
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC
Reply to, Proiect MAC

545 Technology Square
Cambridge, Mass. 02139

Telephone, 16171 864-6900 x6201

May 4, 1972

TO: DM/CG/CN Group

FROM: Greg Pfister

SUBJECT: Cover let~er for SYS.11.01

Two points:

First, the version of MUDDLE described herein
corresponds to the file TS NMUDDL on DM/CG/CN ITS. There
is also a DM/CG/CN TS MUDDLE and an AI TS MUDDLE. They
are basically the same as the MUDDLE described here, but
there are some differences.

Second, the printer for this document has a very
wide= (equal sign). Hence the symbol==? comes out
as =?.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

July 31, 1972

MEMORANDUM

TO: MUDDLE Users

FROM: Greg Pfister

Reply to, Project MAC

545 Technology Square
Cambridge, Mass. 02139

Telephone, 16171 864-6900 x6201

SUBJECT: Errata for "A MUDDLE PRIMER" (SYS.11.01)

This memo describes changes which should be made to
all copies of "A MUDDLE PRIMER" (SYS.11.01). In many cases,
these changes correct quite grievous errors, for which I
apologize.

Please note that the changes described reflect only
errors in the PRIMER; no attempt has been made to update
the PRIMER to include features added since it was published,
or even to include features which existed when it was
published but were undescribed. Such features, plus
features which are planned but not yet implemented,
include the following:

1. Bit manipulation
2. Non-garbage-collected storage
3. SEGMENTs in FORMs, and the SUBR APPLY
4. User-defined data types.
5. Use of the Evans & Sutherland display (in a state

of flux, but usable)
6. "Image mode" teletype output-implying ARDS and

IMLAC graphics (probably will change)
7. User-specified interrupt handling (in a state of

flux, but usable)
8. Multiple Processes (in a state of flux, but usable)
9. More flexible I/O -- Binary, block mode, internal

channels, etc.; a general, upward compatible,
reorganization is under way (not yet usable)

-2-

If you wish to learn about any of these, see Chris
Reeve, Bruce Daniels, Howard Brodie, or myself (or Ed Black,
in the case of the Evans & Sutherland Display). Also,
read INFO; MUDDLE RECENT for information about newly
added features.

The changes follow.

p.12, Sect. 0.1, 2nd line:

"as TS MUDDLE" should be "as SYS:TS MUDDLE"

p.38, Sect. 4.4.2, 1st line:

change to "<NTH ~s.o.> ~type FIX>>"

p. 39, 3rd line:

change "<NTH ~type FIX> ~s.o.>>" to "<NTH ~s.o.> ~type FIX>>"

p.40, Sect. 4.4.5, 2nd line:

change "<NTH ~type FIX> <s.o.>>" to "<NTH ~s.o.> ~type FIX>>"

p.46, Sect. 5.3.3, 2nd paragraph, 4th line:

change "~expresion>" to "~expression>"

p.47, Sect. 5.3.3.1, 2nd line:

"(666666)" should be "(66666)"

p.49, Sect. 5.4.2.1.1, 5th line:

"1SET S <REST 15 "Right is might.">>" should be

"<SET S <REST "Right is might." 15>>"

7th line:

change "<BACK .S 6>" to "<BACK .S 6>6"

p.52, Sect. 5.4.4.2, 3rd line:

delete "ht after !' ~a UVECTOR>"

p.53, Sect. 5.4.4.2.1, 1st line:

change "<UVECTOR 2>>6" to "<IUVECTOR 2>>6"

p.58, 4th line:

change "<PUT ARF" to "<PUT .ARF"

p.63, Sect. 6.2.9, 4th line:

change "#FALSE()" to "that FALSE"

Sect. 6.2.10, last line:

change "#FALSE()" to "the last FALSE it saw"

-2-

p.65, Sect, 6.3, 3rd paragraph, last line:

change "#FALSE()" to "the last FALSE it saw"

p.67, Sect. 7.1, 1st paragraph, last line:

Last line should read: "it to be executed interpretively

and return a value."

p.81, Sect. 77, last paragraph:

"vaild" should be "valid"

p.85, 3rd paragraph; 3rd line:

"ACTIVATIION" should be "ACTIVATION"

p.98, Sect. 9.2.5.1, 3rd line:

change "its" to "it's"

p.108, Sect. 10.3.2.1, last line:

change "(l HI 2)'?<,to "(l HI 3)"

p.109, 1st line:

change "bind ng" to "binding"

p.111, Sect. 11.1.2, 3rd line:

change "<;indicaor.i-" to "<;indicator;:."

p.112, Sect. 11.2.1, 1st line:

change "<;exp>" to "<;exp>>"

Sect. 11.2.2, 1st line:

change "<;exp;:." to "<;exp>>"

p.113, Sect. 11.3, 5th line:

change ·11 <PUT LI' to ''~PUT . L"

delete next two lines.

9th line:

change "<GET L" to "<GET .L"

-3-

12th line:

replace "![4-!]" with "(l 2 3 4-)"

p.114-, 5th line:

replace "0.300000" with 11 (3 4-)"

6th line:

change "<2.L>" to "<2 .L>"

11th line:

change "[ABC;" to "'[ABC;"

Insert new paragraph at end of page:

"The I in the <SET N ... is to keep EVAL from

generating a new VECTOR ("Direct representation"),

which would not have the comment on it."

p.115, Sect. 12.1, 2nd paragraph, 4th line:

change "PNAMEs of ATOMs to all" to "PNAMEs of all

ATOMs to"

3rd paragraph, 4th line:

change "only arise" to ''arise only"

p.122, Sect. 12.6, 5th line:

change "LVAL of OBLIST" to "LVAL of the ATOM OBLIST"

Last line should read: ""pops" the LVAL of the ATOM

OBLIST and returns the resultant LIST of OBLISTs."

p.126, 4-th line:

change "symbols" to "symbol(s)" and add the following

sentence at the end of the line:

"If you have many, just write them successively."

9th line:

change "notin" to "not in"

DYNAMIC MODELING/COMPUTER GRAPHICS SYSTEM OOCUMENT

IDEKTIFICATION

A MUDDLE PRIMEF

Greg Pfister

5 May 1972

MOTIVATION

1
DRAFT

SYS.11.01

1

The following document is intended to be a low level

introduction to MUDDLE. It is not intended to take the place of

a full reference manual, but rather to bring a naive user to the

point 'Where he can use such a manual.

RETIBENCFS

1. Daniels, Bruce, Micro Muddle Manual, SYS.11.03.

BODY

The primer proper follows.

DGSD 2 SYf.11.01

ACKNOt'lLErG EMEN~IS

I was not a member of the original eroup which labored

for two years in the design and initial implementation of MUDDLE;

that group was composed princirally of Gerald Sussrnan, Carl

Hewitt, Chris Reeve, lave Cressey, and later Bruce Daniels. I

would therefore like to take this opportunity to thank my MUDDLE

mentors, chiefly Chris Reeve and Bruce Daniels, for renaining

civil through several months of verbal b3.dgering. I believe that

I learned more than just "another programming language" in

learning MUDDLE, and I am grateful for this oprortunity to pass

on some of that knowledge. What I cannot :rass on is the

lmowledge ~ned by using MUDDLE as a system; that I can only ask

you to share.

For editine the content of this document and correcting

soEe misconceptions, I would like to th.ank Chris Reeve, Bruce

Daniels and especially Gerald Sussnan, one of whose good ideas I

did not use (Sorry, Jerry - I got tired.)

A cold star to Fran Knieht for proofreadinc,; ditto to Sue

Pitkin for typing. And a :pox on the paper-shreddine termir:1al

typing this out.

OOSD 3

CONTENTS

FOF<WARD

O. BASIC IlfTERACTION

0.1. LOADING MUDDLE

0.2. Typing

0.3. :WADING A FIIE

0.4. ERRORS - Simple Considerations

1. READ, EVAL, and PRINT

1.1. General

1.1.1. Philosophy

1.2. Example (type FIX)

1. 3. Example (type FWAT)

1.4. Example (type ATOM, PNAME)

1.5. Structured Objects

2. FUNCTIONAL APPLICATION (type FOF.M)

2.1. Representation

2.2. Evaluation

2.3. :Built-in Functions (type SUER, type FSU:ffi)

2.4. Examples

3. VALUES OF ATOMS

3.1. General

3.2. Global Values

3.2.1. SRIG

3.2.1.1. Examples

SYS.11.01

11

12

12

13

15

16

18

18

19

20

21

21

23

24

24

24

25

26

27

27

27

27

28

DGSD

3.2.2. GVAL

3.2.2.1. Examples

3.2.3. Note on SUBRs and FSUBRs

3.3. SET

3.3.1. Examples

3.4. LVAL

3.4.1. Examples

3.5. VALUE

3.5.1. Examples

3 .. 6. EVAL of' a FORM, again.

4. TYPF.S AND STRUCTURED OBJECTS

4.1. General

4.2. SUBRs related to TYPF.s

4.2.1. TYPE

4.2.2. PRIMTYPE

4.2.3. CHTYPE

4.2.4. ALLTYPES

4

4.3. General Representational ForJIE.t

4.4. Basic Functions

4.4.1. LENGTH

4.4.2. NTH

4.4.3. REST

4 .. 4.4. PUT

4.4.5. GET

5. BASIC TYPES OF STRUCTURED OEJECTS

5.1. Representations

5.1.1. LIST

SYS.11.O1

29

30

30

31

31

32

33

33

34

34

35

35

36

36

36

37

37

37

38

38

38

39

40

40

41

41

41

IGSD 5 SYS.11.01

5.1.2. VECTOR 41

5.1.3. UVECTOR 42

5.1.4. STRING 42

5.2. BASIC EVALuation of BASIC STRUCTURES 42

5.2.1. Ba.sic 42

5.2.2. Many Linked Examples 43

5.3. Generation 44

5.3.1. Direct Representation 44

5.3.2. The SUERS LIST, VECTOR, UVECTOR, aria S'IBING 45

5.3.2.1. Examples 45

5.3.3. The SUBRs ILIST, IVECTOR, IUVECTOR, and ISTRING 46

5.3.3.1. Examples 47

5.4. Unique Properties 47

5.4.1. LIST (the type) 47

5.4.1.1. PUTRFST 48

5.4.1.1.1. PUTRF.sT Example 48

5.4.2. VECTOR, UVECTOR, an{ STRING 48

5.4.2.1. BACK 4-9

5.4.2.1.1. BACK Examples 49

5.4.2.2. TOP 50

5.4.2.2.1. TOP Example 50

5.4.3. VECTOR (the type) 50

5.4.4. UVECTOR (the type) 51

5.4.4.1. UTYPE 52

5.4.4.1.1. UTYPE Example 52

5.4.4.2. CHUTYPE 52

5.4.4.2.1. CHUTYPE Example 53

DGSD

5.4-.5. STRING (the type)

5.4.5.1. ASCII

5.5. Segment Evaluation

5.5.2. Evaluation

5.5.3. SF.G.MENT Examples

5.5.4. Note on Efficiency

5.5.4.1. Examples

6. TRUTH

6.1. Truth Values

6.2. Predicates

6.2.1 .. =?

6.2.2. =?

6.2.3. O?

6.2.4. 1?

6.2.5. G?

6.2.6. L?

6.2.7. MONAD?

6.2.8. EMPI'Y?

6.2.9. AND

6.2.10. OR

6.2.11. NOT

6.2.12. MEMBER

6.2.13. MEMQ

6.3. COND

6.3.1. Examples

7. FUNCTION

7.1. General

6 SYS.11.01

53

54-

54

55

56

56

57

59

60

60

60

61

61

61

62

62

62

63

63

63

64

64

65

66

67

67

.OOSD

7.2. Simple Case

7.2.1. Example

7. 2. 2. Factorial and Comme1.ts

7.3. "0Pl'IONAL"

7.3.1. "0Pl'IONAL" Example

7.4. "TUPLE" and TYPE TUPLE

7.4.1. "TUPLE" Example

7.5. "AUX" and "EXTRA"

7.6. QUOTE

7.7. "ARGS"

7.e. "CALL"

7.9. EVAL and "BIND"

7

7.10. ACTIVATIO~, "NAME", "ACT", AGAIN, and EXIT

8. PROO and REPEAT

8.1 General

8.2. Basic PROO EVALuation

8.3. AGAIN and RETURN

8.4. Rfil>EAT EVALuation

8.5. GO and TAG
9. I/0

9.1.1.2. READCHR

9. 1. 1. 3. lIBXTCHR

9.1.2. Output

9.1.2.1. PRINT

9.1.2.2. PRIN1

9.1.2.3. PRINC

9.1.2.4. FLATSIZE

SYS.11.01

68

68

71

73

75

75

77

78

79

80

81

82

83

86

86

67

88

88

89
90

91

91

92

92

93

93

93

DGSD

9.2. CHANNfils

9.2 .. 1. OPEN

9 .. 2 .. 2. CLOSE

9.2.3. CHANLIST

9.2.4. INCHAN and OUTCHAN

S.2.5. Contents of CHANJ\:ELs

0 r, 5 1 _.,• C • • • Output CHANl'lELs

9.2.5.2. Input CHAl~NELs

9.3. Input Errors

9 .. 3.1. Example

9-4~ Other I/0 Functions

9.4.1. LOAD

9.4.2. FLOAD

9.4.3. ECHOPAIR

10. Locatives

10.1. General

10.2. Obtaining Locatives

10.2.1. LLOC

·10. 2.2. GLOC

10.2.3. AT

10.3. Using locativ~s

10.3.1. IN

10.3.1.1 .. IN Examples

·10., 3- 2. SE'l'LOC

10. 3. 2. 1 • SE"TLOC Examples

10~4. Note on locatives

11. Association

8 SYS.11.01

S4

94

96

97

98

99

99

1CO

102

102

102

103

104

104

105

105

105

106

106 .
107

107

107

10s·

108

110

:cGSD

11.1. Associative storage

11.1.1. PUTPROP

11.1.2. PUT

11.1.3. Removing Associations

11.2. Associative Retrieval

11.2.1. GE'TPROP

11.2.2. GE'T

11.3. Examples of Association

12. Lexical Blocking

12.1. Pa.sic Considerations

12.2. OBLISTs

12.2.1. OBI.J:ST Names

12.2.2. MOELIST

12.2.3. OBLIST?

12.3. READ and OBLISTs

12.3.1. Trailers

12.3.2. READ and Defaults

12.4. PRINT and OBLISTs

12.5. Initial State

12.6. BLOCK and ENDBLOCK

9

12.7. SUBRs Associated With Lexical Blocking

12.7.1. READ (again)

12.7.2. I.OOKUP

12.7.3. REMOVE

12.7.4. INTERN

12.7.5. ATON

12.7.6. PNAME

SYS.11.01

110

110

111

111

112

112

112

113

115

115

116

116

118

118

119

119

120

120

121

122

123

123

123

123

124

124

124

OOSD 10 SYS.11.01

12.8. Example of Normal Use: Death of the INC Problem 125

12.9. Extensions

12.9.1. The User Oblist Oblist (UOO)

12.9.2. Automatic OBLIST Generation

Errors, FRAMEs, etc.

13.1. LISTFlJ

<1 :3.2 .. ERROF

·1 '3 .. 3. TYPE FRAME

13 .. 3. 1. ARCS

·13. 3. 2. FUNCT

1::,. j .. 3 .. FRAME (the SUER)

1 ~;. 3.4 .. Examples

13.4. ERREI

13.4.1. Examples

13.5. Control-G (·c)

14. Other Things

14.1. STACEFffiM

14.1.1. Example

14.2. % and %%

14 .. 2.1. Example

12f]

128

129

129

129

1 ~iO

131

131

131

132

1;i2

133

134

136

138

139

IGSD 11 SYS.11.C1

FORWARD

Trying to explain MUDDLE to an uninitiate is somewl:a t

like tryiflE to ootie a Gordian knot. Whatever topic one chooses

to discuss first, full discussion of it appears to imply

discussion of everything else.

What follows is a presentation of NUDDLE in an order

app:i.rently requiring the fewest forward references. It is not

perfect in that regard; however, if the reader is patient and

willing to accept a few, stated things as "magic" until they can

be explained better, he will probably not bave too many problems

understanding what is going on.

This document is by no means meant as a substitute for a

MUDDLE reference manual. It is instead intended to provide means

for "self-teaching" to the poir:t where a (necessarily) highly

self-referential manual can be useful.

Note: all examples below are composed of P3-irs of lines.

The first line of a :p3.ir always ends in$ (ALT-MODE); this is the

input. The second line is the result of MUDDLF's t::roveling over

the first. If the user were to type all the first lines at a

MUDDLE, it would respond with the second.

DGSD 12 SYS.11.01

O. BASIC INTERACTION

The purpose of this chapter is to provide you with that

minimal amount of information needed to exreriment with t-lUIDLE

while reading this primer. It is strongly recommended that yov

do experiment, especially upon reaching Chapter 7 (FUIICTIOII).

0.1. WADING MUDDLE

First, catch your rabbit. Somehow eet the program filed

as TS MUDDLE running. In MONIT, incant MUDDLE<cr> and in DDT,

use MUDDLE"K. TS MUDDIB will first type out some news relating

to MUDDLE, then type

LISTENING-AT-LEVEL 1 PROCESS 1

and then wait for you to type something.

The program which you are now running is an interpreter

for the languB.Ee MUDDLE. All it knows how to do is interpret

MUDDLE expressions. There is no sr.ecial "command language"; you

c01nmunicate with TS MUDDLE - make it do things for you - by

actually typing lee-al MUDDLE expressions which TS MUDDLE then

interprets. Everything you can do at a console can be done in a

DGSD 13 SYS.11.01

program, and vice versa, in exactly the same way.

0.2. Typing

Typing a cr.aracter at TS MUDDLE normally just causes that

character to be echoed (printed) and rememterea in a buffer. The

only cbaracters for which this is not true act as follows:

Typing ALT MODE (or ESC) causes TS MUDDLE to echo$

(dollar sign) and causes the contents of the buffer (the

cb.ara.cters which you've typed) to be interpreted as a MUDDLE

expression. When this interpretation is done, the result will be

printed and TS MUDDLE will wait for more typing. ALT MODE will

be represented by the glyph$ in this primer.

Typing RUBOUT (or DEL) causes the last character in the

buffer - the one most recently typed - to be thrown away

(deleted). If you now immediately type another RUIDUT, once

again the last character is deleted - namely, the second most

recently typed. Etc. The character deleted is echoed, so you

can see what you're doing. If no characters are in the buffer,

RUEOUT echoes as carriage-return linefeed.

Typing A@ (control-commercial at) deletes everything you

have typed since the last$, and prints a carriage-return

linefeed.

Typing AL (control-L) causes the current input buffer to

be typed back out at you. This allows you to see what you really

:OOSD 14 SYS.11.01

have, without the confusing re-echoed characters produced by

RUBOUT. It may also, on some consoles, clear the screen.

Typing ·a (control-G) causes MUDDLE to stop whatever it

is doing and act like an error occurred. (See "simple error

discusion" below.) •a is generally most useful in aborting

infinite loops, semi-infinite typeout, and similar terrible

things.

If you end your typing with the pair of characters!$

(exclamation point ALT MODE), all currently open parentheses,

brackets, etc., will automatically be closed and interpretation

will start. Without the!, MUDDLE will just sit there waiting

for you to close them. If you have unbalanced parentheses,

brackets, etc., within the expression you typed, MUDDLE will

attempt to close them correctly and will tell you that

something's wrong.

MUDDLE accepts and distinguishes between upper and lower

case. All "built-in functions" must be referenced in upper case.

OOSD 15 SYS.11.01

O. 3. WADING A FILE

If you have a J;llJDDLE program you have \-.'Ti tten as an ASCII

file on some device, you can "load" it by typing the fol1owinp;

MUDDLE expression and then typing$:

<FI.OAD 4F1~ 4F2~ 4DEV~ 4USR~>

Each of the objects in .Q's are surrounded by" (double quotes)

and

4F1~ is file name 1 initial default: "INPUT"

4'2~ is file name 2 initial default:">"

4DEV;:. is the devic£ initial default: "DSK"

4USR;:. is the user directory initial default: your UNAME

The only default which "floo.ts" to what you used last is 4USR;:..

Once you type$, MLDDLE will process the text in tte file

exactly as if you had typed it on a console and followed it with

$. (Including F10ADs in the file.) When MUDDLE is finished

processing the file, it will print "DONE".

DGSD 16

Examples:

wadinc, the fj_le 1£K:GFP;HI UGF001 :

<FICAD "HI" "lJGP001" "DSK" "GEP">$

"DONE"

SYS.11.C1

Loadi!l€ the :file TEST> from your own disk directory uron

:first entering MUDDIE:

<TICAD "TEST'' ">">©

"DONE"

0.4. ERRORS - Simple Considerations

When MUDDLE decides for some reason that somethine is

wron£, the normal order of evaluation is interrupted and an error

function is called. This produces the following console output:

ERROR

4reason~

4:function in which error occurred~

LISTENING-AT-LEVEL ~n integer~ PnOCESS 4an integer~

OOSD 17 SYS.11.01

You may now interact with MUDDLE as usual, typinp;

expressions and having them evaluated. There exist facilities

(MUDDLE functions) allowirig you to find out what went wronr,

restart, or ki11 whatever was eoing on. In particular, yov can

recover from an error - i.e., undo everythin[but sidE effects

and return to the initial typil1£ phase - cy typinc the followinr,

first line, to which MUDDLF will respor,d with the second line:

<ERRR1'>$

LISTENING-AT-LEVEL 1 PROCESS 1

If you type the following first line whi1e still in the

error state (before <ERRE'T>), MUDDLE will print, as shown, the

arguments which gave indigestion to the unhappy function:

<ARGS<FRAME<FRAME>>>$

[~rguments to unhappy functio~ J

This will be explained by and by.

DGSD 18 SYS.11.C1

1. READ, EVAL, and PRINT

1.1. General

Once you type$, the current contents of the input buffer

go through processing by three functions successively: first

REt.D, which passes its output to EVAL, which passes its output to

PRINT, whose output is typed on the console. :Functionally,

READ: printable representations-> MUDDLE objects

EVAL: MUDDLE objects-> MUDDLE objects

PRINT: MUDDLE objects-> printable representations

I.e.: RE.AD takes ASCII text, such as is typed in at a

console, and creates the MLDDLE objects represented by that te:xt.

PRINT takes MUDDLE objects, creates ASCII text representations of

them, and types them out. EVAL, which is the really important

one, performs transfonna.tions on MUDDLE objects.

DGSD 19 SYS.11.C1

1.1.1. Philosophy

In a general sense, when you are interactinp with~

MUDDLE, you are dealing with a world inhabited only by a

particular set of objects: MULDLE objects.

MUDDLE objects are best considered as abstract entities

with abstract properties. The properties of a particular MUDDLE

object depend upon the class of MUDDLE otjects to which it

belongs. This class is the TYFE of the MU:VDLE object. Every

MUDDLE object has a TYPE, and every TYPE has its mm

peculiarities. There are many different TYPEs in MUDDLE; they

will gradually be introduced below, but in the meantime here is a

representative sample: SUER (the TYPE of READ, EVAL and. PRINT),

FSUBR, LIST, VECTOR, FORM, FUNCTION, etc.

The laws of the MUDDLE world are defined by EVAL. In a

vecy real sense, EVAL is the only MUDDLE object which "acts",

which "does something". In "acting", EVAL is always "followinE

the directions" of some MUDDLE object. Every MUDDLE object

should be looked upon as supplying a set of directions to EVAL;

what these directions are depends heavily on the TYPE of the

MUDDLE object.

Since EVAL is so ever-present, an abbreviation is in

order: "evaluates to 4something~" shall be taken as an

abbreviation for "when given tc EVAL, causes EV.AL to return

4somethine~".

As abstract entities, tUDDLE objects are, of course, not

"visible". There is, however, a standard way of representing

DGSD 20 SYS.11.C1

abstract MUDDLE objects in the real world. The standard wny of

representinE any given TYPE of 1-iUDDLE object will be ei ven below

when the TYPE is introduced. These standard repre:-::~ent2.tions arc

what RFAD understands, and what PRINT produces.

1.2. Example (type FIX)

1©
1

The following has occurred:

First, READ recognized the character 1 as the

representation for a MUDDLE object of type FIX, in

particular the one which corresponds to the integer 1.

It built the MUDDLE ob~ect corresponding to the decimal

representation typed, and returned it.

Then EVAL noted that its input was of type FIX.

An object of type FIX evaluates to itself, so EVAL

returned its input undisturbed.

Then PRINT saw that its input was of type FIX,

and printed on the console the decimal character

representation of the correspondng integer.

DGSD 21 SYS.11.01

1.3. Example (type FIDAT)

1.0$

1.00000000

What went on was entirely analogous to the precedin2:

example, except that the }RIDDLE object was of type FLOAT.

1.4. Example (type ATOM, PNAME)

GEORGE$

GEORGE

This time a lot more happened.

READ noted that what was typed had no special

meaning, ar.d therefore assumed that it was the

representation of an identifier, i.e., a MUDDLE object of

.IX}SD 22 SYS.11.C1

type ATOM. READ therefore attempted lcotil:r:: the

representation up in a table it keeps for such purrose~

(a LIST of OBLISTs, available as the local valve of the

ATOM OELIST - igr:(re the last if it is gibberish). If

READ finds an ATOM in its table corresrondine to the

representation, thFt ATOM is returned as R.EAD's value.

If READ fails in the lookup, it creates a new /.Ton, puts

it in the table with the representation read, (IIJSFRT

into <1 .OELIST> - likewise ignore) and returns tte new

ATOM. Nothing which could in any way 1::€ referenced as a

le&il "value" is attached to the new ATOM. The initially

typed representation of an ATOM becomes its PNAME,

meaning its name for PRINT.

"EVAL, given an ATOM, returned just that ATOM.

PRINT, given an ATOM, typed out its PNA11E.

Further on, the methods used to attach values to ATOMs

will be described; but first, two more things must be covered.

DGSD 23 SYS.11.01

1.5. Structured Objects

To this point, all the objects we tave been concer~ed

with :have had no interr.al structure discernibJ.e in MUDDLE. While

the characteristics of objects with internal structure differ

greatly, the way READ and PRINT h.andle them is uniform, to wit:

READ, when appliEd to the representation of a structurEd

object, builds and returns an object of the indicated type with

elements formec. by applying READ to their representations.

PRINT, when applied to a structured object, produces a

representation of the object, with its elements represented as

PRINT applied to each of them in turn.

rosn 24 SYS.11.01

2. FUNCTIONAL APPI.JCATICii (type FORM)

2.1. Representation

The MUDDLE type which is used to represent the

application of a function to its arguments is the type FORM. Its

printed representation is:

where ~fun~ is an object which designates the functior. to be

applied, and ~rg1~ through ~gn~ are the arguments. · (The

PRIMTYPE of a FORM is LIST - ignore that unti1 you read Chapter

4.)

2.2. Evaluation

EVAL applied tG a FOP~ does the following:

First, examine the first element of the FORM. If it is

an ATOM, look at its "value". If it is not an ATOM, EVAL it a.nd

look at the result of the evaluation. If what you are looking at

DGSD 25 SYS.11.O1

is not something which can be applied to arguments, generate an

error. Otherwise, follow the first element's directions in

evaluating or not evaluating the arguments, (see below) and then

"apply the function" - i.e., EVAL the body of the object gotten

from 4func~.

2.3. Built-in Functions (type SUER, type FSUBR)

The built-in functions of MUDDLE come in two varieties:

those which have all their arguments EVALd before opera.ting on

them (type SUER, for subroutine) and those which have none of

their arguments EVAid (type FSUBR, historically from LISP). See

Bruce Daniels' Micro Muddle Manual (ref 1) for a listing of all

the functions built into MLDDLE, their type, and a short

description.

Unless otherwise stated, every MUDDLE function mentioned

is of type SUER. Also, when it is stated that an argument of a

SUER must be of a p:3.rticular type, note that this means that EVAL

of what is there must be of the J:articular type.

Other convenient abbreviations which will be used are:

"the SUER ~PN~" in place of "the SUER which is the 'value' of

the ATOM of PNAME 4PN~". Similarly, "the FSUBR 4'NAM~". In

cases where the type of the applicable object either does not

matter or is assumed known, "the function 4'NM'.iF.d" will be used.

Yet another: "name of the functi_on 4something~" for "PNAME of the

DGSD 26

ATOM whose 'value' is the ~UBR or FSUER~ ~omethirig~".

2.4. Examples

<+ 2 4 6)$

12

SYS.11.01

The PNAME of the SUBR which adds numbers is+. All of

the usual arithmetic functions are MUDDLE SUBRs: +, -, /,*,NIN,

MAX, SIN, COS, SQRT, U)G, EXP. They are all indifferent as to

whether their arguments are FLOAT or FIX or a mixture. In the

latter case, they exhibit "contagious FLOATing"; one argument of'

TYPE FLOAT forces the result to TYPE FLOAT.

<FIX 1.0>$

1

FIX is the PNAME of the SUER which explicitly returns a

FIXed point number corresponding to a FLOATing point number.

FI.DAT does the opposite.

DGSD 27 SYS.11.O1

3. VALUES OF ATOMS

3.1. General

There are two kinds of "value" which may be attached to

an ATOM. An ATOM may have either, botc, or neither. They

interact in no way. These two values are referred to as the

local value and the glo'bal value of an ATOM. The terms "local"

and "global" are relative to processes, not functions or

programs. The functions which reference the local and global

values of an ATOM, and some of the characteristics of local vs.

glob3.l values, follow.

3.2. Glob3.l Values

3.2.1. SE'TG

The global value of an atom may be changed by the SUER

SETG , as in

OOSD 28 SYS.11.C1

<SEl'G 4an ATOM~ 4almost anythir,£~>

where 4an ATO~ must EVAL to an ATOM, and ~alnc•st 2.nyttinrr.;:. can

be anythirl€ but a segment call (see below - icnore it for now.).

The EVAL of the second argument becomes the clobal value oi th€

EVAL of the first argument. The value returned by the SETC is

the new global value 0£ the atom.

3.2.1.1. Examples

<SETG FOO <SEIG BPB 500>>$

500

The above made the clobal values of both the ATOM roo a.nd

the ATOM BAR equal to the FIXed point number 5CO.

<SEID BAR FOO>$

FOO

That made the r:lobal value of the ATOM BAR equal to the

ATOM FOO.

--------------~--------~-- --- ----

OOSD 29 SYS.11.01

3.2.2. GVAL

The SUER with Pl!AME GVAL is used to reference the r:lobcl.

value of an ATOM.

<GVAL 4an ATOM~>

returns as a value the glooo.l value of ~n A~I.'OM~. If ~an ATO~

does not evaluate to an ATOM, or if the ATON it evaluates to has

no glolal value, an error is generated.

GVAL applied to an ATOM anywhere, in any process, in any

function, will alv.iays return the same value. Any SEID anywhere

changes the global value for everybody. Global values are

context-independent.

READ understands the character, (comma) as an

abbreviation for an application of GVAL to whatever follows it.

PRINT always translates an application of GVAL into the comma

format. The following are absolutely equivalent:

,<anythi~ <GVAL <anything~>

:OOSD 30 SYS.11.01

3.2.2.1. Examples

Assuming the examples in 3.2.1.1 were carried out in the

order given, the following will evaluate as indicated:

,FOO$

500

,EAR$

FOO

,,BAR$

500

3.2.3. Note on SUBRs and FSUBRs

The GVALs of the ATOMs used to reference MUDDLE

"built-in'' functions are the SUBRs and FSUERs which actually get

applied when those ATOMs are referenced. If you don't like the

way those supplied routines work, you are i:erfectly free to SErG

the AT01s to your own versions.

DGSD 31 SYS.11.01

3.3. SE'T

The SUER with PNAME SET is used to put a local value on

an ATOM. Applications of SET are of the form

<SEI' ~ atom~ ~almost anything~>

SET returns EVAL of ~most anything~ just like SEI'G.

3.3.1. Examples

<SFI' EAR <SET FOO 100>>tl>
100

Both BAR and FOO have been given local values equal to

the FIXed point number 100.

<SET FOO BAR>$

BAR

FOO has been given the local value BAR.

Note that neither of the above did anything to any glotal

values FOO and EAR might have had.

DGSD 32 SYS.11.01

3.4. LVAL

The SUER used to extract the local value of an ATOJ.: is

named LVAL. As with GVAL, there is an abbreviation for an

application of LVAL: the character. (period). The following

two representations are equivalent, and when EVAL operates on

their corresponding MUDDLE objects, they return the current local

value of 4an ATO~:

<LVAL 4a.n ATOM~> .4an ATO~

The local value of an ATOM is unique within a process.

SETting an ATOM in one process has no effect on its LVAL in

another process.

DGSD 33 SYS.11.01

3.4.1. :Examples

Assume all of the previous eY..a.mples have been done. Then

the following evaluate as indicated:

.EAR$

1CO

.FCO$

BAR

, .F<:XXD

FOO

3.5. VAWE

then:

VALUE is a SUBR which takes an ATOM as an argmnent, and

1) if the ATOM has a GVAL, returns the GVAL

2) if the ATOM has no GVAL, but has an LVAL, returns· tbe

LVAL

3) if the ATOM has neither a GVAL nor an LVAL, error.

WSD

3.5.1. Examples

<SEI' A 1>$

1

<VALUE A>$

1

<SEI'G A 2>$

2

<VAllJE A>$

2

3.6. EVAL of a FORM, 8€8,in.

34 SYS.11.01

What really happens when EVAL meets a FORM with an ATOM

as its first element is that VALUE of the ATOM is used. If the

ATOM does not have any values at all, the VALUE fails and

produces an error.

DGSD 35 SYS.11.01

4. TYPES AND STRUCTURED OBJECTS

4.1. General

With one exception which has not yet been implemented,

a.11 structured objects in MUDDLE are ordered sets. As such,

there is a class of functions which operate on all of them

uniformly, as ordered sets. These are erouped together

iwnediately below. On the other hand, the reason for there being

different types of structured objects is that there are useful

qualities of structured objects which are mutually incompatible.

There are, therefore, functions which exist to take full

advantage of these mutually incom:µ3.tible qualities which do not

work on all structured objects.

The structural organization of an object, i.e., the way

it is stored in memory, is referred to as its "primitive type".

While there are many different types of structured objects in

MUDDLE, there are vecy few (for all practical purposes four)

primitive types. Each of the four most consciously used

primitive types is discussed in Chapter 5, along with those

special functions opera.ting on each primitive type. For each of

the types discussed in Chapter· 5, its primitive type is the same

as its type.

In all the following, 4s.o.~ will be used as a symbol for

OOSD 36 SYS.11.01

any structured object.

Before talking any more about structured objects, some

information needs to be given about types in general.

4.2. SUBRs related to TYPF.s

4.2.1. TYPE

<TYPE ~thing~>

returns an ATOM whose PNAME corresponds to the TYPE of

"'8.nything~. There is no TYPE TYPE. To type a TYPE, just type

the appropriate ATOM. Like FIX or FLOAT or ATOM etc.

4.2.2. PRIMI'YPE

<PRIMTYPE 4'8.nything~>

evaluates to the primitive type of ~anything~ - not just

structured objects. The PRIMTYPE of ~ything~ is an ATOM which

usually also represents a TYPE. The way an object can be

manipulated depends solely upon its PRIMTYPE (the way it is

evaluated depends upon its TYPE).

OOSD 37 SYS.11.01

4.2.3. CHTYPE

<CHTYPE ~something~ -4a. TYPE;:.>

returns ~something~ changed to TYPE ~ TYPE~. However: an

error is generated if the PPIMTYI'E of ~something~ would have to

change to accomodate the TYPE change.

4.2.4. AILTYPES

<ALLTYPES>

returns a VECTOR (see Chapter 5) containing just those ATOMs

which can ever be returned by TYPE or PRIMTYPE.

4.3. General Representational ForI!IP.t

There are many TYPEs for which MUDDLE has no specific

representation. There aren 1 t enough different kinds of

brackets. The representation used for TYPEs without any special

representation is:

DGSD 38 SYS.11.01

4its TYP~ 4representation as if it were its PRII<TYPE~

READ will understand that format for any structured TYPE.

4.4. Basic Functions

The following functions operate uniforrrly on all

structured objects, and generate an error if not ar,plied to a

structured object.

4.4.1. LENGTH

Evaluates to the number of memrers of 4s.o.~.

4.4.2. NTH

<NTH 4type FIX~ 4s.o.~>

Evaluates to the 4type FIX~ 1 th element of 4s.o.~. Error

if 4type FIX~ is O or less, or greater than <LENGTll 4s.o.~>.

EVAL understands the application of an object of type FIX as a

IGSD 39 SYS.11.01

"shorthand" call to NTH. I.e., EVAL considers the following two

to be identical:

<NTH 4type FIX~ 4s.o.~>

4.4.3. REST

<REST 4s.o.~ 4type FIX~>

Evaluates to 4s.o.~ without its first -4type FIX~

elements. The second argument is optional, with 1 assumed.

Obscure side effect: REST actually returns -4s.o.~

"CHTYPF.d" (but not through application of CHTYPE) to its

PRIMTYPE. E.g., REST of a FORM is a LIST. REST with an

explicit second argument of Obas no effect except for this TYPE

change.

DGSD 40 SYS.11.01

4.4.4. PUT

<PUT 4s.o.~ 4type FIX~ 48.nything legal~>

First makes 4a.nything legal~ the 4type FIX~'th element of

4s.o.~, then evaluates to 45.o.~. 48.nything legal~ is anythillf."

which can legally be a member of 4s.o.~; often, this is

synonymous with "any MUDDLE object", but see Chapter 5. Error if

4type FIX~ is O or less, or greater than <LENGTH 4s.o.~>.

PUT is actually more general than this. See Chapter 11.

4.4.5. GEI'

<GET 4s.o.~ 4type TIX~>

Evaluates the same as <NTH 4type FIX~ 4s.o.~>. It is

more general than NTH, however, and is included here only for

symmetry with PUT. See Chapter 11.

OOSD 41 SYS.11.01

5. BASIC TYPES OF STRUCTURED OEJECTS

5.1. Representations

5.1.1. LIST

(4element 1~ 4element 2~ ••• ~lement ~)

represents a LIST of N elements.

5.1.2. VECTOR

[4element 1~ ~element 2~ •• • 4element ~ J

represents a VECTOR of N elements.

OOSD 42 SYS.11.01

5.1.3. UVECTOR

![4element 1~ 4element 2~ ••• 4element N~ !]

represents a UVECTOR (uniform vector) of N elements. The second

! (exclamation point) is optional.

5.1.4. STRING

"~haracters~"

represents a STRING of ASCII text.

5.2. BASIC EVALuation of BASIC STRUCTURES

5.2.1. Ea.sic

EVAL of a STRING is just the original STRING.

EVAL acts exactly the same with LISTs, VECTORs, and

UVECTORs. Basically, it generates a new object with elements

equal to EVAL of the elements it is given. This is the basic

DGSD 43 SYS.11.C1

means of constructing a given structure. Eowever, see "secment

evaluation" below.

5.2.2. Many Linked Examples

(1 2 <+ 3 4>)$

(1 2 7)

<SRI' FOO (5 <- 3> <TYPE "ABC">]>$

[5 -3 STRING]

<2 .FOO>$

-3

<TYPE <3 .FOO>>$

ATOM

<SEI' BAR ! (("meow") (.FOO) J >$

!(("meow") ([5 -3 STRING])!]

<IENGTH .BAR>$

2

<REST <1 <2 .BAR>>>$

(-3 STRING]

<PUT .FOO 1 SNEAKY>$

[SNEAKY -3 STRING]

.BAR$

![("meow") ([SNEAKY -3 STRING])!]

<SET FOO <REST <1 <1 .BAR>> 2>>$

"ow"

DGSD - 44 SYS.11.01

.BAR$

![("meow") ([SNEAKY -3 STRING])!]

5.3. Generation

Since LISTs, VECTORs, UVECTORs, and STf.INGs are alJ.

generated in a fairly uniform manner, rnethods of generatinc them

will 1Je covered together here.

5.3.1. Direct Representation

Since EVAL of a LIST, VECTOR, or UVECTOR is a new LIST,

VECTOR, or UVECTOR with elements which are EVAL of the original,

simply writing down the representation of the object you want

will generate it. This method of generation was exclusively used

in the examples of 5.2.2.

Note that new STPINGs cannot be eenerated in this manner,

since the contents of a literal STRING are not interpreted.

rosn 45 SYS.11.01

5.3.2. The SUBRs IJST, VECTOR, UVECTOR, and STPING

Each of the SUERs IJST, VECTOR, UVECTOR, and STRINC takes

any number of arguments anC: returns an object of the appropriate

TYPE whose elements are EVAL of its arguments. There are

limitations on what the arguments to UVEC'IOR and STRING may EVPL

to, due to the nature of the objects generated. See below.

LIST, VECTOR, and UVEC1'0R are generally used only in

special cases, since Direct Representation produces exactly the

same effect and is more transparent. STRING, on the other hand,

produces effects very different from literal STRINGs. See the

examples.

5.3.2.1. Examples

<LIST 1 <+ 2 3> AEC>$

(1 5 ABC)

(1 <+ 2 3> ABC)$

(1 5 ABC)

<STRING "A" <2 "QWERT"> <REST "ABC"> "hello">©

"AWBChello"

"A<+ 2 3> (5)"$

"A<+ 2 3> (5)"

DGSD 46 SYS.11.01

5.3.3. The SUBRs ILIST, !VECTOR, IUVECTOR, and ISTRING

Each of the SU.ERs ILIST, IVECTOR, IUVECTOR, and ISTRINC

creates and returns an object of the obvious TYPE. The format of

an application of any of them is:

< 41~ 4TYPE FIX~ ~expression~>

where ~I~ is one of ILIST, IVEC'l'OR, IUVECTOR, or ISTRilJG. An

object of LENGTH ~TYPE FIX~ is generated, and its elements are

set to EVAL of 4expressio~.

~expression~ is optional. When it is not specified,

ILIST, IVECTOR, and IUVECTOR return objects filled with objects

of TYPE WSE, which can be passed around and have its TYPE

checked, but otherwise is an illegal argument. If 4expresio~ is

not specified in ISTRING, you get a STRING made up of DEL (or

RUBOUT) characters, which do not print.

When 4expressio~ is supplied as an agrument, it is

re-EVAinated each time a new element is generated. (Actually,

EVAL of 4expression~ is re-EVALuated, since all of these are

sums.) See the last example for how this mey be used, and don't

worry about the' (single quote); it effectively supresses the

initial SUER EVALuation, and is fully explained in chapter 7.

IUVECTOR and ISTRING again have limitations on what

4expressio~ may EVAL to; again, see below.

DGSD 47

5.3.3.1. Examples

<ILIST 5 6)$

(6 6 6 6 6 6)

<IVECTOR 2>$

[//LOSE *OCOOOOOOOC~ #LOSE *OOOOCOOCOO~ J

<SET A 0)$

0

<IUVECTOR 9 '<SET A<+ .A 1>>>$

![1 2 3 4 5 6 7 8 9!]

5.4. Unique Properties

5.4.1. LIST (the type)

SYS.11.01

A LIST may be considered as a "pointer chain". Any

MUDDLE object may be a member of' a LIST. It is easy to add and

remove elements on a LIST, but the higher N is, the harder it is

to access the Nth element. The only function which works only on

objects of' PRIMTYPE LIST is:

OOSD 48 SYS.11.O1

5.4.1.1. PUTREST

<PUTREST ~ LIST 1~ ~a LIST 2~>

changes ~a LIST 1~ so that <REST 48. LIST 1~> is ~a LIST 2~, then

evaluates to ~a LIST 1~. Note that this actually chanees

~ LIST 1~; usinE it will also change anything havirl€

~ LIST 1~ as an element or a value. See example below.

5.4.1.1.1. PUTREST Example

<SET row [<SE'T ARF (B W)>J>$

[(B W) J

<PUTRF.ST .ARF (3_4)>$

(B 3 4)

.BOW$

[(B 3 4)]

5.4.2. VECTOR, UVECTOR, an(STRING

VECTORs, UVECTORs, and STRINGs may be considered as

"arrays". It is easy to access the Nth element irrespective of

how large N is, and it is relatively difficult to add and delete

elements. The following functions may be used only with an

DGSD 49 SYS.11.01

object o:f PRIMTYPE VECTOR, UVECTOR, or STRING (note - 4VU~ is

an object whose PRIMTYPE is VECTOR, UVECTOR, or STRING.).

5.4.2.1. BACK

<BACK 4VU~ 4type FIX➔> ·

This is the opposite o:f REST. It evaluates to 4VU~ with

4type FIX➔ elements mck on its :front end. I:f 4type FJX~ is

greate~ than the number o:f elements which have been RESTed o:f:f,

error.

5.4.2.1.1. BACK Examples

<SET ZOP <REST [1 2 3 4] 3>>$

[4]

<BACK .ZOP 2>$

[2 3 4]

<SET S <REST 15 "Right is might.">>

""
<BACK .S 6>

"might."

IGSD 50 SYS.11.01

5.4.2.2. TOP

<TOP 4'VU~>

"BACKs up all the way" - i.e., evaluates to ~VU~ witl7 all the

elements which have been RESTed off back on it.

5.4.2.2.1. TOP Example

<TOP .ZOP>$

[1 2 3 4]

5.4.3. VECTOR (the type)

Any MUDDLE object DBY oo an element of a VECTOR. A

VECTOR takes two words of storage more than an equivalent LIST,

but takes it in a contiguous chunk whereas a LIST may be

physically spread out. There are no SUBRs or FSUBRs which

operate only on VECTORs without also being applicable to UVECTORs

and STRINGs.

DGSD 51 SYS.11.01

5.4.4. UVECTOR (the type)

The difference between a UVECTOR and a VECTOR is that

every element of a UVEC'IOR must be of the same type. UVECTORs

take half the storage of' either VECTORs or LISTs, and like

VECTORs, take it in a contiguous chunk.

The "same type" restriction causes an equivalent

restriction to apply to EVAL of the arguments to either of the

SUBRs UVECTOR or IUVECTOR. Note that attempti11g to say

![1 .A!]

will produce an error, since you're attempting to put a FORM and

a FIX into the same UVECTOO. On the other hand,

<UVECTOR 1 .A>

is legal, and will EVAL to the appropriate UVECTOR if .A EVALs to

a type FIX.

The following SUERs work on UVECTORs alone.

00-SD 52

<UTYPE 4a UVECTOR~>

evaluates to the type of every element in 4a UVECTOR~.

5.4.4.1.1. UTYPE Example

<UTYPE !(AB CJ>$

ATOM

5.4.4.2. CHUTYPE

<CHUTYPE 4's. UVECTOR~ 4a TYP~>

SYS.11.01

changes the UTl'PE of 4a UVECTOR~ to 4a TYPE~, simultaneously

changing the type of all elements of 4a UVECTOR.;.ht, and returns

the new, changed, UVECTOR. This works only when the PRIMTYPE of

the elements of 4a UVEC10R~ can rer1ain the same through the whole

process- The PRI.MTYPE of I.OSE is indeterminate; a UVECTOR of

UTYPE IOSE can be CHUTYPEd to anything. (If the anything is

structured, elements of the UVECTOR are empty.)

DGSD 53

5.4.4.2.1. CHUTYPE Example

<SET WST <UVEC10R 2>>©

! [#LOSE *OOOOOOOOOO{)()iE- #LOSE *0000000000~ ! J
<UTYPE .LOST>$

LOSE

<CHUTYPE .LOST FORM>$

!(<> <>!]

.LOST

![<> <>!]

<CHUTYPE .LOST LIST>$

![() ()!J

5.4.5. STRING (the type)

SYS.11.01

The best mental image of a STRING is a UVECTOR of

CHARAClERs - where CHARACTER is the MUDDLE type for a single

character. The representation of a CHARACTER, by the way, is

!"~ny ASCII character~

That is, the characters!" (exclamation point double quote)

preceding a single ASCII character represent the corresponding

object of TYPE CHARACTER.

The SUERs STRING and ISTRING will produce an error if you

IDSD 54 SYS.11.01

attempt to cause them to put other than a CHARACTER or a STRING

into a STRING.

There are no functions which uniquely 11snipulate STRINCs,

but one is µi.rticularly useful in connection with them:

5.4.5.1. ASCII

<ASCII 4'IX or CEARACTER~>

If its argument is of type FIX, ASCII evaluates to the

CHARACTER with the 7-bit ASCII code of its argument.

If its argument is of type CHARACTER, ASCII evaluates to

the FIXed point number which is its argument 1 s 7-bit ASCII code.

5.5. Segment Evaluation

Segment evaluation is a method of evaluating structured

objects which is designed to be a very convenient method for

constructing structures from other structures. The only place

segment evaluation is lel?P,l is within the EVAL of a structured

object, and it can only be applied to another structured object.

All it consists of is taking the members of the structure segment

evaluated and placing them into the structure being constructed.

OOSD 55 SYS.11.01

5.5.1. Type and Representation

Segment evaluation is done only on an object of a

pirticular type, namely type SEGMENT. The representation of an

object of type SIDMENT is the following:

where the second! (exclamation point) is optional, and 4el1~

through 4elN~ are any legal consituents of a FORM (i.e., just

about anything). The pointed brackets can be implicit, as in the

period and comma notation for LVAL and OVAL.

All of the following are SIDMENTs:

!<3 .FOO> !.FOO ! ,FOO

5.5.2. Evaluation

A SEGMENT is evaluated in exactly the same manner as a

FORM, with the following exceptions:

1) It had better be done inside an EVAL of a

structure, else error.

2) It had better EVAL to a structured object,

else error.

3) What actually gets inserted into the structure

DGSD 56 SYS.11.01

being built is the elements of the structure returned by

the FORM-like evaluation.

5.5.3. SEGMENT Examples

<SE'T ZOP [2 3 4]>$

[2 3 4]

<SEI' ARF (B 3 4)>$

(B 3 4)

(.ARF ! .ZOP)$

((B 3 4) 2 3 4)

![!.ZOP !<RF.ST .ARF>!J$

![2 3 4 3 4!]

5.5.4. Note on Efficiency

Most of the cases in which it is possible to use SEGMENTs

require EVAL to generate an entire new object. Naturally, this

uses up both storage and time. However, there is one case which

it is possible to handle without copying, and EVAL uses it. When

the structure being built is a LIST, and the segment value of a

LIST is the last (rightmost) element beine concatenated, that

last LIST is not copied. This case is equivalent to the LISP

rosn 57 SYS.11.01

CONS, and is the reason why LISTs have their structure more

easily varied than VEC'IORs or UVECTORs.

5.5.4.1. Examples

.ARF$

(B 3 4)

This does not copy ARF:

(1 2 !.ARF)$

(1 2 B 3 4)

These do:

(1 !.ARF 2)$

(1 B 3 4 2)

[1 2 !.ARFJ$

[1 2 B 3 4]

(1 2 !.ARF !<REST (1)>)$

(1 2 B 3 4)

Note the following, which occurs because copying does not take

place:

00-SD

<SEI' DOO (A !.ARF)>$

(AB 3 4)

<PUT ARF 1 "IDW0W")$

("l?OWOW11 3 4)

.DOO$

(A 11BOWOW11 3 4)

58 SYS.11.01

Since ARF was not copied, it was literally pa.rt of DOG. Hence,

when an element of ARF was changed, DOG was changed. If an

element of DOO- which ARF shared were changed, ARF would be

changed too.

OOSD 59 SYS.11.01

6. 'IRUTH

6.1. Truth Values

MUDDLE represents "f'alse" with an object of' a particular

type: type FALSE (unsurprisingly). Type FALSE is structured; its

PRIMTYPE is LIST. Thus, you can give excuses by making them

elements of' the FALSE. Objects of' type FALSE are represented by

#FALSE 4.JST of' its element~

The empty FORM evaluates to an empty FALSE:

<>$

#FAIBE ()

In addition, there is a SUER of' PNAME FALSE which takes one

argument - a LIST - and CHTYPEs it to FALSE.

Anything which is not FALSE, is, of course, true.

DGSD 60 SYS.11.01

6.2. Predicates

There are numerous MUDDLE functions which can return

FAISE or true. See Micro-Muddle Manual (ref' 1) to f'ind them all.

Most return either #FAISE () or the A'IDM with PNAME T. (The

latter is for historical reasons, namely LISP.) Some predicates

which are meaningful now are:

6.2.1. -?

evaluates to T only if~ 1~ is the~ object as 4'e 2~.

6.2.2. -?

evaluates to T if~ 1➔ and~ 2~ are structurally equal - i.e.,

they "look the same", their printed representations are the same.

=? is much slower than-?. =? should only be used when its

characteristics are necessary; they usually are not in any

comparisons of unstructured objects.

WSD 61 SYS.11.01

6.2.3. O?

<O? 4type FIX or FI.OAT~>

evaluates to T only if its argument is identically equal to O.

6.2.4. 1?

<1? 4type FIX or FLOAT~>

evaluates to T only if its argument is identically equal to 1.

6.2.5. G?

evaluates to T only if ~N~ is algebraically greater than~~.

~N~ and~~ may indiscriminately be either FIX or FI.DAT.

OOSD 62 SYS.11.01

6.2.6. L?

evaluates to T only if ~N~ is algebraically less than -4~. ~~

and~~ may indiscriminately be either FIX or FLOAT.

6.2.7. MONAD?

<MONAD?~~>

evaluates to #FALSE() only if NTH and REST can be performed on

its argument without error.

6.2.8. EMPTY?

evaluates to T only if its argument, which must be a structured

object, has no members.

WSD 63 SYS.11.01

6.2.9. AND

AND is an FSUBR. It evaluates its arguments from left to rieht

as they apJ:€ar in the FCFM. As soon as one of them evaluates to

FALSE, it returns #FALSE(). If none of them evaluate to FAISE,

it returns EVAL of its last areument.

6.2.10. OR

OR is an FSUBR. It evaluates its arguments from left to right as

they appear in the FORM. As soon as one of them evaluates to

non-FALSE, OR returns that non-FALSE value. If this never

occurs, it returns #FALSE().

6.2.11. NOT

<NOT 4&.>>

evaluates to T only if 4~ evaluates to FAISE.

OOSD 64 SYS.11.01

6.2.12. MEMBER

<MEMBER 4object~ 4structured object~>

This SUER runs down 4structured object~ from first to last

element, comp:1.ring each element of 4structured object~ with

4object~. If it finds an element of 4structured object~ which is

=? to 4object~, it returns <REST~ - 1~ 4structured object~>,

where the nth element of ~structured object~ is=? to ~object~.

I.e., the first element of what it returns is the first element

of 4structured object~=? to ~object~. If no element of

~structured object~ is=? to ~bject~, MEMBER returns #FAIBE ().

6.2.13. MEMQ

<MEMQ 4object ~ ~structured object~>

This SUBR is exactly the same as MEMBER, except that the

comparison test is=?.

DGSD 65 SYS.11.01

6.3. COND

The MUDDLE function which is most used for varying

evaluation depending on a truth value is the FSUBR COND. A call

to COND has this format:

<COND 4L1~ 412~ ••• 4LN~>

where 4L1~ through 4LN~ are LISTs.

COND evaluates as follows, examining its input lists from

left to right as they appear in the FORM:

1) If there are no lists left unexamined, return

#FAIBE ().

2) Evaluate the first element of the first list

still unexamined. If it evaluates to FALSE, go back to

(1).

3) Evaluate in order the rest of the elements of

the current list and return the last thing evaluated.

I.e., COND goes walking down its lists, EVALing the first

member of each list looking for a non-FALSE. As soon as it finds

a non-FALSE, it forgets about all the other lists and evaluates,

in order, the other elements of the current list and returns the

last thing it evaluates. If it can~t find a ncn-FALSE, it

returns #FALSE().

OOSD 66 SYS.11.01

6.3.1. Examples

. <SE'T F (1)>$
(1)

<COND (<EMPTY? .F> EMP) (<1? <LENGTH .F>> ONE)>$

ONE

<SET F ()>$

()

<COND (<EMPrY'? .F> EMF) (<1? <LENGTH .F>> ONE)>$

EMF

<SET F (1 2 3)>$

(1 2 3)

<COND (<EMPrY'? .F> EMF) (<1? <LENGTH .F>> ONE)>$

#FAIBE ()

<COND (<L? <LENGTH .F> 3> SMALL)(BIG)>$

BIG

OOSD 67 SYS.11.01

7. FUNCTION

7.1. General

An object which is of TYPE FUNCTIOll is of PRIMTYPE LIST.

It is what its name implies, i.e., a function. You write it,

apply it in a FORM with (or without) arguments, and EVAL causes

it to be executed interpretively.

The FSUBR JUNCTION can be used to create objects of type

FUNCTION. It is really a very simple routine; it just takes its

arguments in a LIST, and CHTYPF.s the LIST to type FUNCTION.

In many of the examples below, that which MUDDLE would

print in response to the typing of the FUNCTION "definitions"

would be both tedious and singularly unenlightening. So, instead

of reproducing that output, a line like this:

will be used instead.

OOSD 68 SYS.11.O1

7.2. Simple Case

In its simplest form, a function has two parts: a LIST

of dummy variables, as its first element; and a body - all its

other elements. When an application of a FUNCTION in a FOPM is

evaluated, the dummy variables are bound to the actual arguments,

and each MUDDLE object in the body is evaluated in order. The

result of the last evaluation is returned as the value of the

FUNCTION. Exactly what goes on will be described through the

following simple example.

7.2.1. Example

<SEIU F <FUNCTION (AB)<+ .A .B>>>$

#FUNCTION ((AB)<+ .A .B>)

The above set the g].ol:Bl value of the ATOM of PNAME F to

the object of type FUNCTION indicated - a FUNCTION of 2

arguments which just adds them and returns the result. Its

argument declaraction is the LIST (AB), and its body consists of

the single FORM<+ .A .B>. Note that there is no special

representation for type FUNCTION; the default representation is

used. Since the latter is a perfectly good way to describe a

FUNCTION on input, we could have avoided calling the FSUBR

:FUNCTION by typing the following, which has exactly the same

effect as the above:

OOSD 69

<SE'TG F #FUNCTION ((A B) <+ .A .E>)>$

#FUNCTION ((AB)<+ .A .E>)

Now, suppose we apply F to something:

<F 1 2>$

3

What happened was this:

SYS.11.01

EVAL saw the ATOM Fas the first element of a

FORM, and found its GVAL to be our FUNCTION. It then

examined F's argument declaration, and bound the two

ATOMs there - A and B - to the EVAL of the arguments -

1 and 2 respectively; i.e., it made A and B's local

values 1 and 2. ffi:tving done that, it then executed the

body - EVAUi the FORM<+ .A .E> - saw that there was

nothing more to do, and returned the result of that EVJ.L

after unbinding A and B.

The relationship of "binding" and LVAI.J3 is this:

binding a "dummy variable" consists of pushing its

current LVAL onto a stack and then giving it a new LVAL.

"Unbinding" consists of popping that stack. This comes

under the heading of "dynamic blocking"; its application

to recursion is clear.

OOSD 70 SYS.11.01

The fact that the EVAL is done befcre the binding means

that this works:

<SET A 1>$

1

<F 1 <+ .A 1>>$

Note that if we were to SET A to something within F, it

would have no effect on the LVAL of A after returning from F,

since the value we SE"I' it to would be "popJed". That produces,

in some cases, a problem. Suppose we wish to "Write a FUNCTION

which takes an ATOM as an argument, and increments the LVAL of

that ATOM. We could write it like this:

<SE'IG INC <:FUNCTION (A) <SET .A<+ 1 •• A>>>>$

#FUNCTION ((A) <SRI' .A<+ 1 •• A>>)

We give this FUNCTION an ATOM, which becomes the LVAL of A. So

we SET that ATOM - i.e., .A - to 1 plus the LVAL of the ATOM -

i.e., 1 plus •• A. In many cases 1 this works fine:

00-SD

<SEI' ATM 0)$

0

<INC ATM>$

1

.ATM

1

71 SYS.11.01

However, if we happen to call it with the ATOM of PNAME A, we

lose. Try it. (Exercise for the reader.) There are two ways of

getting around this last problem, both of which will eventually

be mentioned. A third, inelegant, and imperfect method is to

note that since MUDDLE sets no limit on the length of

identifiers, we could use an intentionally long and stupid

identifier in place of A, thus lessening the c~.ances of conflict.

Of course, somebody else, trying to do the same thing, is bound

to use just that identifier.

7.2.2. Factorial and Comments

I clearly can't not use factorial as an example - so,

the basic recursive factorial FUNCTION follows. I might as well

introduce comments at the same time.

----- ---------

DGSD 72 SYS.11.01

<SETG FACT <FUNCTION (A) ;"Easic factorial function."

<COND (<L? .A 2> 1) ;"If arg is less than 2, return 1."

(<* .A <FACT<- .A 1>>>) ;"TI.se recurse." >>>G

#FUNCTION ((A) <COND (<L? .A 2> 1) (<* .A <FACT<- .A 1>>>)>)

Note that carriage-returns, line-feeds, tabs, spaces,

etc. just mean "sep:3.rator". In particular, they have nothing to

do with delineating co1DD1ents.

Also note that in the second clause of the COND, its

first element is non-FALSE; it's either FIX or FLOAT.

Alternatively, you could stuff an ATOM in there - like Tor EI.SE

for mnemonic reasons - or anything but a FALSE.

Finally note that the indicator for a comment is the

character; (semicolon). When RFAD sees a semicolon, it

attaches the next MUDDLE object to the last structural element

seen as that element's CCMMENT property (see Chapter 11). The

first comment above is attached to FACT's argument list, the

second to the first clause of the COND, and the third to the

second clause of the COND. Comments are thus remembered along

with the object with which they are associated, but have no

effect on either EVAL or PBINT. They can, however, be gotten

back (again, see Chapter 11). In the example above, the MUDDLE

objects which are comments are STRINGs; this is usually the case,

DGSD 73 SYS.11.01

but is clearly not necessary. They could be A1'0Ms, LISTs,

FUNCTIONs (to name some useful possibilities) or anything else.

7.3. "OPTIONAL"

MUDDLE provides very convenient means for allowing

optional arguments. Inserting the STRING "OPTIONAL" in the

argument declaration allows the specification of optional

arguments with default values. The syntax of the "OPTIONAL" pu-t

of the argument declaration is as follows:

"OPTIONAL" 4AoL1~ 4AoL2~ ••• 4AoLN~

First, there is the STRING "OPTIONAL". Then there is any

number of either ATOMs or two element LISTs, one per optional

argument. The first element of each two element LIST must be an

ATOM; this is the dummy variable. The second element is an

arbitrary MUDDLE expression. If there are required arguments,

these must come before the "OPTIONAL".

When EVAL is binding the variables of a FUNCTION and sees

"OPTIONAL", the following happens:

If an explicit argument was given in the position of

an optional one, the explicit argument is bound to the

corresponding dummy ATOM.

OOSD 74 SYS.11.01

If there is no explicit argument and the ATOM stands

alone, i.e., is not the first element of a two element LIST,

that ATOM becomes "bound", but no local value is assiened to

it. A local value can l:e assigned to it by using SEI'. Until

an ATOM is assigned, any attempt to reference it other than as

an argument to the predicate SUBRs EOUND? and ASSIGNED? (which

return T under the obvious condition) will produce an error.

If there is no explicit argument and the ATOM is the

first element of a two-element LIST, the MUDDLE expression in

the LIST with the ATOM is evaluated and bound to the ATOM.

By the way, there is one other predicate similar to

BOUND? and ASSIGNED?, namely GASSIGNED?. The latter returns T

if its argument, which (as in BOUND? and ASSIGNED?) must be an

ATOM, has a global value.

Since an ATOM can be BOUND? but not ASSIGNED?, and

applying ASSIGNED? to an unbound ATOM produces an error, some

care must be used if you wish to find out whether an ATOM has a

local value.

The following, by virtue of the fact that AND is an

FSUBR, will return T if ~A➔ has a local value, FALSE if it does

not, and never produce an error:

<MID <BOUND? 4:A~> <ASSIGNED? 4:Nr>>

DGSD 75 SYS. 11.C1

7 .3.1. "OPl'I0NAL" Example

<SEID INC1 <FUNCTION (A "0Pl'IONAL" (N 1))

<SEI' .A<+ •• A .N>>>>©

//FUNCTION ((A "OPl'IONAL" (N 1)) <SE1.' .A <+ •• A • r, >>)

<SET E O>©
0

<INC1 B>tl)

1

<INC1 B 5>$

6

Here we defined another (not quite workinr;) increment

FUNCTION. It now takes an optior1al are;ument specifying. how much

to increment the ATOM it is eiven. If not eivcn, the inerement

is 1. Now, 1 is a pretty simple MUDDLE expression; there is no

reason why the optional argument need not be hairy - e.e., a

call to a FUNCTION which reads a file on an I/0 device.

7.4. "l'UPLE" and TYPE TUPLE

There are also times when you want to be able to have an

arbitrary number of areuments. You can always do this by

definine, the FUNCTION as havi.nr- a LIST or VECTOR as its arrurnent,

with the arbitrary number of arr:uments as elements of the IIS'l' or

VECTOP (or UVECT0P., for that matter). This car1, however, lead t ci

DGSD 76 SYS.11.O1

inelegant looking FORMS. The STRING "'l'UPLE" appearing in +,he

argument declaration allows you to avoid that. It must follow

explicit and optional arguments (if there are any of either) and

must be followed by an ATOM.

The effect of "TUPLE" appearing in an argument

declaration is the following: Jmy arguments left in the FORJvi

after satisfying explicit and optional arguments are EV.Ald and

made sequential members of an object of TYPE and PHIMTYPE TUPLE.

The TUPLE is then bound to the ATOM following "TUPLE" in the

argument declaration. If there were no arguments left by the

time the "TUPLE" was reached, an empty TUPLE is bound to the

ATOM.

An object of TYPE TUPLE is exactly the same as a VECTOR

except that a TUPLE is not held in garbage-collected storage. It

is instead held with most other bindings in a stack. This does

not effect manipulation of the TUPLE within the :FUNCTION

generating it or any FUNCTION called within that one; it can be

treated just like a VECTOR. Note, however, that a TUPLE ceases

to exist when the :FUNCTION which generated it returns. Returning

a TUPLE as a value is a good way to generate an error. (A copy

of a TUPLE can easily be generated by segment evaluating the

TUPLE into something; that copy can be returned.)

IGSD 77 SYS.11.01

7.4.1. "TUPLE" Example

<SEW NTHARG <FUNCTION (N "1'UPLE" T)

<COND (<1? .N> 1)

;"~narf all but first argument into T."

;"If N is 1, return 1st ar£, i.e., .N,

i.e., 1"

(<L? <LENGTH .T> <SET N <- .N 1>>> #FALSE ("DUMMY"))

;"Check to see if there is an Nth arg,

and make Na good index into T while

you're at it.

If there isn't an Nth arg, bitch."

(ELSE <.N .T>)>>>

NTHARG, above, takes any number of arguments. Its first

argument must be of TYPE FIX. It returns EVAL of its Nth

argument, if it has an Nth argument. If it doesn't, it returns

#FAIBE ("DUMMY"). (The ELEE is truly necessary in the last

clause because the Nth argument might be a FALSE.) Exercise for

the reader: NTHARG will generate an error if its first argument

is not FIX. Where and why? (How about <NTHARG 1.5 2 3> ?) Fix

it. Now make it work with no arguments.

DGSD 78 SYS.11.01

7.5. "AUX" and "EXTRA"

"AUX", or "EXTRA" (they're totally equivalent) are

STRINGs which, placed in an areument declaration, serve to

dynamically allocate temporary variables for the use of a

FUNCTION.

"AUX" (or "EXTRA") must ap:y:ear in the argument

declaration after any information about explicit arguments. It

is followed by ATOMs or 2-element LISTs as if it were 110PTIONAL11 •

ATOMs in the 2-element LISTs are bound to the EVAL of the second

element in the LIST. Atoms not in such lists are initially bound

to an object of type UNASSIGNED, namely #UNASSIGNED O.

All binding specified in an argument declaration is done

sequential]y from left to right, so initialization expressions

for nAUX" can refer to objects which have just been bound. For

example, this works:

<SEW AUXEX

<FUNCTION ("TUPLE" T

"AUX" (A <LENGTH .T>) (B <* 2 .A>))

(.A .B) >>$

<AUXEX 1 2 11F0011>$

(3 6)

OOSD 79 SYS.11.01

7.6. QUOTE

QUarE is an FSUBR of one argument which returns its

argument unevaluated. f:EAD understands the character' (single

quote) as an abbreviation for a call to QUOTE, like period and

co1I11Da call LVAL and GVAL. Examples:

<+ 1 2)$

3

'<+ 1 2)$

<+ 1 2)

If an ATOM in an argument declaration which is to be

bound to a required argument is surrounded by a call to QUOI'E,

that ATOM is bound to the unevaluated argument. Example:

<SE'TG Q2 <FUNCTION (A 'B) (.A .B)>>$

<Q2 <+ 1 2> <+ 1 2))$

(3 <+ 1 2>)

DGSD 80 SYS.11.01

7.7. "ARGS"

The indicator "ARG['." can appear in an argument

declaration with precisely the same syntax as "TUPLE". "ARGS"

causes the ATOM fallowing it to be bmmd to a LIST of the

remaining unEVALuated arguments.

"ARG-S" does not cause any copying to take place. It

simply gives you

.---<REST ~the FORM applying this FUNCTION~ ~FIX~>

with an appropriate .{FIX~. The type change to LIST is a result

of the REST. Examples:

<SETG QIT <FUNCTICN (N "ARGS" L) <.N .L>>>$

<QIT 2 <+ 3 4> <LENG1H ,QALL> FOO)$

<LENGTH ,QALL>

<SETG FUNCTION

<FUNCTION ("ARGS" ARGL_AND_BODY)

<CHTYPE .ARGL_AND_EODY FUNCTION>>>$

<FUNCTION (A E) <+ .A .E>>$

#FUNCTION ((A E) <+ .A .E>)

DGSD 81 SYS.11.01

The last example is a perfectly vaild definitior of

FUNCTION.

7.E. "CALL"

The indicator "CALL" is an ultimate "ARCS". If it

appears in an argument LIST, it must be followed by an ATOM and

must be the only thing used to gather arguments. "CALIP causes

the ATOM which follows it to become bound to the actual FOFM

whose application is being evaluated - i.e., you get the

"function call" itself.

Since 11 CALL11 binds to the IORM itself, and not a copy,

PUTs into that FORM will change the calling code. Please note

that such techniques will not work if the calling code has been

compiled. (Neither will "CALL".)

"CALL" exists as a Catch-22 for argument manipulation.

If you can't do it with "CALIP, it can't be done.

DGSD 82 SYS.11.01

7.9. EVAL and "BIND"

Obtaining unevaluated arguments, e.g., via QUOTE and

"ARGS", very often implies that you wish to EVALuate them at sone

point. You can do this by explicitly calling EVAL, which is a

SUBR. Example:

<SET F '<+ 1 2>>$

<+ 1 2)

<EVAL .F>$

3

EVAL takes one optional argument, of TYPE ENVIRONMENT.

An ENVIRONMENT consists basically of all the information needed

at any given time by EVAL. Now, binding changes the ENVIRONMENT;

so if you wish to use EVAL within a FUNCTION, you :prooo.bly want

to get hold of the environment which existed before that

FUNCTION's binding took place. The indicator "BIND", which must,

if it is used, be the first thing in an argument declaration,

provides this information. It binds the AIDM immediately

following it to the ENVIRONMENT existing "at call time" - i.e.,

just before any binding is done for its FUNCTION. Example:

DGSD

<SRl' A 0>$

0

83 SYS.11.01

<SEID WRONG <FUNCTION ('E "AUX" (A 1)) <EVAL .B>>>$

<WRONG .A>$

1

<SETG RIGHT <RJNCTI ON ("EIND'' E 'B "AUX" (A 1))

<EVAL .B .E>>>$

<RIGHT .A>$

0

7.10. ACTIVATION, 11NAME11 , "ACT", AGAIN, and EXIT

EVALuation of a FUNCTION, after the argument declaration

has been taken care of, normally conists of EVALuating each of

the objects in the body in the order given, and returning value

of the last thing EVAid. If you want to va:ry this sequence, you

need to know, at least, where the RJNCTION begins. Not

surprisingly, if you think about it, EVAL normally hasn't the

foggiest idea of where its current FUNCTION beean. "Where'd I

start" information is bundled up with a TYPE called ACTIVATION.

In "normal" FUNCTION EVALuation, ACTIVATIONs are not generated;

they can be eenerated, and bound to an ATOM, in either of the two

DGSD 84 SYS.11.01

following ways:

1) Put an ATOM immediately before the argument declaratior..

ACTIVATION of the RJNCTION will be bourid to that ATOM.

2) As the last thing in the argument decl.a,ration, insert

either of the STRINGs "NAME" or "ACT" and follow them

with an ATOM. The ATOM will be bound to the ACTIVATIOI~

of the FUNCTION.

F.a.ch ACTIVATION refers explicitly to a particular

application of a RJNCTION. E.g., if a recursive FUNCTION

generates an ACTIVATION, a new ACTIVATION referrinr: explicitly to

each recursion step is generated on every recursion.

Like TUPLEs, ACTIVATIONs are held in a stack. Unlike

TUPLEs, there is !!Q way to get a copy of an ACTIVATION which can

usefully be returned as a value. (This is a consequence of the

fact that ACTIVATIONs refer to applications; when the application

no longer exists, neither does the ACTIVATION.)

ACTIVATIONs are used by the SUJ3Rs AGAIN and EXIT.

AGAIN takes one argument: an ACTIVATION. It means "start

doing this again", where "this" is specified by the ACTIVATION.

Specifically, AGAIN causes EVAL to return to where it started

working on the body of the FUNCTION in the application specified

by the ACTIVATION. The applicatior. is not re-evaluated

cor1pletely; in particular, no re-binding (of arguments, "AUX"

variables, etc.) is done.

DGSD 85 SYS.11.01

EXIT takes 2 arguments: an ACTIVATION 2.nd an arbitrary

expression. It causes the RJIJCTION EVALuation whose ACTIVP.TIOL

it is eiven to terminate and return EVPL of EXIT's second

ar£1.lment. I.e., EXIT means "quit doin[' this and return that",

where "this" is the ACTIVATION - its first ar£ument - and

"that" is the expression - its second are:ument. F)Cample:

<SE'.l.U MY+ <FUNCTION ("TUPLE" T "AUX" (M 0) "NAME" ITM)

<COND (<EMPI'Y? .T> <EXIT .NM .M>)>

<SE'T M <+ .M <1 • T>>>

<SEr T <REST .T>>

<AGAIN .NM>>>$

<MY+ 1 3 <LENGTH "FOO">>$

7

<MY+>$

0

Note: Suppose an ACTIVATION of one FUNCTION (call it F1)

is passed to another :FUNCTION (call it F2) - e.g., via an

application of F2 in F1 with F1 1 s ACTI\/ATIION as an argument. If

F2 EXITs with F1's ACTIVATION, F2 and F1 terminate immediately,

and F1 returns the EXIT 1 s second argument. Good for error exits.

AGAIN can clearly :r;ull a similar trick.

DGSD 86 SYS.11.O1

8. FROG and REPEAT

8.1 General

PROO and REPEAT are almost identical FSU.BRs which make it

possible to arbitrarily vary the order of EVALuation - i.e.,

have "jumps". Syntax of a PROO is:

<PROO ~optional activation~ ~prog list~ ~body~>

where

~optional activation➔ is an optional ATOM, which is bound

to the ACTIVATION of the PROO.

~prog list~ is a LIST which looks exactly like that

segment of a FUNCTION's argument declaration which follows an

"AUX", and serves exactly the same purpose. It is not optional.

If you need no temporary variables, make it().

~body~ is an arbitrary number of arbitrary MUDDLE

expressions.

Syntax of REPEAT is identical, except that, of course,

REPEAT is the first element of the FORM, not PROO.

DGSD SYS.11.01

8.2. Easic FROG EVALuation

Upon entering a PROO, an ACTIVATION is alwa_ys eenerated.

If there is an ATOM in the right place, it is also bound to that

ATOM. The variables in the ~prog list~ (if any) are then bound

as indicated in the ~prog list~. Each of the expressions in

~body~ are then EVALuated in their order of occurrence. If

nothing untoward happens, you leave the FROG upon evaluating the

last expression in 4body~, returning the value of that last

expression.

PROO thus provides a way to package tocether a group of

things you wish to do, in a somewhat more limited way than can be

done with a FUNCTION.

But FROOs are generally used for their other properties.

DGSD 00 SYS.11.01

8.3. AGAIN and RETURN

Within a PROO, you always have a de:fined ACTIVP.TION,

whether you bind it to an ATOM or not.

I:f AGAIN is used with no arguments within a PRCG, it uses

the ACTIVATION o:f the closest surrounding FROG, and re-starts the

FROG without rebinding the -<;proe list~ variables, just like it

works in a FUNCTION. With an argument, it can, of course

re-start any FROG or FUNCTION within which it is embedded at run

time.

To leave a PROO without evaluating any more of it, use

the SUER RE'TURN. RETURN takes one argument and causes the :first

FROG in which it is embeddtd to return EVAL of that ARCUMENT.

EXIT can also be used, with an explicit ACTIVATION o:f course, to

do the same thing.

8.4. REPEAT EVALuation

REPEAT acts in all ways exactly like a FROG whose last

expression is <AGAIN>. The only way to leave a REPEAT is to

explicitly use RETURN or EXIT (or GO with a TAG - see below).

00-SD 89 SYS.11.01

8.5. GO and TAG

GO is a SUER which allows vou to break the normal order
' ~

of evaluation and re-start just before any top-level expression

in a FROG (or REPEAT). It can take two TYPEs of arruments: ATOivi

or TAG.

Given an ATOM, GO searches the ~body~ of the immediately

surrounding FROG, starting after ~prog list~, for an occurrence

of that ATOM at the top level of ~body~._ (This search is

effectively a MEMQ.) If it doesn't find the A~OM, error. If it

does, evaluation is resumed at the expression following the ATOM.

The SUER TAG generates and returns objects of TYPE TAG.

This SUBR takes one argument: an ATOM which would be a 1-egal

argument for a GO. An object of TYPE TAG contains sufficient

information to allow you to GO to any position in a FROG. from

within any :FUNCTION called inside the PROO. GO with a TAG is

vaguely like AGAIN with an ACTIVATION; it allows you to "go

back" to the middle of any FROG or REPEAT which called you.

OOSD 90 SYS.11.01

9. 1/0

9.1. General - Basic

All I/0 FUNCTIONs in MUDDLE take an optional argument

which directs their attention to si:ecific I/0 channels. The I/0

FUNCTIONs will first be described without their optional

arguments. In this situation, they all refer to the initial

default of TTY. When given an optional argument, that argument

follows any arguments indicated here.

9.1.1. Input

All of the following input routines, when directed at the

TIT, hang tmtil $ (ALT MODE) is ty-ped and allow normal use of

rubout and ... L.

LGSD 91 SYS.11.01

9.1.1.1. REP.TI

<READ>

This returns the entire MUDDLE object whose representation is

next in the input stream. Successive <READ>s return successive

objects.

9.1.1.2. READCHR

<RFA.DCHR>

This returns the next CHARACTEil in the input stream. Successive

<READCHR>s return successive CHARACTERs.

9.1.1.3. NEXTCHR

<NEXTCHR>

This returns the CHARACTER which RFADCHR will return the next

time READCHR is called. Multiple <NEXTCHR>s, with no READs or

READCHRs between them, all return the same thing.

DGSD 92 SYS.11.01

9.,1.2. Output

9.1.2.1. PRINT

<PRINT ~obj~>

This outputs, in order,

1) a carriage-return line-:feed

2) the MUDDLE representation of EVAL of its argument (PRINT is

a SUER)

3) a space

and then returns EVAL o:f its argument. This is precisely the

SUER PRINT mentioned in chapter 1.

IGSD 93

9.1.2.2. PRIN1

<PRIN1 4obj~>

outputs just the representation of EVAL of ~obj~.

of its argument.

9.1.2.3. PRINC

<PRINC 4obj~>

SYS.11.01

Returns EV PL

acts exactly like PRIN1, except that if its arr:ument is a STRING

or a CHARACTER, it suppresses the surrounding "s or initial!"

respectively.

9.1.2.4. FLATSIZE

<FLATSIZE 4obj~ 4TIX~>

does not actually cause any output to occur. Instead, it first

finds out how many characters FRINT would take to print 4obj~,

anc then compares that numoor with 4TIX~. If ~FIX~ is less than

the number of characters needed, E'LATSIZE returns #FALSE();

otherwise, it returns the number of characters needed to PRINT

DGSD 94 SYS.11.C1

This is especially useful in conjuncticn with (see below)

those elements of a CH.Al{NEL which specify the r,umber of

chc"lracters per output line and the current position on an output

line.

9.2. CIIANNELs

I/O channels are dynamically assigned in MUDDLE, and are

represented by an object of TYPE CHANNEL, which is of PRIMTYPE

VECTOR. The format of a CFJ\NNEL will be explained later. First,

how to generate and use them:

9.2.1. OPEN

OPEN is a SUER which creates and returns a CHANNEL (in both the

ITS and MUDDLE senses of the word). All its arguments must be

of TYPE STRING, and all are OPTIONAL. If the attempted o:p3ning

of an ITS I/O channel fails, OEEN returns //FALSE (). Argument

descriptions:

DGSD 95 SYS.11.01

~ir~ must be "READ" for input or "PRIN'I'" for output.

Default: "READ".

4F1~ is the first file name. Default: "INPLT" if ~ir~ is

"READ", "OUTPUT" if -4dir~ is "PRINT".

4F2~ is the second file name. Default:">".

,4dev~ is the device. Default: "DSK"

4usr~ is the user directory. L'efault: your current one.

9.2.2. CI.OSE

<CLOSE -<;a CHANNEJ&>

closes 4a CHANN~ and returns its input, with its "state"

changed to "closed".

DGSD 96 SYS.11.01

9.2.3. CHANLIST

<CHANLIST>

returns a LIST whose elements are all the currently open

CHANNELs.

9.2.4. INCH.AN and OUTCHAN

The default channel for input SUBRs is the local value of

the ATOM INCHAN. The default channel for output SUBRs is the

local value of the ATOM OUTCHAN. You can direct I/0 to a CHANNEL

by SE'Tting INCHAN or OUTCHAN (remembering their old values

somewhere), or by giving the SUER you Wish to use an argument of

type CHANNEL. See, however, Input Errors below.

By the way, a good hack for playing with INCHAN and

OUTCHAN within a :FUNCTION is to use the ATOMs INCHAN and OUTCHAN

as "AUX" variables, re-binding their local values to the CHANNEL

you want. When you leave, of course, the old LVALs are

restored.

DGSD 97 SYS.11.01

9.2.5. Contents of CHANNELs

The contents of an object of TYPE CHANNEL are accessed by

the I/0 SUBRs each time such a SUER is used. If you c~anpe the

contents of a CHANKEL (e.g., with PUT), the next use of that

CHA1JNEL will be changed appropriately. Some elements of

CHANNELs, however, should be played with seldom, if ever, and

only at your peril. These are marked below with an* (asterisk).

There follows a table of the contents of a CHAMNEL, the

TYPE of each element, and an interpretation. The format used is

the following:

4element number~: 4TYP~ 4interpretation~

DGSD 98 SYS.11.01

9.2.5.1. Output CHAIDlELs

The contents of a CHAN1'JEL used for output are:

* 1: FIX

* 2: STRI.NG

* 3: STRING

* 4: STRING

* 5: STRING

* 6: STRING

* 7: STRING

* 8: STRING

* 9: STRING

*10: STRING

*11: FIX

*12: FIX

13: FIX

14: FIX

15: FIX

16: FIX

17: FIX

18: FIX

charn:el number (0 means channel not open)

direction (for output, its "PRINT")

device name argument

first file name argument

second file name argument

directory name argument

real device name

real first file name

real second file name

real directory name

various status bits

PDP-10 instruction used to do one I/0 operation

number of characters per line of output

current character position on a line

number of lines per page

current line number on a µ3.ge

access pointer (not yet used)

radix for number conversion

OOSD 99 SYS.11.O1

9.2.5.2. Input CH.ANNELs

The contents of' a CHANNEL. used for input f'rom a

file-oriented device is the same as the contents of' the

corresponding CHANNEL used f'or output, except that element' 2

(direction) contains "READ".

A CHANNEL used f'or input f'or a console variety device

(e.g., "TTY") has, in addition, element 15 set to a UVECTOR of'

UTYl'E IDSE which is used as an input buf'f'er.

9.3. Input Errors

An explicit CHANNEL f'or input.'. is the second optional

argument of' all SUBRs used f'or input. The f'irst optional

argument is an error routine - i.e., something f'or the input

SUBR to EVAL if' it detects an error. A typical error argument is

a QUOTEd FORM which calls an error routine of' yours. If' not

given, the standard error SUBR - ERROR is used. (Since

attempting to read past the End-of'-f'ile is an error, if' you

really don't expect errors you can use an application of' REI'URN

or EXIT as an "error11 routine to bounce you out of' a read loop.

You can usually use <CLOSE ~the channel~> as the thing RETURN or

EXIT returns and kill two birds with one stone.)

Note that input f'rom the TTY 11hangs 11 until ALT-MODE is

typed; then you start getting successive items or characters.

DGSD 100 SYS.11.01

9.3.1. Example

The :following RJNCTION outputs to .OUTCHAN a file read

according to its arguments. The static variables which are

initially SET to the :funny strings hold the default arguments.

(The funny strings are the initial defaults.)

DGSD 101 - SYS.11.01

<SET DF1 " "> ---
<SET DF2"

<SET DDEV "DSK11 >

<SET DUSR mr >

<SETG PF

<FUNCTION ("OPTIONAL11 (F1 .DF1) (F2 .DF2)

(DEV .DDEV) (USR .DUSR)

11 AUX" (CHN <OPEN 11READ11

<SET DF1 .F1> ;"Set up defaultsn

<SET DF2 .F2> ;"for next call. 11

<SET DDEV .DEV>

'-_,/ <SET DUSR • USR> >))

<COND (.CHN ;"If CHN is FALSE, bad OPEN, else O.K."

<REPEAT ()

<PRING <READCHR '<REI'URN <CLOSE .CEN>> .CHN>>

> ;"Until EOF, keep reading and printing

a character at a time. 11

DONE. ; "Then return this ATOM. 11)

(EISE #FAT.BE ("BAD FILE NAME")

;"Return a FALSE so user can test it

easily if used inside another FUNCTION."

)>>>

DGSD 102 SYS.11.01

9.4. Other I/O Functions

9.4.1. LOAD

<LOAD 4input CHANNEG 40~>

eventually returns 11DONE11 • First, however, it READs and EVALs

every MUDDLE object in the file pointed to by ~input CEANN~,

and then CLOSF.s ~input CHANNEi:#. Any occurrences of RUBOUT, .. @,

AL, etc., in the file are given no special meaning; they are

simply ATOM constituents.

4O~ is optional, and may be used to srecify a LIST of

OBLISTs for the READ. Its default is .OBLIST. See far below.

9.4.2. FLOAD

acts just like LOAD, except that it takes arguments like OPEN,

OPENs the CHANNEL itself for reading, and CLOSEs the CF.ANNEL when

done. 4O~ is optional, as in LOAD.

'---./

DGSD 103 SYS.11.01

9.4.3. ECHOJ?AIR

<ECHOJ?AIR 4TTY input CHANN~ ~TTY output CPAlJNF~>

returns its first argument_, after making the two CE.ANHELs 11know

about each other11 so that RUBOUT_, .J>,@_, -L., etc., will work

correctly "between them.

DGSD 104 SYS.11.01

10. Locatives

10.1. General

There is in MUDDLE a facility for obtainin~ and workin£

directly with objects which roughly correspond to 11pointers" in

assembly language or u1vals11 in BCPL or PAL. In MUDDLE, these

are generically known as locatives (from 11location11) and are of

several TYPEs, as mentioned below. Locatives exist to provide

efficient means for altering structures: direct replacement as

opposed to re-copying.

Locatives always refer to positions in structures. It is

not possible to obtain a locative to something (e.g., an ATOM)

which is not part of any structure.

It is possible to obtain a locative to any position in

any structured object in MUDDLE - even the LVALS and GVALs o:f

ATOMs, a structuring which is normally "hidderi".

In the following, an object occupying the structured

position to which you have obtained a locative will be referred

to as the object pointed to by the locative.

OOSD 105 SYS.11.01

10.2. Obtaining Locatives

10.2.1. LLOC

<LLOC 4an ATOM~>

returns a locative (TYPE LOCD) to the LVAL of ~an ATO:M~. If 4an

ATOM~ has no LVAL, error. The locative returned by LLOC is

independent of future re-bindings of 4an ATOM~. I.e., IN (see

below) of that locative will return the same thing even if the

4ATOM~ is re-bound to something else. SETLOC (see below) will

affect only that particular binding of ~ATO~.

Since bindings are kept on a stack (tra la), any attempt

to use a locative to a LVAL which has become unbound will fetch

up an error. (It breaks just like a TUPLE ••••)

10.2.2. GLOC

<GLOC ~an ATO~>

returns a locative (TYPE LOCD) to the GVAL of ~an ATO~. If ~an

ATOM~ has no GVAL, error.

DGSD 106 SYS.11.01

10.2.3. AT

<AT 4s.o.~ 4TYPE FIX~>

where ~s.o.~ is any structured object, returns a locative to the

~TYPE FIX~th position in ~s.o.~. The exact TYPE of the locative

returned depends on the TYPE of ~s.o.~; e.g., LOCL for LIST, WCV

for VECTOR, etc. If ~TYPE FIX~ is greater than <LENGTH ~s.o.~>

or less than 1, error.

If the second argument - ~TYPE FIX~ - is not given, 1

is used.

10.3. Using locatives

The following two SUBRs provide the means for working

with locatives. They are independent of the specific TYPE of the

locative. The notation 4locativ~ indicates anything which could

be returnd by LI.DC, GLOC, or AT.

DGSD 107 SYS.11.01

10.3.1. IN

<IN 4locativ~>

returns the object ~loca.tive➔ points to. The only way you can

get an error using IN is when 4locative~ points to an LV/lli which

has become unbound from an ATOM. This is the same as the problem

in referencing TUPLE as mentioned in Chapter 7.

10.3.1.1. IN Examples

<SEI' A 1>$

1

<IN <LWC A>>$

1

10.3.2. SETLOC

<SE'TIDC 4locativ~ ~anything~>

returns ~nything~, after having made ~anythine~ the contents of

that position in a structure pointed to by 4locative~. The

structure itself is not otherwise disturbed. Error if IN

wouldn't work on ~locative~ or if you try to put the wrong TYPE.

DGSD

into a UVECTOR.

10.3.2.1. SEI'LOC Examples

<SEI' A (1 2.3) >$

(1 2 3)

108

• <SETWC <AT .A 2> HI>$

HI

.A$

(1 HI 2)

10.4. Note on locatives

SYS. 11.01

You may have noticed that locatives are, strictly

speaking, unnecessary; you can do everything locatives allow by

appropriate use of, e.g., SET, LVAL, PUT, NTH, etc. What

locatives :provide is generality.

Basically, how you obtained a locative is irrelevant to

SETLOC and IN; thus the same :piece of code can play with GVAIS,

LVALs, objects in explicit structures, etc., without being

bothered by what function it should use to do so. This is

particularly true with respect to locatives to LVALs; the fact

DGSD 109 SYS.11.01

that they are independent of changes in bind ng can save a lot of

fooling around with EVAL and ENVIRONMENTs.

DGSD 110 SYS.11.01

11. Association

There is an associative data storage and retrieval system

embedded ir: MUDDLE which is simi1ar to, but less general tr.an,

that of LEAP (or SAIL). It is used via the four SUERs described

below.

11.1. Associative storage

11.1.1. PUTPROP

<PUTPROP 4object~ 4indicator~ ~value~>

returns 4object➔, having associated ~valu&.) with ~object~ under

the indicator ~indicator~.

OOSD 111 SYS.11.01

11.1.2. PUT

<PUT 4objec~ 4indicator~ 4valu~>

returns 4object~, after having done the fol1owine:

If 4object➔ was structured and 4indicacr~ was of TYPE

FIX, it does <SEI'LOC <AT 4object➔ 4indicato~> 4value~>.

Otherwise, it acts like PUTPROP.

11.1.3. Removing Associations

If PUTPROP is used without its 4valu~ argument, it

removes any association existing between its 4object~ argument

and its 4indicator➔ argument. If an association did exist, using

PUTPROP in this way returns the 4valu~ which was associated. If

no association existed, it returns #FALSE().

Plr.I.', with arguments which refer to association, may be

used in the same way.

If either 4object➔ or 4indicator~ cease to exist (i.e.,

no one was pointing to them, so they were garbage collected) then

the associatior. between them ceases to exist (is garbage

collected).

DGSD 112 E:YS.11.01

11.2. Associative Retrieval

11.2.1. GETPROP

<GE'TPROP 4object~ 4indicator~ 4e~

if there is a ~valu~ associated with 4object~ under 4indicatoN,

returns that 4valu~. If there is no such associatior., returns

EVAL of 4e~.

~~ is optional. If not given, CEI'PhOP returns

#FAIBE() if it cannot return a 4value~.

NOTE: ~object~ and ~indicator~ in GETPROP must be the

~ MUDDLE objects used to establish the association; i.e., they

must be=? to the objects used by PUTPROP or FUT.

11.2.2. GEI'

<GEI' 4object~ ~indicator~ ~ex~

is the inverse of PUT, using NTH or GETPROP depending on the test

outlined in 11.1.2 •• ~xp,- is optional and used as in GETJ?ROP.

DGSD 113

11.3. Examples of Association

<SET L (1 2 3 4)>$

(1 2 3 4)

<SET N 0>$

0

<PUT L FOO "Lis a list.">$

"Lis a list."

.I$

(1 2 3 4)

<GET L FOO>$

"Lis a list."

<PUTPROP .L 3 ![4]>$

! [4! J
<GETPROP .L 3>$

!(4!]

<GET .L 3>$

3

<PUT .N .L "list on a zero.">$

0

<GET .N (1 2 3 4)>$

#FAISE{)

SYS.11.01

The last example failed because READ generated a new LIST - not

the one which is L's LVAL. However,

<GET O .L>$

"list on a zero."

works because<=? .NO> is true.

OOSD 114 SYS.11.01

To associate something with the Nth position in a

structure, as opposed to its Nth element, associate it with

<REST 4structure~ 4N~>:

<PUT <REST .L 2> PERCENT 0.3>$

0.300000

<GEI' <2.L> PERCENT>$

#FAISE()

<GEI' <REST .L 2> PERCENT>$

0.300000

Remember comments?

<SEI' N [AB C;"third element"D EJ>$

[ABC DE]

<GET <REST .N 3> COMMENT)$

"third element."

DGSD 115 SYS.11.01

12. Lexical Blocking

lexical, or static, blocking is another means of

preventing identifier collisions in MUDDLE. (The first was

dynamic blocking.) By using a subset of the MUDDLE lexical

blocking facilities, the "block structure" of such lanfUaees as

AIGOL, PL/1, SAIL, etc., can be simulated, should you wish to do

so. (Write your full implementation of ALGOL 68 in MUDDLE!)

12.1. Ea.sic Considerations

Since what follows appears to be rather complex, a short

discussion of the l:asic problem lexical blocking solves and

MUDDIB's basic solution will be given first.

ATOMs are identifiers. It is thus essential that

whenever you type an ATOM, READ should respond with the unique

identifier you wish to designate. The problem is that it is

unreasonable to expect the PNAMEs of' ATOMs to all be unique.

When you use an ATOM A in a program, do you mean the A you typed

two minutes ago, the A you used in another one of your programs,

or the A used by Joe Hacker's library program?

Dyriamic blocking (pushdown of LVALs) solves many such

problems. However, there are some it does not solve - such as

state variables (whether impure or pure). Major problems with a

system having only dynamic blocking usually only arise when

DGSD 116 SYS. 11.01

attempts are m.de to share large numbers of sienificant proera,ms

among many people.

The solution used in MUDDLE is basically as follows:

READ must maintain at least one table of ATOMs to euarantee any

uniqueness. So, allow many such tables, and make it easy for the

user to specify which one he wants.

Such a table is a MUDDLE object of TYPE OBLIST. All the

complication which follows arises out of a desire to provide a

powerful, easily used method of working with OELISTs, with good

defaults.

12.2. OBLISTs

An OBLIST is actually a UVECTOB of UTYPE LIST; the LISTs

hold ATOMs. (The ATOMs are ordered by a hash coding on their

PNAMEs; each LIST is a hashing bucket.) What follows is

information about OBLISTs as such.

12.2.1. OBLIST Names

Every normally constituted OBLIST has a name. The name

of an OBLIST is an AT01 associated with the OBLIST under the

indicator OELIST. Thus,

:OOSD 117 SYS.11.01

<GE.I'PROP ~ OBLIST~ OBLIST>

or

<GET -4an. OELIST~ OELIST>

returns the name of ~n OBLIST~.

Similarly, every name of an OBLIST is associated with its

OBLIST, again under the indicator OBLIST, so that

<GE.I'PROP ~ OELIST nam~ OBLIST>

or

<GET ~n OELIST mm~ OBLIST>
..

returns the OBLIST whose name is ~ OELIST name~.

Since there is nothing special about the association of

OBLISTs and their names, the name of an OBLIST can be changed by

use of PUT.PROP, both on the OBLIST and its name. It is not wise

to change the OBLIST association without changing the name

association, as you are likely to confuse READ and PRINT

terribly.

You can also use PUT or PUTPROP to remove the association

between an OBLIST and its name completely. If you want the

OBLIST to go away (be garbage collected), and you want to keep

its name around, this must be done; otherwise the association

will force it to stay, even if there are no other references to

it. (If you have no references to either the name or the OBLIST,

both of them - and their association - will go away without

your having to remove the association, of course.) It is not

DGSD 118 SYS.11.01

recommended that you remove the name of an OBLIST without having

it go away, since then ATOMs in that OELIST will PRINT the same

as if they were in no OBLIST - which is defeating the purpose of

this whole exercise.

12.2.2. MOBLIST

<MOBLIST 4AT~ 4FIX~>

creates and returns a new OBLIST, containing no ATOMs, whose name

is ~ATO~. -O'IX~ is the size of the OELIST created - the number

of hashing buckets. ~TIX~ is optional, with default 151, which

is far more than you usually need or should use. If specified,

4'IX~ should be a prime number, since the hashing works better

then.

12.2.3. OBLIST?

<OBLIST? 4ATOM~>

returns #FAIBE () if ~ATO~ is not on any OBLIST. If 4ATO~ is

on an OELIST, it returns that OBLIST.

DGSD 119 SYS.11.O1

12.3. READ and OBLISTs

12.3.1. Trailers

READ can be explicitly told to look an ATOM up on a

particular OBLIST by giving the ATOM a trailer. A trailer

consists of the characters!- (exclamation point dash) following

the ATOM, immediately followed by the name of the OBLIST.

A!-OE

specifies the unique ATOM of PNAME A which is in the OELIST whose

name is the ATOM OE.

Note that the rame of the OBLIST must follow the!- with

no separators (like sp:3.ce, tab, carriage-return, etc.). There is

a default name (see below) which types and is typed as

!-4separator~.

Trailers can be used recursively:

B!-A!-OB

specifies the unique ATOM of PNAME B which is in the OELIST whose

name is the unique ATOM of PNAME A which is in the OBLIST whose

name is OB. (Whew!) The recursion is terminated via the

defaults.

If an ATOM with a given PNAME is not found in the OBLIST

specified by a trailer, a new ATOM with that PNAME is created and

DGSD 120 SYS.11.01

inserted into that OBLIST.

Defaults very often make trailers unnecessary. See

below.

12.3.2. READ and Defaults

If trailer notation is not used (the "normal" case), READ

looks up the FNAME of the ATOM in a LIST of OBLISTs, specifically

the LVPL of the ATOM OBLIST. This lookup starts with <1 .OELIST>

and continues until .OBLIST is exhausted. If the ATOM is not

found, READ inserts it into <1 .OELIST>.

12.4. PRINT and OELISTs

When PRINT is given an ATOM to out:rut, it outputs as

little of the trailer as is necessary to s:recify the ATOM

uniquely to READ. I.e.: if the ATOM is the first ATOM of that

PNAME which READ would find in its normal lookup on the current

LIST of OELISTs, nc trailer is output. If it is not, !- is put

out and the NAME of the OBLIST is recursively PRINTed..

Warni~c: there is an obscure case, which does not occur

in normal practice, for which the PRINT trailer recursion does

not terminate. If an ft.TOM must have a trailer printed, and the

name of the OELIST is an ATOM in that very same OELIST, death.

DGSD 121 SYS.11.01

12.5. Initial State

Upon starting a MUDDLE, .OBLIS'.I' contains 2 OBLISTs. <1

.OELIST> initially contains no ATOMs, and <2 .OBLIST> contains
all the ATOMs whose GVALs are SUBRs or l'SUERs. It is difficult

to lose track of <2 .OBLIST>; the specific trailer !~separator~

will always cause reference to that OBLIST. In addition, the

SUER ROOT, which takes no arguments, always returns that OELIST.

The name of <ROOT> is ROOT; this ATOM is in <ROOT>, and

would cause infinite PRINT recursion were it not for the fact

that !~space~ is used.

The name of the initial <1 .OBLIST> is INITIAL (really

INITIAL!-).

An error restores .OBLIST, in the sense that the initial

OBLISTs it contained are now its members again, in their initial

order. However, any changes that were made to those OBLISTs -

e.g., new A'I'OMs added - remain. <ERREI'> does the same thing.

One other OBLIST exists in a vire,in MUDDLE: an OBLIST

whose name is ERRORS!-. This OBLIST contains ATOMs whose PNAMEs

are used as error messages. It is not initially on .OELIST, so

errors usually cause a lot of !-ERRORS trailers to be printed.

OOSD 122 SYS.11.01

12.6. BLOCK and ENDBLOCK

These SUBRs are analogous to begin and end in ALGOL,

etc., in the way they manipUlate static blocking (and in !!Q other

way).

<BLOCK 4LIST of OBLIST~>

returns its argument after "pushing" the current LVAL of OELIST

and making its argument the current LVAL. You usually want

<ROOT> to re a member of ~LIST of OBLISTs~, normally its last.

<ENDBLOCK>

"pops" the LVAL of OBLIST and returns the resultant OBLIST.

DGSD 123 SYS.11.01

12.7. SUBRs Associated With Lexical Blocking

12.7.1. READ (again)

<READ 4error routin~ 4CHANN~ 4LIST of OBLISTs~>

This is the full configuration of READ. -OJ:ST of OBLISTs~ is

used as stated in 12.3. to look up ATOMs and insert them in

OBLISTs. If it is not specified, .OBLIST is used.

12.7.2. IOOKUP

<LOOKUP 4STRING~ 4OELIST~>

If an ATOM of PNAME 4'STRING is in ~OBLIST~, returns that ATOM;

otherwise returns #FAISE().

12.7.3. REMOVE

<REMOVE 4'STRIN@ 40ELIST~>

removes the ATOM of PNAME ~TRIN~ from ~OBLIST~ and returns that

ATOM. If there is no such AT01, REMOVE returns #FAISE() •

DGSD 124 SYS.11.01

12.7.4. INTERN

<INTERN ~TO~ ~OBLIST~>

puts ~ATOM~ into ~OBLIST~ and returns it. If' there is already an

ATOM with the same PNAME as 4.TOM~ in OBLIST, error.

12.7.5. ATOM

<ATOM ~TRIN~>

creates and returns a spmking new ATOM of' PNAME -<STRING.;-. which

is guaranteed not to be on any OBLIST.

An ATCJ1 which is not on any OBLIST is PRINTed with a

trailer of !-#F AI.SE () •

12.7.6. PNAME

<PNAME ~ATOM~>

returns a STRING (not unique) which is -0.TOM~'s PNAME.

DGSD 125 SYS.11.01

12.8. Example of Normal Use: ooa.th of the INC Problem

On the following page is an example of the way OBLISTs

are "normally" used to provide "externally available" .ATOMs anc

"local" ATOMs which are not so readily avaiJ.able externally.

OOSD 126 SYS.11.01

Oi0BIJST INC0 1 >

;"Create an 0ELIST to hold your external symbols."

INC!-INC0

;"Put your external symbols into that 0BLIST."

<ELOCK (<M0BIJST INCI !-INC0 1 > <GEI' Il{C0 0BLIST> <ROOT>)>

;"Create a local 0BLIST, naming it INCI!-INC0, and set up

.0ELIST for reading in your program. The 0BLIST INC0 is included

in the BWCK so that as your external symbols are used, they will

be found in the right place. Note that the ATOM INCO is notin

any 0BLIST of the BLOCK; therefore, trailer notation of !-INC0

will not work."

<SETG INC

<FUNCTION (A)

;"INC is found in the INC0 0BLIST."

;"A is not found, and is therefore put

into INCI by READ."

<SET .A <+ •• A 1>>>>

<ENDBLOCK>

This example is rather trivial, but it contains all the

issues, of which there are three:

The idea is that you should create two 0BLISTs, one to

hold AT0Ms which you wish users to know of (INC0), and the other

to hold internal AT0Ms which are not normally of interest to the

:OOSD 127 SYS.11.01

user (INCI). The case above has one ATOM in each category.

INCO is explicitly used without trailers so ·that

externally used BLOCKs and ENDELOCKs will have an effect on it.

Thus INCO will be in the OELIST desired by the user; INC will be

in INCO, and the user can access it by saying INC!-INCO; INCI

will also be in INCO, and can re accessed in the sane way;

finally, A is really A!-INCI!-INCO. The point of all this is to

structure the nesting of OELISTs.

Finally, if for some reason (like saving storage sJ3.ce)

you wish to throw INCI away, following the ENDELOCK with

<REMOVE "INCI" <GEl' INCO OBLIST>>

will remove all references to it. The ability to do such pruning

is one reason for structuring OELIST references.

Note that even after removing INcr, you can "get A back"

i.e., be able to type it in - by saying something of the form

<INTERN <1<1 ,INC!-INCO>> <1 .OBLIST>>

thereby grabbing A out of the structure of INC and re-inserting

it into an OBLIST.

DGSD 128 SYS.11.01

12.9. EJctensions

There are some extensions to the basic lexical blockil'Jf'

machinery which are planned. Their intent is to facilitate the

use and dynamic loading of "packages" of routines. These

descriptions should be taken as tentative.

12.9.1. The User Oblist Oblist (UOO)

The initial .OELIST will eventually contain three

OBLISTs: INITIAL, an OBLIST named UOO!-, and ROOT in that order.

UOO (from User Oblist Oblist) is intended to be a "root" for

trees of user-defined OBLISTs, similar to the MULTICS udd for

directories. It is not possible to actually enforce this use of

UOO; however, using it as a "root" will ce convenient, due to

the next feature.

12.9.2. Automatic OBLIST Genera.tion

Suppose trailer notation is used, and an ATOM in the

trailer is not an OBLIST name. Eventually, this will cause READ

to generate an OBLIST of that name, place the~ in UOO, and

place the originally trailered ATOM into the new OELIST. If the

routine or ra,ckage defining the orieinal ATON is now loaded

later, it need only look in UOO to resolve previous references.

DGSD 129 SYS.11.O1

13. Errors, FRAMEs, etc.

13.1. LISTEN

This SUBR takes any number o:f agunents. It PHINTs them,

then PRINTS

LISTENING-AT-LEVEL~~ PHOCESS -OJ~

where~~ is an integer (FIX) which is incremented each time

LISTEN is called recursively, and ~N➔ is an integer identifying

the process in which the LISTEN was EVALed. LISTEN then drops

into an infinite READ-EVAL-PRINT loop which may be left via ERREr

(see below).

13.2. ERROR

This SUER is identical to LISTEN, except that it first

PRINTs *ERROR*.

When any SUER or FSUBR detects an anomolous condition,

(e.E,., its arguments are of the wrone TYPE) it calls EPROR with

DGSD 130 SYS.11.01

two areuments:

1) an ATOM whose PNAME describes the problem

2) the ATOM whose VALUE the SUER or FSUBR is and then

returns whatever the call to ERROR returns.

13.3. TYPE FRAME

A FRAME is the object placed on a process' stack whenever

a SUER or FSUBR is applied. It contains inf'ormation describinf'

what was applied, plus an object of TYPE ARGUMENTS. The latter

is a TUPLE-like object, often referred to as the ARGUMENT WPLE,

whose elements are the arguments to the SUER or FSUER applied.

If a SUER is applied, the ARGUNENTS of its FRAME have been EVAL'd

by the time the FRAME is generated.

A FRAME is an anomolous TYPE in the following ways:

1) It cannot be typed in. It can only be generated by an

application.

2) It does not type out in any standard format, but

rather as

STACK-FRAME--WR-

followed by the PNAME of the SUER or FSUBR applied.

DGSD 131 SYS.11.01

13.3.1. ARCS

<ARCS -4a FRAM~>

Returns the ARGUMENT TUPLE of -4a FRAM~.

13.3.2. FUNCT

<RJNCT 4a FRAME~>

returns the ATOM whose VALUE is being applied in~ FRAM~.

13.3.3. FRAME (the SUER)

<FRAME -4a FRAME~>

returns the FRAME stacked before ~a FRAM~. If called with no

arguments, FRAME returns the topmost FRAME used in an application

of ERROR.

DGSD 132 SYS.11.01

13.3.4. Examples

Say you have gotten an ERROR. You may now type at

ERROR's_ LISTEN loop and get things EVALd. E.g.,

<FUNCT <FRAME>>$

ERROR

<FUNCT <FR.AME <FRAME>>>$

~the ATOM whose VALUE is the (F)SUBR

which called ERROR~

<ARGS <IBAME<FRAME>>>$

~the arguments of the (F)SUBR which

called ERROR~

13.4. ERRET

<EREE'T ~thing~ 4a :FRAM~

This SUBR

1) causes the stack to be stripped down

to the level of ~a FRAM~.

2) Then returns ~nything~.

DGSD 133 SYS.11.O1

The net result is that the application which generated 4a FRAME~

is forced to return 4anything~.

The second argument to ERREr is optional, with default

<FRAME>.

If EHRET is called with ho arguments, it drops you all

the way down to the bottom of the stack - the level 1 LISTEN

loop.

13.4.1. Examples

<* 3 <+ a 1>>$

ERROR

FIRST-ARC-WRONG-TYPE

+

LISTEN-AT-LEVEL 2 PROCESS 1

<ARGS <FRAME <FRft.ME> > >$

[a 1]

<ERRET 5>$

15

;"This causes the+ to return 5."

;"Finally returned by the*·

Note that when you are in an ERROR, the most recent set

of bindings is still in effect. This means that you can examine

values of dummy variables while still in the error state. E.g.,

DGSD 134 SYS.11.01

<SETG F

<FUNCTION (A "AUX" (B "a strir1£"))

(.B <REST .A 2>) ; "Return this LIST.~!

<F (1))$

ERROR

OUT-OF-:OOUNDS

REST

LISTENING-AT-LEVEL 2 PROCJiSS 1

<ARGS <FRAME <FRAME>>>$

[(1) 1]

.A$

(1)

.B$

"a string"

<EHRET (5)> ; "Make the REST return (5)"$

("a string" (5))

Typing Control-G (' .. G) at MUDDLE causes it to act just as

if an error had occurred in whatever was currently being done.

You can then examine the center.ts of variables as above, continue

by applying ERRET to one argument (which is ignored), or flush

DGSD 135 SYS.11.01

everything by applying ERREI' to no arguments.

DGSD 136 SYS.11.01

14. Other Things

The following don 1 t seem to fit very well into any

sectioning I can come up with. So here they are.

14.1. STACKFORM

This rather strange FSUER is used to build a FORM on the

STACK (more efficient than garbage-collected storage) and then

EVAL it. An application of STACKFORM looks like this:

where

~ is an arbitrary expression

~~ EVALs to something which can be applied (SUER,

FSUBR, etc.)

~~ is another arbitrary expression which should be

cap:3.ble of returning a FALSE.

DGSD 137 SYS.11.01

Evaluation of an application of a STACKFORM proceeds as

follows:

1) Evaluate 4'a~ and place the result on the stack.

2) Evaluate 4ce~, and then:

2.1) If~~ evaluated to non-FALSE, evaluate 4~ and

place the result on the stack. Then go rack to the

start of (2).

2.2) If~~ evaluated to a FALSE, apply the stacked

~~ to the stacked 4~s and return the result.

14.1.1. Example

The following SUER reads characters from .INCHAN until an

$ is read, and then returns what was read as one S'IRING.

DGSD 138

<SEID RDSTR

<FUN CTI ON ()

<STACKFORM ,STRING

<READCER>

<NOT<=? <NEXTCPR>

<ASCII 27>>>>

>>$

SYS.11.01

<PROO () <READCPR> ;"Flush the .ALTMODE ending tliis input. 11

<RDSTR>>$ABC123<+ 3 4>$

"ABC123<+ 3 4>"

14.2. % and%%

The tokens% and %i are interpreted by READ in such a way

as to give a "macro" capability to MUDDLE similar to PL/1's.

Whenever READ encour.ters a single% - anywhere, at any

depth of recursion - it immediately, without looking at the rest

of the input, evaluates the object following the%. The result

of that evaluation is used by READ in place of the object

following the f. I.e.,% means "don't really READ this, use EVAL

of it instead."

Whenever READ encounters %'f,, it likewise immediately

evaluates tte object followinc the%%. However, it completely

DGSD 139 SYS.11.01

ignores the result of that evaluation. Side effects of that

evaluation remain, of course.

14.2.1. Example

<SETG SETUP <FUNCTION() <SET A. 0>>>$

<SETG NXT <:FUNCTION() <SET A<+ .A 1>>>>$

[%%<SETIJP> %<NXT> %<NXT> (%%<SETUP>) %<NXT>J$

[1 2 () 1]

•

	Cover letter May 4, 1972
	Errata July 31, 1972
	A MUDDLE Primer May 5, 1972
	Acknowledgements
	Contents
	Forward
	0. Basic Interaction
	1. READ, EVAL, and PRINT
	2. Functional Application (type FORM)
	3. Values of Atoms
	4. Types and Structured Objects
	5. Basic Types of Structured Objects
	6. Truth
	7. FUNCTION
	8. PROG and REPEAT
	9. I/O
	10. Locatives
	11. Association
	12. Lexical Blocking
	13. Errors, FRAMEs, etc.
	14. Other Things

