AT Memem 76 MAC Memo 219
February 18, 1965 LISP LY Project Memo 2

The COMIT Featuvre in LISP I7

baniel €. Bobrow

The COMIT Feature in LISP I

I. Purpose

The purpose of the COMIT feature is to facilitate certain types of list
manipulations in LISP ITI. This feature is a syntsctic convenience, rather
than an extension of the semantics of LISP. It permits the programmer to
test directly whether a piece of list structure matches a certain pattern, ard
if soyto construct another structure utilizing subsegments of the original

structure which matched parts of the given pattern.

1. The Match and Construct Interpreters

The COMIT feature can be implemented by programming two interpretive
functions in LISP,

match [pattern; workspace]

and construct [format; arrayl

The match interpreter has two arguments, a pattern of the type described
below, and a workspace which is the list which is to be matched against the
pattern. If the match fails, the value of the function is NIL. If it
succeeds, the value is a symbolic array which gives the seg .entation of the
workspace which allowed a match,

The construct interpreter uses a format, to be described below, and an
array which is an output of & successful match. It constructs a new structure

according to this format.

SIX. Patterns
A pattern is & list of elemeniary patterns. o the gource langusge, a

dpatterny iz of the following form

(<epy <epy ... Lepy)
where each <ep% is an elementary pattern, as described beluw. A spuce
delimite cach <ep?» . In internsl language it appears as

(PATTERN <epd® <Lepy® ... epd®)
where we have used the * to indicate the transformation of esch elementary
pattern to its interral represemtation. In general # will be used to
indicate the transformation to internsl lamguage as defined Ffor all of LISP
Ii. A pattern matches a list if each elementary pattern mstches 2 segwent
of this list, and the matched segmeats, in order, coastitute the entipe list.

The following are the elementary patterns:

1) Source Language: $
Internal Language: (DOL}
This will match any segment of the workspace, lpcluding & null
segment, if the rest of the pattern matches the remainder of the workepaee.

The smallest possible segment which allows the mateh i3 found. The oue
exception to this rule is that § as a lest element of a pattern will watch

the remainder of the workspsce.

2) Source Languages § <integery ©.8. 81, $2, coeoys G0yen.
Interpal Language: (DOLN <integecy®) (BOLW 1), (DOIN 2), ...

For any integer u, Sn matches n consecutive elements of the workspace.

m3»‘n

3) Source Language: *<a~exp> e,g»b 'BO¥, (A B), ‘4, THR ‘I ARIE
Internal Language: (QUOTE <s~exp?)

4 quoted s-expression matches an identical element in the workspace.

4) Source Language: <variable? e.g. A, ALPHA[4]
‘Internal Language: <variable™ % '
A variable matches an item in the workspace which is equal to the

value of the varisble.

5) Source Language: ¢pattern?
Internal Language: <{pattern”®
A pattern matches an item in the workspace which is a list, and
which matches the pattern in the sense defined heve. If a match is found
the arrey for this match is placed in the appropriate position of the arrvay

for the total match.

6) Source Language: $/ <pred-atom>
Internal Language: (DOLP < pred-atom> %)
Matches anything that $ matches, with the additional condition

timt the segment found must also satisfy the predicate of ome variable

named by the atom ¢pred-atomy .

7} Source Language: $/(< pred>)
Internal Language: (DOLP < pred>#)
Exactly the same as above except that ¢pred”? is any non-atomic

predicate of one variable.

e

8) Source Language: $n/ <pred-atom Por~ $n/(<pred)}
Iﬁt;emle Language: (DOLVP u <pred-atomd *) or (DOLNP n wepred s v}
As shove, but matches a segment of n items which satisfies the
predicate of ore variable named Lpred-atomZ? or «pred? .

daratmar K2 %

|
9) Source Language: n or nmp e.g. 4 or 1$2%4 miehffﬂ‘ <indeqer’y

‘(Qn“(’j\”"":f $’ ': a € """\:J“‘{‘:"
Internzl Language: (ARMARK n¥) (ARMARK o wk p¥)
Ap integer n refers to the contents of the nth element of the
array for this match. It matches an item in the workspace identical to
this element in the array. 1$2 would refer to the second item in the array

stored at the first array position. This type of epy is called an arcay

mark or <ar-marky.

10) Source Languages §/7/(< n-predy <’p~arg':2’m1)
Internsl Language: (DOLF Sn-pred> # <Lp-argH W '1)

Matches anything matched by $ with the additional eondition that the
segment matched satisfies the predicate of nﬂ-arguments named by <n-pred? . The
first argument of {n-pred is implicitly the list matched by the $. The
othc«m n-l arguments are all <p-argh's. A4 (p-nrg‘zv can be an <armark? , a
Sariable? or a '{s~exp® . They reference previocusly matched items,

yariables and constanis.

11} Source Langusges $n//{ €n-pred? ’(p»axg}n-l)
fnternal Language: (DOLNF n% <n-pred? <p-azg? f«’en“l)

Same ae above but matches a segment of n consecutive items in the

workspace. Similarly, we will allow:

12) Source Language: variable //(¢n-pred>? (p-arg?nml)

Internal Language: (VARF Lvarigble2>® < n-pred?® * <p~argh *nml)

13) Source Language: ammark>//(¢n-pred> ' <p-ar @‘ml)
Internal Language: (ARF Larmark>¥ Ha-pred¥» % Lp-arg ye:@n“l)

14) Source Language: $$/ L c~fen>
Internal Language: (DOLL <c=fcnj»w)

This is an escape mechanism to allow the user to construct his cwn
matching function. The Le-feny is a function of &4 arguments, A, N, W and
FN. At run time this function will be given an array A, a number M which
represents the position of the <epd , $8, in the pattern, a list W which
is the workspace that the < =fen® should try to match, and a functional
argument FN which should be used to match the rest of the workspace beyond
the point matched by the <e-fery . If FN succeeds, and <¢~foly matches,
e(cwfcx? should insert the segment it matches into the array at position M
and return the array. If not {e~fcnm? should return NIL.

Assignment to variables of matching segments of the workspace can
be done automatically within a pattern for <ep»'s $, $1, and $$ in all
their forms. This is done by preceding the fep> by the variable, with no

space between the variable and the following $. In internal lapgusge this is

represented by
(SEY (variable™»® mark) %)

Q
viierecnark>is the form of §, $1, or $$ following the variable name.

I¥. Formats

4 format ié a list of elementary formats <ef> . fn source language

it appeara as

(CefD <ef> <efy)
where successive Cef) 's are separated by spaces. In internal language
it appears as

(FoRAAT <Lef2® LefP® ... Lef>w)
The list denoted by each {ef) is concatenated into the list denoted by the
format. If the <ef) demotes an atom, then this atom is cons=ed into the

list. The elemeutary formats are:

1) Source Language: ' Lg~exp e.g. 'A '(AB)
Internal Language: (QUOTE <s-expy)
The quotedy-(s-exp? is concatenated or cons-ed in as described above.

This implies that ‘A and *(A) will be treated identically.

2) Source Lasnguage: <Lvariable”
Internal Language: <variable’»®

The value of the vavriable is inserted in the reconstructed list.

3) Source Language: <amwark e.g. 3, 4§82
Internal Language: <ammark) % e.g. (ARMARK 3) (ARMARK 4 2)

The element of the array at the position given by the Larmarkd is
ingerted into the reconstructed list. If the Lasmark® specifies a position
in which there is an array. the elements of this array are concatenated, and

this new list inserted in the reconstruction.

4y Source Language: < format®
internal Language: <format)y #
A <{formatY can be inserted as an def) within a €formaty . The
result of reconstructing with this inner {format’ and the original array
is cong-ed into the higher level list, thus allowing construction of

arbitrarily complex list structures.

&) Source Laaguage: fo({p~arg> ... Lp-arg®)
Internal Language: (FORM fo* <peaxg?» * Lp~argy %)
This {efP allows the insertion into the reconstruction ¢® a list
which is an arbitrary function of the matched subsegments, and other variables,

and constants.

V. A Translator Fox Match and Construct

Supposge we are given any function of two variables £ [ujv] for which
we fix a value u for u. It is now effectively a function of one variable. We
can define a function £ [v] which utilizes this comstant in its definition.
When £ [d;v] ‘and' £& [v] are called, the latter will run more efficiently.

Both match and gonstruct are functions of the type discussed above.

The pettern for match, and the format for construct are cftem known at

compile time. In LISP II we will compile calls to match and construct

which have constant patterns and formats, respectively, by first translating
them into LISP functions of ome variable. I have written a prelimimary

version of this translator for_match.

Yi- The COMIT Statemwnt

The COMIT statement in LISP II will provide a convenient way to call
match and construct implicitly. In source langwmge, the form of the most
general COMIT statement will be:
COMIT W, Ug~pattern™> , A < <formatd,....,Da=<Lformaly 5() RIRACPY
In internal language this would be represented as

(COMIT W, ((U <pattern»®) (A <format? #),..(D <format?®)) A 1 ‘sz;

W is a locative expression for a list which will be the workspace
for the pattern match. U is an arrxay name which will be assigned the value
of the match 1f it succeeds. An implicit call is made to match with the
pattern and W as arguments. A, B, ...D are locative expressions which are
assigned values according to their respective formats if the match is
successful. If the match is successful, after assignments to A, ...,D
control goes to the statement labeled al (indicated by 3691)). iIf the match
fails, a transfer is made to 92 (indicated by F(1,)).

ﬁény elements of this statement are optional. If "U4" is omitted,
a local array is created but not pamed. If "Ae" (the first locative
expression witg a format) is omitted, it is assumed to be W. Ho other formats
need appeax. S(ﬂlj ard /or F(ﬂz) may be omitted; transfer will be made to
the next ﬁtatementnfor an omitted condition label. If either S(QI) or F(ﬁz)

are missing, they asppear in internal language as NIL.

