
A I Me. "
February 18, 1965

M,AC Memo 219

LISP 11 P:t:'oject l'1emo 2

Daniel G. Bobrow

, .

lhe CgMlT Featur~_iB.LlSP 11

I. Putpose

The purpose of the COMrr feature is to facilitate certain types of list

manipulations in LISP II. This feature is a syntactic convenience, rather

than an extension of the semantics of LISP. It pe~its the programmer to

test directly whether a piece of list stz,oucture matches a cerf:,ain pattern, an.d

if so~to construct another structure utilizing Qubsegments of the origillal

structure which matched parts of the given pattern~

II. The Hatch and Construct Interpreters

The COMlr feature can be implemented by programming two interpretive

functions in LISP.

match [pattern; workspace]

and construct [format; array 1

The match interpreter has two arguments, a pattern of the type described

below, and a workspace which is the list which 10 to be matched against the

pattern. If the match fails J the value of the function is NIL. If it

succeeds J the value is a symbolic array which gives (the segx,~entation of the

workspace which allowed a match.

'file PODStruct interpreter uses a format, to be described below J and an

array which is an output of a successful matchd It constructs a new structure

according to this format.

m. Patte':ll!,

A p~tteru is a li.st of elemeo.tary pat.terns. Ix} the source languiltge: ~1

.q,attern} is o:f the follow.f.ng fOrl'll

«ep') <ep) • .. ('ep')

where each <ep') is an elementary pattern~ as described below0 A spilce

delimit.1i; each <ep> ~ In intenwl language :Lt appears as

(pA'n'ERN -<e1'">* <ep),*. •• ..(ep')*)

where we have used the <§II to indicate tbe transformation of each ele!14erl.t~ry

patt&m to its internal representat1.on. In gener9.l * will be. u.ue.d to

indicate the transformation to internal iangwlge .as defined for aU of t.'lrSp

II. A pattern matches a list if each element~ry pattern ~t~hes ~ segment

of this H,st t and the matched segments, in order, consti,tute th~ ent.ire :li:rH, Q

!he .following are the elementary patternsg

1) Source Language ~ $

Internal Language ~ (001.)

'this ,;gill match any segment of the workspace, including, a null

segment, if the rest of th.e patt.ern matches the remainder of the. 'l:vo:dt$pac,(! 0

The smallest possible segment which allows the matc.h is found" "tn~ O:O.~

exception to this rule is that $ as a last element o.f a pattern wU.!, l,natch

the remainder of the workspace e

2) Source Lallguage~

Internal Languageg

$ <integer). e.g.

(DOLI ~integer>*)

$1, $2, $ ••• , $n, •••

(DOLN 1») (DOtN 2), "".

For any integer '0., $n matches n consecutive elements of the 'too't'kspl&ce.

0,

3) Source Langu8ge~

Internal Language ~ (QUOTE <s"exp'»

A quoted s-expression matcbes an identical element in the work6p~ce"

4) Source Language: <variable" e.g. At ALPBA[4]

Internal Language: <Villl'table'> 'it •

A variable matches an item in the workspace which is equal to the

value of the variable.

5) Source tanguagez (pattern ")

Internal Language: (pattern ') "'"

A pattem matches an item in the workspace \'1hich is a list, and

which matches the pattern in the sense defined here. If a match is found

the array for this match is placed in the appropriate position of the array

for the total matcho

6) Source Language: $1 <.pred-atom')­

Internal Language: (DOLl <pred-atom' *)

Matches anythiq that $ matches. with the additional condition

that the segment found must also satisfy the predicate of one variab'p.

named by the atom <pred-atom) •

7) Source Languageg ISI(<pred»

Internal Language ~ (DOLP < pred">*)

Exactly the same as above except that (pred') is any non-atomic

predicate of one variable.

"
"4-

8) Source Language:

As .above, but matches a segment of n items which satisfies the

predicate of one variable name'.! < pl'ed-atom') or <pred"'Jtt.

9) Source Language:

Internal Language:

An integer n refers to the contents of the nth element of the

array £01' this Illatch. It mat.chea an item in tlle workspace ideritical to

this element in the array. 1$2 would refer to the second item in the l:ill"rsy

stored at the first array podtion. T.his type of<::'ep') is called an arr~ly

mark or Qr-lfl8rk).

10) Source Language:
D.-l

$/I(<c-pred') <p"arg"))

Intemal Language: (DOLf

Matches anything matched by $ with the additional condition, that the

se~nt matched satisfies the predicate of n-arguments named by ~n-pre~. The

first argUlllent of <n .. pred,) is impliCitly the list matched by the .$. The

otber u-I arguments are all <p-arg')' s. A <p"srg") can be au <a:rmark) , a

(variable') or .a • <S-exp>. They reference previously matched item.s ,

variables and constants.

11) Source Language: $'0.// (<n"p1:ed >' n-l (p-arg">)

Internal Language: (OOmF n*

Same ss above but matches a segment of n consecutive items in the

-5"

workspace. Similarly, we will allow:

12) Source Language:

Internal Languase: (VAU <variable> '"

13) Source Language:

Intemal Lanpage: (AU'

14) S011rce Language: $$/<c-fcn)

Internal Laquage: (DOLL <c-fcn>*)

This is an escape mechanism tq allow the user to construct his own

matching function. The .6:-fcn) is a function of 4 arguments t A, N. W and

IN. At run time this function will be given au array A, a number N which

represents the position of the <ep) I $$, in the pattern, a list W which

is the workspace that the ~-fcn~ should try to match, and a functional

argument JR which should be used to match the rest of the workspace beyond

the point matched by the 04:-fcn')o. If n succeeds, and 4:"'fc~ matches t

<'c-fc~ should insert the se&ment it matches into the array at pOSition N

and return the array. If not 4"'£cn'> should retum NIL.

Assignment to variables of matching segments of the workspace can

be done automatically within a pattern for 4:tp)t s $, $1, and $$ in all

their forms. This is done by preceding the <e#J' by the variable J with no

space between the variable and the following $. In internal language this is

represented by

(SET (variable') *' ('mark). '.\";:)
!l.

witere<marJois tIDe form of $. $1, or $$ follotdD8 tile variable nruue.

lll. Pomats

A format is a list of elementary formats ~ef>. In source language

it appears as

«ef> <af> •••• <af))

where successive ("ef) I s are separated by spaces. In internal Itu:aguage

it appears as

(FORMAT < ef) * <ef')~ •••• (af>"')

The list denoted by each (eO is concatenated into, the lict denoted by the

format. If the <sf) denotes an atom, then this atom is cons-ad into the

list. The elemeutary formats are:

1) Source Language: e.g. 'A 'eA B)

Internal Language: (Q11(1rI < s-exp--')

The quoted <s-exp~ is concatenated or cons-ed in as described abovec

This implies that 'A and 'CA) will be treated identically.

~) Source Language: <variable~

Intemal Language: <variable")'"

The value of the variable is inserted in the reconstruc,ted list •

3) Source Language: .(aumark') e.g. 3, 4$2

Internal Language: <amark') * e.g. (AIOfABlt 3) (ARHAIcK 4 2)

The element of the array at the position given by the <aAlllrk.) is

inserted into the reconstructed list. If the ~a~mark> specifies a posit:i.o'O.

in which there is an array, the elements of this array are conc:atenated# and

this new list inserted in the reconstruction.

4) Source Language: <format~

Internal Language g (format) ill

A <format} can be inserted as an (et> within a <lormat'>. The

result of reconstructing with this inner (format') and the original array

is cous .. ed into the higher level list, thus allowing construction of

arbitrarily complex list structures.

A1 Source Language: fIl((p"arg') ••• .(p"'arg'»

Internal Language: (rOlK fU* <p-arg'> '* .••• ,£p-ar~ *)

This (if' allows the insertion into the reconstruction. a list

which is an arbitrary function of the matched subsegmenta, and other variables II

and constants ..

~. A Iptuslator lor Hatch and gqnstruc.t

Suppose we are given any function of two variables f [u;vl for which

we fix a value u for u. It is now effectively a fuuction of ona variable. We

can define a function ~ [v] Which utilizes this constant in its definition8

Whan f [il;v] ,and f* [v1 are callecl, the latter will run more efficiently_

Both ,~ and ponst~ct are functions of the type discussed above.

The patt.em f01' !!!J:£h, and the fO'r.mat for .s..ce.nstru~~ are often known at

compile time. In LISP II we will compile calls to match and construct --
Which have constant patterns and formats, respectively, by first translating

them into LISP functions of one variable. I have written a preliminary

version of this translator for match.

no' The CCMlT State~J!S.

The COMIT statement in LISP II will provide a conveniellt way to call

match and const~~ implicitly_ In source language. the form of the most

general COMlT statement will be:

COMlT w, U+<pattern'> ,A4iP-('format) ••••• ,D <£ormaf.)' SOl)')'10)2)

In internal language this would be represented as

(COMl1' W t «U <pattern"> *) (A <format).) CD <fondt?~~» 11 , 'fl 2)

W is a locative expression for 8 list which will be the workspace

for the pattern match. U i8 an arxay name Which will be assigned the value

of the match if it aucceeda. An implicit call ia made to match w~th the

pattern and W as arguments. At B, ••• D are locative expressions which are

assigned values according· to their respective formats if the match is

successful. If the match is successful, after assignments to A, ••• ,D

control goes to the statement labeled' 1 (indicated by S(C(l». If the match

fa:l.1s J a transfer 1s made to i 2 (indicated by F(t2».

Hany elements of this statement are optional. If .'U i8 omitted,

a local arraJ" is created but not named., If flA .. " (the first iocative

expression with a forma~ is omitted, it is assumed to be W. ' No other formats

need appear. stG I) aDd/or F(R2) may be omitted; transfer will be made to

the next statement ,for an omitted condition label. If either sell> or P(~2)

are missing, they appear in internal language as NIL.

