
A·2450 10/6,

The views, conclusions, or recommendations expressed in this document do not neces·
sarily reflect the official views or policies of agencies of the United States Government. i~o 2260/002/00

This document was produced by SOC in performance of contract __ S;;;;D;;.-... 9"-7.:.-____ _ AUTHOIS.L. Kameny ")) 1"':'--" -~. I
M. Levin /,"1 "io. ,,.!.-, I

2/19

for

a working paper D. L. Drukey

System Development Corporation / 2500 Colorado Ave. / Santa Monica, California DATE 2/19/65 PAGE 1 OF----14-PAGES

LISP II l'ROJgCrJ'

Memo No.IA

'rHE INTERNAL lANGUAGm

Abstract

This memo is Number lA of series of ivorking
memos descriMng LISP II development. It
replaces Memo 1 of the series and describes
the internal S-expression language of LISP II
to the extent to "'hich it is nOlo[known.
Certain features such as the Comit-ty'pe ru.le
are deliberately omitted because they are
covered elsewhere. Source language example s
are given in most cases. The syntax of this
memo is meant to be fairly complete, and is
quite trivial. The semantics are incomplete
and specify only ",hat is directly related to
the syntax.

19 February 1965 2 'lM-2260/002/00

GENERAL RULES

In internal language, any statement or expression is self-delineating in the
form of an S-expression. Consequently, any expression in IL has the same
format as a statement.* All primitive statements (those composed of a single
S-expression and not containing a statement inside of them) have values, and
may be used as expressions except for the statement (GO (loc») which has no
value.

In source language, an expression is not self-delineating, and must be enclosed
in brackets;

[(E) J or BEGIN(E)END

in order to be used as a statement.

1. Identifiers

Identifiers are composed of digits, letters, and @. The first character
must be a letter. One is not free to incorporate additional non-ASCII charac­
ters into identifiers. However, strings may contain any legal characters of
the hardware.

1.1 Reserved Words

It is important that the user does not have to worry about reserved iden­
tifiers any more than is absolutely necessary. In particular, the procedures
local to the compiler must be invisible to him unless he wishes to use them by
means of tailing symbols (see 1.2.).

Certain identifiers must be reserved because they are key syntactic words
in the source language (e.g., BEGIN and ELSE). This list is quite short. The
only other reserved words that the user need be concerned with are those that
name important system functions that the user will actually need. Those that
he doesn't need will be overridden by his own declarations.

The user is cautioned to stay away from all identifiers with @. These are
used in the internal language for purposes that are not explicit in the source
language (e.g., I@PLUS).

* However, any expression which is a p.rre function call is meaningless when
used as a statement. A statement must have side effects, hence corresponds
to a pseudo-function.

19 February 1965 3 'D!-2260/002/00

The user's instructions are:

1. learn the list of reserved words. (About 40 words)
2. Don't use identifiers with @.

1.2. Tailing Symbols

In the source language. these appear as a sequence of identifiers with $
between them, and no spaces, for example, XI$COMPlLER. The internal represen­
tation is (TAII@ XI COMPILER) 1-Thich is an S-expression. Every identifier
except the last must be the name of a procedure or function, or the label of a
block. The first identifier must have local significance. The rest of the
list is then interpreted at the locality of the first. This process is repeat­
ed down the list, until the last item is found.

2. Expressions

2.1. Constants

If a constant is non-atomic, or if it is an identifier, then it must be
quoted. If it is a string, number, or other type of atom, then it mayor may
not be quoted. The quoting is as in LISP 1.5.

2.2 Composition

Constants and variables are expressions. If fn is a procedure or a function,
and if the ei are expressions, then (fn e l ••• en) where n ~ 0 is an expression.

2.3. Conditional Expressions

If the Pi and the e are expressions, then (COND (p e) ••• (p e) is an
expression. Each p. mu~t properly be Boolean-valued. Thelbehaviornofnnon-

J. Boolean values will not be guaranteed. The value of the conditional expression
is the most general of the values of the ei • The most general type is SYMBOL.
The compiler will optimize by distributing transfer functions and cancelling
where two composed transfer functions are the inverse of each other.

Example:

Source Language:

BOOLEAN B,D: INTEGER A,C: REAL B:
A IF B THEN C ELSE IF D THEN E ELSE F:

19 February 1965 4 TM-2260/002/00

Internal Language:

(SET A (COND BCD E TRUE F»

2.4 The Assignment statement

The assignment statement may be used as an expression. Its value is the
value of its right half. In the source language, left arrow has lower :preced­
ence than the Boolean o:perators.

2.5' Subscri:pted Variables as Expressions

Source language: A[I,J]

Internal language: (FRCM A I J)

(FRCM A) less the value A

(FRCM A ei ••• en) has the same meaning as the source language

expression A[e .••• e 1
l. n

2.6 Bit Modified Expressions

Source language: BIT (A,I) or BIT (A,I,J)

Internal language: (BIT A I) or (BIT A I J)

The value of the expression (BIT A I) is an integer containing the Ith
bit of the value of expression A right justified in an otherwise zero word.

The value of the expression (BIT A I J) is an integer containing J bits
extracted from the value of expression A, starting at bit I, and right
justified in a word. I and J are treated as integers. The expression is
undefined if I ~ 0, or if J ~ 1 or if I+J> word size.

2.7 BYTE Modified Expressions

Source language: BYTE (A,I) or BYTE (A,I,J)

Internal language: (BYTE A,l) or (BYTE A I J)

19 February 1965 5 'DIl-226o/002/00

These have the same value as BIT(A, b*I, b*J) assuming the BYTE size
to be b, and similar remarks apply.

BYTE has meaning as a locative in the left side of an assignment statement
as well.

BYTE (A[I,J], K,L) etc. are all meaningful expressions if A can be sub­
scripted.

2.8 Locatives

(locative) ::= (subscripted variable) I (variable) I (BIT molified variable)

(BYTE modified variable)

(locatives) occur only at the left half of assignment statements. The
complete set of all locatives is:

Source language
n
n [Xl ••• XnJ

BIT (n, i, j)

BIT (n [xl'" XnJ, i, j)

BYTE (n, i, j)

BYTE (n rXl ••• xn], i. j)

Internal language
n

(n Xl ••• xn)

(BIT n i j)

(BIT (n xl". xn) i j)
(BYTE n i j)

(BYTE (n xl.'. Xn) i j)

in which only the most complicated form of the BIT and BYTE locatives have
been sho~. (The subscript i may be missing.)

Note that, by reason of its position in an assignment statement, a (locative)
which is a subscripted variable does not require any flag, other than the
fact that it is non-atomic, to tell that it is subcripted.

The BIT and BYTE forms are effectively (locatives) within (locatives).

Note that BIT and BYTE are reserved words and cannot be names of variables.

2.9 Designational Expression

(designational expression) ::= (label) I (subscripted label array)

A label array is also called a switch.

19 February 1965

3. statements

The types of statements are:

L
2.

conditional statement
go to statement
for statement
assignment statement

5. procedure statement
6. compound statement
7. block

6 TM-226oj002jOO

There is no reason why this list cannot be extended at some time. The
Comi t-type rule or equivalent will be included as a statement.

3.1 Labels

Source language: (label): (statement)

Internal language: (label) (statement)

Any statement may be labeled, to any depth. It is meaningless and illegal to
label an expression.

3.2 Compound Statements

Source language: ... 'S END
J n

or

[Sl; ••• i Sn]

Internal language: (PROG() Sl ••• Sn)

The value of a compound statement is the last statement executed, usually that
of the executed RETURN statement. Labels in a compound statement are global to
the context of the compound statement.

3.3 Blocks

Source language: • •• ; D ; Sl; ••• ; S END m n

or

(1
\ "

19 February 1965 7 fJN-226o/002/00

Internal language:

The context of a compound statement used as an expression is just that
expression. The context of a compoun d statement used as a statement is the
smallest block containing that statement.

It is possible to enter or leave a compound statement used as a statement,
but is meaningless to enter or leave an expression.

e.g., in (FN (PROG () A Sl S2 (RETURN e3» e4)

The expression S may include a meaningful (GO A). However, the label A
is completely unreacftable outside of the compound statement.

The only difference between a block and a compound statement is the
declaration list, which causes a pushdown brick to be assembled for this block.

Labels wi thin a block are local to the block. Exi t from a block is by
means of a RETURN statement or by means of an EXIT statement, never by means
of a GO statement.

3.4 Assignment statements

Source language: (locative) ~ (expression)

Internal language: (SET (locative) (expression))

The stored quantity must be of a suitable type for the variable it is being
stored into. Conversion functions will be invoked when necessary.

The left part of anassignment statement must be a (locative). (An actual
parameter to be transmitted by LOC must also be a locative expression.)
Simple variables and subscripted variables are locative expressions. Table
operations (as yet undefined) may contain some locative expressions.

Assignment statements may be used as expressions in other aSSignment
statements, for example:

Source language: Z ~ Y ~ X ~ ~.O

Internal language: (SET Z (SET Y (SET X 2.0»)

Note that in this case there is only one expression to be evaluated, and
this value is applied with proper conversions to each locative.

19 February 1965 8 'lM-226o/002/00

For a more complicated example, consider:

Source language: Z[I,J] ... Z~ I, lJ + (~... Z[I,J])

Internal language: (SET (z I J) (PillS (FRGf Z I 1) (SET X (FRCM Z I J»»

Although there is only one possible way to parse the source language state­
ment legally without parentheses in this case, the parentheses may be required
for clarity When a statement is used as an expression.

Formal transmission of a parameter used as a left part will require some
dynamics at run time.

3.5 Conditional Statements

There are two fonns of conditionals in IL, name ly the SELECT and COND
fonns. Each of these is similar to the corresponding fonns in LISP 1.5,
except that redundant parentheses have been removed. (Note that it is
possible to tell the LISP 1.5 form of COND or SELECT from the LISP II form,
so that both forms could be accepted as input language.)

COND fonn:

Source language:

Internal language:

SELECT form:

IF Pl THEN Sl ELSE IF •••

(COND Pl Sl {Pi Si}n)

Source language: SELECT (E ; El , Sl {;Ei' Si}n ; Sx)

Internal language: (SEIECT E. (El Sl {Ei Si} n) Sx)

In both the COND and SELECT fonns, all S can be expressions, and the result
is either a conditional expression or a conditional statement. If any of the
S. are not expressions then a conditional statement results.
~

In the SELECT statement, Sx may be missing from either fonnat, but the final
semicolon must appear in source language.

The unsatisfied conditional statement has no effect. The unsatisfied
conditional expression causes an error.

19 February 1965 9 'DIl-2260/002/00

3.6 Procedure statement

Semantically, this is an expression which gets evaluated and its value,
if any, is ignored. A procedure which does not have a value can only be used
in this way. '.

3.7 For statements

Source language:

, }n FOR (variable) ... ·(for list element) l' (for list element) DO (statement)

where (for list element) ::= (expression) (empty)

Internal language:

(FOR (locative) ({El

C MAPCAR \ MAP \ STEP \ RESET)

(expression») (empty) \ (WHILE' UNTIL)

(expreSSion»)

(empty)
MAPCAR
MAP
STEPl
RESETJ E

(statement)

This is a generalization of the ALGOL 60 For-statement, in that MAPCAR and
MAP have the interpretation FOR X an element of list L or FOR X is a sublist
of L.

Step is legal only if the (variable) and El and ~2 and ~~ are all
ari thmetic. ~ is any predicate. The forms wi tli RESET; MAPCAf{, and MAP are
valid for all variable types.

The value of a FOR statement is the exit value of' the FOR variable
(locative) .•

Note that the type of the FOR variable is a (locative) in the same types
permitted in assignment statements, and must be declared in a block heading
elsewhere.

Several variants of' the FOR statement as well as several ideas on
optimization are currently being considered. The key to recognition is the
statement beginning (FOR •••).

19 February 1965 10 1JM-2260/002/00

3.8 Go To Statements

Source language: GO A

GO A[I,J]

Internal language: (GO A)

(GO (A I J»
In source language, GO TO is equivalent to GO. The form (GO (A I J) is

used both to keep the syntax translation into internal language consi£tent
with the locative translation of A [I J], and to make the interpretation of
the GO statement easire.

The switch is a constant array of labels as in Algol 60.

4. Functions

A function is not an expression to be evaluated. The word function is
used here as in LISP. The Algol term (function designator) is confusing,
because it describes an expression, and should be ignQred.

A function may be an identifier both in the source language and in the
internal language, e.g., CAR.

4.1 Unnamed Functions Using LAMBDA

(LAMBDA «parameter list» (expression»

The elements of the parameter list may be atomic, in which case they are
variables bound as parameters. If they are non-atomic, they also carry
declarati ve information. For example:

(IAMBDA (X (R REAL» (expression»

says that R is of the REAL whereas X is of type symbol

If there are no parameters, one must still write (LAMBDA () ...

f~
I , , /

f~
;

I

19 February 1965 11 1M-226o/002/00

4.2 Named Functions Using FUNCTION

The word FUNCTION combines the meaning of LAMBDA with that of LABEL
in LISP 1.5.

(FUNCTION (name) «parameter list» (expression»

For example:

(FUNCTION FF (X) (COND {ATOM X) X TRUE (FF (CDR X»»

The name may specify a type for the value of the function, otherwise
this is assumed to be SYMBOL.

(FUNCTION (SQUARE REAL) «X REAL» (TIMES X X »

4.3 Array Allocation Function

Internal language:

creates an empty (zeroed) array of n dimensions and bounds dl ••• and presets
it to the array constant.

di can have as value either an integer or a dotted pair of integers

di = n is equivalent to di = (l.n)

d. = (m.n) is legal if and only if m n.
J.

The value of (ARRAY •.•) is the array itself.

19 February 1965 12 rrYJ.-226o/002/00

5. Declarations

5.1 Parameter Declaration

Declarative information on parameters may include type or array type,
and mode.

(type) :: = REAL \ INTEGER I BOOLEAN 1 OCTAL I SYMBOL I
(array type) ::= ARRAY I (type) ARRAY

(mode) ::= VALUE 1 LOC I FORMAL I FUNCTIONAL GLpBAL 1 OWN

Examples:

(A REAL)

(B BOOLEAN ARRAY»

(C INTEGER GLOBAL)

'P"I.rameters may not be OWN.

5.2 Functions with an Indefinite Number of Arguments

It is possible to define a function with an indefinite number of arguments.
There must be only one set of such arguments, all of the smae type, and
transmi tted by VA1lJE. There may be other arguments that come first. The formal
parameter list for such a function has as its last parameter something like
(AN). This causes transmission of an array A containing the indefinite argu­
ments and an integer N specifying the size of A. The calling sequence ignores
this fact.

Example:

(SUMSQUARE ABC D) is a call to a function that computes Ia2 •

Its definition is:

(j

(~'1
, /

19 February 1965 13

(FUNCTION (SUMSQUARE INTEGER) « A INDEF H))

(PROO (U V)

'J1IJ.-2260/002/00

(FOR V (1 STEP 1 UNTIL H) (SET V (PillS (SQUARE (FRCM AU)))))

(RETURN V)))

In source language, this appears as

INTEGER FUNCTION SUMSQUARE (A[H]); INTEGER U, V:

BEGIN FOR U.L.. 1 STEP UNTIL H DO V..:::::; V + SQUARE (A[UJ);

RETURN (V) END

5.3 Program Variable Declaration

Program variables are declared in a list following PROO which has the same
format as the list following IAMBDA. Program variables can not be LOC, FOIfofAL,
or FUNCTIONAL.

Program variables (but not parameters) may be initialized to some value
upon entry. This is indicated by an additional element on the declaration
list.

Examples:

(A REAL 3.4)

(B INTEGER (TJMES U V))

When there is no explicit initialization, program variables are set to
NIL, FAIBE, 0, 0.0 etc. according to type.

5.4 Macro Definition

(MACRO (name) «argument name») (expression))

MACRO creates a named macro, which is a fUnction of one argument, namely
the quoted S-expression whose CAR is equal to the name of the macro. The
value of the macro is the macro expression applied to the macro call.* (This
agrees substantially with Tim Hart's macro definition.)

19 February 1965

Example:

(FUNCTION EXPAND (L OP)

14
(last page)

(COND (NULL (CDDR L) (CADR L) TRUE

(LIST OP (CADR L) (CONS CAR L) (CDDR L»»)

(MACRO PLUS (J) (EXPAND J (QUOl'E PLUS2»)

(in which PLUS2 is a fUnction of two arguments)

TM-226o/002/00

would define PLUS as a macro which adds an indefinite number of arguments.
PLUS could also be defined as a FUNCTION of indefinite number of arguments
in LISP II.

6. ERSET

ERSET is a way of handling abnormal exits that cross declaration bounds.
The ERSET statement is

Source language: ERSET (locative) THEN (statement)

Internal language: (ERSET (locative) (statement)J

It is turned off by

Source language: ERREST

Internal language: (ERREST)

It may be used at successive levels.

Nothing happens until EXIT « £ » is called. When this is called,
:c is evaluated. Then the push down stack is unwound to the level of the
innermost ERSET. The locative in ERSET is set to the value of EXIT, and the
statement is then executed.

If EXIT is used without ERSET, it will unwind to the top interpretive
level -which is LISTEN ().

(')

	Kameny_Levin-LispII-InternalLang-TM22600001_a
	Kameny_Levin-LispII-InternalLang-TM22600001_b
	Kameny_Levin-LispII-InternalLang-TM22600002_a
	Kameny_Levin-LispII-InternalLang-TM22600002_b
	Kameny_Levin-LispII-InternalLang-TM22600003_a
	Kameny_Levin-LispII-InternalLang-TM22600003_b
	Kameny_Levin-LispII-InternalLang-TM22600004_a
	Kameny_Levin-LispII-InternalLang-TM22600004_b
	Kameny_Levin-LispII-InternalLang-TM22600005_a
	Kameny_Levin-LispII-InternalLang-TM22600005_b
	Kameny_Levin-LispII-InternalLang-TM22600006_a
	Kameny_Levin-LispII-InternalLang-TM22600006_b
	Kameny_Levin-LispII-InternalLang-TM22600007_a
	Kameny_Levin-LispII-InternalLang-TM22600007_b

