~——

~—

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Reply to: Project MAC
545 Technology Square
Cambridge , Mass. 02139

Telephone: (617) 864-6900 x6201

May 4, 1972

TO: : DM/CG/CN Group
FROM: Greg Pfister

SUBJECT: Cover letfer for SYS.11.01

Two points:

First, the version of MUDDLE described herein
corresponds to the file TS NMUDDL on DM/CG/CN ITS. There
is also a DM/CG/CN TS MUDDLE and an AI TS MUDDLE. They
are basically the same as the MUDDLE described here, but
there are some differences.

Second, the printer for this document has a very
wide = (equal sign). Hence the symbol ==? comes out
as =7?.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Reply to: Project MAC
545 Technology Square
Cambridge, Mass. 02139

Telephone: (617) 864-6900 x6201

July 31, 1972

MEMORANDUM
TO: MUDDLE Users
FROM: Greg Pfister

SUBJECT: Errata for "A MUDDLE PRIMER" (SYS.11.41)

This memo describes changes which should be made to
all copies of "A MUDDLE PRIMER" (SYS.11.#1). In many cases,
these changes correct quite grievous errors, for which I
apologize.

Please note that the changes described reflect only
errors in the PRIMER; no attempt has been made to update
the PRIMER to include features added since it was published,
or even to include features which existed when it was
published but were undescribed. Such features, plus
features which are planned but not yet implemented,
include the following:

Bit manipulation

Non-garbage-collected storage

SEGMENTs in FORMs, and the SUBR APPLY
User-defined data types.

Use of the Evans & Sutherland display (in a state
of flux, but usable)

"Image mode" teletype output-implying ARDS and
IMLAC graphics (probably will change)

7. User-specified interrupt handling (in a state of
flux, but usable)

Multiple Processes (in a state of flux, but usable)
9. More flexible I/0 -- Binary, block mode, internal
channels, etc.; a general, upward compatible,
reorganization is under way (not yet usable)

(op] aOF wN -

[ee]

If you wish to learn about any of these, see Chris
Reeve, Bruce Daniels, Howard Brodie, or myself (or Ed Black,
in the case of the Evans & Sutherland Display). Also,
read INFO; MUDDLE RECENT for information about newly
added features.

The changes follow.

.12, Sect. 0.1, 2néd line:
"as TS MUDDLE" should be "as SYS:TS MUDDLE"
.38, Sect. 4.4.2, 1st line:
change to "<NTH <s.o.» <type FIX»>"
.39, 3rd line:
| change "<NTH <type FIX» <s.o.»>" to "<NTH <s.
40, Sect. 4.4.5, 2nd line:
change "<NTH <type FIX» <«s.o.>>" to "<NTH <s.
.46, Sect. 5.3.3, 2nd paragraph, 4th line:
change "<expresion>" to '"<expression»"
.47, Sect. 5.3.3.1, 2nd line:
"(666666)" should be "(66666)"
.49, Sect. 5.4.2.1.1, 5th line:
"<SET S <REST 15 "Right is might.">>" should
"<SET S <REST "Right is might." 15>>"
7th line:
change "<BACK .S 6>" to "<BACK .S 6>8"
.52, Sect. 5.4.4.2, 3rd line:
delete "ht after Y<a UVECTOR>"
.53, Sect. 5.4.4,2.1, 1st line:
change "<UVECTOR 2>>8" to "<IUVECTOR 2>>8"
.58, 4th line:
change "<PUT ARF" to "<PUT .AREF"
.63, Sect. 6.2.9, 4th line:
change "#FALSE ()" to "thatvFALSE"
Sect. 6.2.10, last line:

change "#FALSE ()" to "the last FALSE it saw"

0.> <type FIX>»>"

0.» <«type FIX>>"

be

.65, Sect. 6.3, 3rd paragraph, last line:
change "#FALSE ()" to "the last FALSE it saw"
.67, Sect. 7.1, 1lst paragraph, last line:
Last line should read: "it to be executed interpretively
and return a value."
.81, Sect. 77, last paragraph:
"vaild" should be "valid"
.85, 3rd paragraph; 3rd line:
"ACTIVATIION" should be "ACTIVATION"
.98, Sect. 9.2.5.1, 3rd line:
change "its" to "it's"
.108, Sect. 10.3.2.1, last line:
change "(1 HI 2)".to "(1 HI 3)"
.109, 1st 1ine:
change "bind ng" to "binding"
.111, Sect. 11.1.2, 3rd line:
change "<indicaor>" to "<indicator>"
.112, Sect. 11.2.1, 1lst line:
change "<exp>»" to "<exp»>"
Sect. 11.2.2, 1lst line:
change "<exp»" to "<exp»>"
.113, Sect. 11.3, 5th line:
change "<PUT L" to "xPUT .L"
delete next two lines.
9th line:

change "<GET L" to "<GET .L"

12th line:
replace "![4!]" with "(1 2 3 u)"
p.114, 5th line:
replace "0.300000" with "(3 y)"
6th line:
change "<2.L>" to "<2 .L>"
11th line:
change "[A B C;" to "'[A B C3"
Insert new paragraph at end of page:
"The ' in the <SET N... is to keep EVAL from
generating a new VECTOR ("Direct representation"),
which would not have the comment on it."
p.115, Sect. 12.1, 2nd paragraph, 4th line:
change "PNAMEs of ATOMs to all" to "PNAMEs of all
ATOMs to"
3rd paragraph, 4th line:
change '"only arise'" to "arise only"
p.122, Sect. 12.6, 5th line:
change "LVAL of OBLIST" to "LVAL of the ATOM OBLIST"
Last line should read: ""pops" the LVAL of the ATOM
OBLIST and returns the resultant LIST of OBLISTs."
p.126, 4th line:
change "symbols" to "symbol(s)" and add the following
sentence at the end of the line:
"If you have many, just write them successively."
9th line:

change "notin" to "not in"

DYNAMIC MODELING/COMPUTER GRAPEICS SYSTEM DOCUMENT 5Y5.11.01

IDENTIFICATION

A MUDDLE PRIMEF [)F{/&i:1-

Greg Pfister
5 May 1972

MOTIVATION

The following document is intended to be a low level

introduction to MUDDLE. Tt is not intended to take the place of

a full reference manual, but rather to bring a naive user to the

point where he can use such a manual.

REITERENCES

1. Daniels, Bruce, Micro Muddle Manual, SYS.11.03.

BODY

The primer proper follows.

DGSD 2 SYC.11.01

ACINOWLEDGEMENTS

I was not a member of the original group which labcred
for two years in the design and initial implementation of MUDDILE;
that group was composed princirally of Gerald Sussman, Carl
Hewitt, Chris Reeve, Dave Cressey, and later Bruce Daniels. I
would therefore like to take this opportunity to thank my NMUDDLE
mentors, chiefly Chris Reeve and Bruce Daniels, for rermaining
civil through several months of verbal badgering. I believe that
I learned more than just "another programming language" in
learning MUDDLE, and I am grateful for this opportunity to pass
on some of that xnowledge. What I camnot pass on is the
Inmowledge gained by using MUDDLE as a system; that I can only ask
you to share.

For editing the content of this document and correcting
sore misconceptions, I would like to thank Chris Reeve, Bruce
Daniels and especially Gerald Sussman, one of whose good ideas 1
did not use (Sorry, Jerry — I got tired.)

A gold star to Fran Knight for proofreading; ditto to Sue
Pitkxin for typing. And a pox on the paper-shredding termiral
typing this out.

CONTENTS

FORWARD

O. BASIC INTERACTION

0O.1. LOADING MUDDLE

0.2. Typing

0.3. ICADING A FIIE

O.4. ERRORS — Simrle Considerations
1. READ, EVAL, and PRINT

1.1. General

1.1.1. Philosophy

1.2. Example (type FIX)

1.3. Example (type FLOAT)

1.4. Example (type ATOM, PNAME)

1.5. Structured Objects

2. FUNCTIONAL APPLICATION (type FORM)

2.71. Representation
2.2. Evaluvation

2.%. Built-in Functions (type SUBER, type FSURR)
2.4. Examples
3. VALUES OF ATOMS

3.1 General
3.2. Global Values

3.2.1. SEIG

%.2+1.7. Examples

SYS.11.01

11

12
12
13
15
16
18
18
19
20
21

21

24
24
24

26
27

27
27

27
28

DGSED

3.2+.2+« GVAL

3.2.2.17. Examples

3.2.%. Note on SUBRKs and FSUBRs
5.5+ OET

3.%«1. Examrles

3.4. LVAL

3e4.1. Examples

3«5+ VALUE

3.5.1. Examples

3.6+ EVAL of a FORM, again.

4. TYPES AND STRUCTURED OBJECTS
4.1. General

4.2. SUBRs related to TYPEs
4.2.1. TYPE

4.2.2. PRIMIYPE

4.2.3. CHIYPE

4.2.4. ALLTYPES

4.%. General Representational Format

4.4. Basic Functions
4.4.1. LENGTH

4.4.2. NTH

4.4.%. REST

4.4.4. PUT

4.4.5. GET

5. EASIC TYPES OF STRUCTURED OEJECTS

5.1. Representations

5.1.1. LIST

SYS.11.01

DGSD 5

5.1.2. VECTOR

5.1.3. UVECTOR

5«1.4. STRING

5.2. BASIC EVAIuation of BASIC STRUCTURES

5.2.1. Basic

5.2.2. Many Linked Examples

5.%. Generation

5.%.1. Direct Representation

5.%.2. The SUEBRs LIST, VECTOR, UVECTIOR, and STRING
5.3.2.7. Examples

5.7.3. The SUBRs I1IST, IVECTOEK, IUVECTOR, and ISTRING
5.3+3.1. Examples

5<4. Unique Properties

5.4.1. LIST (the type)

5¢4<1.1. PUTIREST

5«4.1.1.1. PUTREST Example

5.4.2. VECTOR, UVECTOR, anc STRING

5.4.2.17. BACK
5.4.2.7.1. BACK Examples
5.4'2020 TOP

5<4.2.2.7. TOP Example
5.4.3. VECTOR (the type)
5.4.4. UVECTOR (the type)
5.4.4.7. UTYPE

5.4.4.1.1. UTYPE Example
5.4.4.2. CHUTYPE
5.4.4.2.7. CHUTYPE Example

SYS.11.01

43

DGSD

5.4.5. STRING (the type)

5.4.5.1. ASCII

5.5. Segment Evaluation
H5.5.2. Evaluation

5.%.3. SEGMENT Examples
5.5.4. Note on Efficiency

5.5.4.1. Examples

6. TRUTH

6.1. Truth Valves

6.2. Predicates
helel. =

6.2.2.
6.2.3.
6.2.4.
6.2.5.
6.2.6.
6.2.7.
6.2.8.
6.2.9.

MONAD?
EMPTY?
AND

€.2.70. OR
6.2.11. NOT

6.2.12. MEMEER
€.2.13. MEMQ
6.3. COND

6.301.

Examples

7. FUNCTION

7«1« General

SYS.11.01

DGSD 7

7.2. Simple Case

T.2.1. Example

T.2.2. Factorial and Commer.ts
T-3. "OPTIONAL™

7+%3<1. "OPTIONAL" Example
T.4. "TUPLE" and TYPE TUPLE
Te4.1. "TUPLE" Example

Te5« "AUX" and "EXTRA"

T.6. QUOTE

T.7. "ARGS"

7.E. "CALL"

7.9 EVAL and "BIND"

7.10. ACTIVATICN, "NAME", "ACT", AGAIN, and EXIT
8. PROG and REPEAT

8.1 General

8.2. Basic PROG EVALuation
8.3. AGAIN and RETURN

8.4. REPEAT EVALuation

8.5. GO and TAG
9. 1/0

9.1.1.2. READCHR
9.1.1.3. NEXTCHR
9.1.2. Output
9.1.2.1. PRINT
9.1.2.2. PRIN1
9.1.2.3. PRINC
9.1.2.4. FLATSIZE

SYS.11.01

DGED

9.2. CEANNELs
9.%2.1. OPEN

9.72.2. CLOSE
9.2.%. CHANLIST

9.2.4. INCHAN and OUTCHAN
¢.2.5. Contents of CHANINELs
9.2.5.7. Output CHANNELs
G.2.5.2. Input CHANNELs
9.3. Input Errors

9.%7.1. Example

9.4. Other I/0 Functions
9.4.1. LOAD

9.4.2. FLOAD

9.4.%. ECHOPAIR

10. Locatives

10.1. General

10.2. Obtaining Locatives
10.2.1. LIOC

10.2.2. GIOC

10.2.3. AT

10.3. Using 1ocativ§s
10.%3.1. 1IN

10.3.7.17. IN Examples
10.%.2. SETLOC

10.3.2.1. SETLCC Examples

10.4. Note on locatives

11. Association

SYS.11.01

4

102

102
102

103
104
104
105
105
105
106
106
107
107
107
108
108
110

DGSD 9

11.71. Associative storage

11.1.1. PUTPROP

11.1.2. PUT

11.1.3. Removing Associations
11.2. Associative Retrieval

11.2.1. GETPRCP
11.2.2. GET

11.3. Examples of Association
12. ILexical Blocking

12.1. Basic Considerations
12.2. OBLISTs

12.2.1. OBLIST Names

12.2.2. MOELIST

12.2.3. OBLIST?

12.3. READ and OBLISTs
12.%.1. Trailers

12<.3.2. READ and Defaults

12.4. PRINT and OBLISTs

12.5. Initial State
12.6. ELOCK and ENDBLOCK

12.7. SUBRs Associated VWith Lexical Blocking
12.7.1. READ (again)

12.7.2. LOCKUP

12.7.3+. REMOVE

12.7.4. INTERN

12.7.5. ATOM

12.7.6. PNAME

SYS.11.01

110
110
111
111
112

112
112

113
115
115
116
116
118
118
119
119
120
120
121

102

123
123
12%
123
124
124
124

DGSD 10 SYS.11.01

12.8. Example of Normal Use: Death of the INC Problem 125
12.9. Extensions 128
12.9.1. The User Oblist Oblist (UOQO) 128
12.9.2. Automatic CBLIST Generation 20
1%. Errors, FRAMEs, etc. 129
13.1. LISTEN) 126
15.2. FRROR 129
1%.%. TYPE FRAME 1%0
1%.3.1. ARGS _ 121
13.%.2. FUNCT 131
1%4.5.%. FRAME (the SUBR) 121
1%.3.4. Examples 12e
1%.4. ERRET 1%2
1%.4.1. Examples 133
1%.5. Control-G (°G) 154
14. Other Things 1%6
14.17. STACKFCRM 126
14.1.1. Example 127
14.2. ¢ and 9% 128

14.2.1. Example 129

DGSD 11 SYS.11.C1

FORWARD

Trying to explain MUDDLE to an uninitieste is somewlat
like trying to untie a Gordian knot. Vhatever topic one chooses
to discuss first, full discussion of it appears to imply
discussion of everything else.

What follows is a presentation of MUDDLE in an order
apparently requiring the fewest forward refererces. It is not
perfect in that regard; however, if the reader is patient and
willing to accept a few, stated things as "magic" until they can
be explained better, he will probably not have too many problems
understanding what is going on.

This document is by no means meant as a substitute for a
MUDDLE reference manual. It is instead intended to provide means
for "self-teaching" to the poirt where a (necessarily) highly

self-referential manual can be useful.

Note: all examples below are composed of pairs of lines.
The first line of a pair always ends in § (ALT-MODE); this is the
input. The second line is the result of MUDDLE’s groveling over

the first. If the user were to type all the first lines at a
MUDDLE, it would respond with the second.

DGED 12 SYS.11.01

O. BASIC INTERACTICN

The purpose of this chapter is to provide you with that
minimal amount of information needed to experiment with MUILDLE
while reading this primer. It is strorgly recommended that you

do experiment, especially upon reaching Chapter 7 (FUNLCTIOL).

O0.1. ILOADING MUDDLE

First, catch your rabbit. Somehow get the program filed

as TS MUDDLE running. In MONIT, incant MUDDLE<cr> and in DDT,
use MUDDLE"K . TS MUDDIE will first type out some news relating
to MUDDLE, then type '

LISTENING-AT-LEVEL 1 PROCESS 1

and then wait for you to type somethinge.

The program which you are now running is an interpreter
for the language MUDDLE. All it knows how to do is interpret
MUDDLE expressions. There is no special "command language"; you
conmunicate with TS MUDDLE — meke it do things for you — by
actually typing legal MUDDIE exrressions which TS MUDDLE then

interprets. Everything you can do at a console can be done in a

DGSD 13 SYS.11.01

program, and vice versa, in exactly the same weay.

0.2. Typing

Typing a ckaracter at TS MUDDLE normally just causes that
character to be echoed (printed) and remembered in a buffer. The
only characters for which this is not true act as follows:

Typing ALT MODE (or ESC) causes TS MUDDLE to echo $
(dollar sign) and causes the contents of the buffer (the

characters which you’ve typed) to be interpreted as a MUDDLE
expression. When this interpretation is done, the result will be
printed and TS MUDDLE will wait for more typing. ALT MOTE will
be represented by the glyph 6 in this primer.

Typing RUBOUT (or DEL) causes the last character in the
buffer — the one most recently typed — to be thrown away

(deleted). If you now immediately type another RUBOUT, once

again the last character is deleted — namely, the second most
recently typed. Etc. The character deleted is echoed, so you

can see what you‘re doing. If no characters are in the buffer,
RUBOUT echoes as carriage-return linefeed.
Typing “@ (control-commercial at) deletes everything you

have typed since the last §, and prints a carriage-return

linefeed.
Typing “L (control-L) causes the current input buffer to
be typed back out at you. This allows you to see what you really

DGSD 14 SYS.11.01

have, without the confusing re-echoed characters produced ty
RUBOUT. It may also, on some consoles, clear the screen.
Typing “G (control-G) causes MUDDLE to stop whatever it
is doing and act like an error occurred. (See "simple error
discusion" below.) “G is generally most useful in zborting

infinite loops, semi-infinite typeout, and similar terrible

things.

If you end your typing with the pair of characters !§
(exclamation point ALT MODE), 211 currently open parentheses,
brackets, etc., will automatically be closed and interpretation
will start. Without the !, MUDDLE will just sit there waiting
for you to close them. If you have unbalanced parentheses,
brackets, etc., within the expression you typed, MUDDLE will
attempt to close them correctly and will tell you that
sonething ‘s wrong.

MUDDLE accepts and distinguishes between upper and lower

case. All "built-in functions" must be referenced in upper case.

DGSD 15 SYS.11.C1

0.3. LOADING A FILE

If you have a MUDDLE program you have vritten as arn ASCII

file on some device, you can "lcad" it by typing the following
MUDDLE expression and then typing ©:

<FIOAD <¥1» <F2> <DEV> <UCR>>

Each of the objects in 4»’“s are surrounded by " (dcuble quotes)

and

<F1> is file name 1 initial default: "INPUT"
<F2> is file name 2 initial default: ">"
<DEV> is the device initial default: "DSK"

4<USR» is the user directory initial default: your UNANE
The only default which "floats" to what you used last is <USR>.

Once you type ®, MUDDLE will process the text in tre file
exactly as if you had typed it on 2 console and followed it with

®. (Including FIOADs in the file.) VWhen MUDDLE is finished
processing the file, it will print "DONE" .

DGED 16 SYS.11.07

Examples:

Ioading the file DSK:GFP;HI UGFQO1 :

<FICAD "HI" "UGPOO1" "DSK" "GFP">0)
IIDONE"

Loading the file TEST > from your own disk directory uron
first entering MUDDIE:

<FICAD "TEST" ">">0
"DONE"

0.4. ERRORS — Simple Considerations

When MUDDLE decides for some reason that something is

wrong, the normal order of evaluation is interrupted and ar error

function is called. This produces the following console output:

FRROR
<reasons
<function in which error occurred>

LISTENING-AT-LEVEL <an integer> PROCESS «an integer»

DGSD 17 SYS.11.C1

You may now interact with MUDDLE as usval, typing
expressions and having them evaluated. There exist facilities
(MUDDLE functions) allowing you to find out what went wrong,
restart, or kill whatever was going on. In particuvlar, you can
recover from an error — i.e., undo everything but side effects
and return to the initial typing phase — bty typing the following

first line, to which MUDDLI will respord with the second line:

<ERRET>®
LISTENING-AT-LEVEL 1 PROCESS 1

If you type the following first line while still in the
error state (before <ERRET>), MUDDLE will print, as shown, the

arguments which gave indigestion to the unhappy function:

<ARGS<FRAME<FRAME>>>§
[<arguments to unhappy function>]

This will be explained by and by.

DGSD 18 SYS.11.C1

1. READ, EVAL, and PRINT

1«1. General

Once you type @, the current contents of the input buffer

go through processing by three functions successively: first
RE/D, which passes its output to EVAL, which passes its output to
PRINT, whose output is typed on the console. TFunctionally,

READ: printable representations -> MUDDLE objects
EVAL: MUDDLE objects -> MUDDLE objects
PRINT: MUDDLE objects -> printable representations

I.e.: READ takes ASCII text, such as is typed in at a
console, and creates the MUDDLE objects represented by that text.

PRINT takes MUDDIE objects, creates ASCII text representations of
them, and types them out. EVAL, which is the really imnportant

one, performs transformations on MUDDLE objects.

DGED 19 SYS.11.C7

1.1.1. Philosophy

In a general sense, when you are interescting with o
MUDDLE, you are dealing with a world inhabited only by a
particular set of objecté: MULDLE objects.

MUDDIE objects are best considered as abstract entities
with abstract properties. The properties of a particular NUDDLE
object depend upon the class of MUDDLE otjects to which it
belongs. This class is the TYFE of the MULDLE object. Lvery
MUDDIE object has a TYPE, and every TYPE has its own
peculiarities. There are many different TYPEs in MUDDLE; they
will gradually be introduced below, but in the meantime here is a
representative sample: SUBR (the TYPE of READ, EVAL anc PRINT),
FSUBR, LIST, VECTOR, FORM, FUNCTION, etc.

The laws of the MUDDLE world are defined by EVAL. In ¢
very real sense, EVAL is the only MUDDLE object which "acts",

jAv]

which "does something". In "acting", EVAL is always "following
the directions" of some MUDDLE object. Every FMUDDIE object

should be looked upon as supplying a set of directions to LVAL;
what these directions are depends heavily on the TYPE of the

MUDDLE object.

Since EVAL is so ever-rresent, an abbreviation is in
orcder: "evaluates to 4<something>" shall be taken as an
abbreviation for "when given tc EVAL, causes EVAL to return
<scmnething>".

As abstract entities, MUDDLE otjects are, of course, not

"visible". There is, however, a standerd viay of representing

oD 20 SY5.11.C1

abstract MUDDLE objects in the real world. The stendard wey of
representing any given TYPE of MUDLDLE object will be given below

<A

when the TYPE is introduced. These standard representastions arc

what RFAD understands, and what PRINT produces.

1.2. Example (type FIX)

10
1

The following has occurred:

First, READ recognized the character 1 as the
representation for a MUDDLE object of type FIX, in
particular the one which corresponds to the integer 1.
It built the MUDDLI object correspondirg to the decimal
representation typed, and returned it.

Then EVAL noted that its input was of type FIX.
An object of type FIX evalvates to itself, so FVAL
returned its input undisturbed.

Then PRINT saw that its input was of type TIX,

and printed on the console the decimal character

reypresentation of the correspondng integer.

DGSD 21 5Y5.11.01

1.3. Example (type FLOAT)

1.08
1. CO00OCCO0

What went on was entirely eanalogous to the preceding

example, except that the MUDDLF object was of type FLOAT.

1.4. Fxample (type ATOM, PNAME)

GEORGE®
GEORGE

This time a2 lot more happened.

READ noted that what was typed had no special
meaning, ard therefore assumed that it was the

representation of an identifier, i.e., a MUDDLF object of

DGED 22 SYS.11.C1

type ATOM. READ therefore attempted lcoking tre
representation up in a table it keeps for such puryoses
(2 LIST of OBLISTs, available as the local valve of the
ATOM QOELIST — igrire the last if it is gitberish). If
READ finds an ATCM in its table corresyponding to thre
representation, thst ATOM is returned as READ s value.
If READ fails in the lookup, it creates a new ATOlM, puts
it in the table with the representation read, (INISERT
into <1 .OELIST> — likewise ignore) and returns the new
ATOM. DNothing which could in any way be referenced as a
legal "value" is attached to the new ATOM. The initially
typed representation of an ATOM becomes its PNAME,

meaning its name for PRINT.
EVAL, given an ATOM, returned just that ATOM.
PRINT, given an ATCM, typed out its PNAME.

Further on, the methods used to attach values to ATOMs

will be described; but first, two more things must be covered.

DGSD 23 SY5.11.01

1.5. Structured Objects

To this point, all the objects we have been concerred
with have had no interral structure discernible in MUDLLE. Vhile
the characteristics of objects with internal structure differ

greatly, the way READ and PRINT hardle them is uniform, to wit:

READ, When applicd to the representation of a structured
object, builds and returns an object of the indicated type with
elements formec by applying READ to their representations.

PRINT, when applied to a structured object, produces a

representation of the object, with its elerents represented as

PRINT applied to each of them in turn.

DGSD 24 5YS.11.01

2. FUNCTIONAL APPLICATICN (type FORM)

2.1. Representation

The MUDDLE type which is used to represent the
application of a function to its arguments is the type FORM. Its

printed representation is:

< «func> <«argl> <argd> . . . <argn>» >
where <func> is an object which designates the functior to be
applied, and <argl> through <argn> are the argumerits. " (The

PRIMTYPE of a FORM is LIST — ignore that until you read Chapter
4.)

2.2. Evaluation
EVAL applied to a FORM does the following:

First, examine the first element of the FORM. If it is
an ATOM, look at its "value". If it is not an ATOM, EVAL it and
look at the result of the evaluation. If what you are locking at

DGSD 25 SYS.11.01

is not something which can be applied to arguments, generate an

error. Otherwise, follow the first element’s directions in
evaluating or not evaluating the arguments, (see below) and then

"apply the function" — i.e., EVAL the body of the object gotten
from <funcs>.

2.3« Built-in Functions (type SUBR, type FSUER)

The built—-in functions of MUDDLE come in two varieties:

those which have all their arguments EVALd before operating on
them (type SUBR, for subroutine) and those which have none of
their arguments EVAIQ (type FSUBR, historically from LISP). See
Bruce Daniels’ Micro Muddle Manual (ref 1) for a listing of 211
the functions built into MUDDLE, their type, and a short

description.

Unless otherwise stated, every MUDDLE function mentioned
is of type SUBR. Also, when it is stated that an argument of a
SUER must be of a particular type, note that this means that EVAL
of what is there must be of the particular type.

Other convenient abbreviations which will be used are:
"the SUBR <PNAME>" in place of "the SUPER which is the ‘value’ of
the ATOM of PNAME <PNAME>". Similarly, "the FSUBR «PNAME>". 1In
cases where the type of the applicable object either does not

matter or is assumed known, "the function <PNAME>" will be used.

Yet another: "name of the function 4something>" for "PNAME of the

DGSD 26 SYS.11.01

ATOM whose ‘value’ is the <SUER or FSUER>» <something>".

2.4. Examples

<+ 2 4 659
12

The PNAME of the SUBR which adds numbers is + . All of
the usval arithmetic functions are MUDDLE SUBRs: +, -, /, *, MIN,
MAX, SIN, COS, SQRT, 10G, EXP. They are all indifferent as to
whether their arguments are FLOAT or FIX or a mixture. In the
latter case, they exhibit "contagious FLOATing"; one argument of

TYPE FIOAT forces the result to TYPE FLOAT.

<FIX 1.0>¢
1

FIX is the PNAME of the SUER which explicitly returns a
FIXed point number corresponding to a FLOATing point number.
FIOAT does the opposite.

DGSD 27 SYS.11.01

3. VALUES OF ATOMS

3e71e General

There are two kinds of "value" which may be attached to
an ATOM. An ATOM may have either, both, or neither. They

interact in no way. These two values are referred to as the

local value and the global value of an ATOM. The terms "local"

and "global" are relative to processes, not functions or
programs. The functions which reference the local and global
values of an ATOM, and some of the characteristics of local vs.

global values, follow.

3.2« Global Values

3.2.1. SETG

The global value of an atom may be changed by the SUBR
SEIG , as in

DGSD 28 SYS.11.C1

<SEIG <an ATOM>» <almost anything>>

where <an ATOM> must EVAL to an ATOM, and <alncst anytling> can
be anything but a segment call (see below — ifnore it for now.).
The EVAL of the second argument becomes the global value oif the
EVAL of the first argument. The value returnec by the SLTC is

the new global value of the atom.

3elel.1+ Examples

<SETG FOO <SEIG BAR 5C0>>§
500

The above made the global values of both the ATOM TOO and
the ATOM BAR equal to the ITXed point number 5CO.

<SETG BAR FO00>9
¥CO

That made the global value of the ATOM BAR equal to the
ATOM FCO.

DGSD 29 SYS.11.01

3.2.2. GVAL

The SUER with PIAME GVAL is used to reference the global
value of an ATOM.

<GVAL <an ATOM>>

returns as a value the global value of <an ATOVM>». If <an ATOM>
does not evaluate to an ATOM, or if the ATCM it evaluates to has
no global value, an error is generated.

GVAL applied to an ATOM anywhere, in any process, in any
function, will always return the same value. Any SETIG anywhere
changes the global value for everybody. Global values are
context-independent.

READ understands the character , (comma) as an
abbreviation for an application of GVAL to whatever follows it.
PRINT always translates an application of GVAL into the comma
format. The following are absolutely equivalent:

y<anything» <GVAL <anything>>

DGSD 30 SYS.11.01

3e2+2+.1« Examples

Assuming the examples in 3.2.1.71 were carried out in the

order given, the following will evaluate as indicated:

,F00§
500
,EAR®
FCO

,» BARG
500

3.2« 3%« Note on SUBRs and FSUBRs

The GVALs of the ATOMs used to reference MUDDLE
"built-in" functions are the SUBRs and FSUERs which actually get
applied when those ATOMs are referenced. If you don“t like the
way those supplied routines work, you are perfectly free to SEIG

the ATOMs to your own versions.

DGSD 31 SYS.11.01

3.3« SET

The SUER with PEAME SET is used to put a local value on
an ATOM. Applications of SET are of the form

<SET <an atom>» <almost anything>>

SET returns EVAL of <almost anything> Jjust like SETG.

3+3«1. Examples

<SFT EAR <SET FCO 100>>®
1C0

Both BAR and FOO have been given local values equal to
the FIXed point number 100.

<SET FCO EAR>®
BAR

FOO has been given the local value EAR.

Note that neither of the above did anything to any global
values FCO and EAR might have had.

DGSD 32 SYS.11.01

3«4+ LVAL

7 The SUER used to extract the local value of an ATON is
named ILVAL. As with GVAL, there is an abbreviation for an
application of LVAL: the character . (period). The following
two representations are equivalent, and when EVAL operates on

their corresponding MUDDLE objects, they return the current local

value of <an ATOM>:
<LVAL <an ATOM>> .<an ATOM>
The local value of an ATOM is unique within a process.

SETting an ATOM in one process has no effect on its LVAL in

another process.

DGSD 33 SYS.11.C1

3e4.1. Examples

Assume all of the previous examples have been done. Then

the following evaluate as indicated:

.EAR®

1CO

. FCOB

BAR

s - FOO0
FOO

3.5« VALUE

VAIUE is a SUBR which takes an ATOM as an argument, and
then:

1) if the ATOM has a GVAL, returns the GVAL

2) if the ATOM has no GVAL, but has an LVAL, returns the
LVAL

%) if the ATOM has neither a GVAL nor an LVAL, error.

DGSD 34 SYS.11.01

305‘1 - E){amples

<SET A 1>6
1
<VALUE A>®
1
<SETG A 2>
2
<VAIUE A>9
2

3.6. EVAL of a FORM, again.

What really happens when EVAL meets a FORM with an ATOM
as its first element is that VALUE of the ATOM is used. If the
ATOM does not have any values at all, the VALUE fails and

produces arn errore.

DGSD 35 SYS.11.01

4. TYPES AND STRUCTURED OBJECTS

4.1. General

With one exception which has not yet been implemented,
2ll structured objects in MUDDLE are ordered sets. As such,
there is a class of functions which operate on all of them
uniformly, as ordered sets. These are grouped together
immediately below. On the other hand, the reason for there being
different types of structured objects is that there are useful
qualities of structured objects which are mutually incompatible.
There are, therefore, functions which exist to take full

advantage of these mutually incompatible qualities which do not

work on all structured objects.

The structural organization of an object, i.e., the way
it is stored in memory, is referred to as its “primitive type".
While there are many different types of structured objects in
MUDDLE, there are very few (for all practical purposes four)
primitive types. Fach of the four most conscicusly used
primitive types is discussed in Chapter 5, along with those
special functions operating on each primitive type. For each of
the types discussed in Chapter 5, its primitive type is the same
as its type.

In all the following, <s.0.> will be used as a symbol for

DGSD 36 SYS.11.01

any structured object.
Before talking any more about structured objects, some

information needs to be given about types in general.

4.2. SUBRs related to TYPEs

4.2.1. TYPE

<TYPE <anything>>

returns an ATOM whose PNAME corresponds to the TYPE of
<anything». There is no TYPE TYPE. To type a TYPE, just type
the appropriate ATOM. Like FIX or FLOAT or ATOM etc.

4.2.2. PRIMIYPE

<PRIMTYPE <anything>>

evaluates to the primitive type of <anything> — not just
structured objects. The PRIMIYPE of <anything> is an ATOM which
usually also represents a TYPE. The way an object can be

manipulated depends solely upon its PRIMTYPE (the way it is
evaluated depends upon its TYPE).

DGSD 37 S5YS.11.01

4.2.3. CHTYPE

<CHTYPE <something> <a TYFE> >

returns <something> changed to TYPE <a TYPF>. However: an
error is generated if the FRIMIYPE of <something» woulc have to

chenge to accomodate the TYPE change.

4.2.4. ALLTYPES
<ALLTYPES>

returns a VECTOR (see Chapter 5) containing just those ATOMs
wvhich can ever be returned by TYPE or FRIMTYPE.

4.%. General Representational Format

There are many TYPEs for which MUDDLE has no specific
representation. There aren’t enough different kinds of
brackets. The representation used for TYPEs without any special

representation is:

DGSD 38 SYS.11.01

<its TYPE» <4representation as if it were its FRINTYPI>

READ will understand that format for any structured TYFPE.

4.4, Basic Functions

The following functions operate uniforrly on all

structured objects, and generate an error if not arplied to a

structured object.

4.4.1. LENGTH

<LENGTE <sS.0.>>

Evaluates to the number of members of <s.0.>.

4.4.2. NTH
KNTH 4type FIX> <S.0.3>

Evaluates to the <type FIX>“th element of <s.o.». Error
if <type FIX>» is O or less, or greater than <LENGTH <s.0.>>.
EVAL understands the application of an object of type TIX as a

DGSD 39 5Y5.11.01

"shorthand" call to NTH. I.e., EVAL considers the following two
to be identical:

<NTH <type FIX> <5.0.>> <4«type FIXz <S.0.>>

4.4.3. REST

<REST <s.0.> <type FIX>>

Evaluates to <s.0.>» without its first <type FIX>
elements. The second argument is optional, with 1 assumed.

Obscure side effect: REST actually returns <s.o0.>
"CHTYPEQ" (but not through application of CHTYPE) to its
PRIMTYPE. E.g., REST of a FORM is a LIST. REST with an

explicit second argument of O has no effect except for this TYPE

change.

DGSD 40 SYS.11.01

4.4.4, PUT
<PUT 4s.0.>» <type IIX> <anything legal>>

First makes <anything legal> the <type FIX>“th element of
£S.0.>», then evaluates to <s.0.». <anything legal> is anything

which can legally be a member of <s.0.»; often, this is
synonymous with "eny MUDDLE object", but see Chapter 5. Error if

<type FIX> is O or less, or greater than <LENGTH <s.0.>>.
PUT is actually more general than this. See Chapter 11.

4.4.5. GET
<GET 4s.0.>» <type FIX>>
Evaluates the same as <NTH <type FIX> <s.0.»>. It is

nore general than NTH, however, and is included here only for

symmetry with PUT. See Chapter 11.

DGSD 41

5. BASIC TYPES OF STRUCTURED OBJECTS

5.1. Representations

5«1<1. LIST

(<element 1> <element 2> . . . <element N>)

represents a 1LIST of N elements.

5+1+.2. VECTOR

[<element 1> <element 2> . . . <element N>]

represents a VECTOR of N elements.

SYS.11.01

DGSD 42 SYS.11.01

5.1.3. UVECTCOR

![<element 1> <element 2» . . . <element N> !]

represents a UVECTOR (uniform vector) of N elements. The second

! (exclamation point) is optional.

5.1.4. STRING

"<characters>"

represents a STRING of ASCII text.

5.2. BASIC EVALuation of BASIC STRUCTURES

5.2.1. Basic

EVAL of a STRING is Jjust the original STRING.
EVAL acts exactly the same with LISTs, VECIORs, and
UVECTORs. EBasically, it generates a new object with elements

equal to EVAL of the elements it is given. This is the basic

43

means of constructing a given structure.

evaluation" below.

He2.2. Many Linked Examples

(12<+34>)8

(127)

<SET FOO [5 <~ 3> <TYPE "ABC">1>8
[5 -3 STRING]

<2 .FOO>®

-3

<TYPE <3 .FOO>>0

ATOM

<SET BAR ![("meow") (.F00)]>®

[("meow") ([5 -3 STRING])!]
<ILENGTH .BAR>®

2

<REST <1 <2 .BAR>>>$

[-3 STRING]

<PUT .FOO 1 SNEAKY>®

[SHEAKY -3 STRING]

-BAR®

[("meow") ([SNEAKY -3 STRING])!]
<SET FOO <REST <1 <1 .EARD> 2>>86

n OW"

SYS.11.C1

Fowever, see "segment

DGSD - 44 SYS.11.C1

<BARS
'[("meow") ([SNEAKY -3 STRING])!]

5.%. Generation

Since LISTs, VECTORs, UVECTORs, and STEINGs are all
generated in a fairly uniform manner, mnethods of generating then

will be covered together here.

5.%.1. Direct Representation

Since EVAL of a LIST, VECTOR, or UVECTCR is a new LIST,
VECTOR, or UVECTOR with elements which are EVAL of the original,
simply writing down the representation of the object you want
will generate it. This method of generation was exclusively used
in the examples of 5.2.2.

Note that new STP'INGs cannot be gererated in this manner,

since the contents of a2 literal STRING are not interpreted.

DGED 45 SYS.11.C1

5.%.2. The SUBRs LIST, VECTOR, UVECTOR, and STRING

Each of the SUERs LIST, VECTOR, UVECTOR, and STRINC teakes
any number of arguments anc returns an object of the appropriate
TYFE vhose elements are EVAL of its arguments. There are
limitations on what the arguments to UVECTOR and STRING may EVAL
to, due to the nature of the objects generated. See below.

11ST, VECTOR, and UVECIOR are generally used only in
special cases, since Direct Rerresentation produces exactly the
same effect and is more transperent. CSTRING, on the other hand,
produces effects very different from literal STRINGs. See the

examples.

<LIST 1 <+ 2 3> ARC>®

(1 5 ABC)

(1 <+ 2 3> ABC)®

(1 5 ABC)

<STRING "A" <2 "QWERT"> <REST "ABC"> "hello">{
"AWBChello"

"A <+ 2 3> (5)"

"A K+ 2 3> (5)

DGSD 46 SYS.11.01

Ye3%.3. The SUBRs ILIST, IVECTOR, IUVECTIOR, and ISTRING

Each of the SUERs ILIST, IVECTOR, IUVECTOR, and ISTRINGC
creates and returns an object of the obvious TYPE. The format of

an application of any of them is:

< «I» <TYPE FIX> <expression> >

where <I» is one of ILIST, IVECTOR, IUVECTICR, or ISTRING. An
object of LENGTH <TYPE FIX> is generated, and its elements are
set to EVAL of <expression>.

<expression» is optional. VWhen it is not specified,
ILIST, IVECTOR, and IUVECTOR return objects filled with objects
of TYPE IOSE, which can be passed around and have its TYPE
checked, but otherwise is an illegal argument. If <expresion» is
not specified in ISTRING, you get a STRING made up of DEL (or
RUBOUT) characters, which do not print.

When <expression» is supplied as an agrument, it is
re-EVATuated each time a new element is generated. (Actually,
EVAL of <expression» is re-EVALuated, since all of these are
SURRs.) See the last example for how this may be used, and don”t
worry about the ° (single quote); it effectively supresses the
initial SUBR EVAIuation, and is fully explained in chapter 7.

JUVECTOR and ISTRING again have limitations on what
<expression> may EVAL to; again, see below.

DGSD 47 SYS.11.01

5.3.3+1. Examples

KILIST 5 6>
(6 6666 6)
<IVECTOR 2>6
[#10SE *0C0000000000% #LOSE *C000C00CC000*]

<SET A O>6

0

<IUVECTOR 9 “<SET A <+ A 1>>>0
1[123456°7809!]

5<4. Unique Properties

5.4.1. LIST (the type)

A 1IST may be considered as a "pointer chain". Any
MUDDLE object may be a member of a LIST. It is easy to add and
remove elements on a LIST, but the higher N is, the harder it is
to access the Nth element. The only function which works only on

objects of PRIMIYPE LIST is:

DGSD 48 SYS.11.01

5¢4.1.1. PUTREST

<PUTREST <a LIST 1> «a LIST 23>

changes <a LIST 1» so that <REST <a LIST 1»> is <a LIST 2», then

evaluates to <a LIST 1». Note that this actually changes
<a LIST 1>; using it will also change anything having

<a LIST 1» as an element or a value. See example below.

5«4.1.7.1. PUTREST Example

<SET BOW [<SET ARF (B W)>]>6
[(E W)]

<PUTREST .ARF (3_4)>6

(B 3 4)

.BOW®

[(B 3 4)]

5.4.2. VECTOR, UVECTOR, arc¢ STRING

VECTORs, UVECTORs, and STRINGs may be considered as

Yarrays". It is easy to access the Nth element irrespective of
how large N is, and it is relatively difficult to add and delete
elements. The following functions may be used only with an

DGSD 49 SYS.11.01

object of PRIMIYPE VECTOR, UVECTOR, or STRING (note — <VUS> is
an object whose PRIMTYPE is VECTOR, UVECTOR, or STRING.).

<BACK <VUS> <type FIX>>

This is the opposite of REST. It evaluates to <VUS> with
«<type FIX>» elements back on its front end. If <type ¥IX> is

greater than the number of elements which have been RESTed off,

€IrT0Te

5.4.2.7.17. BACK Examples

<SET ZOP <REST [1 2 3 4] 3>>6

[4]
<BACK .ZOP 2>

[2 3 4]
<SET S <REST 15 "Right is might.">>

nn

<BACK .S 6>
"might."

DGSD 50 SYS.11.01

5.4.2.2. TOP

<TOP <VUS>>

"BACKs up all the way" — i.e., evaluates to <VUS> with all the
elements which have been RESTed off back on ite.

5e4e2.2.1. TOP Example

<TCP .ZOP>§
[1 23 4]

Any MUDDIE object may be an element of a VECTCOR. A
VECTOR takes two words of storage more than an equivalent LIST,
but takes it in a contiguous chunk whereas a LIST may be
physically spread out. There are no SUERs or FSUERs which
operate only on VECTORs without also being applicable to UVECTICRs
and STRINGs.

DGSD 51 SYS.11.01

5.4.4. UVECTOR (the type)

The difference between a UVECTOR and a VECTOR is that
every element of a UVECIOR must be of the same type. UVECTORs

take half the storage of either VECTORs or LISTs, and like
VECTORs, take it in a contiguous chunk.

The "same type" restriction causes an equivalent
restriction to apply to EVAL of the arguments to either of the
SUEBRs UVECTOR or IUVECTOR. Note that attempting to say

11 JA!]

will produce an error, since you’'re attempting to put a FORM and

a FIX into the same UVECTOR. On the other hand,

<UVECTCOR 1 .A>

is legal, and will EVAL to the appropriate UVECTOR if .A EVALs to
a type FIX.

The following SUBRs work on UVECTORs alone.

DGSD 52 SYS.11.0(1

5.4.4.1. UTIYPE

<UTYPE <2 UVECTOR>>

evaluates to the type of every element in .

5¢4.4.1.1. UTYPE Example

<UTYPE ![A B C]>0
ATOM

5.4.4.2. CHUTYPE

<CHUTYPE <= UVECTOR>» <a TYPE>>

changes the UTYPE of <a UVECTOR>» to <a TYPI>», simultaneously

changing the type of all elemerts of <a UVECTOR>ht, and returns
the new, changed, UVECTOR. This works only when the PRIMTYPE of

the elements of «a UVECIOF>» can renain the same through the whole

process. The PRIMIYPE of IOSE is indeterminate; a UVECTOR of
UTYPE IOSE can be CHUTYPEA to anything. (If the anything is
structured, elements of the UVECTOR are empty.)

DGSD 53 5Y5.11.C1

5e4.4.2.17. CHUTYPE Example

<SET ICST <UVECIOR 253§

'[#LOSE *000000000000% #LOSE *0C00000000000%!]
KUTYPE .IOST>§

LOSE

<CHUTYPE .IOST FORM>®

1< <]

.1OST

1< <1

<CHUTYPE .IOST LIST>®

Q) O]

5.4.5. STRING (the type)

The best mental image of a STRING is a UVECTIOR of
CHARACTERs — where CHARACIER is the MUDDLE type for a single

character. The representation of a CHARACIER, by the way, is

!"<any ASCII character>

That is, the characters !" (exclametion point double quote)

preceding a single ASCII character represent the corresponding
object of TYPE CHARACTER.
The SUERs STRING and ISTRING will produce an error if you

DGSD 54 SYS.11.01

attempt to cause them to put other than a CHARACTER or a STRING
into a STRING.
There are no functions which uniquely manipulate STRINCs,

but one is particularly useful in connection with them:

5‘40 501. ASCII

<ASCIT <FIX or CEARACTEER>>

If its argument is of type FIX, ASCII evaluates to the
CHARACTER with the 7-bit ASCII code of its argument.

If its argument is of type CHARACTER, ASCII evaluates to
the ¥IXed point number which is its argument’s 7-bit ASCII code.

5.5. Segment Evaluation

Segment evaluation is a method of evaluvating structured
objects which is designed to be a very convenient method for
constructing structures from other structures. The only place
segment evaluation is legal is within the EVAL of a structured
object, and it can only be applied to another structured object.
All it consists of is taking the members of the structure segment

evaluated and placing them into the structure being constructed.

DGSD 55 SYS.11.01

5.5.1. Type and Representation

Segment evaluation is done only on an object of a
particular type, namely type SEGMENT. The representation of an
object of type SEHGMENT is the following:

< <el1>» <el2> . . . <ellN> !>

where the second ! (exclamation point) is optional, and <elil>
through <elN> are any legal consituents of a FORM (i.e., just
about anything). The pointed brackets can be implicit, as in the
period and comma notation for ILVAL and GVAL.

All of the following are SHGMENTs:

1<3 JFOO> !'.FOO !,FO00

5.5.2. Evaluation

A SEGMENT is evaluated in exactly the same manner as a
FORM, with the following exceptions:

1) It had better be done inside an EVAL of a
structure, else error.

2) It had tetter EVAL to a structured object,
else error.

3) What actually gets inserted into the structure

DGSD 56 SYS.11.01

being built is the elements of the structure returned by

the FORM=-like evaluation.

5.5.3. SEGMENT Examples

<SET ZOP [2 3 41>§

[2 3 4]

<SET ARF (E 3 4)>0

(B 3 4)

(-ARF !'.ZOP)®
((B34)234)

1[1.ZOP !<REST .ARF>!]®
1234 3 41]

5.5.4. Note on Efficiency

Most of the cases in which it is possible to use SHEGMENTs
require EVAL to generate an entire new object. Naturally, this
uses up both storage and time. However, there is one case which
it is possible to handle without copying, and EVAL uses it. When
the structure being built is a LIST, and the segment value of a
LIST is the last (rightmost) element being concatenated, that
last LIST is not copied. This case is equivalent to the LISP

DGSD Y SYS.11.01

CONS, and is the reason why LISTs have their structure more

easily varied than VECTORs or UVECTORs.

5050401. Examples

.ARF$
(B 3 4)

This does not copy ARF:

(1 2 '.ARF)®
(12B34)

These do:

(1 '.ARF 2)6

(1B 342)

[1 2 !'.ARF]®

[12 B3 4]

(1 2 !'.ARF !<REST (1)>)6
(12 B3 4)

Note the following, which occurs because copying does not take

place:

DGSD 58 ' SYS.11.01

<SET DOG (A !.ARF)>$
(AB34)
<PUT ARF 1 "BOWOW™>§
("BOWOW™ 3 4)

- «DOGH
(A "BOWOW" 3 4)

Since ARF was not copied, it was literally part of DOG. Hence,
when an element of ARF was changed, DOG was changed. If an
element of DOG which ARF shared were changed, ARF would be
changed too.

DGSD 59 SYS.11.01

6. TRUTH

6.1 Truth Values

MUDDLE represents "false" with an object of a particular
type: type FALSE (unsurprisingly). Type FALSE is structured; its
PRIMIYPE is IIST. Thus, you can give excuses by making themn
elements of the FAISE. Objects of type FALSE are represented by

#FALSE &1IST of its elements>
The empty FORM evaluates to an empty FALSE:

OB
#FALSE ()

In addition, there is a SUBR of PNAME FALSE which takes one
argument — a LIST — and CHTYPEs it to FALSE.

Anything which is not FALSE, is, of course, true.

DGSD 60 SYS.11.01

6.2. Predicates

There are numerous MUDDLE functions which can return

FAISE or true. See Micro-Muddle Manual (ref 1) to find them all.
Most return either #FAISE () or the ATOM with PNAME T. (The
latter is for historical reasons, namely LISP.) Some predicates
which are meaningful now are:

6.2010 =?

=7 <€ 1> <e 23>

evaluates to T only if <e 1> is the same object as <e 2>.

6. 202. =?
=% e 1> <e 2>>

evaluates to T if <e 1> and <e 2> are structurally equal — i.e.,
they "look the same"™, their printed representations are the sane.
=? is much slower than =%. =% should only be used when its
characteristics are necessary; they usually are not in any

comparisons of unstructured objects.

DGSD 61 SYS.11.01

6.2.3. 0%

<0? 4type FIX or FIOAT>>

evaluates to T only if its argument is identically equal to O.

6.2.4. 17

<1? 4type FIX or FLOAT>>

evaluates to T only if its argument is identically equal to 1.

6.2.50 G?

<G? <N>» <M>>

evaluates to T only if <N>» is algebraically greater than <M>.
<N> and <M>» may indiscriminately be either FIX or FLOAT.

DGSD 62 SYS.11.01

6.2.6. L?

<L? <N>» <M>>

evaluates to T only if <N> is a2lgebraically less than <M>. <>
and <M>» may indiscriminately be either FIX or ILOAT.

6.2.7. MONAD?
<MONAD? <e>>
evaluates to #FAISE () only if NTH and REST can be performed on
its argument without error.
6.2.8. EMPTY?

<EMPTY? 4s.0.>>

evaluates to T only if its argument, which must be a structured

object, has no members.

DGSD 63 SYS.11.01

6.2.9. AND

<AND <el>» <e2> . . . <el>>

AND is an FSUBR. It evaluates its arguments from left to right
as they appear in the FCI'M. As soon as one of them evaluates to

FALSE, it returns fFAISE (). If none of them evaluate to FAISF,
it returns EVAL of its last argument.

<O0R <e1> «e2>» . . . «el>»>
CR is an FSUBR. 1t evaluates its arguments from left to right as

they appear in the FORM. As soon as one of them evaluates to

non-FAISE, OR returns that non-FALSE value. If this never
occurs, it returns #FAISE ().

6.2.11. NOT
<NOT <e>>

evaluates to T only if <e> evaluates to FAISE.

DGSD 64 SYS.11.01

6.2.12. MEMEER
<MEMEER <object> <«structured object>>

This SUBR runs down <structured object>» from first to last
element, comparing each element of <structured object>» with
<object». If it finds an element of <structured object>» which is
=? to <object>, it returns <REST <«n - 1> <structured object>>,
where the nth element of <structured object> is =? to <object>.
I.e., the first element of what it returns is the first element
of <structured object>» =? to <object». If no element of
<structured object> is =? to <object>, MEMEER returns #FAISE ().

6.2.13. MEMQ
<MEMQ <object » <structured object>>

This SUBR is exactly the same as MEMBER, except that the

comparison test is =% .

DGSD 65 SYS.11.01

6.3. COND

The MUDDLE function which is most used for varying
evaluation depending on a truth value is the FSUBR COND. A call
to COND has this format:

<COND <I1> <I12>» . . . <LN>>

where <L1> through <LN> are LISTs.
COND evaluates as follows, examining its input lists from

left to right as they appear in the FORM:

1) If there are no lists left unexamined, return
#FAISE ().

2) Evaluate the first element of the first list

still unexamined. If it evaluates to FALSE, go back to
(1)-
3) Evaluate in order the rest of the elements of

the current list and return the last thing evaluated.

I.e., COND goes walking down its lists, EVALing the first
member of each list looking for a non-FALSE. As soon as it finds
a non-FALSE, it forgets about all the other lists and evaluates,
in order, the other elements of the current list and returns the
last thing it evaluates. If it can“t find a ncn-FALSE, it
returns #FAISE().

DGSD 66 SYS.11.01

6.3.1. Examples

<SET F (1)>6

(1)

<COND (<EMPTY? .F> EMP) (<1? <LENGTH .F>> CNE)>§
ONE

<SET F ()>6

0

<COND (<EMPTY? .F> EMP) (<1? <LENGTH .F>> ONE)>$
EMP

<SET F (1 2 3)>%

(123)

<COND (<EMPTY? .F> EMP) (<1? <LENGTH .F>> ONE)>§
#FALSE ()

<COND (<L? <IENGTH .F> 3> SMALL)(BIG)>®

BIG

DGSD 67 SYS.11.01

7. TUNCTION

Te«1e General

An object which is of TYPE FUNCTICN is of PRIMTYPE LIST.

It is what its name implies, i.e., a function. You write it,

apply it in a FORM with (or without) arguments, and EVAL causes
it to be executed interpretively.

The FSUBR FUNCTICN can be used to create objects of type
FUNCTION. It is really a very simple routine; it Jjust takes its
argunents in a LIST, and CHTIYPEs the LIST to type FUNCTION.

In many of the examples below, that which MUDDLE would
print in response to the typing of the FUNCTION "definitions"

would be both tedious and singularly unenlightening. So, instead

of reproducing that output, a line like this:

will be used instead.

DGSD 68 SYS.11.01

7.2. Simple Case

In its simplest form, a function has two parts: a LIST
of dummy variables, as its first element; and a body — all its
other elements. When an application of a FUNCTION in a FCORM is
evaluated, the dummy variables are bound to the actual arguments,

and each MUDDLE object in the body is evaluated in order. The
result of the last evaluation is returned as the value of the
FUNCTION. Exactly what goes on will be described through the

following simple example.

T.2+1. Example

<SEIG F <FUNCTION (A B) <+ .A .B>>>9
#FUNCTION ((A B) <+ .A .B>)

The above set the global value of the ATOM of PNAME F to
the object of type FUNCTION indicated — a FUNCTION of 2
argunents which just adds them and returns the result. Its
argument declaraction is the LIST (A B), and its body consists of
the single FORM <+ .A .B>. Note that there is no special
representation for type FUNCTION; the default representation is
used. Since the latter is a perfectly good way to describe a
FUNCTION on input, we could have avoided calling the FSUBR
FUNCTION by typing the following, which has exactly the same

effect as the above:

DGSD 69 SYS.11.01

<SETG F #FUNCTION ((A B) <+ .A .B>)>0
#FUNCTION ((A B) <+ .A .B>)

Now, suppose we apply ¥ to something:

<F 1250
3

What happened was this:

EVAL saw the ATOM T as the first element of a
FORM, and found its GVAL to be our FUNCTION. It then
examined F’s argument declaration, and bound the two
ATOMs there — A and B — to the EVAL of the arguments —
1 and 2 respectively; i.e., it made A and B’s local

values 1 and 2. Heving done that, it then executed the
body — EVAI4A the FORM <+ .A .E> — saw that there was
nothing more to do, and returned the result of that EVAL

after unbinding A and E.

The relationship of "binding" and LVALs is this:
binding a "dummy variable" consists of pushing its
current LVAL onto a stack and then giving it a new LVAL.
"Unbinding" consists of popping that stack. This comes

under the heading of "dynamic blocking"; its application

to recursion is clear.

DGSD 70 SYS.11.01

The fact that the EVAL is done befcre the binding neans
that this works:

<SET A 156
]
F 1 <+ A 18

Z
s

Note that if we were to SET A to something within T, it
would have no effect on the LVAL of A after returning from F,
since the value we SET it to would be "popred". That produces,
in some cases, a problem. Suppose we wish to write a TUNCTION

which takes an ATOM as an argument, and increments the LVAL of

that ATOM. We could write it like this:

<SETG INC <FUNCTION (A) <SET A <+ 1 < AD>DDH
#FUNCTION ((A) <SET .A <+ 1 ..A>D)

We give this FUNCTION an ATOM, which becomes the LVAL of A. So
we SET that ATOM — i.e., .A — to 1 plus the LVAL of the ATOM —

i.€ey 1 plus ..A . In many cases, this vworks fine:

DGSD T SYS.11.C1

<SET ATM 056
0

<INC ATM>®

]

LATM

;

However, if we happen to call it with the ATOM of FNAME A, we
lose. Try it. (Exercise for the reader.) There are two ways of
getting around this last problem, both of which will eventually
be mentioned. A third, inelegant, and imperfect method is to
note that since MUDDLE sets no limit on the length of
identifiers, we could use an intentionally long and stupid
identifier in place of A, thus lessening the chances of conflict.
Of course, somebody else, trying to do the same thing, is bound

to use Jjust that identifier.

T.2.2. Factorial and Comments

I clearly can’t not use factorial as an example — so,
the basic recursive factorial FUNCTION follows. I might as well

introduce comments at the same time.

DGSD 72 SYS.11.01

<SETG FACT <FUNCTION (A) s"Basic factorial function."”

<COND (<L? .A 2> 1) ;"If arg is less than 2, return 1."

(<* A <FACT <- .A 1>>>) ;"Else recurse." >>>0

#FUNCTION ((A) <COND (<L? A 2> 1) (<* A <FACT <= A 1>>>)>)

Note that carriage-returns, line-feeds, tabs, spaces,
etc. just mean "separator". In particular, they have nothing to
do with delineating comments.

Also note that in the second clause of the COND, its
first element is non-FAISE; it‘s either FIX or FLOAT.
Alternatively, you could stuff an ATOM in there — like T or EISE
for mnemonic reasons — or anything but a FALSE.

Finally note that the indicator for a comment is the
character ; (semicolon). When READ sees a semicolon, it

attaches the next MUDDLE object to the last structural element

seen as that element’s CCMMENT property (see Chapter 11). The
first comment above is attached to FACT’s argument list, the
second to the first clause of the COND, and the third to the
second clause of the COND. Comments are thus remembered along
with the object with which they are associated, but have no
effect on either EVAL or PRINT. They can, however, be gotten
back (again, see Chapter 11). In the example a2bove, the MUDDLE

objects which are comments are STRINGs; this is usually the case,

DGSD > SYS.11.01

but is clearly not necessary. They could be ATOMs, LISTs,

FUNCTIONs (to name some useful possibilities) or anything else.

N

T<3. "OPTIONAL"

MUDDLE provides very convenient means for allowing
optional arguments. Inserting the STRING "OPTIONAL" in the
argument declaration allows the specification of optional
arguments with default values. The syntax of the "OPTIONAL" part

of the argument declaration is as follows:

"OPTIONAL" <AoL1> <AolZ2>» . . . <AOLN>

First, there is the STRING "OPTIONAL",. Then there is any
number of either ATOMs or two element LISTs, one per optional
argument. The first element of each two element LIST must be an
ATOM; this is the dummy variable. The second element is an
arbitrary MUDDLE expression. If there are required arguments,
these must come before the "OPTIONALY.

When EVAL is binding the variables of a FUNCTION and sees
"OPTIONAL", the following happens:

If an explicit argument was given in the position of

an optional one, the explicit argument is bound to the

corresponding duvmmy ATOM.

DGSD T4 SYS.11.01

If there is no explicit argument and the ATOM stands
alone, i.e., is not the first element of a two element LIST,
that ATOM becomes "bound", but no local value is assigned to
it. A local value can be assigned to it by using SET. Until
an ATOM is assigned, any attempt to reference it other than as
an argument to the predicate SUEBRs POUND? and ASSIGNED? (which
return T under the obvious condition) will produce an error.

If there is no explicit argument ané the ATOM is the
first element of a two—element LIST, the MUDDLE expression in

the LIST with the ATOM is evaluated and bourd to the ATOM.

By the way, there is one other predicate similar to
BOUND? and ASSIGNED?, namely GASSIGNED? . The latter returns T
if its argument, which (as in BOUND? and ASSICNED?) must be an
ATOM, has a global value.

Since an ATOM can be BOUND? but not ASSIGNED?, and
applying ASSIGNED? to an unbound ATOM produces an error, some
care must be used if you wish to find out whether an ATOM has a
local value.

The following, by virtue of the fact that AND is an
FSUBR, will return T if <€A> has a local value, FAISE if it does

not, and never produce an error:

<AND <BOUND? <A>> <ASSICGNED? <A>>>

DGSD 75 SYS.11.01

TeZele "OPITIONAL" Fxample

<SETG INC1 <FUNCTION (A "OPTIONAL" (N 1))
SCET A <+ A MDD
#FUNCTION ((A "OPTIONAL" (N 1)) <SET <A <+ <oA JL>D)

<SET E 0>0
0

<INC1 B>§

’

<INC1 B 5>9
6

Here we defined another (not quite working) increment
FUNCTION. It now takes an optional argument specifying how much
to increment the ATOM it is given. If not given, the inerement

is 1. Now, 1 is a pretty simple MUDDLE expression; there is no

reason why the optional argument need not be hairy — e.g., a

call to a FUNCTION which reads a file on an I/O device.

Te4. "TUPLE" and TYPE TUPLE

There are also times when you want to be able to have an
arbitrary number of arguments. You can always do this by
defining the FUNCTION as having a LIST or VECTOR as its argunment,

with the arbitrary number of arfguments as elements of the IIST or

VECTOR (or UVECTOR, for that matter). This can, however, lead to

DGSD 76 SYS.11.01

inelegant looking FORMS. The STRING "TUPLE" aypearing in the
argument declaration allows you to avoid that. It must follow
explicit and optional arguments (if there are zny of either) and
must be followed by an ATOM.

The effect of “TUPLE" appearing in an argunent
declaration is the following: Any arguments left in the FOEM
after satisfying explicit and optional arguments are EVAId and
nade sequential members of an object of TYPE and PRIMIYPE TUPLE.
The TUPLE is then bound to the ATOM following "TUPLE" in the
argument declaration. If there were no arguments left by the
time the "TUPLE" was reached, an empty TUPLE is bound to the
ATOM.

An object of TYPE TUPLE is exactly the same as a VECTOR
except that a TUPLE is not held in garbage-collected storage. It
is instead held with most other bindings in a stack. This does
not effect manipulation of the TUPLE within the FUNCTION
generating it or any FUNCTION called within that one; it can be
treated just like a VECTOR. Note, however, that a TUPLE ceases
to exist when the FUNCTION which generated it returns. Returning
a TUPLE as a value is a good way to generate an error. (A copy
of a TUPLE can easily be generated by segment evaluating the
TUPLE into something; that copy can be returned.)

DGSD T7 SYS.11.01

7.4.1. "TUPLE" Example

<SETG NTHARG <FUNCTION (N "TUPLE" T)

s"inarf all but first argument into T."
<COND (1% N> 1) 3"If N is 1, return 1st arg, i.e., .l,

i.es, 1"
(<L? <LENGTH .T> <SET N <= .N 1>>> #FALSE ("DUMMY"))
;"Check to see if there is an Nth arg,
and make N a good index into T while
you‘re at it.

If there isn‘t an Nth arg, bitch."
(EISE <N T>)>>>

NTHARG, above, takes any number of arguments. Its first
argument must be of TYPE FIX. It returns EVAL of its Nth
argument, if it has an Nth argument. If it doesn”t, it returns
#FAISE ("DUMMY"). (The EICE is truly necessary in the last
clause because the Nth argument might be a FAISE.) Exercise for
the reader: NTHARG will generate an error if its first argument
is not FIX. Where and why? (How about <NTHARG 1.5 2 3> ?) Fix

it. Now make it work with no arguments.

DGSD 78 SYS.11.01

TS« "AUX" and "EXTRAY

"AUX", or "EXTRA" (they’re totally equivalent) are
STRINGs which, placed in an argument declaration, serve to
dynamically allocate temporary variables for the use of a
FUNCTICN.

"AUX" (or "EXTRA") must appear in the argument
declaration after any information about explicit arguments. It
is followed by ATOMs or 2-element LISTs as if it were "OPTIONAL".
ATOMs in the 2-element LISTs are bound to the EVAL of the second
element in the 1IST. Atoms not in such lists are initially bound
to an object of type UNASSIGNELD, namely #UNASSIGNED O .

All binding specified in an argument declaration is done
sequentially from left to right, so initialization expressions
for "AUX" can refer to objects which have just been bound. For
example, this works:

<SETG AUXEX
<FUNCTION (®TUPLE"™ T
nAUX" (A <LENGTH .T>) (B <* 2 .A>))
(<A .B)>>H

<AUXEX 1 2 "FOO">®
(3 6)

DGSD 19 SYS.11.01

7.6+ QUOTE

QUOTE is an FSUBR of one argument which returns its

argument unevaluated. TEAD understands the character ° (single

quote) as an abbreviation for a call to QUOTE, like period and
comme. call LVAL and GVAL. Examples:

<+ 1 256
3

<+ 1 2>9
<+ 12>

If an ATOM in an argument declaration which is to be
bound to a required argument is surrounded by a2 call to QUCTE,

that ATOM is bound to the unevaluated argument. Example:

<SETG Q2 <FUNCTICN (A “B) (<A .B)>>®

Q2 <+ 1 2> <+ 1 2>>6
(3 <+ 1 2>)

DGSD 80 SYS.11.01

7.7« "ARGS"

The indicator "ARG{" can appear in an argument

declaration with precisely the same syntax as "TUPLE". "ARGS"
causes the ATOM following it to be bound to a ILIST of the

reraining unEVALuated arguments.

"ARGS" does not cause any copying to take place. It

simply gives you

~—<REST <the FORM applying this IUNCTION> <FIX>>

with an appropriate <FIX>. The type change to LIST is a result
of the REST. Examples:

<SETG QIT <FUNCTICN (N "ARGS" L) <.N .L>>>9

<QIT 2 <+ 3 4> <LENGIH ,QAIL> FOO>®
<LENGTH ,QAIL>

<SETG FUNCTION

<FUNCTION ("ARGS" ARGL_AND EODY)
<CHTYPE .ARGL AND BODY FUNCTION>>>§

<FUNCTION (A B) <+ A B>>H
#TFUNCTION ((A B) <+ A .B>)

DGSD 81 SYS.11.C1

The last example is a perfectly vaild defiriticr. of
FUNCTICN.

7.8. "CAIL"

The indicator "CALL" is an ultimate "ARCS". If it
appears in an argument LIST, it must be followed by an ATOM and
must be the only thing used to gather arguments. "CALL" causes
the ATOM which follows it to become bound to the actual FOEM
whose application is being evaluvated — i.e., you get the
"function call" itself.

Since Y"CALL" binds to the FORM itself, and not a copy,
PUTs into that FORM will change the calling code. Please note

that such techniques will not work if the calling code has been
compiled. (Neither will "CALL".)

"CALL" exists as a Catch-22 for argument manipulation.

If you can“t do it with "CALL", it can’t be done.

DCSD &2 SYS.11.01

7.S. EVAL and "BIND"

Obtaining unevaluvated arguments, e.g., via QUOTE and
"ARGS", very often implies that you wish to EVALuate them at scne
point. You can do this by explicitly calling EVAL, which is a
SUER. Example:

<SET F “<+ 1 2>>%
<+ 1 2>

<EVAL .F>6

3

EVAL takes one optional argumert, of TYPE FNVIRONMENT.
An ENVIRONMENT consists basically of all the information needed
at any given time by EVAL. Now, binding changes the ENVIRONMENT;
so if you wish to use EVAL within a FUNCTION, you probably want
to get hold of the environment which existed before that
FUNCTION’s binding took place. The indicator "BIND", which must,
if it is used, be the first thing in an argument declaration,
provides this information. It binds the ATOM immediately
following it to the ENVIRONMENT existing "at call time" — i.e.,
Jjust before any binding is done for its FUNCTION. Example:

DGSD 83 SYS.11.01

<SET A 0>9
0

<SETG WRONG <FUNCTION (“E "AUX" (A 1)) <EVAL .B>>>0

<WRONG .A>®

1

<SETG RIGHT <FUNCTION ("EIND" E “B "AUX" (A 1))
<EVAL .B .E>>>6

<RIGHT .A>®
0

7.10. ACTIVATION, "NAME", "ACT", AGAIN, and EXIT

EVAIuation of a FUNCTION, after the argument declaration
has been taken care of, normally conists of EVALuating each of
the objects in the body in the order given, and returning value
of the last thing EVAId. If you want to vary this sequence, you
need to know, at least, where the FUNCTION begins. Not
surprisingly, if you think about it, EVAL normally hasn’t the
foggiest idea of where its current FUNCTION began. "Where’d I

start" information is bundled up with a TYPE called ACTIVATION.
In "normal" FUNCTION EVALuation, ACTIVATIONs are not generated;

they can be generated, and bound to an ATOM, in either of the two

DGSD 84 5Y5.11.01

following ways:

1) Put an ATOM immediately before the argument declaratior.
7 ACTIVATION of the FUNCTION will be bourd to that ATOM.
2) As the last thing in the argument declaration, insert
either of the STRINGs "NAME" or "ACT" and follow them

with an ATCM. The ATOM will be bound to the ACTIVATION
of the FUNCTION.

Each ACTIVATION refers explicitly to a particular

application of a FUNCTION. E.g., if a recursive FUNCTION
generates an ACTIVATION, a new ACTIVATION referring explicitly to

each recursion step is generated on every recursione.

Iike TUPLEs, ACTIVATIONs are held in a stack. Unlike
TUPLEs, there is no way to get a copy of an ACTIVATION which can
usefully be returned as a value. (This is a consequence of the
fact that ACTIVATICONs refer to applications; when the application
no longer exists, neither does the ACTIVATION.)

ACTIVATIONs are used by the SUERs AGAIN and EXIT.

AGAIN takes one argument: an ACTIVATION. It means "start
doing this again", where "this" is specified by the ACTIVATION.
Specifically, AGAIN causes EVAL to return to vhere it started
working on the body of the FUNCTION in the application specified
by the ACTIVATION. The applicatior is not re-evaluated
coupletely; in particular, no re-binding (of arsuments, "AUX"

variables, etc.) is done.

DGSD &5 5YS.11.C1

EXIT takes 2 arguments: an ACTIVATION end en arbitrary
expression. It causes the FUNCTION EVAIuation whose ACTIVATIOL
it is given to terminate and return EVAL of EXIT’s second
argument. I.e., EXIT means "quit doing this and return thet",
where "this" is the ACTIVATION — its first argument — anc

"that" is the expression — its second argument. Ixamrle:

<SETG MY+ <FUNCTION ("TUPLE" T "AUX" (M O) "NAME" 1)
<COND (<EMPTY? .T> <EXIT .M .M>)>
<SET M <+ M <1 .T>>D>
<SET T <REST .T>>
<AGAIN NM>>>6

<MY+ 1 3 <LENGTH "FOO">>6
7

<MY+>0

0]

Note: Suppose an ACTIVATION of one FUNCTION (call it F1)
is passed to another FUNCTION (call it F2) — e.g., via an
application of ¥2 in F1 with F1°s ACTIVATIION as an argument. If
F2 EXITs with F1°s ACTIVATION, F2 and F1 terminate immediately,
and F1 returns the EXIT’s second argument. Good for error exits.

AGAIN can clearly pull a similar trick.

DGSD 86 SYS.11.01

8. PROG and REPEAT

8.1 General

PROG and REPEAT are almost identical ¥SUBRs which make it
possible to arbitrarily vary the order of EVALvation — i.e.,

have "jumps". Syntax of a PROG is:

<PROG <«optional activation» &prog list> <body=>

where

<optional activation>» is an optional ATOM, which is bound
to the ACTIVATION of the PROG.

4prog list> is a LIST which looks exactly like that
segment of a FUNCTION’s argument declaration which follows an
"AUX", and serves exactly the same purpose. It is not optional.
If you need no temporary variables, make it ().

<body> is an arbitrary number of arbitrary MUDDLE

expressions.

Syntax of FEPEAT is identical, except that, of course,
REPEAT is the first element of the FORM, not PROG.

DGSD &7 SYS.11.01

8.2. Basic PROC EVALuation

Upon entering a PROG, an ACTIVATION is always generatec.
If there is an ATOM in the right place, it is also bound to that
ATOM. The variables in the <prog list> (if any) are then bound

as indicated in the <prog list>. Fach of the expressions in
<body> are then EVALuated in their order of occurrence. If
nothing untoward happens, you leave the PROG upon evaluating the
last expression in <body>, returning the value of that last
expressione.

PROG thus provides a way to package together a group of
things you wish to do, in a somewhat more limited way than can be
done with a FUNCTION.

But PROGs are generally used for their other properties.

DGSD €8 SYS.11.01

8.%. AGAIN and RETURN

Within a PROG, you always have a defined ACTIVATION,
whether you bind it to an ATOM or not.

If AGAIN is used with no arguments within a PRCG, it uses

the ACTIVATION of the closest surrounding PROG, and re-starts the
PROG without rebinding the <prog list> variables, just like it

works in a FUNCTION. With an argurent, it can, of course

re-start any PROG or FUNCTION within which it is embedded at run

time.

To leave a PROG without evaluating any more of it, use
the SUER RETURN. RETURN takes cne argument and causes the first
PROG in which it is embedded to return EVAL of that ARGUMENT.
EXIT can also be used, with an explicit ACTIVATION of course, to

do the same thing.

8.4. REPEAT EVATuation

REPEAT acts in all ways exactly like a PROG whose last

expression is <AGAIN>. The only way to leave a REPEAT is to
explicitly use RETURN or EXIT (or GO with a TAG — see below).

DGSD 89 SYS.11.01

8.5. GO and TAG

- GO is a2 SUER which allows you to breal: the normal order

of evaluation and re-start Just before any top-level expressionr
in a PROG (or REPEAT). It can take two TYPEs of arguments: ATOM
or TAG.

Given an ATOM, GO searches the <body> of the immediately
surrounding PROG, starting after <prog list>», for an occurrence
of that ATOM at the top level of <body».. (This search is
effectively a MEMQ.) If it doesn’t find the ATOM, error. If it
does, evaluation is resumed at the expression following the ATOM.

The SUBR TAG generates and returns objects of TYPE TAG.
This SUBR takes one argument: an ATOM which would be a legal
argument for a GO. An object of TYPE TAG contains sufficient
information to allow you to GO to any position in a PROG from
within any FUNCTION called inside the PROG. GO with a TAG is
vaguely like AGAIN with an ACTIVATION; it allows you to "go
back" to the middle of any PROG or REPEAT whichk called you.

DGSD 30 SYS.11.01

9. 1/0

9.1. General - Basic

A1l I/0 FUNCTIONs in MUDDLE take an optional argument
which directs their attention to specific I/0 channels. The I/0
FUNCTIONs will first be described without their optional
arguments. In this situation, they all refer to the initial
default of TTY. When given an optional argument, that argument

follows any arguments indicated here.

9.71.1. Input

A1l of the following input routines, when directed at the
TTY, hang until § (ALT MODE) is typed and allow normal use of
rubout and “L.

DGSD 91 5YS.11.01

S.1.%1.7. READ

<READ>

This returns the entire MUDDLE object whose representation is

next in the inrut stream. Successive <READ>s return successive

objectse.

9.1.1.2. READCHR

<READCHR>

This returns the next CHARACTER in the input stream. Successive

<READCHR>s return successive CHARACTERsS.

9.1.1.3. NEXTCHR

<NEXTCHR>

This returns the CHARACTER which RFADCHR will return the next
time READCER is called. Multiple <NEXTCHR>s, with no READs or
READCHRs between them, all return the same thing.

DGSD a2 SYS.11.C1

9.1.2. Output

9.1.2.1. PRINT
<PRINT <obj>>
This outputs, in order,

1) a carriage-return line-feed

2) the MUDDLE representation of EVAL of its argument (PRINT is
a2 SUER)

%) a space

and then returns EVAL of its argument. This is precisely the

SUER PRINT mentioned in chapter 1.

DGSD 93 SYSe 1101

S.7.2.2. PRIN1

<PRIN1 <obj»>

outputs just the representation of EVAL of <obj». Returns EVAL
of its argument.

9.7.2.%. PRINC

<PRINC <obj>>

acts exactly like PRIN1, except that if its argument is a STRING
or a CHARACTER, it suppresses the surrounding "s or initial !"

respectively.

9.1.2.4. FIATSIZE

<FLATSIZE <obj» <FIX>>

does not actually cause any output to cccur. Instead, it first
firds out how many characters FRINT vould take to print <obj>,
an¢ then compares that number with <FIX>. If <FIX> is less than
the number of characters needed, FLATSIZE returns #FAISE ();

otherwise, it returns the number of characters needed to PRINT

DGSD G4 S5YS.11.C1

<obj=.

This is especially useful in conjurcticn with (see below)
those elements of a CHARNNEL which specify the rumber of
characters per outyrut line and the current position on an output

linea

9.2. CHANNELs

I/0 channels are dynamically assigned in MUDDLE, and are
represented by an object of TYPE CHANNEL, which is of PRIMTYPE
VECTOR. The format of a CHANNEL will be explained later. First,

how to generate and use them:

9.2.%1. OPEN

<OPEN &dir>» <Y¥1>» <F2» «dev> <Lusr>>

OPEN is a SUBR which creates and returns a CHANNEL (in both the
ITS and MUDDLE senses of the word). All its arguments must be
of TYPE STRING, and all are OPTIONAL. If the attempted opening
of an ITS I/0 channel fails, OFEN returns {FALSE (). Argument

descriptions:

DGSD 95 SYS.11.01

<dir> must be "READ"™ for input or "PRINI" for output.
Default: "READ".

<F1> is the first file name. Default: "INPUT" if <dir> is
"READ", "OUTPUTY if <«dir> is "FRINT".

<F2> is the second file name. Default: ">".

<dev> is the device. Default: "DSK"

<usr> is the user directory. Default: your current one.

9.2.2. CIOSE
<CILOSE <a CEANNEI~>>

closes <a CHANNEL» and returns its input, with its "state"

changed to "closed".

DGSD 96 SYS.11.01

9.2.3. CHANLIST

<CHANLIST>

returns a LIST whose elements are all the currently open

CHANNELs.

0.2.4, INCHAN and OQUTCHAN

The default channel for input SUBRs is the local value of
the ATCM INCHAN. The default channel for output SUBRs is the
local value of the ATOM OUTCHAN. You can direct I/0 to a CHANNEL
by SETting INCHAN or OUTCHAN (remembering their old values
somewhere), or by giving the SUBR you wish to use an argument of
type CHANNEL. See, however, Input Errors below.

By the way, a good hack for playing with INCHAN and
OUTCHAN within a FUNCTION is to use the ATOMs INCHAN and OUTCHAN

as "AUX" variables, re-binding their local values to the CHANNEL

you want. When you leave, of course, the old ILVALs are

restored.

DGSD 97 SYS.11.01

G.2.5. Contents of CHANNELs

The contents of an object of TYPE CHANNEL are accessed by
the I/0 SUERs each time such a SUBR is used. If you change the
contents of a CHANMEL (e.g., with PUT), the next use of that
CHANNEL will be changed appropriately. Some elements of
CHANNELs, however, should be played with seldom, if ever, and
only at your peril. These are marked below with an * (asterisk).

There follows a table of the contents of a CHANNEL, the
TYPE of each element, and an interpretation. The format used is
the following:

<element number»: <IYPE> <interpretations

DGSD

98 SYS.11.C1

9.2.5.1. Output CHANNELs

The contents of a CHANMNEL used for output are:

FIX
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
FIX
FIX
FIX

FIX
FIX

FIX
FIX
FIX

chanrel number (O means channel not open)
direction (for output, its "PRINT")
device name argunment

first file name argument

second file name argunment

directory name argument

real device name

real first file name

real second file name

real directory name

various status bits

PDP-10 instruction used to do one I/O operation
number of characters per line of outyut

current character position on a line

nunber of lines per page
current line number on a page
access pointer (not yet used)

radix for number conversion

DGSD ' 99 SYS.11.01

9.2.5.2. Input CHANNELs

The contents of a CHANNEL used for input from a
file—-oriented device is the same as the contents of the
corresponding CHANNEL used for output, except that element 2
(direction) contains "READ".

A CHANNEL used for input for a console variety device
(e.ge, "TTY") has, in addition,‘elemeht 15 set to a UVECTOR of
UTYPE IOSE which ié used as an input buffer.

9.%. Input Errors

An explicit CHANNEL for input-is the second optional
argument of all SUBRs used for input. The first optional

argument is an error routine — i.e., something for the input
SUBR to EVAL if it detects an error. A typical error argument is
a QUOTEA FORM which calls an error routine of yours. If not
given, the standard error SUBR — FRROR — is used. (Since
attempting to read past the End-of-file is an error, if you
really don”t expect errors you can use an application of RETURN
or EXIT as an "error"” routine to bounge you out of a read loop.
You can usually use <CLOSE <the chamnel>> as the thing RETURN or
EXIT returns and kill two birds with one stone.)

Note that input from the TTY "hangs" until ALT-MODE is

typed; then you start getting successive items or characters.

DGSD 100 - 8Y8.11.01

9.3%.7. Example

The following FUNCIION outputs to .OUTCHAN a file read

according to its arguments. The static variables which are
initially SET to the furmmy strings hold the default arguments.

(The funny strings are the initial defaults.)

NS

DGSD 101

<SET DF1 " ">
<SET DF2 " uy
<SET DDEV "DSK">
<SET DUSR "">

<SETG PF
<FUNCTION ("CPTIONAL" (F1 .DF1)

SY¥S.11.01

(F2 .DF2)

(DEV .TDEV) (USR .DUSR)
"AUX" (CHN <OPEN "READ"

<SET D¥1 .F1> ;"Set up defaults"
<SET D¥2 .¥2> ;"for next call."
<SET DDEV .DEV>

<SET DUSR .USR>>))
<COND (.CHN ;"Tf CHN is FALSE, bad OPEN, else O.K."

<REPEAT ()

<PRINC <READCHR “<RETURN <CLOSE .CHN>> .CHN>>

> ;"Until EOF, keep reading and printing

a character at a time."

DONE. ;"Then return this ATOM.")

(EISE #FAISE ("BAD FILE

NAME")

;"Return a FALSE so user can test it

easily if used inside another FUNCTION."

)>>>

DGSD 102 - SYS.11.01

9.4. Other I/0 Functions

9'401. LOAD
<LOAD «input CHANNEL> <(0B>>

eventually returns "DONE". First, however, it READs and EVALs
every MUDDLE 6bject in the file pointed to by <input CEANNEL>,
and then CIOSEs <input CHANNEI>. Any occurrences of RUBOUT, “@,
“L, etc., in the file are given no special meaning; they are
simply ATOM constituents.

<0B> is optional, and may be used to specify a LIST of

OBLISTs for the READ. Its default is .OBLIST. See far below.
9.4.2. FILOAD

<FIOAD «F1» <¥2>» <DEV> <USR>» <0B>>

acts Just like LOAD, except that it takes arguments like OPEN,

OPENs the CHANNEL itself for reading, and CLOSEs the CEANNEL when
done. <«0B> is optional, as in LOAL.

DGSD 103 8YS.11.07

9.4.3. ECHOPAIR
<ECHOPATR <TTY input CHANNEL> <TTY output CEANNEIS>

returns its first argument, after making the two CHANNELs "know
about each other" so that RUBOUT, @, °L, etc., will work

correctly between them.

DGSD 104 - SYS.11.01

10. Locatives

10.1. General

There is in MUDDLE a facility for obtaining and working
directly with objects which roughly correspond to "pointers" in
assembly 1angﬁage or "lvals" in BCPL or PAL. In MUDDLE, these
are generically known as locatives (from "location") and are of
several TYPEs, as mentioned below. ILocatives exist to provide
efficient means for altering structures: direct replacement as
opposed 10 re—copying.

Locatives always refer to positions in structures. It is
not possible to obtain a locative to something (e.g., an ATOM)
which is not part of any structure.

It is possible to obtain a locative to any position in
any structured object in MUDDLE — even the LVALS and GVALs of
ATOMs, a structuring which is normally "hidden".

In the following, an object occupying the structured
position to which you have obtained a locative will be referred

to as the object pointed to by the locative.

DGSD 105 SYS.11.01

10.2. Obtaining Locatives

10.2.1. LIOC

<LLOC <an ATOM>>

returns a locative (TYPE ILOCD) to the LVAL of <an ATOM>. If <an
ATCM>» has no LVAL, error. The locative returned by LLOC is
independent of future re-bindings of <an ATOM>». I.e., IN (see

below) of that locative will return the same thing even if the
<ATOM> is re-bound to something else. SETIOC (see below) will
affect only that particular binding of <ATOM>.

Since bindings are kept on a stack (tra la), any attempt
to use a locative to a LVAL which has become unbound will fetch

up an error. (It breaks just like a TUPLE)

LY

10.2.2. GICC

<GIOC <an ATOM>>

returns a locative (TYPE LOCD) to the GVAL of <an ATOM». If <an
ATOM> has no GVAL, error.

DGSD 106 SYS.11.01

10.2.3. AT
<AT &s.0.>» <TYPE FIX>>

where <s.0.» is any structured object, returns a locative to the
<TYPE FIX>th position in <s.o0.». The exact TYPE of the locative
returned depends on the TYPE of <s.0.»; e.g., LOCL for LIST, ICOCV
for VECTOR, etc. If <TYPE FIX> is greater than <LENGTH <s.0.»>
or less than 1, error.

If the second argument — <TYPE FIX> — is not given, 1

is used.

10.3. Using locatives

The following two SUBRs provide the means for working
with locatives. They are independent of the specific TYPE of the
locative. The notation <locative» indicates anything which could

be returnd by I1I0C, GLOC, or AT.

DGSD 107 SYS. 11.01

10.3.1. IN

<IN <locative>>

returns the object <€locative> points to. The only way you can
get an error using IN is when <locative>» points to an LVAL which

has become unbound from an ATOM. This is the same as the problem

in referencing TUPLE as mentioned in Chapter 7.

10.3.1.1. IN Examples

<SET A 1>

1

<IN <1IIOC A>>®
1

10.3.2. SETLOC

<SETIOC <locative> <anything>>

returns <anything>», after having made <anything> the contents of
that position in a structure pointed to by <locative». The
structure itself is not otherwise disturbed. Error if IN

wouldn‘t work on <locative> or if you try to put the wrong TYPE .

DGSD 108 SYS.11.01

into a UVECTOR.

10.3.2.1. SETICC Examples

<SET A (1 2.3) >
(12 3) |
<SETIOC <AT .A 2> HI>Q
HI

<AB
(1 HI 2)

10.4. Note on locatives

You may have noticed that locatives are, strictly
speaking, unnecessary; you can do everything locatives allow by
appropriate use of, e.g., SET, LVAL, PUT, NTH, etc. What
locatives provide is generality.

Basically, how you obtained a locative is irrelevant to
SETIOC and IN; thus the same piece of code can play with GVALS,

LVALs, objects in explicit structures, etc., without being

bothered by what function it should use to do so. This is

particularly true with respect to locatives to LVALs; the fact

DGSD 109 SYS.11.01

that they are independent of changes in bind ng can save a lot of

fooling around with EVAL and ENVIRONMENTSs.

DGSD 110 SYS.11.01

11. Association

There is an associative data storage and retrieval system
embedded ir MUDDLE which is similar to, but less general than,
that of LEAP (or SAIL). It is used via the four SUFRs described
below.

11.1. Associative storage

11.1.1. PUTPROP

<PUTPROP <object> «indicator> <value>>

returns <object>», having associated <value> with <object> under

the indicator <indicator>.

DGSD M SYS.11.01

11.1.2. PUT

<PUT <«object> <indicator> <value>>

returns <object>», after having done the following:
If <object> was structured and <indicacr> was of TYPE
FIX, it does <SETIOC <AT <«object> «<indicator>> <value>>.
Otherwise, it acts like PUTPROP.

11.1.3« Removing Associations

If PUTPROP is used without its <value> argument, it
removes any association existing between its <object>» argument

and its <indicator> argument. If an association did exist, using

PUTPROP in this way returns the <value> which was associated. If
no association existed, it returns #FALSE().

PUT, with arguments which refer to association, may be
used in the same way.

If either <object> or <indicator> cease to exist (i.e.,
no one was pointing to them, so they were garbege collected) then
the association between them ceases to exist (is garbage

collected).

DGSD 112 £YS.11.01

11.2. Associative Retrieval

11.2.1. GETPROP

<GETPROP <objects <indicators <exp>

if there is a <value> associated with <objects> under <indicator>,
returns that <value». If there is no such association, returns
EVAL of <exp>.

<exp>» is optional. If not given, CETPEOP returns
#FAISE() if it cannot return a <value>.

NOTE: <object>» and «indicator> in GETPROP must be the

same MUDDLE objects used to establish the association; i.e., they

must be =% to the objects used by PUTFROP or FUT.

11.2.2. GET

<GET <«object> «indicators> <exp>

is the inverse of PUT, using NTH or GETPROFP depending on the test
outlined in 11.1.2.. <exp> is optional and used as in GEIFROP.

DGSD 113 SYS.11.01

11.3. Examples of Association

<SET L (1 2 3 4)>%

(123 4)

<SET N 0>%

) ,

<PUT L FOO "L is a list."™>®
"L is a list."

JIH

(123 4)
<CET I FOO>®

"L is a list."

<PUTPROP .L 3 !'[4]>®

4]

<GETPROP .L %>9

4]

<GET .L 3>8

3

<PUT .N .L "list on a zero.">®

0

<GET .N (1 2 3 4)>8

#FAISE()
The last example failed because READ generated a new LIST — not
the one which is L‘s LVAL. However,

<GET O .I>®
"list on a zero."

works because <=% N 0> is true.

DGSD 114 SYS.11.01

To associate something with the Nth position in a
structure, as opposed to its Nth element, associate it with
<REST <structure> <N>>:
<PUT <REST .L 2> PERCENT 0.3>§
0. 300000
<GET <2.1> PERCENT>®
#FAISE()
<GET <REST .L 2> PERCENT>®
0.300000

Remember comments?
<SET N [A B C;"third element"D E]>9
[ABCDE]
<GET <REST .N 3> COMMENT>®
"third element."”

DGSED 115 SYS.11.01

12. Lexical Blocking

Iexical, or static, blocking is another means of
preventing identifier collisions in MUDDLE. (The first was
dynamic blocking.) By using a subset of the MUDDLE lexical
blocking facilities, the "block structure" of such languages as
AIGOL, PL/1, SAIL, etc., can be simulated, should you wish to do
so. (Write your full implementation of ALGOL 68 in MUDDLE!)

12.1. Basic Considerations

Since what follows appears to be rather complex, a short
discussion of the tasic problem lexical blocking solves and
MUDDIE‘s basic solution will be given first.

ATOMs are identifiers. It is thus essential that
whenever you type an ATOM, READ should respond with the unique
identifier you wish to designate. The problem is that it is
unreasonable to expect the PNAMEs of ATOMs to all be unique.
When you use an ATOM A in a2 program, do you mean the A you typed
two minutes ago, the A you used in another one of your programs,
or the A used by Joe Hacker’s library program?

Dynamic blocking (pushdown of LVALs) solves many such
problems. However, there are some it does not solve — such as
state variables (whether impure or pure). Major problems with a

system having cnly dynamic blocking usually only arise when

DGSD 116 SYS.11.01

attempts are made to share large numbers of significant prograns
among many people.

The solution used in MUDDLE is basically as follows:
READ must maintain at least one table of ATOMs to guarentee any
uniqueness. So, allow many such tables, and meke it easy for the
user to specify which one he wants.

Such a table is a MUDDLE object of TYPE OBLIST. All the
complication which follows arises out of a desire to provide a

powerful, easily used method of working with OELISTs, with good
defaults.

12.2. OBLISTs

An‘OBLIST is actually a UVECTOR of UTYPE LIST; the LISTs
hold ATOMs. (The ATOMs are ordered by a2 hash coding on their

PNAMEs; each LIST is a hashing bucket.) What follows is

information about OBLISTs as such.

12.2.1. OBLIST Names

Every normally constituted OBLIST has a name. The name
of an OBLIST is an ATOM associated with the OBLIST under the
indicator OELIST. Thus,

DGSD M7 , SYS.11.01

<GETPROP <an OBLIST> OBLIST>
or

<GET <an OBELIST> OELIST>

returns the name of <an OBLIST>.
Similarly, every name of an OBLIST is associated with its

OBLIST, again under the indicator OEBLIST, so that

<GETPROP <an OELIST name> OBLIST>
or .
<GET <«an OBLIST name> OBLIST>

»

returns the OBLIST whose name is <an OELIST nane>.

Since there is nothing special about the association of
OBLISTs and their names, the name of an OBLIST can be changed by
use of PUTPROP, both on the OELIST and its name. It is not wise
to change the OBLIST association without changing the name
association, as you are likely to confuse READ and PRINT
terriblye.

You can also use PUT or PUTPROP to remove the association
between an OBLIST and its name completely. If you want the
OBLIST to go away (be garbage collected), and you want to keep
its name around, this must be done; cherwise the association
will force it to stay, even if there are no other references to
ite (If you have no references to either the name or the OBLIST,
both of them —— and their association — will go away without

your having to remove the association, of course.) It is not

DGSD 118 SYS.11.01

recommended that you remove the name of an OBLIST without having
it go away, since then ATOMs in that OELIST will PRINT the sane
as if they were in no OBLIST — which is defeating the purpose of

this whole exercise.

12.2.2. MOBLIST

<MOBLIST <ATOM> <FIX>>

creates and returns a new OBLIST, containing no ATOMs, whose name
is <ATOM>». <FIX> is the size of the OELIST created — the number
of hashing buckets. <FIX> is optional, with default 151, which
is far more than you usually need or should use. If specified,

<FIX> should be a prime number, since the hashing works better
then.

12.2.3. OBLIST?
<OBLIST? <ATOM>>

returns #FAISE () if <ATOM> is not on any OBLIST. If <ATOM> is
on an OBLIST, it returns that OBLIST.

DGSD 119 8YS.11.01

12.3. READ and OBLISTs

12.3.1. Trailers

READ can be explicitly told to look an ATOM up on a
particular OBLIST by giving the ATOM a trailer. A trailer
consists of the characters !'- (exclamation point dash) following
the ATOM, immediately followed by the name of the OELIST.

A'-OE

specifies the unique ATOM of PNAME A which is in the OELIST whose

name is the ATOM OE.
Note that the rame of the OBLIST must follow the !'- with

no separators (like space, tab, carriage-return, etc.). There is
a default name (see below) which types and is typed as
!—<separator>.

Trailers can be used recursively:

B!-A!-0OB

specifies the unique ATOM of PNAME B which is in the OELIST whose
nane is the unique ATOM of PNAME A which is in the OBLIST whose
name is OB. (Whew!) The recursion is terminated via the
defaults.

If an ATOM with a given PNAME is not found in the OBLIST

specified bty a trailer, a new ATOM with that PNAME is created and

DGSD 120 SYS.11.01

inserted into that OBLIST.

Defaults very often make trailers umnecessary. See

belovi.

12.%3.2« READ and Defaults

If trailer notation is not used (the "normal" case), RFAD

looks up the PNAME of the ATOM in a LIST of OBLISTs, specifically
the LVAL of the ATOM OELIST. This lookup starts with <1 JCBLIST>

and continuves until OELIST is exhausted. If the ATOM is not
found, READ inserts it into <1 .OBLIST>.

12.4. PRINT and OBLISTs

When PRINT is given an ATOM to outyut, it outputs as
little of the trailer as is necessary to specify the ATOM

uniquely to READ. T.e.: if the ATCOM is the first ATOM of that
PNAME which READ would find in its normal lookup on the current
LIST of OBLISTs, nc trailer is output. If it is not, !'- is put
out and the NAME of the OBLIST is recursively FRINTed.

Warnirnge: there is an obscure case, which does not occur

in norral practice, for which the PRINT treiler recursion does
not terminzate. If an ATOM must have a trailer printed, and the

nare of the OBLIST is an ATOM in that very same OBLIST, death.

DGED 121 S5YS.11.01

12.5. Initial State

Upon starting a MUDDLE, .OELIST contains 2 OBLISTs. <1

.OPLIST> initially contains no ATOMs, and <2 .ORLIST> conteins
all the ATOMs whose GVALs are SUBRs or ISUERs. It is difficult

to lose track of <2 .OBLIST>; the specific trailer !—<separators

will always cause reference to that OBLIST. In addition, the

SUER ROOT, which takes no arguments, always returns that OELIST.
The name of <RCOT> is KOOT; this ATOM is in <RCOT>, and

would cause infinite PRINT recursion were it not for the fact
that !-—<space> is used.

The name of the initial <1 .OBLIST> is INITIAL (really
INITIAL!-).

An error restores .OEBLIST, in the sense that the initial
OBLISTs it contained are now its members again, in their initial
order. However, any changes that were made to those CBLISTs —
e.r., new ATOMs added — remain. <ERRET> does the same thing.

One other OBLIST exists in a virgin MUDDLE: an OBLIST
whose name is FRRORS!- . This OBLIST contains ATOMs whose PNAMEs
are used as error ressages. It is not initially on .ORLIST, so

errors usually cause a lot of !'-ERRORS trailers to be printed.

DGSD 122 SYS.11.01

12.6. BLOCK and ENDBLOCK

These SUBRs are analogous to begin and end in AILGOL,
etc., in the way they manipulate static blocking (and in no other
way).

<BLOCK <LIST of OBLISTs>>

returns its argument after "pushing" the current LVAL of OELIST
and making its argument the current LVAL. You usually want

<RCOT> to be a member of <LIST of OBLISTs>», normally its last.

<ENDELOCK>

"pops" the LVAL of OBLIST and returns the resultant OBLIST.

DGSD 123 SYS.11.01

12.7. SUBRs Associated With Iexical Blocking

12.7.1. READ (again)

<READ «error routine» <CHANNEI-> <LIST of OBLISTs>>

This is the full configuration of READ. <LIST of ORBLISTs> is
used as stated in 12.3. to lock up ATOMs and insert them in

OBLISTs. If it is not specified, .OBLIST is used.

12.7.2. LOOKUP

<LOCOKUP <STRING» <OELIST>>

If an ATOM of PNAME <STRING> is in <OBLIST>, returns that ATOM;
otherwise returns #FAISE().

12.7.3. REMOVE

<REMOVE <STRING> <OELIST>>

removes the ATOM of PNAME <STRING> from <OELIST> and returns that
ATOM. If there is no such ATOM, REMOVE returns #FALSE().

DGSD 124 5YS.11.01

12.7.4. INTERN

<INTERN <ATOM» <OELIST>>

puts <ATOM>» into <OBLIST> and returns it. If there is already an

ATOM with the same PNAME as <ATOM> in OBLIST, error.

12.7.5. ATOM

<ATOM <STRING>>

creates and returns a spanking new ATOM of PNAME <STRING> which
is guaranteed not to be on any OBLIST.
An ATM which is not on any OBLIST is PRINTed with a

trailer of '-—#FAISE ().

12.7.6. PNAME

<PNAME <ATOM>>

returns a STRING (not unique) which is <ATOM>“s PNAME.

DGSD 125 8YS.11.01

12.8. Fxample of Normal Use: Death of the INC Protlem

On the following page is an example of the way OBLISTs
are "normally" used to provide "externz=lly available" ATOMs anc

"local" ATOMs which are not so readily available exterrally.

DGSD 126 £¥S5.11.01

<MOBLIST INCO 1>
;"Create an OELIST to hold yéur externalvsymbols."

INC!-INCO
;"Put your external symbols into that OBLIST."

<BLOCK (<MOBLIST INCI!-INCO 1> <GET INCO OBLIST> <ROOT>)>

;"Create a local OBLIST, naming it INCI!-INCO, and set up
.OELIST for reading in your program. The OBLIST INCO is included
in the BIOCK so that as your external symbols are used, they will
be found in the right place. liote that the ATCM INCO is notin
any OBLIST of the EIOCK; therefore, trailer notation of !-INCO

will not work."

<SETG INC ;"INC is found in the INCO OBLIST."

<FUNCTION (A) ;"A is not found, and is therefore put
into INCI by READ."

<SET A <+..A 15555

<ENDBLOCK>

This example is rather trivial, but it contains all the
issues, of which there are three:

The idea is that you should create two OBLISTs, one to
hold ATOMs which you wish users to know of (INCO), and the other

to hold internal ATOMs which are not normally of interest to the

DGSD 127 SYS.11.01

user (INCI). The case above has one ATOM in each category.

INCO is explicitly used without trailers so that
externally used BLOCKs and ENDELOCKs will have an effect on it.
Thus INCO will be in the OELIST desired by the user; INC will be
in INCO, and the user can access it by saying INC!-INCCj; INCI
will also be in INCO, and can be accessed in the sane way;

finally, A is really A!-INCI!-INCO. The point of all this is to
structure the nesting of OELISTs.

Finally, if for some reason (like saving storage space)

you wish to throw INCI away, following the ENDELOCK with

<REMOVE "INCI" <GET INCO OELIST>>

will remove all references to it. The ability to do such pruning

is one reason for structuring OELIST references.

Note that even after removing INCI, you can "get A back”
— i.e., be able to type it in — by saying something of the form

<INTERN <1<1 ,INC!-INCO>> <1 .OBLIST>>

thereby grabbing A out of the structure of INC and re-inserting
it into an OBLIST.

DGSD 128 SYS.11.01

12.9. Extensions

There are some extensions to the basic lexical blocking

machinery which are planned. Their intent is to facilitate the

use and dynamic loading of "packages" of routines. These

descriptions should be taken as tentative.

12.9.1. The User Oblist Oblist (UOO)

The initial (ORLIST will eventually contain three
OBLISTs: INITIAL, an OBLIST named UOO!- , and ROOT in that order.
UOO (from User Oblist Oblist) is intended to.bé a "root" for
trees of user-defined OBLISTs, similar to the MULTICS udd for
directories. It is not possible to actually enforce this use of

8[0, 0 however, using it as a "root" will be convenient, due to

the next feature.

12.9.2. Automatic OBLIST Generation

Suppose trailer notation is used, and an ATOM in the
trailer is not an OBLIST name. Eventually, this will cause READ
to generate an OBLIST of that name, place the name in UOO, and
place the originally trailered ATOM into the new OELIST. If the
routine or reckage defining the original ATOlM is now loaded

later, it need only lock in UOO to resolve previous references.

DGSD 129 SYS.11.01

13. Errors, FRAMEs, etc.

1%2.1. LISTEN

This SUBR takes any number of aguments. It PRINTs themn,
then PRINTS

IISTENING-AT-LEVEL <VM>» PROCESS <N>

where <M> is an integer (FIX) which is incremented each time
LISTEN is called recursively, and <N> is an integer identifying

the process in which the LISTEN was EVAIed. LISTEN then drops
into an infinite READ-EVAI~PRINT loop which may be left via ERKET

(see below).

13.2. ERROR

This SUER is identical to LISTEN, except that it first
PRINTs *ERROR*.

Vhen any SUER or FSUBR detects an ancmolous condition,

(e.g., its arguments are of the wrong TYPE) it calls EFROR with

DGSD 130 SYS.11.01

two argunents:
1) an ATOM whose PNAME describes the problen
2) the ATOM whose VALUE the SULR or FSUBR is ard then

returns vhatever the call to ERROR returns.

13.%. TYPE FRAME

A FRAME is the object placed on a process’ stack whenever
a SUBR or ¥SUBR is applied. It contains information describing
what was applied, plus an object of TYPE ARGUMENTS. The latter
is a TUPLE-like object, often referred to as the ARGUMENT TUPLE,
whose elements are the arguments to the SUER or FSUEBR applied.
If a SUBR is applied, the ARGUMENTS of its FRAME have bteen EVAL’d
by the time the FRAME is generated.

A FRAME is an anomolous TYPE in the following ways:

1) It cannot be typed in. It can only be generated by an

application.

2) It does not type out in any standard format, but
rather as
STACK-FRAME-FOE—
followed by the PNAME of the SUER or FSUBRR applied.

DGSD 131 EYS.11.01

13.3.1. ARGS

<ARGS <a FRAME>>

Returns the ARGUMENT TUPLE of <a FRAME>.

13.3.2. FUNCT

<FUNCT

returns the ATOM whose VAILUE is being applied in <a FRAME>.

13.3.3. FRAME (the SUERR)
<FRAME <a TIRAME>>
returns the FRAME stacked before <a FRAME». If called with no

arguments, FRAME returns the topmost FRAME used in an application
of ERROR.

DGSD 132 SYS.11.01

13.3.4. Examples

Say you have gotten an ERROR. You may now type at
ERROR ‘s LISTEN loop and get things EVAILd. E.g.,

<FUNCT <FRAME>>$

ERRCR

<FUNCT (FRAME <FRAME>>>®

<the ATOM whose VALUE is the (F)SUBR
which called ERROR>

<ARGS <FRAME<FRAME>>>®

<the arguments of the (F)SUBR which
called ERROR>

13.4. ERRET

<ERFET <anything> <a FRAME>

This SUBR

1) causes the stack to be stripped down
to the level of <a FRAME>.

2) Then returns <anything>.

DGSD 133 5YS.11.01

The net result is that the application which generated <a IFRAME>
is forced to return <anything>.

The second argument to ERRET is optional, with default
<IFRAME>.

If ERRET is called with no arguments, it drops you all
the way down to the bottom of the stack — the level 1 LISTEN
loop.

13.4.1. Examples

<* 3 <+ a2 1508

ERROR

FIRST-ARG-WRONG-TYPE

+

LISTEN-AT-ILEVEL 2 PROCESS 1

<ARGS <FRAME <FRAME>>>®

(a2 1]

<ERRET 5>¢ ;"This causes the + to return 5."
15 s"Finally returned by the *.,

Note that when you are in an ERROR, the most recent set
of bindings is still in effect. This means that you can examine

values of dummy variables while still in the error state. E.g.,

DGSD 134 SYS.11.01

<SETG F
CFUNCTION (A "AUX" (B "a string"))
(.B <REST .A 2>) ;"Return this LIST."

OUT—-OF-BOUNDS

REST

LISTENING-AT-LEVEL 2 PROCESS 1
<ARGS <FRAME <FRAME>>>®

[(1) 1]

-Ad

(1)

B

Yo string"
<ERRET (5)> ; "Make the REST return (5)"®
("a string" (%))

13.5. Control-G (°G)

Typing Control-G (*G) at MUDDLE causes it to act just as

if an error had occurred in whatever was currently being done.
You can then examine the conterts of variables as above, continue

by applying ERRET to one argument (which is ignored), or flush

DGSD 135 SYS.11.01

everything by applying ERRET to no arguments.

DGSD 136 5YS.11.01

14. Other Things

The following don‘t seem to fit very well into any

sectioning I can come up with. So here they are.

14.1. STACKFORM

This rather strange FSUBR is used to build a FORM on the
STACK (more efficient than garbage-collected storage) and then
EVAL it. An application of STACKFORM looks like this:

<STACKFCRM <ap» <e>» «ce>>

where
<e> is an arbitrary expression

<ap> EVALs to something which can be applied (SURR,

FSUER, etc.)
<ce> is another arbitrary expression which should be

capable of returning a FALSE.

DGSD 137 S5YS.11.01

Evalvation of an application of a STACKIORM proceeds as
follows:
1) Evaluate <ap> and place the result on the stack.
2) Evaluate <ce», and then:
2.1) If <ce> evaluated to non-FALSE, evaluate <e> and
place the result on the stack. Then go back to the
start of (2).

2.2) If <ce> evaluated to a FAISE, apply the stacked

<ap>» to the stacked <e»s and return the result.

14.1.7. Example

The following SUBR reads characters from .INCHAN until an

® is read, and then returns what was read as ore STRING.

DGSD 138 5Y5.11.01

<SETG RDSTR
<FUNCTION ()
<STACKFCRM ,STRILG
<READCER>
<NOT <=% <NEXTCFR>
<ASCITI 27>>>>
>>9

- e e e

<PROG () <READCFR> ;"Flush the ALTMCDE ending this input."
<RDSTR>>HARBC123<+ % 40
YABC123<+ 3 4>"

14.2. 9 and %%

The tokens ¢ and %7 are interpreted by READ in such a way

as to give a "macro" capability to MUDDLE similar to PL/1°s.
Whenever READ encourters a single & — anywhere, at any

depth of recursion — it immediately, without looking a2t the rest

of the input, evaluvates the object following the %. The result
of that evaluation is used by READ in place of the object
following the ¢. I.e., % means "don’t really READ this, use EVAL
of it instead."

Whenever READ encounters %7, it likewise immediately

evelvates the object following the 9%. However, it completely

1 I\

- .
18

Wi

DGSD 139 SYS.11.01

ignores the result of that evaluation. Side effects of that

evaluation remain, -of course.

14.2.7. Example

<SFTG SETUP <FUNCTION () <SET A O>>>% ' .

<SETG NXT <FUNCTION () <SET A <+ .A 1>>>>0

[9%<SETUP> %<NXT> F<NXT> (FE<SETUP>) %<NXT>]6
[12 () 1]

	Cover letter May 4, 1972
	Errata July 31, 1972
	A MUDDLE Primer May 5, 1972
	Acknowledgements
	Contents
	Forward
	0. Basic Interaction
	1. READ, EVAL, and PRINT
	2. Functional Application (type FORM)
	3. Values of Atoms
	4. Types and Structured Objects
	5. Basic Types of Structured Objects
	6. Truth
	7. FUNCTION
	8. PROG and REPEAT
	9. I/O
	10. Locatives
	11. Association
	12. Lexical Blocking
	13. Errors, FRAMEs, etc.
	14. Other Things

