Return procedure described above.: ' @

tor

C

REVISED INTERNAL DESIGN O SPICE HISP 49

3. Do a block transfer loop pushing the N words starting at (O1.DSP) - N onto the stack as return
values. 'Then push the original C'I7, which is Values-Marker N.

4. Resume exccution of the caller.

Todo (MULTTPLE-VALUE-LIST (FOO A B)).wccould usc this sequence of instructions:

(CALL-MULTIPLE (CONSTANT [F00]))

(PUSH [A])

(PUSH-LAST [B])

(FORCE-VALUES)

(VALUES-TO-N STACK)

(LIST STACK) ;Pop N from stack, then listify N things.

Todo (MULTIPLE-VALUE-SETQ (X Y Z) (FOO A B)). we could usc this code:

(CALL-MULTIPLE (CONSTANT [FO001))
(PUSH [A])

(PUSH-LAST [B])

(FORCE-VALUES)

(VALUES-TO-N STACK)

(- (CONSTANT [3])) ;Get number offered - number wanted.
(NPOP STACK) ;Flush surplus returns or push NILs.
(POP [Z]) :Now put the three values wherever they
(POP [Y]) ; are supposed to go.

(POP [X])

In tail recursive situations, such as in the last form of a PROGN, one function, FOO, may want to call

another function, BAR. and return “whatever BAR returns.” Call-Multiple is used in this case. If BAR

returns multiple values, they will ail be passed to FOO. 1If FOO's caller wants multiple values, the values will
be returned. If not, FOO's Return instruction will sce that there arc multiple values on the stack, but that

multiple values will not be accepted by FOOQO's caller. So Return will return only the first value.

6.2. Non-Local Exits

The Catch and Unwind-Protect special forms are implcménted using catch frames. Unwind-Protect builds
a catch frame whose tag is the Catch-All object. The Catch instruction creates a catch frame for a given tag
and PC to branch to in the current instruction. The Throw instruction looks up the stack by following the
chain of catch frames until it finds a frame with a mawching tag or a frame with the Catch-All object as its tag.
If it finds a frame.with a matching tag, that frame is “returned from,” and that function is resumed. Ifit finds
a frame with the Catch-All object as its tag, that frame is “returned from,” and in addition, %SP-Internal-
Throw-Tag is sct to the tag being searched for. So that interrupted clecanup forms behave correctly, %SP-
Internal-Throw-Tag should be bound to the Catch-All object before the Catch-All frame is built. The
protected forms are then executed, and if %SP-Internal-Throw-Tag is not the Catch-All object, its value is

thrown to. Exactly what we do is this:

REVISED INTERNAL DESIGN OF SPICE LISP ’ 50

1. Put the contents of the Active-Catch register into a register, A. Put N1 into another register, B,
2. 1f A is NI1., the tag we scck isn’t on the stack. Signal an Unseen-Throw-"Tag error.

3. Look at the tag for the catch frame in register A. Ifit's the tag we're looking for, go o step 4. Ifit's
the Catch-All object and B is NII., copy A to B. Set A 1o the previous catch frame and go back to
step 2. '

4.1f B is non-NIL., we need to exccute some cleanup forms. Return into B's frame and bind
%SP-Internal-Throw-Tag to the tag we're scarching for. When the cleanup forms are finished
exccuting, they'll throw to this tag again.

5. If B is NIL., return into this frame, pushing the return value (or Bl Ting the multiple values if this
frame has bit 21 sct and there are multiple values).

If no form inside of a Catch results in a Throw, the catch frame needs to be removed from the stack before
execution of the function containing the throw is resumed. For now, the value produced by the forms inside
the Catch form are thrown to the tag. Some sort of specialized instruction could be used for this, but right
now we'll just go with the throw. The branch PC sbeciﬁed by a Catch instruction is part of the constants area

of the function object, much like the function’s entry points. To do

(catch 'foo
(baz)
(bar))

we could use this code:

(PUSH (CONSTANT [PC-FOR-TAG-1]))
(PUSH (CONSTANT [F007))

(CATCH STACK)
(CALL-0 (CONSTANT [BAZ]))

(POP IGNORE) -
(CALL-0 (CONSTANT [BAR]))

(PUSH (CONSTANT [F00]))

(THROW STACK)

TAG-1

To do

(unwind-protect
(baz)
(bar))

we could usc this code:

C

//‘ N

C

REVISED INTERNAIL DESIGN OI° SPICE LISP 51

(PUSH (SYMBOL %CATCH-ALL-OBJECT))
(PUSH (CONSTANT %SP-INTERNAL-THROW-TAG))
(BIND STACK)

(PUSH (CONSTANT [PC-FOR-TAG-17]))
(CATCH-ALL STACK)

(CALL-0 (CONSTANT [BAZ]))

(PUSH (SYMBOL %CATCH-ALL-OBJECT))
(THROW STACK)

TAG-1

(CALL-0 (CONSTANT [BAR]))

(POP TGNORE)

(PUSH (SYMBOL %CATCH-ALL-OBJECT))

(EQ (SYMBOL %SP-INTERNAL-THROW-TAG))
(BRANCH-NOT-NULL TAG-2)

(PUSH (SYMBOL %SP-INTERNAL-THROW-TAG))
(THROW STACK)

TAG-2

6.3. Escaping to Macrocode

Some instructions can be complex (e.g. * given a long-float and a bignum), and with limited micx‘osto;’e
(and microprogrammer time) on the PERQ, we would like to handle these in Lisp code. Such cases could be
handled by a full-scale microcode-to-macrocode subroutine call, which upon a return comes back to the
designated return address in the microcode and restores any micro-state that may have been clobbered. This

may ultimately be nceded if we ever implement a micro-compiler for lisp, but for now we can get by with a

simpler scheme. 1f the microcode for any macro-instruction decides that it has a case too difficult to handle, it

can call a macrocoded function that does whatever the original macro-instruction was supposed to do. It does
this by opening an cscape-type frame on the control stack, pushing an appropriate sct of arguments, and then

starting the call as though a push-last had been done in macrocode.

When the macrocoded escape function returns (the Escape-Return instruction must be used for this return)
the single returned value goes wherever the original macro-instruction was supposed to place its result, and

the original instruction stream continucs on as if the macrocode instruction had exited normally without an

" escape.

Instructions can place their return values in any of several destinations. The escape call must sct up the
frame header word to indicate which of these locations is to get the value returned by the macro-coded escape

function. An appropriate effective-address code is stored in bits 16-17:

0 Stack The result is pushed onto the stack.

1AL The result is put into the arguments/locals area of the current call frame. Bits 0-15 contain
a 16-bit offset.

REVISED INTERNAL DESIGN O SPICE LISP 52

2 Symbol The result is put into the value cell of a symbol in the symbols and constants arca of the
current function object. Bits 0-15 contain a 16-bit offsct.

3 Ignore The result is thrown away.

Given this information in the frame header, Escape-Return will do the right thing to make it appear that the

original instruction had cexited normally.

Some instructions, notably ‘I'tuncate, may want to return multiple values from an escape function. These
values will always be returned on the stack. In this case, the cscape mechanism builds a multiple-value call
frame rather than an cscape call frame, then cscapes in the usual way. The cscape routine for ‘I'runcate is

cxited using a normal Return instruction.

A table of pointers to the Lisp-level escape functions is stored in a fixed location in virtual memory, and the
address of the start of this table is known to the microcode. This means that microcode routines can select the
desired function by means of a table index, and it is not necessary to assemble the addresses of all these

functions into the microcode.

The cscape mechanism is implemented by a micro-subroutine named ESCAPE. which can be called (or
rather, jumped to, since ESCAPE never rcturns to the caller) by any microcode that wants to escape to
macrocode. ESCAPE is passed the index of the macro-function to be called and from 0 to 4 lisp objects as

arguments on the PERQ E-Stack. ESCAPE then performs-the following steps:

1. It is determined where the currently executing instruction is going to place its result, and an
appropriate escape-type call header word is generated.

2. A pointer to the desired function object is fetched from the table of cscape ﬁmctions. as
determined by the index that was passed to ESCAPE.

3. The cquivalent of a Call instruction is exccuted for this function object, but the header word
determined in step 1 is used instead of the normal header word.

4. The specified arguments, if any, are pushed onto the control stack. The new function is then
started by executing the equivalent of a Push-1.ast instruction.’

A sccond entry point, ESCAPE-MULTIPLE, does the same thing as ESCAPE but creates a multiple-value

frame header instead of an cscape frame header.

O

C

REVISED INTERNAL DESIGN OF SPICLE LISP ’ : 53

6.4. Errors

When an error occurs during the execution of an instruction, a call to %SP-Internal-Error is performed.
‘T'his call is a break-type call, so if the crror is procceded (with a Break-Return instruction), no value will be

pushed on the stack.

%SP-Internal-Error is passcd a fixnum error code as its first argument. The sccond argument is a fixnum
offsct into the current code vector that points to the location immediately following the instruction that
encountered the trouble. From this offset, the Lisp-level error handler can reconstruct the PC of the losing
instruction, which is not readily available in the micro-machine. Following the offset, there may be 0 - 2
additional arguments that provide information of possible use to the crror handler. For example, an

unbound-symbol crror will pass the symbol in question as the third arg.

A Lisp-l.evel error handler may want to provide a rcsult for the instruction. It can find the losing
instruction in the way described above, and look at it's opcode to find the destination. The crror handler
could then store the user-supplied result in the specified place and proceed executing the errorful function at

the instruction after the losing instruction.

The following crror codes are currently defined. Unless otherwise specificd. only the error code and the

code-vector offsct are passed as arguments.

The following table is pretty hogus. After the microcode is written, and T know what errors are really

gencerated, I'll make a newer table.

1 Control Stack Overflow

The control stack has cxcecded the allowable size, currently 2%

words.

2 Control Stack Underflow
Can only result from a compiler bug or misuse of an instruction.

3 Binding Stack Overflow

The binding stack has exceeded the allowable size, currently 2%

words.

4 Binding Stack Underflow
Can only result from a compiler bug or misuse of an instruction.

5 Virtual Memory Overflow
Some data space has exceeded the maximum size of its segment in virtual memory.

6 Unbound Symbol
Attempted access to the special value of an unbound symbol. Passes the symbol as the
third argument to %Sp-Internal-Error.

REVISED INTERNAL DESIGN OF SPICE LISP

7 Undcfined Symbol
third argument to %Sp-Internal-Error.
8 Unused.

9 Altering ‘T or NII.

Attempt to bind or setq the special value of T or NIIL..

10 Unused.

11 Write Into Rcad-Only Space
Scif-cxplanatory.

12 Object Not Character
The object is passed as the third argument.

13 Object Not System Area Pointer
The object is passed as the third argument.

'14 Object Not Control Stack Pointer

The object is passed as the third argument.

15 Objot Binding Stack Pointer
The object is passed as the third argument.

16 Object Not Values Marker

The object is passed as the third argument.

17 Object Not Fixnum
The object is passed as the third argument.

18 Object Not Vector-Like
The object is passed as the third argument.

19 Object Not Integer-Vector :
'The object is passed as the third argument.

20 Object Not Symbol :
The object is passed as the third argument.

21 Object Not List
The object is passed as the third argument,

22 Object Not List or Nil
' The object is passed as the third argument.

Attempted access to the definition cell of an undefined symbol. Passes the symbol as the

O

REVISED INTERNAL DUESIGN OF SPICE 1.ISP 55

23 Object Not String
The object is passed as the third argument.

24 Object Not Number
The object is passed as the third argument.

25 Object Not Misc Type
‘The object is passed as the third argument.

26 Unuscd.

27 Hicgal Allocation Space Value
Sclf explanatory.

28 Illegal Vector Size
Attempt to allocate a vector with negative size or size too large for vectors of this type.
Passcs the requested size as the third argument.

29 lllegal Immediate Type Code
Passcs the code as the third argument.

30 Illegal Control Stack Pointer
Passes the i].lcgal pointer as the third argument.

31 lllcgal Binding Stack Pointer
Passes the illegal pointer as the third argument.

32 [llegal Instruction
Must be due to a compiler error or to using obsolete code that does not match the current
microcode. No additional args.

33 Unused.

34 Mlegal Divisor The divisor is integer or floating 0. Returns the divisor and dividend as the third and
fourth args.

35 Nlegal Vector Access Type
The specificd access type is returned as the third argument

36 Illegal Vector Index
The specified index is out of bounds for this vector. The bad index is passed as the third
argument. '

37 Illegal Byte Pointer
Bad S or P value to LDB or related function. Returns S and P as the third and fourth
arguments.

38 Ilicgal Function »

REVISED INTFRNAL DESIGN OIF SPICE LISP ’ » 56

Bad object being called as a function. The object is passed as the third argument. A
39 Too Few Arguments : .
Attempt to activate the call to a function with too few arguments on the stack. Returns the
number of arguments passcd as the third argument, the function being called as the fourth.,

40 'Too Many Arguinents ‘
© Attempt to activate the call to a function with too few arguments on the stack. Returns the
number of arguments passed as the third argument, the function being called as the fourth.

41 Unscen Throw Tag
Returns the tag as the third argument.

42 Null Open Frame
Attempt to activate a function call, but no frame has been opened. No additional args.

43 Undcfined Type Code
Can only result from a bug in the micro-machine. Returns the strange object as the third

argument.

44 Return From Initial Function

Self-explanatory.
™~
45 GC Forward Not To Newspace . (0
Can only result from internal errors in the micro-machine. No additional args. N

46 Autempt To Transport GC Forward ,
Can only result from internal errors in the micro-machine. No additional args.

47 Objcect Not Integer .
The object is passed as the third argument.

48 Short-float exponent overflow, underflow
No additional args. '

49 Long-float exponent overflow, underflow
No additional args.

50 - 63 Unused.

In the Tops-20 virtual machine, the-following codes are defined:
64 Illegal File Token | |
: The bad token is passed as the third argument.

65 Illegal 170 Mode Specifier
The bad mode is passed as the third argument.

O

®

REVISED INTERNAL DESIGN OFF SPICE LISP 57

6.5. Trapping to the Accent Kernel

Most of the primitive calls to the Accent kernel are made through a single microcode entry point, SVCall,

defined in Accent file process.mic. From Lisp level, these calls are gencrated by the Kernel-'I'rap instruction.

Kernel-'Trap takes two operands, an argument block and a trap code, in that order. ‘The trap code is a
fixnum which specifies the sort of trap call desired. The argument bloék is an 1-Vector which contains the
argument information for the trap call. The size and format of the argument block depends on which trap
code is called. The return codes and values from the trap arc written into clements of the 1-Vector by the

kernel.

Internally, the trap code and a pointer to the data portion of the [-Vector arc passcd to Accent on the PERQ
E-Stack, as follows: '

ETOS The trap code.
ETOS - 1 The low order 16 bits of the virtual address.
ETOS -2 The high order 16 bits of the virtual address.

All of the kernel traps called by Lisp-level code use the virtual address as a pointer to an argument block.
An argument block is stored at lisp level as an I-Vector of 16-bit quantities. The trap codes are defined in
Accent file accenttype.pas, and-the arguments to these calls are described in the Accent Kernel Interface

Manual.

6.6. Interrupts

There are three kinds of asynchronous events that the Spice Lisp system must service: hardware interrupts,

process breaks, and software interrupts.

Hardware interrupts must be serviced every 70 microinstructions. [t is guarantecd that no process registers
will be altered and no page faults will occur, so all a microprogrammer need do is check the Intr-Pcnding
condition every now and thcn and call the hardware interrupt service routine. Sometimes that routine will

set the process break flag, and a process break should occur.

If there are other runnable processes on the machine, a process break will result in the de-scheduling of the
Lisp process. Process registers will be saved by the kernel, and restored when the Lisp runs again. After a
process break, all cached virtual-to-physical memory translations may be invalid and the instruction buffer

wil’;i.brobab]y be filled with some other process's instructions. The caches must be flushed and the instruction

|

REVISED INTERNAL DESIGN OF SPICEE 1 ISP : 58

buffer must be refilled after a process break.

After a process break, it is possible that the Lisp process will have received an “emergency message™ from
some other process. If so, the sofiware interrupt flag will be set. ‘F'o service this software interrupt, a
break-type call frame is built to %SP-Software-Interrupt-Handler, which should reccive the message and
figure out what to do with it at Lisp level. 'The emergency message might, for cxample, report that an
interrupt character has been typed, and the interrupt handler could enter a break loop or throw to the Lisp

top level.

\

®

REVISED INTERNAL DESIGN OI° SPICE LISP i 59

Appendix I
Fasload File Format

I.1. General

‘The purposc of Fasload files is to allow concise storage and rapid loading of Lisp data, particularly function
definitions. ‘The intent is that loading a Fasload file has the same cffect as loading the /\SCII file from which
the Fasload file was compiled, but accomplishes the tasks more cfficiently. One noticcable difference, of
course, is that function definitions may be in compiled form rather than S-expression form. Another is that
Fasload files may specify in what parts of memory the Lisp data should be allocated. For cxample, constant

lists used by compiled code may be regarded as read-only.

In some Lisp implementations, Fasload file formats arc designed to allow sharing of code parts of the file,
possibly by dircct mapping of pages of the file into the address space of a process. This technique produces
great performance improvements in a paged time-sharing system. Since the Spice project is to produce a
distributed pcrsohal-computcr network system rather than a time-sharing system, cfficiencies of this type are

explicitly not a goal for the Spice Lisp Fasload file format.

On the other hand, Spice Lisp is intended to be portable, as it will eventually run on a varicty of machines.
Therefore an cxplicit goal is that Fasload files shall be transportable among various implementations, to
permit efficient distribution of programs in compiled form. The representations of data objects in Fasload
files shall be relatively indeperident of such considerations as word length, number of type bits, and so on. [f
two implementations interpret the same macrocode (cdmpilcd code format), then Fasload files should be
completely compatible. If they do not, then files not containing compiled code (so-called "Fasdump” data
files) should still be compatible. While this may lead to a format which is not maximally cfficient for a
particular implementation, the sacrifice of a small amount of performance is deemed a worthwhile price to

pay to achieve portability..

The primary assumption about data format compatibility is that all implementations can support 170 on
finite streams of cight-bit bytes. By "finitc" we mean that a definite end-of-file point can be detected

irrespective of the content of the data stream. A Fasload file will be regarded as such a byte stream.

ASCII text, but by convention it is formatted in a certain way. The header is divided into lines, which are

REVISED INTERNAL DESIGN OFF SPICE LISP 60

1.2. Strategy (\
L

A Fasload file may be regarded as a human-readable prefix followed by code in a funny little language.
When interpreted, this code will cause the construction of the encoded data structurcs. ‘The virtual machine
which interprets this code has a stack and a table, both initially cmpty. ‘The table may be thought of as an
cxpandable register file; it is used to remember quantities which are needed more than once. 'The clements of
boih the stack and the table arc Lisp data objects. Operators of the funny language may take as operands .
following bytes of the data stream, or items popped from the stack. Results may be pushed back onto the
stack or pushed onto the table. The table is an indexable stack that is never popped: it is indexed relative to

the base, not the top, so that an item once pushed always has the same index.

More preciscly, a Fasload file has the following macroscopic organization. It is a scquence of zero or more
groups concatenated together. End-of-file must occur at the end of the last group. Each group begins with a
series of seven-bit ASCII characters terminated by one or more bytes of all ones (FF 16); this is called the
header. Following the bytes which terminate the header is the body, a stream of bytcs in the funny binary
language. The body of necessity begins with a byte other than FFI&' The body is terminated by the operation
FOP-END-GROUP.

The first nine characters of the header must be "FASL FILE" in upper-case letters. The rest may be any _ /

grouped into paragraphs. A paragraph begins with a line which does not begin with a spacc or tab character,
and contains all lines up to, but not including, the next such linc. "The first word of a paragraph, defined to be
all characters up to but not including the first spacc, tab, or cnd-of-line character, is the name of the
paragraph. A Fasload file Hcadcr might look something like this:

FASL FILE >SteelesPerg>User>Guy>IoHacks>Pretty-Print.Slisp

Package Pretty-Print ‘

Compiled 31-Mar-1988 09:01:32 by some. random luser

Compiler Version 1.6, Lisp Version 3.0,

Functions: INITIALIZE DRIVER HACK HACK1 MUNGE MUNGE1 GAZORCH
MINGLE MUDDLE PERTURB OVERDRIVE GOBBLE-KEYBOARD FRY-USER
DROP-DEAD HELP CLEAR-MICROCODE %A0OS-TRIANGLE
%HARASS-READTABLE-MAYBE

Macros: PUSH POP FROB TWIDDLE

<one or more bytes of FF16>

The particular paragraph names and contents shown here are only intended as suggestions.

O

REVISED INTERNAL DESIGN OF SPICE ISP 61

1.3. Fasload Language

Fach operation in the binary Fasload language is an cight-bit (one-byte) opcode. Fach has a name
beginning with "FOP-". In the following descriptions, the name is followed by operand descriptors. Fach
descriptor denotes operands that follow the opcode in the input strcam. A guantity in parentheses indicates
the number of bytes of data from the stream making up the operand. Opcrands which implicitly come from
the stack arc noted in the text. The notation "=> stack™ mecans that the result is pushbd onto the stack; "=
table” similarly mcans that the result is added to the table. A construction like "n(1) value(n)” mecans that first
a single byte n is rcad from the input strecam, and this byte specifics how many bytes to read as the operand
named value. All numeric values arc unsigned binary integers unless otherwise specified. Values described as
"signed™ are in two's-complement form unless otherwise specified. When an integer read from the stream
occupies more than one byte, the first byte read is the least significant byte, and the last byte read is the most

significant (and contains the sign bit as its high-order bit if the entire intcger is signed).

Some of the opcrations are not necessary, but are rather special cases of or combinations of others. These
are included to reduce the size of the file or to speed up important cases. As an example, nearly all strings are
less than 256 bytes long, and so a special form of string operation might take a one-byte length rather than a
four-byte length. As another cxample, some irnplefncmations may choose to store bits in an array in a
left-to-right format within ecach word, rather than right-to-left. The Fasload file format may support both
formats, with onc being significantly more efficient than the other for a given implementation. The compiler
for any implementation may generate the more efficient form for that implementation, and yet compatibility

can be maintained by requiring all implementations to support both formats in Fasload files.

Mcasurcments are to be made to determine which operation codes are worthwhile: little-used operations
may be discarded and new ones added. After a point the definition will be "frozen"”, meaning that cxisting
opcrations may not be deleted (though new ones may be added; some operations codes will be reserved for
that purpose).

0 FOP-NOP No operation. (This is included because it is recognized that some implementations may
benefit from alignment of opcrands to some operations, for example to 32-bit boundaries.
- This operation can be used to pad the instruction stream to a desired bounary.)

1 FOP-POP = table v
One item is popped from the stack and added to the table.

2 FOP-PUSH index(4) = stack : o

Item number index of the table is pushed onto the stack. The first element of the table is
item number zcro.

3 FOP-BYTE-PUSH index(l) = stack

REVISED INTERNAL DESIGN OIF SPICH 1ISP ’ 62

Item number index of the table is pushed onto the stack. The first element of the table is £
item number zero, N

4 FOP-EMPTY-LIST == stack
The empty list ({)) is pushed onto the stack.

5 FOP-TRUTH = stack
“T'he standard truth valuc (T) is pushed onto the stack.

6 FOP-SYMBOL-SAVE #(4) name(n) = stack & table
The four-byte operand n specifies the length of the print name of a symbol. The name
follows, onc character per byte, with the first byte of the print name being the first read.
The namc is interned in the default package, and the resuiting symbol is both pushed onto
the stack and added to the table. .

7 FOP-SMALL-SYMBOL-SAVE n(l) name(n) = stack & table
The one-byte operand n specifies the length of the print name of a symbol. The name
follows. one character per byte, with the first byte of the print name being the first read.
The name is interned in the default package, and the resulting symbol is both pushed onto
the stack and added to the table.

8 FOP-SYMBOL-IN-PACKAGE-SAVE index(4) n(4) name(n) = -stack & table
~ The four-byte index spccifics a package stored in the table. The four-byte operand n
specifics the length of the print name of a symbol. ‘The name follows, one character per \k\
- byte, with the first byte of the print name being the first read. The name is interned in the e
specified package, and the resulting symbol is both pushed onto the stack and added to the
table.

9 FOP-SMALL-SYMBOL-IN-PACKAGE-SAVE index(4) n(1) name(n) = stack & table
The four-byte index specifics a package stored in the table. The one-byte opcrand n
specifies the length of the print name of a symbol. The name follows, onc character per
byte, with the first byte of the print name being the first rcad. The name is interned in the
specified package, and the resulting symbol is both pushed onto the stack and added to the
table.

10 FOP-SYMBOL-IN-BYTE-PACKAGE-SAVE index(1) m4) name(n) = stack & table
The one-byte index specifics a package stored in the table. The four-byte operand n
specifics the length of the print name of a symbol. The name follows, onc character per
byte, with the first byte of the print name being the first read. The name is interned in the
specified package, and the resulting symbol is both pushed onto the stack and added to the
table.

11 FOP-SMALL-SYMBOL-IN-BYTE-PACKAGE-SAVE index(l) n(l) name(n) = stack & table
The one-byte index specifies a package stored in the table. The onc-byte operand n
specifies the length of the print name of a symbol. The name follows, onc character per
byte, with the first byte of the print name being the first read. The name is interned in the
specified package, and the resulting symbol is both pushed onto the stack and added to the
table,

O

O

REVISED INTERNAL DUESIGN OF SPICE 1.ISP 63

12 Unused.

13 FOP-DEFAULT-PACKAGE index(4)
A package stored in the table entry specificd by index is made the default package for
futurc FOP-SYMBOL and FOP-SMALL-SYMBOL intcrning opcrations. (I'hesc package
FOPs may change or disappcar as the package system is determined.)

14 FOP-PACKAGE = table »
An item is popped from the stack; it must be a symbol. The package of that name is -
located and pushed onto the table.

15 FOP-LIST length(l) = stack
‘The unsigned operand length specifics a number of operands to be popped from the stack.
Thesc are made into a list of that length, and the list is pushed onto the stack. The first
item popped from the stack becomes the last clement of the list, and so on. Hence an
iterative loop can start with the ecmpty list and perform "pop an item and cons it onto the
list" length times. (Lists of length greater than 255 can be made by using FOP-LIST*
repcatedly.)

16 FOP-LIST* length(l) = stack
This is like FOP-LIST except that the constructed list is terminated not by () (the cmpty
list), but by an item popped from the stack beforc any others are. 'Therefore length+1
items arc popped in all. Hence an iterative loop can start with a popped item and perform
"pop an item and cons it onto the list" /ength+ 1 times.

17-24 FOP-LIST-1, FOP-LIST-2,..,FOP-LIST-8
FOP-LIST-k is like FOP-LIST with a bytc containing k following it. 'These exist purely
to reduce the size of Fasload files. Measuremems nced to be made to dctcrmme the useful
values of k.

25-32 FOP-LIST*-1,FOP-LIST*-2... FOP-LIST*-8
FOP-LIST*-k is like FOP-LIST* with a byte containing k£ following it. These exist
purely to reduce the size of Fasload files. Measurcments necd to be made to determine the
useful values of k.

33 FOP-INTEGER n(4) value(n) = stack
A four-byte unsigned operand spccifies the number of following bytes. These bytes define
the value of a signed integer in two’s-complement form. The first byte of the value is the
least significant byte.

34 FOP-SMALL-INTEGER n{l) value(n) = stack
A one-byte unsigned operand specifies the number of following bytes. These bytcs define
the value of a signed integer in two's-complement form. The first byte of the value is the
least significant byte.

35 Fop- WORD INTEGER value(4d) = stack
A four-byte signed integer (in the range 23 o 23 -1) follows the operation code. A LISP
integer (fixnum or bignum) with that value is construct¢d and pushed onto the stack.

REVISED INTERNAL DESIGN OF SPICE LISP 64

36

37

38

39

40

4]

42

43

FOP-BYTE-INTEGER value(l) => stack

A one-byte signed integer (in the range -128 to 127) follows the operation code. A LISP
integer (fixnum or bignum) with that value is constructed and pushed onto the stack.

FOP-STRING n(4) name(n) = stack

The four-byte operand » specifies the length of a string to construct. 'The characters of the
string follow, onc per byte. The constructed string is pushed onto the stack.

FOP-SMALL-STRING (1) name(n) = stack

The one-byte operand » specifics the length of a string to construct. 'The characters uf the
string follow, one per byte. The constructed string is pushed onto the stack.

FOP-VECTOR n(4) = stack

The four-byte operand » specifics the length of a vector of LISP objects to construct. ‘The
clements of the vector are popped off the stack; the first one popped becomes the last
clement of the vector. The constructed vector is pushed onto the stack.

FOP-SMALL-VECTOR n(l) = stack

The one-byte operand n specifies the length of a vector of LLISP objects to construct. The
elements of the vector are popped off the stack: the first onc popped becomes the last
clement of the vector. The constructed vector is pushed onto the stack.

FOP-UNIFORM-VECTOR n(4) = stack
The four-byte operand n specifies the length of a vector of LISP objects to construct. A -

single item is popped from the stack and used to initialize all clements of the vector. The
constructed vector is pushed onto the stack. :

FOP-SMALL-UNIFORM-VECTOR (1) = stack
The one-byte operand # specifics the length of a vector of [LISP objects to construct. A~

single item is popped from the stack and used to initialize all clements of thc vector., The
constructed vector is pushed onto the stack.

FOP-INT-VECTOR n(4) size(l) counl) data [n/ count] rsize*counl/ 8]) = stack

The four-byte operand n specifics the length of a vector of unsigned integers to be
constructed. Each intcger is size bits big, and arc packed in the data strcam in scctions of
count apiece. Each scction occupies an integral number of bytes. If the bytes of a section
arc lincd up in a row, with the first byte read at the right, and successive bytes placed to the
left, with the bits within a byte being arranged so that the low-order bit is to the right, then
 the integers of the section are successive groups of size bits, starting from the right and
running across ‘byte boundaries. (In other words, this is a consistent right-to-left
convention.) Any bits wasted at the left end of a section are ignored, and any wasted
groups in the last section arc ignored. It is permitted for the loading implementation to use
a vector format providing more precision than is required by size. For example, if size
were 3, it would be permitted to use a vector of 4-bit integers, or even vector of general
LISP objects filled with integer LISP objects. However, an implementation is expected to
use the most restrictive format that will suffice, and is cxpected to reconstruct objects
identical to those output if the Fasload file was produced by the same implementation.
(For the PERQ U-vector formats, one would have size an clement of {1, 2, 4, 8, 16}, and
count=132/size, words could be read directly into the U-vector. This operation provides a

REVISED INTERNAL DESIGN OF SPICT 1LISP ’ 65

very general format whereby almost any conccivable implementation can output in its
preferred packed format, and another can read it meaningfully; by checking at the
beginning for good cascs. loading can still proceed quickly.) ‘The constructed vector is
pushed onto the stack.

44 FOP-UNIFORM-INT-VECTOR m(4) size(l) vu/ue([size/SI) = stack

The four-byte operand » specifics the length of a vector of unsigned integers to construct.
Fach integer is size bits big, and is initialized to the value of the operand value. The
constructed vector is pushed onto the stack.

45 FOP-FLOAT (1) exponem(‘-n/Sl) m(1) mamzssa([m/Sl) = stack

46-51 Unused
52 FOP-ALTER
53

FOP-EVAL

‘T'he first operand n is one unsigned byte, and describes the number of bzls in the second
opcrand exponent. which is a signed integer in two's-complement format. ‘The high-order
bits of the last (most significant) byte of exponent shall cqual the sign bit. Similar remarks
apply to m and mantissa. ‘The value denoted by these four operands is
mantissax2¢*Porentlengihtmantissay - A floating-point number shall be constructed which has
this value, and then pushed onto the stack. That floating-point format should be used
which is the smallest (most compact) provided by the implementation which nevertheless
provides enough accuracy to represent both the exponent and the mantissa correctly.

index(1)
Two items are popped from the stack: call the first newval and the sccond object. The
component of object specified by index is altcred to contain newval. The precise operation
depends on the type of object:

List " A zero index means alter the car (perform RPLACA), and index=1
mcans alter the cdr (RPLACD).

Symbol By definition- these indices have the following meaning, and have
nothing to do with the actual representation of symbols in a given
implementation:

0 : Alter value cell.
1 Alter function cell.
2 Alter property list (!).

Vector (ofkany kind)

Alter component number index of the vector.
String Alter character number index of the string.
= stack

Pop an item from the stack and evaluate it (give it to EVAL). Push the result back onto the
stack.

REVISED INTERNAL DESIGN OI SPICE LISP 66

54

55

56

57

58

59

60

61

62

FOP-EVAL-FOR-EFFECT :

Pop an item from the stack and cvaluate it (give it to EVAL). The result is ignored.

FOP-FUNCALL nargs(l) = stack

Pop nargs+1 items from the stack and apply the last one popped as a function to all the
rest as arguments (the first one popped being the last argument). Push the result back onto
the stack.

FOP-FUNCALL-FOR-EFFECT nargs(1)

Pop nargs+1 items from the stack and apply the last one popped as a function to all the
rest as arguments (the first one popped being the last argument). The result is ignored.

FOP-CODE-FORMAT id1)

FOP-CODE

The operand id is a unique identifier specifying the format for following code objects. The
operations FOP-CODE and its rclatives may not occur in a group until after
FOP-CODE-FORMAT has appearcd; there is no default format. This is provided so that
scveral compiled code formats may co-cxist in a file, and so that a loader can determine
whether or not code was. compiled by the correct compiler for the implementation being
loaded into. So far the following code format identifiers are defined:

0 'PERQ
1 VAX

nitems(4) size(4) code(size) => stack

A compiled function is constructed and pushed onto the stack. This object is in the format
specified by the most recent occurrence of FOP-CODE-FORMAT. The operand nitems
specifics a number of items to pop off the stack to use in the "boxed storage" section. The
operand code is a string of bytes constituting the compiled executable code.

FOP-SMALL-CODE nitems(l) size(2) code(size} = stack

A compiled function is constructed and pushed onto the stack. This object is in the format
specified by the most recent occurrence of FOP-CODE-FORMAT. The operand nitems
specifies a number of items to pop off the stack to use in the "boxed storage” scction. The
operand code is a string of bytes constituting the compiled executable code.

FOP-STATIC-HEAP

Until further notice operations which allocate data structurcs may allocate them in the
static arca rather than the dynamic arca. (The default arca for allocation is the dynamic
arca; this default is resct whenever a new group is begun. 'This command is of an advisory
nature; implementations with no static heap can ignore it.)

FOP-DYNAMIC-HEAP

Following storage allocation should be in the dynamic area.

FOP-VERIFY-TABLE-SIZE size(4)

If the current size of the table is not equal to size, then an inconsistency has been detected.
This operation is inserted into a Fasload file purely for crror-checking purposes. It is good
practice for a compiler to output this at least at the end of every group, if not more oftén.

REVISED INTERNAL DESIGN OIF SPICE 1LISP 67

63

65

66

67

68

69

70

71

72

73

FOP-VERIFY-EMPTY-STACK

If the stack is not currently empty. then an inconsistency has been detected. This operation
is inserted into a Fasload file purcly for error-checking purposes. It is good practice for a
compiler to output this at least at the end of every group, if not more often.

FOP-END-GROUP :

This is the last operation of a group. If this is not the last byte of the file, then a new group
follows: the next nine bytes must be "FASL FTLE".

FOP-POP-FOR-EFFECT stack =

Onc item is popped from the stack.

FOP-MISC-TRAP = stack

A trap object is pushed onto the stack.

FOP-READ-ONLY-HEAP

Following storagc allocation may be in a read-only heap. (For symbols, the symbol itself
may not be in a rcad-only area, but its print name (a string) may be. 'This command is of
an advisory naturc; implementations with no read-only heap can ignore it, or use a static
heap.) '

FOP-CHARACTER character(3) = stack

The three bytes specify the 24 bits of a Spice 1.isp character object. The bytes, lowest first,
represent the code, control, and font bits. A character is constructed and pushed onto the
stack.

FOP-SHORT-CHARACTER character(l) = stack

The one byte specifies the lower cight bits of a spice lisp character object (the code). A
character is constructed with zero control and zero font attributes and pushed onto the
stack. '

FOP-RATIO = stack

Crcates a ratio from two integers popped from the stack. The denominator is popped first,
the numerator sccond. :

FOP-COMPLEX = stack

Crecates a complex number from two numbers popped from the stack. The imaginary part
is popped first, the real part second.

FOP-LINK-ADDRESS-FIXUP nargs(l) resi(l) offsei(d) = stack

Valid only for when FOP-CODE-FORMAT corresponds to the Vax. This operation pops
a symbol and a code object from the stack and pushes a modified code object back onto the
stack according to the needs of the runtime Vax code linker.

FOP-LINK-FUNCTION-FIXUP offsef4) = stack

Valid only for when FOP-CODE-FORMAT corresponds to the Vax. This operation pops
a symbol and a code object from the stack and pushcs a modified code object back onto the
stack according to the needs of the runtime Vax code linker.

REVISED INTERNAL DESIGN O1F SPICE 1.1SP ' 68

74 FOP-FSET

Pops the top two things off of the stack and uscs them as arguments to FSET (i.c. SETF of @
SYMBOIL-FUNCTION).

255 FOP-END-HEADER
Indicates the end of a group header, as described above. ‘ -

REVISED INTERNAL DESIGN OF SPICE LISP 69

.
",
.«
LI
'y

“
()

Appendix I1
The Opcode Definition File

;3 - L-isp -

: Instruction definitions for Spice Lisp.
; Written by Skef Wholey.

“ 0.
(IR}

LI}

o 0.
[

(IR

used by the m1croassemb1er the compiler, the error system, and the
disassembler.

:: This file contains information about the instruction set and is
’

s 0.
LY

(defvar *1lbyte-instruction-table*

(make-array 256)
"Table used to find the name of a 1 byte long instruction given its
opcode.")

(defvar *2byte-instruction-table®

(make-array 256)
"Table used to find the name of a 2 byte long instruction given the second
byte of its opcode.")

(defvar *instruction-list* () "List of the instruction names.")

..
()

(Y

; We do this random setq so that the right thing happens when a new

;; definition file is loaded.

(setqg *instruction-list* ())

(defun definstruction (name opcode

&optional (type °read) (operand ’'stack) offset)
"Defines an instruction with the given -Name (a symbol) and Opcode.
Opcode may be either a single integer or a list of integers. Type
should be one of Read, Write, Read-Modify-Write, Long-Branch, or
Short-Branch. Operand defaults to Stack. Instructions which don't
really have operands are considered to be Read Stack operations.
Operand should be one of Stack, PSIC, NSIC, AL, Long-AL, Constant,
Long-Constant, Symbol, Long-Symbol, or Ignore. If the instruction has an
implied offset, that should be specified with the Offset."
(if (fixnump opcode)
(setq opcode (1list opcode)))
(if (not (1istp opcode))
(error "The opcode for ~S must be either an 1nteger or a list." name))
(setf (get name '%instruction-opcode) opcode)
(setf (get name '%instruction-length)
(+ (length opcode)
(cond ((memq type '(read write read-modify-write))
(cond (offset 0)
((memq operand '(stack ignore))
0)
((memg operand '(psic nsic al constant symbol))
1)

((memq operand '(long-al 1ong constant long-symbol))

REVISED INTERNAL DESIGN OI° SPICE LISP 70

2)
: C
(error "~S is a losing operand."” operand))))
q type 'long-branch) 2)
q type ’'short-branch) 1)
q type ’'long-dispatch) 3)
q type 'short-dispatch) 4)
(error "~S is a losing type." type)))))
(setf (get name ’%instruction-type) type)
(setf (get name '%instruction-operand) operand)
(setf (get name ’%instruction-offset) offset)
(push name *instruction-list*)
(if (= (car opcode) 254)
(setf (aref *2byte-instruction- tab1e* (cadr opcode)) name)
(setf (aref *1lbyte-instruction-tabie* (car opcode)) name)))

13, Definstructionclass is used to define a class of instructions, i.e. a
;1 set of dinstructions that perform the same operation on operands in

;;; different places. Each instruction in the class has its %Instruction-Gr
i3 property set to the Stack-Form.

(defun definstructionclass (stack-form &rest other-forms)
(setf (get stack-form '%instruction-class) other-forms)
(do ((forms other-forms (cdr forms)))
((null forms))
(let ((glob (cdar forms))) B
(if (listp glob) ' 7N
(do ((subforms glob (cdr subforms))) N\
((null subforms))
(setf (get (cdar subforms) ’'%instruction-group) stack-form))
(setf (get glob ’%instruction-group) stack-form)))))

I 1Byte generates a definstruction for a one-byte instruction.

(defvar *1byte-instruction-counter®* nil
"Counter used to generate unique 1 byte long instructions.")

(defmacro 1lbyte (name . other-stuff)

""Generates a Definstruction for the Name and Other-Stuff with a unique
one-byte opcode.” ’
‘(definstruction ,name ',(progl *1lbyte-instruction-counter®*

(incf *1byte-instruction-counter®*))
,other-stuff))

+i: 2Byte generates a definstruction for a two-byte instruction.

(defvar *2byte-instruction-counter® nil :
"Counter used to generate unique 2 byte long instructions.")

(defmacro 2byte (name . other-stuff)
"Generates a Definstruction for the Name and Other Stuff with a unique

one-byte opcode." ™
‘(definstruction ,name ’'(254 ,(progl *2byte-instruction-counter® QLJV
(incf *2byte-instruction-counter*)))

C

REVISED INTERNAT. DESIGN OF SPICIE LISP

,other-stuff))
;i: Set the counts:
(eval-when (compile)

(setq *1byte-instruction-counter* 1)
(setq *2byte-instruction-counter* 0))

;7s InstrSynonym defines a synonym for an instruction.

(defmacro instrsynonym (for is) ‘
‘(progn (setf (get ,is '%instruction-offset)
(get ,for '%Zinstruction-offset))
(setf (get ,is ’'%instruction-destination)
(get ,for '%instruction-destination))
(setf (get ,is '%instruction-type)
(get ,for '%instruction-type))
(setf (get ,is '%instruction-length)
(get ,for '%instruction-length))
(setf (get ,is '%instruction-opcode)
(get ,for '%instruction-opcode))))

i3 Allocation:

(2byte 'get-allocation-space)

(2byte ’'set-allocation-space)

(2byte 'alloc-bit-vector)

(2byte ’'alloc-i-vector)

(2byte 'alloc-string)

(2byte 'alloc-bignum)

{2byte 'float-long)

(2byte 'make-compliex)

(2byte ’'make-ratio)

(2byte 'alloc-g-vector)

(definstructionclass 'vector
'(psic . vector-psic))

(2byte ’'vector)-

(2byte ’'vector-psic 'read 'psic)

(2byte ’alloc-function)

(2byte 'alloc-array)

(2byte ’alloc-symbol)

(1byte ’cons) .

(definstructionclass 'list
"(psic . list-psic))

(2byte '1list)

(2byte ’list-psic)

(definstructionclass 'list®
"(psic . list*-psic))

(2byte 'list*)

(2byte 'list*-psic 'read 'psic)

113 Stack manipulation:

(definstructionclass ’'push

n

REVISED INTERNAL DESIGN O SPICE 1LISP

"(psic . ((

psic . push-psic)

0 . push-psic0)

1 . push-psicl)

2 . push-psic2)

3 . push-psic3)

4 . push-psic4)

5 . push-psich)

6 . push-psic6)

7 . push-psic7)

8 . push-psic8)))

sh-nsic)
push-al)

. push-al0)

push-all)

push-al2).
push-al3)
push-al4)
push-al5)
push-al6)
push-al7)

. push-al8)

. push-alg)
push-al10)
push-alll)
push-al12)
push-all3)))

push-longal)

push-c)
push-c1)
push-c2)
push-c3)
push-c4)
push-cH)
push-c6)))
ush-longc)
s)
ush-longs))
psic 'read 'psic)

(instrsynonym 'set-0 'push-psic0)

(1byte

(
"(nsic . pu
'(al ((al
(0
(1 .
(2 .
(3 .
(4
(5
(6
(7
(8
(9
(10
(11
(12
(13
"(longal .
"(c . ((c
(1
(2
(3
(4
(5
(6 .
"(longc . p
(s push-
"(longs . p
{(1byte ’push-
(1byte ’push-
{(1byte ’push-
(1byte ’'push-
{1byte ’push-
(1byte 'push-
(1byte ’push-
(1byte ’'push-
{lbyte ’'push-
(1byte ’push-
(1byte ’'push-
(1byte ’push-
(1byte 'push-
(1byte ’push-
(1byte 'push-
(1byte ’'push-

'push-

psicl 'read ’'psic 1)
psic2 'read 'psic 2)
psic3 ’'read ’'psic 3)
psic4 'read ’'psic 4)
psicd 'read 'psic 5)
psic6 'read ’'psic 6)
psic7 'read 'psic 7)
psic8 'read ’'psic 8)
nsic 'read ’'nsic)

al ’'read 'al)

al0 'read 'al 0)

all 'read 'al 1)

al2 'read 'al 2)

al3 'read 'al 3)

ald4 'read 'al 4).
al5 'read 'al 5)

72

C

REVISED INTERNATL DESIGN OF SPICE LISP

(1byte ’'push-al6 'read 'al 6)
(1byte 'push-al7 ’read 'al 7)
(1byte 'push-al8 ’'read 'al 8)
(1byte ’'push-al9 'read 'al 9)
(1byte ’'push-al10 °'read 'al 10)
(1byte ’'push-alll 'read 'al 11)
(1byte ’'push-all2 ’'read ’'al 12)
(1byte ‘'push-all3 ’'read ‘'al 13)
(2byte 'push-longal ’'read 'long-al)
(1byte ’'push-c ’'read ’'constant)
(1byte ’'push-c1 'read 'constant)
(1byte 'push-c2 ’read ’constant)
(1byte ’'push-c3 ’read ’'constant)
(1byte ’'push-c4 ’'read 'constant)
(1byte ’'push-c5 ’'read 'constant)
(1byte 'push-c6 ’'read 'constant)
(2byte 'push-iongc 'read ’'long-constant)
(1byte 'push-s 'read ’'symbol)
(2byte 'push-longs °'read 'long-symbol)
(definstructionclass ’'pop
'(al . ((al . pop-al)
(0 . pop-alo)
(1 . pop-all)
pop-al2)
pop-all)
pop-alé4)
pop-alb)
pop-alé6)
. pop-al7)))
'(longal . pop-longal)
(s . pop-s)
"(longs . pop-longs)-
'(ignore . pop-ignore))
(1byte 'pop-al 'write 'al)
(1byte 'pop-all 'write 'al 0)
(1byte ’'pop-all 'write 'al 1)
(1byte 'pop-al2 ’'write 'al 2)
(1byte ’'pop-al3d ’write ’al 3)
(1byte 'pop-ald ‘write 'al 4)
(1byte 'pop-al5 ’'write 'al 5)
(lbyte 'pop-al6 'write 'al 6)
(1byte ‘'pop-al7 ‘'write 'al 7)
(2byte 'pop-longal 'write ’'long-al)
(lbyte ’'pop-s 'write ’'symbol)
(2byte 'pop-longs 'write 'long-symbol)
(1byte ’'pop-ignore 'write ’'ignore)
(2byte 'exchange) , ‘
(definstructionclass 'copy
"(al . ((al . copy-al)
(2 . copy-al2)
(3 . copy-all)
(4 . copy-ald)
(5 . copy-al5))))
(2byte 'copy)
(1byte ’'copy-al ‘'write 'al)

o~ N~ e~
NO s WN

13

REVISED INTERNAL DESIGN OI° SPICE LISP

(lbyte ’'copy-al2 ’'write 'al 2)

(1byte 'copy-al3 ’write 'al 3)

(lbyte ’'copy-al4 'write 'al 4)

(1byte ’'copy-al5 'write 'al 5)

(definstructionclass ’npop
'(nsic . npop-nsic))

(lbyte ’'npop)

(1byte ’'npop-nsic ‘'write 'nsic)
(definstructioncliass 'bind-null
(¢ . bind-null-¢)) ‘

(2byte 'bind-null) »
(2byte ’'bind-null-c ’read ’'constant)
(definstructionclass ’'bind
(¢ . bind-c))
(2byte ’'bind) ,
(1byte ’'bind-c 'read 'constant)
(definstructionclass 'unbind
'{(psic . unbind-psic))
(2byte ’'unbind)
(2byte 'unbind-psic ’'read ’'psic)

;13 List manipulation:

(definstructionclass ‘'car
(al . car-al))

{1lbyte 'car)

(lbyte ’'car-al ’'read 'al)

(definstructionclass ’'cdr
'{al . cdr-al))

(lbyte ’cdr)

(lbyte ’'cdr-al 'read 'al)

(definstructionclass ’'cadr
'(al . cadr-al))

(lbyte ’cadr)

(1byte ’'cadr-al ’'read 'al)

(definstructionclass ’'cddr
"{(al . cddr-al))

(1byte ‘’'cddr)

(lbyte ’'cddr-al ’'read 'al)

(definstructionclass ’'cdar
'(al . cadr-al))

(lbyte ’cdar)

(lbyte ’'cdar-al ‘'read 'al)

(definstructionclass ’'caar
'(al . caar-al))

(lbyte 'caar) _

(1byte ’'caar-al ’'read 'al)

(definstructionclass 'set-cdr
'(al . set-cdr-al)
(s . set-cdr-s))

(lbyte 'set-cdr-al 'read-modify-write 'al)
(lbyte ’'set-cdr-s ’'read-modify-write 'symbol)

(definstructionclass 'set-cddr
'(al . set-cddr-al)
(s . set-cddr-s))

74

N
N

REVISED INTERNAL DESIGN OF SPICE 1ISP

(lbyte 'set-cddr-al 'read-modify-write 'al)
(2byte ’set-cddr-s 'read-modify-write 'symbol)
(definstructionclass 'spread
'(al . spread-al))
(2byte ’'spread)
(2byte 'spread-al 'read 'al)
(definstructionclass ’'replace-car
'(al . replace-car-al))
(1byte '"replace-car) '
(1lbyte 'replace-car-al ’'read ’'al)
(definstructionclass ’replace-cdr
*(al . replace-cdr-al))
(1byte ’'replace-cdr)
(lbyte ’'replace-cdr-al ’'read 'al)
(2byte 'assoc)
(2byte 'assq)
{2byte 'member)
(2byte 'memq)
(definstructionciass 'endp
'{al . endp-al))
(2byte ’'endp)
(lbyte 'endp-al 'read ’'al)
(2byte ’'getf)

;1 Symbol manipulation:

(lbyte 'get-value)
(lbyte ’'set-value)
(lbyte 'get-definition)
(2byte ’'set-definition)
(1byte ’'get-plist)
(2byte 'set-plist)
(1byte ’'get-pname)
(2byte ’'get-package)
(2byte ’'set-package)
(2byte ’'boundp)

(2byte 'fboundp)

;s Array manipulation:

(2byte ’vector-length)

(2byte ’'g-vector-length)

(2byte 'simple-string-length)
(2byte 'simple-bit-vector-length)
(2byte ‘'get-vector-subtype)
(2byte 'set-vector-subtype)
(2byte 'get-vector-access-code)
(2byte ’'shrink-vector)

(2byte 'typed-vref)

(2byte ’'typed-vset)

(2byte ’'header-length)

(2byte 'header-ref)

(2byte 'header-set)

(2byte 'arefl)

(ibyte 'svref)

75

REVISED INTERNAL DESIGN OF SPICE ISP

(1byte ’schar)

(1byte ’'sbit)

(2byte ’'asetl)

(definstructionclass 'svset
'(ignore . (svset-ignore)))

(1byte ’svset)

{1byte ’'svset-ignore)

(definstructionclass ‘scharset
'(ignore . (scharset-ignore)))

(1byte ’'scharset)

(lbyte ’'scharset-ignore)

{1byte ’'sbitset)

(2byte ’'bit-bash)

(2byte 'byte-bit)

(2byte 'find-character)

(2byte ’'find-character-with-attribute)

(2byte ’sxhash-simple-string)

:3: Type predicates:’

(1byte ’'get-type)

(2byte ’'get-space)

(2byte ’'bit-vector-p)

(2byte 'simple-bit-vector-p)
(2byte ’'simple-integer-vector-p)
(1byte ’stringp)

(lbyte ‘'simple-string-p) -
(2byte ’'bignump)

(2byte ’long-float-p)

(2byte ’'complexp)

(2byte 'ratiop)

(2byte 'integerp)

(2byte ’'rationalp)

(2byte 'floatp)

(2byte ’'numberp)

(2byte ’'general-vector-p)
(lbyte ’'simple-vector-p)
(2byte ’'compiled-function-p)
{lbyte ’arrayp)

(1byte ’vectorp)

(2byte 'complex-array-p)
(1byte ’'symboip)

(1byte 'listp)

(lbyte 'atom)

(lbyte ’'consp)

(1byte ’fixnump)

(2byte ’'short-float-p)
(2byte ’characterp)

ivs Arithmetic and Logic:

(2byte .’integer-length)
(2byte 'float-short)
(2byte ’'realpart)
(2byte 'imagpart)

76

.

N

_

REVISED INTERNAL DESIGN OFF SPICE 1ISP

(2byte 'numerator)
(2byte 'denominator)
(2byte ’'decode-float)
(2byte ’'scale-float)
(definstructionclass '=

(al . =-al)
"(psic . =-psic))
(lbyte ’'=)

(1byte '=-al ’'read 'al)
(lbyte ’'=-psic ’'read ’'psic)
(definstructionclass '<

'(al . <-al)
"{(psic . <-psic))
(lbyte '<)

(1byte ’'<-al ’'read ’'al)
(lbyte ’'<-psic 'read ’'psic)
(definstructionclass '>

(a1l . >-al)

'(psic . >-psic))
(1lbyte '>)
(1byte '>-al ’'read 'al)
(1lbyte '>-psic ’'read 'psic)
(1lbyte ’'truncate)
(definstructionclass '+

'(al . +-al)

"(psic . ((psic . +-psic)

(1 . +-psicl)
(2 . +-psic2))))

(lbyte '+)
(1byte ’'+-psic ’'read ’'psic)
(lbyte '+-psicl ’'read-modify-write 'psic 1)
(lbyte '+-psic2 'read ’'psic 2)
(1byte ’'+-al ’'read 'al)
(definstructionclass '~

'(al . --al)
*(psic . ((psic . --psic)
(1 . --psicl)
(2 . --psic2))))
(lbyte ’-) »

(1byte '--psic 'read 'psic)
(1byte '--psicl 'read-modify-write ’psic 1)
(lbyte '--psic2 ’'read 'psic 2)
(1byte '--al 'read 'al) '
(lbyte '*)
#+Common
(1byte '/)
#-Common
(1byte '/7/)
(definstructionclass '1+
‘(al . 1+-al))
(instrsynonym '+-psicl '1+)
(1byte '1+-al ‘'read-modify-write 'al)
(definstructionclass '1-
'(al . 1--al))
(instrsynonym '--psicl '1-)

77

Rl*‘.VlSl".l) INTERNAL DESIGN OF SPICE 1 ISP 78

(1byte '1--al ’'read-modify-write 'al) 2 Y
(1byte 'negate) QZJ;
(2byte ’'abs) -
(2byte ’'logand)
(2byte 'logior)
(2byte ’'logxor)
(2byte ’'lognot)
(2byte 'boole)
(2byte ’ash)
(2byte '1db)
(2byte 'mask-field)
(2byte ’dpb)
(2byte 'deposit-field)
(2byte ’1sh)
(2byte 'logldb)
{2byte ’'logdpb)
;3: Branching and dispatching:
(1byte ’'branch-forward 'short-branch)
(2byte 'long-branch-forward ’'long-branch)
(1byte 'branch-backward ’short-branch)
(2byte 'long-branch-backward 'long-branch)
(1byte ’branch-null-forward °’short-branch)
(2byte 'long-branch-null-forward ’'long-branch)
(1byte ’branch-not-null-forward 'short-branch) o
(2byte 'long-branch-not-null-forward 'long-branch) - 4
(1byte ’'branch-null-backward ‘short-branch) ‘ S
(2byte 'long-branch-null-backward ’'Tong-branch)
{(1byte ’'branch-not-nuill-backward ’'short-branch)
(2byte ’'long-branch-not-null-backward 'long-branch)
{1byte ’'branch-save-not-null-forward ’'short-branch)
(2byte ’long-branch-save-not-null-forward 'long-branch)
(1byte ’branch-save-not-null-backward 'short-branch)
(2byte ’long-branch-save-not-null-backward 'long-branch)
{2byte ’'dispatch 'short-dispatch)
(2byte ’long-dispatch ’'Tong-dispatch)
;33 Function call and return:
(definstructionclass 'call
(¢ ((¢ . call-c)

(1 . call-cl)

(2 . call-c2)

(3 . call-c3)

, (4 . call-c4))))
(2byte ’'call) :
(1byte 'call-c ’'read 'constant)
(1byte °'call-cl "read 'constant 1)
(1byte °'call-c2 ’'read ’constant 2)
(1byte 'call-c3 'read ’'constant 3)
(1byte 'call-c4 ’'read ‘'constant 4) '
(definstructionclass 'call-0 : . s
"(c . call-0-c¢)) , : L

(2byte 'call-0) :

REVISED INTERNAL DUSIGN OI° SPICE LISP

(1byte 'call-0-c 'read ’'constant)
(definstructionclass 'call-multiple

(¢ . call-multiple-c))
(1byte 'call-multiple)
(1byte ’'call-multiple-c ’'read 'constant)
(1byte ’'start-call)
(definstructionclass 'push-Tast

'(al . ((al . push-last-al)

(0 . push-last-al0)

(1 . push-last-all)

(2 . push-last-al2)

(3 . push-last-al3))))
(instrsynonym ’'start-call ’'push-last)
(1byte ’'push-last-al ’'read 'al)
(1byte ’'push-last-al0 'read 'al 0)
(1byte ’'push-last-all ’'read 'al 1)
(1byte ’'push-Tast-al2 ’'read ’al 2)
{1byte 'push-last-al3 ’'read 'al 3)
(definstructionclass ’'return

'(al . return-al))
(lbyte ’'return)
(1byte ’'return-al ’'read ’'al)
(2byte ‘'escape-return)
(2byte ’'break-return)
(2byte ’'catch)
(2byte ’'catch-multiple)
(2byte ‘'catch-all)
(2byte ’'throw)

;3. Miscellaneous:

(lbyte ’'eq)

(lbyte ’'eql)

(1byte ’'set-null)
(lbyte ’'set-t)

(lbyte 'set-0)

{1byte 'make-predicate)
(1byte ’'not-predicate)
(2byte 'values-to-n)
(2byte ’'n-to-values)
(2byte 'force-values)
(2byte ’'flush-values)

;13 System hacking:

(2byte 'make-immediate-type)
(2byte '8bit-system-ref)
(2byte ’'8bit-system-set)
{2byte '16bit-system-ref)
(2byte '16bit-system-sat)
(2byte 'collect-garbage)
(2byte 'newspace-bit)

(2byte ’'kernel-trap)

(2byte 'hailt)

(2byte 'arg-in-frame)

9

REVISED INTERNAL DESIGN OFF SPICE 1ISP ' 80

(2byte 'active-call-frame) : ™,

(2byte 'set-call-frame) ' @;ﬂy

(2byte ’'current-open-frame)

(2byte ’'set-open-frame)

(2byte ’'current-stack-pointer)

(2byte 'current-binding-pointer)

(2byte ’'read-control-stack)

(2byte 'write-control-stack)

(2byte 'read-binding-stack)

(2byte 'write-binding-stack)

(setq *1byte-instruction-counter* #.*1lbyte-instruction-counter*)

(setq *2byte-instruction-counter* #.*2byte-instruction-counter*)

(format t "[~3D 1-byte instructions have been defined.]"

(1- #.*1byte-instruction-counter®*))
{(terpri)
(format t "[~3D 2-byte instructions have been defined.]"
: #.*2byte-instruction-counter*)

e
\W\,J J

(:)

o

REVISED INTERNAL DESIGN OF SPICE LISP

Index

%SP-Inlernal-Apply 13,47
%SP-Internal-Error 13
%SP-Internal-Throw-1ag 13
%SP-Softwarc-1nterrupt-1landler 13
* 36

+ 36

- 36

-/ 36

1+ 37
1- 37
16bit-System-Ref 43
16bit-System-Set 43

8bit-System-Ref 43
8bit-System-Set 43

< 35
= 35
> 35

Abs 37

Accent message space 4
Access-type codes 11
Active frame 16
Active-Call-Frame 44
Active-Catch register 14~
Active-Catch-I'rame 44
Active-Code register 14
Active-Frame register 14
Active-Function register 14
Alloc-Array 24
Alloc-Bignum 23
Alloc-Bit-Vector 23
Alloc-Function 24
Alloc-G-Vector 24
Alloc-I-Vector 23
Alloc-String 23
Alloc-Symbol 24

Arefl 30
Arg-In-Frame 4

Array format 7, 10
Array header format 12
ArrayP 34

Arrays 12

Asetl 31

Ash 38

Assoc 27

Assq 27

Bignum format 7, 12

81

REVISED INTERNAIL DISSIGN OF SPICE LISP

BignumP 33

Bind 26

Bind-Null 26

Binding stack format 17
Binding stack spacc 8
Binding-Stack pointer 4
Binding-Stack-Pointer register 14
Bit numbering 2
Bit-Bash 32
Bit-Vector format 7
Bit-Vector-P 33

Boole 37

Boundp 29

Branch 39
Branch-Not-Null 39
Branch-Null 39
Branch-Save-Not-Null 39
Break-Return 41

Byte code formats 21
Byte codes 21

Byte numbering 2
Byte-BLT 32

Caar 26

Cadr 26

Call 40, 46

Calt Header format 5
Call-0 40, 46, 47
Call-tHeader §
Call-Multiple 40, 46
Car 26

CAref2 31

CAref3 31

CAset2 32

CAset3 32

Catch 17,41, 49
Caich frames 17
Catch header format 5

~ Catch-All 41

Caich-All object 5, 49
Catch-I'rame 5
Catch-Multiple 41

Cdar 26

Cddr 26

Cdr 26 .
CE (contents of cffective address) 22
Character object 5
CharacterP 34
Clean-Space pointer 18
Code vector 15
Collect-Garbage 43
Compiled-Function-P 34
Complex number format 7
Complex-Array-P 34
ComplexP 33

Cons 24

ConsP 34

Constants in code 15
Control registers 14
Control stack space 8

82

S

C

C

REVISED INTERNAL DESIGN OF SPICE LISP

Control-stack format 16
Control-Stack pointer 4
Control-Stack-Pointer register 14
Copy 26
Current-Binding-Pointer 45
Current-Open-f'rame 44
Current-Stack-Pointer 44 .

Decode-Float 35
Definition cell 6
DEFSTRUCT 10
Denominator 35
Deposit-tiietd 38
Dispatch 39
Dpb 38

E (effective address) 22

Effective address 21

Endp 27

Eq 41

Eql 41

Errors 53

Escape to macrocode convention 51
Escape-Return 40

Exchange 25

FBoundp 29
Find-Character 32
Find-Character-With-Attribute 32
Fixnum format 4

FixnumP 34

Float-I.ong 35

Float-Short 35

Floating point formats 4,7
FloatP 33

[lonum formats 4.7
IFlush-Values 42
FForce-Values 42
Forwarding pointers 8
Iree-Storage pointer 18
I'unction object format 8, 10

G-Vector format 7
G-Vector-Length 29
Garbage Collection 18
GC-Forward pointer 8
General-Vector format 7,9
General-Vector-P 34
Get-Allocation-Space 23
Get-Definition 28
Get-Package 28

Get-Plist 28

Get-Pname 28

Get-Space 43

Get-Type 43

Get-Value 28
Get-Vector-Access-Code 30
Get-Vector-Subtype 29
GetF 28

83

REVISED INTERNAL. DESIGN OF SPICE LISP

Hairy stuff 46
Halt 44

l1ash tables 10
Header-1 ength 30
llcader-Ref 30
Header-Set 30

-Vector format 7
Imagpart 35

Immediatc objcet format 3
Integer-1 ength 35
Intcger-Veetor format 7, 10
IntegerP 33

Interrupts 57

Kernel traps 57
Kernel-Trap 44

1db 38

Lisp objects 3
List 24

Listcell 6

List* 24

ListP 34
T.ogand 37
logdpb 38
logior 37
Logldb 38
l.ognot 37
Logxor 37
lLong-T'loat-P 33
Long-Ilonum format 7
Ish 38

Macro instruction formats 21
Macro instruction set 21
Make-Complex 23
Make-Immediate-Type 43
Make-Predicate 42
Make-Ratio 23

Mask-Field 38

Member 27

Memq 27

Misc type codes 4
Misc-Binding-Stack-Pointer 4
Misc-Control-Stack-Pointer 4
Misc-System-Table-Pointer. 4
Misc-Trap 4

Muitiple values 48

N-To-Values 42
Negate 37
Newspace-Bit 43
NIL 13
Non-Local Exits 49
Not-Predicate 42
NPop 26
NumberP 33
Numerator 35

REVISED INTERNAL DESIGN OFF SPICE LISP

Opcen frame 16
Open-Irame register 14

Package cell 6

PC register 14

Perq quadword alignment 9
Plist ccll 6

Pname ccll 6

Pointer object format 3,5
Pop 25

~ Print name cell 6

Program Counter register 14
Property list cell 6
Purification 19

Push 2§

Push-Last 40, 47

Quadword alignment 9

Ratio format 7
RationalP 33

RatioP 33
Read-Binding-Stack 45
Read-Control-Stack 45
Read-only space 6
Realpart 35
Replace-Car 27
Replace-Cdr 27
Return 40, 48
Runtime Environment 14

SBit 30

SBitset 31

Scale-I‘loat 35

Scavenger 19

SChar 30

SCharset 31

Set-0 42
Set-Allocation-Space 23
Set-Call-Frame 44
Set-Cddr 27

Set-Cdr 27

Set-Definition 28
Set-Lpop 27

Set-LPush 24
Set-Newspace-For-Type 43
Set-Null 42
Set-Open-Frame 44
Set-Package 29

Set-Plist 28

Set-T 42

Set-Value 28
Set-Vector-Subtype 29
Short-Float format 4
Short-Float-P 34
Shrink-Vector 30
Simple-Bit-Vector-Length 29
Simple-Bit-Vector-P 33
Simple-Integer-Vector-P 33
Simple-String-Length 29

85

REVISED INTERNAL DESIGN OF SPICE 1ISP

Simple-String-P 33
Simple-Vector-P 34
Space codes 4,6

Special binding stack space 8
Spread 27

Stack spaces 8

Start-Call 40, 47

Static spacc 6

Storage management 18
String format 7, 12
StringP 33

SVref 30

SVset 31

SVset* 31
SXHash-Simple-String 32
Symbol 6

SymbolP 34

System table pointer 4
System table space 4, 8

T 13

Throw 41, 49

TOS register 14
Transporter 18

Trap code 4

Trapping to the kernel 57
Truncate 36, 52

Type codes 3
Typed-Vref 30
Typed-Vset 30

Unbind 26
Unwind-Protect 49

Value cell 6
Values-Marker 5
Values-To-N 42
Vector 24
Vector format 7
Vector-Iength 29
VectorP 34
Vectors 9
Virtual memory §

Write-Binding-Stack 45
Write-Control-Stack 45

