TM-2260,/003/00
Produced under ARPA Contract SD-97

LISP II
Memo #5

DRAFT - February 19, 1965
INPUT/OUTPUT FOR LISP II

by

Clerk VWeissman

Introduction

" Presented herein are a number of ideass for LISP II 1/0, primarily for BCD deta.
The salient characteristics include: dynemic (run time) device sssignment end
creation {end deletion) of I/O buffers, a current-unit concept to simplify input/
output procedures for the veriety of different I/O devices, and finite state
machines for trsnsforming the input character "streem" into eppropriste internal
lenguage "tokens" (and vice versa). Implementation of these ideas will be

I, achieved by defining procedures in terms of s set of machine langusge I/o
* primitives; a necessary; but not complete list of which is suggested herein.

Certein desirable capsbilities ‘sre omitted in this paper as they probsbly should
not be pert of the basic LISP II system. First, is the ability to specify simul-
taneous I/O operstions. This ability is dependent upon the time-sharing environ-
ment in which LISP II must operate and hence special procedures will probably '
be necessary. The other apparent omission is I/O formatting. It is expected
that format capebility cen essily be accommodated within this 1/0 proposal by
extending the set of primitives and by use of character, string end Comit-rule
. features of the source language. '

1.0 Unit Classes

-

Rether than sssign arbitrary numeric codes for unit clesses, LISP II source
lengusge will include en open set of UNIT IDENTIFIERS. These identifiers
are not reserved, (i.e., in the sense that "FOR," "IF," "PROCEDURE" are

. reserved identifiers). and mey be used by the progremmer with complete
freedom as veriables, procedure names; etc. UNIT IDENTIFIERS must be used
for those primitives which require specification of the unit class to allow
the LISP II system to recognize the device and perform the appropriate
internal actions. S :)

1.1 Unit Identifiers

TAPE (megnetic or paper), DISC, SCOPE (CRT end light pen), TTY (teletype)
or CONSOLE, PHONE (high-speed deta 1link) or COMPUTER, DRUM, CARD (reader
end punch), PRINTER,* RANDT.%*

*Theee jdentifiers correspond to uni-directional devices which will cause an
error condition if used in the incorrect direction. :

1.2

1.3

Dsta Structure

Esch I/0 device will contain data stored in FILES. FILES will be
composed of RECORDS, which'in turn will consist of LINES, For BCD

" FILES, LINES will be composed of CHARACTERS. For binary devices

LINES and computer words will be synonymous.

The size, formst, and code for LINE, RECORD, end FILE will be defined
(hopefully persmetricelly) for each UNIT IDENTIFIER, subject to the
peculiarities.of the local machine system. End-of-File, End-of-Record,
end End-of-Line may be denoted with explicit control symbols, or by
implicit counters. =~ ° , ‘

Cheracter Codes

LISP II will use the.7-bit ASCII character set with certain prohibitions
on input (","?, !). For 6-bit cheracter machines (e.g., 7090, Q-32),
some internal LISP II encoding will accept the following 64 cheracters:
0-9 < >0 blenk)

A-Z - ®$ shift

e, [N\te carrisge return

()L] #%e&e line feed

Dynemic I/O Buffers

It will be possible in LISP II to reserve various availsble I/O devices

concurrently at run time in a fashion similsr to the CTSS ATTACH and
the TSS FILE calls. In addition, it will be necessary for the LISP II
user to create = LOGICAL NAME (LN) for these devices. For each device
declared, LISP II will creste an integer arrsy sufficient to contain
one full RECORD.of data as defined by the device's UNIT IDENTIFIER.
This array will be internally nemed (e.g., given a GENSYM neme) end
that neme. and the UNIT IDENTIFIER will be placed on the property list
of the device's LOGICAL NAME. ’

Propert; z UNIT A W |
e UMT L IDENTIFIER [oA | G

1.5

Primitives

1. MAKEBUF (U): Creates an integer array sufficient to contain
“ one full RECORD for UNIT IDENTIFIER U. Returns
G, the internel array name (a GENSYM) if successful,
NIL is unsuccessful (not enough arrsy spsce).

2, REQUEST (U LN L):" LN is the LOGICAL NAME for e device of cless
: UNIT IDENTIFIER U. L is en ordered list of
aupplementary‘paramefers necessary to reserve
“the I/0 device, (The contents end order of L
is particular to the device class .and machine
system.) Retwrns LN if successful, NIL if un-
+ successful (all unIts busy or'not enough arrey

space).

3. RELEASE (LN): -

4, POSITIONR: (LN N):

5. POSITIONF (LN FX)

6. MOVEIN (LN):

Ts MOVEOUT (_I_.Ii):

8. WEOF. (LN): E

9. REWIND (LN):

2.0 Current-UNIT Approach

o

3

LN is the LOGICAL NAME for & previously reserved
device. The device reservation is released, as

are the array snd arrsy name. The property list
of LN is purged of all I/0 references. Returns LN. -

The device associsted with LOGICAL NAME LN is
positioned N RECORDS from its current position.

If N is negative, device is backed N RECORDS or

to Tirst RECORD of current FILE. If N is positive,

‘device skips N RECORDS or to first RECORD of-
. next' FILE, Returns LN. .

The device associated with LOGICAL NAME LN is
positioned to the first RECORD of en externally
named FILE FX, FX may slso be a signed integer

~ in which csse the device backs n FILES for

negative n or skips n FILES for positive n from
its current position. Returns LN if successful
or NIL if unsuccessful,(nho FILE found).

Trensfers the next RECORD on the device associated
with LOGICAL NAME LN into the internal array
associsted. with LN, Returns LN if successful,

or NIL if unsuccessful, (ro LN declered or end-
of-file encountered--in which case device
positioned after end-of-file).

Transfers the internel arrsy associasted with
LOGICAL NAME LN.as the next RECORD on the device

-gssociated with LN. Writes en end-of-record

mark if necessasry. Returns LN if successful,
or NIL is unsuccessful, (no LN declared or no
storage availsble on device)7

Writes an end-of-file mark as the next RECORD
on device essociated with LOGIQAL NAME LN,
Returns LN.

If meaningful for the device associated with
the LOGICAL NAME LN, that device is positioned
to the first RECORD. Returns LN.

For simplicity of 1nput/output specification in LISP II, all I/O procedures
will reference the property list of the reserved identifier UNIT to determine
the current I/O device. A user may then call I/0 procedures without explicitly
citing en I/0 device each time. It will only be necessary to cite an I/0 device
. when the user wishes to change the current unit. To further simplify matters, .
~ $he LISP II system will always initialize the current unii-to same standard
devicey prdbdb}g teletype, at start-up and at any error occurrence. :

2.1 Mechanism

Propert THNPUT P .
UNIT | © st * [SE—IE -—-&-iOUTPUT »LND

There will be two attributes on the property list of UNIT, INPUT and
OUTPUT. Each will be associated with the LOGICAL NAME of the current
input or output unit defined by a previous REQUEST, from which the
necessary information for I/O calls can be retrieved, It will then be
possible to read and write from different devices concurrently without .
changing UNIT's property list. Necessary primitives will be available
to change the current unit.- ‘ <

2,2 Primitives

1. UNIT (LNi LNg): Set LOGICAL NAME LNi as the value of attribute
' INPUT and LNg as the value of attribute OUTFUT on
the property list of reserved identifier UNIT. If
INi or ILNg is NIL, the respective attribute value.
remains unchanged. Returns a list of the prior values
of INPUT and OUTPUT respectively. . '

2., SETPROP (L A V): The property list of identifier L is searched
: - for the first occurrence of attribute A. If
A is found, the next list element is set to
the value V. Returns prior velue of A if
successful, .or NIL is unsuccessful, (no property
list for L, or A not found).

3. GETPROP (L A): The property list of identifier I is searched

‘ - for the first occurrence of attribute A. If
found, ‘the next list element is returned as the
value of GETPROP. Returns NIL if no property
list for L,or A not found.

L., REMPROP (L A): Anelogous to LISP 1.5 REMPROP.

3.0 Finite State Machines

: .Co'mpilation of source language in LISP II will be essentially a three phase K
procedure, nemely: source language translation to internal language, internal
" lengusge compiled into LAP, end finally LAP assembled into machine code.
- For efficiency:gnd flexibility of design a Finite State Machine (FsM) will
. perform syntax pfeproceas:lng in the translation. of source language into

" internal langugge.

3.1

3.2

5

A FSM will be called upon by the syntax translator to read the inpﬁt
character stream and "pass up" the next "token" read on the input
device. Tokens are the smallest syntactic elements manipulated by
the syntax translator, i.e., they are the symbols of the LISP II
syntax. They include: real, integer, octal, and Boolean numbers,
strings, identifiers, and reserved identifiers.

FSM's will also be used for output and for other than source language
input, including binary. The requisite transforms will be specified
for each FSM as they are needed. New FSM's may be added to the system
whenever necessary.

Readers

In reality, a FSM will have two parts, a syntax translator for
concatenating characters into tokens (fsm), and a reader (rdr) for
reading characters from the input array and passing them to the fsm.
‘This distinction is not capacious for it allows extensive generality.
Any fsm can be applied to any .input array by use of different rdr's.
There .will be rdr's for different purposes dictated by the input data
structure. For example, there will be binary eas well as character
rdr's. Also, there will be character rdr's which are "blind" to
certain character ‘fields, thereby allowing the reading of data
containing external accounting information (such as sequence numbers).

Mechani sm
Figure 1 shows schematically the flow of data through the I/O system.

A FSM is created by attaching e fsm to a rdr, and a rdr to an I/O ‘
buffer previously created by a REQUEST.: The current rdr name is stored

. &3 an OWN variable.within the fsm. For BCD data, and after appropriate

initialization the fsm asks for a character. The rdr accesses the
current LINE of the attached I/0 buffer via reference to the LOGICAL
NAME for the current unite-—(All I/O buffer references nust be made :

through the LOGICAL NAME because of array relocatability.) (The

relative address of the current LINE and the current unit (LOGICAL

NAME) are stored as OWN variables within the rdr--and "explodes" the
current LINE into its constituent characters, similtaneously converting
the characters into internal LISP II code by table lookup and storing

the converted characters, one per word into an OWN array within the

rdr; the OWN array being lsrge enough to store a LINE of characters.

One more OWN variable is required by the rdr, namely the current
character. pointer., This poimter is an index into the exploded line. ‘
The rdr passes this pointer up to the fsm which uses it as an index into
parameter tables of character classes needed by the fsm for processing
the syntax of tokens. (fsm with different token syntax equations can

be easily accommodated in LISP IE by using different paremeter tables.)
After processing that character the fsm requésts another character from
its rdr. If the rdr has exhausted the characters in its exploded buffer,
it will explode another LINE. If the I/0 buffer is also—exhausted, the
rdr will inteynally call MOVEIN to fill the I/O buffer from the next
RECORD on the current unit. (The current unit is gotten by chaining
down the propeirty 1list of UNIT.) If there are no remaining RECORDS

on the current unit, and error condition exists. fsm calls rdr :
repeatedly until a token is formed. At that time the FSMexits, its

© 3.3

value being & pointer to the formed token, and a token class code,
(e.g., string, identifier, octal number, etc.) These items are used
by the higher level syntax translator for its devious purposes.

Further Comment

" To allow concurrent use of various fsm's and rdr's on different I/0

buffers without changing FSM's to push down-store-automatons, copying
rdr's will be required.

Concurrent use of various fsm's and rdr's also creates a problem
regarding reinitialization of FSM's (i.e., clearing rdr OWN array and .
varisbles) by TEREAD for example since there is no connection between
I/0 buffers and FSM's, This problem can be resolved by setting the
rdr's name on the property list of the current-unit when FSM is first

called. (LOGICAL NAME is motten from the property list of UNIT.) RELEASE-

must also reinitialize the FSM attached to the LOGICAL NAME.

' It should be noted that reinitialization will require Tailing to allow

access to all OWN paresmeters.

Finally, not much has been said conecerning FSM*s for output or binary
since these FSM's are relatively simple compared to the ones discussed.

3ok . Primitives

.3 RDRB

oo

RDRC reads the next character an device LN
and 1is a psuedo function since it transmitts
its value internally. LN is the LOGICAL NAME
of an I/0 unit previocusly defined by REQUEST
from which the name of the I/O buffer is
retrieved for reading characters. RDRC uses
three OWN variebles, & CHARACTER pointer a
LINE pointer, and unii pointer (IN), end one
OWN srrey.

1, RDRC \

se

Like RDRC, but it is "blind" to the last m
characters of every LINE. Since sequence
numbers are ususlly placed in columns T3-80
of each LINE, RDRCS cen be used to skip these
fields.

2 RDRCS

RDRB reads the next binary word on device LN
snd is also & psuedo function. It has one
OWN variable, word pointer and.no OWN array.
Otherwise it is like RDRC.

20

b, FSMC $ TFSMC is a finite state machine for creating

cheracter identifier tokens. It takes no
arguments, since its single OWN variable, the
pame of & rdr, is set by SETFSM. Returns a
cheracter on unit LN (see RDRC).

A 2 e g e 7 ot

5

6.

Te

8.

9

10,

12,

FSMS

FSMB:

grsM(8)

grsMB

SETFSM(FSM RDR LX)

COPYRDR (RDRX RDRY)

CLEARDR (RDR)

REMRDR (RDR)

" A finlte state machine for creating source

+ language tokens,--resl, integer, octal, and’

' Boolean numbers, strings, identifiers, and

(13

8

reserved identifiers. Tokens created cen also
- be used by S-expression syntax translator.’
Otherwise 1ike FSMC: ‘
‘Returns the next token on unit IN.

Representative of a class of finite state
machines used for. processing binary input
units, '

A finite state machine for printing strings.
Input is a strings of characters which are
converted to external code and output on-
.current unit IN.

. Returns N1L

Representative of a class of finite state
machines used for processing binary output
units.

Attaches reader RDR to finite state machine’

. FSM by setting FSMs' OWN varisble to RDR,
end by setting LN a8 the value of RDR'

current unit OWN N variables. RDR uses IN to

initialize its OWN parameters—(-s-ee RDRE)'.

Sets RDR as the value of attribute 'RDR' on

property‘ list of IN. ‘
*‘Returns FSM.

Copies reader RDRX. Neme of the copy is
RDRY. All OWN parameters of RDRY are identical
To those of RDRX. Marks RDRY as copy (see .-
REMRDR). Returns RDRY if copy successful,
“or NIL if unsuccessful, (no RDRX, or no room:

for copy).

Reinitializes all OWN parameters of reader
RDR. Removes RDR from property list of IN(IN
avallable as value of an RDR OWN variable),
Returns RDR.

If ROR is a copy of an existing reader (COPYRDR
marks all copies) it is deleted and RIR is
removed from property list of IN if there. If
RDR is not a copy, REMRDR does nothing. ‘
Remrn.s N1Lo

13, TEREAD (LX) : " Locates value of RDR on LN and evaluates
, CLEARDR for that value.
Returns’ LN.

1k, TERPRI. (IN). : Evaluates MOVEOUT .(IN)and reinitializes
- finite state machine PFSMS. Returns LN.

D P e T W E A B e ts A e] e

B L e el e

.LISP II I/D SYSTEM

SCHEMATIC DIAGRAM

FIGURE 1

CHARACTER

SOURCE
LANGUAGE

&
(as'ed 989T)
6

rmq..:a I PP T €T
'aa‘a‘« TP ETRD

|

LN - LOGICAL NAME of current unit
. rdr - current reader (RDR) may be set to:
) RDRC - read cheracters
RDRCS - read characters In a special way
RDRB - read binary
fsm - current finite state machine (FSM) may be set to:
FSMC - character token FSM
FSMS - source language token FSH
'FSMB - binary token FSM
SETFSM - Attaches & FSM to a RDR for s logical unit IXN.

