
o

o

The views, conclusions, or recommendations expressed in this document do not neces­
sarily reflect the official views or policies of agencies of the United States Government.

This document was produced by SDC and III in performance of (;' t.: ' ~ AUTHOR ! 7:..1 .7J t:' ... k ~\~ ~"t1. contract AF 19(628)-5166 with the Electronic Systems
Division, Air Force Systems Command, in performance of
ARPA Order 773 for the Advanced Research Projects Agenc.y
Information Processing TeClm1QUes. ~ IcCCl
Office & Subcontract 65-107. ~ ~

1r~~~ I~I@ aW:::ingpaper
System Development Corporation /2500 Colorado Avenue / Santa Monica, California 90406

Information International Inc. I 200 Sixth Street I Cambridge, Massachusetts 02142

The LISP 2 Compiler

ABSTRACT

R. A.·~Saunders, III,;,C?
J. A. B~nettL SD?:. '7/'
Donna F, rth, 800 ~'
l[CHNICAL, .. ' '

X '
L. Hawlt1 son, I I .
C. WeiSsman, SDC U.~·/$7)~~1I::.. ;

~E~E~~ Kam~~. /I' Y d/ i

E. Fredkin, II~ ILJ:.LI!h-~i ,
I

for J. I. Schwartz, SDC

DATE PAGE 1" OF -55-PAGES i

1 February 1966 l

This document describes the operation of the LISP 2

compiler, as presentlY coded in LISP 1.5. The compiler

translates LISP 2 intermediate language into LAP 2 input.

1 February 1966 2 TM-27l0/320/0l o
TABLE OF CONTENTS

Page

1. GENERAL • • • • • • • • • • • • • • • • • • • 3

2. THE CONTROLLER. · • • • · • · • · • " • • • • 3
'2.1 COMEXP. · • · • • • • • • • • • · · • • · • • 5
2.2 FUNCTION. • · • · · • • · • • • • • • • · • • 7
2.3 Blocks. · · • • • • • • • • • • • • • • • • · 8
2.4 Variables · • • • • • • • • • • • · • • • • • 10
2.5 GO. . • • • · • • • · .. • • • • • • • • • • • 12
2.6 IF's, COMPRED, and BRANCHER · • • • · · • 14
2.1- AND, .OR • · · · • · • · • • • • · • • • · · • 17
2.8 EQ, EQUALN, EQN • · · • • • · • • • • · 18
2·9 13, GR, LQ, GQ. • • • • • • • • • • • • • • • 20
2.10 NOT, NULL · · • · • • · · · • • · • • • • • · 20
2.11 Miscellaneous INSTRUCTIONS. • • · • · · · · • 20
2.12 Miscellaneous Functions · • • • · • • • • • • 20

3. THE ARITHMETIC PROCESSOR. • · · · • • · · • • '23
3.1 Macro Expansions: FOR, LIST, DIFFERENCE,

RECIP • · · • • · • • · · • · • · · · · · · · 23 0 3.2 The Arithmetic Package. • • • • • • • • · • • 25
3.3 Partial Word and Logical Operations · • • • • 30
3.4 SET and LOCSET. · • • • · • • • • • • · • • · 33
3·5 Type Conversion and Cheaters. · • · · · · · · 34
3.6 Miscellaneous Service Functions · · · • 35

4. THE MOVER • • • • · · • • · · • • • • • • • • 37
4.1 Type Conversion • • • • • · • • • • • • · • • 39
4.2 M)VPDS. · • • • • • · • • • • • • • · • • 41
4.3 MOVLOC. • • • • • • • • • • · • • • • · • 41
4.4 ACT2LOC · · • · • · • • • • • · · · • • · • · 41
4.5 'KJVSAV. · • • · • · · · · • · • · · • · 41
4.6 LOC2AaI' • · • • • · • · • · • • · · • • · • • 41
4.7 ACT2ACT · · • • · • • • · • • • • · · • 42
4.8 MOVAaI'IVE · • • • · • · • • • • • • · • · 43
4·9 M)VARG. • • • • • • • • • • • · • • • • • • • 44
4.10 EXHOCKY · · · • • • • • • · • · • • · 44
4.11 MAKELOC · • • • • • • • • · • · • · • · 45
4.12 Other MOver Functions · · • • • · • · · • • • 46

F:igure List
Figure Page

1 Controller Flow · • · • • • • • • • • • • • · 4
2 The V-variables • • · • · • • • • • · • · • · 6
3 Comparisons Used For ID~, EQUALN · • • · · · • 19

'~J 4 Ari tluneti c Flow • • • • • • • • • • • • • • • 24
5 The "Mover" Flow. · · · · • · · · · · • · · · 38

o

o

o

1 February 1966 3 TM-2710/320/01

THE LISP 2 COMPILER

1. GENERAL

The LISP 2 compiler translates the S-expressions of LISP 2 Intermediate

Language into the assembly language input of LAP 2. It is com:posed o:f three

principal parts: the control :flow and variable binding supervisor, herein

called the controller; the arithmetic function translator; and the register

allocater, called the mover. These parts, which are largely independent,

interact in a fairly simple way.

The notion of multiple bindings of a variable at different levels of recursion

is extremely important in this compiler. Numerous free variables describe

the state of the compilation at any given time, and these variables are

bound and set in a complex manner.

The reserved words of the LISP 2 Intermediate Language are treated by invoking

a specially coded function for each such word. The functions accessed in

this way are called INSTRUCTIONS. These functions interact strongly with the

free variables and other functions of the compiler. This arrangement permits

great flexibility in changing the language. Adding a new reserved word can be

done quite quickly b.y anyone familiar with the compiler, and with relatively

little danger of damaging existing functions.

2. THE CONTROLLER

The controller is the top level of the compiler. It operates recursively to

dissect the various levels of declarations, function compositions, and so on.

Its general flow is shown in Figure 1.

At the top are routines invoked by appearance of the reserved words (BLOCK, GO,

e~c.). These words call drivers which cause forms to be compiled in the

appropriate context; the drivers in turn call COMEXP, which is sort of a

master switch through which recursion takes place.

1 February 1966

MOVPDS

4

mSTRUCTIONS
MACROS MOVACTIVE

Figure 1. Controller Flow

,", -

TM-2710/320/01

L-....,-_.--J i
-.-------~ I

J

o

o

(J

1 February 1966 5 TM-27l0/320/0l

The context is described by three fluid state variables, SCLASS, PCLASS, and

TERGO. If the compilation of an expression is to produce a value, then the con­

text is referred to as expression and SCLASS is NIL. If the compilation is of a
statement in a block, where no value is required, then SCLASS is TRUE. PCLASS

describes the result required at the expression level. If the result is to be

used as a predicate, then PCLASS is TRUE; otherwise it is NIL. TERGO carries

the label for the point at which IF branches in expression context reconverge.

It is either a label, or (more usually) NIL. As the S-expression is dissected,

SCLASS, PCLASS and TERGO are rebound as the context changes. All four combina-

tions of SCLASS and PCLASS are possible because whenever the context is

statement, there is always a higher level in which it is expression, and the

nature of this expression controls PCLASS independently of SCLASS.

2.1 COMEXP

COMEXP has an explicit argument EXP, which is either a variable or a list of

a function name (possibly reserved) and arguments. The result of COMEXP is

to set an assortment of state variables describing where the results of the

computation may be found. These variables, called the V-variables, include

the following:

VCLASS

VTYPE

VREG

Either LOC, meaning result in memory; ACTIVE, meaning

in an active register; or DATUM, meaning a quoted item.

May also be set to PREDICATE, although not by COMEXP.

SYMBOL, REAL, INTEGER, OCTAL, BOOLEAN, or FORMAL.

If VCLASS is ACTIVE,the register containing the value.

If VCLASS is LOC, index modifiers required to access the

value.

1 February 1966 6 TM-2710 /320 /Jl

NAME VALUE

VCLASS LOC ACTIVE DATUM
(in core storage) (a "quoted" expression)

VTYPE Tl Tl Tl

THE lNDEX MODE. OF THE REGISTER HOLDlNG

VREG VADDR, OR THE LIST THE VALUE.
D.N.A. OF DIR. & lNDffi. lNDEX (AC,B,L,1, ••• ,8)

VADDR LAP Address D.N.A. THE ACTUAL S -EXPRESSION

VIND NIL E VADDR direct D.N.A.
TRUE E VADDR indirect

VBYTE Bl B1

VBL91r Cl Cl

VINV Al Al

D.N.A. == Does not apply.
Tl == Symbol, real formal, intE~ger, octal, or boolean.
Bl == Position within the word addressed.

NIL = full word

D.N.A.

D.N.A.

D.N.A.

Al

LH, RH, LA, RA, etc. are the same as the LAP modifiers (Reference
III Memo No. 10, dated 23 August 1965. LAP II, author Michael Levin)
(i j) == i is the right m()st bit, j is the number of bits.

Cl E a list of the active reg:Lsters destroyed in producing this result:
AC, B, 1, ••• ,8, etc.

Al == Special consideration in handling. MINUS, RECIP

These variables are bound by a dr:Lving function (usually to NIL) before calling
COMEXP to compile an expression. COMEXP updates them appropriately to describe
the final status of the compiled E~xpression. In addition, if any moving
function (MOVACTIVE, MOVELOC, MAKl~LOC) is utilized and changes the status of"
the expression then the variables Will also be changed to reflect this.

Figure 2. Some Fluid State Variables (V-variables) for the LISP 2 Compiler

(J 1 February 1966

VADDR

VIND

VBYTE

1 TM-2 710!320!Ol

If VCLASS is LOC, the LAP address of the result.

If VCLASS is DATUM, the actual quoted item.

If VCLASS is LOC, denotes that VADDR is taken indirect.

If VCLASS if LOC or ACTIVE, the bit positions in the

word. NIL denotes entire word.

VINV Inverted status. Result found is negative, reciprocal,

or other function of desired result.

COMEXP first separates the variable case from the function-and-arguments
--

case. Given a variable, its declaration determines the setting of the
V-variables. For the function case, the declaration is first found. It may

be a macro expansion, in which case COMEXP is applied to the expanded form.

eJ It may be declared as INSTRUCTIONS, in which case the associated program is

applied. If it is a CAR-CDR chain, the appropriate CARs and CDRs are generated

by MAKECARCDR. It may be an array, in which case code to calculate the

subscripting is compiled by COMSUB. Or it may be FORMAL, which causes the

arguments to be compiled and the appropriate calling sequence to be generated.

The V-variables are then set to reflect the returned value of the function.

(J

2.1.1 COMVAL and CONPUSH

COMVAL and OOMPUSH are used to compile an expression so that the result

appears in a specified place and is of a specified type. If no suitable type

is specified, an appropriate one is established. They bind SCLASS, PCLASS,

TERGO and the V-variables to NIL, then call COMEXP. The result is moved to

the indicated place.

2.2 FUNCTION

FUNCTION is the topmost part of the compiler. It arranges the binding of

arguments of the function, determines types, and compiles the expression for

1 February 1966 TM-27l0/320/0l

the function I s value. Because the I~ontext of the . function 's value is expression,

SCLASS, PCLASS, and TERGO are boun(i to NIL. The following are also bound:

ALIST

LISTmG

REMOTES

REFLIST

FTYPE

XTYPE

VBLOT

A list of bOlmd variables and their declarations,

bound here to the function variables (via COMBmn).

A list, in reverse order, of the LAP instructions

generated for the compiled function.

A list, in reverse order, of remote code LAP instructions

for the comp:iled function, such as SWITCH arrays.

A list of all identifiers used free. Used as an

argument of lAP.

The name of -t;hi s function.

The type of -the value of this function.

The type tha-t the compiler is requested to produce for

the value of this function.

Described in Section 2.1

The listing thus generated is reversed, attached to the reversed remotes, and

passed off to LAP 2 to be assembled.

2.3 Blocks

There are two sorts of blocks: bl,ock-statements and block-expressions. They

may be distinguished by the context in which they occur. They differ in their

effects --RETURN, for example, which returns to the next higher expression

level, goes one level in block-expressions but goes two or more in block­

statements.

r) " .

/\
'--)

o

o

o

1 February 1966 9 TM-2 710/320/01

When BLOCK is recognized by COMEXP, the mSTRUCTIONS for BLOCK are invoked.

A block-statement binding no variables is a compound statement and causes

only compilation of the contained statements, via COMBLOCK. otherwise

more elaborate treatment is required. The ALIST is rebound to its previous

value; COMBIND is then applied to the block variables to set the variables

onto the ALIST.

There are now several possibilities: If SCLASS is TRUE, it suffices to

apply COMBLOCK to the statements. If PCLASS is TRUE, the context is

predicate. The result required in this case is a transfer of control

to one place or another depending on whether the block evaluates to TRUE

or FALSE. These places are marked by labels in the state variables

TGO and FGO, respectively. Of TGO or FGO at least one must carry a

label at all times; one of them may be NIL, indicating a fall-through

case. If a fall-through case exists, a label is generated for it, and

set into the appropriate variable. COMBLOCK then compiles the statements.

If a fall-through label has been generated, it is now attached to the

listing. VCLASS is now set to PREDICATE to tell the higher-level functions

that all transfers required have been generated. '!'GO is set to NIL to avoid

a spurious transfer at the end. Note that if no fall-through label is used,

the above is unnecessary, as a higher routine will do both of these.

The remaining cases are expression cases. Here the concept of terminals

becomes important. Consider the case:

(SET I (BLOCK (J) ••• (RETURN 3.0)))

where I is an integer variable. Conversion is required of the real

datum to set the integer variable. This is done by collect 1ng all

RETURNS on a list of terminal points called TERMINS with the V-variables

for the returned values and pointers to their places in the assembled

code. Eventually COMrERMINS is called to search the TERMJNS list and

insert conversion codes into the assembled code as required. The RErURNs

1 February 1966 10 TM"27l0/320/01

merge at a label in TERGO. TERGO is first checked to see if it is NIL.

This indicates that an outer block-expression will take care of the

terminal confluence, so COMBLOCK is called, and that is the end of it.

If' TERGO is NIL, a confluence pOint rust be created, so TERGO is rebound,

a label set into it, and TERMmS, the list of terminal fix-up pOints,

is bound to NIL. COMBLOCK is ca~led to process the statements, the

terminal label TERGO is ATTACHed, and then CO~RMmS is invoked to

insert the fix-ups at the terminal points.

After compiling the contents of the block, various fix-ups are necessary.

COMGOES is called to arrange any ·branches across fluid restores. If the

context is expression, all branches must be completely defined, and an

error arises if any are not. For any other context, incomplete branches

are NCONCed onto the GOLIST, to h~ attended to later. A complete discussion

is pr~sented in Section 2.5.

2.4 Variables

The management of' variable bindings and usage is assigned to functions

COMBlliD, ORDER, GETFREEV, GETBOUNDV, and GETDEC. The problem is to

remember what variables are bound~ at any given time, what their types

are, and whether they are fluid, locative, or both. There are two

mechanisms for this--the A-list and the fluid-function-variable storage.

The A-list, much like the A-list in LISP 1.5, carries data about current

local variable bindings. The FFV storage is examined to determine free

variable data, and also examined to determine fluid binding to be

established. .

The process begins when COMBIND is called, with a list of variables

to be bound. Depending on where it is called from, COMBJND does various

th1ngs. First the individual variable declarations must be processed,

f'or the syntax allows numerous forms of declaration. ORDER is called

to unscramble the declaration and sets six fluid variables:

1 February 1966 11 TM-2710/320/01

DV to the variable name, with tailing if present

DT to the type, if given

DF to FLUID if it is explicitly fluid

DL to LOC if it is explicitly by location

DA to ASSIGNED if it is of assigned type

DI to any initialization

The next task is to compare the variable with the stored variable information.

This is done by GETBOUNDV. If no declaration eXists, the variable will be

taken as FLUID if it is s.o declared locally. If a declaration does eXist,

the variable will be taken as fluid if either a local or a global declaration

of FLUID exists. Should the variable turn out to be FLUID in the current

section, it is tailed with the section name and returned through the fluid

variable W.

Back in COMBIND, any declaration found must be compared with the local

declaration to determine discrepancies and fill in any missing information.

Two lists are then assembled: one for the DECLARE statement to LAP, and one

for an entry on the ALIST. The former contains only the items required for

LAP. The latter has four items per entry: the name, the type, whether it's

LOC, and whether it's FLUID in the current section.

The variables are inspected, bound on the pushdolnl list to their preset

values, and then declared for LAP, with fluid binds inserted as required.

The A-list is then extended, and COMBIND is done.

When a variable is referenced, the information about it must be extracted by

COMEXP. For this purpose, GETFREEV is called. GETFREEV looks for the

variable on the A-list and if it is not there, defaults through the sections

on SLIST. Should reference to a fluid cell arise, the variable and its data

are put on the REFLIST, ,V'hich becomes one of the LAP inputs. This permits

assembly of compiled code at any future time when the declaration used by the

12 TM-2710 / 320/m

compiler may not exist. If the variable is FLUID in other than the current

section name, it is tailed with t'he appropriate section and returned through

DV.

2.5 GO

. The GO processor is a complex part of the compiler. The principal problem

is that GOes out of a block which binds fluid variables are possible, and

vlhen they occur, it is necessary to restore the previous bindings of the

fluid variables. The code for fluid-restores is generated by the LAP

pseudo-instruction (END). The compiler must, therefore, see that (END)

happens at the right time.

The compiler keeps' two lists, OOLIST and !ABELS, which are re -bound at

every block entrance. LABELS is a list of all labels seen so far in the

block, and is updated by ATTACHLAB (called from COMBLOCK). GOLIST is a

list of entries for GOes to pOints not on the list LABELS. Each entry

consists of an indicator (GO, ADDR, or DECR) consed onto the entire listing

at that point. GO is used for unconditional branches (i.e., BUC) where the

entire instruction can be replaced; ADDR is used for conditional branch

instructions (BOP, BOZ, etc'.) where the address can be altered but the

op-code must be preserved; and DEeR is used for BSX instructions where the

decrement may be changed.

COMGOES

COMGOES is called by BLOCK and IFEXP to generate fluid restores for GOes

across block boundaries. Its argument is either a list of fluid varia"bles

(from BLOCK) or TRUE (from IFEXP). When called from IFEXP, all that is required

:)
'. ,

()

(J

1 February 1966 1:3 TM-27l0 /320/01

is to determine whether all GOes are to defined labels, as GOes out of an

expression are not legal. For BLOCK, more is required. The GOes are matched

against the labels and any undefined GO is put on a list L. If there are no

fluid variables to restore, it suffices to attach (END) and return L. Other­

wise, more must be done.

If fluid variables are to be restored, control must pass through an (END) ~

Representative code for (GO X) might be:

(BSX Gl 4 x) (a)

...
(BSX Gl 4 G2) (b)

Gl (END) (c)

(BUC 0 4) (d)

G2 ... (e)

X (r)

The fluid restores here have been made into a closed subroutine. If control

can not drop into the place where (END) is attached, the BSX instruction (b)

and the label (c) are not necessary and are omitted. The branch instruction

(a) starts out on the GOLIST (and after the check pass, on L) as:

(••• (GO • « BUC X) ••• » ...)

. !

~:-'. ,'.

1 February 1966 14 TM-2710/320/01

The loop at C goes through the list L. A BSX instruction is fabricated, and

if the entry is a GO entry, it is put into the listing in place of the BUC

instruction. If it were an ADDR entry, such as BOX, the BSX instruction

cannot replace it, so the BSX instruction must be put elsewhere, and the BOZ

address modified to point to it. If a suitable BSX exists elsewhere on the

GOLIST (see GOMEMBER), it is used; otherwise, the BSX is attached as remote

code. Finally, a DECR entry (as from a GO crossing two or more fluid-restores)

is treated the same as an ADDR entry, except that the decrement (instead of

the address) of the original BSX is modified to point to the new one. Finally,

a new GOLIST is constructed of all the BSX instructions to be passed back to

BLOCK for use at the next outer level.

Switches

A switch declaration generates remote code consisting of a dispatch branch

on the accumulator, labeled with the switch name, followed by a dispatch

table of BUC instructions. The latter are entered on the GOLIST. The switch

name is entered on the list LABELS.

A switch call is recognized by the nJ'STRUCTIONS for GO. The switch index is

OOMVALed into the accumulator as an integer; then a branch to the switch

name is attached. The handling of fluid restores is identical to that for

ordinary· GOe s.

2.6 IF's, COMPRED, and BRANCHER

The conditional branching logic is one of the longest parts of the compiler.

The INSTRUCTIONS for IF determine what context eXists, and invoke the

appropriate routine. The format for IF is the identifier IF, followed by

alternating predicates and expressions or statements. The general approach

is to label each predicate and compile the predicates with conditional

branches to the next predicate, so that they will be evaluated in order.

()

()

(J

/---..,.

U

o

1 February 1966 15 TM-2710/32ojOl

The compilation of predicates is done by COMPRED. COMPRED takes three

arguments: the predicate expression, a label to which to transfer on truth,

and a label to which to transfer on falsity. COMPRED throws the context to

predicate expression, and calls COMPACT to do the work. COMPACT binds TGO

and FGO, mentioned earlier; at least one of these will be non-NIL; NIL

represents a fall-through case. COMPACT actually compiles the predicate,

using COMEXP; the V-variables are then used to determine the appropriate

branching.

BRANCHER generates the conditional branch instructions. An arbitrary set of

branch instructions can be generated, according to the argument of BRANCHER.

To illustrate the possibilities, consider the following example:

(IF (LQ I J) (ZIP»

which should generate the following code:

(LM I)
(SUB J)

(BOZ Gl)

(BOP 02)

Gl (CALL ZIP)

G2

Hhen l3RANCHER is called, the LDA and SUB will have been generated, TGO will

be NIL, and FGO will be set to GEN (in this case 02) by IFST. The argument

of BRANCHER, when entered from COMREL, is «TOO (BOZ» (Foo (BOP) (BOM») •

This is interpreted, "On zero, result is true. Otherwise, on positive,

result is false; equivalently, on negative (minus), result is true." Note

that to reverse the sense of a series of conditional branches, on all but

the last, TGO and FGO are interchanged, while on the last, the sense of

the branCh is reversed. This is the basis of the operation of BRANCHER.

1 February 1966 TM-21l0/320/01

It is sometimes necessary to create a label, if TGO and FGO are not both

labels. That is the case in this example, and DGO holds the label. The

BLIST entries are scanned for TGO and roO. If one of these is found, and that

variable holds a label, the label is the branch address. If the variable is

NIL, for a fail-through case, then a label must be generated (e.g.', GI) for the

fall-through point.

The syntax of BLIST is:

BLIST = (entry*)

entry = (entry-l) \ (entry-2) \ (entry-3)

entry-l = gopoint branch I gopoint branch branch

go-point = TOO 1 FGO

branch = (BUC) t (BOP) I (BOM) I (BOZ)

entry-2 = field field entry-l

entry-3 = field field field

At present, entry-2 and entry-3 are not used. In a list of entry-l's, only

the last will have the second for.m, in which the branch of the reverse sense

is given.

2.6.1 IF Statements

IF's in statement context invoke IFST, which does considerable optimizing of

GO statements in the IF. A confluence point for the IF is kept in XGO, and

one will be created if a suitable one does not exist already. A GO statement

determines an explicit label TOO for COMPACT. In the absence of such, a label

is generated, passed to COMPACT as FOO, and then attached following the

statement. Statements other than Simple GOes are compiled by OOMSTAT which

calls COMEXP with SCLASS bound TRUE.

C)

C)

o

o

o

1 February 1966 17 TM-2710/320/Ol

2.6.2 IF Predicates

IF in predicate position invokes IFPRED. TGO and FGO will be bound, and if

one of them is NIL, a label will be created for the fall-through case.

Expressions of TRUE and FALSE are recognized as special cases, generating

predicate branches directly to the appropriate label. otherwise, a predicate

branch to the next predicate is generated, followed by a predicate branching

on the expression to the appropriate labels.

2.6.3 IF Expressions

Two conditions may apply to an IF in expression context: a terminal confluence

mayor may not have been established. For example, in the expression

(SET A (IF PI (IF P2 Q R) S))

the outermost IF will establish a terminal point which the innermost IF will

also use. The cases are differentiated by examination of TERGO, which contains

the label for the confluence point. If no confluence point exists, one is

created in IFEXP; TERMINS, LABELS, and GOLIST are also bound. IFEXPr, which

takes the case where a confluence point exists, is then called. It uses a

fUnction COMTERM to compile a terminal expression. The V-variables for

the compiled expression are saved on the LISTING, and all pOints of LISTING

at which this has been done are added to the list TERMINS of terminal exits.

When the outermost terminal context is complete, COMTERMINS is called. This

takes the list TERMINS, decides what type the terminal expressions should

became, generates code to move to this type to the accumulator and splices

this code into the LISTING. COMGOES is also called to tie up the GOes.

2.7 AND, OR

AND and OR call a common routine COMBOOL for compilation. COMBOOL creates a label

for any fall-through case, then calls COMPACT with the appropriate labels to

compile each argument. After the last argument is compiled, any generated

label is attached, and VCLASS is set to PREDICATE to indicate that the value

of the AND or OR lies in the resulting branch instructions.

1 February 1966 18 TM-27l0!320!Ol

2.8 EQ, EQUALN, EQN

EQ is long because there are a large number of possible cases. If the items

being compared are both numbers (OCTAL, INTEGER, or REAL), the arithmetic

difference is cal~ulated, and branch instructions are attached as

appropriate. If both items are BOOLEAN or both FORMAL, they are cheated

to OCTAL and treated as numbers. If either item is SYMBOL, a check is made

to determine if one item is a SYMBOL identifier. If so, open code using a BXE

instruction is generated; otherwise, a calling reference for a symbolic

equal subroutine EQUAL. is generated.

EQ and EQUALN call EQHLP with the name of an appropriate function (EQUAL. or

EQUALN.). EQHLP calls MAKEPRED if the context is not predicate, otherwise

compiles the arguments. Depending upon the types of the arguments, various

possibilities arise. For most cases, EQNIL, EQXOR, or EQSUB are used. For

arguments of type SYMBOL, a call to the appropriate function will be generated;

however, should one of the arguments be a datum identifier, a BXE instruction

is generated.

EQNIL is used by EQHLP when, because of type incompatibility, the result is

NIL. It takes a list of CLUNKS (i.e., lists of V-variables and LISTING as

returned by COMARGS) and attaches the generated code to the LISTING, so that

side effects will work.

EQSUB is used when the comparison is to be done by subtraction. It takes a

list of CLUNKS (as returned by COMARGS), negates one of the elements, and

calls COMARITH with the functional arguments for PLUS. The result is then

moved to the accumulator. BRANCHER is called to test the result.

EQXOR is used when the comparison is to be done by exclusive OR. It takes a

list of CLUNKS, cheats the elements to OCTAL, and calls WRDHLP, with

INSTRUCTION bound to XOR, to generate the XOR instruction. BRANCHER is then

called to test the result.

()

()

(J

o

1 February 1966 19 TM-2710!320jOl

EQ OCTAL INTEGER REAL FORMAL BOOLEAN SYMBOL SYMBOL

OCTAL

EQUALN

OCTAL

INTEGER

REAL

FORMAL

BOOLEAN

SYMBOL

SYMBOL
DATUM

DATUM

XOR SUB NIL EQUAL.

,,/

INTEGER
/

REAL
/

XOR

FORMAL

XOR / XOR

BOOLEAN
/

SUB EQUAL. BXE

SYMBOL
/

SUB

SYMBOL
DATUM

NIL XOR

XOR

EQUALN.
-----)

EQUALN. I

-t----1----_

BXE

Figure 3. Comparisons Used For EQ, EQUALN

1 February 1966 20 TM-2710/320/01

EQN is an mSTRUCTIONS. The context is made predicate by MAKEPRED if it is

not so already. The arguments are then compiled as SYMBOL by COMrOP, and

]8ssed to EQXOR.

2.9 LS, GR, LQ, GQ

These comparators use COMREL with a suitable set of branches as an argument.

COMREL makes a predicate if predicate context does not already exist; COMVALes

the difference of the arguments into the accumulator; then calls BRANCHER to

attach the instructions to test the accumulator.

2.10 Nor, NULL

Nor and NULL make a predicate if not in predicate context, then interchange

TGO and FGO and compile the argument using NarF.

2.11

QUarE

Miscellaneous INSTRUCTIONS

QUOTE sets the V-variables to SYMBOL, DATUM, the S-expression to

be quoted.

LABEL Legal in statement context, LABEL attaches the label to the list

of labels via ATrACHLAB, then compiles the associated statement

with COMEXP.

RETURN Legal in statement context, RETURN may be used in either predicate

or nonpredicate position. If predicate, COMPACT is used to

compile the predicate. otherwise, COmERM compiles the value,

and a branch to the terminal confluence if generated.

2.12 Miscellaneous Functions

IFGO IFGO is a predicate used by IFST. If the argument is of the form

(GO label), the value is true, otherwise the value is false.

MAKEPRED MAKEPRED is invoked by various predicates in expression context.

It compiles the constructed form: (IF p TRUE NIL).

n

()

o

o

,~

U

1 February 1966 21 TM-27l0/320/0l

COMSUB

ANYVARS

COMSUB is the subscript calculator for COMEXP. The subscript value

is compiled into the accumulator, and a full locative made by

twin-mode addition of the array head address (at run time). The

V-variables are set appropriately.

BLOCK uses ANYVARS to determine whether any variables (excluding

switches) are bound by a block. The argument is the declaration

list.

COMSWITCH COMBIND uses COMSWITCH to process sWitch declarations. The argu­

ments are the list of labels and the switch name. The switch name

is attached as a label in remote code, followed by a dispatch

branch. ,The dispatch table of individual branches to labels is

then constructed. These are entered on the GOLIST. The switch

name is entered on the LABELS.

LASTBRANCH LASTBRANCH is a predicate used by COMGOES, COMPACT, and IFST. If

the last entry of LISTING is not a label, but is an unconditional

branch instruction, then this point in the listing cannot be

reached by code generated safar, and LASTBRANCH returns TRUE.

GO GET COMGOES uses GOGET to extract the label from an entry on the

GOLIST. See Section 2.5.

GOMEMBER GOMEMBER is used by COMGOES as a semi-predicate. It searches

the GOLIST for a BSX instruction identical to one required by

COMGOES. If one is found, it is labeled if it does not already

have a label, and the label is returned. If none is found, the

value is NIL.

ATTACH ATTACH puts one item on the LISTING, via CONS. LISTING is kept in

reverse order.

1 Fe-nruary 1966 22 TM-2710/320jOl

ATTACHGO ATTACHGO puts an unconditional branch instruction on the LISTING.

If the branch is to an undefined label, an entry is also made on

the GOLIST.

ATTACHLAB ATTACHLAB attaches a label to the LISTING, and also enters it on

the list of LABELS.

REMOTE

BLOT'ID

FVTYPE

ITYPE

TYPEP

FTYPER

REMOTE is used to attach remote code. The list REM:>TES is kept

in reverse order. REMOTES is merged with LISTING when the tl-TO

are reversed at the end of compilation.

BLOT'ID sets VBLOT to indicate that no useful values can be

depended upon to remain in active registers.

BLOI'eR takes a single register name and adds it to VBiWT if

it is not already there.

FVT'YPE determines the type of a datum. Its value is INTEGER,

REAL, or SYMBOL.

COMBIND uses ITYPE to determine an initialization suitable

to a particular type of block variable.

TYPEP is a predicate used by ORDER to determine whether a

thing is a type.

FTYPER determines the "f-type1l for a caIrplete type specification.

(--­
\)

(j

o

o

o

1 February 1966 23 TM-2710/320/01

3· THE ARITHMETIC PROCESSOR

The arithmetic processor includes routines for arithmetic operations, and also

handles logical operators, tY]e conversion, type cheating, and other odds and

ends. The principal compiling function used is COMEXPl, which binds SCLASS,

PCLASS and TERGO to NIL, then calls COMEXP. The general organization of this

part is shown by the flow chart (next page). Following are descriptions of

the various functions in this part.

3.1 Macro Expansions: FOR, LIST, DIFFERENCE, BECn>

RECIP RECIP is a macro.

(RECIP exp) = (QUarIENT 1. exp)

FOR FOR is a macro that expands exactly as specified by the Intermediate

Language document, with one exception.

f = (tal! empty }STEP a
2

UNTIL a
3

t (WHILE lUNLEss}p I empty})

If a
2

is a numeric datum, then advantage is taken of this fact

by generating:

(BLOCK ()

[(SET v a l) \EMPI'Y}

-\ l(IFl(Nar 1» \p}(GO £2» \empty}

(IF(lLE!GE; (SET v(PLUS V a2»a
3

(GO £1»

1,2)

TERM TERM is a function of no arguments used by the FOR macro. TERM

looks for the phrase WHILE ~ or UNLESS ~ in a FORELM. If

found, an appropriate statement is tacked onto the output of the

FOR macro and the phrase is deleted from FORELM.

FORX FORX is a function of one argument, used by the FOR macro. The

argument is tacked onto the output list being compiled by the

FOR macro.

1 February 1966 24

1 RECIP J
i 1

/"

t I 028., etc.
L---~~

.....:::=s--..=:-... !

I COMEXP I

\

Figure 4. Ari thmet ic Flow

TM-27l0/320/0l n

~RDOR J L WORDAND _1 I WORDXOR J

_~lI
I BIT ! I COMWRD i

T //
(\
'- /

/1 .--r-Q-uar-l-m-NT---C

I /
1 / 1 / I I

~

(\
, I
\ /

C)

()

1 February 1966 25 TM-2710!320/01

LIST LIST is a macro that expands into a series of CONS's.

Example: (LIST A B C)

= (CONS A (CONS B (CONS C NIL»)

DIFFERENCE DIFFERENCE is a macro that expands in terms of PLUS and MINUS.

Example: (DIFFERENCE EXP 1 EXP 2)

= (PLUS EXPI (MINUS EXP2»

3.2 The Arithmetic Package

The INSTRUCTIONS invoked by arithmetic functions each compile their arguments,

generally by calling COMARGS or COMrYF. These call COMEXP, and return fragments

of listing and V -variables for each argument. The INSTRUCTIONS then call the

optimizer.

The optimizer is in two parts, a parser and a sequencer. The -parser (COMARI)

separates arguments by type--REAL, INTEGER, or SYMBOL. The sequencer (COMOPI')

then determines the appropriate order for arguments of each type, and inter­

sperses the appropriate combining instructions. COMOP.r may be recalled to combine

the integer part with the real part. Symbol arguments are not treated; calls

are generated by the INSTRUCTIONS to appropriate run time symbol arithmetic

functions.

COMEXPI

CO~

COMEXPI is a function of one argument, EXP. PCLASS, SCLASS,

TERGO and XTYPE are rebound to NIL. otherwise, COMEXPI acts

exactly as does COMEXP.

COM:[l'YP is a function of two arguments, EXP and XTYPE. PCLASS,

SCIASS and TERGO are rebound to NIL. COMI'YP is an active top­

driver of COMEXP. If the type of the compiled argument does

not agree with XTYPE, then it is converted to XTYPE. Octal

and integer types are treated as special cases.

1 February 1966 26 TM-2710/320/01

COMrOP

COMARGS

C01@AT

COMOPI'

COMTOP is a function of two arguments, XTYPE and EXP. It calls

COMTYP with V-variables and LISTING rebound. It returns CLtmU(of

the result, i.e., a list of V-variables and LISTING.

COMARGS is a function of no arguments.· Each item in an argument

position of EXP is fed to COMEXPI with the V -variables and LISTlNG

rebound. The CLUNK of' each ccmpilation is tacked onto a list which

is returned.

Example: EXP = (fcn arg
l

arg
2

)

COMARGS = «v's and LISTING for arg
2

) (VIS and LISTING for arg
l

) (»

As is illustrated by the example, the compilations are in reverse

order and a NIL is the last element of the list.

COMDAT is a function of one argument, a list in the format returned

by CLUNK; VCLASS in the list must be of type DATUM. If VINV is not

NIL, appropriate arithmetic is done so that VINV' will be NIL. The

value of COMDAT is a list in the CLUNK format with the datum

If smoothed. " If VINV contains RECIP, the type will become REAL.

COMOPI' is a funct ion of five arguments. Argument 1 is a 1 ist in

the format returned by COMARGS. Argmnents 2-5 are functional

arguments. COMOPT is a sequencer for combinatorial :functions such

as PLUS, WORDOR, etc. Two lists are made from argmnent 1. The

first list is of those things which are locatives not modified by

an index register and which can be moved "easily" towards an

active register (usually, "easily" means in one instruction). This

first list is called the LOCLST. All other things are put on the

ACTLST. (Datums are considered LOCS.)

The question as to whether a thing may be easily moved is answered

by a formal predicate argument (argument 4). If an item is locative

but cannot be moved easily, a formal argument is used to make the

item active (argument 3). If there are no entries on the ACTLST,

/------
i)
\. /

()

()

:)

r~- .

U

1 February 1966 27 TM-2710/320/01

COMARI

then the V-variables (with the exception of VBLar) are set to NIL

and a function peculiar to the code being generated is called

(i.e., an adder for PLUS or a multiplier for TIMES) (argument 2).

If there is something on the ACTLST, then this procedure is followed:

The first item on the ACTLST is INHERITed and the listing is put on

the latest binding of LISTING. Argument 2 (as described above) is .

then called. If nothing remains on the ACTLST, COMOPT returns.

If there is an item, then the present value computed by argument 2

is moved to the pushdown list with the aid of argument 5 and LOCLST

is set to the value (of ~rgument 5). The item from the ACTLST is

now INHERITed and argument 2 is called. This process continues until

nothing remains on the ACTLST.

COMARI is a function of eleven arguments:

argument 1

argument 2

argument 3

argument 4-7

argument 8-11

initial datum

a list in the format output by COMARG

a formal argument which is a function of two arguments

a set of four formal arguments for use by COMOPr

with fixed point (octal or integer) input

a set of four formal arguments for use by COMOPT

with floating point (real) input.

COMARI is a parser used chiefly by PLUS and TIMES. The list of

compiled arguments (argument 1) is parsed into three lists.

1) SYMLST

2) REALST

3) mTLST

the list of all arguments with VTYPE = SYMBOL

the list of all arguments with either VTYPE = REAL
or VTYPE either INTEGER or OCTAL and RECIP a

member of VINV

the list of all arguments with VTYPE = OCTAL or

INTEGER and RECIP not a member of TINV.

l February 1966 28 TM-2710/320/0l

PLUS

Before the parsing is made by type, all datums are taken from the

original list and combined by the use of argument 2 (*PLUS, *TIMES,

etc.) •

If the result of the datum combination is equal to argument 1, the

identity element of the group (i,e., ¢ for PLUS, 1 for TIMES) it

is discarded; otherwise, it is tacked onto either REALST or

lNTLST, whichever is appropriate.

The JNTLST is then passed to COMOPI'. If anything is on the

REALST, the INTLST is "floated" and tacked onto the REALST, which

is then given to COMOPr. The final value of COMOPI' is lliHERITed

and LSTLSTed.

The value of COMARI is the SYMLST.

PLUS is an instruction of no argwnents. COMARI is used to compile

code for all but the case of SYMBOL arguments. Upon returning

from COMARI, the SYMBOL arguments, if there are any, are handled

one at a time with calls to one of these: SPLUS, SPLUI, SPLUR,

SMINS, SMINI,or SMINR.

PLIMVP,PLRMVPare mover predicates for COMOPT. They use MOVPRD to determine

whether a move is "easy" or not. MOVPRD calls EXHOCKY to determine

this.

PLSMOV

PLSPDL

does mOving of items which are not "easy" to the accumulator.

moves temporary results to the pushdown stack. If, because of

byte activity, the recovery of the result is not "easy," the

pushing is by full word; otherwise byte activity is preserved.

(--'~
\ j

'\
~ /

o

o

1 February 1966 29 TM-27l0/320/0l

PLIALG and PLRALG are formal arguments for COMOPI' to generate the arithmetic

combining insturction for PLUS. They call PLSALG to do the

combination of entries on the LOCLST with anything which may

already be active.

TIMES TIMES is an instruction of no arguments. COMARI is used to compile

code for all but the case of SYMBOL arguments. Upon returning fran

CONARI, the SYMBOL arguments, if there are any, are handled one at

a time with calls to one of these: STIMS, STIMI, STIMR.

MPIALG, MPRALG are formal arguments to COMOPr to generate the arithmetic

combining instructions for TIMES. They call MPYALG to do the

combination of the entries on the LOCLST with anything which

may already be active.

COMINV

lvITNUS

ABS

COMINV is a function of three arguments:

argument 1

argument 2

argwnent 3

the inversion being compiled (MINUS or RECIP)

the inversion not being compiled (MINUS or RECIP)

a format argument of one variable that will perform

the conversion for data.

(CADR EXP) is compiled us ing COMEXPI.

If VCLASS is datum, then all inversions are taken care of at compile

time; if not, VINV is set to take care of the required inversion.

A minus of a minus will be a no-op. (RECIP is not presently

implemented in this manner.)

MINUS is an INSTRUCTION using COMINV.

ABS is an instruction of no arguments. (CADR EXP) is compiled

using COMEXP. If VTYPE is SYMBOL then the SYMBOL pointer is moved

to the AC and SYMABS is called. If TYPE is not SYMBOL, in-line

I February 1966 30 TM-2710/320/01

code is generated. If VCLASS is datum, the absolute value of the

datum is found at compile time.

SIGN SIGN is an instruction of no arguments. (CADR EXP) is compiled

and moved to the AC. If VTYPE is SYMBOL, SYMSGN is called. If

not, in-line code is generated.

DIVIDE. DIVIDE. is a function of two arguments, a type and an instruction

for use by EXI-IOCKY. (CADDR EXP) is compiled and top driven to

the specified type by COM].lYP. If VREG is true or EXHOCKY is

false, the argument is moved to the pushdown stack. (CADR EXP) is

then COMVALed to the specified type in the AC. The first compiled

argument is INHERITed so that the calling instruction may perform

the necessary division.

IQuarIENT IQUGrIENT is an instruction that calls DIVIDE, then ATTACHes

appropriate instructions to do an integer division. The result

of an integer division is the full-word B register.

QUGrIENT QUGrIENT is an instruction that calls DIVIDE, then ATTACHes

appropriate instructions to do a floating point division. The

result of a floating point division is the full-word AC.

3.3 :Partial Word and Logical Operati~

vlORDOR, WORDAND, WORDXOR

compile code.

These use COMWRD with an appropriate argument to

COMYlRD COMWRD is a function of three arguments.

argument 1 == group identity element

argument 2 == an instruction mnemonic

argument 3 == a formal argument used for data collection

o

o

o

o

1 February 1966 31 TM-27l0/320/0l

COMWRD compiles all expressions in argument position of EXP. The

canpilations are top driven to type OJTAL by COMrYP. All arguments

of class datum are collected by argument 3 t,o produce a single datum.

If' this single datum is equal to argument 1 then it is disregarded.

The compiled list of arguments is now passed to COMOPr. If either

no arguments were present or all were datum that degenerated to

argument I, then alogument I is used as the run time value of this

function. otherwise, the value is produced by the code from COMOPl'.

WRDIll.rP WRDHLP is used by COMWRD. It calls COMOPI' with functional arguments

appropriate to word operations.

CAR CAR is an instruction of no arguments that calls COMCAR with an

argument (24 24).

CDR CDR is an instruction of no arguments that calls COMCAR with an

argument (0 24).

PROP PROP is an instruction of no arguments that calls COMCAR 'with an

argument (0 18).

COMCAR COMCAR is a fUnction of one argument, a list of two intergers in

VBYTE format. (CADR EXP) is compiled. If VTYPE is not SYMBOL,

an error message is issued.

VINDX is used to determine if indirect addressing is permissible

through the argument. If it is, vnm is set TRUE and VBYTE is

set to the argtUIlent of COMCAR. If not, the argtunent is moved

to the accumulator and the V-variables are set to reflect that

this is a SYMBOL in location 0, AC and that it lies in the portion

of the word indicated in the argument to COMCAR.

l February 1966 32 TM-2710/320/01

CORE CORE is an instruction of no arguments. (CADR EXP) is compiled.

If VCLASS is DATUM, the datum is used as the absolute address of

the value of CORE (at execution time). If VINDX is true, then

the V-variable is set to indicate an indirect address through the

LOC. If none of the above are true, the expression is moved to

the accumulator, and the V-variables are set to indicate address

0, AC.

In all cases, the V-variables are set to full word, octal locative.

BIT BIT is an instruction of no arguments. EXP is assumed in the

format (BIT Al A2 A3)·

If either Al or A2 are not numeric data, then the function BITS in

section SYS is invoked.

A3 is compiled by COMrYP and driven to OCTAL. VBYTE is now set

to reflect the active bits of the result. If it is necessary

because of a prior condition of VBYTE, a move will be made by

MOVACTIVE.

(j

()

()

o

1 February 1966 33 TM-27l0/320/0l

3.4
SET

SET and LOCSET

SET is an instruct ion of no arguments. SET is the assignment

logic of the LISP 2 Compiler. The action is to assign the value

of the right-hand side of an equation to the left-hand side.

The following division of responsibility is made:

1) If the moving of the right side to the left side will

clobber a thing wanted to be saved, the mover MOVLOC will

be responsible for protecting the necessary register{s).

2) If the code generated by the left side will cause the

clobbering of something to be saved, then it is SET' s

responsibility to do the protecting.

Three different cases are taken care of by SET:

1) Statement context. The right-hand side is compiled by

COMrYP and top driven to the type of the left-hand side.

2) Expression context and XTYPE equals the type of the left­

hand side: The right hand s ide is compiled by COMrYP and

top driven to the type of the left-hand side. Facilities

are set up to remember the value of the right-hand side.

3) Expression context and XTYPE is not the type of the left

side: The right-hand side is compiled by COMEXPI with

no top driver. Facilities are set up to remember the value

of the right-hand side.

In expression context, the value of the right -hand side is left in

an active register whenever no extra work is involved.

1 February 1966 34 TM-27l0/320/0l

LOCSET LOCSET is an instruction of no arguments. The left and right­

hand side are compiled and checked for a locative variable and

a full locative, respectively. The types of the left and right­

hand side are checked. If they are not the same, an error message

is given. (Octal and integer are not considered the same types.)

MAKELOC is called to make the locative pOinter, then a 8TF

instruction is ATTACHed onto the--listing.

3.5 ~ Conversion and Cheaters

820., R20., B20., I20., F20., 028., 02B., 02I., 02F., 02R.

CHEAT

These are the "cheater funct ions, If (actually mSTRUCTIONS).

They call CHEAT with appropriate arguments.

CHEAT is a function of two arguments, a type to be cheated from

and a type to be cheated to.

CHEAT compiles (CADR EXP) using COMrYP with XTYPE = "type

cheated fran. If VT'YPE is then set equal to "type cheated to."

Three special cases are handled:

to INTEGER

fran INTEGER

to REAL

For these special cases, the expression will be driven to a

full word quantity if it is not one already.

o

1 February 1966 35 TM-2710/320/0I

VLIST

Miscellaneous Service Functions

VLIST is a function of no arguments. The value of VLIST is a

list of the latest bindings of the V-variables. (VCLASS VTYPE

VREG VADDR VIND VBYTE VELar VINV)

VSET VSET is a function of one argument, a list in the same format as

made by VLIST or CLUNK. The value of VSET is NIL. The action

of VSET is to restore each V-variable binding to the appropriate

p:lrt of the argument list.

CLUNK CLUNK is a function of no arguments. The value of CLUNK is a

list in the same format as VLIST with an additional element which

is the latest value of LISTING.

INHERIT INHERIT is a function of' one argument. nrnERIT works the same

as VSET except that VBLar is set to the UNION of the present

VB10l' and the VBLCJr in the list.

GVCLASS, GVTYPE, GVERG, GVADDR, GVIND, GVBYTE, GVBLCY.r, GVINV are f'unctions

of one argument, a list in the format as returned by VLIST or

CLUNK. The value of' GV is the appropriate V -variable in the

list.

LSTLST

COMLCK

LSTLST is a function of' one argument, a list of LAP instructions.

LISTJNG is set to the NCONC of the argument and the pre sent value

of LISTlNG. The list must be in reverse order (as is LISTING).

COMLCK is a function of' one argument. If the length of EXP does

not equal the argument, an error message is issued, the V-variables

set to DATUM OQ and a value of' TRUE. is returned. otherwise NIL

is returned.

l]'ebruary 1966. TM-2710/320/0l

RESTORE

VINDX

RESTORE takes an argument in CLUNK :format (V -variables and listing).

The V-variables are set and the listing LSTLSTed (NCONCed onto

LISTING).

VINnx is a predicate function of no arguments. If the present

bindings of the V-variables will allow indirect addressing to be

added to a locative description, then the value of the function

is TRUE, otherwise the value is Nn,.

n

o

o

1 February 1966 37 TM-27l0/320/Ol

4. THE "M)VER"

The "Mover" is a family of functions that are used within the LISP 2 compiler

to generate LAP code for moves between machine registers. The present state

(present location in the computer) is given by the setting of the V-variables

(described in Section 2.1) and the desired state (where to move to) is given

by the arguments to the function called. The function arguments are counter­

parts of the V-variables (and will be called the X-variables) such that at

the end of the "move" the V-variables have been changed to the X-variables.

The desired class is never specified explicitly but is implicit in the function

called. The function MOVACTIVE always produces VCLASS = ACTIVE and the

fUnction MOVLOC always produces VCLASS = LOC. No function produces

VCLASS = DATUM. XINV is never specified; the assumption is that VINV is to

be considered in the move and always left in the NIL state when through. The

other X-variables are specified only if they are necessary for the complete

description of the desired class.

The V-variables and X-variables not only describe the machine location where

something is to be found, but also describe the type of data there and the

position within the machine register if it is not a full word. When a move

is made, t,ype conversion, packing, and unpacking will be done if it is

necessary for the transformation from the V-variables to the X-variables.

The "Mover" does not consider what registers it may destroy in a move. It

arbitrarily selects and uses any register that it needs. The registers that

are destroyed are listed, and it is the responsibility of calling functions

to save and restore such registers if they are needed after the move. Errors

are recognized and appropriate messages are printed, but some move will be

made regardless. All LAP instructions generated are put on the LISTING.

1 February 1966

~
~

~v

Figure 5. The "Mover" Flow

TM-27l0/320/01

I

('\
\.)

r)

o

o

o

1 February 1966 39 rnIJ.-2710/320/0l

4.1 Type Conversion
The basic type conversion data comes from function CONVP. Conversions are

generated by function CNVL2AC. The values of CONVP are shown below.

Values of' CONVP

I XTYPE
·1

VTYPE
OCTAL INTEGER REAL SYMBOL BOOLEAN FORMAL

OCTAL V OI IR
FUNCTION TRUE NL OCT2SYM

mTEGER IvlZ V IR
FUNCTION TRUE NL INT2SYM

REAL
FUNCTION FUNCTION V FUNCTION TRUE NL OCTROUND ROUND REAL2SYM

SThIDOL FillfCTION FUNCTION FUNCTION V SF FUNCTION
SYM20CT SYM2INT SYM2REAL SYM2FORM·

BOOLEAN NL NL NL V V I NL
I

FORMAL NL NL NL FUNCTION TRUE V FORM2SYM

The value retrieved from this table is used in two different ways depending

on whether VCLASS is DA~l (a compile-time conversion) or VCLASS is ACTIVE or

LOC (a run-time conversion.)

1 February 1966

Value of
CONVP

FUNCTION name

TRUE

IR

MZ

SP

OI

V

NL

Value of
CONVP

FUNCTION name

TRUE

IR

MZ

SP

01

V

NL

40 TM-2710/320/01

Value of
CNVL2AC Result, VCLASS=ACTIVE or LOC

5 Generate instructions to call the named function

1 Change the V-variables to DATUM, BOOLEAN, TRUE

o Generate open code to float the integer or octal

NIL Generate open code to test and change minus zero

NIL Generate open code to test the value of the symbol

3 or NIL Make the move first then change VTYPE to XTYPE

2 Change VTYPE to XTYPE

o Not legal, but VTYPE is set to XTYPE

Value of
CNVL2AC Result, VCLASS=DATUM

5 Apply the equivalent LISP 1.5 function to VADDR

1 Change the V-variables to DATUM, BOOLEAN, TRUE

0 ApplY LISP 1.5 FLOAT to VADDR

NIL Set VADDR to 0 if it is -0.

NIL Test VADDR, and if not NIL set to TRUE

3 or NIL Change VTYPE to INTEGER

2 Change VTYPE to XTYPE

0 Print error message

For the compile-time numeric conversions there is an additional check on

VADDR to determine if it really is a number before doing the conversion.

r~ ") - /

()

o

o

1 February 1966 41 TM-27l0/320/Ol

4.2 MOVPDS

MOVPDS sets up an address on the push-down stack and has MOVLOC move to that

address. VADDR is then set to POP.

4.3 MOVLOC

MOVLOC generates instructions to store into a core location specified by

XADDR, XREG, XmD. If XREG will be destroyed by the move it is saved by

MOVSA V before generating any instructions.

Type conversion is done first if necessary in the same fashion as MOVACTIVE.

Then, if VCLASS is ACTIVE, the function ACT2LOC is called to finish the move.

In the case of DATUM or LOG, an active register is chosen on the basis of

bit activity required. A MOVACTIVE is done, then ACT2LOC is called.

ACT2LOC ----
ACT2LOC moves from an active register to core. It determines if the move can

be made in one instruction of the STX, STF, or STA class. If so, then the

instruction is attached to the listing, the V -variables are changed to LOG

of VTYPE in XADDR, XREG, XIND at XBYTE, and exit is made. otherwise an

intermediate register is used to position and/or pack the bits to be stored,

the V-variables are reset,and exit .is made.

4.5 MOVSAV

MOVSAV computes the effective address of XADDR, XREG, XllID and saves it on

the push-down stack. A MOVLOC is then made going indirectly through the

saved address. The "push -down stack is balanced afterward so that the number

of pushes and pops match. The V-variables are all reset to NIL since XREG

has been destroyed and there is no way to reca~ure what has just been stored.

4.6 LOC2ACT

LOC2ACT is called to load a LOC into an active register. If VCLASS is discovered

to be ACTIVE (by using L2AP.) then ACT2ACT is called instead. A LDA or LDX

1 February 1966 42 TM-27l0!320/01

instruction is requested from EXHOCKY which,if obtained,is attached to the

listing and exit is made. If not obtained, an intermediate register (AC, B,

or L) is chosen,and the move is made in two steps. The register is chosen

on the basis of the bit activity required to complete the move. Having chosen,

a MOVACTIVE is done and ACT2ACT is then called to complete the move.

4.7 ACT2ACT

ACT2ACT divides its 'Work into three parts --a change of registers only, bits

within a register only, or both. (The case ·of neither of these being required

may be discovered at various points; a prompt exit results.)

vlhen the move requires only a change of registers, then either a full word

load or store instruction (whichever is more convenient) is generated and

exit is made.

When only bit position within the same register is to be changed, the question

of which register is involved becomes important because of the nature of the

various machine registers. If the goal can be achieved by self-loading with

appropriate instruction modifiers, it is so done. If not, then the part of

the program beginning at ABSJIFII sets up shifting instructions, followed by

masking if necessary to remove excess bits. It is necessary in some cases

"to move to the AC or B registers to do the bit manipulation.

If both registers and bit position require changes, then the registers involved

are examined to see which change should be made first (if both can not be

done Simultaneously, according to EXHOCKY). For example, if shifting is

required, it must be done at the point in the move when the AC or B register

are in use. Consequently, quite a bit of worrying is. done about which

registers are on each end of the move, and whether an intermediate register

has to be chosen to accomplish the bit manipulation. The move is generally

done in parts. Either XREG or XBYTE is fixed up as required, and the remainder

()

of the work is done by the part of the function that handles only one kind of ()

change.

o

()

1 February 1966 43 TM-2710/320/01

4.8 MOVACTIVE

~DVACTIVE generates instructions to move fram the present position, given by

the V-variables, to the position described by its arguments, XTYPE, XREG, and

XBYTE. If the two positions are in fact the same, no instructions are generated.

In all cases the V-variables will be reset to ACTIVE of XTYPE in XREG at XBYT.E;
any registers used will be blotted, and errors that are discovered will be printed

(with default conditions chosen so that same move is made regardless of errors).

The function does type conversion first and then uses subsidiary functions to

finish the move; the most important of which is ACT2ACT for the ACTIVE to

ACTIVE case. Class LOG is loaded into an active register as profitably as

pOSSible, and then ACT2ACT completes the move.

MOVACTIVE itself only does type conversion and the DATUM moves. For DATUM

the conversion is done at compile time using the function CNVD. An instruction

of the LDA or LDX class is obtained fiom EYJIOCKY f'or loading the converted D.A..TT.JM

and is attached to the listing. XREG is blotted and the V-variables are reset.

The DATUM case is then finished and exit is made.

For ty]?c conversion of a LOC or ACTIVE the function CNVL2AC is utilized. This

fUnction attaches instructions to the listing which at run-time would load

the AC and call the appropriate function for type conversion; in some

cases, the conversion is open-coded.

1 February 1966 44 TM-2710/32 0/01

4.9 MOVARG
l~VARG manufactures a LAP instruction of a certain class if the requested

move can be made in one instruction. If it can be done, the CDR of the

instruction is the value of the function and the V-variables are not changed.

If it is impossible, then MOVACTIVE is called to make the move, instructions

are attached to the listing, the V-variables are changed, and the value of

MOVARG is NIL.

The instruction class BXE is given to the function MDECR; all others are given

to EXHOCKY. If type conversion is required, MOVACTIVE is called except when

the code obtained from CONVP is OI, V, or TRUE. The table presented in

Section 4.1 gives the CONVP codes.

4.10 EXHOCKY

EXHOCKY is a semi-predicate which determines if the entity described by the

V-variables can be moved to an active register in exactly one instruction.

The V-variables are tested but are never reset.

The arguments are C, an instruction class, and B, a bit descriptor. The

particular active register is unimportant and unknown, since the instruction

class implicitly contains this information. The function value is either a

partial LAP instruction or NIL, indicating that the move can not be done in

one instruction. Possible values of C are LilA, LDX, and FAD. The bit

descriptor B is usually a list of two integers where the first integer is

the right-most bit to be filled and the second is the number of bits to be

filled.

For the LDA class tf the V-variables are ACTIVE or LOC, only one question is

significant. If the move can be made without shifting and/or maSking, then

it can be done in one instruction, and all that is required is to make up the

instruction modifiers. This is done at AO and the instruction is returned.

Should shifting or masking be required, NIL is returned.

(\
\ '

. /

o

1 February 1966 45 TM-2710/320/0l

If the V-variables are for a DATUM move, more can be done. At DA the various

types of DATUM are separated and subsidiary functions (NADDR, SYMOD, and

SHFTRA) are called to make up the instruction. These functions all have the

property that if the datum can be converted, shifted, or masked into the form

desired, this is done; and then the LDA instruction for the new datum is

manufactured. If it is impossible, NIL is returned.

The FAD class is quite simple since only full words are permitted. For classes

ACTIVE and LOC, the type must be REAL. If it is REAL, the appropriate

instruction modifiers are computed and the instruction is returned; otherwise

NIL is returned. For DATUM, the type may also be INTEGER or OCTAL, in which

case a compile-time conversion is done and the instruction is returned.

Otherwise the result is NIL.

The LDX class requires B, the bit description, to have 0 as the right-most bit.

For the ACTIVE or LOC cases VBYTE must be (0 18) or (24 18). If this is so,

the LDX instruction with the appropriate modifiers is made up and returned;

otherwise the result is NIL. For a DATUM, VBYTE is forced to be (0 18) if

possible, and the instruction is returned.

4.11 MAKELOC
MAKELOC is used to compute the address of a locative variable. In order to

have an address the variable must be in core, hence VCLASS not LOC is an error.

(Locative is to be distinguished from LOC, one being the transmission mode of

a LISP 2 entity and the other a setting of the V-variables used by the compiler.)

Three cases are recognized as computable: any indirect address, a direct

address of zero modified by the AC as an index register, or a direct

address of zero modified by any other index register. In these cases the

instruction to load the AC with the address is attached to the listing and

the V-variables are set to ACTIVE, SYMBOL in AC full word.

1 February 1966

4.12 other Mover Functions

Function

ACEQ

ADDR1'40DS

ATTACID.

BACT IV

BEQ

BMons

BEND

CADRNIL

CANSTZ

Arguments

R1 (an active register)
R2 (an active register)

I (indirect indicator)
R (indexing indicator)

I (a LAP instruction)

L (a list of byte names)

B (a bit indicator)

C (a class indicator)
B (a bit descriptor)

B (a bit descri]tor)

None

B (a bit descriptor)
I (a partial LAP

instruction)

46 TM-21l0/320/01

Description

If both R1 and R2 are the AC then TRUE,
else FALSE.

When a load or store class instruction is
to be generated then the LOC class modifiers,
VIND and VREG or XIND and XREG, are used as
arguments to this function to generate the
instruction address modifiers. The value
is a LAP tag field.

I is edited to remove unnecessary fields
and redundant NILls and O's. Side-effect:
Attaches I to the LISTING.

Used to compute the octal nwnber for the tag
field of a CON instruction which tells what
bYtes are to be active. The value is the
octal.

If VBYTE is the same as B then TRUE, else
NIL.

When a move to an active register or to a
core location can be done with byte modifiers
then the function returns the modifier, else
it returns 0 meaning that shifting is
necessary.

If B is on byte boundaries (6 bit variety)
exactly, then TRUE, else FALSE.

Used as the functional argwnent for SASSOC
when a function is required whose value has
a NIL CADR. The value is {() ()).

When VCLASS is DATUM and a move to a core
location is requested, then this function
receives the bit position information, B,
and the address and tag of the store
instruction, I. Then if STZ can be used
(V-variables are tested) the instruction
is made up and attached and TRUE is re­
turned; otherwise NIL is returned.

Cj

()

(J

()

I February 1966

Function Arguments

CLVINV X (an identifier)

CNVD T (a type indicator)

CNVDATM Tl (a type indicator)
V (a value)

CNVL2AC

COMPMSK

CONVP

DXREG

FULIivl

T2 (a type indicator)

F (a type descriptor)
B (a bit descriptor)

B (a bit descri]tor)

T (a type descriptor)

R (an active register)

B (a bit descriptor)

TM-2710!320!OI

Description

Used by ISINV. Finds the first occurence
of X on the list VINV, removes it and
returns TRUE. If none is present, returns
NIL. Side-effect: Resets VINV.

W'hen a datum is to be converted this function
resets VAnDR to the converted value and VTYPE
to the new type. CNVDATM is used for the
value conversion. Side-effect: Resets the
V-variables.

CONVP is used to test if type conversion
from Tl to T2 is legal; if not, NIL is
returned. If so the datum, V, is converted
to type T2 and the new value of V is returned.

When a move requires type conversion this
routine generates the necessary instructions
to do the conversion leaving the result in
the AC at B. MOVACTIVE is used and the
V-variables are reset unless the conversion
is illegal or trivial. The value is integer
or NIL. Side -effects: Resets all the V­
variables.

A mask is manufactured such that an AND with
a full word would erase the bits indicated
by B. The address of the mask is the CDR
of the returned LAP instruction, and the
CAR is LDA.

This is the type conversion "table." VTYPE
is used free and if the conversion to T is
legal the function name or open code indicator
to be used is returned, else NIL.

VREG or XREG may be the argument. The function
value is used to generate the correct class
instruction to load R. The value is an
instruction class name " (LIlA or LDX).

If B is full word then TRUE, else FALSE.

1 February 1966

Function Arguments

ISINV X (an identifier)

ITSTRU R (an active register)
B (a bit descriptor)

None

LOCMP R (an active register)

LOPC R (an active register)

LSYMNS None

LXN N (an integer)

48 Tf:II-27l0/320/0l

Description

X is usually MINUS; if X is found an odd .
number of times on the list VINV then
TRUE, else FALSE. (0 occurrences give
FALSE). Uses CLVINV to count occurrences
of X and reset vnrv. The value is Boolean.
Side -effects: Removes all occurrences of
X from VINV. Resets VINV.

When a type conversion to Boolean is legal and
yields TRUE, then this function first sets the
V -variables to DATUM, BOOLEAN, TRUE and then
uses MOVACTIVE to move to R at B. Side­
effect: Resets the V-variables to ACTIVE,
BOOLEAN, in R at B.

If the V-variables indicate class LOC and it
is actually an ACTIVE disguised as a LOC
(by using the machine address of the active)
then the V-variables are reset to ACTIVE,
and TRUE is returned; otherwise nothing is
done and NIL is returned. Side-effect:
Resets the V-variables.

Used when \~ has already been found to be
MINUS and AC, B, or L is to be loaded. The
value is an operation code of LDC, LBC, or
LLC.

Used to obtain the operation code to load
AC, B, or L. Tests if VINV is MJNUS and
returns a load complement, a regular load,
or an error indication. Side-effect:
Resets VINV.

If a SYMBOL is to be moved anyplace and
VINV is MllIDS then this function attaches
instructions to the listing which remove
the MINUS candi tion. Side -effect: The
V-variables are reset to ACTIVE, SYMBOL,
in AC, full 1<Tord.

If the integer argument is suitable for
loading via immediate addressing then the
list of the argument and R is returned,
othenTise NIL is returned.

(\ ")

o

o

1 February 1966

Function Argpments

LXRM B (a bit descriptor)

MLDX I (a partial LAP
instruction)

X (an index register)

MDECR None

MMSK B (a bit descriptor)

NADDR

REVA2L

SETTRU

SHFrRA

V (a value)
T (a type indicator)
B (a bit descriptor)

R (an active register)

None

V (a value)
T (a type indicator)
B (a bit descriptor)

TM-27l0/320/0l

Description

Used when a LDX class instruction is being
made up. If LA or RA modifiers should be
used (according to value of B) they are
returned, else NIL.

When a LDX instruction has been generated by
EXHOCKY the operation code is missing and
the actual index to be loaded is not included.
MLDX completes the instruction and returns it.

Used by MOVARG when a BXE class has been
requested. The V-variables are tested and
the appropriate decrement is generated. The
value is a LAP decrement field or NIL.

Used to compute a mask which if AND'ed with the
AC would erase all bits except those specified
by B. The value is an octal.

When a datum is to be loaded into AC, B, or
L this function is used to compute the
instruction address, tag, and decrement.
If B is not on byte boundaries SHFTRA is
called, othervTise the instruction or NIL
is returned. NIL means that more than one
instruction is needed. The value is a
part ial LAP instruct ion, or NIL.

Used to convert an active register name into
a LAP address. (Example: if the argument is
AC, the value is A. .) Uses TRANSA2L after
binding VREG. The value is the LAP address
of R.

Used by ITSTRU when a conversion to BOOLEAN
is legal and TRUE. Side -effect: Resets
V -variables to DATUM, BOOLEAN, TRUE.

When a datum is to be loaded into AC, B, or
L not on byte boundaries, this function is
called to shift and mask the datum so that the
load may be done in one instruction. If
successful the instruction is returned, else
NIL.

1 February 1966

Function Arguments

SPARAM B (a bit descriptor)

STOC R (an active register)

STXR B (a bit descriptor)

STXREG

SVACT

R (an index register)
P (an address on PDS)

R (an active register)

50 TM-2710/320/01

Description

When either VBYTE or XBYTE is not a full
word, and the move can not be made by
using byte modifiers, then this function
is called with XBYTE as' an argument. It
uses VBYTE free and computes the shift and
determines if masking is required. The
value is a pseudo-instruction for shifting
only or for shifting and masking.

If R is a legal register for the STA class
of instruction then the proper operation
code is returned. otherwise COMERR is
called and a pseudo-operation is returned.

When an STX class instruction is manufactured
this function is used to determine if the
STX is for RA, LA, or illega~according to
the value of B. The value is RA, LA, or NIL.

Called by SVXREG to attach instructions for
saving R on the push-down stack.

Used to reset the V-variables to describe
an ACTIVE, in the register R at bit position
B. Side-effect: Resets the V-variables
except VTYPE, VINV, VBL<Yr.

SVLOC A (a LAP address) When a move to LOC has been made, this

SVXREG

SYMon

X (an index modifier to A) function is called to reset the V-variables
I (the indirect indicator) to describe the LOC. Side-effect: Resets
B (a bit descriptor) the V-variables except VTYPE, VINV, VBLOT.

A (a LAP address)
R (an index register)

S (a datum symbol)

Used to save an index register before doing
a move when the register would_be destroyed
by the move. Called by MOVSA V •

Used when the V-variables are for a datum
of type SYMBOL. The value of the datum is
the argument and the correct LAP address
field is computed. The value is the lAP
address used to load the datum. Examples:
(ID A) (NUMBER 3.0) etc.

n

•

o

C)

1 February 1966

Function Arguments

TAGF T1 (a LAP field)
T2 (a LAP field)

Truu~S B (a bit descriptor)

TRANSI B (a bit descriptor)

TRANSA2L None

WHATBITS B (a bit descriptor)

51 TM-2110/320/01

Description

When more than one instruction modifier
has been determined (as from ADDRMODS and
BMODS) then this function combines them
into a single LAP field for the instruction.
The value is the LAP tag field.

If B is on byte boundaries, then the list of
SCAMP byte names corresponding is returned.
Example: B=(12 18) returns ('3 '4 '5).
Full word returns ('1), otherwise NIL is
returned.

Used by TRANS to translate a bit descriptor
to a list of byte names. The value is a
list of byte names, or NIL.

Used to obtain the address for an ACTIVE
to ACTIVE move. Example: (LDA (Z. 3)).
VREG is used free. It is assumed that
VCLASS is active. The value is a LAP
address of an active register.

Used whenever it is necessary for VBYTE or
XBYTE to be in the form (R N) where R is
the right-most bit and N is the number of
bits. The value is a list of the right­
most bit and the number of bits used by
the argument.

1 February 1966 52 TM.-2710/320/01 r)

INDEX OF COMPILER FUNCTIONS

NAME CLASS PART ARTICLE NAME CLASS PART ARTICLE

ABS I 2-ADDER 3.2 CNVDATM F 3-MOVEP2 4.12
ACEQ F 3-MOVE4 4.12 CODE I I-BLOCK

ACT2ACT F 3-MOVEP3 4.7 COMARGS F 2-COMPILER 3.2
ACT2LOC F 3-MOVEP4 4.4 COMARI F 2-0PrIMUM 3·2
ADDRDMODS F 3-MOVEPO 4.12 COMBJND F I-DECL 2.4

AND I I-PRED 2.7 COMBLOCK F I-BLOCK 2·3
ANYVARS F I-DECL COMBOOL F I-PRED 2.7
ATTACH F I-HELP 2.12 COMCAR F 2-COMPILER 3·3
ATTACIU F 3-M0VEP4 4.12 COMDAT F 2-COMPILER 3·2
ATTACHGO F I-HELP 2.12 COMEXP F I-MIDDLE 2.1

ATTACHLAB F I-HELP 2.12 COMEXPI F 2-COMPILER 3·2
:820. I 2-CHEAT 3·5 COMINV F 2-ADDER 3·2
BACTIV F 3::-MOVEPI 4.12 COMLCK F 2-COMPILER 3·5 C-j
BEND F 3-MOVEPO 4.12 COMGOES F I-BRANCH 2·5·1
BEQ F 3-MOVEPI 4.12 COMOPr F 2-0PrThlDM 3·2
BIT I 2-COMHLP 3.1 COMPACT F 1-PRED 2.6

BLOCK I I-BLOCK COMPRED F I-PRED 2.6

BW£CH F I-HELP 2.12 COMPMSK F 3-MOVEP4 4.12
BLCYrTO F I-HELP 2.12 COMPUSH F I-MIDDLE 2.1.1

EMODS F 3-MOVEPO 4.12 COMREL F I-PRED 2·9
BRANCHER F I-FRED 2.6 COMSTAT F I-MIDDLE 2.6.1

CADRNIL F 3-MOVEPO 4.12 COMSUB F I-MIDDLE 2.12

CALCOMP F 2-COMPlLER COMSWITCH F I-BRANCH 2.12

CANSTZ F 3-MOVEP4 4.12 C01yfi1ERM F I-MIDDLE 2.6.3

CAR I 2-COMHLP 3·3 COMrERMINS F I-MIDDLE 2·3
CDR I 2-COMHLP 3·3 COMrOP F 2-COMPlLER 3·2
CHEAT F 2-CHEAT 3·5 COMrYP F 2-COMPILER 3·2
CLUNR F 2-VHELP 3.6 COMVAL F I-MIDDLE 2.1.1

CLVINV F 3-MOVEPO 4.12 COMWRD F 2-WORDS 3·3

CNVD F 3-MOVEP2 4.12 CONVL2AC F 3-MOVEPI 4.12 r-
\,)

•

r

0
1 Februar'J 1966 53 TM-2710/320/01

TImEX OF COMPILER FUNCTIONS (Cont r d)

NAME CLASS PART ARTICLE NA1\1E CLASS PART ARTICLE

CONVP F 3-MOVEPO 4.12 GOMEMBER F I-BRANCH 2.12

CORE I 2-CHEAT 3·5 GQ I l-COMPARE 2·9
DIFFERENCE M 2-ADDER 3·1 GR I I-COMPARE 2·9
DIVIDE. F 2-TIMER 3·2 GVADDR F 2-VHELP 3.6

DXREG F 3-MOVEPI 4.12 GVBLDr F 2-VHELP 3.6
EQ I I-COMPARE 2.8 GVBYTE F 2-VHELP 3.6

EQHLP F I-COMPARE 2.8 GVCLAS F 2-VHELP 3.6

EQN I 1-COMPARE 2.8 GVJND F 2-VHELP 3.6
EQliIL F I-COMPARE 2.8 GVlllV F 2-VHELP 3.6

EQSUB F I-COMPARE 2.8 GVREG F 2-VHELP 3.6
EQl'YFE F 2-ASSIGN GVTYPE F 2-VHELP 3.6

EQUALN I I-COMPARE 2.8 I20. I 2-CHEAT 3·5

0 EQ,XOR F l-COMPARE 2.8 IF I I-PREF 2.6

EXHOCKY F 3-MOVEP2 4.10 IFEXP F I-PRED 2.6.3

F20. I 2-CliEAT 3·5 IFEXPT F l-PRED 2.6·3

FLOAT I 2-COMHLP IFGO F I-PRED 2.12

FOR M 2-FOR 3·1 ll'PRED F I-PRED 2.6.2

FORX F 2-FOR 3·1 IFST F I-PRED 2.6.1

FNDEC F I-DECL INHERIT F 2-VHELP 3.6

FTYFER F I-HELP 2.12 INVERT M 2-WORDS

FULIP F 2-ASSIGN IQUDrIENT I 2-TIlOOi 3·2

FULLW F 3-MOVEP4 4.12 ISINY F 3-MOVEPO 4.12

FUNCTIO F I-TOP 2.2 ITSTRU F 3-MOVEP1 4.12

FUNCTION M I-MIDDLE 202 ITYPE F I-HELP 2012

FVTYPE F I-HELP 2.12 L2AP F 3-MOVEPI 4.12

GETBOUNDV F I-DECL 2.4 LABEL I I-BRANCH 2.11

GETDEC F I-DECL 2.4 LABELER F I-HELP

GETFREEV F I-DECL 2 .. 4 LASTBRANCH F I-BRANCH 2.12

GO I I-BRANCH 2·5 LC2ACT F 3-MOVEP4 4,,6

() GOGET F I-BRANCH 2.12 LIST M 2-COMHLP 3.1

· .'

1 February 1966 54 TM-27101 320/01 (-)

INDEX OF COMPILER FUNCTIONS (Cont'd)

NAME CLASS PART ARTICLE NAME CLASS PART ARTICLE
LOC2ACT F 3-MOVEP4 4.6 NULL I I-PRED 2.10
LOCMP F 3-MOVEPO . 4.11 02B. I 2-CHEAT 3.5
LOC8ET I 2-ASSIGN 3.4

; 02F. I 2-CHEAT 3.5
LOPC F 3-MOVEPO 4.11 ' 02I. I 2-CHEAT 3.5
LQ I 1-COMPARE 02R. I 2-CHEAT 3.5
18 I 1-COMPARE 2,,9 028. I 2-CHEAT· 3.5
LSTLST F 2-VHELP 3~6 OR I 1-PRED 2·7
LSYMNS F 3-MOVEP3 4.12 ORDER F I-DECL 2.4

LXN F 3-MOVEPO 4.12 PLIALG F 2-ADDER 3.2
LXRM F 3-IDVEPI 4.12 PLIMVP F 2-ADDER 3·2
MAKEWC F 3-MOVEP3 4.11 PLRMVP F 2-ADDER 3.2
MAKEPRED F I-PRED 2.12 PLRALG F 2-ADDER 3.2
MAKECARCDR F I-MIDDLE PLSALG F 2-ADDER 3.2
MDECR F 3 .. M)VEP1 PLSMOV F 2-ADDER 3.2

(--) ,

MINUS I 2-ADDER 3.2 PLSPDL F 2-ADDER 3.2
MLDX F 3-lvDVEP1 4.12 PLUS I 2-ADDER 3.2
MMSK F 3-MOVEP1 4.12 PROP I 2-COMHLP 3.3
MOVACTIVE F 3-MOVEP3 4.8 QUOTE I I-PRED 2.11

MOVARG F 3-MOVEP2 4.9 QUOTIENT I 2-TIMER 3.2
MOVARG2 F 3-MOVEP2 4.8 H2O. I 2-CHEAT 3.5
MOVLOC F 3-MOVEP4 4.3 REClP M 2-TIMER 3.2

MOVOl F 3-MOVEP2 REMOTE F I-HELP 2.12
MOVPD8 F 3-MOVEP4 4.2 RESTORE F 2-VHELP 3.6
MOVPRD F 2-ADDER 3.2 RETURN I I-BRANCH 2.11
MJVSAV F 3-MOVEP4 4.5 REVA2L F 3-MOVEPO
MPIALG F 2-TIMER 3.2 S20. I 2-CHEAT 3·5
MPRALG F 2-TIMER 3.2 SET. F 2-ASSIGN 3.4

MPYALG F 2-TIMER 3.2 SET I 2-A8SIGN 3.4

NADDR F 3-MOVEP1 4.12 SETTRU F 3-MOVEP1 4.12

NOT I I-PRED 2.10 SHFTRA F 3-MOVEP1 4 .. 12

NOTF F 1-PRED 2.10 SIGN I 2-ADDER 3.2
() NQ I 1-COMPARE SPARAM F 3-MOVEPO 4.12

•

p

55

() 1 February 1966 (last page) TM-271O/320/01

INDEX OF COMPILER FUNCTIONS (Cont'd)

NAME CLASS PART ARTICLE

STOC F 3-MOVEP4 4.12

STXR F 3-MOVEP4 4.12

STXREG F 3-MOVEP4 4.12

SVXREG F 3-MOVEP4 4.12
SVACT F 3-MOVEPO 4.12

SVIDC F 3-MOVEP4 4.12

SYIDD F 3-MOVEPO 4.12

TERM F 2-FOR 3.1
TIMES I 2-TIMER 3.2
TRANS F 3-MOVEPO 4.12
TRANSA2L F 3-IDVEPO 4.12
TRANS 1 F 3-IDVEPO 4.12

f'\ TYPEP F 1-HELP 2.12
\.J VINDX F 2-COMPILER 3.6

VLIST F 2-VHELP 3.6
VSNr F 2-VHELP 3.6
WHATBITS F 3-MOVEPO 4.12
WORDAND M 2-WORDS 3.3
WOROOR M 2-WORDS 3.3
WORDXOR M 2-WORDS 3.3
WRDHLP F 2-WORDS 3.3

o

1 Fe-bruary 1966 TM-2710/320/01
(
\ /

DISTRIBUTION

B. Barancik 2105
J. Barnett 2059
E. Book 2332
R. Bosak 2041
J. Burger 9919
D. Drukey 2105
s. Feingold 9525
D. Firth 2310
E. Jacobs 2344
s. Kameny (100) 2009
E. Myers 2227
M. Perstein 2332
v. Schorre 2330
J. Schwartz 2123
R. Simmons 9439
E. Stefferud 9734
A. Vorhaus 2213
c. 1<Teissman (10) 2214

.~

'- I

