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1. About This Docunlent 

1.1. Scope and Purpose 

This document describes the internal details, formats, and mechanisms of Spice Lisp, as it is implemented 

on microcodable personal machines. It is intended to be the definitive document on these things: if the code 

does not do what is described here (that is, in the current version of this document), it is considered to be a 

bug until it is proven not to be and the document is changed. This is a working document, and it will change 

frequently as the system is developed and maintained. All questions and comments on this material should 

be directed to Scott Fahlman @ CMUC. 

Spice Lisp is described here for 32-bit microcodable machines, or machines which can easily be viewed as 

having 32 bits per word. Where some detail refers specifically to the Perq implementation, we have tried to 

indicate this. One could obviously make a version of Spice Lisp that would run on a 36-bit machine, or one 

with some other word size, by adjusting the lengths of various fields, but we will not try to indicate here what 

these adjustments would be. Implementations of Common Lisp also exist for conventional machines with 

fixed instruction sets; these are very different internally and are described in other documents. 

1.2. Bit and Byte Numbering 

All addresses within. Spice Lisp refer to 32-bit words. The low-order bit of each word is numbered 0; the 

high-order bit is numbered 31. If a word is broken into smaller units, these are packed into the word from 

right to left. For example, if we break a word into bytes, byte 0 would occupy bits 0-7, byte 1 would occupy 

8-15, byte 2 would occupy 16-23, and byte 3 would occupy 24-31. Similarly, on the 16-bit PERQ, a word­

pointer P would point to a word whose low-order half is at PERQ address 2P and whose high-order half is at 

2P+ 1. In these conventions we follow the conventions of the VAX; the PDP-10 family follows the opposite 

convention, packing ~nd numbering left to right. 

All Spice Lisp documentation will use decimal as the default radix; other radices will· be indicated by a 

subscript (as in 778)or by a clear statement of what radix is in use. 
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2. Data Fornlats for Spice Lisp 

2.1. Lisp Object Data Formats 

. Lisp objects are 32 bits long. They come in 16 basic types, divided into three classes: immediate data types, 

pointer types, and forwarding pointer types. The storage formats are as follows: 

Immediate Data Types: 
------------------------------------------------------------------------
I Type Code (4) I Immediate Data (28) 
----------------------------------------------------~-------------------

Pointer and Forwarding Types: 
------------------------------------------------------------------------
I Type Code (4) I Space Code (2) I Pointer (24) I Unused (2) I 
------------------------------------------------------------------------

2.2. Table of Type Codes 

Code Type 

0 Misc 
1 Fixnum 
2 Short-Flonum 
3 U-Vector 
4 String 
5 Xnum 
6 Ynum 
7 B-Vector 
8 Function 
9 Array 
10 Symbol 
11 List 
12 Unused 
13 Unused 
14 EVC-Forward 
15 GC-Forward 

2.3. Table of Space Codes 

o 
1 
2 
3 

Dynamic-O 
Dynamic-1 
Static 
Read-Only 

Class 

Immediate 
Immediate 
Immediate 
Pointer 
Pointer 
Pointer 
Pointer 
Pointer 
Pointer 
Pointer 
Pointer 
Pointer 

Forward 
~orward 

Explanation 

Various distinguished values. 
28-bit integer. 
28-bit floating point. 
=> Vector of un boxed data words. 
=> Vector of unboxed bytes. 
=> A bignum or long flonum. 
=> A ratio or complex number. 
=> Vector of boxed cells. 
=> Compiled code for 1 function. 
=> Array header, like a B-Vector. 
=> Lisp symbol, 6 boxed cells. 
=> List cell, 2 boxed cells. 

==> External value cell, list space. 
==> Object in newspace of same type. 

Storage normally garbage collected, space O. 
Storage normally garbage collected, space 1. 
Permanent objects, never moved or reclaimed. 
Objects never moved, reclaimed, or altered. 
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2.4. Immediate Data Type Descriptions 

Fixnum 

Short-Flonum 

Misc 

A 28-bit two's complement integer. 

Short format floating point, allocated as follows: 

31 28 27 26 19 18 o 

I Type code (4) I Sign (1) I Expt (8) Mantissa (19) 

The sign of the mantissa is moved to the left so that these flonums can be compared just 
like fixnums. The exponent is the binary two's complement exponent of the number, plus 
128. The mantissa is a 21-bit two's complement number with the sign moved to bit 27 and 
the leading significant bit (which is always the complement of the sign bit and hence carries 
no infol1l1ation) stripped off. The short flonum representing 0.0 has O's in bits 0 - 27. It is 
illegal for the sign bit to be 1 with all the other bits equal to O. This encoding gives a range 
of about 10-38 to 10+ 38 and about 6 digits of accuracy. Note that long-flonums are 
available for those wanting more accuracy, but they are slower to use because they generate 
garbage that must be collected later. 

Reserved for assorted special values and semi-internal values. The 28-bit data field is 
divided into 4 bits of sub-type and 24 bits of data. So far, the following sub-types have 
been defined: 

o Trap 

1 Character 

Illegal object trap. If you fetch one of these, it's an error except under 
very specialized conditions. Note that a word of all zeros is of this type, 
so this is useful for trapping references to uninitialized memory. This 
value also is used in sYlnbols to flag an undefined value or definition .. 

A· character' object whose low-order 24 bits contain the following 
information: bits 0-7, the character code; bits 8-15, reserved for various 
control bits; bits 16-23, the font code. 

2 System-area-ptr The low 24 bits are a pointer into the system table area. Pointers of this 
type are used in remote U-Vectors, and perhaps in other places. Objects 
in .this area do not move around and are not allocated by the user. 

3 Control-stack-ptr 
'The low 24 bits are. a pointer into the control stack, relative to its base. 
Pointers of this form are returned by certain system routines for use by 
debugging programs. 

4 Binding-stack-ptr 

5 Unused. 

The low 24 bits are a pointer into the binding stack, relative to its base. 
Pointers of this fonn are returned by certain system routines for use by 
debugging programs. 
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6 Values-marker Used to mark the presence ofmultiplc values on the stack. The low 24 
bits indicate how many values are being returned. These are pushed in 
order, then the Values-I'vlarker is pushed. 

7 Closure-marker Goes in the CAR of a CLOSURE in list space. The low 24 bitsare O. 

8 Frame-Header Marks the start of each frame on the control stack. The low-order 24 
bits are used for certain special kinds of calls. 

9 Unsupplied-Arg 

For a nonnal function call, as created by the CALL or CALL-O 
instruction, the low 24 bits are always O. 

Bit 23, if 1, indicates a "break" type call frame: when the function 
returns, the returned value is discarded instead of being pushed on the 
stack and the condition code is restored to its value before the call. Bits 
0, 1, and 2· contain the saved NULL, ATOM, and ZERO indicators, 
respectively. 

Bit 22, if 1, indicates an "escape to macro" call frame, created when a 
macro-instruction cannot be completed entirely within the microcode. 
In this case, bits 16-17 indicate where the result goes, as specified by the 
A field of the instruction that bailed out; bits 0-15 contain a 16-bit offset 
for A modes that need an offset. See section 6.9 for details. 

Bit 21, if 1, in!1icates a call frame that expects multiple values to be 
returned. Such frames are created by Call-Multiple. On return, any 
non-negative number of values (including 0) may have been pushed on 
the stack, followed by N, the number that actually were pushed. 

Bits 23, 22, and 21 are mutually exclusive. It is undefined what happens 
when more than one of these are on at once. 

Bit 20, if 1, indicates a call associated with %SP-CA TCH or some other 
catch function. The first argument to this function must be the catch 
tag. This bit is set by the MARK-CATCH-FRAME misc-op. See 
6.11 for details. 

Placed in stack frame argument slots to indicate optional arguments that 
were not passed by the caller and must be given default values. The low 
24 bits are O. 

10 Frame-Barrier Placed at the end of the args-and-locals area of an active control stack 
frame. Use by stack-examining functions to find their way around. [In 
the· Perq implementation, this also ensures that the current args-and-
10cals area will not extend into the TOS register, which would make 
extra work for the microcode. See section 6.1 for a description of the 
TOS register.} The low 24 bits are O. 
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2.5. Pointer-Type Objects and Spaces 

Each of the pointer-type lisp objects points into a different space in virtual memory. There are separate 

spaces for Xnums, Code, Symbols, Lists, and so on. Ibe 4-bit type-code provides the high-order virtual 

address bits for the object. followed by the 2-bit space code, followed by the 24-bit pointer address. This gives 

a 30-bit virtual address to a 32-bit word; on a byte-addressed machine, the two low-order bits will be O. In 

effect we have carved a 30-bit space into a fixed set of 24-bit subspaces, not all of which are used. In a 

machine with a virtual address space smaller than 30 bits, some method of folding these spaces into the 

smaller space would have to be developed. 

[Note: On thePERQ there are significant performance advantages to be gained by aligning all objects on 

the PERQ's "quad-word" (64-bit) boundaries. This happens automatically for LIST objects, which are two 

LISP-words long and for symbols, which are 6 long. For all other pointer-type objects, the allocator makes 

sure that the object starts on a quad-word boundary, wasting a word with a MISC-TRAP code if necessary .. 

Thus, on the PERQ, every-24-bit pointer (except for control stack pointers) will have a low-order bit of O. 

This is a peculiarity of the PERQ version of Spice Lisp and is not part of the specification of Spice Lisp itself. 

User-level code should never have to notice this distinction.] 

. The space code divides each of the type spaces into four sub-spaces, as shown in the table above. At any 

given time, one of the dynamic spaces is considered newspace, while the other is oldspace. The garbage 

collector continuously moves accessible objects from oldspace into newspace. When oldspace contains no 

more accessible objects it is considered empty. A "flip" can then be done, turning the old newspace into the 

new oldspace. All type-spaces are flipped at once. Allocation of new objects always occurs in newspace. 

Optionally, the user (or system functions)may allocate objects in static or read-only space. Such objects are 

never reclaimed once they are allocated -- they occupy the space in which they were initially anocated for the 

lifetime of the Lisp process. The advantage of static allocation is that the GC never has to move these objects, 

thereby saving a significant amount of work, especially if the objects are large. Objects in read-only space are 

static, in that they are never moved or reclaimed: in addition, they cannot be altered once they are set up. 

Pointers in read-only space may only poil)t to read-only or static space, never to dynamic space. This saves 

even more work, since read-only space does not need to be scavenged, and pages of read-only material do not 

need to be written back onto the disk during paging. 

A type-space will contain boxed objects or unboxed objects, but not both. Similarly, a space will contain 

either fixed-length objects or variable-length objects. but not bc)th. A variable-length object always contains a 

24-bit lengthfic1d right-justified in the first word, with the Fixnum type-code in the high-order four bits. The 
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remaining four bits can be used for sub-type information. The length field gives the size of the object in 

32-bit words, including the header word. The garbage collector needs this information when the object is 

moved, and it is also useful for bounds checking. 

The format of objects in each space are as follows: 

Symbol 

List 

B-Vector 

U-Vector 

Xnum 

Each symbol (a non-numeric Lisp atom) is represented as a fixed-length block of boxed 
Lisp cells. The number of cells per symbol is 6, in the following order: 

~ Value cell for shallow binding. 
1 Definition c~ll: a function or list. 
2 Property list! a list of attribute-value pairs. 
3 Print name: a string. . 
4 Package: the obarray holding this symbol. 
5 Hash: not currently ~sed, may use for SXHASH value later. 

A fixed-length block of two boxed Lispcells, the CAR and the CDR. 

Vector of boxed 32-bit lisp objects, any length. The first word is a fixnum giving the 
number of words allocated for the vector (up to 24 bits). The highest legal index is this 
number minus 2. The second word is vector entry 0, and additional entries are allocated 
contiguously in virtual memory. (See section 3 for further details.) 

Vectors of unboxed data items, any length. The 24 low bits of the first word give the 
allocated length in 32-bit words. The low-order 28 bits of the second word gives the length 
of the vector in entries, whatever the length of the individual entries may be. The high­
order 4 bits of the second word contain access-type information that yields, among other 
things, the number of bits per entry. Entry 0 is right-justified in the third word of the 
vector. Bits per entry will normally be powers of 2, so they will fit neatly into 32-bit words, 
but if necessary some empty space may be left at the high-order end of each word. (See 
section 3 for details.) 

Xnums are unboxed and of variable length, and are identical in format to U-Vectors. 
Because of this, bignums can be accessed and altered by the same macro-instructions that 
are used for U-Vectors. The first word of each Xnum contains the fixnum type-code in the 
first 4 bits, a sub-typ.e code in the next 4 bits, and a 24-bit length field; the second word 
contains an access-type code and a number of entries. Currently there are two sub-types of 
Xnums: bignums and long flonums. 

Bignums are infinite-precision integers. We envision that some implementations of Spice 
Lisp will implement bignum arithmetic in macrocode and some in microcode. On the 
current PERQ, all bignum arithmetic is in macrocode. Each bignum is stored as a series of 
8-bit bytes, with the low-order byte stored first. The representation is two's complement, 
but the sign of the number is redundantly encoded in the subtype field of the bignum: 
positive bignums are sub-type 0, negative bignums sub-type 1.. The access-type code is 
always 8-Bit 

Long flonums have sub-type code 2, and always contain 3 words of data plus the 2-word 
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Ynum 

Array 

String 

Function 

header. The first data word is the 32-bit exponent in two's complement fOlID. This is 
followed by two words (64 bits) of mantissa, also in two's complclnent form, with the 
low-(}rder word first. This gives about 19 digits of accuracy and more range than you need. 
For long flonums we do not bother with stealing the meaningless most-significant bit, as 
the small amount of added accuracy will not justify the extra work. The access-type code is 
also 8-Bit. 

A Ynum is an extended-format number like an Xnum, but the form is that of a B-Vector 
rather than a U-vector. Thus, a Ynum can be built from any number of boxed Lisp 
objects. Currently the only Ynum type defined is the Ratio, but this format may be used in 
the future for non-normalized ratios, complex numbers and other esoterica. 

A ratio is a Ynum of subtype O. Ratios always contain two boxed items: the numerator 
(index 0) and the denominator (index 1). Both must be integers (fixnums or bignums). 
Ratios are normally stored in normalized form, with all common divisors factored out; if 
the resulting denominator is 1, the normalized form for the ratio will in fact. be represented 
as a fixnum or bignum. 

This is actually a header which holds the accessing information and other information 
about the array. The actual array contents are held in a vector (either U-vector or B-vector) 
pointed to by an entry in the header. The header is identical in fonnat to a B-vector. For 
details on what the array header contains, see section 3.3. 

A vector of unboxed bytes. Identical in form to U-Vectors with the access type always 
8-Bit However, instead of accepting and returning fixnums, string accesses accept and 
return character objects (see section 5.8). Only the 8-bit code field is actually stored, and 
the returned character object always has bit and font values ofO. 

A compiled Spice Lisp function consists of both boxed and unboxed information. The 
boxed information is stored in the F~nction space in a fonnat identical to that used for 
boxed vectors, with a 24-bit length field in the first word. This object contains assorted 
parameters needed by the calling machinery, a number of pointers to symbols used as 
special variables within the function, and a number of lisp objects used as constants by the 
function. There is also a pointer to an unboxed "Code vector" that holds the actual 
compiled byte codes for the function. For details of the code format and definitions of the 
byte codes, see section 5.6. 

2.6. Forwarding Pointers 

GC-Forward 

EVC-Forward 

When a data structure is transported into newspace, a GC-Forward pointer is left behind in 
the first word of the oldspace object. This points to the same type~space in which it is 
found. For example, a GC-Forward in B-vector space points to a structure in the B-vector 
newspace. GC-Forward pointers are only . found in oldspace, and they always point into 
the corresponding newspace. 

This is used to implement closures. (See section 6.8.) It is placed in the value cel1 of a 
symbol to indicate that the value is to be found in a cc11 of a closure structure in list space. 
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Points to a list cell whose CAR is the external value cell. Always considered to point to 
some list space, new or old. 

2.7. System and Stack Spaces 

Some of the system's type-spaces are unused because they correspond to immediate data types. Each 

unused sub-space is 224 words long. . The systeln's stacks and control areas are hidden in these spaces. 

Currently the following spaces are allocated: 

Type Code 

o 
o 
o 

Space Code 

o 
1 
2 

Use 

System Tables. 
Control Stack. 
Special Binding Stack. 

The system tables area is used by the Lisp system for various in-core data structures. These tables are fixed 

in size and location in virtual memory. They are not managed by the garbage collector. Among the things 

stored here are the table of garbage collection pointers for the various spaces, some I/O status tables and 

buffers, a table of microcode entry points, and so on. Some of the system tables structures want to be 

accessible from Lisp; this is accomplished by the use of the "remote" U-Vector mechanism. (See section 3.) 

The control stack grows upward (toward higher addresses) in memory, and is a framed stack. It contains 

only boxed Lisp objects (with some random things encoded as fixnums or Misc codes). Every object pointed 

to by an entry on this stack is kept alive. The frame for a function call contains an area for the function's 

arguments, an area for local variables, a pointer to the caller's frame, and a pointer into the linear binding 

stack. The stack pointers are Mise codes. The precise stack frame format can be found in a later section of 

this document 

The special binding stack also grows upward. This stack is used to hold previous values of special variables 

that have been bound. It grows and shrinks with the depth of the binding environment, as reflected in the 

control stack. This stack contains symbol-value pairs, with only boxed Lisp objects present 

2.8. Symbols Known to the Microcode 

A large number of symbols will be pre-defined when a Spice Lisp system is fired up. A few of these are so 

fundamental to the operation of the system that their names have to be assembled into the microcode. 'Ibese 

symbols are listed here. All of these symbols are in static space, so they will not be moving around. 

NIL A8000000 16 The value of NIL is always NIL: it is an error to try to alter it NIL is unique 
among symbols in that you can take its CAR and CDR, yielding NIL in either case. An 
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alternative printed representation for NIL is "0". 

T A8000018
16 

The value ofT is always T: it is an error to try to alter it. 

ALLOCATION-SPACE 
A8000030

16 
This symbol's value lllUst be fixnum 0, 2, or 3, indicating that new cons cells or 

other structures are to be a110cated in Dynamic, Static, or Read-Only space, respectively. 

%SP-INTERNAL-APPLY 
A8000048

16 
The function stored in the definition cell of this symbol is called by the 

microcode whenever compiled code calls an interpreted function. See section 6.5 for 

details. 

%SP-INTERNAL-ERROR 
A8000060

16 
The function stored in the definition cell of this symbol is called whenever an 

error is detected during the execution of a byte instruction. See section 6.12 for details. 

%SP-INTERNAL-BREAK 
A8000078

16 
The" function stored in the definition cell of this symbol is called whenever a 

tB request or other Lisp-level break request is encountered. See section 6.13 for details. 
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3. Vectors and Arrays 
Spice Lisp provides both boxed and unboxed vectors as fundamental data types, and attempts to make 

access to them as· fast as is possible on the machine at hand. Arrays of any nUlnber of dimensions are also 

provided, but of course access to these is slower since index arithmetic must be done. Array access goes 

through a header structure, itself in the form of a boxed vector, which contains the information needed to 

access the array contents. The array data is actually stored in a vector, B or U as the case may be. It is possible 

to have two array header structures point at the same data vector, which will result in possibly different modes 

of accessing the same data. For example, one header might specify a 2-D array of bits with dimension N by 8, 

while another header might access the same data as as a 1-D array ofN bytes. 

3.1. B-Vectors 

B-Vectors are the simplest case. B-Vectors contain only boxed lisp objects. The format is as follows: 

I Fixnum code (4) I Subtype (4) I Allocated length (24) 

Vector entry 0 (AdditiQnal entries in subsequent words) 

The first word of the vector is a header indicating its length; the remaining words hold the boxed entries of 

the vector, onc entry per 32-bit word. The header word is of type fixnum. It contains a 4-bit subtype field, 

which is used to indicate several special types of B-Vectors. At present, the following subtype codes are 

defined: 

o Normal. Used for assorted things. 

1 Named structure created by DEFSTRUCT, with type name in entry O. 

2 EQ Hash Table, last rehashed in dynamic-O space. 

3 EQ Hash Table, last rehashed in dynamic-l space. 

4 EQ Hash Table, must be rehashed. 

Following the subtype is a 24-bit field indicating how many 32-bit words are allocated for this vector, 

including the header word. Legal indices into the vector range from zero to the number in theaJlocated 

length field minus 2, inclusive. The index is checked on every access to the vector. Entry 0 is stored in the 

second word of the vector, and subsequent entries follow contiguously in virtual memory. 
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. ·Once a vector has been allocated, it .is possible to reduce its length by the %SP-SHRINK-VECTOR 

operation, but never to increase its length, even back to the original size, since the space freed by the 

r~duction may have been reclaimed.· This reduction simply stores a new smaller value in the length field of 

the header word. 

It is not an error to create a B., Vector of length 0, though it will always be an out-of-bounds error to access 

such an object. The maximum possible length for a B-Vector is 224_2 entries, and that is only possible if no 

other B-vectors are present in the space. 

Objects of type FUNCTION and ARRAY are identical in format to B-Vectors, though they have their own 

spaces. In both cases, only 0 is currently used in the sub-type field of the header word. 

Ynums are also identical in format and operation to B-Vectors, though they may also be operated on 

directly by microcoded routines. For details of the currently-defined sub-types and their access-codes, see 

section 2.5. 

3.2. U-Vectors 

U-Vectors cqntain unboxed items of data, and their format is more complex. The data items come in a 

variety of lengths, but are of constant length within a given U-Vector. Data going to and from a U-Vector is 

passed as a FIXNUM, right justified. Internally it is stored in packed form, filling 32-bit words without any 

type-codes or other overhead. The format is as follows: 

I Fixnum code (4) I Subtype (4) I Allocated length (24) 

I Access type (4) I Number of entr i es (28) 

Entry 0 right justified I 

The first word of a U-Vector contains the Fixnum type-code in the top 4 bits. a 4-bit subtype code in the 

next four bits, and the total allocated length of the vector (in 32-bit words) in the low-order 24 bits. At 

present, the following subtype codes are defined: 

o Normal. Used for assorted things. 

1 Code. This is the code-vector for a function object. 

The second word of the U-Vector is the one that is looked at every time the U-Vector is accessed. The 
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low-order 28 bits of this word contain the number of valid entries in the U-Vector, regardless of how long 

each entry is. The lowest legal index into the U-Vector is always 0; the highest legal index is one less than this 

number-of-entries field from the second word. These bounds arc checked on every access. Once a vector is 

allocated, it can be reduced in size but not increased. The %SP-SHRINK-VECTOR operation changes both 

the allocated length field and the number-of-entries field of a U-VECTOR. 

The high-order 4 bits of the second word contain an access-type code which indicates how many bits are 

occupied by each item (and therefore how many items are packed into a 32-bit word) and also whether the 

access is local or remote. The encoding is as follows: 

o 1-Bit 
1 .2-Bit 
2 4~Bit 

3 a-Bit 
4 16-Bit 
5 Unused 
6 Unused 
7 Unused 

a 1-Bit-Remote 
9 2-Bit-Remote 
10 4-Bit-Remote 
11 a-Bit-Remote 
12 16-Bit-Remote 
13 Unused 
14 Unused 
15 Unused 

In local U-Vectors (the normal kind), the data items are packed into the third and subsequent words of the 

. vector'. Item 0 is right justified in the third word, item 1 is to its left, and so on until the allocated number of 

items has been accommodated. All of the currently-defined access types happen to pack neatly into 32-bit 

words, but if this should not be the case, some unused bits would remain at the left side of each word. No 

attempt will be made to split items between words to use up these odd bits. 

In remote U-Vectors, only three words are allocated. The third word is a pointer (of the appropriate 

MISe-code subtype) into the system. tables area of virtual memory .. Instead of being stored within the 

U-Vector, the data items are stored at the system-table location pointed to. They are packed just as they 

would be if the word pointed to were t1~e third word ofa local V-Vector. 

When allocated, a local U-Vector is initialized to all O's. The user will not normally allocate remote 

U-Vectors for himself, since these are for special use by internal system code. Remote U.,Vectors are often 

filled with non-O data at system startup. 

As with the B-Vectors, it is not an error to create a U-Vector of length O. but it will always be an error to . 

access such a vector. The maximum possible length ofa U-Vector is 228_1 entries or 224-3 words, whichever is 

smaller. 

Objectli of type STR ING are identical in format to U-Vectors. though they have their own space. Strings 

'always have subtype 0 and access-type 3 (8-Bit). Strings differ from normal U-Vectors in that the accessing 
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functions accept and return objects of type Mise-Character rather than fixDmns. 

Xnums are also identical in fonnat and operation to U-Vectors, though they may also be operated on 

directly by microcoded routines. For details of the currently-defined sub-types and their access-codes, see 

section 2.5. 

3.3. Arrays 

An array header is identical in fonn to a B-Vector. Like any B-Vector, its first word contains a FIXNUM 

type-code, a 4-bit subtype code, and a 24-bit total length field (this is the length of the array header, not of the 

vector that holds the data). At present, the subtype code is always O. The entries in the header-vector are 

interpreted as follows: 

o Type-code 

1 Data Vector 

This is a fixnum which contains a variety of infonnation about how the array is to be 
accessed and .interpreted. See the array-type-code table below. If the array contains 
unboxed items, one part of this type-code is an access-type field identical in fonn to the 
access-type field defined for U:' Vectors. This field may be used instead of the access-type 
field of the data-vector in making accesses to the data. This allows for accessing a single 
data vector through several array headers, each with a different format. 

This is a pointer to the U-Vector or B-Vector that contains the actual data of the array. In a 
multi-dimensional array, the supplied indices are converted into a single 1-D index which 
is used to access the data vector in the usual way. 

2 Number of Dimensions 
This is a fixnum in the range 0 to 224-6. Of course, if an array of the maximum 
dimensionality is created, there will· probably not be enough space in virtual memory for 
the data. An array of 0 dimensions is legal. It creates a single storage item which can be 
accessed and stored by the unique O-D index list, O. (Explanation: mathematicians define 
the product of 0 things as l. APLhandles O-D arrays in this way, so we may as well do it 
this way too.) A I-D array is perfectly 1cgal; it differs from a vector in that all accesses go 
through the array header stnlcture, and are therefore somewhatless efficient 

3 Number of Elements 
This is a fixnum indicating the number of elements for which there is space in the data 
vector. 

4Fi1l Pointer '1'his is a fixnum indicating how many clements of the data vector are actually considered to 
be in usc. Normally this is initialized to the same value as the Number of Elements field, 
but in some array applications it will be given a smaller value. Any access beyond the fill 
pointer is i11ega1. 

5 Displacement This fixnum value is added to the final code-vector index after the index arithmetic is done 
but before the access occurs. Used for mapping a portion of one array into another. For 
most arrays, this is O. On some machines, it may be quicker to test for 0 and only add if the 
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displacement is non-O than to really do the add. 

6 Structure name If this array implements a named DEFSTR UCT sturcture, the structure-type symbol is in 
this slot. If the array is not a DEFSTRUCr structure, this slot contains NIL. 

7 Range of First Index 
This is the number of index values along the first dimension, or one greater than the largest 
legal value of this index (since the arrays are always zero-based). A fixnum in the range 0 
to 224-1. If any of the indices has a range of 0, thearray is legal but will contain no data 
and accesses to it will always be out of range. In a O-dimension array, this entry will not be 
present. 

8 - N Ranges of Subsequent Dimensions 

The ranges of all indices are checked on every access, during the conversion to a single data-vector index. 

In this conversion, each index is added to the accumulating total, then the total is multiplied by the range of 

the following dimension, the next index is added in, and so on. In other words, if the data vector is scanned 

linearly, the last array index is the one that varies most rapidly, then the index before it, and so on. In our 

initial implementation, the index computation for arrays is done in macrocode; when we have a larger 

microstore, we will move this to microcode for greater speed. 

The type-code word is divided as follows: 

Bit 0 o = Boxed Data; 1 = Unboxed Data. 

Bit 1 o = Use Vector's own access-type code. 1"= Use the code supplied here. 

Bits 4-7 Access type code for unboxed data, used ifbit 1 = 1. 

Bits 5 - 27 Unused. 
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4. Storage l\1anagclllent 

4.1. Allocation 

New objects are allocated from the lowest unused addresses within the specified space. Each allocation call 

specifies how many words are wanted, and a FREE~STORAGE pointer is incremented by that amount. 

There is one of these FREE~STORAGE pointers for each space, and it points to the lowest free address in the 

space. Since most of the virtual address space may initially be set up as non-existent memory, new allocation 

may require that the storage manager request additional pages of storage from the Spice kernel. (It remains to 

be seen whether the optimal increment is one page or a group of pages.) If this request fails, perhaps because 

the local disk is full, an error occurs within Lisp. Because no pointer to oldspace can pass through the 

machine (see below) and into a newly-allocated object, new objects are guaranteed to be free of oldspace 

pointers and do not need to be scavenged. 

In unboxed spaces, objects copied from oldspace are allocated from low memory, just as though they were 

new objects. Unboxed objects are not scavenged. . 

In boxed spaces, objects that are copied from oldspace must be scavenged for pointers back into oldspace. 

Therefore, these potentially "dirty" objects are kept separate from the "clean" newly-allocated objects. This is 

done by storing them at the higl1-address end of the sub-space. A COPY~SPACE pointer is started at the 

highest free address in a given sub-space and is moved down by the appropriate amount as space for each 

object is allocated. A second pointer, the CLEAN-SPACE pointer, also begins at the top of the space and is 

moved down by the scavenger as it works. Everything above the CLEAN-SPACE pointer is certified to be 

free of pointers to oldspace. 

Optional, for versions of Spice Lisp ·on machines where microstore is ample: treat LIST space specially by 

scavenging CDRs first, then CARs. This leads to substantially greater locality in the newspace list structures. 

This implementation uses two CLEAN-SPACE pointers, one for CARs and one for CDRs. Thescavenger 

always works on the CLEAN-CDR pointer unless it is at·the COPY-SPACE pointer; in that case, it works on 

the CLEAN-CAR until it too catches up to COPY-SPACE. When all three pointers coincide, the area is 

clean. 

Read-only sub-spaces have two associated pointers: FREE-STORAGE and FREEZE. New items are 

allocated at the low-address end of that space's free storage, and the FREE-STORAGE is updated. Then the 

. new structure is initialized. When this process is completed, the Freeze command is given, which moves all of 

the FREEZE pointers up to meet their respective FREE-STORAGE pointers. Once it is below the FREEZE 
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pointer, the. new structure becomes read-only and cannot be altered again without causing an error. Also, any 

pointer-type items written into read-only space, even if they are above the freeze pointer, must point into 

read-only or static space. Placing dynamic pointers in read-only space causes an error, since these pointers 

would have to be altered if the object pointed to is transported. 

Sometimes, for purposes of sharing, it is desirable to keep certain read-only structures on separate pages of 

memory. The New-Pure-Page command updates both the FREE-STORAGE and FREEZE pointers of a 

given space to the next page boundary, wasting any remaining space on the current page. 

4.2. The Transporter 

All memory references made by the Lisp· system should be made to newspace, static space, or read-only 

space; oldspace references can be made only for the purpose of moving the thing referenced to newspace. In 

order to reference an object, or any words within an object, the machine must have a pointer to that object in 

hand. Therefore, we can enforce the newspace-only reference policy ~y making sure that no poin.ter to an 

oldspace object ever makes it into those registers of the machine from which references might be generated. 

This is called the "barrier". If an attempt is made to fetch an oldspace pointer through the barrier, the 

oldspace object must first be transported to newspace; a pointer is then created to this newspace object, and it 

is this pointer that is passed through the barrier. Fotwarding pointers are also followed and collapsed as they 

are moved through the barrier. We speak of objects within the barrier as being "in the machine", but some 

machine registers involved in the transporting process must obviously be considered outside the barrier for 

things to work. 

Suppose we fet~h lisp object B into the machine (across the barrier) from address A. Since the pointer A 

has already passed the barrier, it does not point into oldspace. The algorithm is as follows: 

1. If B is an immediate data type, or a non-forwarding pointer into static space, read-only space, or 
newspace, simply let B through. Ifit is a forwarding pointer, go to step $. 

2. Othcrwisc, wc have just pick cd up a pointer to oldspace, which is not allowed to be in the 
machine. Fetch what B points to. and call that C. 

3. If C is of type GC-Forward, it had better point into newspacc. Verify this. Form a new pointer 
with the type-code from Band the space-code and pointer from C. This is the new B. Write it into 
location A and pass this new B through the barrier. 

4. If C is not GC-Forward, C is the first word of a structure that must be copied into newspace. The 
size is eithcr a constant function of the space (check the type-code of B) or can be obtained from 
the low-order 24 bits ofC. Allocatethc appropriate number of words in the proper copyspace and 
copy all the words of the structure. Replace C in oldspace with a GC-Forward pointer to the new 
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copy. Create a new B pointing to the new copy. Write this into address A and pass the new B 
through the barrier. 

5. If the original B is of type EVe-Forward, perform the above steps if necessary, but where it says 
"pass B through the barrier", you instead pick up the contents of the cell B points to and repeat 
the process from step 1, using this as the new B. The EVe-Forward pointer in memory may be 
transported to newspace, but it is not clobbered. If the original B is GC-Forward, this is an error, 
since GC-Forward should not be found in newspace. 

17 

One additional twist is needed to make it possible for the system to maintain hash tables full of Lisp objects 

that are accessed via an EQ test. Whenever a B-Vector with subtype code 2 or 3 is transported to newspace, its 

subtype code is changed to 4. This code indicates to the accessing functions that the entries of the hash table 

must be re-hashed before any access is made, since the items are hashed under their oldspace addresses which 

will be changed as soon as the item is touched. The rehashing is done by the hash-table functions in 

macrocode; all that the microcode has to do is change the subtype code when the vector is transported. 

4.3. The Scavenger 

When objects are first transported into copyspace, they are dirty -- that is, they may contain pointers into 

oldspace. The scavenger moves word by word through each of the copyspaces, transporting each lisp object 

encountered by the algorithm listed above. This gradually cleans up copyspace, though in the process new 

objects may be copied. The CLEAN-SPACE pointer marks the boundary between space that is guaranteed 

dean and space that may be dirty. Eventually, as oldspace empties, the process will converge and the 

CLEAN-SPACE pointer will catch up with the COPY-SPACE pointer. When one space has been completely 

scavenged, the scavenger goes on to another space, and continues to cycle through spaces until all are clean. 

At this point, we can be sure that every accessible object in oldspace has been moved to newspace, and the 

cycle of garbage collection is complete. 

Each word is scavenged individually, and the scavenging process can be interrupted between any two 

words. This means that we can run the scavenger incrementally, scavenging a few words at a time interleaved 

with regular processing. 'Ibis is normally tied to the allocation of new objects: for every word of new structure 

that is allocated, we scavenge some number of words of copyspacc. (A typical ratio is four words scavenged 

for each word allocated.) The user can also specify that the scavenger is to run continuously until either the 

current cycle is complete or the user interrupts and stops it. This option can be exercised by I/O code to run 

the scavenger during waits for the keyboard and other lulls in the action. In a very large lisp system, a full 

scavenge cycle may take hours; disk paging time dominates. 

Boxed static spaces may containpointers intodyilamic space, and so must be scavenged after a flip. The 
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CLEAN-SPACE pointer for such a space is set equal to the FREE-STORAGE pointer after a flip, and is 

moved downward by the scavenger until it hits the bottom of this space. 

Read~only spaces do not contain pointers to dynamic space, so scavenging is not necessary. 

Flipping 

A Spice Lisp system begins with only static space, read-only space, and newspace ( dynamic-O space) in use. 

No scavenging or transporting is done until the dynamic space is flipped. At this point, dynamic-O becomes 

oldspace and dynamic-l becomes newspace, and the system begins transporting objects out of dynamic-O. 

When the scavenging process is complete, another flip can occur and objects are moved back into dynamic-O. 

And so on. The user can either initiate flips himself (if the system is ready to be flipped) or he can have the 

system do this automatically. To run without garbage collection, the user simply prevents the system from 

flipping. 

If the system is controlling the flips, it will wait until a certain number of words have been allocated, 

totalled over all spaces; then it performs the first flip. After that, it will be able to flip again as soon as the 

previous scavenge cycle has been completed or it may wait until some amount of additional allocation has 

been done before flipping again. The optimal strategy will have to be determined empirically,once the 

system is up. Initially, we will flip by hand. 

When a flip occurs, the" system must immediately go through all of the registers inside the barrier and 

transport the contents of these registers, since many would otherwise point to oldspace. This task mu~t be 

completed before the system resumes normal processing. It" is therefore important to keep the number of 

items within the barrier reasonably small. For this reason, the binding and control stacks are considered to be 

outside the barrier, except for the current frame on the control stack; this is inside the barrier and must be 

scavenged during the flip. rIlle remainder of this stack is scavenged from the top (most recent push) toward 

the bottom; this is the first thing the sC<J.vcnger docs, but this is not done during the flip. A CLEAN-STACK 

pointer separates the clean part of the stack from the part not yet scavenged. After the control stack is clean, 

the scavenger can go on to do the binding stack, then to the other boxed spaces; When the stack is popped, 

the system must check to see whether the new stack frame has been completely scavenged, and must 

immediately clean any part of the new top frame that needs it. Any access to a dirty part of either stack must 

be transported normally as the data is brought through the barrier. 
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5. l'vlacro Instruction Set 

5.1. General 

This section documents the macro-instruction set to be used for Spice Lisp. This instruction set is based on, 

but not identical to, that used by the MIT Lisp Machine. Some changes are necessary because some of our 

underlying mechanisms are different: since we have no locative pointers and no CDR coding in the current 

Spice Lisp, some of the instructions used on the Lisp Machine make no sense. In addition, on the PERQ and 

on several other machines to which we might want to port Spice Lisp in the future, there is a clear advantage 

in fitting the instructions into 8-bit bytes rather than 16-bit words, even if extra bytesmust.usually be fetched 

to get address fields, etc. The current Lisp Machine instruction set does not break neatly at 8-bit boundaries. 

Finally, some operations have been added to make up for weaknesses that have been noticed in the MIT 

instruction set, notably in accessing vectors and strings, which happens much more frequently than anyone 

expected. 

The intent is that this instruction set should be a very direct mapping from the S-expression source it is 

derived from. There should therefore never be any temptation for users to write macrocode by hand; all of 

the system that is not in microcode should be written in Lisp. Since the compiler will run both in Spice Lisp 

and in Maclisp, we need not hand-code things even tt)r bootstrapping. 

5.2. Function Object Format . 

Each compiled function is represented in the machine as a Function Object. This is identical in form to a 

B-Vector of lisp objects, and is treated as such by the garbage collector, but it exists in a special function space. 

(There is no particular reason· for this distinction. We may decide later to store these things in B-Vector space, 

if we become short on spaces or have some reason to believe that this would improve paging behavior.) 

Usually, the functio~ objects and code vectors will be kept in read-only space, but nothing should depend on 

this: some applications may create, compile, and destroy functions often enough to make dynamic allocation 

of function objects worthwhile. 

The function object contains a vector of header information needed by the function~catling mechanism: a 

pointer to the U-Vector that holds the actual code, the number of required and optional arguments, and a few 

other things. Following this information is a vector of symbol pointers (for symbols that are used as special 

variables in the code) and constants. A constant is any boxed Lisp object that is used but not altered by the 

function. Constants in the range of -128 to + 127can be generated within the byte code, and so do not need 
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to be represented here as full-word constants. 

Spice Lisp uses an extended arglist fonnat with &optional and &rest arguments. This is similar to the 

system used in the Lisp Machine, but we will not be using the Lisp· Machine's very complex argument 

descriptor fonnat. Instead we will initialize optional arguments in a simple and uniform way within the code 

for the function. We will not support the use of random &quote arguments within the arglist: either all of the 

arguments are EV A Led, or you use a FEXPR which evals none of them and always has a single argument. 

Other quoting effects can be obtained through the use of macros, if desired. See section 6.7 for more details 

on how optional arguments are handled. 

Afterthe one-word B-Vector header, the entries of the function object are as follows: 

o A fixnum with bit fields as follows: 
o - 14: Number of symbols/constants in this fn object (0 to 32K-1). 
15 - 26: Not used. 
27: 0 => All args evaled. 1 => This is a FEXPR. 

1 Pointer to the unboxed Code vector holding the macro-instructions. 
2 A fixnum with bit fields as follows: 

o 7: The minimum legal number of args (0 to 255). 
8 - 15: The maximum number of args, not counting &res~ (0 to 255). 
16 - 26: Number of local variables allocated on stack (0 to 2047). 
27: 0 => No &rest argo 1 => One &rest argo 

3 Name of this function (a symbol). 
4 Vector of argument names, in order, for debugging use. 
5 Reserved for future use. 
,6 Entry 0 of symbol/constant area. 
7 Entry 1 ... and so on. 

5.3. Execution Environment 

At any given time, the machine contains pointers to the current top of the control stack, the. start of the 

current active frame (in which the current function is executil?g), and the start of the most recent open frame. 

In addition, there is a pointer to the current top of the special binding stack. An open frame is one which has 

been partially built, but which is still having arguments for it computed. When all the arguments have been 

computed and saved on the frame, the function is then started. This means that the stack frame is completed, 

becomes the current active frame, and the function is executed. At this time, special variables may be bound 

and the old values are saved on the binding stack. Upon return, the active frame is popped away and the 

result is either sent as an argument to some previously opened frame or goes to some ()ther destination. lbe 

binding stack is popped and old values are restored. 

The active frame contains pointers to the previously-active frame, to the mostrecent open frame, and to the 

point to which the binding stack will be popped on exit. among other things. Following this is a vector of 
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storage locations for the function's arguments and local variables. Space is allocated for the maximum 

number of arguments that the function can take, regardless of how many are actually supplied. 

In an open frame, the structure is built up to the point where the arguments are stored. Thus, as arguments 

are computed, they can simply be pushed on the stack. When the function is finally started, the remainder of 

the frame is built. The control stack is also used by the instnlction set as the primary scratch pad area for 

random compu tations. 

The precise details of stack-frame formats and calling conventions can be found in a later section of this 

document 

5.4. Implementation Note 

On the PERQ we do not have any sort of fast cache for the stack. The ESTK is shallow and does not allow 

access to anything but the top 16 bits, and since we cannot index into registers, we cannot. stash a piece of the 

stack there. So the stack must live in core and we must take our lumps on this; disk paging time will probably 

be the dominant time-waster anyway. The cache promised for the extended PERQ will help a lot on this 

. problem, if we ever get our hands on this. 

What we can do is to save the top word of the stack in a register-pair rather than in core -- a sort of 

one-word stack buffer. ActuallY, this should help a great deal, since most of the macro instructions that 

reference the stack look only at the top word. If an instruction pops an argument off the stack, does 

something to it, and pushes the result, no memory 1/0 needs to occur. If the net effect of the instruction is to 

push or pop a word· on the stack, then a memory write or read is required. The register in. question is 

designated TOS for "top of stack". 

5.5. Indicators 

Conceptually, the result produced by each macro-instruction is used to set a group of indicators, which can 

be tested by subsequent conditional jump instructions~ these indicators are NULL, ATOM, and ZERO. In 

fact, on most machines, it is more efficient to just stash in a hidden register the result-word that should have 

set the indicators, and to check for null-ness,. atom-ness, or zero-ness when the question comes up. In the 

description of instructions below, if it is unclear what the natural "result" is, we will state explicitly what value 

goes into the indicators; in some cases, instructions leave the indicators unchanged. 

The NUl J .. "indicator" is set only by a result of NIL. 
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The A TOJ\1 "indicator" is set if the result is not of type LIST. This indicator is set by a result of NIL. 

The ZERO "indicator" is set by either a FIXNUM 0 or a FLONU!\10.0. 

5.6. l\1acro· Instruction Fonnats 

The majority of the macro-instructions in the spice Lisp Set are of the following form: 

7 o 

Instruction byte: OP (6) A (2) I 

Next byte (optional): B (8) 

Most instructions read from or write to an "effective address"~ and possibly also push or pop 32-bit words 

on the stack. When the OP field indicates that an effective address is to be read from, it is computed from the 

A field and (sometimes) from the subsequent byte B as follows: 

A=O 

A=l 

A=2 

A=3 

The operand is popped off the stack. Then the operation takes place, in some cases 
popping a second (distinct) argument off the stack and/or pushing something onto the 
stack. No B byte is fetched. 

The next byte is fetched and is converted (with sign extension) to a signed fixnum in the 
range ~128 to + 127. This is used as the operand. 

The next byte is fetched. If its sign bit is 0, the remaining 7 bits are used as an unsigned 
offset (0 - 127) into the vector of sy~bols and constants in the code object of the current 
function. If the sign bit is 1, the other 7 bits are used instead as an unsigned offset (0 - 126) 
into the arguments and local variables area of the currently-active stack frame. The 

. contents of this cell are used as the operand. If the fetched byte is all ones (377 octal), the 
next two bytes are fetched to form a 16-bit offset.. The sign bit of this extended offset 
controls where the operand comes from, as in the 8-bit offsets. In fetching this double 
offset, the low-order byte comes in first. 

The next byte (or set of bytes) is fGtched and is used as an offset into the code object, as 
above; this will never be used with an offset into the stack frame. Instead of being used 
directly, the constant addressed is supposed to be a symbol pointer, and the operand is 
fetched from its value cell. If the value is Misc-Trap, an UNBOUND error is signalled. 

If the effective address is being used as a place to write, the following descriptions apply: 

A=O T'he result is pushed on the stack. 

A=l The result sets the indicators, then is thrown away. 
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A=2 

A=3 

If the offset indicates a stack frame destination, the result is put there: if it points into the 
code object, this destination is illegal, since the code object should not be altered. 

This writes into the value cell of the symbol pointed to, forwarding the write through an 
EVC-Forward pointer if one is present in the value cell. 

In the following listing, the effective address is called "E" and its contents are called "CE". 

5.7. Instructions 

Note: In the following descriptions, the number in the left margin is the 6-bit opcode, in deciInal notation. 

o Unused 

1 Call CE must be some sort of executable function: a code object, a lambda-expression in list 
space, a closure, or a symbol with one of these stored in its function cell. A call block for 
this function is opened, and computation proceeds to gather the arguments into the call 
block. This is explained in more detail in the section on Control Conventions. The state of 
the indicators after CALL is undefined. 

2 Call-O CE must be an executable function, as above, but is a function of 0 arguments. Thus, there 
is no need to collect arguments. The call block is opened and activated in a single 
operation. The indicators are left in an undefined state. 

3 Call-Multiple Just like a Call instruction, but it sets bit 21 of the frame header word to indicate that 
multiple values are expected. See section 6.10. 

4 Call-Maybe-Multiple 

5 Return 

6 Throw 

7 Unused. 

8 Push 

9 Push-J .,ast 

If the current stack-frame header word has bit 21 set, this is identical to Call-Multiple. If 
not, this is identical to Call. 

Return from the current function call. After the current frame is popped off the stack, CE 
is pushed as the result being returned. CE also sets the indicators. See section 6.6 for more 
details. 

CE is the throw-tag, normally a symbol. The value to be returned, either single or 
multiple, is on ~e top of the stack. See section 6.11 for a description of how this 
instruction works. 

CE is pushed onto the stack and sets the indicators. If A = 0, this is a NOOP, except that 
the indicators are set according to the value of the item on top of the stack. 

CE is pushed onto the stack as the last operand for the most recent currently-open call 
block. The can is then activated: the can block is finished and becomes the current 
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stack-frame. If A = 0, the effect of this operation is just to start the call. The indicators are 
undefined at the start of the called function: they are set by the returned value when 
execution resumes in the camng function. 

10 Push-Under CE is pushed ont9 the stack as the second item and sets the indicators: the top item of the 
stack is unchanged. If A = 0, this swaps the top two items on the stack. Push-Under 
causes an error if the stack is empty or if A = 0 and the stack contains only one item. 

11 Check CE is used to set the indicators, but is not put anywhere. If A = 0, the net effect is to pop 
the stack by one word, setting indicators. 

12 Pop Pop the top item off the stack and store it in E and also in the indicators. 

13 Copy Copy the item on top of the stack into E, setting the indicators, without popping the stack. 

14 Make-Predicate 
If the NULL indicator is on, put NIL in E. Else, put T in E. The NIL or T also sets the 
indicators. 

15 Not-Predicate If the NULL indicator is not on, put NIL in E. Else, put T in E. The NIL or T also sets the 
indicators. 

16 CAR 

17 CDR 

18 CADR 

19CDDR 

20CDAR 

21 CAAR 

22 SCDR 

23 SCDDR 

24 Trunc 

CE had better be either a pointer into list space or NIL. Its CAR is pushed on the stack 
and sets the indicators. 

The CDR of CE is pushed on the stack and sets the indicators. 

The CADR of CE is pushed on the stack and sets the indicators. 

The CDDR of CE is pushed on the stack and sets the indicators. 

The CDAR ofCE is pushed on the stack andsets the indicators. 

The CAAR of CE is-pushed on the stack and sets the indicators. 

Get the CDR of CE' and store it in E and the indicators. Useful for CDRing down lists. 
CE must be a list cell or NIL. 

Get the CDDR of CE and store it in E and the indicators. Useful for CDDRing down 
property list'). CE must be a list cell or NIL. 

Performs the equivalent of the TRUNC function as described in the Spice Lisp Manual. 
After obtaining CE, take one value off the top of the stack. Call this N. There are now 
three cases: 

• IfCE is Fixnum 1, Trunc pushes three items: a fixnum or bignum representing 
the integer part of N (rounded toward 0), then either 0 if N was already an 
integer or the fractional part of N represented as a flonum or ratio with the 
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25 + 

26 -

27 * 

28/ 

29 Bit-And 

30 Bit-Xor 

31 Bit-Or 

32 Eql 

33= 

same type as N, then Misc-Values-Marker 2 to milnica mUltiple l\~turn of two 
values . 

• IfCE and N are both fixnums or·bignums and CE is not 1, divide N by CEo 
Push three items: the integer quotient (a fixnum Of bignum), the integer 
remainder, and Misc-Values-Marker 2 . 

• If either CE or N is a flonum or ratio, push a fixnum or bignum quotient (the 
true quotient rounded toward 0), then a flonum or ratio remainder, then push 
Misc-Va]ues-Marker 2. The type of the remainder is determined by the same 
type-coercion rules as for +. The value of the remainder is equal to (- N (* CE 
QUOTIENT». 

In all cases the first thing pushed (the quotient) sets the indicators. If TRUNC uses the 
escape-to-macro mechanism (see section 6.9), it builds a multiple-value frame header 
rather than an escape-type header. 

CE is added to the value popped off the stack. The result is pushed back onto the stack 
and sets the indicators. The addition is generic: two integers (fixnum or bignum) produce 
an integer; two ratios or an integer and a ratio produce a normalized ratio; _ if either 
operand is a flonum, the result is a flonum of that type, long or short; if one of the 
operands is a long flonum and the other is a short flonum, the result is a long flonum. 

Analogous, but CE is subtracted from TOS. Generic, as above. 

Analogous, CE is multiplied by TOS. Generic, as above. 

The TOS is divided by CE; the quotient goes back to TOS. This is generic, as above, 
except when the operands are both integers. In that case, an integer is returned only if the 
division is exact (that is, if the remai~der is 0). If the division is not exact, the quotient is 
returned as a normalized ratio . 

. ·Bitwise boolean AND of CE and top of stack. The result goes onto the stack and sets the 
indicators. The operands must be fixnums or bignums. 

Bitwise XOR. 

Bitwise OR. 

CE is compared to the value popped off the stack. If these arguments are EQ or if they are 
both numbers of identical type and value, T sets the indicators; if not, NIL sets the 
indicators. Nothing is pushed back onto the stack. 

CE is compared arithmetically to the value popped off the stack. If they are equal,T sets 
the indicators; if not, NIL. sct'i the indicators. Nothing is pushed back onto the stack. This· 
works for mixed number-types: if an integer is compared with a flonum, the integer is 
floated first~ jf a short flonum is compared with a long flonum, the short one is first 
extendcd.F)onums must be exactly identical (after conversion) for a non-null comparison. 
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34 ) 

35 < 

36EQ 

371+ 

381-

39 Bind-Null 

40 Bind-T 

41 Bind-Pop 

42 Set-Null 

43 Set-O 

44 Set-T 

45 - 47 Unused. 

48 NPop 

49 Unbind 

50 Set-Lpush 

51 Set-I ,pop 

52 List 

53 List* 

Analogous, but non-null ifTOS ) CEo 

Analogous, but non-null ifTOS < CE. 

CE is compared to the value popped off the stack. If these objects are identical 32-bit Lisp 
objects, T sets the indicators; if not, NIL sets the indicators. Note: equal fixnums and 
equal short flonums are EQ, but this does not hold for bignums or long flonums. So when 
dealing with numbers use = or EQL unless you are sure you know what you are doing. 

Add 1 to CE, store result back into E. CE can be any kind of number. 

Subtract 1 from CE, store result back into E. CE can be any kind of number. 

CE must be a symbol. This is rebound and set to NIL. The NULL indicator is set. 

CE must be a symbol. This is rebound and set to T, which also sets the indicators. 

CE must be a symbol. This is rebound and is set to a value popped off the stack. This 
value also sets the indicators. 

Store NIL in E. 

Store fixnum 0 in E. 

StoreT in E. 

CE is a fixnum N. lfN is non-negative, N items are popped off the stack. IfN is negative, 
NIL is pushed onto the stack INI times. The indicators are unchanged. 

CE is a non-negative fixnum indicating how many bindings are to be popped off the 
binding stack and restored to their previous values. Used in exiting open-coded PROGs 
and LAMBDAs. The indicators are unchanged by this instruction. 

Pop TOS, cons it onto CE (in the space indicated by the value of the symbol 
ALLOCATION-SPACE), store result back into E. The new CE sets the indicators. 

CAR ofCE is pushed onto the stack and sets the indicators: CDR ofCE is stored back into 
E. 

CE is a non-negative fixnumN.Beginning with a list of NIL" N items are popped off the 
stack and CONSed onto this list, so that the last item popped ends up as the CAR of the 
list The consing is done in the space specified by the value of AL1,OCATION-SPACE. 
The resulting list is pushed on the stack and sets the indicators. 

CEis a non-negative fixnum N. One item is popped off the stack, to begin the list L. Then 
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54 Spread 

55 Mise 

56 Branch 

N other items arc popped and CONSed onto the front of L in succession, so that the last 
item popped becomes the CAR of L. The consing is done in the space specified by the 
value of ALLOCATION-SPACE. The resulting list is pushed onto the stack and sets the 
indicators. 

CE is a list. Its elements are pushed onto the stack in left-to-right order. The last item 
pushed sets the indicators. 

This is used for calling a large number of microcoded functions. The next byte in the 
instruction stream is fetched, and this is used to indicate which of 256 Misc functions is to 

. be called. This operation will in general pop some arguments off the stack, compute a 
single result, then place this result in the location indicated by the effective address E, 
computed as usual from the A field of the first byte. Note that if one or more offset bytes 
are needed for the effective address computation, these bytes are fetched after the byte 
telling which instruction is to be called. . The Misc codes are defined in a later section of 
this document. (Initially, many fewer than 256 Misc functions are defined.) 

Unconditional branch relative to the current byte-PC (which has been incremented to 
point past the current instruction). The next byte or two bytes is fetched. This, treated asa 
signed integer, is added to the PC. The indicators are unchanged. For all of the branch 
instructions, the bits of the A field are interpreted as follows: 

BitO = 0 Fetch one byte for branches of -128 to + 127 bytes. 

Bit 0 = 1 Fetch two bytes for longer branches. The low-order byte comes in first. 

Bit 1 ~ 0 Do not pop stack. 

Bit 1 = 1 Pop stack if the (conditional) branch is not taken. 

57 Branch-If-Arg-Supplied 
This is a special conditional branch that is used by the machinery that computes default 
values for optional function arguments that were not supplied by the caller. The next byte 
is read from the instruction stream and is taken as an offset (range 0 - 255) into the 
args-and-Iocals area" of the stack frame. If the stack frame entry in question contains 
Misc-Unsupplicd-Arg, do not branch; otherwise, take the branch. The branch is executed 
normally, using the A-field of the instruction to control the usual branch options. The 
branch offset bytc(s) will follow the argument offset byte in the instruction stream. 

58 Branch-Null Branch if the NULL indicator is on. Does not alter indicators (nor·do any of the other 
branches). 

59 Branch-Not-Null 
Branch if the NULL indicator is not on. 

60 Branch-Atom Branch if the ATOM indicator is on. 

61 Branch-Not-Atom 
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Branch if the ATOM indicator is not on. 

62 Branch-Zero Branch if the ZERO indicator is on. 

63 Branch-Not-Zero· 
Branch if the ZERO indicator is not on. 

5.8. MISe Instructions 

The following instructions are members of the MISC group. Each of these expects a fixed number of 

arguments to have been pushed on the stack in the order indicated (leftmost arg pushed first). These 

arguments are popped and a single return value is generated. This sets the indicators and goes to the E 

location of the Misc operation. The numbers in the left margin are the 8-bit codes corresponding to each 

instruction, in decimal format. 

'The user can access these functions directly from compiled Lisp code and can indirectly achieve the same 

effect from interpreted code. See section 5.9 for details. 

OCons(XY) Conses up a list cell with X as CAR and Y as CDR. The allocation space is controlled by 
the value of the symbQI ALLOCATION-SPACE. 

1 Alloc-Symbol (N) 
. Allocates one symbol and returns a pointer to it. The allocation space is controlled by the 

value of ALLOCATION-SPACE. String N becomes the symbol's PNAME. The value is 
initially Misc-Trap, the definition is Mise-Trap, the plist, package, and hash are initially 
NIL. The symbol is not interned by this operation -- that is done in macrocode. 

2 Alloc-B-Vector (N I) 
Allocates a B-Vector ofN entries and returns a pointer to it. Allocation space is controlled 
by the value of ALLOCATION-SPACE. I is the initial value with which the vector is 
filled. 

3 Alloe-U-Vector (N A) 
Ailocate a local U-Vector with access-code A and a length ofN items, and return a pointer 
to it. Allocation space is controlled by the value of ALLOCATION-SPACE. All entries 
are initialized to O. 

4 Alloe-Remote-Vector(N A P) 
Allocate a remote U-Vectorwith N entries and access-code A, returning a pointer to it. Pis 
the pointer to the data area in system-table space. Allocation space is controlled by the 
value of ALLOCATION-SPACE. 

5 Alloc-String (N) Allocate a string of length N, initialized to all O's, and return a pointer to it. Allocation 
space is control1ed by the value of ALLOCATJON-SPACE. 
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6 Alloc-Function (N) 
Allocate a function object (like a B-Vector) of length N, not counting the I-word header. 
Allocation space is controlled by the value of ALLOCATION-SPACE. Initialized to 0 
(Misc-Trap codes). 

7 Alloc-Array (N) Allocate an array-header for an array of N dimensions. Allocation space is controlled by 
the value of ALLOCATION-SPACE. The header is initialized to 0 (Misc-Trap codes), and 
must be filled with the appropriate header info by other code. Returns a pointer to the 

array header. 

8 Alloc-Xnum (N X) 
Allocate an xnum N bytes in length, with sub-type code X. N and X must be fixnums. The 
allocation space is controlled by the value of ALLOCATION-SPACE. All entries of the 
XNUM vector are initialized to O. 

9 Alloc-Y num (N X) 
Allocate aYnum N lisp-objects in length, with sub-type code X. N and X must be fixnums. 
The allocation space is controlled by the value of ALLOCATION-SPACE. All entries of 
the YNUM vector are initialized to Misc-Trap codes. 

10 Misc-Subtype{X) 
X must be of type MISC. Returns the subtype field (bits 24-27) of X right-justified in a 

fixnum. '" 

11 Type (X) Returns the 4-bit type-code of X as a fixnum. 

12 Make-Immediate-Type (OB] TYPE) 
OBi can be any lisp object, TYPE is a fixnum in the range 0 - 2, which correspond to the 
type-codes of immediate objects. Returns an object whose type-code bits are TYPE, but 
whose other bits are those of OB]. Used for converting fixnums to misc-type objects, 
converting pointer-type objects to fixnums so that the pointer can be examined, etc. 

13 Get-Vector-Subtype (V) 
Returns the 4-bit subtype field of a vector-like object V (B-vector, U-Vector, Array, Xnum, 
Ynum, String, Function). Returned as a fixnum. 

14 Set-Vector-Subtype(V X) 
Stores the low order 4 bits of fixnum X as the subtype code of vector-like thing V. Returns 

V. 

15 Get-Vector-Length (V) 
V is any vector-like thing. Returns the length of this vector, which is one greater than the 
largest legal index, as a fixnum. 

16 Get-Value (S) Gets the contents of the value cell of the symbol S. Signals an UNBOUND error if the 
value is M isc-Trap. 

17 Set-Value (S V) 
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Set the value cell of symbol S to V. If the cell contains an EVC~Forward pointer, this is 

followed. Returns V. 

18 Get-Definition (S) 
Returns the contents of the functional definition cell of symbol S. Signals an 
UNDEFINED error if the cell contains Misc-Trap. 

19 Set-Definition (SD) 
Puts D into the functional definition cell of symbol S. Returns D. 

20 Get-Plist (S) Returns the property list of symbol S. 

21 Set-Plist(S P) Sets the property list of symbol S to P. P should be NIL or"a List object. Returns P. 

22 Get-Pname (S) Returns the pname of symbol S. 

23 Set-Pname (S P) 
Sets the pname of symbol S to P. P should be a string. Returns P. 

24 Get-Package (S) 
Gets the contents of the package cell of symbol S. 

25 Set-Package (S P) 
Sets the package of symbol S to P. Returns P. 

26 Get-Hash (S) Gets the contents of the hash cell of the symbol S. 

27 Set-Hash (S H) Set the hash cell of symbol S to H. Returns H. 

28 Boundp (S) S must be a symbol. Boundp returns NIL if the value cell of the symbol contains Misc­
Trap, T otherwise. " 

29 Fboundp (S) S must be a symbol. Fboundp returns NIL if the definition cell of the symbol contains 
Misc-Trap, T otherwise. 

30 Rplaca (L X) Replaces car ofL with x, returning the modified L. 

31 Rplacd (LX) Replaces cdr ofL with X, returning th~ modified L. 

32 Unused. 

33 S-float (X) Turns any number X into a short flonum. 

341~-Float (X) Turns any number X into a long flonum. 

35 Negate (X) For any number X, return the negative. 
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36 Lsh (N B) Both args are fixnums. Returns a fixnum thatis N shifted left by B bits, with O's shifted in 
on the right. If B is negative, N is shifted to the right with O'"s coming in on the left. 

37 Get-Vector-Access-Type (V) 

38 Logldb (S P N) 

V must be a U-Vector. Returns the access-type code (bits 28-31 of the second header 
word) right-justified in a fixnum. 

All args are fixnums. Sand P specify a "byte" or bit-field of any length within N. This is 
extracted and is returned right-justified in a fixnum. S is the length of the field in bits; P is 
the number of bits from the right ofN to the beginning of the specified field. P = 0 means 
that the field starts at bit 0 of N, and so on. If the specified field is not entirely within the 
28 bits ofN, it is an error. 

39 Logdpb (V S P N) 

40 Abs(N) 

All args are fixnums. Returns a number equal to N, but with the field specified by P and S 
replaced by the S low-order bits ofV. An error if the field does not fit into the 28 bits ofN. 

N is any kind of number. Returns the absolute value ofN. 

41 Subspace (X) X is any lisp object. Returns the 2-bit allocation space code,as a fixnum. Returns NIL if 
the object is immediate. 

42 Close-Over (L) L is a list of symbols." Creates and returns a closure-list for these symbols in the current 
environment. See section 6.8 for details. 

43 Activate-Closure (C) " 
C must be a closure list, as returned by the Close-Over operation. Activate-Closure 
restores the environment in which the closure list was created for the symbols closed over. 
See section 6.8 for details. Returns C unchanged. 

44 Typed-V-Access (A VI) 
A and I are fixnums, V points to a U-Vector or Xnum. This returns entry I of the V as a 
fixntim, but uses the low-order three bits of A as the access-type code instead of whatever 
code is stored in the vector itself. The high-order bit of the access-type code, controlling 
whether the vector is remote, is always taken from the vector itself. This is i11egal if V is a 
strcing. Bounds checking should be done by the caner, though a reference to a field that is 
grossly out of bounds for this vector may be caught. 

45 Typcd-V-Store (A V I X) 

46 Unused. 

47 Freeze 0 

Likc a V-Store, but stores X in entry I of V using A as thc low-order 3 bits of the access­
type code, as abovc. Returns X. Illcgal for strings. 

Frcezes all read-only spaces by moving the FREEZE pointers up to mcct the FREE­
STORAGE pointcrs. Returns NIL. 
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48 New-Pure-Page (X) 
X can be an item of any non-immediate data type. The type of X is examined, and the 
current read-only page for that type of storage is closed. This is done by moving the 
FREE-STORAGE pointer for that space up to the next page boundary if it is not on a page 
boundary already, and moving the FREEZE pointer to the satne place. Returns X. 

49 Shrink-Vector (V N) 
V is any B-Vector, U-Vector, String, Function object, or Array header. N is the new 
number of entries; a fixnum, which must be less than or equal to the current number of 
entries .. The length field and the number-of-entries field of the vector are altered to reflect 
this new shorter length. If the object contains boxed entries, those beyond the new end of 
the vector are set to 0 (Misc-Trap codes). Returns V, the vector which has been shortened. 

50 Call-Break (F) lustlike the Call operation, but starts the new frame with a break-type Misc-Frame­
Header word (bit 23 = 1) rather than the usual kind of header. This means that when the 
called function ultimately returns, no return value is left on the stack. Gets F, the function 
to be called, from the stack; returns NIL, though this will normally. be called with 
destination IGNORE. 

51 Values-To-N (V) 
V must be a Misc-Values-Marker. Returns the number of values indicated in the low 24 
bits of V as a fixnum. 

52 N-To-Values (N) 
N is a fixnum. Returns a Misc-Values-Marker with the same low-order 24 bits as N. 

53 Arg-In-Frame (N F) 
N is a fixnum, F is a control stack pointer as returned by the CURRENT .. ST ACK­
FRAME and CURRENT-OPEN-FRAME operators. Returns the item in slot N of the 
args-and-Iocals area of stack frame F. 

54 Current-Stack-Frame 0 
Returns a control-stack pointer to the start of the currently active stack frame. This will be 
of type Misc-Control-Stack-Pointer. 

55 Sct-Stack-Frame (P) 
P must be a control stack pointer. This becomes the current active frame pointer. Returns 
NIL. 

56 Current-Open-Frame 0 
Returns a control-stack pointer to the start of the currently open stack frame. This will be 
of type Misc-Control-Stack-Pointer; 

57 Set-Open-Frame (P) 
P must be a control stack pointer. This becomes the current open frame pointer. Returns 
NIL. 

58 Current-Stack-Pointer 0 
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Returns the Iv1isc-Control-Stack-Pointer that points to the current top of the stack (before 
the result of this operation is pushed). Note: by definition, this points to the first unused 
word of the stack, not to the last thing pushed. The stack manipulation instnlCtions make it 
appear as if the stack is all in contiguous virtual memory, despite the fact that insome 
implementations a TOS register or some other form of hardware buffer will be holding 
part of the stack. 

59 Current-Binding-Pointer 0 
Returns a Misc-Binding-Stack-Ptr that points to the first word above the current top of the 
b.inding stack. 

60 Read-Control-Stack (F) 
F must be a control stack pointer. Returns the lisp object that resides at this location. If 
the addressed object is totally outside the current stack, this is an error. 

61 Write-Control-Stack (F V) 
F is a stack pointer, Vis any Lisp object. Writes V into the location addressed. Returns 
V. If the addressed cell is totally outside the current stack, this is an error. Obviously, this 
should only be used by carefully written and debugged system code, since you can destroy 
the process using this operation. 

62 Read-Binding-Stack (B) 
B must be a binding stack pointer. Reads and returns the lisp ~bject at this location. An 
error if the location specified is outside the current binding stack. 

63 Write-Binding-Stack (B V) 
B must be a ~inding stack pointer. Writes V into the specified location. Returns V. An 
error if the location specified is outside the current binding stack . 

. 64 Ldb (S P N) All args are fixnums or bignums; Sand P are non-negative. Sand P specify a "byte" or 
bit-field of any .length within N. This is extracted and is returned right-justified as a 
positive integer. S is the length of the field in bits; P is the number of bits from the right of 
N to the beginning of the specified field. P = 0 means that the field starts at bit 0 of N, 
and so on. N is considered to extend infinitely to the left; therefore, if the specified field 
extends to the left of the internal representation of N, the remaining bits are filled with 
copies of the sign bit .ofN. 

65 Mask-Field (S P N) 
Like LDR, except that the extracted fi~ld isreturned in the same position it occupies in N, 
not moved to the right. The result is a positive fixnum or bignum with 0 in all positions 
except that specified by the S-P field. 

66 Dpb (V S P N) An args are fixnums or bignums; P and S are non-negative. Returns a number equal to N, 
and with the same sign as N, but with the field specified by P and S replaced by the S 
low-order bits of V. The result may be extended to the left of the field to make the sign 
come out right. 

67 Deposit-Field (V S P N) 
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Like DPB, except that the bits to be put in N are extracted from the corresponding field of 
V, not from the rightmost S bits ofY. 

68 Ash (N C). Nand C arefixnums or bignums. Shift N left C places, shifting in zeros on the right. IfC 
is negative, shift N right -C places, preserving the sign ofN. 

69 Haulong (N) N is a fixnum or bignum. Returns the number of significant bits ofN. 

70 V-Access (V 1) V is any vector or vector-like object (B-Vector, U-Vector, String,. Xnum, Array, or 
Function Object). I is a Fixnum. Returns entry I of V. If the vector is a U-Vector or 
Xnum, the item returned is a fixnum; if a string, the item returned is a Char Object with 
bits and font code of O. 

71 V -Store (V I X) 

72 -79 

80 Force-Values 0 

81 Flush-Values 0 

V is any vector or vector-like object. I is a fixnum. X is.the value to be stored into slot I of 
vector V. For U-vectors and Xnums, X must be a fixnum, and is truncated to fit the vector 
item size; for strings, X must be a Misc-Character code,and only the 8-bit code portion is 
saved. X is returned. 

Unused. Reserved for I/O operators. 

If the top of the stack isa Misc-Values marker, do nothing; if not, push Misc-Values 1. 
Returns NIL, but normally this will be called with destination IGNORE. 

If the top of the stack is a Misc-Values marker, remove· this marker; if not, do nothing. 
Returns NIL, but normally this will be called with destination IGNORE. 

82 Mark-Catch-Frame 0 
Set bit 20 of the header word of the current open frame, marking this as a catch-tag frame. 
Returns NIL. 

83 Get-Newspace-Bit 0 
Returns a fixnum 0 or 1,. indicating whether the current newspace is Dynamic-O or 
Dynamic-I. 

Misc-codes still to be defined: control of flipping and scavenging, interface to IPC and kernel... 

5.9. Sub-Primitives 

It is irttended that no Spice Lisp code will be written directly in the macro-instruction set; everything not 

. microcoded will be written in Spice J jsp itself. Since the macro-compiler for Spice Lisp will run in Mac1isp as 

wen, we do not even need to write macrocode for bootstrapping. This requires that some system-level. 

operations not available to nonna] users of Spice Lisp must be availab1c within the Spice I .isp language to the 
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system implementors. Such system-level Lisp functions are called sub-primitives, and are identifiable by the 

prefix %SP-. Since we are not attempting to be compatible with thcLisp Machine at the sub-primitive level, 

we have deliberately chosen a different prefix to avoid confusion. 

All of the Miscellaneous operations are accessible as sub-primitives. When the compiler sees something 

like 

(%SP-Type <arg» 

it generates something like 

Push <arg> 
Misc Type 

;Push the single argument. 
;Call the Type Miscop. 
;Return normally left on stack. 

Of course, the compiler is free to use these mise operations in other situations as well. In a few cases, such 

as RPLACD, the mise operation will correspond directly to a user-visible function. In such a case, both a 

RPLACD and a %SP-RPLACD form will exist, and the compiler will generate the same code for both. In 

general, sub-primitive functions will be undefined if they are encountered in non-compiled code, though we 

will create a file of dummy definitions for the purpose of debugging uncompiled system code. (This file, at 

least, must be compiled.) 

A number of additional sub-primitives exist that ~o not expand directly into misc-ops. See the section on 

Sub-Primitives in the Spice Lisp User's Manual for details. 
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6. Internal COlltrol Conventions 

6.1. Control Registers 

The following 32-bit registers are kept within the processor and are accessed by microcode. An ofth~se are 

saved and restored across process breaks and kernel calls. Those registers that are "inside the barrier" and 

whose contents must be transported by the flipper are marked with an asterisk (*). 

Flags 

TOS (*) 

28 single-bit state indicators, used for assorted purposes by microcode. The high 4 bits 
contain a fixnum type-code so that this word can be pushed onto the stack if necessary. 
(Actually, this code might not be present internally, but Ol1.ly when the flags word is written 
into boxed storage.) 

The top (most recently pushed) entry of the control stack, unless the stack is empty. Kept 
in a register for efficiency. 

Control-Stack-Ptr The stack pointer for the main or control stack. Points to the first unused word of control­
stack space. That is, the upward-growing stack uses a write-increment! decrement-read 
discipline. The high 8 bits of this word contain a Misc-Control-Stack-Ptr type-code. 
(Again, this code may not be present internally, but only when the register is written into 
memory.) 

Binding-Stack-Ptr The stack pointer for the special variable binding stack. Same discipline as for the Control­
Stack-Ptr. The type code is Misc-Binding"'Stack-Ptr. 

Active-Frame 

Open-Frame 

Points to the first word of the control stack frame for the function currently executing. 
Type Misc-Control-Stack-Ptr. Note: the virtual address of the start of the Args-and-Locals 
area of the active frame is this pointer plus a constant (see section 6.3). 

Points to the first word of the control stack frame being built (args being evaluated) but not 
yet entered. Type Misc-Control-Stack-Ptr. 

Active-Function (*) 
Points to the boxed function object for the currently executing function. Note: the virtual 
address of the start of the Symbols-and-Constants area of the current function is this 
pointer plus a constant. See section 5.2 for the value of this offset. 

Active-Code (*) Points to the unboxed code vector for the currcntly-cxecuting function. Notc: only the 
flippcr can move this object, since to get into this register it must already be in ncwspace. 

PC Conccptually, this is a fixnum that indicates which byte of the code-vcctor contains the 
next instruction to be cxccutcd. This is the fonn in which the PC is storcd externally. The 
internal format is machine-specific. 

On the PERQ. the PC is stored internally as an offset (ending in three zeros) to the start of . 
the PERQ quad-word containing thc next byte codc and a 3-bit entry in the hardware BPC 
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indicating which byte of this quadword is to be read or executed next. The quadword in 
question is cached in the instruction buffer of the PERQ. Note that the Current Code 
object can only be moved by the flipper, and that the PC, BPC, and instruction buffer 
contents do not need to be altered when such a movement occurs. The operation of 
computing a virtual address and reloading the instruction buffer lTIUSt be atOlnic with 
respect to flipping, but this is easy to achieve. All of this depends on the fact that the old 
and new versions of the code vector have the same quad-word alignment; this is assured 
since all objects in the PERQ implementation are quad-word aligned. 

6.2. Binding Stack Format 

Each entry consists of two boxed (32-bit) words. Pushed first is a pointer to the. symbol being bound. 

Pushed second is the symbol's old value (any boxed item) that is to be restored when the binding is popped. 

6.3. Control Stack Frame Format 

Each function call creates a new·frame oil the control stack. If the function is a compiled Functio!l Object, 

the stack frame is as follows. The entry marked 0 is the word pointed to by th~ Active-Frame register if this 

frame is current. 

o Header Word. Type Misc-Frame-Header. 
1 function object or EXPR for this call. 
2 Closure List (or NIL if not a closure). 
3 Pointer to previous active frame. Type Misc-Control-Stack-Ptr. 
4 Pointer to previous open frame. Type Misc-Control-Stack-Ptr. 
5 Pointer to previous binding stack. Type Misc-Binding-Staek~Ptr. 
6 Saved PC of caller. A fixnum. 
7 Args-and-locals block starts here. -This is entry O. 

N Mise-frame-Barrier. Push after the args and locals. 

6.4. Call Instruction 

This macro-instruction opens a call block on the stack, but does not actua11y begin the call. Instcad, the 

arguments are evaluated and pushed on the stack, and the call is actual1ystarted by the PUSH-l.AST 

instruction when the last argument is in place. Note that in evaluating the arguments for one function, other 

functions may have to be called, so a chain of several opcn call blocks may be present at one time. 

The CALL instruction receives the function to be called as CEo It then checks the type of CE and proceeds 

as follows, according to the type: . 

IfCE is a symbol, fctch thc contents ofthc symbol's definition cell. lfthis is Mise-Trap or another symbol, 
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signal an error. Else, go on from here as if this were thc' original CEo (We cannot allow chains of symbols 

defined as other symbols, sincc this cOlild lead to a very nasty kind of infinite loop that would be expensive to 

check for.) 

If CE is a function object, perfonn the following steps: 

l. Note the current value ofControl-Stack-Ptr. 

2. Push Misc-Frame-Header on control stack. 

3. Push CE (the function being called). 

4. Push NIL as the closure list. 

5. Push Active-Frame. 

6. Push Open-Frame. 

7. Push Binding-Stack-Ptr. 

8. Push Fixnum -1 (this will later be filled with caller's PC). 

9. Open-Frame < = = Stack frame pointer saved in step 1. 

The new open frame is now ready to have arguments pushed by code in the calling function, terminated by 

a PUSH-LAST to start the call. 

IfCE is a list, and its CAR is of type Mise-Closure-Marker, then this is a closure. Its CADR is the function 

or Lambda to be called, and its CDDR is the closure list. Proceed with the call as if the CADR were the 

original CE, but push the CDDR into entry 2 of the stack frame instead of NIL. 

IfCE is a list whose CAR is not of type Misc-Closure-Marker, it is probably a LAMBDA expression. The 

call proceeds exactly as specified above, with the list stored in. the function slot of the . new frame. The 

arguments will be pushed normally, then%SP-INTERNAL-APPLY will be called when PUSH-LAST is 

executed. (See below.) %SP-INTERNAL-APPLY will verify that. this is in fact a legal LAMBDA or 

something else that it knows how to handle. 

IfCE is anything else, an ILLEGAL-FUNCTION error is signalled. 



· INTER~AL DESIGN OF SPICE LISP 39 

6.5. The Push-Last Instruction 

This pushes CE (unless A = 0, in which case the stack is unchanged) and starts the function responsible for 

the current open frame. Note that CALL-O opens the frame, then jumps in here immediately, since there are 

no args to set up. 

If Open-Frame is null, signal an error. If there is a frame, and it is for a compiled function (entry 1 of the 

open frame is of typ~ Function), proceed as follows: 

1. Insert the current PC (points to the NEXT instruction of the caller's code vector) in the PC slot of 
the open frame. ' 

2. Active-Function <= = Called function (from slot 1 of open frame). 

3. Active-Code < = = Code vector for new active function. 

4. Note number of args pushed by caller. 

5. If number of args < minimum, signal an error. 

6. If number of args > maximum and a &REST arg is present, pop excess args into a list, push this 
list back on stack as the &REST arg, then go to step 9. 

7. If number of args > maximum and no &REST arg, signal an error.' 

8. If number of args is between min and max (inclusive) push a MISC-UNSUPPLIED-ARG for 
each remaining optional and NIL for the &REST arg, if any. 

9. Push NIL for as many locals as the function requires. 

10. Push Misc-Frame-Barrier to finish frame. 

11. Active-Frame < = = Open-Frame 

12. Open-Frame <= = NIL 

13. Set up PC = 0 (Note: this points to entry 0 in the code vector, which is always the address of the 
first instruction. Internally on the Perq, we must a~tually set up PC, BPC, and fill the instruction 
buffer.) 

14. If slot 2 (the closure list) of the current frame is non-null, perform an ACTIVATE-CLOSURE 
operation on this list. 

15. Return to macro~code execution loop to run new function. 

If the object in entry 1 of the open frame is a lambda expression rather than a function object; we must can 

the %SP-1NTERNAL-APPLY function to interpret this expression with the given arguments. To achieve this 
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we procced as follows: . 

1. Note the number of args pushed in the current open framc(cal1 this N) and the frame pointer for 
this frame (call it F). Also remember the laInbda-expression in this frame (call it L). 

2. Perform steps 1 and 10 -14 of the sequence specified above for a normal PUSH-LAST. 

3. Perform the equivalcnt of a CALL-MA YBE-MULTIPLE instruction with the symbol %SP­
INTERN AL-APPLY as CEo (This symbol is in a fixed location known· to the microcode. See 
section 2.8.) 

4. Push L, N, and F in that order as the three arguments to %SP-INTERNAL-APPLY. 

5. Perform the equivalent of a PUSH-LAST with A = 0 to start the call. 
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%SP-INTERNAL-APPLY, a compiled function of three arguments, now evaluates the lambda expression 

L, obtaining the arguments from the frame pointed to by F. These arguments are obtained using the ARG­

IN-FRAME Misc-op. Just prior to returning,.%SP-INTERNAL-APPLY sets the ACTIVE-FRAME register 

to F, so that it returns from frame F. 

6.6. Return Instruction 

Returns from the current function, popping the s.tack frame and then pushing some number of returned 

values, as determined by the nature of CE and the bits set in the frame header word. 

If CE is any type of object except a Misc-Values-Marker, the function is trying to return a single value, 

namt:1y CEo If the current· frame begins with a break':type frame header, CE is discarded and the saved 

indicator values ar~ restored. If the current frame begins with an escape-to-macro type header, CE is placed 

in the location indicated by the codes stored in· the header word. If the frame begins with a multiple-value 

frame header, the single value is returned and the Mise-Values-Marker with 1 in the low 24 bits is pushed on 

top of it, indicating that 1 value is being returned. 

The steps are as follows: 

1. Pop binding stack back to value saved in slot 5 of the active control frame. For each symbol/value 
pair popped off the binding stack, restore that value for the symbol. 

2. Temp < = = Previous active frame from slot 3 of current frame. 

3. Open-Frame <= = Saved value in currcnt frame. 

4. PC < = = Saved value in current framc. Note that on the PERQ this requircssetting up the 
internal PC, the BPC, and the instruction buffer. 
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5. Active-Function < = = Saved value from previous frame. A pointer to this frame is in Temp. 

6. Active-Code < = = Code Vector obtained from entry in restored Active-Function object. 

7. Pop current frame off stack: 

Control-Stack-Pointer < = = Active-Frame. 
Active-Frame < = = Temp. 
Pop top of stack into IOS register; 
Since the active frame is inside the barrier, make sure the new top 

frame has been scavenged,or do it now. 

8. If frame exited was nonnal (began with Misc-Frame-Header), push the return value onto the stack 
and use it to set the indicators. 

9. If frame exited was of break type, restore the indicators from the values saved in the header word, 
but push nothing on the stack. 

10. If frame exited was of escape-to-macro type, place the return value wherever the saved A field and 
offset indicate that it should go. The return value also sets the indicators. 

11. If frame exited was of multiple-value type, push the return value on the stack and use it to set the 
indicators. Then push Misc-Values-Marker 1 to indicate that only one value was returned. 

12. Resume execution of function popped to. 
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If RETURN is called with CE of type Misc-Val~es-Marker, the low 24 bits of CE indicate· how many 

values are to be returned; call this number N. The N things to be returned have already been pushed as the 

top N items on the stack. In this case the return proceeds as follows: 

1. Note the value of the current stack pointer (after CE is popped off if it came from the stack) as 
OLDSP. 

2. Perform steps 1 - 7 of the RETURN protocol described above. Do not release the space occupied 
by the old stack frame back to the system, since we will need to get at the return values that are 
still in the old frame. (This space is not currently released anyway.) 

3. Examine the header word of the frame being returned from to determine the type of the call. 
Proceed as fonows: 

a. For an ordinary call, if N = 0 push NIL as the single return value. Else, pick up the first 
return value from location (OLDSP) - N and push that as the return value. In either case, 
the thing returned sets the indicators. 

b. For escape-to-macro call, place the first returned value (or NIL if there are 0 values) in the 
place indicated by the header word, discarding any other values. 

c. For break-type ca:ll. do just what an ordinary RETURN would do: restore the saved 
indicators and push no return value. 
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d. For multiple-value call, do a block transfer loop pushing the N words starting at (OLDSP) 
- N onto the stack as return values. Then push the original CE, which is Misc-Values­
Marker N. The first returned value sets the indicators, orNIL ifN is O. 

4. Resume execution of the caller. 

6.7. Handling Optional Arguments 
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Spice Lisp supports &OPTIONAL, &REST, and &AUX arguments like those in the Lisp Machine. We do 

not plan to support the &QUOTE mechanism; all arguments to a function are evaluated. (The only exception 

to this is in functions of the FEXPR type, in which the entire argument listis passed unevaluated to the 

function as its single argument.) Some arguments and &A UX variables are local (lexically bound on the 

stack) while others are special (shallow-bound in the value cell of the symbol). 

In the Lisp Machine this variability is handled by a variety of rather complex mechanisms which we cannot 

afford to duplicate in our more limited microstore. Instead, we handle the variation.in a uniform way, 

primarily within the macrocode of the 'function. As has already been described, the· function object contains 

, information indicating the maximum and minimum number of arguments and whether there is a &REST 

argument. At the time a call is started, all of the arguments (whether special or not) are present on the stack, 

withMISC-UNSUPPLIED-ARG codes in the place of any optional arguments that were not supplied by the 

caller. Space has also been allocated for any non-argument locals, and these have been initialized to NIL. At 

this point the function's macrocode is entered at PC = O. 

Note that all of the arguments passed by the caller are executed in the caller's environment, but that in 

evaluating default value expressions for unsupplied arguments and initialization expressions for &AUX 

variables, the assumption is that evaluation and binding proceeds left to right: each initialization expression 

can assume that the variables to its left have already been set up. 

If an &optional argument is a 3-element list (FOO INIT POOP), the FOOP value gets set to NIL if the 

caller supplied no argument, T if the argument was supplied. In the description below, the third clement will 

be called a "foop" parameter. 

The macrocode proceeds through the fol1owing steps: 

1. Bind any special variables associated with required arguments, to their new values. The 
arguments arc left on the stack as passed, but future accesses and SETQs are to the value cell of 
the symbol. 

2. For each optional argument, in order from left to right, the following code is generated: 
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Dest: 

If there is a FOOP. set it to T if it is local. 
bind it to T if it is special. 

Branch-If-Arg-Supplied Arg-number Dest 
If there is a FOOP, set it to NIL. 
<Code to initialize argument on stack> 
<Code to bind argument to value on stack if arg is special> 

3. Code to bind the &REST argument if it exists and is special. 

4. Code to initialize &AUX variables, and to bind those that are special. These are initialized and 
bound in left-to-right order, so that the initialization code for each variable can use the values of 
variables to its left. 

5. Code for the function itself. 

6.8. Closures 
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When a closure of a function is created, the binding environment in which the closure was created is saved; 

when the closure is called, any references to special variables from within the. closed function wi~l see the 

versions of the variables that existed at the time the closure was created, rath~r than the current execution 

environment. This is true even if the closing environment has been exited, which under normal conditions 

would have popped and destroyed this environment. 

In Spice Lisp we use a closure scheme invented by the MIT Lisp Machine group. It saves the environment 

only for a set of variables which the user specifies, and not the entire environment present at the time of the 

closure. At the time of the creation of the closure, an External Value Cell (EVC) is created in list space for 

each symbol closed over. The symbol's current value is ·placed in the EVC, and an EVC-Forward pointer is 

placed in the value slot of the symbol. Any attempt to reference or alter the value of the symbol will now be 

forwarded by this pointer and will reference or alter the value in the EVC instead. The EVC (but not the . 

forwarding pointer) survives any popping of the current binding environment. ·Whenthe closure is called, the 

EVCs for all the closed variables can be set up again by the creation of new EVC-Forwardpointers. The 

existence of closures thus costs nothing if this feature is not used, and costs relatively little even when closures 

arc used. The two key operations in dealing with closures are Close-Over and Activate-Closure. 

Close-Over is a miscellaneous operation that takes one argument, a list of symbols that arc to be closed over 

in the current environment. It returns a closure-list, which is a list with the following format: 

((value1 . symbol 1) (value2 . symbo12) ... (valueN . symbolN» 

. This list is built by performing the fonowing steps for each symbol S in the argument list: 

1. Get the contents of the value cell of S. Call this V. Do not follow EVe-Forward pointers in this· 
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fetch. 

2. If V is of type EVC-Forward, get a (non-forwarding) pointer to the list cen that this points to. 
CONS that onto the closure list to be returned. (If two different closures are created of the same 
binding of a symbol, we share the EVC rather than letting the EVC-Forward pointers chain.) 

3. Else, CONS up a new list cell in dynamic space, putting V in the CAR and S in the CDR. Cons 
this cell onto the list to be returned. Create an EVC-Forward pointer to the new cell and put this 
in the value cell of S. . 
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Once the closure list is created, it is turned into a function closure by CON Sing on the function and a 

Misc-Closure-Marker. This is done in macro-code. 

The Activate-Closure function takes a closure list as its single argument and restores the environment that 

this closure list represents. It does this by CDR-ing down the closure list, creating an EVC-Forward pointer 

to each element in the list and rebinding the symbol in this cell to "the EVC-Forward pointer. The previous 

values of these symbols a~e saved on the binding stack, as in all rebindings. Activate-Closure is called 

internally by the Push-Last operation when the function being started is a closure. 

6.9. The Escape to Macro Convention 

Spice Lisp will be implemented on a variety of machines, not all of which will have enough microstore 

space for all of our needs. Some of the macro-instructions that we have defined are relatively simple for most 

cases, but can be arbitrarily complex for some cases. For example, the arithmetic instructions can handle 

fixnums and (maybe) flonums in microcode, but (on the Perq, at least) we would like to escape to a 

macrocode routine if we discover that we have to deal in bignums. 

Such cases could be handled by a full-scale microcode-to-macrocode subroutine call, which upon a return 

comes back to the designated return address in the microcode and restores any micro-state that may have 

been clobbered. This may ultimately be needed if we ever implement a micro-compiler for lisp, but for now 

we can get by with a simpler scheme. If the microcode for any macro-instruction decides that it has a case too 

difficult to handle, it can call a macrocoded function that does whatever the original macro-instruction was 

supposed to do. It does this by opening an escape-type frame on the control stack, pushing an appropriate set 

of arguments, and then starting the call as though a push-last had been done in macrocode. When the 

macfocoded escape function returns, the returned· value goes wherever the original macro-instruction was 

supposed to place its result, and the original instruction stream continues on as if the macrocode instruction 

had exited normally without an escape. 
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Macro and misc instructions can place their return values in any of several destinations: push on the stack, 

throwaway but set the condition codes, store in the current stack frame, or set the value of a symbo1. The 

escape call must set up the frame header word to indicate which of these locations is to get the value returned 

by the macro-coded escape function. The appropriate A value is stored in bits 16-17. The offset, if any, is 

stored in bits 0-15. A long (two byte) offset is always used here, since we don't have room to alternate 

between one and three bytes. Given this infonnation in the frame header, RETURN will do the right thing to 

make it appear that the original macro":instruction had exited normally. 

Some macro-ops,notably TRUNC, may want to return multiple values from an escape function. These 

values will always be returned on the stack. In this case, the escape mechanism builds a multiple-value call 

·frame rather than·an escape call frame, then escapes in the usual way. 

The macro-coded escape functions all live in read-only function space. A table of pointers to these 

functions is stored in a fixed location in physical memory, and the address of the start of this table is known to 

the microcode. This means that microcode routines can select the desired function by means of a table index, 

and it is not necessary to assemble the addresses of all these functions into the microcode. 

The escape mechanism is implemented by a micro-subroutine named ESCAPE, which can be called (or 

rather, jumped to, since ESCAPE never returns to the caller) by any micro-routine that wants to escape to 

macrocode. ESCAPE is passed the index of the macro-function to be called and from 0 to 4 lisp objects as 

arguments. (The mechanism of this internal argument-passing is up to the microcode implementor.) 

ESCAPE then perfonns the following steps: 

1. It is detennined where the currently executing macroinstruction is going to place its result, and an 
appropriate escape-type frame header word is generated. 

2. A pointer to the desired function object is fetched from the table of escape functions, as 
determined by the index that waspassed to ESCAPE. 

3. The equivalent of a Call instruction is executed for this function object, but the header word 
determined in step 1 is used instead of the nonnal header word. 

4. The specified arguments, if any, are pushed onto' the control stack. The new function is then 
started by executing the equivalent of a PUSH-LAST instruction. 

A second entry point, ESCAPE-MULTIPLE, docs the same thing as ESCAPE but creates a multiple-value 

frame header instead of an escape frame header. 
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6.10. Multiple Value Returns 

Spice Lisp implements multiple value returns in the style of the Lisp Machine. The macro-instructions 

needed to implement this feature, and their use, arc described here. See also the description of the RETURN 

instruction in section 6.6. 

The CALL-MULTIPLE instruction is used to start a call which is expected to return multiple values. This 

is identical to the CALL instruction, except that bit 21 of the frame header word is set. 

The form (VALUES vI ... v N) compiles into code that pushes the N values on the stack, then pushes a 

Misc-Values-Marker on top. This marker has N recorded in its low 24 bits. 

When RETURN is called with a CE of type Misc-Values-Marker, it returns from the current function call 

frame as usual, but instead of pushing a single return value, it pushes the N values it found on the stack, 

followed by the Misc-Values-Marker from the original CEo See section 6.6 for details. 

The net result of performing a multiple-valued call is that N + 1 words have been pushed onto the stack: 

the returned values, in order, with Misc-Values-Marker N on top. Now let us see how this can be used to get 

the effects of vanous source constructs. 

To do (MULTIPLE-VALUE-LIST (Faa A B)): 

(CALL-MULTIPLE (CONSTANT [FOO]» 
(PUSH [A]) 
(PUSH-LAST [B]) 
(MISC %SP-VALUES-TO-N STAC~) 
(LIST STACK) ;Pop N from stack, then listify N things. 

In the MUlTIPLE-VALUE call the symbols listed in the first arg are to be set to the respective return 

values, with missing values defaulting to NIL. To do (MULTIPLE-VALUE (X Y Z) (Faa A B)): 

(CALL-MULTIPLE (CONSTANT [FOO])} 
(P'USH [A]) 
(PUSH-LAST [B]) 
(MISC %SP-VALUES-TO-N 
{- (CONSTANT [3]}) 
(NPOP STACK) 
(POP [Z]) 
(POP [V]) 
(POP [X]) 

STACK) 
;Get number offered - number wanted. 
;Flush surplus returns or push NILs. 
;Now put the three values wherever they 
; are supposed to go. 

In some tail recursive situations, such as in the last form of a PROGN, onc function (can it Faa) may want 

to cal1 another function BAR and return "whatever RAR returns". If BAR returns multiple values, and 
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FOO's caller is expecting multiple values, these values should be passed through. This is done using the 

CALL-MA YBE-MULTIPLE instruction. Suppose, for example, we are compiling the fonowing: 

(defun foo (x y) 
(bar x y» 

This compiles into the following macro-instructions: 

(call-maybe-multiple (constant bar» 
(push (arg x» 
(push-last (arg y» 
(return stack) 

If the caller of FOO expects a multiple value, the CALL-MA YBE-MULTIPLE will operate just as a 

CALL-MULTIPLE does; if the caller ofFOO expects a single value, this will operate as a regular CALL. 

6.11. Catch and Throw 

The Spice Lisp compiler translates (catch tag . expressions) into a call to %sp-catch. This call is opened on 

the stack, then the following arguments are pushed: TAG, CATCHER, THROWP, and PC. This frame is 

marked on the stack with the %sp-mark-catch-frame mise-op, so that the throw operation can find it. TAG is 

of course the catch-tag. CATCHER is NIL for normal calls to catch. THROWP is initially set to NIL, but is 

overwritten with the throw-tag if a throw to this tag occurs. The PC argument is a fixnum that indicates where 

in the calling function's code vector execution should 'resume after a THROW. 

Once these initial arguments have been pushed, the expressions in the catch-form are evaluated as in a 

progn. It is during the evaluation of these expressions that a throw to this catch may occur. If there is no 

throw, the last expression may push a value or multiple values the stack. Then the %sp-catch call is started 

with a push-last. 

%Sp-catch itsc1fis a simple macrocoded function that ignores its first four arguments and returns the rest as 

multiple values. The definition of %sp-catch (which must be compiled for·all of this to work properly) is as 

follows: 

(defun %sp-catch (ignore ignore ignore ignore &rest vlist) 
(values-list vlist» 

A call of the form (CATCH <tag><expressio~s» produces the following code: 
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(CALL-MAYBE-MULTIPLE %SP-CATCH) 
(MISC %SP-MARK-CATCH-FRAME IGNORE) 
(PUSH <tag» 

;Set up the %SP-CATCH call. 
;Mark it as a CATCH frame. 
;Push the arguments. 

(SET-NULL STACK) 
(SET-NULL STACK) 
(PUSH <fixnum return-tag» 
<code for expressions as progn> 
(MISC %SP-FLUSH-VALUES IGNORE) 
(PUSH-LAST STACK) 

RETURN-TAG 

;Catcher. 
;Throwp. 
;PC to go to after throw. 

;Throwmay occur anywhere in here. 
;Get rid of Mise-Values marker. 
;If no throw, start %SP-CATCH here. 
;Endup hereon throw or no throw. 
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The other catching functions -- catch-aU, unwind-all, and unwind-protect have their own internal functions, 

all of which take the same four initial arguments as %sp-catch. Catch-all and unwind-all always have a TAG 

of NIL, which matches any throw-tag, and use the CA TCHERargument for passing in the associated 

function. Unwind-protect is called with a TAG ofT, which catches any throw, but only if a matching tag or a 

tag of NIL appears higher up on the stack so that the subsequent throw to the same tag will succeed. 

The throw macro-op gets a throw-tag, which must be a symbol, as CE and finds a single or multiple value 

on top of the stack. The intent is that the throw will look up the stack for an open call with the catch-frame 

marker set and with either a matching tag or a tag of NIL. If no such tag is found, the THROW signals an 

error without popping anything off the stack. If a catch-frame with tag T is found, the throw treats it as a 

match, but only if it finds a truly matching tag or a tag of NIL higher on the stack; otherwise, an error is 

signalled as though the throw had found no match at all. 

Once a matching open catch-frame is found, the associated call is activated, but with· certain of its 

arguments altered. More precisely, THROW does the following: 

1. We need two temporary registers for searching up the stack. Begin with the current Open Frame 
pointer in register A. Set register B to NIL. 

2. If the header word of frame A has bit 20 set, go to step 4. Otherwise, go on.to step 3 to find a new 
A. 

3. If the Previous Open Frame slot of frame A is not NIL, pick up this value,make it the new A, and 
return to step 2. If the Previous Open Frame slot of frame A is NIL, examine the Previous Active 
Frame of A. If this is NIL, we have run out of stack and must signal an UNSEEN-THROW-TAG 
error. Ifnon-NIL, pick up this value, make it the new A. and repeat step 3 with this new A. 

4. Examine the first argument slot of frame A. If this argument is NIL or is EQ to the tag being 
thrown to, we have a match. Go on to step 5. If the argument is T and register B is still NIL, save 
the pointer to frame A in B. Then return to step 3 and continue searching up the stack. 

5. At this point, we have found a match. If register B is non-NIL, that is the frame we actually want 
to throw to. Stuff the contents of B into A. 
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6. Over-write the third argument of frame A with the throw's tag. 

7. Shuffle the value ot values that were passed to the throw into position as the fifth and subsequent 
arguments in this frame. Only the values themselves are moved, not tile Misc-Values marker. 
The control stack is then popped so that tile last of fuese values is fue top entry on tile stack. 

8. Unwind the binding stack to the value saved in frame A, restoring the saved values. 

9. Begin the call in frame A as fuough a PUSH-LAST had been done, but arrange for the the fourth 
(PC) argument of A to be saved in the "saved PC of caller" slot on the stack frame, instead of the 
PC that would normally be pushed there. This ensures that the catch-function will return to the 
right place . 

. 6.12. Error Handling 
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When an error is detected during the execution of a macro-op or misc-op, the microcode simulates a call to 

fue function stored as the definition of %SP-INTERNAV·ERROR, a static symbol whose location is known 

to the microcode (see section 2.8). This call is identical to the calls created by the escape to m~crocode . 

mechanism, in that an escape-type frame header is used, and this records w!1ere the result of the failing 

macro-instruction was supposed to end up. (See section 6.9 for details.) This means that the error-handling 

function has the· option, in some cases at-least, of returning a value for the losing instruction and continuing 

with the next sequential macro-instruction. If an errqr occurs during an operation that does not return a value 

(a branch, for example), the header word should indicate a destination of IGNORE. (Handlers for errors in 

these operations will normally not try to return a corrected value in any event; they might instead restart the 

current Lisp function at the beginning or throw to some higher level.) 

The %SP-INTERNAL-ERROR function is passed a fixnum error code as its first argument. The second 

argument is a fixnum offset into the current code vector that points to the location immediately following the 

macro-op that encountered the trouble. From this offset, the Lisp-level error handler can reconstruct the PC 

of the losing instruction,which is not readily available in the micro-machine. Following the offset, there may 

be 0 - 2 additional arguments that provide information of possible usc to the error handler. For example, an 

unbound-symbol error will pass a pointer to the symbol in question as the third argo . 

The following error codes are currently defined. Unless otherwise specified, only the error code and the 

code-vector offset arc passed as arguments. 

1 Control Stack Overflow 
The control stack has exceeded the allowable size, currently 224 words. 

2 Control Stack Underflow 
Can only result from a compiler bug or misuse 'of a sub-primitive. 
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3 Binding Stack Overflow . . 
The binding stack has exceeded the allowable size, currently 224 words. 

4 Binding Stack Underflow 
Can only result from a compiler bug or misuse of a sub-primitive. 

5 Virtual Memory Overflow 
Some data space has exceeded the maximum size of its segment in virtual memory. 

6 Unbound Symbol 
Attempted access to the special value of an unbound symbol. Passes the symbol-pointer as 
the third argument to %Sp-Internal-Error. 

7 Undefined Symbol 
Attempted access to the definition cell of an undefined symbol. Passes the symbol-pointer 
as the third argument to %Sp-Internal-Error. 

8 Illegal Effective Address 
Can only: result from a compiler bug. 

9 Altering T or NIL 
Attempt to bind or setq the special value ofT or NIL. 

10 Unused. 

11 Write Into Read-Only Space 
Self-explanatory. 

12 Object Not Character 
The object is passed as the third argument. 

13 Object Not System Area Pointer 
The object is passed as the third argument. 

14 Object Not Control Stack Pointer 
The object is passed as the third argument. 

15 Object Not Binding Stack Pointer 
The object is passed as the third argument. 

16 Object Not Values Marker 
The object is passed as the third argument. 

17 Object Not Fixnum 
The object is passed as the third argument. 

] 8 Object Not V ector-Like 
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The object is passed as the third argument. 

19 Object Not Xnum or U-Vector 
The object is passed as the third argument. 

20 Object Not Symbol 
The object is passed as the third argument. 

21 Object Not List 
. The object is passed as the third argument. 

22 Object Not List or Nil 
The object is passed as the third argument. 

23 Object Not String 
The object is passed as the third argument. 

24 Object Not Number 
The object is passed as the third argument. 

25 Object Not Misc Type 
The object is passed as the third argument. 

26 Object Not Unboxed Vector 
The object is passed as the third argument. 

27 Illegal Allocation Space Value' 
Self explanatory. 
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28 Illegal Vector Size 
Attempt to allocate.a vector with negative size or size too large for vectors of this type. 
Passes the requested size as the third argument. 

29 Illegal Immediate Type Code 
Passes the code as the third argument. 

30 Illegal Control Stack Pointer 
Passes the illegal pointer as the third argument. 

31 Illegal Binding Stack Pointer 
Passes the illegal pointer as the third argument. 

32 Illegal Macro Operation 
Must be due to a compiler error or to using obsolete code that does not match the current 
microcode. No additional args. 

33 Illegal Misc Operation 
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11 ust be due to a compiler error orlo using obsolete code that docs not match the current 
microcode. No additional args. 

34 Illegal Divisor The divisor is integer or floating O. Returns the divisor and dividend as the third and 
fourth args. 

35 Illegal Vector Access Type 
The specified access type is returned as the third argument. 

36 Illegal Vector Index 
The specified index is out of bounds for this vector. The bad index is passed as the third 
argument. 

37 Illegal Byte Pointer 
Bad S or P value to LDB or related function. Returns Sand P as the third and fourth . 
arguments. 

38 Illegal Function 
Bad object being called as a function. The object is passed as the third argument. 

39 Too Few Arguments 
Attempt to activate the call to a function with too few arguments on the stack. Returns the 
number of arguments passed as the third argument, the function being called as the fourth. 

40 Too Many Arguments 
Attempt to activate the call to a function with too few arguments on the stack. Returns the 
number of arguments passed as the third argument, the function being called as the fourth. 

41 Unseen Throw Tag 
Returns the tag as the third argument.· 

42 Null Open Frame 
Attempt to activate a function call, but no frame has been opened. No additional args. 

43 Undefined Type Code 
Can only result from a bug in the micro-machine. Returns the strange object as the third 
argument. . 

44 Return From Initial Function 
Sel f-exp lanatory. 

45 GC Forward Not To Newspace 
Can only result from internal errors in the micro-machine. No additional args. 

46 Attempt To Transport GC Forward 
Can only result from internal errors in the micro-machine. No additional args. 

47 Object Not Integer 
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The object is passed as the third argument. 

48 - 63 Unused. 

Codes above 63 are used for implementation-dependent 1/0 and system interface errors. In the Tops-20 

virtual machine, the following codes are defined: 

64 Illegal File Token 
The bad token is passed as the third argument. 

65 Illegal 1/0 Mode Specifier 
The bad mode is passed as the third argument. 

6.13. Interrupts and Breaks 

There are three kinds of interrupt in Spice Lisp: 

. Internal Interrupts 
On the Perq, and on most other machines on which Spice Lisp might be implemented, 
certain 1/0 events must be checked for periodically, and if such an event is detected, some 
low-level I/O processing must be done. The time constraints are such that we may not be 
able to wait for a convenient time to do this processing. These are called internal 
inteITlipts. The key feature of an internal interrupt is that it is handled by the 1/0 
microcode without altering the state of the Lisp process or its registers in any way. The 
internal interrupt code may access wired-down pages of main memory, but ,may not do 
anything that might cause a page fault or process swap. In some cases (for example, a clock 
tick) the internal interrupt may seta flag that tells Lisp to take a process break at the next 
convenient time. 

Process Breaks These are more serious~ At a process break, the Spice scheduler is given the opportunity to 
run another process. This may require that the entire state of the Lisp process, including 
all of its internal registers, be saved in main memory and restored later. Process breaks can 
occur at the time of any kernel call, between any two macro-instructions, and whenever a 
main memory reference is made which may result in a page fault. At each of these times, 
the Lisp process must have no state hidden in parts of the micro-machine that cannot be 
dumped and restored, and the amount of other state should be at a minimum. HQwever, 
after the break has returned, there is no change in the state· of the . Lisp process, and 
processing can go on as though nothing had happened. 

Lisp Breaks These are breaks in the flow of processing that arc handled within the Lisp process. The 
usual cause of a Lisp break is the user typing tB (or some system-dependent equivalent), 
which indicates that he wants to enter a Lisp breakpoint at the current point in the 
processing. The microcode will normally check for a pending lisp-break request (a flag bit) 
between each macro-instruction execution and, if such a request is detected, will create a 
break-type call to the %SP-INTERNAL-BREAK function (sec section 2.8, passing it a 
single argument, a' code representing the reason for the break. Currently, only code 0 is 
defined: this indicates the arrival of a til. Because this is a break~type call, if the break 
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function returns nonnally, the return value is discarded and the indicators are restored to 
the state they had prior to the break. The break function may, however, have other side 

effects within the Lisp process. 
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