The views, conclusions, or recommendations expressed in this document do not neces-

sarily reflect the official views or policies of agencles of the United States Government. TM" 3k17/525/00

The research reported in this paper was sponsored by AUTHOR

the Advanced Research Projects Agency Informetion . E. Lbn,g

Processing Techniques Office and was monltored by the]ﬂ/ ?l/

Electronic Systems Division Air Force Systems Command <t

under contract Fl962867c , Information Processing TECHNIC M
Barnett

RELEASE %{g{fég&)

D, AnschultzJ

fo J, I, Schwartz

PAGE 1 OF_3___PAQES

Techniques, with the System Developmenl Corporation

a working paper
System Development Corporation / 2500 Colorado Avenue / Santa Monica, California 90406 DATE
Information International Inc./ 11161 Pico Boulevard /Los Angeles, Callfornia 90064 L/26/67

(pege 2 blank)

LISP 2 Storage Management: Paging of Binary Programs

ABSTRACT

This document describes the paging of binary program
space by the storage management functlons of the
LISP 2 system proposed for the IBM S/360 computer.
Included are descriptions of the functions required
to create, delete, load and unload library files.

26 April 1967 3 T™-3417/525/00

1. INTRODUCTION

The LISP 2 system controls the use of binary program space with programs that
autamatically perform the following functions: (1) load pages when needed,

(2) inventory the relative ages of programs, and (3) unload the oldest programs
vhen more space is needed. The sge of a program is determined by the number
of LISP system interrupts since the program was last executed. The execution
of a program automatically restores its age to the initial state. The system
attempts to maintain a reasonable balance between the size of binary program
space and the size of list-array space.

2. LIBRARY FILES

Programs that are to be paged in LISP 2 are written onto library files. A
library file may contein any number of functions and macros. A particular
program may be written on several library files. When it 1s necessary to
load any of the members of a library file into core, the entire file must
be loaded. Any number of library files may be included in one disc file.

The following is a description of the functions required to create, delete,
load, and unload library files.

3. PAGING FUNCTIONS

3.1 DUMPLSLISP

The binary program images (abbreviated BPI's) for functions and mecros may

be grouped into library files and copled onto the disc by using the function
DUMPL$LISP. This action does not cause the BPI's to be deleted from binary
program space. A function may be placed in several library files, and one or
more library files mey be placed onto one binary program disec file. (When
grouping functions into library files, consider that loading requires transfer
of one entire library file.)

DUMPL (lneme filename flist)
library file name

lname =

filename = disc file neme

flist = ((name . section)*)

name = name of function to be dumped
section = section of function to be dumped

DUMPL adds the functions in flist to library file lname, which is placed on
binary program disc file filename. The system will autamatically open the
disc file. If lname is already an established library file within filename,
DUMPL loads lname (by calling LOADL), removes any dead BPI's and then dumps
all of the library files onto the disc. The value of DUMPL is & list of the
names of the functions and macros that were dumped.

26 April 1967 ™-3417/525/00

3.2 DUMPSEC$LISP

The BPI's for all of the functions and macros in a section may be placed on
disc by using DUMPSEC$LISP

DUMPSEC (1lname filename section)

This will plece all of the functions and macros in a particular section into
library file lname on disc file filename. The value of DUMPSEC is a list
of the functions and macros that were dumped.

3.3 REMOVEL$LISP

Library files may be removed from the system by calling REMOVEL$LISP (1lname),
which also loads lname if necessary, by calling LOADL, and returns as its
~value a list of the alive files in lname.

3.0 UNLOADL$LISP

All of the inactive functions and macros in & library file may be unloaded
from binary program space by calling the function UNLOADL$LISP (1lneme). The
value of UNLOADL is NIL.

3.5 UNLOADFN$LISP
UNLOADFN$LISP (name section) will unload the function name$section.

3.6 LOADL$LISP

All of the functions and macros in a library file mey be loaded into binary
progrem space from disec by calling the function LOADL$LISP (1lneme). The
value of LOADL is lname.

L, COMPUTATIONAL GERIATRICS OF LISP 2 PROGRAMS

If a function which has been unloaded is called, the LISP 2 system will
autamatically reload & library file containing it. If this reloading requires
more binary program space than is presently available, some progrems which
are not in use may be unloaded, and if necessary, the garbage collector may
be called to increase the size of binary program space.

In order to decide which programs to unload when space is needed, the following
interrupt-aging scheme is employed. A function or macro which is in core

has one of nine different states or ages. These are, in order fram new to

old: the untrapped state, and the trapped state with age O, 1, 2, 3, L, 5, 6,
end 7. Immediately after a function has been loaded, it is in the untrapped
state. When an interrupt occurs, all functions and macros that exist in the
library files and are presently in core are aged to the next older state

(those of age 7 stay in that state).

5
(Last Page)

26 April 1967 T™-3417/525/00

The interrupt occurs automaticelly after every nth function return. This
number may be varied by changing INTCNT$SYS. The interrupt count is not
incremented during garbage collection and an interrupt cannot occur then.

If a function or macro is called, the trap function ITRAP1L$SYS automatically
returns it to the untrapped state and then the processing continues. Therefore,
at the time a function is called, its age 1s autamatically restored to the
initial state. (The mechanism of ITRAP1$SYS is similar to that of a trace
function. The age of a function is stored in three bits of the function
descriptor.)

Automatic unloading of programs may occur during execution of GETHBPS$SYS or
during garbage collection, since both of these programs may call UNLBPS$SYS.
It unloads all programs in the oldest state; then, 1f necessary, all of the
programs in the next oldest state and so on until enough space 1s released.

The system for paging of bilnary programs described above is used in the Q-32
LISP 2 system.

