
The views, conclusions, or recommendations expressed In this document do not neees­
wily reflect the official views or policies of alencles of the United Stetes Government.

The :n:search reported in this paper was sponsored by
the Advanced Research Projects Agency Information
Processing Techniques Office and was monitored by the
Electronic SystF-..ms Division, Air Force Systems Canmand
under contract F1962861Cooo4, Information Processing
Techniques, with the System Developmen Corpo~l.lI<o:i_.:..-.....

~i!
a working paper for J. I. Schwartz

Splem De,lIopment Corpontlon I 2500 Colorado AMU~ I Santi MonlCl, Callfonlll 10406
IIIfInnItIoa International Inc./lllSI Plco IoIIninlI Loa anpl.., California 90064

DATE P .. 1 Of -2.-P"U
4/26/67

(page 2 blank)

LISP 2 Storage Management: Paging of Binary Programs

~STRACT

This document describes the paging of binary program
space by the storage management functions of the
LISP 2 system proposed for the IBM 8/360 computer.
Included are descriptions of the functions required
to create, delete, load and unload library files.

26 April 1967 3
TM-3417/525/00

1. INTRODUCTION

The LISP 2 system controls the use of binary program space with programs that
automatically perform the following functions: (1) load pages when needed,
(2) inventory the relative ages of programs, and (3) unload the oldest programs
when more space is needed. The ege of a program is determined by the number
of LISP system interrupts since the program was last executed. The execution
of a program automatically restores its age to the in! tial state. The system
attempts to maintain a reasonable balance between the size of binary program
space and the size of list-array space.

2. LIBRARY FILES

Programs that are to be paged in LISP 2 are written onto library files. A
library file may contain any number of functions and macros. A particular
program may be written on several library files. When it is necessary to
load any of the members ofa library file into core, the entire file must
be loaded. Any number of library files may be included in one disc file.

The following is a description of the functions required to create, delete,
load, and unload library files.

3. PAGING FUNCTIONS

3.1 DUMPL$LISP

The bin'3.ry program images (abbreviated BPI's) for functions and macros may
be grouped into library files and copied onto the disc by using the function
DUMPL$LISP. This action does not cause the BPI's to be deleted from binary
program space. A function may be placed in several llbrary files, and one or
moru library files may be placed onto one binary program disc file. (When
grouping functions into library files, consider that loading requires transfer
of one entire library fi le •)

DUMPL (lname filename flist)

lname
filename
flist
name
section

= library file name
= disc file name
= ((name. section)*)
= name of function to be dumped
= section of function to be dumped

OOMPL adds the functions in flist to library file lname, which is placed on
binary program disc file filename. The system will autanatically open the
disc file. If lneme is already an established library file within filename,
DUMPL loads lname (by calling LOADL), removes any dead BPI's and then dumps
all of the library files onto the disc. The value of DtJMPL is a list of the
names of the functions and macros that were dumped.

4
26 April 1961 TM-34l1/525/00

3.2 DUMPSEC$LISP

The BPI's for all of the functions and macros in a section may be placed on
disc by using DUMPSEC$LISP

DUMPSEC (lname filename section)

This will place all of the functions and macros in a particular section into
library file lname on disc file filename. The value of DUMPSEC 1s a list
of the functions and macros that 'Were dumped.

3.3 REMOVEL$LISP

Library files may be removed from the system by calling REMOVEL$LISP (lname),
which also loads lname if necessary, by calling LOA.DL, and returns as its
value a list of the alive files in lname.

3.4 ~DL$LISP

All of the inactive fUnctions and macros in a library file may be unloaded
from binary program space by calling the function UNLOADL$LISP (l.name). The
value of UNLOA.DL: is NIL.

3 .5 UNL().6.DFN$LISP

UNLOA.DFN$LISP (name section) wi~l unload the function name$section.

3.6 LOA.DL$LISP

All of the functions and macros in a library file may be loaded into binary
program space fran disc by calling the function LOA.DL$LISP (lnarne). The
value of LOADL is lname.

4. CCMPUTATIONAL GERIATRICS OF LISP 2 PROORAMS

If a function which has been unloaded is called, the LISP 2 system will
automatically reload a library file containing it. If this reloading requires
more binary program space than is presently available, some programs which
are not in use may be unloaded, and if necessary, the garbage collector may
be called to increase the size of binary program space.

In order to decide which programs to unload when space is needed, the following
interrupt-aging scheme is employed. A function or macro which is in core
has one of nine different states or ages. These are, in order fran new to
old: the untrappedstate, and the trapped state with age 0, 1, 2, 3, 4, 5, 6,
and 7. Inunediately after a function has been loaded, it 1s in the untra:pped
state. When an interrupt occurs, all functions and macros that exist in the
library files and are presently in core are aged to the next older state
(those of age 7 st$y in that state).

---.. -----------------------.~----'--------

26 April 1967 5
(Last Page)

TM-3417!525!OO

The interrupt occurs autanatically after every nth function return. This
number may be varied by changing INTCN'l'$SYS. The interrupt count is not
incremented during garbage collection and an interrupt cannot occur then.

Ifa function or macro is called, the trap function ITRAP1$SYS automatically
returns it to the untrapped state and then the processing continues. Therefore,
at the time a function is called, its age is autanatically restored to the
initial state. (The mechanism of ITRAPl$SYS is similar to that of a trace
function. The age of a function is stored in three bits of the function
descriptor.)

Autanatic unloading of programs may occur during execution of GETHBPS$SYS or
during garbage collection, since both of these programs may call UNLBPS$SYS.
It unloads all programs in the oldest state; then, if necessary, all of the
programs in the next oldest state and so on until enough space is released.

The system for paging of binary programs described above is used in the Q-32
LISP 2 system.

----------------- --------

