
Introduction

INPUT/OUTPUT FOR LISP II

by

Clerk ,Weissman

TM-226o/003/00
Produced under'ARPA Contra.ct SD-97

LISP II
Memo b ,
DRAFT - February 19, 1965

, Present~d herein are a number. of ideas for LISP II I/O, primarily for BCD data.
The salient characteristics include: dynamic (run time) device assignment and
creation (a~d deletion) of I/O buffers, a current-unit concept to simplify input/
output proced~es for the Variety of different I/O devices, and finite state
machines for transforming the input character "stream" into appropriate internal
language "tokens" (and vicfi! versa). Implementation of these ideas will be '
achieved by defining' procedures in terms of a, set of machine language I/O
primitivesj,a necessary, but not complete list of Which is suggested herein.

, ' ,

Certa,in desirable capabilities 'are omitted in this :paper as they probably should
not be part of'the basic LISP II system. First, is the ability to specifY simul.
taneous I/O operations. This ability is dependent upon, the time-sharing environ­
ment in which LISP II must operate and hence special procedures will probably "
be necessary. The oth,er a;pparen1; omiSSion is I/O formatting. It is expected
that format capability can easily be accommodated within this I/O proposal by
extending the set ot·primitives and by use ot character, string and 'Comit-rule
featur~s of the source 'language.' ' . ;

1.0 Unit Classes

Rather than a,ssign arbitrary numeric codes for 'unit classes, LISP II source
language will includ~ an open set of UNIT IDENTIFIERS. These identifiers
-are not reserved, (1. e., ,in the sense that "FOR," "IF,'~ "PROCEDURE" are
reserved identifiers),and m~ be used by th~ programmer with complete
freedom as variables, procedure names, etc. UNIT IDENTIFIERS must be used
for those pr~~tives wbicb require specification of the unit class to all9W
the LISP II system to recognize the device and perform the appropriate
internal actions. .

1.1 Unit Identifiers

TAPE '(magiletic or paper), DISC, SCOPE (CRr' and light pen); TTY (teletype)
or CONSO~,' PHONE (bigh-speed data link) or COMPUTER, DRUM" CARD (reader
and pUnc~), PRINTER,* RAN17r.*

*These identifiers correspond to uni-directionaL deVices which will cause an
error condition if used in the incorrect direction.

'j

, "

"

It

2

1.2 Data Structure .

Each I/O device will contain data stored in FILES. FILES will be
composed of RECORDS, which "in tum will consist ot LINES. For BCD

.. FILES, LINES will be cOn:qlosed ot CHARACTERS. For binary devices
LINES and computer words will be synonymous.,

The size, fo~at, and code for LIW-E, RECORD, and FILE will be defined
(hopefully parametricelly) for each UNIT IDENTIFIER, subject to the
peculiarities .. ot the local machine system. End-of-File, End-of-Record,
and End-ot-Line m~ be denoted with explicit control symbols, or by .
implicit counters _" ..

1.3 Character Codes

1.4

LISP II wi'll use the .. 7-bit ASCII character set with certain prohibitions
on input (","1, !). For 6-bit character machines (e.g., 7090, Q-32),
some inte,rnal LISP II encodin~ will accept the following 64 characters: ..

0-9 =< >v blank

A-Z .. + ~ * $ shift

/\t carriage return . • .,1 ,
() [] #~&@ line teed

Dynamic ILO Buffers

,It will be possible in LISP II to reserve various avail~ble I/O devices
concurrently ·at run time in a fashion simil"r to the CTGS ATTACH and
the TSS FILE calls. In addition, it will be necessary for the LISP II
user to create ~ LOGICAL NAME (LN) for these·devices. For each device
declared, LISP II wili creete an integer array sufficient to contain
one full RECORD .. of data as detined by the device I s UNIT IDENTIFIER.
This arrtq will be internally named (e. g., g1 ven a GENSYM name) and
that name:. Sl)~ the 'UNIT IDENTIFIER will be placed on the property ·list
of the ,device -.s ,LOGICAL NAME. '

.1

"LN 1 I ' I Propert~ UNIT I:' List .. . a.;,....-"---'
..

1.5 Primitives

1. MAKEBUF' (!!):

2. REQUEST (U LN L):" ---

Creates an integer arr~ sufficient to contain
one full RECORD for UNIT IDENTIFIER U. Returns
G, the internal arrey nam~. (a GENSYMT it successful,
NIL is unsucce~sful (not enough arrey space).

LN is the IOOtCAL NAME for a device of cla.s8
UNIT IDENTIFIER·U. 'L is an ordered list of
supplementar.y;parameters necessary to reserve

"the 1./0 device'. (The contents and order ot !!
is particular.to the device class ,and machine
system.) Return's LN if success:f'ul,' NIL it un­
successful (all unIis busl' or'"not enough arrq
space). .

" I
"I

, ,. ,
!:.
:;
~

,f.

RELEASE (LN): '

4. POSITIONR :, (B!!!):

POSITIONF (E!!!).:

, 6. MOVEIN (!!):

8. WlX>F" (LN):

9. REWIND (rn):

2.0 Current-UNIT Approa,ch

J

LN is the LOGICAL NAME for a previously reserved
device. ,The device reservation is released, as
are the array a,nd array name. The property list "
of LN is purged of all I/O references. Returns LN. - -

• The device associated with LOGICAL NAME LN is '
positioned! RECORDS ,from its current poSition'.
If N is negative, device is backed N RECORDS or
to f~rst RECORQ of current F~. If! is positive,
'device skips N RECORDS or to first RECORD of,
next· FILE. ' Returns LN.

The device associate'd with LOGICAL NAME LN is
positioned to ~he first RECORD of' an externally
named FILE FX. FX may a,lso be e signed integer
in which case the-device backs n FILES for ,
negative n or skips, n FILES for positive n from
its current position. Returns LN if successful
or NIL if unsuccessful, (no FILE:tound).

Transfers the next RECORD on the device associated
with LOGICAL NAME LN into the internal array
associated,with LN:- Returns LN if succeSSful,
or NIL if unsuccessful, (no ~declared or end­
of-file encountered--in whic~case device
positioned after end'-of-file).

Transfers the internal array associated with
LOGICAL NAME LN.as the next RECORD on the device

'a,ssociated with LN. Writes an end-of-record .
mark if necessary. Returns LN if successful,
or'NIL is unsuccessful, (no LN declared or no
storage available on device):-

Writes an end-of-file mark as the next RECORD
on device a,ssociated with LOGICAL NAME LN.
Returns LN. -

, -
If meaningful for the device associa,ted with
the LOGICAL NAME LN, that device is positioned
to the first RECORD. Returns LN. '

, .
For simpli~ity of input/output specification in LISP II, all I/O procedures
will reference the property list of the reserved identifier UNIT to determine
the current I/O device. A user may then call I/O procedures without ~11c1t~
citin~ an I/O device each time. It will only be necessary to cite 'an I/O device
when the user wishes to change the current unit. To further simplify matters, ~

.: the LISP II system vlll al~s initi'alize the current ~o some at~ard
dertce, probab~ teletype, at start-up an!! at 8D\Y" error occnu-rence.

"

2.1 Mechanism

There will be two attributes on the property list of UNIT, INPUT and
OUTPUT. Each will be associated with the LOGICAL NAME of the current
input or output unit'defined by a previous REQUEST, from which the '
necessary information for I/O calls can be retrieved. It Will then be
possible to read and write fr9M different devices concurrently without,
changing UNIT's property list. Necessary primitives will be available
to change the current unit.' .

2'.2 Primitives

Set LOGICAL NAME LNi as the v81ue of attribute 1. UNIT (LIfi LN~):
INPUT and LNg! as the value of attribute oUTPuT on
the property list of' reserved identifier UNIT. If'
LNi or m¢ is NIL, the respective attribute value.
remains unchanged. Retums'a list of the prior values
of INPUT an~ .'Otr.WOT respectively. '

2. SETPROP (!!!!):

.
3. G~OP (!!~):'

'3.0 Finite State Machine's

The property list of identifier L is searched
for the first occurrence of attribute A. If
~ is found, the next list element is set to
the value V. Returns prior value 'of A if
successful;.or NIL is unsuccessful, (no property
list for !!, or ! 'not found). ,

The propertY'list of identifier,L is searched
for the first occurrence of attribute A. If
found, ·the next list element is returned as the
value of GRl'PROP. Returns NIL if no property
list for !!I.0r ~ not found •.

• .\ I

Analogous to LISP 1.5 RF)1pROP .. '

.compilation of source language in LISP II will be essentially a three phase ..
procedure', namely: source language translation to internal language, internal

... 'language compiled into LAP, end 'finally LAP assembled .1ntc)machine code •
. For ef:ficienc;y:~d"flexibility of design a Finite State Machine (FSM) will
, perform s~tax preprocessing in the translation, of source langu~e into
. intemal language.

,I
--------------'----.------~.-- .-.---------.. '!-' -.~- ... ,,-

, .
.5

A FSM Will be called upon by the syntax translator to read the inpUt
character stream and "pass up" "tjhe next "token" read on the input
device. Tokens are the smallest syntactic elements manipulated by
the syntax translator, i.e., they are the symbols of the LISP II
syn~ax.· They include:. real, integer, octal, and Boolean numbers,
strings, iden~ifiers, and reserved identifierso

FSM's will a+so be used for output and for other than source language
input, including binary. 'The requisite transforms Will be specified
for each FSM as they' are needed. New FSM's may be added to the system
whenever necessary.

3.1 Readers

In real! ty, a FSM Will have two parts, a syntax. translator for .
concatenating characters into tokens (fsm), and a reader (rdr) for
reading characters from the input array and passing them to the fsm.

'This distinction is not capacious for it allows extensive generality.
Any fam can be applied to any ,input array by use of different rdr's.
There .will be rdr"s for different purposes dictated by the input data
structure: For example, there Will be binary as well as character
rdrls. Also, there 'will be character rdr's which are "blind" to
certain character 'fields, thereby allowing the reading of data
containing external.' accounting information (such as sequence numbers).

3.2 'Mechanism

Figure i shows schematically ·the fl9w of ~ata through the I/O system.
A FSM i~ cre~te~ by attaching'a fsm to a rdr,' and a rdr to an I/O
bUffer previoUsly created by a REQUEST.' The current rdr name is stored
as an OWN variable.W1thin·the fsm. For BCD data, and after appropriate
initialization the fsm asks for a character. The rdr accesses the
current LINE of the attached I/O buffer via reference to the LOGICAL
NAME: for the current unit -'(All I/O buffer references must be' made
.through the· LOGICAL NAME because of array' relocatabili ty.) (The
relativ~ address of ,the current LINE and the 'current unit (LOGICAL
NAME) are stored as owN vanables Within the i'd~-and "explodes" the
current LINE into its constituent'characters, simultaneously converting
the characte'rs into internal LISP II code by table lookup and storing
the' converted characters, one per l-lord into an OWN: array wi thin the,
rdr; the OWN' array being large enough to store a LINE of characters.
One more OWN variable is required by the rdr, namely the current
character. pointer. This pointer. is an index into the exploded line.
,The rdr passes ,this pOinter up to the fsm which uses it as, an index into
,parameter tables of character classes needed by the fsm for processing
the syntax of tokens. (fsm with different token syntax equations can
be easily aCCommodated i~·LISP II by using'different parameter tables.)
After processi~g that character the fam reqnests another character from
its rdr. If the rdr bas exhausted the characters in its exploded buffer,
it will explode another LINEa ,If the I/O buffer is 'al-ao-eXhausted, the
rdr will int,~llY call mVEm to fill, the I/O buffer from the next
RECORD on the current unit. (The current unit is gotten by chaining
dawn the property list ot tmITo) If there are no remaining RECO~S
on the current un! t, and error condition exists. tsin calls rdr
repeate~ u~tl1 a token is formed. At that time the FSM exits, ita

6

value being a pointer to the fo~ed token,'and a token class code,
(e.g.,' string,. identifier, octal nwnber, ,etc.) These items are used
by the highe~ level syntax translator for. its devious purposes.

, '3.3 Further Comment

~ To allow concurrent use of various fsm's and rdr's on different I/O
buffers without changing FSM's to push down-store-automatons, copying
rdr's ~ill be required.

Concurrent use of various fsm's and rdr~s also creates a problem
regarding reinitializatio~ of FSM's (i.e., clearing ~r OWN array and.
variables) by TEREAD for example since there is no connection between
I/O buffers and FSM' s. This problem can be resolved by setting the
rdr's name on the property list of the current-unit when FSM is first
called. (LOG~CAL NAME is ,:totten from the 'Droperty list of UNIT.) RELEASE.
must also reinitialize the FSM attached to the LOGICAL NAME.

It should be noted that reinitiallzation nll require Tailing to alloW'
access to all OWN parameters.

Fina.l.1¥,· ~ot much has been said concerning FSM's for output or binary
since these FSM~B are relatively simple compared to the ones discussed.
,

3.4 ,Primitives

1. RDRO

'4. FSMO

--~-- ------------_. --~

,
RDRC reads the next character an den ce LN
and is a psuedo function since it transmitts
its value interna.lly. LN is the LOGICAL NIu~
of an Ilo u..1'lit previously defined by REQUEST
fran which the name of the I/O buffer is '
retrieved for reading. characters. RDRC uses
three OWN variables, a CHARACTER pOinter a
LINE pOinter, and unit poin~er (m), and one
OWN array.

Like RDRC, but it is "blind" to the last m
characters of every LINE. Since sequence
numbers are usually placed in columns 73-80
of each LINE, RDRCS can be used to skip these
fields ..

RDRB reads the next binary word' on device LN
and is also a.psuedo function. It bas one~
OWN variable, word pOinter and.. no OWN array.
otherwise 1 t is like wac.

FSMC is a finite state machine for creating
character identifier tokens. It takes no
arguments, since its' single OWN.variable, the
name of a rdr, is set by SETFSM. Returns a
cha'ractel" on \Ut~:t; g{ (see RDRO).

, :

. ,
t,

, i

~~--

.. ,

6. FSMB:

T. ~FSM(§.)

8. ~FSMB

SETFSM(FSM RDR m) ---

10.

12. REMRDR (RDR)

7

, : . A finite state machine for creating source
language tokens,--real, integer, octal, and'

. :Boolean numbers, strings, identifiers, and
'reserved identifiers. Tokens created can also

. be used by S-expression syntax translator.'
Otherwise like FSMC •.
'Returns the next'token on unit gr- .

: Represe~~ative of a class of finite state
machines used fo~ processing binar,y input
units.

: A finite state machine for printing strings.
Input is a string! of characters which are
converted to external code and output on'

,current unit rno
Returns NlL -
•

g Representative of a class of finite state
machines used for processing binary' output
units"

Z Attaches reader RDR to finite state machine'
~ by setting FSMs t. OWN varia1?le to RDR,
and by setting LN as the value of RDR' s
current unit owN" variables d RDR uSeS m to
initialize its OWN parameters-rBee RDRCJ.
Sets RDR as the vallle of attn bute 'RDR' on
property list of gr.

"Returns FSM.

Copies reader RDRK. Name of the capy is
RDRYo All OWN parameters of RDRY are identical
tothose of~. Marks RDRY as copy, (see . "
REMRDR) 0 Returns RDRY if copy successful,

. or NlL if unsuccessful,. (no RDRX, or no room' .
for c'opy).. .

g Reini tiali zes all OWN parameters of reader
RDRo Removes RDR from property list of m(IN
available as vi'iiie of an liP! OWN variable}.­
Returns RDRo

X If'RDR is a cOpy of an existing reader (COm:oR
marks all copies) it is delete a. and B!2!! is
removed fran property list of B! if there. If
BE!! is not ~ caw, REMRDR does nothing.
Returns NlL ..

,13. !mREAD CLN)

14. . TERPRI. (m.),

8

: ' Locates value of RDR on LN and eValuates
CI..EARDR for that Vilue. -
Returns' Yf.

: Evaluates MOVEOUT . (LN)and reinitializes
finite statE! _cb:I.ne'FSM3. . Returns Bi ..

"

. :

,.
i
~

,f
'.

" " I
I·
i.

"

,.

I/O
"B ~

81.1

• LISP II I/O SYSTEM

SCHEMATIC DIAGRAM
"

FIGURE 1

~ li'SMB

CHARACTER
!OOKENS

SOURCE
~!bLANGUAGE

- -TOKENS

BINARY
~S

--.

r
ct-
~ \0

~

OWN
A ..
R
R
A
l' , ,-

KEY

I
i
I'

IaN - LOGICAL NANE of current unit
rdr - current reader (RDR) may be set to:

RORC - read Characters
RDRCS - read characters'in a special 'way
RDRB - read binary ,

ism ,- current finite state machine (FSl-l) may be set to:
FSMC - character token FSr-1 "

.FSl-lS - source language" token FSl·l -
m.ffi - binary 'token FSf·l

SETFSN: - Attachcs a FSl.f to a RDR for a logical unit Lli.

;,

