236

D. PROGRAMMING
R67-22 The L1sP 2 Programming Language und System—P. \W..
Abrahams and C. Weissman (1966 Fall Joint Compute; Confer-
ence, AFIPS Proc., vol. 29, pp. 661-676).

L1sP 2.will one day stand on its own logs and be evaluated on its
own merits. But in its first public appearance it is in the role of a
child of famous parents. Com'pqrhon:. are invited when a child is
brought into the world to’ carry on and eventually take over his
parents’ business. Of course, people get old and eventually retire, if
for no reason other than that they can no longer do what they were
once able to do. Computer languages do not degencrate in the same
way. When they are deliberately replaced it must be that the new
generation addresses itself to problems that are effectizely outside the
scope of the old one. This point is taken up again below.

Lise holds an honored place alongside FORTRAN, AvGorn, and
1IPL-V as an important tool and, what is more important in the loag
run, as a seminal construct. That the culture spawned by FORTRAN
and arcoL is ubiquitous is obvious and need not be further discussed
here. The number of people fluent in 1PL-V is very small. The impor-
tance of that language in historical context is that it explicitly dealt
with and exploited dynamically changing data and program stric-
tures. Tt planted the list-processing seed. At least traces, and usually
much more, of its issue can be found in every modern product of the
computer world. The Lisp culture also has few active participants,
However, it is immeusely vigorous. One sign of this vigor is that
new LIsp interpreters and compilers appear with considerable regu-
larity. Another is that extremely difficult problems (e.g., symbolic
integration, visual object recognition, programmed proof procedures,
mathematical assistants) continue to be cast in LIsP programs. But
the spermatic character of the Lisr idea reveals itself in that it has
permeated research in the foundations of computation. LISP s a
topic in recursive foundation theory. It is-duilt on the lambda cal-
culus. Mathematical theorems abou? and i LIsp are not ad hoc or
a posteriori constructs clothing things not basically logically struc-
tured in mathematical costume.

What is the beauty and from whence derives thc power of Lisr?
The beauty of L1sP is that it is so utterly simple. The first few pages
of the L1sp 1.5 manual tell all that really needs to be told. All the rest
is elaboration and example. The word for that is “elegance.” The
power of LIsP is a function of its elegance. LIsP is #of o list processor.
To be sure, its basic internal data type is the list structure. Indeed,
the programmer may nmmpuhte list structures explicitly. But large
programs are written in which explicit list mampulntlon is not the
major issue. The essence of L1sP is that it is a functional language.
And by this is meant that it applies functions to arguments. At this
stage of the development of computation it almost need not be said
that the latter may again be functions applied to arguments. It is,
however, altogether uncommon that functions may themselves be

applicative expressions, that, in other words, a program may execute

a process (evaluate an expression) the result of which is a function
(not a function name) which may then (or later) be applied to argu-
ments. That unlimited nesting of such expressions within expressions
is permitted goes without saying. Similarly for the fact that functions
may be recursive in complicated wavs. However, another word
should be said about recursion. This is that the basic list organization
of L1sr and the provision of the operators car and cpr which yield
the first element of a list and a list with its first element removed, re-
spectively, makes recursive operations on complex data structures
quite easy and, more importantly, natural.

Another strength of L1sr must be mentioned because of \\hat fol-
lows: It is possible—even normal—to have a program consiruct an
expression and then have that expression evaluated. In other words,
data can be treated as program. It is, of course, also true that a Lisp
program may operate on itself, i.e., that program may be treated as
data.

Granted all the beauty, elegance and power described here, what
then motivated anyone to create a child to replace this famous per-

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, APRIL 19567

son? That LisP 2 is so intended follows from its name. Does the new
package repair certain faults of the old one or does it take advantage
of new opportunities, perhaps new ideas, to enhance and expand it?,

The authors criticize Lise 1.5 (the current form of L1sp) for not
having “a convenient input language” and for treating purely arith-
metic operations inefficiently. The first of these criticisms is met by
providing a preprocessor to convert very ALGOL-like source leve) pro-
grams to very LIsp 1.5-like internal language programs. The internal
language Is an intermediate stage. It is finally compiled into machine
code. The arithmetic inefficiency difficulty is met by introducing
type declarations. These give the compiler sufficient information
about the program being compiled to permit generation of efficient
code.

Here, by the way, is the first public admission on the part of what
has sometimes been called the Lisp “priesthood” that there is any-
thing “inconvenient” about Lisp notation. Indeed, the heavily paren-
thesised L1sP notation is sometimes seen as a blessing (even if in dis-
guise) in that it keeps the priesthood small—the price of admission,
i.e., having to learn to balance endless series of parentheses, being too
high for most ordinary humans. The removal (or at least reduction)
of artificial tariffs can be greeted only with pleasure.

The efficiency issue is more pervasive than appears at first glance.
Behind its acknowledgement lies an even more important recogni-
tion-—namely, that many important problems demand information
processing facilities of disparate kinds, i.e., that “symbol manipula-
tion” is not the only tool required by the serious workman. It is here
that the word “effective” as uzed above becomes operative, For no
one argues that Lisr (or, for that matter, FORTRAN) is not “universal”
in that programs prescribing the computation of any computable
number cannot be written in it. But there is a difference between
practical computability and computability. (This difference is, by the
way, becoming every more important as the maximum delays people
and things can be made to endure are more and more determined by
real-time criteria.)

It is in the service of the newly valued catholicity that the major
departures from classical L1sp have been ordained. The starting point
is that efficient arithmetic is desired. Type declarations permit com-
pilation time identifier discrimination and thus aid in generation of
code appropriate.to each task, hence efficient code. But what kind of
arithmetic? Well, integer, floating-point, Boolean, multiple preci-
sion, But the storage of multiple precision numbers raises diffi-
cult problems in dynamic storage management, precicely the same
ones arising out of attempts to allocate and recover array and
matrix space.

The problem is that programs will demand blocks of mnhguomlv
addressable storage at essentially unpredictable times. If fewer cells
are demanded than are on the free storage list, but no contiguous
block of the required size is free, then the program has run out of
space. But, except for poor organization, space is actually available.
That situation cannot be allowed to persist. The solution adopted by
LIsr 2 is a so-called “compacting garbage collector.” As in classical
L1sP, abandoned data structures are permitted to accumulate as long
as there is no shortage of free space. They are not collected until a
new pool of available space must be formed. In the classical vLisp
garbage-collection cycle, abandoned cells are marked as being again

“available by being strung into one monolithic free storage list. The

process is roughly analogous to stringing a thread through all newly
available cells. In a sense, the thread moves but the cells stay in place.
In compacting garbage collection, on the other hand, the number of
cells so freed is counted and the data contained in that number of
cells starting from the top of the original list of available space ate
moved into the freed cells. All appropriate pointers in all data struc-
tures are modificd accordingly. The new free storage list then con-
sists of the largest possible block of contiguously addressable cells.
Clearly, this latter scheme may involve the transfer of considerable
amour’ Hf information, bence, a proportxox.ate expenditure of pro-
cessing time.

REVIEWS OF BOOKS AND PAPE
Oue important advantage of dynamic storage allocation Is that
space is used over and over again, thus lowering the minimum storage
requiremients of a given program over what it would have had to
hatve been under a rigid, static storage preassignment scheme, e.g.,
one governed entirely by pIMENSION statements. Nevertheless, there
is some such minimum associated with any given program and the
data structures on which it is to work. It is precizely in the complex
pro‘olcm areas for which L1sp was designed that reliable estimates of
such minima are very hard to make. The original list of available
space is, “therefore, made as large as possible—in batch processing
usually the remainder of core after all essentials have been loaded.
But the larger that list, the longer the garbage-collection cycle.

Recall that garbage collection is not initiated until the free stor-
age list cannot satisfy a demand for free space—whether that demand
be for a single cell or for
scheme here outlined that all substantive computation must cease
while the list of available space iz reorganized. The time required to
collect garbage on a typical 7094 Lisp 1.5 system is on the order of
0.5 second. That iz for a machine with a 32 000-word memory of
which about 10 000 werds are devoted to available space. Lisp 2 is
meant for machines with possibly 236 000 words of core storage of
which 200 000 words might well be allocated to the free list. Com-
pacting probably doubles garbage-collection time. Thus, a garbage-
collection cycle in a Lisp 2 system running on a 256 000 machine of
7094 speed might take 20 seconds! Such lengthy interruptions of sub-
stantive computation will prove to be intolerable for precisely those
problems which are now beginning to dominate the interest of the
most advanced programming community, hence of the most natural
Lisp 2 customers. For those problems involve either intimate man-
machine interaction (e.g., MATHLAB) or control of elaborate machines
(e.g., RoBoT). They are, in other words, problems in real-time compu-
tation which may very well founder on interrupts of the indicated
magnitude.

A better solution to the garbage-collection problem would have
been to break the overall effort of space administration into small
quanta and distribute these more or less uniformly over the whole
program running time. The main objection to certain existing algo-
rithms of this kind is that they demand explicit, i.e., programmed,
erasure of data structures and thus place an unwanted burden on the
shoulders of the programmmer. But this can be avoided in block-struc-
tured systems. In any casze, a new way has to be found..

Experience indicates that the solution to the problem of dynamic
space administration in a list-processing system so pervades all other
systemic issues as to virtually dictate overall system strategy. If this
insight has any validity at all, then it would argue that the Lisp 2
team should have started with a set of functional specifications de-
rived from both the acknowledged power of the L1sp concept and the
environment in which the new svstem has to operate. Because that
environment must of necessity include the facts of real-time applica-
tion, time-char'ng. machines with very large first level memories, and
paging, they would have been led naturally to research on distribu-
tive compacting garbage collectors. Under such a regimen no imple-
mentation would have been started until that major problem was
solved. Judging by the superb quality of the individual team mem-
bers, it is hard to believe they would not have succeeded.

That Lisp 2 permits a variety of data types and even the intro-
duction of new data ty'pes can no longer serve to distinguish it from
competing languages. AED and PL-I, to name only two, have similar
facilities. And both perniit uulimited recursion and partial word
operations. And it has been shewn that pattern-driven data-manipu-
lation functions may be introduced into a large class of languages.

LISP's remaining claim to distinction is that “it is unique among
programming languages in the ease with which programs can be

“treated as data.” Of course, many languages can “treat programs as
data.” Even lowly FORTRAN can operate on FORTRAN programs!
What is meant here is that a currently regnant program caun be
operated on and the resulting structure again treated as a program, ie.,

(RS IN THE COMIPUTER FIELD 2

a block of cells. But it is in the nature of the

237

evaluated—all within a single run. In other words, that data con be
treated as prc-am! (By an unconscionable stretch of the imagination
one can conceive of FORTRAN wumeving this mode of operation by
means of overlays and chaining. That would hardly qualify as effec-
tive computing.) -

This important feature has been kept In LISP 2, at a price, how- -
ever, that goes some way toward defeating the “inconvenient lan-
guage” component of the initial motivating argument. For programs
that are to be subjected to such treatment must be in the intermedi-
ate, i.e, Lisp 1.5-like language. The programmer who wishes to take
advantage of this aspect of the power of Lisp 2 must, therefore, be
conversant in the intermediate language as well as in the ALGOL-like
language.

It was said earlier that Lisp 1.5 permits constructs of the follow-
ing type:

((Ja)b)

where fis a function to be applied to the argument a. The results of
this application are again a function (as opposed to a function name)
which is then applied to the argument b. Thus, for example, if

£ = (@axrspa(G) (Lanppa(X) (GGX))))
and
= SQRT
then the result of applying f 1o a is the function
(LaveDpA(X) (sQrT(sQRT X)))

which if then applied to =16 will yield the value 2. Had f been
applied to the LoG function, it would have yielded the LoG LoG func-
tion. This is an enormously powerful feature of Lisp 1.5, Unfortu-
nately, the paper under review fails to allude to its presence in Lisp 2.
Expressions of the kind just illustrated can certainly be written and
are undoubtedly legal in the Lise 2 intermediate language. There is a
significant question, however, over the possible implementation of
such a mechanism within the visp 2 framework. InLise 1.5 the inter-
preter is always kept in core (even when dealing with -compiled
Lrsp 1.5 programs) to deal with just svch issues. As there is no Lisp 2
interpreter, the system must call the compiler whenever such an issue
arizes during the running of a program. This carries with it the two
disadvantages that 1) considerable memory space must be left for
the compiler (unless overlay techniques are used!) and 2) that non-
neglizible computing time is once again devoted to purely adminis-
trative matters. The overall effect of these penalties is to encroach on
the freedom with which the Lisp 2 progranuner will use this powerful
device. And the worst consequence of that is that it increases the
burden of awarcness which the programmer must carry. It is argu-
able that, at least for the problem classes relevant to this discussion,
the ultimate limit of what can be programmed is determined by the
weight of just this burden. .

All the above views taken together point to the conclusion that
the child has overcompensated for the reputed deficiencies of the
father. ALGOL 75 a more convenient language than rLise 1.5 and dis-
parate data types are highly desirable. But their inclusion has been
achieved at the cost of weakening some of the muscles for "which
LisP is most deservedly famous.

The very caliber of the Lisp 2 architects and builders give the
disparity between the hope and the achievement a paradoxical char-
acter. How is it to be expluined? It was stated earlicr that the effort
should have been grounded on a set of functional jecifications and
tuned to the emergent computing environment. What fault there is,
is probably attributable to the atmosphere of developinent (even pro-
duction) in which the task was executed. Under that kind of pressure,
the truly elegant foundation of the Lisp idea eroded. Then too, it
should be appreciated that in comparison with L1sp, ALGOL, however
practical it may be, is a jungle of ad hoc rules and devices. No fine-
spun creation could hope to preserve its charm in such surroundings.

238 IEEE TRANSACTIONS ON ELECTRONIC COXMPUTERS, APRIL 1967

But the wake over lost innocence must not be overly prolonged.
The technical achievement ¢ tae L1sp 2 group di - ~-ves the most keen
respect and admiration. To say the system resw on nonparsimonious
foundations is not to say that it is a patchwork. It is an integrated
machine of tremendous versatility. If it lives up to its specifications,
it should casily dominate such other eclectic systems as FORMULA
ALGOL, ForMac, and the various stip embeddings. Because of the
huge advance sale of tickets to the rrL-1 extravaganza, there-can be
no contest between it and L1sp 2. Whatever L1sp 2's performance in
popularity polls might eventually be, its ultimate significance must
be judged in terms of its influence. This is the measure that estab-
lished the fame and honor of its direct antecedants. The problems
alluded to here wait to be solved. Perhaps the very people who
created this system—and who once more demonstrated that a pla-
toon of superior craftsmen is enormously more powerful than a
brigade of plodders——may now meet the challenge they have so well
illuminated.

Joseri WEIZENBAUM
Mass. Inst. Tech.
Cambridge, Mass.

	Weizenbaum-Review.tif
	Weizenbaum-Review1.tif
	Weizenbaum-Review2.tif

