
(

(.

.'

TM·5455/000/00
(DRAFT)

CRISP: A PROGRAMMING
LANGUAGE AND SYSTEM

31 DECEMBER 1974

J. A. BARNETT
D. L. PINTAR

THIS REPORT WAS PROOUCED BY SDC IN PERFORMANCE OF CONTRACT
DAHC15-73-C-0080, ARPA ORDER NO . 2254, PROGRAM CODE NUMBER
5030.

THIS DOCUMENT HAS NOT BEEN CLEARED FOR OPEN PUBLICATION.

S ystem Development Corporation
2500 Colorado Avenue • Santa Moniea, California 90406

TABLE OP COMTEITS

In t rod uc tion 9

Lanquaqe Description 11

SYntax Specification LanquaQe •••••••••••••••••• 13

External Data For.ata •••••••••••••••••••••••••• 16
Cbaracter and fokeD Syntax ••••••••••••••••••• 16

Exa.ples of Tokens ••••••••••••••••••••••••• 21
structure SYntax ••••••••••••••••••••••••••••• 21

Ex.aples of Structures ••••••••••••••••••••• 23

Scopinq and
structure
constants

. Denotation Bules
of the Rules

~inds of Ob1ects •••••••••••••••••••••••••••••
Local and Global .a.ea ,.,
The Default Tailinq ftachanis •••••••••••••••••
Lexical Hesting
ScopinCJ Rules ••••••••••••••••••••••••••••••••
DYnaaic Context
DenotatioR Bules

••••••••••••••••••••••••••••••
coapile ~i.e substitutions •••••••••••••••••••
ova Variables ••••••••••••••••••••••••••••••••

Declarations. Definitions. and types •••••••••••
TypeS ••

Identifier tyP •• •••••••••••••••••••••••••••
8 •• 8 types •••••••••••••••••••••••••••••••••
Doolean type •••••••••••••••••••••••••••••••
Handle type .
Mu.ber types •••••••••••••••••••••••••••••••
loden types ••••••••••••••••••••••••••••••••
Array tyP ••••••••••••••••••••••••••••••••••
Btuple type ••••••••••••••••••••••••••••••••
General type •••••••••••••••••••••••••••••••
Type predieat ••••••••••••••••••••••••••••••
Data ob1ect for •• ta
Type 4eterainatioD

•••••••• et •••••••••••••••

•
The Declare Pora

Iapliei t typiaQ
•••••••••••••••••••••••••••••
••••••••••••••••••••••••••••

Syntax of declare. aDd typ •••••••••••••••••
Declaration exe.ples •••••••••••••••••••••••
SYDoDya declaretions •••••••••••••••••••••••
Like aeclaratio.s ••••••••••••••••••••••••••
P~nctioD and processor daca ••••••••••••••••

•••••••••••••••••••••••••••••••••• Type refs
Arra, types ••••••••••••••••••••••••••••••••
"tuple declarations ••••••••••••••••••••••••
Declarations and Bed.claratioDS ••••••••••••

Itea leferencinq and Subscripts ••••••••••••••
Definitions

lrcr list
•••••••••••••••••••••••••••••••••• ...•..•...............•............

12/31/74

25
25
26
27
28
29
30
32
36
40
41
44

45
46
48
50
51
51
51
52
53
53
53
54
54
56
59
59
61
65
67
67
68
69
71
74
84
88
97
98

1

2 CRISP

•••••••••••••••••••••••••••••• · tu act i011 4. fs
Processor defs
Macro dets
Transfor. defs
Genera tor defe

. ·
• • • 4 .. • • • • • .. • • • .. • • • • • • • .. !xpresaioD 'l,piaC)

Pri.i ti ye tora.
lritha.tic for ••
Assignaent typinq
Multi-terainal foras

.
••••••••••••••••••••••••••• ,.•..

type Converaion
Blocks .•.......................................

"ulti-fora blocks -......................... ..
Do blocks .••.••..............................••.................•..... BindiDQ blocks
State.ents and labels .

Data Priaitiv •• an4 Presets ••••• If ••••••••••••••

Data Priait!v ••
I4entlfier and character priaitiv8S ••••••••
lode·priaitive.
la .. priait!v ••

....................... ,. •...........................
Ju.eric priaitlves •••••••••••••••••••••••••
Boolean priaitives
Handle PLiaitives

......................
Arra, and ntaple priaitives ••••••••••••••.•

Pre.eta •

ExpressioDS SL 1nfil Expressions
Locatives and Ae81qnaents •

Byte
Core
Cheat

........................ '" ·
••••••••••••••••••••••••••••••• Function Calls

Special Operands •
• 'It ••••••• Drive

lot ••
lritbaetic prefix operands
ClP and IL foras

Order of Evaluation .
Condit 1olla15 •••••••••••••••••••••••••••••••••••

IP •••
S!LBCTQ • SELECT and

SELICTJ
S!L!CfT

••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••

Por Loop •••••••••••••••••••••••••••••••••••••••
Loop teraination •••••••••••••••••••••••••••••

• GeDerator Descriptions
G~D.r.tors ProducinQ Values ~

lND
ILL
OR

. ••......... ~~ .•....•... -..•...•..•.•.•.•
••• •................ _• '1' PIRST

RoUqh Draft

101
102
102
103
103
104
104
104
105
105
101

109
111
112
112
115

119
119
119
122
123
125
125
'25
126
127

130
132
135
136
136
137
138
140
'40
141

'4'
142
142

,,.4
146
148
150
151

153
155
155
157
151
157
157
157
158

')
j

(

/

\

!able of Contents

VALUE ·
•••••••••••••••••••••••••••••••••••• S0" ••

PRODOCT
0111011
lITES
DAPPENO
D1PP.!J08
APPEID
APP.IOB
llITI1LLY
1IIALLY
COU.T
LIS~
LIS!B

.................................... .••....•...............•.............• ·
••••••••••••••••••••••••••••••••••••

•
........•..•........................
•••••••••••••••••••••••••••••••••••• ••......•.............................

••••••••••••••••••••••••••••••••••••••
Ordinary Generators · .

IS · .
••• DO

BIGIN
roa

·
••

III · · 01
BISST
Stepper

·
cond 1 t10na 1& -- 1811

U.LaSs
'HIL!
U'TIt
IP
BIID

.
•••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••
••..................... ~ •...••...•...•.•....•.............

For Loop
Por Loop

•••••••••••••••••••••••••••• Exaaplea
Synta.x .

PrOC.8sors and Proc •••• s •
Processes

ActiYity
Interaal
External

Processors

•
state
state
state

•• • · · .
•••••••••••••••••••••••••••••••••••

ProcessinQ Pri.it!y •• .
rail.et fora. •••••••••••••••••••••••••••••• Process copy prialti •••
Ixternal state pri.itives • • • • • • • • • • • • • • • • • •
lctiYity chanqers •

Exa.ple ProQr •••

•••••••••••••••••••••••••••••• The elP lsseabler
Instruction Foraats
Operand For.at.

• • • ••..........•.
••••••••••••••••••••••••••••••

Reqister and rid operand •••••••••••••••••••
a.sk operand •••••••••••••••••••••••••••••••
tt.aeric operand
Add ress operand

•••••••••••••••••••••••••••• .
••••••••••••••••••••••••••••••••••••••• la ••

Labelop
SysOp
Literal
Stackop

••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••
12/31/14

158
158
158
159
159
159
159
160
160
160
160
161
161
161
162
162
162
162
163
163
163
164

'''4 165
165
165
165
165
166
166
168
171

113
114
175
115
117
178
119
182
185
185
185
188

192
194
195
195
196
196
196
191
191
198
198
200

3

4 CiUSP SDC Tft-5455/000/00

A4r ...
Lad£ and iaplenqth •••••••••••••••
Expr ••••••••••••••• t ••••••••••••••••••••

Pseaao Inst£uctioDS •••••••••••••••• ·
ClP blocks · .
Branchinq pseudo instructions ••••• · ..
Stack pseudo instructions · .. ,. Callers
5vnon,a8
SIS pseudo
Tit pseudo
Space test

· . ·
instruction
instruction

. · . ·
CAP "acros · ..

systea De&cr ipt ion
How to Loqin and Get started (not included)

The I/O l'acility . ·
'the rile Deseri ptor List .

Pile identification ••••••••••••••
pile Qsaqe inforaation••.............

lile Handlinq Pr1aitives •••••••••••• ·
OPER · ', · .. .,.•............•......... • •• CLOSE
TURNaROUND
BXTIID
COIGE
POSITIOR
SEEI

· · . .,, .. .,
•••••••••••••••••••••••••••••••••••••,, ·,, • ••••

BRASB
BEMA!!!

• •••••••••••••••••••••••••••• 41 ••••••••

• ••••••••••••••••••••••••••••••••••••
Binary I/O Pria1tlYes

WRITE
IRITEX
BRIAD
SR!ADX

• •••••••••••••••••••••••••••••••••••••
• ••••••••••••••••••••••••••••••••••••

• ••••• 4 4 •••••••••••

••••••••••••••••••••••••••••••
Sy.bolie I/O Prlaiti.es ••••••••••••••••••.........•....... RE1DCH

B!'!ADCHX
BACICCH
BEADTOl
R !AlrrOKIJ
B1CKTOK
READI.T
RBlD1LT
BI1D
CHUIeR
&11DSL
TABIlItO

. · " • ••••••
•••••••••••••••••••••••••••••• · . · .

••••••••••••••••••••••••••••••••••• ·,
•••••••••••••••••••••••••••••••••••• · · ~ .

•••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••

TIBIIBY ••••••••••••••••••••••••••••••••• · IIDt1I!llf
MIITLI. ElM
. PIUITCH
PRIITCRX
PRIIIT

• ••••••••••••••••••••••••••••• tit ••••••.... ·
PRIR •••••••••••••••••••••••••••••••••••••••

Rooqh Draft

202
202
203
204
204
206
201
207
208
209
209
210
211

213

214
215
215
211
223
223
224
225
225
225
225
226
226
226
226
226
221
227
227
228
229
229
229
230
230
230
231
231
231
232
232
232
233
233
233
234
234
234
234

... '" ,

/
i
\

;r-
(

'lable of ConteDts

•••••••••••••••••••••••••••••••••••••• BLAIK
BL1N~S
BL1JKTO
1110UTTO
TleOUTBY
!1»L11100T
TOfP1GE
BL1I'P1GB
1I01DV1ICE
FOaaCO!lTaOL
PBIITLIST
PIUMLIST
PII ITI !lDIP
paINllDSP
PIlITI liT
PBIMIIT
PIIITFLT
PIUlfFLT

• ••••••••••••••••••••••••••••••••••••
• ••••••••••••••••••••••••••••••••••• ~ ••.........•...............•.• ·
••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••...•..........•...........
•••••••••••••••••••••••••••••••••• ·
..••...•.•...•....•........•.•...

••••••••••••••••••••••••••••••••••
• · • ••••••
• ••••••••••••••••••••••••••••••••••

• •••••••••••••••••••••••••• ·
PRI 11TH El
PRIIB!X
PBIJlTGBI
Pill'GEI

••••••••••••••••••••••••••••••••••• ·,
.,,

••••••••••••••••••••••••••• ·, .
Systea Priaitivea •

,. IIIIR .•......•.................... · · " 10"
BCIIS
C1LLCKS
C1LLCP
SUBSET
IlltA!!!
SlV!
SUSPEND

·
•••••••••••••••••••••••••••••••...•.•..........•...............

••...••.........•..............
• ••••••••••••••••••••••••• · ·
••••••••••••••••••••••••••••••••••••

General pri.it1ves .
Bit Loqical ••••••••••••••••••••••••••••••••••

IN'
B1ND
008
BXOB

· . · ·
••••••••••••••••••••••••••••••••••••••• ·
•••••••••••••••••••••••••••••••••••••••

Arithaetic
PLUS
!!IlCUS
DIll!!

• •••••••••••••••••••••••••••••••••••
•

T IIlES
IBCIP

•
•••••••••••••••••••••••••••••••••••

OUO • • • • • • • • • • • • • • • 4 ••............................ 1000
IJlJIUIIDBR
BNTII8
BOORD

. • ••••••
••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••••
"IX ·
IHR ••
SIGH ••••••••••••••••••••••••••••••••••••••• Triqono.etric

Boolean Loqicals •••••••••••••••••••••••••••••
lOT
'In
lA ID

.. · ... ·

234
234
235
235
235
235
235
236
236
236
236
236
236
231
237
231
237
231
231
231
238
238
236
238
239
239
239
239
239
239
239
240

2 .. 1
241
241
241
242
242
242
242
242
243
243
243
243
243
243
244
244
244
244
245
245
246
246
246
246

5

6

01 •••
lOB ••

C9ISP

· ·
• ••••••••••••••••••••••••••••••••••••• 1 "PLY

I!PLIID ·
aela tiona 1s

GR.GO.LS,LQ ••••••••••••••••
EO · ••••• · · .. 10
IQO&1.
"EQUaL

· ·
111.ea810ns ...•..•...•.......................•

IUftDI! ••••••••••••••••
SIZIDI! •••••••••••••••

. ·
lRL. ·

LIst PriaitiYe& ••.....•...•...•.....
IITIR
OIICI

· ·
••••••• ·

••••• · 11
fllftBIR
ON
IPPllID
D1PP!IID
PIID
FINDJ
DGST
DGBTJ
BEY IRSE
OBEYERS!
LIST
LEIIGTft
tlT8

· ••.........•...............•.... · ...

lOll
10Fl
LAST

••••••••••••••••••••••••••••••••••••• · · · ..
•••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••• ·

• ••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••• ·
•• · · .. ·

Delete fUDctions •••••••••••••••• ·
SUBST
SU BSTN

......•..•..••.....•..................
•••••••••••••••••••••••••• · · " ea ppers

Copiers
COpy
COPY.ODB
MOVI
110'! lE If

·
••••••••••••••••••••••••••••••••••••••• ~•.•.....••...•..•..•...•.........•....

••••••••••••••••••••••••••••••••••••
!Yals •••...••....................... IVlL

IVILO
APPLY
'PPLYO
COflPIL£
COMPILEX

•••••••••••••••••••••••••••••••••••••• · "
••••••••••••••••••••••••••••••

• •••••••••••••••••••••••••• ·
•••••••••••••••••••••••••••••••••••

Traces •••••••••••••••••••••••••••••••••••••••

Tr •• structured filea and the
QUI • .. fliTCH
tI5TIllG
CORBII!
VISITTS!!

..•.....••.....••.....•..........•.... ·, ·, .
Rouqh Draft

246
247
247
247
247
247
248
248
248
248
249
249
249
249
249
249
250
250
250
250
250
250
251
251
251
251
251
252
252
252
252
252
253
253
253
253
254
254
255
255
255
255
256
256
251
251
251
258
258
258
258

259
262
263
263
264
264

I
i

\

Table of contents

· ,. !lAK!TREE
GITTR!!

Interactive supervisor (not included)

MeaOry ftanaqe •• nt Facility •••••••••••••••••••••
Coxe Baps ••••••••••••••••••••••••••••••••••••
Garbaq~ collection •••••••••••••••••••••••••••

Tbe .arkinq pbase ••••••••••••••••••••••••••
The pruning phase •••••••••••••••••••••••••• Tbe planninq phas~
The update phase
Tbe moving phase •••••••••••••••••••••••••••
The f i xi nq ph ase ,. ...

......•...•......•............•• Space lor.a ts
Hode1 ••• Node8
Identifier •••••••••••••••••••••••••••••••••
Cbaracter ••••••••••••••••••••••••••••••••••
Inteqer •••••••••••••••••••••••••••••••••••• 'loat
Co.ple x
Array
Jtuple

....................................
••••••••••••••••••••••••••••••••••••••

• ••••••••••••••••••••••••••••••••••••
lIaaea and Na.eb
Binary proQ[a •••••••••••••••••••••••••••••• · Handle
Pointer stack
lIuaber stack
Process heap

•••••••••••••••••••••••••••••• · ·
• Space priaitives

Space Da.as
Selectable spaces

..................................
NEWSPACB •
Allocation priaitives

Register 111ocatioD and Linkage ••••••••••••••••
Reqister Allocation

Floatinq point registers •••••••••••••••••••
General purpose Eegisters ••••••••••••••••••

Function Linkaqe •••••••••••••••••••••••••••••
GlobAl Bindinq Kechanis. ••••••••••••• n _ ••••••

The ProQra. Check Handler (not included)

Appendices
I -- IBrt

.......................................
310 Instruction 'or.ats • • • • • • • • • • • • • • •

Il -- CAP Operand loraata ••••••••••••••••••••••
III -- CAP Pseudo Instructions •••••••••••••••••
IV -- Key Nords and their AlternatiVes •••••••••
V Initial CODdiEions ••••••••••••••••••••••••
VI -- Svatem Lialtations •••••••••••••••••••••••
VII Static Page Allocation ••••••••••••••••••
VIII -- Spaces Sumaary

12/31/14

264
265

266
267
269
269
270
210
210
211
211
271
272
273
275
276
277
278
219
280
281
283
284
285
288
289

291
291
292
293
294

291
297
297
297
302
305

309
310
312
315
317
320
321
322
323

7

8 CSISP -- SDC T~-54S5/000/00

List of Pigures and Tables
.. ~

)

A Lexical Jesting ••••••••••••••••••••••••••••• 31

B ExaaDle of Seoping aules •••••••••••••••••••• 35

C Proee •• Tree Variable Bindings •••••••••••••• 38

D type Hierarchy •••••••••••••••••••••••••••••• 49

E Flat YS. Honilat lrrays ••••••••••••••••••••• 74

F Ntuple and Array structures ••••••••••••••••• 80

GILlS! !xaaples •••••••••••••••••••••••••••••• 83

H Recursiye Platteninq . 8S

I Initial Pield ValuEs . 126

J Initial 'ariable 'alues ••••••••••••••••••••• 129

K SL InfiK Operator Definitions ••••••••••••••• 133

L Co.pari.on of For LOOP Generators ••••••••••• 167

~ Magister Contents and "nesonies ••••••••••••• 298

Rough Draft

(

(

9

CRISP is a proqra.ainq laDqUaQe and syst •• that will operate

on an 18ft 370/1q5 under VK. The goal is to provide an

efficient iaplea.ntation of and experi.~ntation with

~roqra.s that contain a aixture of nuaeric calculation and

symbol aanipulation such as speech arid vision systeas. The

desiqn of the lanquaQe and systee has been eost stronqly

influenced by LISP 2. PL/I. SI"UL1, and SDC and BRN LISPs.

The 8a10r systea characteristics of CRISP are:

eAutoaatic aeaory aanaqe.ent - garbage collection,

-In increaental co.piler and a.seabler,

-Interactive and batch supervisors,

eSTstee aids to better utilize virtual a •• ory resources,

eEfficient arithe.tic and ay.bol manipulation, and

-lids to Qroups constructing large 5yste.s.

Some i.portant lanQu.ge features are:

-Three lanouage levels available to the user:

(1) Source Language (SL) - an ALGOL-lIke language with
infix operators.

(2) Interaediate LanquaQe (I L) - a LI SP-l ike, 11 st
structured, Polish prefix language.

(3) CRISP Asa •• bler Lanquage (CAP) - a aacro asse.bler.

eBlock structaring in the no~ •• l LISP tradition.

-Standard LISP .pecial variables in addition to
local and own ,ariables.

ePull availability of aulti-dieensional arrays,
ntuples with repeating el.eents, functionals, and
process handles •

• ProTision for qiviog global items first and last oames,

12/31/71&

10 CBISP -- SDC Tft-5~55/000/00

thereby allowing aa.e pooling and controlled access.

eSynoD'... botb local and qlobal.

elyailability of a wide variety of language extension
capabili ties.

-General ability to sa'e, restore, and switch
contexts of e.aluation.

This docu .. nt bas been written concurrently with tbe desiqn

of the lanQuaqe and syste.. !berefore. it contains saBe

incoDsistencies. However, we are releasing it ia its

present state so that your co ••• ntl and sugqeatians can be

inclu4ed in later revisions. It vill serve e¥8Dtually as

the basis for the users' Quide and syste. .aiatenance

.anual. Please sead your critique to Jef! 8arnett, syst ••

06velopa.at Corporation, 2500 Colorado Avenue, Santa "onica,

California 90"06, or to ll'Anet .al1bol JAB at SOC-LlB.

'1be rest of this docuaent is orqanized into two sections:

The first section ia the Language Description and the second

section ia the 5yst •• Description.

Rouqh Draft

1 1

The first half of this docuI.nt describes the CRISP

laaQWlqe. there are three languages available in which to

write CRISP prcqr.ls: Source La~gu.qe (5L) is an ALGOL-like

lanquage with infix and prefix operators. Intermediate

Lanquaqe (IL) is a polish prefix, LISP-like language. ClP

is aD asseabl, languaqe tor the IS! 370 series co.puter; it

features autolatic stack lanipulation and block structuring.

The deacriptions of 5L and IL are presented together.

However, all exalple., unless otherwise stated, are given in

SL. SL is always translated to It before cOlpilation.

Therefore, a knowledQe of It is helpful to those users who

elPloy aactos and other cOlpile-tile substitution forms.

CRISP is a "svntaxy" language. ~hat is, there are .any

fori. with specialized forlats and therefore aany keywords.

This aay be contrasted with pure LISP and APt, vhere only a

dozen or so forls are provided and everything else is

constructed froll tbe.e fotls. The reasons for not taking

that approacb are lany. Perhaps the .ost i.portent is that

caISP is desiqned as a tool for the construction of very

larqe prograas by groups of proqra.lers. 1n this context,

there ls DO virtue ia the ability to write ORe liGers: you

can't build very auch of the progtaa tbat wa, in any event.

Ilso it is iaperative that the system be able to compile

biqh perforlance code. This task is simplified when foras

properly siqnal the user's intent. Por instance, it is much

12/31/14

----------"---~----~-~--- - -~--
---- --- --~~~ - -

12

- ------------­~--------
~------- - -- - ---

CRISP -- SDC Tft-5455/000/00

.asier to coapile a good loop when it is introduced by the

word rOB than when the same intent lust be discovered in a

LISP recursi •• nest. (Ev~n special handlinq of IUPCAR does

not ~.lp with nested loops.) Further, keywords tend to

enhance tbe readability of programs, particularly to sOleone

other than the oriqinal author. In the SDC LISP systea,

users have a choice between a fora that reseables 5L (called

IIFIX LISP) and the noraal LISP. lllost without exception,

when given the choice, proqra •• ers prefer IMPIX. This is

particularly true for large, cOlplicated functions or for

an, calculation involving arithaetic. In CRISP, the choice

is still available: if you are not content without the

.other parentbesis. then ~rite in IL.

Two laDQuaQe featares have been planned but are not yet

fully desioned. Therefore, the, ate not described in this

docuaent. The first feature is e.bedded function and

proce.sor definitioA8. This would not give static scoping

but would allow own Tariables to be shared. Tb~ other

featare i8 a finite state .achine (PS") primitive to allow

pattern-•• tcbinq .atching tc requla~ sequences of aay data

type.

The sections in thia

Specification Lanouaoe:

part of the docullent are: Syntax

External Data Foraats: Scopinq and

Denotation Rules: Declarations, Definitions, and Types;

Slocks: Data Prialti.e. and Presets: Expressions:

Conditionals; FOB Loop: Processors and Processes; and The

CAP Aaaeabler.

Rough Draft

(

(

13

SYNTAI SPECIFICATION LANGUAGE

The syntax specification lanquaqe Qaed in this document to

describe CRISP is standard BNF with the usual auqaentation

-- n ... ly. operators that specify repeated occarrences. The

terainal symbols in BNP are keywords and aeta na.es.

Keywords are noraal s,abols

Bx.aples of .eta nales are

<function-def>. fteta Dales are

for exaaple, BEGI., +, and A.

(block). (expression), and

enclosed in anqle brackets.

If a aeta ftaa. consists of a sequence of more than one word,

then the aeta naae has conventionally been concatenated by

hyghens rather than spaces. fteta names are the names of

syntax rules. 'or instance. this la a rule:

(a>::-(b><c>

<a> is defined a8 equiyalent to a (b) followed by a <c>.

Given tbis definition. the follovinq two rules hay. the sa.e

leaninq:

(x>::=<y><a>(z> and <x>::=<y><c><z>

The qeneral fora of a rule is a .eta naae followed by ::=.

This aeans that tbe .eta aaae Is defined as equlYalent to

the riqht side: the part following the ::=. Right sides are

sequences of pattern parta. In operation, a rule i8 said to

aatcb (or generate) an input striaq 1f and only if each

pattern part aatche8 the input in the order in Which the

parte occur in the rule and if the aatched parts are

contiQUQU8 and do not overlap. The kinds of pattern parts

are:

12/31/74

CRISP -- SDC T"-5'55/000/00

aeta-.ariables - aatch the pattern defined by this aeta
naae:

key-vord - aata exactly this keyword in the input;

fp 1

p11

•••

•••

pnl - aatcn this sequence of pattern parts;

I'PD - •• tch any pi, 1~i~n:

fp1 ••• pn) - aatch this sequence of pattern parts or
Dotbinq e.Q., the sequence is cptional:

Sp - aatch zero or sore occurrences of p;

Sap1ap2 aatcb zero or aore occurrences of p2
.~parated by p1s;

~p - .atch one or lore occurrences of p;

'.p1ap2 - matcb one or aore occurrences of p2 separated
by 1)1s:

where I) and pi are pattern parts. In the rules,

conc.tenation of a aequence of pattern parts takes

precede lice over (binds aore tiqhtly than) alternation.

Therefore. braces { } -- are often used to overcoae the

noraal interpretation in much the sase way in which

parentheses are used in arithmetic expressions. SOS.

exallPles of pattern parts and input strinqs that they .atch

are:

label a, bl C

rabc 1
Sa
$.+ ••
Ita
t.+.a

abc
a b c
nothinQ abc
notbinq a aa aaa etc.
notbinQ a a+a a+a+a etc.
a aa aaa etc.
• a+a a+a+a ete.

The characters, It (H, H) ", H,". f'r", "}" "S" "." n." ")" , . ,., ,

"<", "-" and ":", have special a.aning in the syntax

specification lanquaqe. If any of the. is used as a keyword

in CRISP itself, then its occurrence in a rule is underlined

to avoid .abiquity.

Rouqh Draft

(
\

(
\

Syntax Specification LaoQuaqe 15

There are two basic sets of syntax rules: rules for tbe

syntax of tokens (described in the section on external data

formats. paQe 16) and rules for the syntax of data

structures and proqrals. The token syntax defines the

aeabers of the token classes such as <in teger>,

<identifier>. and (olobal-naae>. the keywords in the token

syntax are characters. The token syntax rules do not allow

anv i.plicit spaces between characters. In a few instances,

liberties have been taken to improye the readability of the

rules. For exalPle. tbe pattern Plrt. <character~'>. aeans

any <character) except prile.

The key words in the rules that describe data structures and

PIOQraas ar~ token clasa naaes and .pecial ay.bols such as

BEGI •• FOa. and +. BetWeen the contiquous OCCyrreRCe of anY

two totens. there .a, be spaces. The dell.itation rules

Qiven with the token syntax specify when this is necessary

to avoid albiQuit,. In aay e'ent. spaces are always legal

between tokens.

16

IITIINAL DATA FORftATS

The data read fro I a sy.bolic input file (such as the user

ter.inal) is a sequence of characters. Tbe cbaracter

sequence ia norlally seqaented into a token sequence. The

syntax of CRISP proQrals and tbe external forlat of data

structures 1s deact'ibea in teXIS of tokens. Ixa"lples of

token classes are inteqer and identifier.

A character is ao 8-bit byte viewed as an EBCDIC code.

Because .afty character codes are Dot available on certain

I/O 48.1c.8. a special character a.chanis. is provided to

allow all cberacters to be entered by their explicit codes.

<character>::a(special-character>,<reqular-character>

<special-character>::·~I<hex-diqit><h.x-diqit>

(hex-diqit)::-(diqit)la ••• flA ••••

(diqit>: :-1 ••• 9

<reqular-charactet>::-any BBCDIC chatactet

A four-byte (special-cbaracter> is translated by the

character-readinq pro;ra. into the IBCDIC character with the

specified code. In all subsequent processing of the input

character sequence. no distinction is .ade between a regular

character and its equiyalent special character. Thus. if ij

were the hex code for S. then 11111xy is equivalent to 'Ixf.

Bouqh Draft

/

(
\

(----

IXternal Data Por.ats 17

which in turn would be equivalent to tbe character whose

EBCDIC code is IY.

The character sequence is segmented into the corresponding

token sequence by the token parsing strategy. The strategy

has two parts: (1) deter.tne the boundaries of a token, and

(2) convert the character sequence co.ptising tbe token into

the appropriate internal toeaat or tepeesentation.

The first part of the strateQY applies the deli.itation

rules. The functions R!lDTOKU and RE1DTOK sre used to

i IPlelen t the token atra tegy. (R!ADTOKU parses signs as

separate tokens frol succeedinq DUlbers., They start at the

next character position and scan until the token is

deli.it.d. If certain tokens are next to eacb other,

deteraininq the ending of the fitst and the beginning of the

second liqht be .abiquous. In these cases, the tOkens must

be seoarated by 8 character string calle~ 8 <spacer). I

(spacer) is not a token, and the characters laking up the

<spacer) are lost in tbe conversion of characters to tokens.

<spacer>::-<blanks>r<co.ment>1r<spacer>]

<blanks):::~<tlank)

(blank)::=a space

The next step periorled by the token functioDs is the

conversion of the character strinq into the internal

represe nta tion. The ~aior token categories and their

12/31/74

18 CBISP -- snc T"-5455/000/00

correspondinq internal representations are: nil NIL,

tixed point- integer. floating petnt - float, string

string, Global nal. - nale pointer, dellmiter - identifier,

identifier - identifier. escape - identifier.

The function BEADTOKU uses the following token syntax

eQuations for parsiaQ the input strea ••

<token)::c<nilt)l<unsiqned-inteqer)J<unsiqned-floating)f
<strinQ>,<qlobal-na.e>l<deliliter>l<identifier>1
<escape)

<nilt>: :cIIL

<unsiGoed-ioteqer)::a(decilal)l<hel>

<deci.al>::=~<diqit>

<bex): :-=<diQit>S<hex-digit) (XI Xl

<unsiqned-floatinq>::a<lantissa>f<characteristic>]

<Mntis.>: :"~<diqi t>. S<diqit>

<characteristic>::: (elln<inteqer)

(strinQ>::a'$r<char4cter~')I"1 •

(Qlobal-ns.e)::=<identifier>!<identifier>

<d e 1 ill te r): :. 1 1 " I • I (I) I • I • I ilL I J I + I
"'1:1·,: 1,S121 ,1"" Ijll

<identifier)::=<special-id>t<requlat-id>

<.peclal-id>::aJ·${<char.cter~'>I'·}·

<reQular-id>::=(char.Qter~«deli.iter)l(diqit>l<blank>IJ}>
'<character~{<d.li.iter>l<blank)II})

(escape>::-'

The function RE1DTOK uses tbe aboye set with the following

substitutions:

Rouqh Draft

" !

(
\

._,------­
~- --.-~---------------.-----.. -.. -.,--.-~-~.---,------

Bxternal Data Por.ata

(token)::-<nilt)l<inteqer>l(floatinq)l<strinq>1

(qlobal-naae>l<delimiter>l<identifier>1

<escape>

<inteoer>::-r+l-l<unsiqned-integer>

<float inQ): ::(+! - l<unsiQned- f loa tinq>

19

Thus. siQDS in front of nu.ters belong with the nu.bers.

RE1D!OKU is used by tb~ SL read program And READTOK by

nearly e.ervthinQ elae. The function READCH is also

prov Ided. It inputs the next character and moves the

~ointeE ahead. RIADCH also causes the next line to be input

when the present line is exhausted and another character is

requested. The value of BBADCH is the identitier with the

one character na.. corespondinq to the character input.

When an end of file condition is encountered, READCH returns

NIL. (See the section on tht-> I/O facility, page 214. for

1he tollowinQ paragraphs brieflY describe the individual

token classes in lor. detail. In co •• ents, strinqs, and

special identifiers, a ,t stands for a single • And does not

<nilt> is the notation for the token representation of NIL.

NIL is Dot an identifier wbile S'IIL' is. The character

sequence "C)" is divided into the two tokens "eft and H)".

However. the function lU1D would treat NIL and Cl as

equivalents.

12/31/716

20 CRISP -- SDC Tft-S'SS/OOO/OO

rUnsiGnedl inteqer or floating-point tokens are converted to

their equivalent internal integer or floating-point fore.

In either case. if the nu.ber is too large (or too saall) to

be representable in the coaputer in full word foreat, tbe

error aeSA;e "JUftEBIC SIze ERROR ON INPUT" is gi'en. For

bex integers. tbe X 18 required. If the leading digit of a

hex iat_Ger ls Dot a deci.al digit, then it eust be

prec •• aed by a O. (Tbus. write OA11 not A11; the latter

would be interpreted as an identifier.) Extra digits in the

aantia .. of a floating-point nuaber are discarded and do Dot

cause errors.

I strinq token is a convenient way of entering a

one-4l •• nsional cbaracter array. If this foreat is used,

there .uat be fewer tban 265 characters in the body of the

strinG. If aore ate entered. the error ae.sage "STRIIG

OVERFLOW 01 IIPUT" ia isaae4.

I Global naae specifies the first aDd last naae for a global

obieet such as a global variable, function, etc. The first

and last naaes .uat COD fore to the rules for identifiers.

If a S is to be a •• 4 for purposes other than c~nstruetinq a

qlobal Daae, it should be separated fro. a preceding

identifier by a <spacer).

Dellaiter token. are cODverted into the corresponding

identifiers .1 th one-character naees. Deliaitera are

noraally used to build SL operators'.

ROuqh Draft

."'"
)

')
.'

\----

(

---------~-----~- -----.-~-.---~--------------------.-----
----_ .. _-- .. _-

External Data POt •• ts 21

Identifiet token. .aat not be longer than 2S5 characters.

The S' fora is provided to represent identifiers with

unu.sua 1 M.es.

'the escape token is provided to allow an input to be

aborted. 'rbe errot .essaqe issued ill "ESCAPE".

Some exa.ples ef ••• bers of the vacious token classes are:

<nilt> - tilL

<inteQar> - 12. -1407. +2

(floatinq> - 0.92. 9.0 -13.4E-5. +0.11£+6, 1.0E1

(strinQ> - 'THIS IS A STRING', 'CAN"T Bl'

<Qlobal-name> - lS8, S'X Y'SS'123', XYZSAB

<delt.iter) - <, &

(identifier> - "ILLO, S'SPECIAL ID'

(escape> - I

The function BEAD converts an input sequence ot tokens into

an internal structu.re representation. The bracketinq pair

.. l) .. is used to enclose bina cy node lists, a nd the pai r "{

I" is used to enclose ccaplex nu.bers, nodes, arrays or

ntople .true tares. !bus. the deli.iters "(" and "I" are

used to introduce special syntax for complex structures. To

inpu t the. as identifiers, vr it. S· (I and S' ('. Si lIilarly.

if et)" or ft}" is used other than as 8 closer (balancer), the

12/31/14

22 CRISP -- SOC T~-5q55/000/00

error a.s.sq. "UIIBALAICED)It or fltJNBALAICED}" vill be

iaBU ed. 1'0 enter th.a as identifie IS, wri te $')' and Si'}'.

The syntax of external structures is:

(extet'nal-data>:: =(siaple-externa 1> I <COli posi te-e xte rnal>

<.laple-external>::~<nil>l<nusber>t<qlobal-na.e)1

<dell.iter>t<identlfier)

<nil)::"'<nilt)1 ()

<nuaber>::-<inteqer>l<floatinq>l<colplex>

<coaplex>::=jCOKPLEX I<float>'<inteqer>}

l<float)l<inteqer>ll

<coaposite-external>::-<strinq>l<array>,<ntuple>1

(list>l<noden>

<list>:: = (t<external-da ta>r. <external-da ta)])

<noden>::-jIOD£i ~(external-data>l

<ntuple>::-l<ntuple-type>$<external-data>l

<arraY)::-J<array-tvpe>S<external-data>l

Pro. the above, it is obwious that strQCtures in several

kinds of data spaces cannot be input by the READ function.

The excluded spacas are: pdp, pdn, bps, handle, and heap.

The aeaniDq of pointers into these spaces (and hence the

addressed structures) has a hlqhly iaplementation-dependent
-

usaqe. Therefore, their external aad internal .anipulation

is the responsibility of the knowledqeable user or syatea

proqra.aer.

The external for.at for a list sttuc'ture is the standard

LISP syntal. The optional dot endinq siqnifies a COMSed

Rouqh Draft,

(

(
'-

External Data rormats 23

pair. Otber~ise. the final COR is lIL.

Tbe <ntuple-type) is any declared ntuple type. The external

data followinq the type lIust be in one to one correspondence

with the ntuple ite.s. Po~ repeating qroups, the last

(inner) subscript is varied most rapidly. The input items

must be convertible to the specified ite. type. If not, the

error aessaqe "IHeORRSe'! MTUPLE ITE! TYPE OM rIlPUT14 will be

issued. If the ntuple type is unknown to the system, the

aessa,e issued will be "INCORRECT NTOPLE TYPE ON INPUT".

The <array-type> may be any legal type of array including

one ~ith flattened items. If not, the messaqe nINCORBECT

lRRll TYPE ON IJPU~" will be issued. Tbe specified

diaensioDS must be positive and less than 32768. (The *
option aa, not be used.) otherwise, the error .essaqe

"DlftENSION OUT or BOUNDS ON INPUT" will appear. The

external data tollo~iQq the dimension .ust be in one to one

correspondence to the array elements. Last subscript varies

lost rapidly. etc. If fewer than the specified Dumber of

ele.eats appear, then the aissinq elements are initialized

to the standard default values. If extra ele.ents appear,

the error .essaqe 1 •• ued is tfTOO !lASY ELIUUNTS OM INPUT".

If an ele.ent is Dot cODyectible to the .required type. the

error .essaqe "ILLEGAL ILeall'r 01 I.PUT" ~ill be qiyen.

!xaaples of structure.

The follovlnq are so •• ex •• ples of the forRat of structures

that have aulti-token printing representations.

--~-~---~--------

24 CRISP -- SDC T8-5455/000/00

(IIITIG!B IBIII(2.3) 1 2 3 4 5 6}

(I ITBG! B 1 BRAY (* ••) ARRAY (2)
rIITBG!R 1B811(2.3) 1 234 5 6}
UITEGEB ARIUY(4,2) 1 2 3 4 5 6 1 8ll

(A 8 • Cl and (NODI2 I (MODB2 B Cl} are the sa.e

fCOftPLIX -4.7 18.1B-12)

{lOOS" 17.5 MIL XIZ 141

(THIS IS A LIST)

With the declaration. DIe lSB<X IMT. Y PLOAT>;

(l.B -17 1.5)

(A'8 0 -8. B41

See section on declarations. definitions. and types (page

45) for _ore infor.atioD.

Bouqh Draft

(-

(

2S

SCOPIRG I.D DENOTATION BULES

the tokens that m.ke UP a CRISP proqraa are names. This

section describes the rules that assiqn meaning to these

n.aes -- that is, tbe rules for decidin~ what object a name

denotes. There are three major categories of nates:

con.taats, identifiers, and qlobal names. Is a category,

identifiers include deliaitars (noraally used as operators),

syntax keywords, and others.

Deteraining the correspondence ot a na.e to an object

deDend. upon lexical context, dynamic execution state, and

the default tailin~ Lexical context is

deter.ined by the proqram's block structure and the .ode of

naae usaqe. Tbe rules operate in two parts: scopinq rules

that are used at compile time, and denotation rules that

operate at execution time.

Tbe scopinq rules convert a name to a proper nalle. The

proper naae of a constant is the data obiect to Which it

cefers tha.t is. itself. The proper nalle of a local

ob1ect is an identifier, and the proper na.e of a qlobal

ob1ect is an ordered pair of identifiers separated by a S

(defined as a (qlobal-na.e) in the aec"tion on external data

foraats, paqe 16). 'be scopinq rules use lelical context

12/31/7~ <

26 CRISP -- SDC 78-5455/000/00

and the default tailinq aeehanisa to assiqn proper names.

The denotation rules pair a proper o •• e as deter.iDed by the

scaping rules with an ob1ect. The denotation rules operate

at execution tiae and .ake use of the dyna.ic state. Of

course. the denotation of a constant is equally vell

deterained at coapile time by the seoping rules.

Any data ob1ect aa, be used as a constant. Howeyer, the

fora of a datua aay conflict syntacticallY with an

evaluatable proqraa pa~t. As an eaample, the use of the

identifier I could be interpreted as a variable naae. Po~

those ca •• s where interpretation is .abiquous, tbe compiler

assu ••• that the obi_ct is not a constant. To force the

coapiler to treat an obieet as a constant, the quote

a.chanis. is provided.

<constant)::-<unaabi;uous-data-ob1ect>I"<external-data>

<unaabiquous-data-ob1ect>::-<nil>l<stting>l<arraY>I<ntuple> I
<noden>l<uusiqned-integer>I
<unsiqne4-floating>l<coaplex)

<couatant>::-<um •• biquoua-4ata-object>f
(QOO~E (external-data»

(unaabiguous-data-ob1ect>::-<nil>l<string>l<array>,<ntuple)1
<noden> I<integer> I<floating> I
<co.plex>

RouQh Draft

(~

ScoPing and Denotation Bules 27

For exaaple. in SL, to use the identifier X as a constant,

write "I. In IL •• rite (QUOT! X). other elaaples of

constants in SL are:

12. 8.2!-6, {IN!BGIR lRRAY(3) -17 18 -19), "HELLO,

'THIS IS 1 COISTltiT STBIMG', {COMPLEX 3 -4.5}. NIL,

"CSA!PLE LIST), ",NODE2 SA"PLE ,"0082 LIST WIL}),

n, (1I0DEJ 1 2 3) .. "flODB3 1 2 31

lote. that whet ber a binary node (node2) constant is entered

as a list or as a noden construct, it is ambiguous in a
I

proqraa definition and tberefore must be quoted.

The kinds of obiecta that are referenced with non-constant

names are synonya., aactos, transfar.a, functions,

processors, generators, data spaces, code places (labels),

an d Y ar i a b 1 es • b 1 nd i n q san d "a 1 tie s • For auch of the

discussion below, it is assumed that the appropriate

substitutions have been aade for synonyms and by aacros and

tr ana for a ••

In CRISP, there are no label-v.lued variables. For scoping

and denotation resolution, labels are treated as if they

were local na.es bound in the auteraost block in which they

are visible. One exception is that branchinq out of an

expr6.aioD is 111eqal. Por example, in

12/31/74

28 CAISP -- SDC TR-SqSS/OOO/OO

BEGXI;
L~l:·B:

C:-82011:

liD

IF I THIN GOTO L;
R!!'!OJII 5:

liD i

the fora "GOtO L" is illegal because the inner block (in

whicb the OOTO resides) is used as an expression. See the

section OD stat.aents and labels (page 115) for Dlore

infora.tion.

In CBISP. tbe ob1ect denoted by a ,ariable name is called a

bindinq. • binding is a propor naae paired ~ith a data

ob1ect called its Se ,era 1 va ria ble objects

(bindinQs) aa y ba ,e the saae na.e and/or the saae val ue.

The rules for deteraininq which binding is referenced by a

ftaae are described io the following paragraphs. The legal

operations with blodinqs are: creation (called binding),

destruction (called unbindinQ), and retrievinq or chanqing

the ,alue (called referencinq and setting, respectively).

A local nale always refers to a variable binding whose place

of creation aay be deter.lned by lexical inspection. That

is. it is Dot po •• tble to reference a variable object with a

local naae outside the function. processor, block, etc. that

biod.e it. Thus local .eIDS local t~ a definition and a

nested set of blocks within that definition.

Bouqh Dr aft,

(

(~

---------------- -

ScopiOG aDd Denotation Bules 29

A qlobal oaae laY denote a variable binding whose place of

creation cannot be deter.ined by lexical inspection. In

aeneral. the bio4inq referenced by a qlobal naae lay be

created ia the function containing the reference, another

function. or even another process as described below.

the default tailing •• cbanisl directs the co.piler in

•• siQniaq qlobal proper naa.a to identifiers tbat reference

alobal obi.eta. The transfor., DEFAULT, and the function,

DEFAULT!, are provided. Each specifies a default tail Uast

naae) for identifiers beinQ declared, defined, or bound.

Also, an orde~ed set of possible tails to be used with an

identifier appearinq in reference lode (operator. left side

of an assiqnment for., or as an expression for value) is

given by DEFAULt and DEPAOLtX.

<default-forl>::c<default>l<defaultx>

<default>::=DEP1ULT <identifier>(S.,.<identifier»

<defaultx>::cDBPAULTX «expression>, <expression»

!L

(default-form>::a<default>l<defaultl>

<default>::s(DBPAULT <identifier> ('(identifier»)

<defaultl>::=(DEPADLTX <expression> (expression»

The function. DEPAULTX. has two arquaents. The value of the

12/3'114

30 CIISP -- SDC T"-5455/000/00

first i8 the default tail and .ust be an identifier. The

second arqu.ent ia the ordered default list and .ust be a

list of identifiers. The value of DE1AULTI is its first

arQu .. nt. Ihen executed, DEFAULT) Infor.s the co.piler of

the new default intor.ation that is to be used until changed

by another usaqe of DIFAULTX.

D!F1CLT is a transfora that merely quotes its two argu.~nts

and oenerates a call on O!PAULTI. Thus, the following two

5L fora. are equivalent:

DEPAULt IYZ(IYI.CBISP)

DEPAULTX("IYZ."(IIZ CIISP»

Bore infor.!. tion OD the

ordered aefault tailinq

use of thE default tail and the

list is given below in the section

on scopinq rule. Cpaqe 32).

The system is initalized with the {Qc.

DllAULT USBR(US8B,CRISP)

CRISP proqraas are made up of function, processor, and space

definitions, variable declaratiQns, and the coapile ti ••

substitution a.cbani.. ,syoonyas, aacros, generators, and

transfor.a). this subsection desctibes the nested structure

of function, processor •• acro, And generator definitions.

To staplify the discussion, all sucb definitions will herein

be call~d function definitions.

Rouqh Draft

-----_._--

(~

(

SeopinQ and De nota tiOD Rules 31

r- FUlteTIOI PU,B,C)
I E
I r- BEGII X,Y.Z:
I I S1
I I r- BIGIN I.r.!!: , I I T
I I "- I .. D:
I I S2
I J r- BIGItI I,Z.N:
I • I U
I I "- .ID;
I I 53
'- '- !ID:

LEXICIL IBSTIIIG

FiGure A

the outer le,el of the lexical nest is the function

~efinitioa. The inner le •• ls are blocks. Each level of the

nest aay bind Yariables. F iqute A is an e xallple. The

function, P, binds the variables (paraaeters) A, B, and C.

The body of P contains the block that binds the variables X.

t. and Z. Within this block are two other blocks: the first

binds the variables A. Y. and ft, and the second binds the

variables A. Z, and I. The liae. to the left of the figure

show the (lexical) scope of the function definition and the

blocks. S1. 52. and 53 are three qroups of stateaents in

the outer block that are not in any inner block. T is the

Qroup of stateaeats in the first inner block, and 0 is the

Group of stateaents in the 8eoood inner block. B is a part

(of t be body of r not in any block.

At any point in the definition of a function, there is a

12/31/74 .

32 CRISP -- SDC T"-5455/000/00

lexical De.t of the fUDction definition and soa. blocks that

properly contain that pcint. Pto. these, a lexically

derived search list .a, be for.ed. It consists of the naae

of the tInction. the function's paraaeters. and the block

variables bound by the nest. This list is derived using the

.ost nested bindinQs first. Por exaaple, in the part of F

.arke4 E, the lexically derived search list is:

at the points called 51, 52. and 53:

Z.I.I,C.B.l,P:

at the point called T:

!.Y,l.Z.Y.X.C.B,l,F;

and at tae point called U:

I.Z.&,Z.Y.l.C.B.I.'.

The next sabs.ctioD, on 8copinq rules, describes how the

proper na.es put on this list are derived and how this list

is ueed in assiqniDQ proper naa.s to identifiers appearinq

in definitions. The lexical lists for the atove exa.ple

vere constructed (for the sake of illustration) without

reqard for proper n •• es.

Thi. paraqraph details the scoping rules for transfor.iog a

naa. to a proper na.e. Por constants and global na.ea

,identifier pairs separated by a $). the transforaation is

trivial: in both cas.s. the proper na.e and the original are

identical. The reaaininQ case, identifiers used as na.es,

ROQgh Draft

(
"

ScopinQ and D.notatioQ Rules 33

is aore co.plieatea.

Dat eraination of anldentifier' s proper name depend:!;) upon

lexical context (nesting and mode of usage) and the default

tailinQ aechanisa. If the .ode of usage equals declaration

or definition. then tbe identifi~r is paired with the

default tail to produce the global proper nase. ("ode of

usage equals declaration seans that the name is an ob;ect

whose attributes are being given by a declare for.; aode of

usage equals definition seans that the name identifies a

functioD. processor. macro, etc., that is being compiled.)

When an identifier is used in binding .ode (paraaeter of a

function. processor, aacro, etc., or as a block variable),

an optional scope attribute may be specified by the program

wr it er. Tbe attribute aa, be LOCIL or GLOBAL. (For use of

OWN scope se. tbe subsection on own variables, page 44). If

the scope attribute i8 LOCAL or not specified, then the

proper D&ae is the identifier itself, a local naae.

Otherwise. if the value is GLOBIL, then the proper na •• is

the identifier paired ~ith the default tail.

The re.aiuinq case is an ideDtifier used in reference aode,

a.a. as an operator, OD the left side of aD assign.eut fora

or referenced as an expressiOD fQr value. Pirst, the

lexically bound search 1.1st is exaained to .see if it

contains any aeaber Ihoae naa. (it local) or whose first

Daae (if Qlobal) 1. the identifitr. If such an ele.ent

exists. then the proper naae of tbe first one found is used

12/31/1£&

--------- ----- ---------

as the proper aaa. of the identifier.. (Re.ellber that the

list is built in Ieyeraa order, .ost deeply nested bindings

flrat: see PIecedinq subsection.)

Tbe rules aboye supply the proper name for an identifier

that 1. bound lexically. If the naae is not deter.lned by

this .. arch, then the ordered 1efault list of identifiers

QiYea by DEFAULTX is consulted. The identifier is paired

with the first identifier in the crdered list as its last

oa •• (or tail). If a declaration or definition exists for a

qlobal obieet with that paired naDe, then the pair heco.es

the proper na.e of the identifier. If not, the next

identifier in tbe list is tried as the tail. This procedure

is repeated until a proper n.ae is determined or the list is

exha uated.

It has not ,et been co.plately decided what to do when the

aboye fails to produce a proper na.e for an identifier used

in ~ference lIode. 'fhe choices are: (1) qive an error

aeSSllQe, (2) quees a local declaration and force a binding.

l~ FOBTBAI. (3) ques. a qlobal declaration and use a global

groper naae A l.A LISP, and '''' ask the user. In any event,

conflict in type between declaration of a nale and its

laoner of use lay produce coapile or run tiae errors and

diaQnostios. See the section on declarations, definitions,

and types (paQe 45) for lore discussion.

Piqure B shows a set of fo~.s before and after the operation

of the scopinq rules. tbe first set of forls are in a

RoUqh Draft'

'\
I

.I

(
\

(~

Scopin4 and Denotation Rules

Before Scopinq Rules

DEFAULT 5IS(stS.CRISP) :

DECLla! GEJBR1L A. GB.JaiL BSSYS;

'UIC1101 SU85!' (LOC1L X)
W HJ" 8-1 THII 1
WHEI ltOD!P (I) TH!I SUBST 1 (CAR (X)) '50 BST 1 (CDR (X)

8LS! X:

PUNCTION SOBSTSCRISP(GLOBlL 1. BSSYS. C)
SUBST 1 (C) ;

lf~er Scopinq Rules

DEflULt SIS(SIS.C8ISi):

D!CLl!1 GB.BRlL ASSYS. GE.BRAL B$SYSi

'UICTION SUBST lSstS (I)
WREI DSS!S-I TRIM llSYS
WHIM MODIPSCRISP(X)

THII SU8ST1'SYS(C1BSCBISP(I»)'
SUBST1'SYS(CDBSCBI5P(X»

BLSI X:

FUNCTION SUBSTSCBISP(I.SYS. aSSys. C)
SUBST1$SYS (C) ;

Piqure B

EXA"PLB OF SeOPING RULES

12/31/14

35

36 CRISP -- SDC TN-5455/000/00

for.at that aiqbt yery vell be vritten by tbe program.er;

the 88coBd set has all Da.es except those that function as

special laDQuaqe naaes (DBfAOLT. DBCLlB!. parentheses,

co etc.) con.erted to the appropriate proper naaes.. In

the fUDction SUBST1. the lexically bound search list is:

I, SU8ST1SSYS

and in the function SUBST, the lexically boand search list

is:

C. aISYS. A$515. SUeSTSCBISP

Both tbese lists are built frol proper names.

The dYDaaic state of execution is deterained by an ordered

set of process states and a Bet of top-level objects. Each

variable vith a qlobal Dale bas a top-level bindinq (and

associated 9alu8) taat is .iaible vhene.er the variable has

Dot been explicitly bound. Global names of objects, other

than Yariables. always refer to a single object that is

called the na •• •• top-le'el or its only value. The global

proper na.es of functions, processors, sacros, transforms,

generator., spaces and qlobal sVboDya& aay not be bound.

Therefore. these qlobal names are like constants in that the

ob1ect they denote .a, he unalbiquously deter.ined at

coapile tiae. Further, all qlobal aaaea, variable or other,

alva,s ba •• exactl. ooe top-level denota tion.

As a proce.s executes, fUDctions an4 blocks are entered in

ROQqh Draft

Scopinq aad DenotatioD Bules 37

so •• order and exited in inverse order. On entry, variables

(function paraaeteEs and block ,arlables) are bound. That

is. bindinqs for the bound variables are created and added

to the front of a list called the process's variable

context. On exit, tke bindings ~dded by the function or

block are removed "Dbound) from the process's variable

cont ext.

Consider the operation of

SUBST (1.2." (1 (3 2) 11,)

the definition of SOBST is given ln Pigure B (page 35).

When SUBST is entered. the process's variable context is

aUG.ented by:

re. (1 (2 3) 4) 1[BSSYS.2)[A'S'fS.11

The square brackets denote a binding (which consists of a

variable's proper na .. and a data ob1ect called the value.)

If we trice the action of SUBST and sUeST1 to the point

where 2 i. pas.ea a. tbe arqument to S08ST1, the total

aua.entation to the process's variable context viII be

r X. 2 1r x. (2l 1f x. (3 2, 1f x. ((3 2) ") 1f x. (1 (2 3) ")]

re. (1 (2 3) 4) 1[&SSYS,21(ASSIS.11

Rotice that this list is built in inyerse order in auch the

saae vay as the lexically bound seaxcb list.

Associated with each process is another process (or the

top-Ieyel set of objects) called its parent context. If

process 1 is the parent of process 2. then we aay that

process 2 is eab.aded in process 1. The set of processes in

the .,ste. at any ao.ent fora a tree with the processes

12/31/74

38 CRISP

..--, (TOP-LBVIL
IASSI
I AST I
IBS!I
I Slu I

r-> ICSS I
I I CSU I
I &.---J

I
...---,<P 1
I ASSI
I B I
I CSS I

r--> I X 1<-------·,--,
I It. I
I "---' I
I I

r- ·,<P11 ..---,<P12
I B I I X I
11SS I I DSSI
ICIU, I Y I
I I I r--)IDSSI<--,
,--' I I AS'I1 I

, L. __ ~ I

SDC '"-5455/000/00

I I
.--,<P121 ,--,<P 122
• A I IBSTI
• B I • I I
I X I I BS!,
• ASS I • I I
I Y I L---J

PiQure C

'IOCISS TRIB
'1IIIBtl 8110tlOS

Bouqh Dratt

-~

)

(

/'
r

(

scopinq and Denotation Rules 39

beinQ the nodes and leaves, the relation eabedded-in (or

parent-of) forl1nq the arcs, and the top-leyel collection of

ob1ecta for.inq the root node. Piqure c shows such a

confiQuration for the processes Pl, Pl'. P12, P121, and

P122. The boxes contain the processes' variable conte~ts.

The total variable context of a pcocess is the concatenation

of the (ordered) variable contexts of itself, its parent,

its parent's parent, etc., up to and including the top-level

set of ob1ects. (Since there 1s no naae duplication aaong

the top-level obi_cta, tbeir orderinq is laaaterial.) Proll

FiQure e, the procesaes and their total variable contexts

are:

Pl y, X. CSS, 8. 'SS. CIO, eSs. B'O, BST. 1ST, ASS

P11 X, elU, 1'5, B, t. X, e$s. 5, 'SS, cIO. eS5. B$U. BST,
AST, A's

P12 l'T. ess. Y, c.S. X. Y, X. CS, B, AS, C$U. ess, OSU,
BSt. AST, ISS

P121 J. ASS. X. B. A. AST, e$S, J, ess, X, Y, X, CSS, B,
ASS, esu, ess, BSU. BST, AST, ASS

P122 X. BST, X, BST, 1ST, eSs, Y, e.s, X, Y, X, e$S, B, ASS,
eSu. eIS, B$O. B.T, 1ST, lSS

A process aay be .oved

particular parent to beinq elbedded in another parent so

lono as the result still forls a tree (not a forest and no

loops). To ensure that the concept of a process's total

wariable context is •• 11 defined. ODe of the following two

conditions is necessary: (1) only one process a.y execute at

a <liven .o.ent. or f2) the followinq operations are

indivisible: biDding. unb1ndinq, referencing, setting. and

12/31/74

--------- ~--~- ----~----
------_._-

CBISP -- SDC Tft-5455/000/00

process eabeddinq. tbough tbe present systea design

satisfies the first c~iterion (because there are no explicit

gro,1sioD8 for parallelisa), the iaplementation will also

satisfy the second criterion in st,le and spirit, so as to

not exclude future possibilities.

!be denotation rule. operate at execution time, pairing

proper Da •• s 'a. deter.ioed by the scoping rules) with tbe

appropriate data objects. The denotation of all na.ea

except variables .ay be deter.ined at coapile time by the

scoping rules a8 deacribed in previous subsections.

A variable appearing in

variable) causes bindinq

bindinq mede (para •• ter or block

(adding of a na ae-Vd 1 ue pair to a

process's variable cODtext) upon entry to a function or

block and unbindinq UPOD elite Tbe other possible use of a

variable is in reference .ode. In this case, the proper

name ot tbe variable is used to search the total variable

context of the process containinq the ref~rence, for the

first b1ndinq whose na.e part is the proper naa. of the

variable. Depending on usage of tbe ~efereDce, either a

oopy of the yalae pact i. retrieyed or the value part is

set. Tbe rules of the CRISP language guarantee that .very

bindiDq contains a .alue part. thu., there is no such ran

ti.e diaqaostic as "reference to unbound variabl

Bough Draft'

/-~

\

r
\.

Seopin(J and DenotatioD Rules ~1

Tbe folio_loo table shows the binding objects referenced by

proper Yariabl@ na ••• when appearing in the processes as

shown in 11qure c.

• Jefer.need in Process
•

!.Ki.AlU..i* _J!.l...1 ell I P11-l-fJ1J1-RJl1.
I

At .. I ... I .." I P1211 .." I
BI P1 I P11 I .." I 1>1211 ... I
XI 1'1 , £111 I 1'12 I e121, .." I
Y I P1 I ... I P12 I '121, P1221

ISS, 1'1 I P11 1 P1 I 1'1211 P1 1
IS'f1 tl I tl I P12 I P12 I P12 1
B"U tl I tl I tl I tl I P1221
BSU I tl , tl 1 tl I tl I tl I
eSsl P1 , P1 I P12 I 1'12 I P12 I
CSUI tl I Pl1 I tl J tl I tl I

Process na.ea refer to last binding of the
appropriate na •••
tl - top leyel object
., - loeel variables do Dot reference naae

outside of process containinq reference.

Seopino and denotation strateqies of the kind contained in

this section are often called "dynaale seoping rules."

To enbance readability and co.pactness of representation in

CRISP proQra.s. an estensile coapile tiae substitution

aechanis. is included in the syate •• tranafor.

Sub.ti~at.. the for.. used as its arqu .. nts for its

par ... teta' names in its body. the transfor •• tion ls done

at eoapile tiae and the result is coapiled in place of the

oriQinal torm. For exa.ple, DEFAULT .ay be coded as:

12/31/14

42 CRISP -- SDC T~-5~55/000/00

TRA.SPOllt DEPAULT (1,8) DEFAULTI ("A, "B) i

The paraa.ter •• lues to a transfora are IL for as. They are

substituted into the IL form of the body. The substitutions

are done 1n "parallel" so that the actual values of the

paraa.ters do not caus. stranQe effects. Thus,

DllAULT X'A,I) aeans

DEF1ULTX("X,-(X t).

Transforas substitute through all node2 structures including

Quotes.

ftacro8 a180 pertora coapile tiae substitutions. A macro is

a functioD of one arquMent, an IL fora that has the macro's

naae as its fora operator. The .acro is called at coapile

tiMe. and its yalue is used in place of the original fora.

To write DBfAUlT as a aacro,

!lleRO Dill OLT (I)
LIST("DZPAULTI,LIST("QDOt!,CADB(X»,

LIST ("OUOTE, CADDR (X»)) ;

• aeaarator is used as a "bottoM up· aacro for foras that

require special handling. Exa.plea are IF, BEGIN, etc. A

description of the operations of qeaerators vill appear in

the docuaent, CRISP COMPiler and leseabler structure.

!acroa, transforaa, and qenerators are global objects. They

are used at coapile tia. ~heDe,et their proper naae, as

deteratned by the scopiaQ rules, appears as a forM operator.

SynODY.8. on the other band, aay be local or global. At

coapile ttae, whenever the scoping rules produce a proper

Rough Draft

Scopinq and Denotation Bules

na.e that is tile na •• of a synonYII" the value of the synonYIII

ia i.aedietely substituted for the occurrence of the name.

BIGI. St. S:uCAB(lOO(X,Y)),X:
l:-S+COS CS)

EID

is equivalent to

BIGIN I:
l:·CAl~ {FOO (X, Y}) +COS (CAR (FOO fX, Y») i

EIU>

Notice" a synony. letely does a substitution: it does not

I •• eaber the conte~t of its definition" and its use does not

inhibit multiple evaluation. (1 variable setting does all

this.) 1hus. if FaO has side effects, the two applications

of FaO in the ex •• ple la, produce differ.nt values.

Local synonyas have the saa. visibility (scope) as a local

variable appeatinQ at the sale spot. Global a1nonYls,

introduced by a declare fori, bave the same visibility as

function. aacro" etc., defined at the sa.e spot. SynonYlls

tav be used any.hete in reference lode unless specifically

stated otherwise. 80v8'1er, synony.s •• Y not be used as

substitations for nales appearing in declaration,

definition, or bindlDQ aode. llae, .ynonYls aay not be used

as substitutes for keyword naaea that have syntactic

siQnificaDce or where they introduce aabigui ty in

traDslatlDQ SL to It. III synony. substitution is perforaed

aftet translation to It.

12/31/74

CRISP -- SDC TM-5455/000/00

AD ova ,ariable a.chanis. is provided as a conv~nience tor

cartaiD kinds ef in which

coI.unic.tioD 1s n.aded between different calls on the

aloorithl. An ovn variable has only one binding; that is,

it aa, not be rebound. 1he declaration of an own is aadc

when a block variable is qiven the scope attribute, own.

The variable is ,1aible onl, in places where a local

,ariaJU.e appea.rinq in the sale spot would be visible: the

block vbere tbe declaration occurs aad nested blocks that do

Dot reblnd another wariable witb tbe sale (first) naae. At

coapile tiae, a preaet value is coaputed. Bntering the

block durinQ execution bas no autolatic effect on the

war iable' s value. However, the operation of state.ents

within the block aay chanqe its value. This use of own aore

closely resa.hles the PL/I S!A1IC attribute than the OWN of

ALGOL.

An exaaple use of an own variable is a prograa that

Qenera tea rando. DQlbers. 1 seed bas SOle preset ,alue.

Bach t1a. the qenerator 1s used, the seed receives a new

valu. 80 that the qen.cator will nct return the saa. thing

every tiae. The fcllowinq is an exaapIe randoa nuaber

qenerator that uses aa own:

FLOAt rUICTIOJ iAIDOI()
BIGII I.'1'IGI8 0'1 SBID::1;

SBBD:c(SI2D*'SS36)6&7PPfPFFFI;
BETUSI SIED*2.0**-31
EID:

Rouqh Draft

45

DECLlaltIOJS. DIFIMITIOIS, AND TYPES

This section describe. tbe uses of data types in CRISP. The

first subsection a.fines and explains the 8otivation for the

inclusion of types iD the language. Other subsections

describe declare for •• , definitions, ite. referencing,

processinq of declarations, and determination of exprp.ssion

tyoes •.

12/31/711

46 CRISP -- SDC T"-5455/000/00

A (data) type ia a collection of objects. The value of a

naae with a type attribute is restricted to a a.aber of that

collection. Tbe order of a type is the nu.ber of objects in

that collection. 1be order aay be indefinitely large, such

as for the Inteqer.~ or very small. such as for the boolean

collection that contains only two objects. In .ost

instances~ the order of a type is so.ehow restricted by the

size of the coaputer syatel at the organization of its

a.aory -. 32-bit word. 8-bit byte, etc.

ftost proqr.aaiog systea. not ooly allow type attributes for

na.es but require thea (aaybe i.plicit1y like PORTRAN's

first letter convention). Languages such as LISP vi thout

naae attributes are tbe exception. They are soaetiaes

incoI:rec tl y called ttt fpeless" 1 an quaqes. But if that is

correct~ vhat is the aeaning of such predicates as ATOft,

BUftSERP, ete? In fact, tbese lanquaqes should be called

"attributeless" laaq_Qes. The adYantaqes of giving type

attributes to na.es are nUlerous. 508e adYantaqes are: (1)

i.proyed efficiency becau •• the co.piler knows lo£e about

the situa. tion. (2) possibili t J of coapile as vell as run

tiN error checkinq ~ (3) cOllentary -- i.proyes readability

of proqra. IS. (4) coercion

reso1utioD of •• biquity, and

abstract lOlls.

auto •• tic type conversion, (5)

(6) i.proyed cepreseDtation of

An ob1ect lay be ato.ic or co.posite. An ato.ic object is

Rough Draft

Types 47

Dot decoIPosable into ele.ents by conventional techniques

such.a subscriptiaq or aaae qualification. said another

way. a field iD a co.posite data obieet may be changed by a

silPle assignaeat. Por exalple. in lost systems. floating

point ob1eet is etoale even though its sign. characteristic.

and I.atias. ate cOIPatable. The distinction between ato.le

and co.posit. ob1ecta is not sharp and depends in a large

aeasure apon the progrea.inq languaqe and its set of

priaitive8. A coaposite ob1ect is composed of ele.ents that

•• v be in~ividually referenced (and/or set) by cODventional

techniqaes. It is norl.l that all composite elements of

each ob1ect in a type collection have corresponding ele.ents

of each ob1ect that belong to a type collection associated

with that elelent.

CRISP end lost other proqra'ling languages use a data

structure ta.plate aa the .eth~d ~f describing the set of

oh1ects that belonq to a type. 1 set of basic types are

qiven. and nev types are defined as composite structures

whoae elea.nt type. are basic types or other user defined

t.ypes. An exalPle ~f a basic type is an inteqer. and a

defined type v~u14 b. an inteqer array or even an array of

inteqer arra ya. etc. The basic types provided are not

necessarily atomic (e.q •• aodes). However. when this is the

case the aotiwation •• y be efficiency or soa. other aspect

of lIDle.entatioD. On the other bend. allost no languaqe

allows tb~ definition of nev ato.lc types. further. tbe

kinds of co.posite ob1ects that are definable is usually

xestrieted. In CRISP. the only definable object structures

12/31/'4

fl8 CRISP -- SOC T"-5455/000/00

are ntoples and arrays.

A set of type collections fora a partial ordering

(hieEa~ch,) under the relationship of proper contain.ent.

Por exa.ple. the collection of inteqer arrays is contained

in tbe collection ot all arrays. Pigure D shows the type

hierarchy ayallable in CRI~P. An ob1ect in a lower type is

always convertible to a higher type without losing its

!deDtity (except for byte and half -- see below). That is,

an inteqer beinq "kept" under the type general would still

be detected by both the predicates INTEGERP and NUMBERP.

(Corresponding to each type shown in Fiqure D is a predicate

function that is tbe type aaae followed by the letter "P").

Downward conversion is not always possible. For instance, a

name is not convertible to both a function and a variable.

Conversion of on~ subtype of nu.ber to another is often

done. However. these conyetsion~ lose the oriqinal identity

of the ob1ect. Thus.

rITEGIRP(PLOATf4))

is talse. (This does not .ean that 4 has lost its identity

as an inteqer. Rather. the Hame value of PLOAT could just

as well be derived fro. PLOA!,4.0).) The following

paraqraphs briefly describe the individual type classes

shown in Fiq ute D.

Identifier types

Identifier ob1ects are local naaes and the pieces used to

build qlobal na.es. the type. character, contains the 256

identifiers with one-character names. Identifier objects

Rouah Dr aft:

(

r - .. -,
ID!IT1PIIl:l HODEI ARRlY'

I I I
I I I
I I I

CHAI1CTIB I STllllfG
I
I ,-......... • -+--------,

GENERAL
t
I

y-----....,,--......... ------ • ITUPLEl lU!!! BOOLEAR HUKBER , I
I I
I r +
I PLOAT IlIT.EG!R
I I
I I
I .---"'--,

49

,
HINDLE

-,
COMPLEX

IODI1 MODl a lODI2 • • • IOD!8 t BYTE2 HALF2
I

• • r -----+-.-... --,
SYIOMlft GINERATOR I "ACBO TRIISPOD!

I
I

,.---- -... --"'---..---,
PBOCESSOR' PORCTIOll VARIABLEl SPACE

TYP! HIERARCHY

fiqure 0

1 "Qat be suilspecifled. e. o. INTEG!R ARRAY (.) •

Z "ay only appear a. ale.ent type in a rra ys
and ntuples.

12/31/14

50 ellSP -- SDC T!-5455/000/00

are unique. That is. there are never two separate

identifier ob1ects .1th the saae printing representation.

Associ.ted with ea~b identifier is a systea property object

and a user property ob1ect. The systea property object is a

link structure used by the coapiler and the asseabler to

locate olobal na.es that ha,e the identifier as their first

na.e. The user property ob1ect i. provided 80 that the

prOQra •• er can build an associative aeaory using identifiers

as search keys. as in LISP. ~he individual characters in an

identifier's print naa. are not settable or referenceable as

they would be in a strinq. When an ntuple or array eleaent

is declared of type character. storage is saved by storing

only the 8-bit (one-byte) EBCDIC equivalent. (Identifier

ob1ects are stored .a 32-bit painters to the unique object.)

N ... e type.

The type. name. consists ot qlobal na.es. The subtypes are:

fUDction_ processor, (qlobal) variable, macro, transforM.

Qenerator. (qlobal) synon fll. an d space. The types

function, processor. and ,ariahle ate further 8ubspecitied,

i.e.,

I.rEGIR VISIleLI - variable with inteqer value

IITIG!R PURCTIOI(!L01T) - inteqer valued tunction
with one floatinq argument

PBOC!SSOB(.1~8) - processor with one argu.ent
of t ,pe naMe.

'ariables. function ,alu.s, and array and ntuple eleMents

.ay ha,. a type attribute of naae Ot a aubspecified type of

function. processor. or ,ariable. When used as type

attributes. the words FUIC, PROC, and VARB are used for

Rouqh Draft

(

-.---.--.------~-----------.---~.---.-. -------------------- ----- -- ------

Types 51

lUNeTIO •• PROCESSOR. and VABIABtE to avoid syntactic

a.bigut ty. Thus. the type at tribute of a variable with

values of the type

IlI'tEGEI Fa ICTIOI (fLOAT)

is vritteD

IIITBGER PUIC(PL01T) •

This differentiates a nalle that is a variable with

functional valuEs fro. a function naae (~bich is for .ost

intents and purposes a constant).

lIoolean type

The type. boolean. contains only two ob1ects. NIL and the

identifier TRUI. When ob1ects are converted to boolean,

everything exce pt Ill. is ch anqed to '1' ROE. When boolean is

used as an ntuple or an array ele.ent type, an 8-bit field

is used to conserve 8toraQe. BYen thoUqh boolean could be

considere4 as a subtvpe of identifier, it would be so

unnatural that it is not.

nandle type

A a.aber of tbe type. handle, is a process. That is, a

processor that bas been put into operation along with its

control state and variable context.

Muaber types

The type. nuaber. contains the three subtfpes inteqer,

float. and coaplex. Inteqer and floating objects are 32-bit

quantities in the atandar4 IBM 310 for.at. Coaplex objects

are pairs of floatinq point numbets. (It should bEl noted

12/31/74

52 CSISP -- SDC TK-5455/000/00

that coaplex objeots are provided only as a uset convenience

aDd are bandled very inefficiently. All coaputations that

have coaplex arqu .. nts or produce co.p1ex values .ake

fUDction calls.) .beD aD ob1ect Is converted froa one of

nu.Der's subtypes to another, it loses its original

identity. Thus, the value of

IHTBG!RP(lLOA~(q)

is false 1ust the saae as

IJTBGBRPCPLOAT ~.O».

Howe.er, the cODversion of an inteqer object to a number or

a Qeneral ob1ect preserves the ori;ina1 type classification

as an inteqer. (Siailarly with float and complex.)

The inteqer 8ubtypes,' byte and half, are pro.ided for

efficient storaqe of .aa11 quantities as elements of ntuples

and arrays. A byte object is an inteqer in the range 0

throuoh 255, and a balf ob1ect is an integer in the range

-32168 throuqb 32761. When a byte or half element is

accessed. it is imaediately converted to integer, and its

oriQinal identity i. lost. Thus, there are no such

predicates as SYTEP or HALPP.

Woden types

The type, no~en, i8 lade up of tbe eight subtypes node1,

node2. Rodel, Dode'. nodeS, oode6, node1, and node8. The

--~~-~----~---~~-~~~---

t rh... iateQe' sabtype. ate teally a co.bination of the
type attribute, inteqar, and a precision attribute. Since
the only precision ccntrol in CRISP is with inteqer aleaents
and then to only full, half or qUlrter words, liberty has
been taken.

Rouqb Draft

)

~
\
)

(
'-

!Tpes 53

type~ D04._ is exactly equivalent to node2, the binary tree

node of staadard LISP. The type. nodei, is like an ntuple

with i eleaents of type Qeneral. The elements are named

FIBST. SECOMD. !HI9D. POOBTti, fIlTH, SIXTH. SEVENTH and

EIGHTH. The fields of node2 ob1ects may also be referenced

with CAR - CDn primitives. The fields are referenced and

set as if the Roden object were an ctuple object with the

above ordinals as item names. However, NTOPLEP of a noden

ob1ect ia falae.

Arra y types

Array ob1ects are subtyped by their nuaber of dimensions and

the type of tbeir el •• enta; for instance, INTEGER ARBAY{.)

is a one diaensional integer array. In CRISP, the extents

of an array's diaensions are not pact of the array's type.

111 arraya carry diaensioninq information with thell. A

strinQ i8 a one dillensional array whose elements are

characters.

Mtuple types

An ntuple is an ordered collection of eleaents. Bach

eleaent has a type attribute, a na.e, and a repeat count

associated with it. Ituple subtyp •• are defined throuqh the

declare fora.

General type

The type. Qeneral. ia the collection of all ob1ects in the

CRISP syst.a. Tb. .alue of a variable with type attribute

Qeneral aay be any data obieet in the syste ••

12/31/74

----- ------ ---- ------- - -- ---- -- --- -- ----- ----------_._----. __ .---------_ .. ------- ---- ... _-- ._-

5~ CRISP -- SDC T"-5455/000/00

'type predica tea

For each type ShOWD in riqure D (page &19) (except byte and

balf) there is. type predicate tbat returns the boolean

value TRU. if it& arqu.ent is of the specified type and

returDS IlL otherwiae. The predicate na.es a re for.ed by

appeadlnq the letter "P" to the type na.e. Tbe predicates

are: IDIITtFIEBP, CBAB1CTBBP, NlftEF, FUHCTIOIP, PROCESSORP,

'lBIIBtIP, ftACBOP, tRIISPOB"P, GENERATORP, SYNO.IMP, SPACEP,

BOOL!l'P, HANDLEP, NODBNP, NODE1P, NOD!2P, NOD!P, NODElP,

NOD!4P, NODE5P, NODE6P, NODE7P, NODESP, NTUPLEF, NUftBERP,

IITIGERP, PL01TP. COft.tEXP. IBBAIP and STRINGP. 1 universal

type predicate, TIP!P, ia also provided. TYPEP has two

arQu.enta, a type and aD expression. TYPE' returns TRUE if

its arQu •• nt is of tbe sP41cifled type and NIL otherwise.

<tvpep>::-TIP!P«type-ref),<expreasicn»

<typep)::-(TIP!P <tYPe-ret> <expression»

1 <type-ret> ia aay 8J)ec1fiable type including an ntuple or

a subsDecified tunc, proc, Yarb.

subsection on the declare fora

or arra y. See the

(page 59) for foraal

defioitioa of <type-ret>. The following two for.s are

InUIBIIP (X) and

t"Y , IP UWft B Ba • X) •

ROUQh Draft

)

')
)

---------------.----------------

(

Types 55

Data Ob1ect Fora.ta

In the 8,stea~ obi.eta are represented by one, two, or four

byte nuabers. One and two byte nu.bers may only appear as

elements of arrays and ntuples to tapresent byte, boolean,

character and balf obieeta. In all other cases, objects are

represented by four-byte (32-bit) numbers in one of three

f oraats: (1) .3 2- b1 t tnteqee. (2) l2-b i t f loa tiner , and (3)

32-bit pointer with high ordee 8 bits unused. 1 pointer is

the byte address of the obiect. Except for integer, float,

byte. half, and character or boolean (when used as an array

or ntuple eleaent) types, obieets are implemented as

pointers. When an lnteqer (float) object is conYerted to

nuaber or qeneral. a copy of the inteqer (float) is put in a

special inteQee (float) space and a pointer at it is the

-value". Con¥ersion of an object froa one pointer format to

another (assuainq the conYersion is legal) is an identity

transforaation. Upward conversion (see Fiqure 0, page 49)

from one pointer type to another is always legal. Downward

conVErsion aay or aA' not be legal. For instance, a general

pointer at a aacro can be downward eonvetted to a name but

not to aD ar~a,. In error checkinq mode, all downward

conversions are diaqnosed for possible type aismatches.

The ob1ect, lIt, aay arise in any pointer type. For

exa.ple:

DICLaBI ILIS!(X I.TIGII, Y ILIST)

This d.cl.res ILIST

ale.ent. X, is an

pointer either at

to be a two el.ae~t ntuple whose first

integer. The a.cond eleaent, Y, is a

an ob1ect in tbe same ntuple subtype,

12/31/14

---------- ----~----- ----------------------- ---------- -----~ ---

56 CRISP -- SDC Tft-5455/000/00

ILlS'l, or at the object HIL. If NIL were not allowed, then

ILlS! would have to be a looping structure (80ae kin4 of

rioQ) and could not si.ply be a list of integers. However,

TYPEPIILIST.IIL)

is false. In qeneral. the ob1ect NIL appearing in a pointer

type indicates either the "terminal condition" of recursion

or partial initalization. When these cases can arise, the

user'. proqraa should check tor thell. 1nline structure

access code produced by the coapiler does not. (To do so

would cause an unreasonable expanlion in the size of the

qen.rated code.) The ob1ect, NIL, is represented by a

pointer at address O.

Type deteraination

This paragraph is a sltght digression from a caISP

description. The question investigated is wbether tbe type

of a structure should be deter.ined a priori by tagging or a

posteriori by inspection. With a PIiori typing, a structure

receives its identity ,type) when it is created dnd carries

that infor •• tioD witb it aa lonq as it .xists; even when the

.alue of an elea.nt i8 set. With a posteriori typinq, it i8

aasu.ed that (1) the type of an atoaie object aay be

deter.ioed by inspection. (2) the ele.ents of a co.posite

structure .a, be distinguisbed (froa each other), and (3)

therefore soa€! (total) elqorith. exists tba t deteraines

whether or not a particular object belOngs to a particular

type collection. The ba.ic result is that if (1) recursive

definitionaof type collection. Ire allowed and (2) tbe

valuea ot el.aents of coaposite ob1ects can be eet (for

80ugh Draft

(

(

Types 57

instance to for. rings. etc.). then a posteriori type

deter.inatioD is i.possible.

The first question to be addressed ls whether recursi,e type

declarations arE nec ••• ary or advantageous. Consider the

following. whleb defioes a list of integers:

INT.LIST=fIITEGBR.IMT.LISIIIIL]

Surely such definitioDs as this ought. to be allowed by any

aeneral aechani.a. The second capability. the ability to

chanqe tbe value of aa eleaent. i8 a180 necessary. Pure

LISP is an exa.ple of a language that does not allow this

(DO BPLACl or RPL1CD). but no one writes proqraas in pure

LISP except to pro,e a point or to use as an exa.pIe for a

proQr.a correctness tecbnique. III languages used for

serious proQra •• ing efforts allow eleaent settinq.

80w consider tbe above definition of an IIT.LIST. It says

that (with a posteriori typing) an object is an INT.LIST if

and only if it is a co.posite structure with two elements.

the first of which ia an inleqer and the second of which is

an lilT. LIST or IlL. Let x be a two element co.posit.

structure whose first eleaent is an integer. say 6. and

whose second eleaent is (a pointer at) the structure I

itself. Then the a posteriori type predicate could

deler.ine that x is an IIT.LIST if aad only if x is an

IIT.LIST. thus. it would be canli.tent to aay either yes or

no. Obvioaely. in this situation a convention could be

adopted. probably to say yes. However. let us alter this

exa.~le aliqhtlv:

12/31/74

58 CRISP -- SDC TM-5455/000/00

rYZ·rIITEGER,~ltzl

This says that a structure is an XYZ if and only if it is a

two ele.ent co.posite structure and the first ele.ent is an

inte~er and the second ele.ent is not in the XYZ collection.

low consider the two ele.ent structure described above: the

first el •• ent is the integer 6 and the second element is the

structure x itself. Now the a posteriori type predicate can

deduce that x is an XYZ if and only if x is not an XYZ.

To trace the steps that brought about this dile •• a: (1) a

recur.iye definition vas allowed, (2) a "blank" two ele.ent

strocture was created (and named xl, (3) the first eleaent

of x vas set to the integer 6, and (4) the second element of

It wa 11 :set to x itself. (These operations are in no way

different fro. creatinq a one ele.ent ring.) After these

operationa, ve atte.pted to deter.ine type membership.

Compare this to the a priori typing scheme using the same

elta.ple: (1) .ake the definition of XYZ as above, (2)

create a blank two ele.ent structure (named x) with type

identification IYZ. (3) set the first ele.ent of x to the

integer 6. and (4) atte.pt to set the second ele.ent of x to

itself. An error is i •• ediately detectable. Thus, the

abo.e contradiction is never generated.

ROUgh Draft

---_ ... _ ... _-----------

The Declare Fora 59

The <declare) tora is one of two a,1or .ethods available to

give qlobal n •• 68 type atttibutes. The otbe~ Bethod is the

definition Bechani.B de8c~ibed in the next subsection. The

declare fora creates top-level objects with the specified

BaBe a Dd type attributes. For variables. the top-level

value is oenerated as part of the binding. Data spaces are

declared using the function NEWSPACI (page 293).

"any probleas arise when the type attribute of a naae is

chanQed. Co.piled code and data .,y already reference the

naae and .ake 8ssu.ptions about the structure of the object

associated with that na.e. If the naae is qiven a new type

attribute. the aS8uaptions aav no longer be correct and aay

lead to unrecoverable ereors. The solution to this problea

that has been adopted is described below in the paragraph on

redeclarations. The rest of this section dssu.ea that the

declare for. is not doinq any redeclarations. See the

section OD data presets (paqe 121) for handling of initial

.alue assign.ent tc 4.c14[ed variables.

In aany circuastances. the type attribute of a naae is

deteraioed iaplicitl, by exa.ininq the first cha.racter of
the in a a.nner si.ilar to l'ORTtUN. The

(<i.~licit-for.> details the relation between the first

character of a naae and its implicit type. The syntax ot an

<i.p1icit-tor.> is:

12/31/74

60 CRISP -- SDC T"-5455/000/00

<i.plici t-for.>:: -IBPL ICIT S «i.p- t ,pe> ,S., -<i. p-ranqe >)}

<i.p-type>::=GEN!B1LIIJt!G!BIFLOA!

<i.p-ranqe>::-<character>CTHBO <character>1

<iaplicit-fora>::z'I""ICIT S«iap-type> S<iap-range»)

<lap-type>::=GEIERALIIWTEGBB,FL01T

<iap-ranqe>::-<character>1 «character><character»

For exaaple. to establish the noraal PORTRAN conventions

'where naaas can beoin only vith l-Z), use the following:

IftPLICIT 'LOAt(A THRU H, 0 THBO Z)
INTEGBR(I TRIU 5);

Ihen an iaplicit fora is executed, the default type of all

characters is initialised to general. Then the sub-phrases

are interpreted in left to right order. A range of a single

character aakes the ilPlicit type of that character the

epecified <lap-type>. 1 two character range .ak~s the

iaplicit type of all charcters whose EBCDIC code falls in

the inclusiYe range the specified type. Thus, these two

fora. are equivalent:

IftPLICIT fL01T(I TUBU I): and IBPLICIT PL01T(I);

1180. the system is initalized with either of the following

two exactly equivalent fot.s that .et the i.plicit type of

all na... to qeneral:

IBPLICIT: and I!PLICIT GBI!R1L(IIOO THRU I'FP);

An ilP11c1t forI! aay be uBed oaly at the top le,el; it aay

Rouqh Draft

(

(

The Declare FO'I 61

Dot be .abedded in other foras. Tbe function

GIIIIIL lUJCTIOI IftPtICIT(ID.C8IR.CH1B)

i. a 'fa ilable for d YDa aic use. Its first arguaent i. an

<iap-type>. aD~ ita other arquI.nts are the cbaracter

extrea. of the ,ange. T~e 'falue is IlL.

Syntax of aecla, •• aDd types

I <declare> tora olyes type attributes to global naaes. The

aoat co.aon u.aQ •• are to declare 'fariables and synonyas.

In addition. the <declare> fora .a, be used to give type

attributes to fURction and processor naaes. This is

aoa.tia.s necea.ary when forvard references .re .ade to

functions or proce.sota that are not defined ln the saa.

file a. the references. See tbe section on disk coapiling

(paQe 259) tOt lor. iaforaatian. A declare fori lust appear

on the top level; it .ay Dot be albedded in any other fora.

The syntaa of the <declare> for. and types is:

<declare>z:-DICLAII •••• <d.cl.r.tion>

<declaratlon>::=<8,aoa,a-dec>l<lite-dec>,<vlriable-4ec>I
<tuDctian-dec>l<processor-dec)

<synon,.-4ec)::-<sya-4ec>l<synx-4ec)

(sYn-dec>z'.SYlI <na. •• >~<torl>

<s,ux-dec)::-SYIX <n •••)~<expre.slon>

<fuDction-4ec>::=r<valu.-tJPe>1 FUNCtIoN <na.e>
<arq-type-list>

<value-type): :=MOYILUII <type-rat)

12/31/74

62 CRISP -- SDC Tft-S'S5/000/00

(proceasor-4ec>::-PROC!SSOa <nale>(arg-type-list>

<ara-type-list>::-,S ••• <type-ref» I
(S«type-ref>,}<type-ref> IID!f)1
(s ,<type-ref>,) <type-ref> LIST)

(Yariable-dec>::-(Yar-4ec>l<ntuple-dec>

(Yar-dec>: :-r <tyge- ref>](<qlobal-scope> J[VIRI lBU':]
<naae>[<pr •• et»)

<ntuple-4ec>::-[ITD.LI)[(global-scope>][VABI1BLI]<na.e>
r<itel-rep-count>[<i tea- type>]1 (group-def>}

<naae):~·<identlfier>l<qlobal-Daae>

«(flobal-scope>: :-GLOBAL

<preset): :. ~ «expression) •• }

<1 te .-re p-count)::- (' ••• [(integer> 11<integer)})

(itel-type>::-<type-ret>l<tlat-type>1
(qroup-def>l(short-type)

(OCO uP-de f>: : ~~ t ••• f< i te a- Da ae>r <i te 1-re p-co un t >]
r <it.l-type> 11 2

<ltel-na.e)::-<identifier>

<flat-type>::-PLAt <aa.ed-type)

(short-type)::-BYTBIHAL'

<type-ref>::=<naIEd-type>J<array-type>l<siaple-type)

<array-type): :-<ele •• nt-type> ABRAY <array-rap-count) I
STRIIG

<array-rep-count)::·C •••• «<inte9.r)/l<lat.ger>I·})

<eleaent-type>::-(type-ref),<flat-type>l<sbort-type>

<siaple-type>::=(qeneral-type>l<ldentifier-type> I
<Do4ea-tYP.>I<aale-type>.
<boolean-type>J<auaber-type>1
<handle-type)l<colposite-type)

(Qeneral-type)::-GBIIBAL

<!dentlfllr-type>::-IDII!I1IIRICH1RaC'fER

<Doden-type)::-IODIMIMODI1,IODE2110DIIIODE31
.ODI~JMODB5IMODE6'"ODI11.0D!8

<na •• -tvpe)::aNAftEISPAC!I<proc-tJPe)1

Roqqh Draft

.. ~

(

._------_.

The »eclare Pori

<func-type>I<,arb-type>

<proc-type>::~PBOC (arq-type-list>

(func-type>::-<type-ref> IOle (arq-t,p~-list>

(varb-type): :-(type-ref> .ABB

<boolean-type>::=eOOLII'

<nu.ber-t,pe)::=NOaB!BIIH~EGERIFLOATICO!PtEx

(handle-type>::=HAMDLR

<declare>: z- (DBCL11I! S(declaration»

<declaration>::-<.yncny.-dec>I<11ke-4ec>I(,ariable-dec>1
<function-dec>l(processor-dec>

(synonya-dec>::-(syn-dec>l<synx-dec>

(sYn-dec>:::(naae> 511 <fora»

<svnx-dec>: p: «naa. > S YIX <expression»

(like-dec>::=«name) LIIE (naae»

<fUDction-dec>::- «na.e> rONelIOR [<,alue-type) J
<arQ-t ,pe-list »

<value-type>::=IOV1LUBI<type-ref>

(processor-type>::- «<na.e> PROCESSOR <arg-type-llst»

<arQ-typ~-llst>::·(S<t,pe-r~f>
r (IN IU!' <t ype-ret» I

(LIST (type-ref»])

(variable-dec>::=<var-dec>,<ntuple-dec>

<var-dec>::=<na.e>' '<OI.e>lf'ARI1BLIJ[<global-scope>]
r <t ype-raf> l[<preset> 1)

63

<ntuple-dec>::-C(oaae>r.18IIBLI)[<qlobal-scope>]
f<ltea-tep-count>[<i tea-type> 11 <group-def»
r <preset> 1)

(~ <na.e>:: -<identifier>. (Qlobal-na •• >

<Qlotal-scope>::-GLOB1L

(preset>::=(SET ,<expression>I.})

12/31/74

------------~~- --~-.-~~

CRISP -- SDC Tft-5455/000/00

(itea-rep-count>::=(8IP '{<integer>' «integer><integer»})

(itea-type): :-(type-ref>1 (flat) I
<Qroap-4ef>t<short-type)

(qroup-def>::-(GROUP '«ltea-naae>1
«1 tea -n aae >r (it ea-r ep-count > J
r<item-type>])})

<1tea-naae>::=<identifier>

(flat-type)::-(PLAt <naae-type»)

<naaed-type>::=<naae>

<short-type)::=BttltHl"

<type-ref>::=<naaEd-typed>l<atray-tJpe>l<si.ple-tJpe>

<arr ay-type>:: - CAIIlAY (array- re p-couJ)'t><eleaent-type» I
StiIIO

<arraY-rep-count>::-(JIP '«integer>1 «inteqer><iDteger)I*))

<eleHat-type): :=(t ,pe-re f) ,<flat-t ype> I <short-type)

(si.ple-type>::=(qenerAl-tJpe> I<!dentifier-type> I
<ncden-type>l<naae-type)1
<boolean-t,pe>l<nuaber-typ~>1
(handle-type>l<co,posite-type>1
(fQnc-type>l<proe-type>1
<.arb-type>

<qeneral-type)::-GEIZBIL

<identifier-type)::-IDBITIPIERICH1R1CTER

<noden-type>::-NODENIJODE1IHODE2110DEIIODEJI
JODI4JIOD!5IMODB6tJODI7INOD!8

<naae-type>::=Jl!!ISP1CJI<proe-type>1
<tune-type>l(varb-type>

(proc-type)::c(PROC <arQ-type-liat»

<func-type>::-(PUIC <,alue-type><arg-type-list»

<.arb-type>::~('ABB (type-ref»

<boolean-type>::-eoOtIAJ

(nuaber-type>:%cIU!BJBIINTIGIRIPLOAtIC08PL!X

<handle-tJpe>::H1NDL!

Rouqh Draft

!
;

The Declare Pora 65

Declaration e.a.ple.

Sy several esa.pl ••• silPle usaqe ct the <declare> form vill

be aeaonatEateG. Folloving tha t, several pa raqrtl phs "ill

a_scribe the syntax ana usaqe in aore detail. In .ost

instances •• hortened type naaes such as INT ,for INTEGER)

viII be aM,d. Also. the shortened nase, D!C, wl11 be used

for DBCLl81. See Appendix IV (page 317) for a coaplete list

of leQal abbreviations. Ilso see tbe section OD seoping and

deDotation rules (paqe 25) for a description of the na.lng

con vent ions. Por this sectlon. it is assu.ed that the

(defeal t-fora>,

DErAULT USB8(OSII.CBISP):

is ia effect. Therefore. all na.es that are Dot explicitly

tailed (identifiers) vill be autoa.tically tailed with the

last n •••• OSI8. Tbe default <iaplieit-for.>.

111PL leIT:

is in effect. Therefore, all na.as without an explicit type

attribute are general.

EX.IPle 1:

Die lIt A. GII 8. 'LOA! C:~17:

Three qlobal ,ariabl •• , A. S, and C. are declared of type

inteoer. QeD.ral. 104 fl~lt. r.apectl,ely. A receives an

initial ,alue of O. 8 recei,es an iDitial ,alue of NIL, and

C recei' .. an iDltl.1 ,.Iu. Qf 17.0 (forced conversion) •

Ixaaple 2:

Die GLOBAL A. 'AII1BL! B. GLOBAL VIBIABLE C;

The three ,ariables, A. 5. and C. are all ~eclared of type

66 CRISP -- SDC Tft-5455/000/00

Qenetal with a preset of IlL. the scope, GLOBAL, and the

class na •• , VA8IABtl, are redundant but aay be used.

Exaap1e 3:

D~C liT IBSAt , •• *) A, A lRRAY (*) B;

In this exaapl,. the global variable. 1, is declared as a

two diaeas10nal inteqer array. the variable, B, is declared

as a one 41.enaional array wbose eleaents are the &aae type

as l. ~bat 1s, B 1s a one d1a.asiona1 array, each of wbose

elea.nts ia a two di •• o&ional integer array_

Ixa IPle ,,:

OBe INT A BBlt c*,.) lBBIY (*) S:

e has the saae aeclaratioD as in ex.aple 3 -- naMely, a one

diaens!onal array whoa. eleaents are two dia.nsion&l integer

arra,s.

Bxaaple 5:

will be substituted for

subseQuent occurrenc •• of tbe proper aa •• XSUS!R.

Exalllle 6:

BEe FLOAT FU.C(lLOa!) T8IGP:-COS:

TIIO' is declared as a variable who .. value ia a functional

that returns a floating value aDd receives a floating

arQaunt. The preset is tile functloa, cos.

ROQClJ:\ Dr.f t

\

!he Declare Par. 61

SynOD'. declaratioDS

A <sYDon,a-4ec) defines a qlobal naa. as a SlftOD,a. An

exaaple is 5 above. In the followinq. a (sYDl-dec) fora is

used:

The keyword. StIX. specifies tbat tbe .alue of the

ElPressioD "l+S*C· should be ia.edt.t@ly coaputed Cat

COMPile tiae). The walae is the fora that will be

substituted for appearances of X. Recall that synony.

substitution works OD IL fora. (or SL

translatioD to IL). The followinq two pairs of foras are

e(ulivlllent:

OBe Slft 1:-1+8*C:
Die StNX X:-"(PLOS A (TIKES B Cl):

Like

DBC sr. PI:=3.14tS9;
DBC SIIX PI:=3.14159:

<t.clarations

A <like-dec> specifies that

declared with elactly the same

naa •• Thus:

DEC X LIKE COS:

aeans that X is tbe na.. of

the first

attributes

a fUDction

naae sbould be

as the second

that receives a

foatiDG arqu.ent and returns a floatinq value. This should

be contrasted to tAe ••• of a na.ed type:

DIC cos X:

In tbis case. X la 4eclare4 as a qlobal variable whose type

attribute ia:

fLOAT lUJC{'L01T,

This would be the ca •• when one wisbed to write such foras

as:

12)31/14

68 CRISP -- SDC T"-5455/000/00

x:-cos or 1:-511

etc. Tbe second a ••• iD the like declaration (the type

"sender") lust be a variable, a function, or a processor;

other~ise, an error diaqnostic vill be issued.

Punction and Processor Dec.

A (fUDction-dec) aad a (processor-dec> give a type attribute

to ana.. a8 a 8ubspacified function or processor,

respectivelY. In a <function-dec> aeclaration, the optional

(type-ref)_ if preaent. specifies the type of value returned

bv the function. If Dot present, then the value is

deterlined as the i.plicit type of the nase. Thus,

DEC FUNCTION X(), INT lOICtIOH Y();

declares X to be a function of no arqulents that returns a

Qeneral value and J to be a fUnction of no argulents that

returns an inteqer yalae. A fUnction that returns no value

(li~e a PORTBlI subroutine) .ay be declared with a

(value-tvpe> of ROVALUE, in which case the function may be

called only as a statel.nt or in other ~laces where a value

is not needed. Since a processor has no value, none is

declared.

An <ero-type-list) give. the type of each arguI.nt to a

function or processor. ln <arq-type-list> aay specify that

there 1s an indefinite nuabet of argo •• nts. For exaaple:

OEe PLOAT rUJCTIOI Z(GIJ,IMT IIDEr);

The fUnction, Z, is declared to return a floating value.

Its first arquaent 1& of type qeneral, and there are zero or

aore arguaents ot type integer. See the section on

Rough Dr aft
--~-----------'.-

)

\

--'--'--~-

'lhe Declare Pori 69

det init 10DS ,paoe 97) foc lore infor.ation OD iodef
i arqUI.ate. \

'--

Type refa

A (type-ret) Is tho la10r syntax lechanisl for specifyinq

type attributes in CBISP. There are three kinds of

(type-ref>s: (1) (silpl.-type), (2) (nalled-ty pe), and (3)

(array-type). The silPle types are shown in Pigure D (pag~

The type of that nale is

"borrowed". If a (type-ref) name i8 a global nale, it is

used as is. If it is an identifier, then the standard

scopinG rules ace used to turn it into a pcoper nale. The

lost COllon use of a (type-raf> is to borrow a subspecified

ntuple type.

So.e conversion i5 perforled in this type borrowing if the

Da •• 1& a function, GtCCe80r, Ot ,ariable. By e~alple:

Die 111'1' I. 'LOl'f POIICTIOII Y (). PROCESSOR Z (GII) ;

DIC X A. Y B. Z C;

A. B, and C are variables with type. borrowed frail X. Y. and

2. c •• pactivel,. The .econd declare fori is equivalent to:

Die liT A, FLOAT rUMcn B, PBoe (GBI) C;

'that is. tlte type attribute of a variable i8 borrowed, not

the type of its Dale. BOllowed function and processor types

are co ••• rted to the corr •• pondinq fURc and proc types. See

the <like-d.c> for. for the otbet po •• ibility (page 67). In

the abo.e. B is a variable whose values are (the nales of)

functions of no arquaents that [.tucn float values. The

type derived frail a (type-ref> .ust be a leqiti.ate silple

12/31/74
----~--------------- - --- - ----- -- ----

70 CRISP -- SDC TM-S455/000/00

type. array t,pe, or a subspecified ntuple type. If the

(tYPe-ref) na •• 18 &ny of the excluded subcategories of name

'aacro. qen.rator. transform, synony., space), then the

(ty~e-r.f> type vill be converted to na.e.

<t,pe~£ef)s try to substitute i •• ediatel,. Thus, in

Die tiT I. 1 Y, Y Z;

1. t. aAd Z are inteqer variables. Y loses its identity as

an "X". and Z looses its identity as a "Y". Therefore, a

chaoQe in the declaration of X does not affect Y or Z and a

chanqe in the declaration of Y 40es not affect Z. The

exception to this is when a subspecified ntuple type is

borrowed. consider:

Die ILIST(I INT. Y ILIST), ILIST A, 1 Si

ILIST is a subspeclfied ntupl. wbcae type is also called

ILIST. The .ariables 1 and B are also subspecified ntuples

of type ILlS!. That is. if tbe value of ILIST, A, or B is

printed. the type identification would be ntuple of subtype

ILlS! (actually ILISTSOSB8.) I tedecl.ration of I would

have no affect on 8. Howewer, a red.claration of ILIST

would affect both, and a. their type would now be the

hidden version of ILlS!. See the section OD declarations

and tedeclarations (paqe 8.) for .ore infor •• tion.

lssu.e that the .a1oe of the variable 'is an ntuple of the

8ubtype ILlS': tben the value at

for •• is tRUE:

TYPIP(ILIS1SDSBR. "

-rtP!P (AIOSER. ')

all three of the followinq

Rough Draft
-- ~~----------------------------

)

/
(

"'---

Tbe Declare Par. 71

TtPBP(SSUSII. "

lIt i •• ece.sar, to explicitly tail the naaes in these for ••

only in context. vhere ILIST, A. or B have been locally

bound with other l.aaing8.) The <type-ret>s in the <typep>

fora also underqo i •• ediate substitution by the cOlpiler.

Arra, types and their uses in <type-ref)s are described in

the followinq paraqraph.

lrra y types

An (array-type) defines the type of the array's el.lent.

and the nUlber of dll.nalons. An array declaration aay or

aay not include infor.atioD on the extents of the indi.idual

4ileD8ions. How.ter. this inforaatioD is not considered a

part of the array's type: it is used only for allocation.

When not specified. the lowest suhscript value is aSBuled to

be the yalue of the ,ariable LOVSUBSCBISP when tb. type

definition is cOIPiled. The systel is initalized with

LOWSOB:-1

in effect. '1'hus.

Die 11'1' ABBAY,.) A:

aeans tbat A is a on. di.ensional iDteqer array whose first

ela •• nt i. A['1 and that 1 ha. an unspecified nu.ber of

ele.ents. '1'0 specify the actual ranqe of subscripts, use a

pair of iDteQerS separated by "I".
Die Ilf lBBIY (01256 /11) .:

The first DUlber of the paiE ia th. lowest lubscript value;

the •• coDd is the extent of the subscript (not the hiqhest

8ubscript value). Thus. I is a 256 by 11 iat eger array.

!be first sabscript ranqes between 0 and 255 aad the second

12/31/74
----~-.-----.---+----,----------.-----.-------'--.-------- ----- -".---~---------------~--.-.~-~.--.,-"-"-",-

72 CRISP -- SCC TM-5455/000/00

tetv •• n -4 and 12 fbotb Eanqes are inclusive). If a single

nUlber is used as a dilension, then that nu.ber is the

extent of tbe diaension.

DBe liT UU.U! Cl4,17) A;

aeans that 1 is a 14 by 17 integer array. The first

subscript ~anqes bet •• en 1 and lq inclusive and the second

betweea 1 and 17 inclu.ive. the tbree kinds of dimension

specification aay be .ixed in a single declaration.

DEC IUT I BBAY (0/256,10 ••) 1;

1his declares A to be a three di.ensional integer array_

The first subscript tanqes between 0 and 255, tbe second

between 1 and 10. ana the third between 1 and the actual

extent of the arEay'. third diDenaion (all ranges

i nc 1 u si ge) •

Is stated previoualy, the eleleat type of an array can be

byte o~ balf. 1 byte arra, is an array whose eleaents are

a-bit un8i<loed inteqera, and a balf array is an array whose

.leaents are 16-bit (half word) signed integers. Using byte

and balf array. la' •• storage. Hove fer, there are

penalt lea: (1) it tak •• aore code (both space and ti.e) to

acces. U:eference or set) byte ele.ents, and C2) .ost

operetioDS with balf quantities are slower than the

correspondinq operat10.B with ioteqers. Por thes. reasons,

it is sUGaested tbat I'tIGIB array. be used unless a larqe

SP4ce savinGS will be achieyed asing the sbort types, byte

and balf.

-rhe array subtyl'e. strinq, i5 exactly equivalent to

Roagh Draft
--------- .. --------,----.--.----~.-----------.------------ ----_._-_._------_. -------,. ------ ------

\
\

.. ~

\

)

\

l

The Declare Pora 73

CH1BACTE& aBRIY,.)

That is. a strinq is a one dil.naional array whose elalents

a re character •• the i.d1.idual ale.ents aay be referenced

- and &et by the standard subscripting aecbaoisa.

The type of an array'. ele.ents aay be declared flat. The

word. FLI~. bas no aeaning unless the <naled-type) is an

ntupl.. thus, these two declare foras are equivalent:

Die lIT X, lLAT X lBlllY f.) 1;

Die IMT I, X ARBl! '*) 1:

In both cases, A is a oDe dia.nsieoal integer array. The

followioQ two fort. are different:

DIC FOO<I IMT, Y IMT>.
1'00 ARR1Y C2) I;

Die '00<1 liT, Y lIT>.
PLlT peo 18811(2) A:

PiQure E shows the difference. The top diagral corresponds

to the first declare fori with the unflat ele.ents. The

bottol diaQral oorresponds to the flat elelent case. The

flattened representatioo obviously conserves storaqe (8

words .s. 1q words including the attay and ntuple headers).

HOweyet, the unflattened representation allows aore general

proCeSSlnQ. Tbe array el •• ents in the unflattened case aay

be processed in~ivldually. For e~a.ple,

vhere B ia a variable with type attribute POO, would aake

the 1Ia lue of B a. pointer at the sate structure aa l(1]. If

1 is flat 11 as in the second diagraa, 't be above assignaent

WOQld be 111eq.l. A copy of the pair, A_X[1] and A_Y[1]

could be aade using the atuple copy priaiti,es. See the

12/31/74
---- ---- --- -- ----------- -- ---------- -------

74 caISP

1->. . -,
I If 11 --> r" , <-A[1]
1----1 I A_X[11 I
I l[21 -+-, .. --_.... ,
, .I I I A_ T r 2] ,

1-) r-·· -,
I '-Y[1 1 I J ... __ .• , ..,
1 1_ Y[11 I
J- ··4
I A_XC 2] I
1--_.. -of

A_Y(21 I
• _. ,J

I
I

L. ___ ~J

'-->r- , <-A[2]
I A_XC 2] I
•. - - f
I A_ l[21 I L _______ .J

PtA! 98. ION-PLAT JBRAtS
Figure E

section on copiers (page 255) for lore details.

atupl. declarations

An <ntuple-dec> gives a yariable n •• e a subspecified n'tuple

type attribute. further,. naa. with such an attribute a.y

be usea, as a (type-ref>. to confer the saae attribute on

another n •• e. Itupl •• are co.posite objects. An object in

.. particular ntople 8ubtype has a fixed nu.ber of elements.

lach ele •• at has I al. •• and a type attribute. an~ the

eleaent. occur in a particular. specified order. The nale

of an eleaent is a co.bination ot iteR qualifiers (other

item names) and subscripts. The foraatioR of an element

Rough Draft
-----------------------------.----------~------------------_ •.... _----------... ---

)

j

\
"'--..

The Declare Pori 75

naae ia described in detail in the section on item

t:eferencinq and subscripts (paqe 88). (The terlls "it.aftand

"elelent" are used interchanqeably in this section and

tbt:ouqbout this docua~nt.) The teta field refers to the

occurrence Qf an elelent.

Rtuples .ay be att:Qctured

siaoleat case, an utuple

in a •• riety of ways. In tbe

is merely an ordered tuple with

siaple elesents. for exaaple:

DIC N<X INt, J PLOAT, Z NODE2>;

N is declared to be all ntuple with type N. (Actually, the

variable. .SUSES. is declared to be an ntupIe with type

attribute •• USSR. assuming that the original default form is

in effect.) I ia an ordet:ed 3-tuple; the first el.sent

(nased Xl is an integer. tbe second elesent (nased J) is a

float. aa4 the third ele •• nt (named Z) is a binary node.

Ex.aple values of the ,ariable N are:

UI'USER 27 -13.81-ti (I Y Z)}

USUS!R -13 1701.2 (1'- • 17)}

~hen an ntuple structure of type' is created, the initial

value is:

"'USER 0 0.0 lIT.)

!he eleseats of an ntuple ma, be repeated. Howeyer. the

nUlber and extent of the repetitioas aust be specified when

the declaration is co.piled. (Tbe~~fore. there is no option

to u.e "*" as with a~ray declarations.) For exa.ple:

DBC 1<1 lIT. Y(3) FLOl1. Z 10012>;

• is declared to be a S-tuple.

yr21, Yf 31. liD Z, where X is

~he ele.eats are

an integer, 1[' J -

12/J1/14

x, l(1 1,

Y[3] are

76 CRISP -- SOC T!-5455/000/00

floats. aad 2 i. a binary node. lote, Y itself aay not be

iadepand.atl, referenced. In exaaple val~e of N is:

(ISaSIR 1 3.1 -4.5 1.0 fA B) I

Bepeatint el.aent declarat.ions reaeable array declarations

in that either the extent or the lowest value subscript and

the exteDt of a repetition aay be specified. If the lowest

value subscript is Dot specified, then the value is assuaed

to be the value of the ,ariable, LOWSUBSCRISP, when the

declaration is coapiled. The initial ,alue of LONsue is 1.

for exaaple:

DIC H(1(O/2,~ 112, I FLOAT>;

H 18 declared as a 5-tuple with the eleaents IrO,1], 1[0,2],

If 1,11. X[1,2 1, and I. An exaaple value of N is:

I~SUSIB 1 2 3 4 S.O}

Ntuoles .a, also be partitioned into qroups.A qroup is a

collection of el.aents and other qroups. For exaaple:

DEC COUPLE(!AH(lG! II~, H1ft! ID>,
WOI1M<IGB lIT, Ml!1 ID»:

In this ex.apl., COOPLE is. q-tuple with the el •• ents

M11_IGE, KIN_HlftB, VOS1I_AGE, aDd 808AI_MA"I. ln ex.aple

COUPLE is

fCOUPLBSUSBR {ftll 37 'R.ltJ:}
fiOR.' 13 "ARY}}

Groups aay also be repeated. ~bi. aas the effect of

r8peatillq all the el.aents and Cjcoups that aaka up the

Die COBII&<STOPtICBT IOOLEII.
StBEIT(2)<1I1ftE ID_ SQIF~CE ID»;

COalll! is a S-tuple with tbe ele •• nts STOPLIGHT,

STREBT_IAMlr 1 1. and

STREET_SURFACB[2]. ~a exaaple yalue 1s:

ROuQb Draft

(
~.

'the Dec lare Fora

rCO •• BRSU5SB TBU!
{StBBET MAPLE eO.CRETE}
{STREET lUIN TAR}}

71

When the extent of repetitions is not known, an array may be

used as an atuple el •• ent, and of course. if necessary, the

eleaeDts of the arra, aa, be ntuples. For exa.ple:

Die lOBD(PBIIT ID, SPELL PHONE lBRlY(*»,
PBOJ!(GBAPHIC ID, fEATURES 10DB>;

WORD is a 2-tuple with the elements PRINT and SPELL. An

ex.aple value of WORD is:

(WORDSUSER TBEN
IPHOll!tUSBR ARRAY (3)

(PSONESUSBR 1 (ALVEOLAR PLOSIVE)}
{PHOI!SUSEA IY (VOWEL BACK)}
(PHON EIUS!B N (NASAL ALVEOLAR»))}

Mtuple. aa, contain qroups nested to any depth, any of which

aa, specify any nu.ber of repetitions. The net result is

that to access an ela.ent, it i& necessary to use the total

nuaber of subscripts specified by all qroups cCDtaining tbat

ele •• nt and the el •• ent itself. For example:

OBe 11(1 117,
B (5) GII,
C U. 2) (0 fLOAT,

E(q) ID,
r(17)<G lilT, H(6) 1II0DB3»>;

I is. 7S0-tu,l.. Tbe ele.enta ate (not in tbeir order of

occurrence) i, B(11 - Bf51, C_Df1,1J - C_D(3,21. C_!f 1,1,1]

and

C_F_Hf 1,1.1,11 - C_P_8{ 3.2,11,61. the order of occurrence

of the eleaents is

12/31/14

18 CRISP -- SDe T"-5~55/000/00

1.
Br 1 1 - Br 5 1

O[1, 11
Ef 1 • , • 1] - If 1" 1 , 4)

G[1, '" 1)
Hr 1 ,,1,1,,1) - ar 1, 1, ',6 1
•
" Gr 1.1,1,171
arl.1,17,1) - 8[1,1.17,6J

"
• or J. 21

Er 3 .2 • 1] - If 3. 2 ." 1
G(3. 2, 11
a r 3 .2, 1 , 1 J - Hr 3, 2, '. 6 1
•
" G[3. 4.17]
arJ.2,17,,11 - 8(3.2,17,6)

The eleaents and groups are repeated in their lexical order

of appearance, with the last (inner) subscript varying most

rapidly. When a group is repeated, All of its elements and

groups are also repeated. It is necessary to know the order

of occurrence of eleaents only if binary data are exchanged

with programs that are not written in CRISP.

ln itea'. type aay be oaitted. When th is is done" the

ite.·s type i8 the implicit type of the item's name. Thus:

IIIPLICIT PLOIT (A TO H) 11'1' (I TO It,:

DEe M<l. I, 0):

is e<l1l1 yalen t to:

DEC I<A FIClr" I tiT, 0 GEl>:

A aroup aay he created in an ntupl. by using a flat type.

(As with arrays, the vord. PLAT, doe8 nothing unles8 the

named type is a sabspecified ntuple.) The folloving two

declare foras define ! as an ntuple vi th identical

structure.

Bough Draft

(
\

(

The DeclAre ForM

DEe 1<1 INT. Y FLAT ">. ft(Z PLOlT. Q ID>;

DEe M(X lIT. Y<Z FLOAT. Q ID»:

79

In both cases, the el •• ents of I ate X, Y_Z, and Y_Q. With

the following declaration. the ele.ents of N are I and Y:

DEe "(lINT. Y K>, e<z PLOA!, 0 ID>;

However. the eleaents of ! aay still be referenced with the

saae qualifier seQuences as in the above t~o examples,

na.el, Y_X and I_Q. See the section 00 item referencing and

subscripts (P8Qe e8) fOt aore details.

lssuae that ft has heen declared by:

DEC ft<Y GEH, Z 181>;

then rlqurQ F skovs the structure for each of these four

declarations of J:

I. DEe N(1 INt. B(2) ". C PLOA~>:

11. DEe N<l IMT. B (2) PLA T ". C PLOAT>;

II!.. DEe I<A IMT. B ft UB1Y(2). e FLOAT>;

IV. DBe 1(1 lIT, B fLIT" lD9AY(2). C FLOAT>;

the following describes the properties of each of the four

N's. the size computations are given. assu.ing that the

reoeat count bad been "n" and specifically for D=2 (as in

thti actual exaIPles). Sizes incluae all array and ntuple

header inforlation.

I. 1 3-tuple
Ile •• nts in If - 1. B[11. B[21. C
Total 8ize·5D+~. n-2 size=1~ words
Beferencealll. fields - A. B{ 1], B_Yf 1], B_Z[11, B(2),

8_ 'If 2], B_ Z[2 1. c

II. 1 6-tuple
EI._ents of N - 1, B_f[11 .. 8_Z£ll, 8_Y[2l, 8_Z[2]. C
total size=2n+~. n=2 size=8 wor~s
Refereocea hle fields - A. B_ Yf 1 J. B_Z[1]. B_Y[2 J.

B_Z[2]" c

12/31/74

80 CRISP -- SDC Te-5455/000/00

,..-----,
r----, r-)I 8_ ye 1] I 14(1 I HT. B (2) 11. C PLOAT>
J A I .-----1
J--- - .,. I I B_Z£ 11 I
I S[1 1 -+-' "--_.I
• --f
I er 2 1 -+-, r ,
~-----4 L_>I B_If II t
I C I '---of
L--... ...I I B_Z[21 I

L __ ..

..-- ,
I 1 I N(A lit. I (2) fLAT ft. C FLOAT> ,-----4
I B_If 11 I
.. I
I B_Zr 111 ,----..
I 8_1f21 I
• --I
I B_ zr 21 I ,-----4
I C I
• • NI •• .I

r----,
..-) I B_ I [1 J I

r----, I r-- --,
I 1 • ,-'-----" I I 8_ Z[11 I ... ,.....----1 I Br 1] -.f-.I '------'
I I! -+-->. ..
.... ----I I B(2 1 -i-, ,..-----,
I C I • ; .. 1.-) I B_ Y r 2 1 I
'---.. _.... t-- f

I ft_Zf 21 I I. ______ .j

r---,
,-----, I 8_ If 1 1 I 1<1 liT,

11(1 INT,
B " 11 BA I (2) ,
C FLOAT)

I 1 I t--------~
t-_· , I 8_%[1) I

B F LA T It 1 R RI! (2) ,
C fLOAT)

I B -+-----).----- ..
t-----t I B_tr 4) I
I C I .------1
'-______ .1 • B_Zr 2] I

L_ _.I

ITOfLI .D~ lRRAY STIUCTURES

riqute r

Rough Draft ._-_._---------_.------

)

\
)

(
"' ..

(
\

'--

the Declare Por.

Ill. 1 l-tuple
Il ••• nta of • - A, S, C
Total sise-Sn+9, 0=2 8izG&19 words
leferenceable fields - 1, B. Sf 1], B_ y[11. B_Z{ 1],

Bf 21. B_ Y[2]. 8_ Z[2]. c

IV. 1 3-tuple
Ile •• ats of • - A, 8. C
Total 8iz.-20+9. 0-2 size: 13 words
leferenc •• ble fl.1ds - 1. B. B_YC 1], B_Z(1 J. B_Yf 21.

B_Zr 2]. c

81

As can be aeen fro. Piqare 1 and the above, there are a

variety ot 8izes, shapes. and refereneeable fields.

depending on which of the four declaration foras is used. A

virtue of aaking B an array is that the number of

reoetitioDs need not be known in advance. Declarations III

and If are then written:

Die 1<1 liT, 8 I ABBAY(*). C fL01T>:

DIC 1<1 lIt, B ILAT ft lRR11(*). C fLOAT>;

When coas.ryation ot storage is a factor, then an analysis

of which fields need to be referenced should be made to

aeteraine which u.able representation is the lost co.pact.

When the nu.ber of repetitions is known, use a repeating

ele.eat or Qroup iDst.ad of an array. (This effects a ainor

savinqs of 5 words per stcucture for single repeats.) Also,

when possible, use a flattened representation. (This saves

3D words per structure when there is a Single repeat of a

QEOUP of oeder D.) Further. to aid in para.eterizing

storaqe declarations, s,nony.s with nu.erical valu~s .ay be

used to specify the eateat and lowest subscript of a

repetition 1D aD array or an ntuple~ Howeyer, if the yalue

of the synony. ia che.Qed, then it is necessary to recoapile

the declarations and the code that references the ••

12/31/14
------ -- ------- - -~--.--- - -

.-----"._------------ -- ----, ... --- ------- .. ~--~------

82 CRISP -- SDC T8-SQS5/000/00

teclaratioa III abo,. is tbe lost flexible. Whenever

storage cODser.ation is not a aaior concern, or when it is

hard to predict in advance the ways in which a structure

will be a.co.posed. do not use flat groups but do use arrays

for regeats. Tbe referencing and 5ubscripting aechanisa has

been desioned to allow convenient switching aaonq the four

style. of declarations without cbange to prograas that

reference the fields that are still reachable. Thus, the

storaqe layout aa, be optimized later, after all the

e'l idence is in.

Ituple types aay be defined recursi,ely. For exa.pIe:

Die ILIST(I IMT. L ILIST>;

This a.fi.e. ILIST as a 2-tuple with the elements I and L.

The value of the ele •• nt t aust be either an ntuple of type

ILlS! or MIt. Sal. examples of ILIST structures are shown

iD Fiqare G. !he firat diagram is a list of integers. Its

exte~nal. printing representation is:

(ILISTSUSEB 1 (I£ISTSUSIN 2 {lLISTSUSER] NILl}}

The second ailora. is a silple thEee eleaent ring. The

third diaoral shows a 80rt of cOlbination of a list and a

rinq. The printinq representation of both the second and

third ex.aple is:

(1L1SfSU5BB 1 fItISTSOS!R 2 fILISTSOSEB l .CIRCUL1R.}}}

ID so.. instances. a flat type and a recursive definition

are iacoIPatible. An obylous exaaple is:

DIC 1£15!<1 1 .. '. L PLAT ILIS!>:

other exa.ples can occur wheD definitions are mutually

Bough Draft
-~------------------ ----.------------ ~- - .------------------- -----~-- -

/

(

(

The Declare Pot.

...... ---,
I 1-1 I
"'---1 r----
I L= -+->, 1*2 I
I, .J 1-. . , r--,

. ... '...,
I L= -+-> I 1= 3 I
..... ---' • f

I L= 0 I
.. ---~

I 1-1 1<------,---------------,
J---t • ' ,
I Lz -+-->1 1-2 I
&.. -' 1-----1 r----'.

..----,
I 1-1 1

I L:' -+-> I I= 3 I t
'------' • - f I

I L= -+-" L ____ .J

t----I ,.... •
I L- -+-> I 1-2 1<----,
.. . -" • ' I ,.----, I

• t- -+->1 1= 3 1 I
'------' • f I

I L= -f--I
L ____ .I

ILIS'f !IUtPLES

Piqure G

recursive. Par instance:

Die 1<1 liT. L PLAT B), B<P PLOAT, L PL1T A>;

83

The probl.a, in botb ca ••• , atiaes witb the recursiye

(circular) definition beeaose, at soae point, a flattened

ntQPle auat be inserted into "itself" an indefinite nu.ber

of tl •••• This Is obviously an ill-defined situation.

Three 1e4.1 exa.ples ate:

12/31/74

84 CRISP -- SOC T8-5455/000/00

DIC 1(1 11fT. L P. B<P PLO AT, LA>:

DEC 1(1 IMT, L PL1T B>, B<r PLOAT, L A>;

DBC 1<1 lIT, L B>, !(P PLOAT" L FLAT A> ;

figu.re B portrays these thtee exalples. The le f t box in the

top diaqraa is an 1 ntupl. and the box on the right is a B

ntople. The field L_L aay either pOint at an A ntuple or be

MIL. '!he second tliaqraa corresponds to A in the second

exaaple. wbere B is flattened in A. The field L_L is a

pointer at anotber A or 1s MIL. The left box in the third

diaqraa corresponds to A in the tbird exaaple, "here 1 is

flattened in B. The right box corresponds to a B ntuple.

The field l_L_L either points to a B ntuple (like the tight

box) or ia NI L.

DeclaratioDS and Bedeclarations

As 8 qeneral rule. all aa ••• that lake up Cl CRISP

declarat ion or definition lust have been qi yen type

attributes before the, are used. The exceptions are the

keywords in the lanquage such 8S DECLARE, +, BLOCK, and

nases that appear in a positioQ where they are given

attributes such as V. V, X, and Y in this axaaple:

DIC , ltiT:

IWT fUNCTION I(X)
BIGI1I FLOIT Y:

BZ"UBlf X+l
BID:

This .ay cau •• proble.. When several functions call each

other tecaraively or when declared types .ake circular

teferencea to each ot.her • Also , t bere aay be 8 desire to

vrite fUDctions in a "top down" •• nner, which would cause

forvard referenoes. One method of handling these cases is

Rouab Draft

\
I

/

the ~eclar. For. 85

,... .
I I I 1---" r---,
I L -fl-----,). L_ f I ._.J

. -"
• I J
I--.f
t L_P I
l--.f

1----....
I L_t t--->alternate Is and Bs
.. J

, L_L-+--->another 1 structure
'--_J

,..---.
I I I
1--- . .. r---,
I L -+---), L_P J
,_ _ J ._ _,

IL_L_I. t __ .f
IL_L_L+--->another B structure l __

IICUBSI'! FLITT.IING

Piqure H

to write a <declare) tor a that 01 ••• the attributes of all

function ... es before the definition of the fUQctions. This

is .~r, cuaberaoae. Tbe coapiler belps all •• late this by

operatioo a declaration p •• _ on each file. When a file i.

co.piled. all SL is translated to lL. All <declare> foras

are then 10ined tOQetber with all definitions. It this

point. all the na.es are gigen their attributes

In .1qur. 8 (page 35) a definition of the

functions SUBST and SUBST1 vas 9iv~D along with a <declare)

12/31/14
~-- ,~------------,-------,---.----------

86 CBISP -- SDC Tft-5455/000/00

for.. The definition pass processes the derived fora:

DEC GIN ASSYS, GIN B'SYS,
GEM FUMCTIO. SOBST1SSYS(GEM),
GEM fUNCTIOII StJ8STSClHSP (GE N ,GE M ,GE N) :

In interactive mode, becaose there is no file to process,

foras are processed one at a tiae. However:, all nales given

attributes by the sale <declare> form are handled in the

same fashion, siaultaaeously. Therefore, up to the order of

preset cOIPutation, it never latters in what order the

declarations appear in a <declare> fora.

lnother problel ari... wben na... are redeclared with

different attribute.. Coapiled code and data structures lay

reference the naae and .ake assumptions about the naae'.

value. to silllly redeclare the naae could lead to

unrecoverable proqrat cbecks. To avoid this, a "hiding"

aecbanis. bas been created.

Associated with eae' (global) oale is a binding (with a

value cell) aad a sYlbol table entry. The sy.bol table

entry includes, aloaq other thinqs, the nale's first naa.,

last na.e, type attribute. and 80a. descriptor bits. Also.

all (unhidden) na •• structures with the sa •• first nal. are

linked tOQethet. When • na •• ~ith a type attribute is

redeclared with a different attribute, the present structure

associated with tbat nale is bidden and a nev naae

structure. with the aaae first and last naae, is created

with the a.v attribute.. All code and data references that

existed before now poiat to the hictden structure. All nev

referencea point to the new structure.

Bough Draft

)

)

(

The Decla re Fora 87

Part of toe operation of tbe declaration pass is determining

which na.es are to be hidden hecause of redeclaration.

Before .akinQ the declarations, all of these na.es are

hidden, and all references to them in the IL are changed to

point at the new structure with the same name. Then all

declarations are made. After this, the rqpresentations of

all constant ntu~les and artays vitb ntuple elements are

made into the proper data structures. Compilation of It

follows tha same general pattern: a declaration pass

followed by constant conversion. for use~ prograas that

Qenerate IL proqraa. and cause them to be cOlpiled, some

primitives are available. Howevac, they do not operate in

as aeneral a lanner. That is, they will not tolerate

redeclar at ions. When necessa cy, these genera ting prog rams

must e~plicitly bide the name beinq redeclared using the

fUBctioD HIDEN1!E (see below).

The process of hidinq & na •• is si.ple. First, a bit in its

s,.bol table entry i8 set to indicate that the O&lIe is

hidden: second. the nae structure is removed from the list'

of all structures with the same first name. Thus, the name

is no lonGer found by the noela1 aearching alqorithms. To

explicitly reaov. a naae and its associated Yalue object

ftoll the syate., use the function:

NAM! 'UNCTION HID!.l~!(JAft!)

This hides the nale. ihen there ate no lonqer code or data

references to the bidden naae, it vill be reclaimed.

12/31/74

88 CRISP -- SDC Tft-5'55/000/00

This section describes the sYDtax and mechanisa for

refeJ:encinq and settinq ntuple and array fields. A field is

an ele.ent in a particular ntuple or array. The syntax has

been de.ioned to per.it declarations to be modified fro.

flattened to unflattened form and from repeating groups and

elements to arrays .itbout chanqinq programs that have

alteady been written.· Of course, the proqraas containinq

such references would Deed to be recollpiled because the

field references would DOW have a different leaning. The

syntax for referenclDQ Dtupl~ fields when not subscriptinq

is:

SL

<field>::=<ntuple-expression>,. __ <itea-name)

·IL*

<field>::= er _ l<ntuple-expression> _<item-naae»

In <~tuple-expre.sion> is any expression whose value is an

ntuole and whose exact subtype is kno.n ~t coapile time.

For exaaple. qlven:

D!C 8<X Ilt. Y lt01T># • ft;

the variable. • and would be instances of

<ntuple-expre •• ion>8 with type I. In this section,

variables .ill be used a. <atuple-expresaion>s. lor more

c08pllcate4 exaaples. see the section on expressions (page

130) •

Rough Draft

)

')
/

-------- ..• -----~--~

\.'--

Itea Refereacinq and Subacripts . 89

In the above el.aple, tbe elements X and I aay be referenced

in the atuple H as the fields ._1 and I_I, respecti.ely.

SiailArl,. for the ntuple ft, write ft_X and "_Y.

I D this It-tupl.:

OIC I<X. Y. Z(l, I»:

the fields are N_', I_I. R_Z_I, and N_Z_X. It is also

peraissible to reference tbe fi~ld M_Z_A as M_le But the

field I_Z_I .ay not be referenced as I_X because there is

another field kneVD by that exact name. Por another

axa.pIe. consider:

OIC 1<1. 1(1. A>, X<I, X>, X>:

The fields of • are "_1. I_A_X. "_A_A, II_I_A. M_I_X, and

I_I. 10 shorteninq ot any of these naaes is peraitted. All

short for .. would conflict _itk oth.t na.es. In:

DIe 1(1. 8(A. 8<1. C, D», c>;

tbe field8 are "_A. 1_8_A. ._8_8_1. "_8_B_C, '_B_B_D. and

I_C. l'-I_8_C lIa, be shortened to '_8_C and "_8_8_D .ay be

shortened to II_B_D or: "_D. The shortening rule fs: (1) the

ntupl. expressioD aa, not be deleted, (2) the last itea naae

aay not be deleted, (3) any lubaet of the interior

Ire.aininq) it.. Dales lay be deleted a& long as tbe

teaaininq sequence ia not another field's naa. or another

fie1d's short naae.

In order to handle 8ubacriPtinq

eleaenta. tbe abo.. syntax .uat be

actual specification of 189al field

of array and ntuple

extended. Jote, the

foras is highly context

dependent: tbese SI' fora. serve only as tbe starting point

12/31/14

90 CRISP -- SDC 18-5455/000/00

for the desc ri ption:

·St*

<field>::.<cosPosit.-expre8sion)'I_<it~.-na.e>1
<subscripts)}

<sub8Cripta>::·L~·.·(Subscript>J

(su bscr ipt): : -(inteqer- expression)

IL

<field)::-(r_J<coaposite-espression>_«ites-na.e>1
(subscripts»)

<su bscr illts>: :. (S <subscript»

(subscriPt)::=<inteqer-expression)

A <co.posite-eIPression> is an expression whose value is an

atup}e or an arra,. The full su~specitied type .ust be

known at co.pile tise. An <integer-expression) is any

expression who .. value ia inteqer or is convertible to

inteQer. Tbe si.pleat cas. of subscriPting is an array with

siaple elesents. lor instance,

DEe lIT lRR1Y(.) AI

Typical fields are AI' 11 ... d I(1-3.1]. A aore co.plicated

exa.ple is an array with array ele.ents.

Die liT lB81Y ••••) 11.aY(*) la

Is above. typioal fields of 1 are 1(1] and 1[X-3*Y]. One

way to subscript tbe fields iD the fields of 1 is witb for ••

like If11rI.J+2] ao4 I(Z)(l.1J. llother "ay is to co.bine

all the subscripts.a la lf 1~I,J+21 and &[Z.3,1]. Theae

latter two for •• are equi.alent to the prior two tor.s. Yet

another vay of rewriting the for.s with the sale .eaning is

Af 1 • I 1£ J+2 1 and If z, 3 Jr 1]. Also. vi th the declaration:

Bouqb Draft

I

~

It.a Referencinq and Subscripts 91

DIC tiT ARal!'*.*) B;

the I Jth field ceuld equally vell be written as B[I.Jl or

Sf IUJ t. In Qeneral. the subscripts in a field reference

a. y be .rbi tra ri1 y crrouped an d plaoed. -rhe co.pilar ga thera

the. all together. preservinq their lexical order of

apl)earance. and tben teQroups and allocates tb4U as

appropriate. In any of the equivalent groupings ana

place •• nts of subscripts. their relative order of lexical

appearance vill be identical.

The Delt axaaple is an ntuple vith a repeat:

DIe C09NBB(STOPLIGHT SOOL,
STRBBT(2)(llftE ID, SURFlCE ID»:

The fields are COBHIR_STOPLIGHT. COBMER_STREET[Il_NAftB and

COBNJB_STBBET(Il_SOBPACE vhere I~l or 2. The following are

equivalent under the it •• na.. deletion and the subscript

aoveHot rules:

eORREI_51 BB!T(I L Il!!!
CORN IRC I LS'l'RBE'l'_Nlll!
COBlISB_STBE!T_ l'ftEf 11
CORNEar I LNA!!
COBMBl'_II.UI![Il

1 more coaplicated ex.aple is:

DEe 1(2)(1(3). 8(C,4.5)(I.. D>. E>. F>:

The followinq are fro •• aonq 40 equivalent field foras:

I_r I LB_cr J.K LA
II_B_C_Ar 1 • .1,';]
M_C(I.J L ar It 1
wr 1. J. ,; '_B_A

!he following is Dot an equivalent:

IClf I, J. ~ ,

That la. .mbiQuity i8 Dot resolved by the nu.ber of

subscripts alone. (There is a field. M_AT x. Y J, in I.) When

12/31/74

92 CRISP -- SDC T"-5455/000/00

the coapiler searches a type definition for the aeaniog of a

field fora. it first deter.ioes whether the fora gives the

full naae of an eleaent (all containing qroup naaes

present). If so. that eleaent of the value of the composite

expression is the field denoted. If a full eleaent oa8e has

not been given. then the co.piler searches for the first

element Cin tbt lexical order of the declaration) that can

have tbis shortened naae. If the value of the variable

CHKfIILDSCRISP is TRUE. then the co.piler ~ill continue the

sea rcb to see vhether this shortened naa. is a abiquous. If

it is, a warning diagnostic is issued. In any event, the

first eleaent with the shortened na.e is used. The syste.

is initialized with the fOIl:

CHK1IltDSCBISP: --.tRUE

So far. the field referencing aechanisa ia virtually

identical to PL/I. Howe,er, CRISP allows structure items to

be alrays, ntupIes. or even functionals (funes and procs).

Therefore, aanY cases that do not arise in Pt/I can occur in

CRISP. The rest of this section 4eeeribes these cases and

the a.chanis. for haDdlinQ thea.

the next soae n tuples, flattened and

unflattene4. that are iDcluded in other declarations:

Die "<1 H. 8 fLl! I, C O. D FLAT P>.
1<1. Y>. O<Q, B). FCB, S>:

" is declared as a 6-tQllle wi th the followinq fields in the

value of 11:

addition. the followino fields aay be reached from K:

BoUqh Draft

(

\~

Itea Referencing and Subscripts 93

fields in the ntuple of type N pointed at by the fi~14 "_1.

ft_C_O and "_C_B are the fields of the ntuple of type 0

pointed at bv tb~ field ~_e. In total, ten fields are

reachable fro. 11 in this exaaple. 111 .ay be accessed using

the field foras shown above. Only two of tbe field forms

HV be shortened:

be written ~_O. Thus, part 3 of the shortening rule refers

to all reacbable fields. (This restriction is slightly

relaxe-d tor rEcursive definitions. See below.)

1he next exa~ple is an array with ntuple eleaents:

DIe I<X,. Y,. Z),.
H 1 R RI Y (.) 1,
FLIT N lBB1Y~) 8:

Tbe fields in 1 are writea l(lJ an4 each is a pointer at an

ntuple of type H (or IlL). The fields in the fields of I

are: lfILI, 1[11_1, and l[Il_Z, or with the subscript

In B, there is no such field as B[IJ.

the fields in Bare sell_X. 1!f1]_Y and 8[ILZ, or the

versions with the 8ubscripta moyed such as B_Xf I).

A aore coaplicated ex •• ple is giYen next:

Die 11080 j811Y C*) S El!.
IORD<PIIIT ID, SPILL PHON8 lIR1Y(*».
PHOHI(GB1PHIC ID. ,SlTUBES JOD!>:

The fields in SBIT a£e of the fora S!NT[I] and are ntuples

of type lORD. Tbe fields in the 1I0RD ntuples aay be

reference4 by vritino 5Eli[Il_PB1'! or SElCT(I LSPELL, an

arra, with fields of the type PROMI. 'fa reference the Jth

ntupla of type Paol! in tbe Ith lORD. write SEII't[I LSPELL(J J

or one of the equivalent for •• , SEIIT[I,J LSP!LL or

12/31/14
~-------------

94 CRISP -- SDC Tft-S45S/000/00

SEN!_SPELLrl_Jl. To reference the £1eld_ GRAPHIC, in the

PHONE ntuple. write any of tbese equivalent foras:

SEN'tC I,J LSPBt~GBAPHIC
SElIT{ 1 LSP!LLf J 1_GB1PHIC
SEHTf I 1 ... SPBLL-G8APRIC{ J 1
SENT_SP!LLr I.J l_GRAPHIC
SEtt_SPELLfI LGRll?HICr J 1
SBIT_SPELL_GBAPHICCI,Jl
S!IT{I.JLGS1PHIC
SENTrll_GRAPHIC[J]
SBNT_GR1PHICrI.Jl

The last three for •• ate shortened naaes. Por purposes of

resolvinq the denotatioD of field for.s_ the coapiler does

not dlstinquish groups and repeating ele.ants froa pOinter

types at arra,s and ntuples. The FIATURES fields are

referenced in a aanner siailar to the aboYe. Since the type

of this field is Dode (node2). I _'IRST or _SECOND aay be

appended to access the CIR and CDR sertions. for ex •• ples:

SIIT_SPELL_FEA TUBES_PIRST[I.J 1
SENT[I.J LPI BST

Botb of these foras would retrieYe the CAB field: the first

feature of th~ Jth pbon~ iD the lth ,ord of the sentenence.

The next topic to be discussed is referencing of fields from

structures that have recursivel, defined types, or

structures tha t eventually point at structures with

cecursivelY defined types. The problea arises because the

set of fields referenceable frol such a. structure is

indefinitely large and because for all fields in a

recursivel, defined structure, there are arbitrarily aany

other fields with the sa .. short naa.s. To handle these

cases (aDd to keep searching routines froa going into

infinite loops when processing illegal nales" tbe co.pilar

keeps a list of all definitions and qroups in these

Bough Draft
-~--------- -------

-.------------~-,------.---.--------------.---"---.....

IteaSeterencinq and Subscripts 95

definitions that have been exaained while looking for the

i+1st itea namE since locatinq a tentative candidate for the

ith itea name. Tbe aearchinq routines will te~.inate this

portion of the search tree if an Attempt is aade to pass

throuql1 any lIember of this list aqain. A s iap!e exaaple is:

DEe 1(21. LX>:

.In processinq X_t_l. aD et Ior, the ccmpilet matches t be i te m

nailed L aad sets the list with tbe single ele.ent X_Le The

definition of X is tben recursivelY exaained for Y. H is

not I, and L ia not f,

search from the elem.nt

so an attempt is

X_L. But this

then initiated to

is already on the

list. Therefore, processing stops, the recursion unwraps

and. findinq no other possibilities, the compiler reports an

error. Examples of leqal field foras are X_N, I_L, X_L_N,

I_L_L. etc.

So far. all the inforlation and examples abo,e have been

about SL (field> forls. The IL <field> fora is virtually

identical. The first thino in an IL <field> fori lay be _,

which is OPtional. If the <field> fora has a legal

<coIPosite-expression) (that is, if the compiler can

deteraine tbe arra, or the ntaple subtype), then the

serves no purpose. Ho.e,er, it tbere is an error in the

coaposite a.pres.ion or if its subtype can not be properly

deteraioed. the use of the _ leads to better diagnostics.

Aasule that the ,ariable • is un4eclared. then the IL fori:

c. A '1 J)

is ia error. 'lbe di.oao.tic aechaaisa will interpret this

a8 an illeqal function call fora with the arquaents A and (I

12/31111&

96 CRISP -- SDe Tft-5455/000/00

J). The second ergu •• nt looks like a call on the function 1

with arQu .. nt J. If the fora had instead been written:)
L .. A (1 J))

the tora vould still be in error (S'8 type is still unknown)

but the diagnostics would know that 1 vas an ite. naae

rather than a 9ariable and so woold ignore it. llso, I and

J would be treated as subscripts, hence variables, and a

diagnostic about I belBQ an illeqal fora operator would not

result.

)

Rouqb Draft
-~---~-----------

I

~.

Def ini t 108. 97

This section Qi •• s a syntax and a ,[OBe descciption of the

CRISP aechanis. for defining functions, processors, aacros,

transforas. and qenerators. See the section on declarations

and redeclarations (page 84), for information an wbat

happens when the definition redefines ana.. witb a

~iffer.nt type attribute. The syntax of definitions is:

·SL·

<deflnition>::-<tunctloa-def>l<proc •• sor-def>I<.acro-det>1
(transform-4ef> I <qenerator-def>

<fuDction-def>::-r(.alue-type>1 'UleTIO. <name)
(arQ-llst)(•• preBsion>

<~roce •• or-d.f>::zpaOC!SSOR (na.e)(arq-list)(expression>

<.acro-def>::-!ACRO (oaae)([<arq-scope>]<naae»<expression>

(transfora-def>::-T8Iispoal <na •• > (S.,.<identifier»
r<Qen-for·>l<for_>

(gener .tor-def>: : rzG !lUll 'TOl! <naae) er (arg-scope > J<naae »
<expression>

<arq-llst>::aCS.,.<arq-dec», (S«arg-dec>,}<indef-arg-dec»

<ara-dec>: :=r <type-Eaf)](<ar:g-scope> JC' lallBLE]<o.a.>

<indef-arq-dec>::sr(type-r:ef>l liD!' <identifier> I
r <t ,pe-ref> If <at q-scope) 1 LIST (oaae>

<aro-scope>::a<qlobal-scope>l<local-scope)

<local-scope>: :=LOCIL

<definltion>::-<fanctlon-def>I<PEoce.sor-def>l<aacro-def>,
<tranafora-def>t<qenerator-def>

<function-def>::=(PUIC!IOH «oa ••) 1 C<na.e><yalue-type»)
<atq-list><.x~re8sion»

12/31/74

98 CRISP -- SDC Tft-S.55/000/00

(procea.or-def)::-,PBOC8SS0a (naae)(arq-list)(expressioD»
(.ac~o-def)::·("lCRO (naae>«naa.)f(arq-scope)))

(a.peessio n »

(tran&fora-def>::-(TI1ISFOBR <naae>('(identifier»
[<qen-fora»<fora»

(qen-fora>::-CGEHID '(identifier»

<Qenerator-def>::s(G!IIIATOB <naa.> «naae>.<erg-scope)a)
<expression»

<arQ-liat>::a(S<arQ-4ec>«indef-arg-4ec)])

(arcs-4ec>: :-<n.ae> I «D •• e>{ (erg-scope)](<type-ref)])

(indet-arq-dec>::=«i4entifier> IIDI' [<type-ref>]),
(n.ae) r (arg-scope>] Lt S1 r < type-ref>])

<arQ-scope>::K<qlobal~scoP.)I<local-.cope>

<local-scope>::=LOCAL

lor all the above, the na.e being defined is global. If it

is an identifier. then it is paired with the default tail to

derive tile propel: aaae. The section on scoping and

denotation rules (paQe 25) qiYes acre inforaation on this.

Irq list

Aa <arq-list> specifies the paraaeter naaes for a function

or procesaor. It a1.0 deteraines each paral.ter's type

ettr ibute. Pirst. tb. PEoper Daa. of each par.aeter ia

deter.ined by the rule. qi.ea iD the section on scoping and

denotation rulea (paqe 25). '0 repe&t, there are six cases:

the <.rq-scope> la, be LOCAL. GLOIAL. or oaitted, and the

val:a.eter Da ••• ay be either an identifier o~ a global naae.

!his table sU.lar1z •• the action in each of the six cases

tor deteraininq a pat ••• tet'. proper nale.

Rough Draft

)

J

~- ---~~~--.----------- -~- -~~­- - -------------- ~--.------------.- -----.-

Definitions

• •
Used 1.le

__ .~"..O» ... __ ..L __ . __ t
I

LOCAL!
GLOBAL I

Oil t ted.

I I error
ISdefeult I ASa

I I ASB

99

I and A'B are arbitrary examples of, respectively, an

identifier naae and 4 global name. I Sdefault is the

identifier naae paired with the default tail to tora a

qlobal Dale.

After the parameters' proper Da.es bay. been deterained,

their type attributes are determined. There are six cases:

the proper nale lay be local (an identifier), a global nale

with a type attribute, or a global nale without a type

attribute, and a (type-ret) lay be present or omitted as

Dart of tbe <arq-dec). the following table su •• arizes the

action in deteraininQ each paraletel's type attribute given

its proper name. Ltr is the (type-ref) qiven in tb@

<arq-dec) if present. Gtr is the global nale's type

attribute if it exist.. Global naa. 1 is a global name with

type attribute. and olobal nale 2 is a global name without

type attribute.

• •
Proper lIale

• local I qlobal I qlobal I
!.lR.L.J;e.t· __ llUS __ 1 Dlle 1. I_A.I.l§-l_ I

I
I I error

present. ltr I uales
1 11 tr.aqtr
J I
I use I

omittedliapllcitl qtr
1 type I

,.ake decl
I using I
I gtr I
I I
,.ake dec I
I usinq I
liaplicitl

If a global na.e is used that has a type attribute, an error

12/31/74
----- -- -------- ~ --------- ----- --- .~--------- -------~--- ------~

100 CRISP -- SDC T"-5'55/000/00

occurs if the (arq-dec) atteapts tc tedeclare it. llso, if

a Qlobal naae does not ba.e a type attribute, the co.piler

forces a declaration tor it. It a <type-ref> is given with

the (arq-dec>, then tbat becomes the naae's type attribute.

If the (type-ret) is oaitted. then the declaration of tbe

naMe is aade Qsinq the n.ae's ilplicit type.

Essentially. the above applies to an (arq-dec> or a list arg

(an (indef-arQ-aec) with LIST specified) • A noraal

(indef-arq-dec) is bandled sliqhtly differently. Tbe indef

arq n •• e is always an identifier and is always treated as a

local variable with the type attribute integer. When the

function is called, the initial ,alue of the variable is the

nu.ber of values of the 1n4ef. The type of the indef values

by the <type-ref) if present in the

(indef-arQ-dec). Otberwise, the type is tbe iaplicit type

of the identifier. To retrieve the value of tbe Ith

indefinite, use the paeQdo function, A.GM, with an inteqer

.rQua.nt. The leQal .alae of liGI'. arguaent is J where

1~HSL and L is the nu.ber of argulents. A silple exalple of

a function with an indefinite nutbet of argulents is:

NODE rUNC~ION 'OO(IH~ X. FLOA! IIOEF L)
poa 1:= 1 THBO L,

LIST lRGI (I) •• X
BIOP:

roo returns a list of its floating, indef arg.aents raised

to the power of ita iat.oer arqaa.nt. For exa.ple, the

value of

F 00 (2. ,. • O. - 1 • 5, 6)

is

(16.0 2.25 36.0)

Rough Draft

J

(

Definitions 101

A list arq i8 anothec lethed by which a fUnction aay reeei.e

an indefinite AUlher of arquments. The indef arqs are

CO.Sed tooether into a node2 list.

naturaly has the t,pe attribute. n04e2. The <type-ret> ls

the type of the list eleaents. The function FOO above.

could be revrittem a8

ROD!2 FUICtION lOO(1I! X. FtOlt LIST L)
FOR " 01 t. VALUE L

'unction defs

no C1B(ft):-C1R(M) •• J;
elDf:

When a function (or processor) is called. the argulents are

converted to the type. specified by the <arq-list>. All

such cOAv.rsions are error checked for legality at cOlpile

tile vben possible. otherwise at run tile. If error

checking .04e has been turned off (by setting the variable

BBBCBKSCR1SP tc MIL) coapile tile error cbecking is still

done but at run tile tbere is mo error checking when

conversions are aade frol one type with pointer 'aluas to

another type with pointer values. Conversions fro. general

and nUlber to integer or float are diaqnosed at run tile

vbether or net error checkiag lode is ased. All argulent

passinG is by ~~.

After a faaction 18 entered and its argu •• nt variables

boun4. its expression body is e,aloated. If the function'.

<value-type> is MOV1LOB. then tbe function siaply return ••

Otherwise. the value of the expression is converted. if

nec.ssary. to that," specified by the value type. ls with

arQUlent type conversion, error checking is done. If the

12/31/'4
--~------ ~- ----~----------~-------

102 CBISP -- SDC T!-5455/000/00

function is co.piled with error checking .ode turned off,

then pointer type to pointer type error checking is not done

at rUIl time. See the section on data ob1ect formats (page

55) for on types with pOinter

representations.

I'roc ... or defs

A <Ptocessor-def) has an (arq-list) that is handled exactly

as is a <function-def)'s arq list: see above paragraphs.

When a processor is entered, a new process is created and

the call1no process is sQap •• ded. Por infor.ation on

proce.. evaluation, see the section on processors and

processes (page 173). The expression body of a process is

not re.poDBible for produoing a value, because a processor

bas no value.

ftacro def.

1 macro is 1ust like a functicn witb the type:

GEW PUNeTIO. (IODI2)

A lIacro operates at co_pile time. Its a egu.ent is an IL

fora beinq compiled, wbos. operator is the nalle of tbe

aacto. The value of the expression body of the macro is

cOIIPiled in place of tbe oriqinal fora. The argument and

value of • a.cro are IL form.. An ela.ple is:

fUCla IKPL t (p)
LISTlnOR. LIS!("IOT, CAD.,.», ClDD8('»);

!xaaple arquaeot-yalue pairs are:

(ItlPLY A 5)
(OB ClOT 1) B)

Bough Draft

)

l

Definitions 103

(1ItPLI (NOT A) (AND B C»)
(08 (JOT (lOT I), UtlD 8 C»

The SL foras corresponding to tbese two are:

IKPLY(A. B) or 1»B

IfSPLI(... A. asC) or ... A»B&C

AlthoUQh this exaaple of a macro is so siaple that it could

be replaced by a transform, aacros aay be extre.ely complex,

inyolvino conditional cC) mpu ta tiOD. For instance, the

<for-loop> form is bandIed through .acro expansion. It

turns loop toras into forms made up of language primitiVes

like BEGII. PLDS. GOTO, etc.

Tr ansfora defa

Transform. are described in the section on co.pile time

substitutioDS (paqe .1). Another elample would be rewriting

tbe 11ft! aaero abo,e as a transtorm.

tBl.SPOB~ 18PLY'I.!) ... IIB:

A transform aa, use an optional <qeD-form>. 1 <gen-fora>

specifies a set of identifier s,.bols for which unique

identifiers should be substituted each time tbe transform is

used. The Dew identifiers are created using GENID. ~his is

Darticularly useful for creating labels when the transfor.

will be used aore than once in a single function.

Generator deta

Generator. are de.cribed in the fottbco.1ng docu •• nt, CRISP

cOMPiler and Ass •• blet Structur~.

12/31/'4

104 CBISP -- SDC Tft-5455/000/00

The topic of thi8 section is hov the co.pile~ deter.ioes the

type (of the Y81ue) cOlputed by an expression. Expressions

are aetined recursi.el,: first as a set of primitive foras

and second as foras aade up frol other expressions. The

rulea for deteraininq an expression's type follov the sa.e

pattern. It is aasa.ed that the reader is fa.iliar vith

otber parts of this docu.ent that deal with constants,

variables. function oal1s, arith.etic forls, expressions and

blocks. Tbrouqhout this section, reference is made to the

type hierarchy shovn in Fiqure D (page 49).

Pri,iti.e forls

the type Of a coostant fori 1s the

bierarchy that containl that obiect.

lowest type in the

Thus, 3.1 is typed as

float rather than nu.ber or qeneral. The type of a variable

fora is its type attribute. The type of a fUnction call

fotl ie its value type.

lrithaetic foras

Soa. aritb •• tic fori. act like function calls in that they

alvays return the ••• e type of ,alue. For instance, the

iaflx operator "11" returDS an iDteqer ,alue fros integer

di.isioa. However, the infix operators +, -. *, I, and -­

retUtD a .alue whose type depends upon the types of their

arqu •• ats. tbe po •• ible argu.ent and value types are

inteQet, float, cosplex, and nusber. If any argu.ent is

coaplex, then tbe value is coaplex. Otherwise, if any

Rouqh Draft

J

)

I

~

!xpres.ion rYPinq 105

arqu •• nt is Du.ber, then tbe value is nu.ber. Otherwise, if

any arqa.eat is float, the value is float. Otherwise, all

arQuaents are iateqer and the value is integer.

The type of .alve produced by the unary + and - is the saae

type.s its a[quaent. The pseudo functions ABS aad NlBS

produce t~e saae value type as tbeir arquaent unless the

arQu •• at i8 co.plex. In this case the ,alue type producGd

is float ,the Dcrl or the neqati,e ncra).

lssiQDleat typinQ

la aS8iqnleDt fora aay be used as an expression (as opposed

to a statelent), in which case it produces a value. The

type of the assiqn.ent fora is the type of its left side,

tbe receivinq field. Thus, if I is an integer variable,

tben the fora "1:-5.1n has the ,alue "5". If the types of

the left and riQht sides are different, and if both are

types represented by pointers, then the type is the loat

restricti,e that can contain both .ets of values (lowest in

Piqure D. page 49). POt instaDce, if A has the type

attribute INtEGEB lRRlY(.) and G has the type attribute

oeneeal, then the 'alaE type of both these foras is INTEGP.B

lRR1Y(~ :

A:=G and

ftulti-terlinal forls

Several laaqoage for •• lay compute their values in lore than

one spot. Bach such spot ie calle4 a terminal computation.

Ixamples are 1 Bod B in the IP fori

12/31/14

106 CRISP -- SDC Tft-5455/000/00

IF P THEI I 8tSI B

Otbe~ fori. that aa, coapute yalu~1 in aore than one place

are selectors and blocks. (Each r:eturn form in A block. is a

terainal.) In all tb.a. cases, the type of each ter.inal is

deterlloed. Then, the type of the parent fora is the lovest

type (in Fiqure 0, page 49) that contains all the objects in

the ter.inals· types. Por exallple, the value type of

IP P THIM 1 EL51 1.0

is nUlber. Tbe type of

IF P THBI "I ItSI "lBC

is identifier.

Rough Draft

!
I

~-

l

Ty". ConYersion 107

Type coaveraion is alway. possible upwards as defined by

piqUEe D (paqe _9). Sidewards and downwards conversioa8 are

not al .. y. po.sible. Whenever it .akes .enae, it is

alloled. Booleaa ia always conyertible to identifier.

Inteoer is alwa,s convertible tc float and coaplex, even

thoUQb precisioD (low order bits) aay be lost. Ploat is

alvay. convertible to coapIex. Coaplex conversion to float

or coaplex aDd float co.version to integer aay not be

go.sible. In these casea, a run tiae error vill occur if

the value of the boolean variable PRECISIONP is TRU!;

othervise. 80a. such v.lue as 0, "very larqe" positiv., or

"very larqe" neqative vi11 result. The systea is

initialized vi th

PRIClSIOIP:-TIUI;

An interestinq case occurs when a furac (proc) ot one type is

cOllverted to a fUDe Cproc) of another typ@. lSBuae that it

is desired to convert a value of the type

v1 lUMCCa 11

v2 FUIC(a21

•••

•••

a1n) to the type

a2.)

This is per.issible if and only if:

12l ala •• a 82a auat both be of the aaa. foc. -- e.g., both
indefa. lists. siaple, or non-existerat

(l) v1.v2 or v1 and 92 ate represented by pointers and v1(v2

(4) for '~l~n •• ,i-.21 or a11 and a21 are represented by
~oiDtets and a21<a11.

S1al1arly for proc yalues. If it la desired to convert a

12/31/7_

108

value ot the type ., VlRB to the type v2 V1RB, then either

v'·v2 or ., and .2 _uat both be represented by pOinters and

v1(v2. The operator "<M 1s the order relation in Fiqare D

(paqe "9).

Bouah Dra ft

J

J

I~

(

~.

109

BLOCKS

The re a re three kinds of <block) CRISP:

<binding-block)., <4o-block>s, and <Iulti-form-block)s. A

bindinQ block can biad variables; the other two kinds of

blocks cannot. <bindinq-block)s and <do-block>s have a bOdy

r.onsiating of ~ero or lore statelents and labels, while a

<aulti-fora-block) is an ordered collection of forms. All

types of blocks aay be used either as state.ents or as

expressions fin which case they produce values). The

sectioDS on seopinq and denotation rules (page 25);

declarations, definitions, and types (page 45); and data

vresets (paqe 121) should be reread along with this section

for tetter co.prehension.

This section gives the syntax of blocks, state.ents, and

related fora., then describes thee with the subsections

Multi-fori blocks, Do blocks, Bind blocks, and state~ents

and Labels.

the Iyutax is:

*SL·

<blocJt>s:-<bindiaq-block>l<4o-block>.
<aulti- foca-block)

(bindioq-bloc1t>: :-IU!Gll < block- bind-list);
r<attribute-list»)
<block-bedy>
ERD

<do-block)::=DO <block-body> EID

12/31/14
.-_.- ---- ------'

110 CRISP -- SDC T"-5455/000/00

<aulti-torl-block>::·<aulti-stateaent-block>1
<Iulti-expression-block>

(.ulti-state.eDt-block)::~,S.,.<state.ent»

<.ulti-.xpr.s81on-block>::2($.,.<~xPtession»

(block-blnd-li.t>::· •••• «block-var-dec>1 <local-syn-dec >)

(block-var-dec>: :=C (type-ret> Jr <tJlock-scope)][V ARI ABLE J
<na .. >(<preset> J

<block-scope>::-<qlobal-scope>l<local-scope>l<own-scope>

(own-scope>::-Ol'

<local-syn-dec>:: =SYJ <1dentifier>.1:(fora>

<attribute-list>::-S«atttibutes>;)

<attributes>::=lTTBIBUTE S<block-attr>

<block-attr>::-,<type-ref>r<block-scope>]I<block-scope>}
(.. ,-<aaae»

<block-body>::-$.:.'<state •• nt>,<label>}[;]

<state.ent)::-<expr ••• lon)l<statel.ot-only>

<stat.aeat-onIY>::-<QO>I<return>I<I.ave>

<Qo>::=<siaple-qo>l<coIPuted-qo>

<si.~le-qo>::.(GOIGO!O) <label>

<COI,,;H. ted -Qo>::: (GO I GOTO} (,e. ,.<label» r ON]
<inteqer-expresslcn>

<retaru>::-RE!URN <expression)

<leave>::-LB1Y! r<lateQer>}

<label)::-<identlfier>

IL

<block): :-(biDdinq-block)1 <do-block> I
<aulti-forl-block>

<bindinq-block>::-(BEGIN <block-bind-list>
<block-body»

<do-block>::c (DO <block-body»)

Caul ti-fora- block>: :=<Iulti-sta teaeat-block> I
<aulti-expression-block>

Rouqh Draft

Blocks

<aultl-stateaent-block>::- (BULTI S<statement»

<aultl-expression-block>::c(BUL1I '(expression»

<hlock-bind-list>::=(S f<block-var-dec>l<local-syn-dec>})

(block-Yar-dec>::-<oaae>I
«naa.>[(block-scope) 1f <type-rel>]

r <pre.et)])

<block-scope>::=<global-scope>l<local-scope>l<own-scope>

(o,n-scope>::aOVI

(local-svn-dec>::=«identitier> SYN <fora»

<block-body>: :-Sf<8tataent>1 <label>}

<stateaent>::=<expres8ion>l<state •• nt-only>

<stateaent-onlY>::-<Qo)l<return)I<lea.e>

(qO>::-(siaple-qo>l<coaputed-qo>

(si.ple-Qo>::=(GO <label»

(coaputed-qo>::(GO "<label» <integer-expression»

<return>::=(B!TUBN <expression»

<leave>::-fLBI'B r<inteqer>1)

<label>::-<ldentifier>

111

A .ult i-for. block allow. tbe insertion of several

eXDressions 'stateaeata) wherever tbe syntax allows a single

expression (statesent) to appear. 1he foras in a multi-fora

block are evaluated one at a tiMe. in a left to right order.

When the aulti-fora block i8 used .e an expreasioa. then th.

value of the last eKPtession is the value of the form. The

.ost tri'Yial usaqe i8 with only one expressioD to break the

noraa1 precedence relation of operators. !hus. CA+B)*C may

be used to O1ercoae A+(S.C) as the noraal interpretation of

I+B*C. Soae other exaaples of <aulti-expression-hlock>s

12/31/74

112 CRISP -- SDC TPI-5ij55/000/00

are:

l:a U:=C, D)

IF (G). H (I), J (~))

In IL, the <Iulti-forl-block> is equivalent to the LISP

PROGI. 1 <Iulti-forl-block) of no arguments, e.g. (PlOtT1),

is tbe saae as IlL.

When used as an ezpre$SiOD, all except the last expression

la, produce no value -- for instance, by calling a novalue

function. However, the last expression lust produce a value

that becoles lbe value of the fori. Also, the type of the

list expression's valae ia the type of the multi-expression

block.

ihen a Iulti-forl block is used as a state.ant, the body of

the block is a sequence of statelents. There are no

provisions for placinq labels in a Iulti-forl statelent.

Do blocks

1 (do-block> is exactly equivalent to a (bin~ing-block> with

the sale block body, a Dull (block-bind-list>, and no

attribute forls. The <do-block> is provided only as a

convenience to the user.

S1Ad1nq blocks

1 (bin41aq-block> is oDe of the lost powerful and useful

torls 1n the lanquaQe. It allows local and qlobal variable

bindings. local synoaYls and ovn yariables to be created,

and state.ant mode to be used.

ROQgh Draft

c

Blocks 113

A (block-bind-list) specifies the variables to be bound when

the block is executed, along with their type attributes,

scopes, and initial (preset) values. In SL,

<attribute-list)s aay be used to specify th~ variables'

attributes and scopes. (There is no attribute fora in IL.)

The attribute fora is a purely syntactic aechanisa that

operates as SL i8 translated to IL. The na.e specified in

an attribute fora auat be exactly a n.ae appearing in the

(block-bind-list). The follo~ing is an error:

BIG IN A GLOlAL;
ATTBIBUTI IIT(l'B):

that is. the infor.atioD given by an attribute fora is

distributed before determined. The

folloviDQ is .abiguouI, and therefore an error:

BEGIN 1, I GLOBAL:
ATTBIBUT! XITf);

Redundant type or .cope specification is permissible.

However, if there is • conflict aaong the attributes and

(block-bind-list), then it is an error. Fot instance,

and

BEGIN INT 1:
ATtRIBUTE FLOAT A;

BEGI. A:
ATTRIBUTE INT(l):
lTT9II!UT! PLOlT (I) :

are both errors.

Once the attribute ~or •• • inforaation ha. been distributed,

local and olobal variables' (nClt local synonyas' and owns')

proper naaea and type attributes ate determined in a manner

identical to that used for processing a function's or a

processor's arqument list. See tbe section OD arg list

12/31/14

114 CRISP -- SDC T"-5455/000/00

Coaqe 98) for a cOlplete descriPtion.

A scope of OWN lay be specified for a block variable with an

identifier nawe. FOt such a variable, the preset value is

cOlouted at coapile tiae. An own has only one binding and

thus is Rot rebound when the block is entered. The scope

,.isibility, of an own .ariable is the same as that of a

local variable bound in the sale (block-bind-list) that

is. in this block and other blocks nested in the one with

the own declaration. See the section on own variables (page

44) for lore information.

A local synony. specifies a language fora that is t.o be

substituted for occurrences of the synony.'s nawe within its

scope. The scope of a local synonym is tb9 sawe as the

scope of a local variable bound in the sale

<block-bind-lilt) • See the section on coapile tiae

substitutions (paqe 41) tor aore intormation.

When a block is enterea, all presets are evaluated in the

lef t to riqh t order in which t hey appear in the

<block-~in4-1i8t>. &11 tbe block ,ariables are then bound

siaultaneoQsly. This is aial1at to laking a function call

~bere arQuaents are all •• aluated. then the function is

entered and the paraa.ters are bound. This seans that the

pre.et computations cannot use the other variables in the

•••• <block-bind-list).

BIGII A:-1. 8:-2:
BEGI. I:-e, 8:-1;

ID the inner block. the initial values of the variables A

Rouqb Draft

J

)

l

Blocks 115

and Bare. respectively, 2 and 1 (not 2 and 2).

Stateaents and labels

Tb. body of a bindiDQ or do block is an ordered sequence of

statelents and labels separated by semicolons and terminated

by the word END. It is not necessary, but is permissible,

to include a final selicolon before the END. statements lay

be any expression except an identifier, which is interpreted

as a label. Also, there are se1eral lanquage foras that may

be used only as statements, not expressions. All

<state.ent-only> fori. cause some sort of control transfer.

"oat fora. in the lanquaoe may appear as either statements

or elpres.ions.

!hat a form appears in statement or expression mode is an

hereditary property of aany forls. If an if fora is a

statelent, then its terminals (then and els~ clauses) are

also statements. If an if torm is used as an expression,

then its terminals are also expressions. siailarly, for the

selector foras, the terminals are statements or expressions

as the parent is a state.eat or exptession.

As can, other foras. do an4 bindinq blocks (hereafter siaply

called blocks) la, be used either as statements or as

expressions. ~be <return) fora ia used to generate the

value of • block u •• d as an expression. ihen executed. the

expression body of the return tor. is evaluated, and its

,alue becoaes .ost closely nested

expression block tbat coataiDs the return. The bound

12/31/1q

116 CRISP -- SDC Tft-S455/000/00

variables in all the inner blocks and the expression block

are unbound. Por e l.aple.

1:lIIB!GIM x:
IP P THJUI iUTO! N F (X) :
X :-G () :
BIGII t: -17;

END

81TDRtf H (X. Y) ;
lie

This aasiqnaent fora sets the value of the variable A to the

value of tbe outer block: first the outer block is entered.

then I is bound. and P is tested. If the value of P is

TRUI. then P(X) is evaluated. I is unbound. and the value of

F(I) hecoaes the value of the outer blocK and is stuffed in

1. lote. this outer block is used as an expression. If the

value of P ia Rot TaUE. then X is set to the value of G()

and tbe inner block is entered with the local variable Y

initialized to 17. Tbe inner block is a state.ent bloek

because it appears aa a stateaent in the outer block. The

fora H(X.!) is then e.aluated and beeo.es the value of the

outer. expression block. After 8(X.I) is evaluated and

before the .alue is stuffed in 1. the variables I and Y are

UnbOtlDd.

!he <leave> fora is u .. d to terainate execution of a set of

sta.te.ent blocks. The for. LE1VE is identical to LEAVE(l) •

Tbe inteqer part of the <leave> for. specifies hov aany of

the aost closely n •• te4 blocks (that contain the <leave>

fora) to terain.te. If all the terainated blocks are not

atate •• nt blocks. a coapile ti.e error diagnostic vill be

issued. When a set of blocks is te,.inated, control "falls

tbrouqh" the outer.ost terainated block. The <leave> fora

BOugb Draft

c

l

Block. 117

is pro.ided as a user convenience to a.oid drea.ing up label

na ••• for this purpo.e. 1 caution when using aacros and

<lea 'le) for.. toqe ther sbould be reaeabered. If a aacro

(llke lOI) expands ln ter.s of a block, and a <leave> for.

is iD the interior of that expansion, then the leave count

.ust b. iacreased by one to count for the iDvisible block.

1 <label> .arks a place ln a proqra. that aay be addressed

by a <40) fora. In CIISP, there are no label variables. If

L is a label and B la the block in which L is defined, then

the follovinq rale. define the spots where L is visible,

that is, the places where foras such as "GO L" .ay appear.

1. L is visible to the top le.el stateaents in B.

2. If L ls vi8ible to an lP, aulti-stateaent block, or
selector tora, then it is visible to the terainals of
tba t fora.

3. If t is .isible to a block, tben it is visible to the top
l •• el atat.aeDts of that block.

,. If the block in whlcb L appears (B), or a block to which
L i& visible by this rule (part q) is a state.ent block
that bln4a DO local Or qlobal .ariables, then L is
.iaible to the next outer block.

'the followinq ex.apIe abow. a label, L. and a variety of

leaally placed traDe... to L.

BIGII x:
IP P TdEI 8EG11 I: GO Lilt:
Il 0

THBM BIGll:

GO L
BID

L:p'i):
BIG1I I;

Xl I 1HBlI GO L;
BLOCI 8: GO L .10:
GOt

.10
GO L

BID:

12/31/7q

118 CRISP -- SDC T"-5QSS/OQO/OQ

TherE are two types of qo foras: (siaple-qo) and

<coaputed-qo). In both cases l if the qo branches out of one

or aore 'atate.ent) blocks that bind variables, then the

Yariables bound by the ter.inated blocks are unbound before

proar.a control resu.es at the label. A

specifies a list of labels. The value of

expression selects which label to transfer to.

<co.pu ted- go)

the integer

If the val ue

of the ex~ression is less than or equal to 1, then the first

label in the list is transferred to. If the value is

Greater or equal to the number of labels in the list, then

the l •• t label is transferred to. In all other cases, if

the yalue of the inteqer expression is i, then the ith label

in the list is transferred to.

In anyone tuncticn, processor, .acro, or generator

definition, there •• , not be any duplicate . label naaes.

Roaqb Dr aft

J

)

119

D1TA PRIMITIVES and PRESETS

This section describes the available priaitives for

allocatinq data structures, accessing their fields, the

aechanisa that initalizes variables appearing in declare

for as. and the a.chan!.a that computes the presets (initial

values) for block variables when a block is entered.

~any fora. in the language autoaatically allocate data

structures. For iD.taDc.. evaluation of "1+8" sua. the

current values of the ,ariables 1 and 8 and allocates a data

structure of the appropriate type to hold the value.

Howe.ar. this section describes only those priaitives that

are explicitly used for allocation. It should be noted that

the various read priaitives also create structures. Each of

the paraQraphs follovinQ in this section describes the

allocation and accessinq priaitives associa ted vi th Cl

particular kind of data object. 111 priaitives have the

last na.. (or tail). CIISP.

Identifier and character pri.itives

An identifier ob1ect can be created with the function.

ID PUNCTION COftPIISS(JODE2}

The arou.ant to COftPRBSS is a list of cha racter identifier

ob1ects. The value is the identifier whose na.e is that

12/31/14

120 CRISP -- SDC Tft-5455/000/00

striDQ of characters. Thus,

COBPIBSS4"CI BC" is lBC

COBPIESS f" fl s· t B}) is S fA B'

T be fUllotion,

IODI2 10lCT101 !IPLOD!(ID)

takes an identifier as ao argu.ent and returns & list of

character eb1ects tbat are the id's print name. Thus,

BIPLODE("lee) i8 (A B C)

GBIID aay be uaed to create a unique, new identifier. The

identifier is cr.atea without a naa., 1ust a structure. If

a qenid (oenerated identifier) is printed or exploded, then

it is qiteD a naa. of the fora Gxxxxxxx, wbere x is a digit.

when tbe aaa. is qenerated, it is guaranteed to be different

fro. the na.e of any exiating identifier.

of GI'lD 18

ID POICTIOI GIRID()

The a.claratien

~he i.plicit type of a qeai4, before it receives a naae, is

qeDeral: if it recei.e. a nase, then it is treated as an

ordinary identilt.r.

the fUDctions CH1J2I.~ aDd IlT2CB1B conyert a character

identifier to its inteqer IBCDIC eqaivalent and ,ice versa.

The inteqer .ust lie ln the range 0 to 255. thus,

CHll2IIT(-l, ia OC11

IJT2CBIB(OC11) 1. A

The declarations of the.e p •• ado fuactioDs are

CHll 'Uletto. IIT2CRAB(IIT)

liT rU.CTIOI CHAR2IM!(CHAR)

ROuqb Draft

j

Data PrilitiYes aad Pre •• ts 121

Bach iaentifier has a property object of type general. The

property ob1ect aay be aceeased using a fora such as I_P80P,

where I is a variable with type attribute ID or CHAR. Such

a fora as

IIT2CH1R (1)_ FaO'
is also Ieqal and aay eyen appeat as tbe left 8i4. of an

assiQaaaat fora. It is noraal to 8aintain the property

obi.ct as a set of pairs. One el.aent of the pair is aD

identifier that is used as a search key, and the other

•• abet of the pair leryes .a the value of tbat property. To

facilitate this usaqe, tbree functiens are provided:

GZ.IR1L lUNC!IOI S!!PBOP(ID.ID,GENERAL)

G!IIBl L PU ICTIO. GET P80P (I D, It)

GEJERAL rUleTIO. BBft'.OP(ID,ID)

In all three, the first arguaent is the identifier whose

~roperty &et is to be aanipulated and the second arguaent is

the proPerty naa. (or search key).

SETPWOP QiYes the Daaed property the value of its third

arqua.at. If a property with that naae already exists, then

it is replaced; otherwise, a new pair is added to the

property .et. Tbe yalue 1. the third atgument.

SBTPBOP(nAB."p,12)

Tbe yalue is 12. fhe value of tbe property P under the

identifier AB ia now 12. GETPROP retrieves the value of the

specified property. If none exists, then NIL is returned.

lfter execution of the aboye SETPBOP,

GBTPROP ("lB, MP) i. 12

REftPBOP re.oves tbe specified property pair. Thus, after

12/31/7"

122 CIISP -- SDC Tft-545S/OOO/OO

alaIIOP("lB,"P).

GITPROP("lB,"P) is MIL.

The value of 1!"P80P 1. its second .rgu.ent.

Caution: it anY ot t~ •• boye functions are used. use of the

id~PIOP tor. should be avoided bec.use it !la, corrupt the

asaaa.d. standard foraat of the property object.

An additional set of property functions is beioq considered

but bas not ,et been designed. these new functions would

allow tae use of an ordered sequence of property names

inst.aa of 1ust one. !his. in effect. would .ake the

~roperty ob1ect into a tree with tbe identifi.r and property

n.... i4entifyiaq the nodes.

property •• ts.

tbereby allowing private

Mode pr i.it i'l'e.

The allocation pri.it!"e for all node objects is the pseudo

function COlS. COlS .a, h.ve one to eight .rgulents of type

Qea.r.l. Tbe •• lu. ls. node with a •• any fields as there

are argu •• nts. Par •••• p1 ••

the value of COIII·I. 1t8."C) is (10013 A B Cl,

the .alue of COISC1."l.).1."lB) 1. (IOD!4 1 I l.7 lB) and

the Ya la. of COlS n1) 1s flODI1 17).

In 5t, tb. In1ix opecator. I. .a, be used for coasing 80d.2

stract.re.. aDd tbe 1Dflx opera tOE. tl •• ay be used for

consia4 .04e2. Dode3. •• • Dode8 attactures • See the section

OD eIPre •• ioas (paQe 130) for details.

ROQQhDraft

J

)

l

Data Priaitives and Presets 123

The fields in. nod. object lay be accessed by the pseudo

i t.a naa.. FIRS!, SECOID, THIRD" FOURTH" FIFTH" SIITH.

SEl.''1'8" and IIGH!S. Por example, if H is a variable with

type attribute node3. and the yalue of N is (NODEl A B Cl.

tben

'_!,IIS! i8 1

tf_SICOtiD is B

1_ TBI RD ia C

Tbes. for.e •• , also appea~ on the left slde of an

assiqn •• nt for ••

The pseudo functioDs. ClR. COl. • •• CDDDOR. are available

for accessing the tields of node2 obiects in the LISP

tradition. Tbe fora is a C followed by one to tour Is or Os

followed by an B appearing a. aD op.tato~. By •••• ple.

ClDDI (I)

is elactly equi.aleat to

CAB (COl (CDR (I)))

CAlf)) is like I_PIRST and CORtI) is like X_SECO.D. If the

CAB - CDB for.s have a Qeneral ergo.eat, then they assule

that the argu.ent sbould be of type node2. The pseudo itel

naae forI. aake DO such 4eSulptioc. The co.piler aust be

able to deteraine that tbe expression part is sOle kind of

node or an error 41aqnostic is issu4td. CAB and CDR for .. s

lay appear on the left side of an a •• ign.ent.

Ba.e Ptialtives

Ob1ects of type naa. (or oae of its &ubspecifiea types) .ay

be created or "found" by the function.

CRISP -- SDC Tft-5455/000/00

The two arquaents are the Dame's first and last naae (or

tail). If that naae already esists, then "AKINI!! returns

it .e its value. Otherwise, an ob1ect by that naae is

created (with the type attribute name) and returned. The

function.

is also ayailable and is siEilat to eAKENlftE. However, if

~he naa. does not already eSist, then none is created and

the .alae 1s NIL. A Daa. aay be hidden by usinq

See tbe .ection on declarations and redeclarations (page 84)

tor U8e and aeaning of Dame hidinq. The ,alue is the

The acc ••• ors to Da.. obieets are the pseudo functions

FIRST'lft! and LIStl'll. Tbeir arquaent is a naae and their

value is the id first or last n •• e.

rIRSTI1!EC-IBC'IIZ) is ABC

L1STIlftl("ABC.XrZ) 1s XYZ

These fora. aay not appear on the left side of an assignment

fora.

The fUDctions,

1111 rUJCTIOI LOC"lftll'A!!)

I.ftl PUIeTIO. altaCK.lftlfJIBI)

are used to protect and uaprotect, respecti,ely, a naa. froa

inadYertent redecl.ration or [edefinition. Their value is

their arquaent. Bost functions with the last naae, CRISP,

ROugh Draft

J

c

Data Pri.ltivEs an4 Presets 125

tbat are .. ed ty tbe syate. ha •• beeD protected by LOCK.aftE.

!oat allocation of and access to nuserical objects is

·i.plicitl, tbrouqh use of various operators such as ~+ or

cos. ~ba few Explicit priliti,.s are used for creating and

accessinQ cOlplex lIulbera. The function,

coaPLIX PUIC!IO' C~PLX(PLOA1.rtOAT)

creates a cosple. nUlber. the first arguMent i8 the real

part and the second arqusent is tbe isaginarr part. The

,alue of

CBPLX(18.5,-13.6) is fCOftPLBI 18.5 -13.6}

!he accesaors of coaplex objects are tbe pseudo functions

REAL and IIAGIM1IY. Their arqUlent is a coaple~ object and

their value is • float obiect.

RIIL((COItPLBX 18.5 -13.6}) is 18.5

IftAGIIAR!(,CO!PLII 18.5 -13.6}) is -13.6

These fora. aay Dot appear on the left side of an assignsent

800leao prisitives

There ara DO all~catcrs or .cc.asota for boolean objects.

8&n41. prt.iti •••

The ptialt1 ... for •• aipulatlng handle ob1ects are described

in the aectloD on proce.sors and processes (paqe 173).

12/31/'4

126 CBISP -- SDC Tft-SQ55/000/00

'fable I
IIlITIIL FI!LD VALUES

fIBLD I I
_:tI2.1 JtIIAXJBL'!l1-__ ~BJAT' ___________

J I
ID I IIIL I
CHAR I 1100 I
IODI. I lIt I
IODI1 J IlL I

• • IlL I
IODIS ItL I
1""1 lIt I
Ploe' IlL I
rUle I IXL l
VABBI lIt I
BOOt IlL I
IIOBBIS IlL I
PLOlT 0.0 I
COIIPLBX IlL I
liT 0 I
8YTI 0 I
BAtf 0 I
BAIDL! IlL I
lBIUY lIt I
AalUY 1 .IL J
.-rOPt! IlL I
IfTUPL El IlL I

1 Subapeclfl.d type.
• Error trap routine.

S· •
""00
HIL
(NOD!1 NILl

(MOD!8 NIt ••• NIL}
IlL
trap'
tl:a p 2
NIL
NIL
0
0.0
(eO~PL!X 0.0 0.0)
0
0
0
IlL
IlL
ARBlla
NIL
HTUPLEI

3 Array or atuple allqcated by CREATE.

lrray and ntuple pri.it!, ••

The section on itea referencing and subscripts (page 88)

describes the a.chanise for accessing fields in arrays and

ntuples. Tbe two tOI.' used to allocate atl:ays and ntuples

are CRIAT! and CRI1!!BLAIK. Table I shows the initial

value. qiven each type of field, when the structure is

~ lloe. ted. the arqulent to CBEATEBLA"K or CR!ATE is a

Rouqh Draft
-------~---~~~----~

)

-)

Data Pri.itives and Presets 127

<type-ref>~ the Y.lu~ is a new structure of the specified

kind. If the (type-ref> is not a subspecified array or

atuple type, tbe yalue is IlL, 0, or 0.0, as appropriate.

Also. if tile a rq a.en t is an array type wit h any *. s in its

outer di •• Dsion, then tbe yalue is IlL.

CREATEBL1I' operates such faster than CREAT!. Wben the

tors.r is used, the structure is allocated and zeroed. Tbis

aakes tbe poiDter fields IlL. CREATE, on the other hand,

exasiRes the type of eacb field aDd initializes it to a

default yalue 88 shown by the table. Because subarrays and

ntuples are allocated. a ~robl.. could arise with recursive

definitions. The tactic adOPted is siaple: wben CREATE runs

into a field that ioyolves a recursiYe definition, it uses

tbe value that would hay. been qenerated by CREAT!BLANK, a

RIL. Por instance, ,iY.n the declaration,

DEC l<X IH!, ! 8, Z C>,
8<" ID, .. 10D!>,
C<O 'L01T, BA>:

The yalue of CBEATI(l) 1s

(lSOSER 0 USUS,. ". (IlL)) (CIUSER 0.0 NIL}}

and the value of CBI1TIBL1I'(1) is

{lSUSJR 0 III IlL)

Variables in a <declate> fo~a and variables bound by blocks

aay hay. a preset expression associated with the •• The

preset aa, be oaitted, be an explict expression, or be *

12/31/74

128 CRISP -- soc T!-5~55/000/00

(which aeans use CBBaTIBtA!~ to coapute the initial value).

!able J qives the iaitial yalue of a variable for each of

its possible type attributes when the preset is either

oaitted or is -. Recall that every tiae a block is entered,

the presets for its variables are recalculated (except for

OWD ,ariables whose presets are calculated once, at compile

tiae). Tbe real use of the - option is to cut down the

amount of writing when allocating arrays and ntuples. ~o

allocate using CBIATI instead of CREATEBLANK, call CBEATE

explicitl, as a pre.et ex~ression. For instance, after

co.pil.tioD of

DEe liT ABRlyeD ARRA!(2) 11=CREATE(A);

the 1a lue of 1 18

(liT lllly,3) &28AY(2)
lIlT lBRAY (3, 0 0 0)
(liT ARRIY(3, 0 0 Ol}

It. had been used iust •• d of CREATE(A), the value of A

would be

URT lRRAY (3) ARBA Y (2) NIL NIL}

Rough Draft

)

-- ---------------------.----.----~

l

C

c

Table J
IttltIAL VARIABLE VALUES

I PBESEt FOB"
TIPI I

• _______ J~Jl%IJDI
-------------I I

ID I IlL I S· •
CHAR I lilt. J 1100
MODEl I IIIL I tilt
KODBl I tilL I (HODE 1 NILl

• • I lilt I . .
IODE8 I lIt I f"ODE8 NIL ••• NIL}
lI11lE I IlL 1 IlL
PBOCI I NIL I trap2
FUNe' I 11£ t trap·
V1IB' , Ill. I NIL
BOOL I lilt I KIL
JUftBl11 t IlL • 0
lLOA'l I 0.0 I 0.0
COt!PLEXI Ill. I (CO"PLEX 0.0 O.O}
lIT I 0 I 0
H1NDLI I Ill. I IIIL
IRR1Y I Ill. I III
181(111 I Ill. I Il~BAy3

lfTUPLE I Ill. I NIL
MTUPLB'I NIL I rrOPL!3

1 Sub$peclf1.e4 type.
I Error trap routine.
~ Array or atupl. allocated by CBE1TIBtlNI.

12/31/14

129

130

!lXPR!SSIOMS

~~pres.ions are the basic building blocks of CRISP prograas.

!hey are used anywhere a value is required or needed. There

ls also a class of no-value expressions, e.g. the

invocation of • function witb NOVALUE < val ue- t ,pe) •

Ho-value .~pressions aay appear as the non-final foras in a

<auIti-expression-bloek) or as stat •• ents. Any expressions

aay a180 be used as state.ents for side effects. The synta~

SL

<expresaion>::-S.<intiz-operator>.<operand>

(operan4>::=(con&tant>l<locative>l<control>l<block>I
<for-loop> I<typep> I <apecial-operand >

(locatiYe)::-(na.e>l<field>l<aacbine-field>

<.achine-field>::c(byte)l<core)l<cheat>

<byte)::=BYT!«inteqer-eIPressioo>.<integer>.
<inteqer-eIPression»

(core>::=COIE«inteqer-eIPreasion>[.<inteqer>])

(cheat>::=CftllT«tlpe-ref>.<type-ref>.<expression»

<control>::=<condltioaal>l<processiDQ-priaitive>1
<tu netioD-call>

<fUDction-call>::=<fuDc-elpression>t'<expression»I
<pseudo-lune-name> (S<exptesion»

(sP8cial-operand>::=<drige)l<pretix-operand>I
<IL-fora>I<CAP-tora>

<driYe>::-DRI'E«type-ref>.(eIPressioD»)

<prefil-operand>::·~<op.r.Dd>'
{+l-IABSIJABS)<nuaber-op.rand>

<IL-fora>u-IL (external-data>

<CAP-fora>::=C1P «type-ref>IMOV1LOB)

Rough Draft

j

j

------------------------- --------

c

Se :_<C1P- 51.- fora>
r: 1 liD

<ezpre •• ion>::=<CODstant>l<locative>l<control>,<block>1
<for-loop>l<typep>l<special-operand)

<locatl.e>: :-<n.ae>1 <f1e 14>1 <aachine-field>

< •• c_tae-field>::-<byte>l(core>l<cbeat>

<byte)::-C.YTE <inteQer-espre8.ion><inteqer>
<iateqer-espressloD»

<core>::-'C081 <integer-elpressloD>«integer>]) ..
<cb.at>::-CCIIAT <ty,e-tef><type-ref><expre.sioa»

<coatrol>::-<COD4itloaal>l<processiaq-priaitiwe>1
<tunctioa-call>

(fQaetioa-call>::- f<fallc-ezpression> '<expresaion» I
«p.eudo-tune-aa •• > '<expressioD»

<8Decial-operaad>::-<4ri.e>l<prefiz-operand>,<CAP-fora>

<drive>::-CDBI'. <ty,e-ref><expresslon»

<prefil-operand>::-(IOr <ezpression»I
('11 IUS lABS IIABS 1 <nu.ber-expression>,

131

Tbe SI. and 11. .yntaxe. are Yer, different. In It there is

DO CODcept of aD operaDd as opposed to an expression. In

SL. the cODe.pt of aD operand ari.e. because of the U.8 of

infix operatora a.d tbeir relat1ve biDding str.aqtbs. Tb.

followinQ sections de.cribe the st precedeDce scheae and

varioas kind. of SL ope£ands (It expressions) that are

refereDced by tbe syntax. the operands not deacribed below

are detailed iD otber sections of tb1s docu.aat.

12;31/7ea

132 CRISP -- SDC T"-5455/000/00

If an expression consists of more than one operand, the~ it

is a sequence of operands separated by infix operators. For

exaaple, in the fora

A. 8, C. and D are the operands and ., + and I are the infix

operators. F.ach infix operator. whicb .ust be an identifier

or sequence of deliaiters. is defined by a 4-tuple. The

fields ace: (1) the left binding !trenqth, «2) the right

bindinq strength, (3) tbe lndef flag, and (4) the IL

(prefix) tor. operator. Table K gives the values of these

fi.ld8 for each of the SL infix operators.

The left and riqht strengths are used to deter.ine to which

operator an operand "belongs". The algorithl. that fully

parenthesizes an input expression 1s straightforward.

8a81cally, the operand - operator sequence is input until an

operator ls found who •• left strength is less than the right

strength of the pr.tiouB operator. When this happens, the

last two operands and their included operator are enclosed

in parentheses and act as a single operand tor tbe duratioD

of tbis processinQ. Ihen DO .ore operators are found, the

reaainiDq op~raDd. are parenthesiJed in a right to left

order. Wheneter possible, the operands of an operator that

is .arked indef are straDt tOQetber. (This can happen only

if the intervenlnQ operators are all of higher strength.)

'.rhus,

l+S*C+D is (A+(S*C)+D)

Bough Draft

~)

ExpressiODs 133

Table K

SL IMPIX OPERAtoR DEFINITIONS

gUWSll 11W un mu: .eUlll
:== 1000 0 SE'!
.* 901 900 EIP .. 810 810 I 'lIl1ES

/ 800 801 0"0
/1 800 801 rgoo

+ 100 700 X PLUS
110 711 DIFFER

" 620 620 X BAND
If 610 610 X 80R

BIOR 600 600 X BIoa
) 500 500 GR

... > 500 500 LO
< 500 500 LS

... < 500 500 GO
)::: 500 500 GQ
~ 500 500 GQ

C
...)- SOC 500 L5

<- 500 500 LO
S 500 500 LO

.. <- 500 500 GB
IITIR 490 490 II!!R
UIION 481 .80 UlUO.

I ql1 "'0 IPPEID •• 471 "70 DAPP!ID
It 465 .. 65 X COMS • 460 461 CONS
IN 301 300 UI

.. IN 301 300 NIH
01 301 JOO 01

.. 01 301 lOO NOH
::11 200 200 EO .,. 200 200 IIQ

•• 200 200 EQUAL
.. == 200 200 NBQUIL

... & 150 150 I NIND
& 140 ,.0 X IND

"'1 130 130 x NOR
I 120 120 X 01

» 110 111 I ftPL t
« 110 111 I!PLIED

C

12/31/74
--~---.--~----.------------.---------

CRISP -- SDC Tft-5455/000/00

but

A*B+C*O is ((I*B)+CC*D»

CODsider the expression

1*B/C*D'.E"P+G·H+I.J

The followinQ lines sbow the steps in processinq the above

(refer to Table K for tbe operators' bindinq strengths) •

•• 1'1
"*B)I
U-B) IC.D ••
".B)/ CC.D)"
t(1* B) / (C - D)) "
"l*S)/CC·D)"B"p+a*8+
(l*B)/(C·D»ttS"F+(G*H)+
((A.S) ICC.D» t'!"P+(GtH) +1' ,,,*e'l ,C*D» '.1.' fF+ (O*H) +1)'
«((A.8) I(C.D» •• 1 •• (l'+ (G.H) +I» •
(<< U.IU/(C.D») "I"(P+ (G.8) +1))'J
1«((l*B}/CC·D»"!"(F+(G·H)+I)tJ)

After thE expression is cc.pletely parenthesized, the

operators are replaced with their prefix equivalents and

aoved to the first (operator) position in the list. This

produces an IL expression. Thus, the IL for the above

exaaple is

(CONS
(COllS (QUO (TI"!S 1 B) (Tl!!ES C D»)

B
(PLUS f (TI! ES G H) I»

J)

Note. the inner COlS (because it is aarked i04ef) en4s up

vith three argu •• nts in this instance. Th~refore, it will

produce a nodel obj4ct when it is executed. The operator,

#. is not aarked iadef, so it vill ,lvays qrab precisely two

operands and produce a node2 object when it is executed.

The _ used to .ake field toras and the S used to .ake global

names appear to be iafix operators but are not. Both are

ROaqh Draft

)

-)

c

c

c

Ixpre •• ioDS

associated with 8peciali%ed

tberefore bandled •• parately.

lSB_C_Df I LE (J)_,

is

f r flIB_C_D_Er I]) (J, } _'1

syntax and ••• nlng8 and

The interpretation of

135

are

Ireaulabl,. the folloving is true: ASe is a variable with

an nt.ple value. {I'~_C_D_B(I]} is a field that is accessed

(in .u8) with a single subscript, I. The value of that

field is a ,~ that tak •• one arqulent -- in this instance,

J. the value of tb. fUBetion call is an ntuple and the

field whose itel n •• e is , is being accessed in that ntuple.

Tbal, ISB_C_Df I LP(J) ls an ntuple expression and the entire

.expression 1s a field. (It aay, therefore, appear on the

left side of an a •• iqalent fori.)

An assiqnlent fori i. used to set (change) the value of a

variable or a tiel4. In SL. an aS8ignlent is specified with

the infix operator. :-. In IL, the operator is SET. I

(locative) ia the Iyntax descriptioa of the leqal fori. that

lay appear a. the left ala. (receiver) of an assiqnlent. In

operatioD. tbe rioht li4. of an ••• 19ft.eat is e,alnated. aDd

its value ia coav.ctea to the type of the left side. Then

the yalue is 8et iato the left aide. The value type of an

assiQoleat turl is tbe type of the left side. If both the

left side aDd the right side Ire types with objects·

represented by pointecs. then the type will be the lost

12/31/'16

CRISP -- SDC T"-SQS5/000/00

restrictive. Por instance, if either side is a character

and the other side is an identifier, then the value is

character.

lot all foras that are locatives syntactically can appear as

rec.iyinq fields. All f1elds can, but the only;naaes that

can are variables. the <aachine-field>s are described below

alonq with the conditions ander which they can appear as a

,receiver.

Byte

1 <byte) fora is uaed to reference a contiguous string of

bytes in an inteqer ob1ect. The first argument specifies

the offset in bytes f toa the left

The second arquaent is the length

bytes. Evaluation of the third

inteqer ob1ect in which the bytes

B!TB(O.4,01020l0QX) is 0102030_'
BYTE(O.1.01020l0qX) is 011
BITE (1.2,0102030'X) is 0203X
BIT B (3. 1,01020 30'U) 1a 04 X

of the integ~r object.

of the byte string in

argulle nt produces the

are r efar enced. Soae

A <byte> fora aay be used as a receiving field if and only

if (1) the third arguaent is a locative that can be a

receiving field and (2) the type of the third arguaent is

inte~er without any conYersion. This specifically excludes

the types. nUlber &14 qeneral. The 9aloe type of the fori

is illteqer.

Core

A <core> tora treats aeaotY as if it wete a byte array. Any

Rooqb Draft

~
~~

----~~--- ---

c

Bxpr __ 10lls 137

core fora •• , appear as a receiYinq field. The firRt

arQuaent is the byte address (subscript). and the second

arquaent. which ia optioAal. is the lenqth of tbe field in

bytes. If the second arQuaent is oaitted. it is assuaed to

;be 4. Tbe value type ef a core fora is inteqer.

Cbeat

CHEAT evaluates its eapression body and converts its value

to the type of the first <type-ref). Then. without further

cODversion, the value is assumed to be of the type specified

by the second type ref. Por instance.

CHEAT(PLOAt.IHTBGIR.1.0) is 40100000X

CHEAT(PLOAT,XHTIGIR.1) is 4Q1000001

becau .. 1 is floated before it is cbeated. Cbeating froa a

type with pointer ob1.eta works on the pointer. 5iailarly,

cheatiaq to a type with pointer ob1ects creates a pointer.

Thus. it G is a Yariable witb type attribute general, then

the value of

CH!A't(GEN. tNT.G)

is the byte address of the structure pointed at by G. Using

core. cheat. and byte foras together. aany language toras

aay te siaulated. Por iastance. CD.. the second field of a

hode2 obi.et. could be represented as

CHllT(II't.GZI.COJI(CHIA7(IOD!2.XMT,x)+4»)

vhere I ia an arbitrary elpreaaion that produces a value

that eAn be cODYei:ted to Bode2. The yalue of the inner

cheat is the byte address of the node2 object. The four

byte field startinq foue bytes to the right in that object

12/31/7 ..

138 CRISP -- SDC T"-5455/000/00

'is the CDR field. the cote fet. references this field, and

the outer cheat specifies that the type of the field is

Qenetal.

1 <cbeat> fors aay be used as a receiving field whenever (1)

its third arquaent is a locative that aay appear as a

receivinq fiela and (2) the value of the third arguaent is

the saae as the first' <type-ref> without conversion. Thus,

the above equivalent of COR is a legal receiving field, as

Is CDR itself.

WlRMIIG: Ose of 8t!!, CORE, and CHEAT can lead to

unrecoverable proqraa checks. their use is intended only

for the proqraa.er who is very knowledqable in the system

storaqe conventions. Therefore, use thea at your own risk.

A (function-call) i8 tbe .. cbani •• used to instantiate a

function. As opposed to a process start, the activity

r.aain8 in the curr.atly active process. 1 function call

evaluates its arqaa.nts and places tbeir values on the

stack. The (fane-e.srassion) is then elalaate4, and the

fUDction, which ia its value, is entered. At this pOint,

the arQuaent values are paired with the paraaeter naaes,

creating variable bia41nqa. the expression body of the

function ia tben evaluated, the variables are unbound, and

the value of the expression is returned as the value of the

Qouqh Draft

J

)

c

c

Ixpre.lioDS 139

call. The value returned is CODyerted to the value type of

the function (except when tbe ,alue type is novalue). The

order of arqu.eat •• aluation is not guaranteed.

A (fune-expression) 18 any expression vhose valoe type is

known to the co.piler as a subspecified type of function or

func. Tbe si.pleat exa.ples are a function naae or a

,ariable with a subspecified func type attribute.

function call with a pseudo fuac naae as its operator

rea.ables a standard function call in lost respects. The

naa. aay be a a.cro or transfor. na.e. or the na.e of soa.

pseudo function that the co.piler handles specially. SOlle

exaaples are T1"15. 18S. and QOO. for which the coapiler aay

produce open code. ftany foras in the language. for which

the syntax has been ~pecifical17 spelled out, could be

band led as function calls with pseudo func Da.e operators.

tben tbis bas Dot b.en dODe. it ha. been to p~eseDt a aore

orqanized descriptioa.

All arqu •• nts to fUDctloDs and PEoce8sors are passed by

value. 1.suae that this f8nction definition has been made:

Then

The

It .. T

10'lLOI pUletIO. !OO(I.! I. IM! ABHAY(*) 1)
U:-1. l[I 1:=5) :

operate this block:

BIGII 1)1 if J:. _ • 11 if AR1U Y (ca) 8:··;
roo CJ. 8) :
PRIII t (J) :
PBIIT(8) :
.ID:

printed yal ue of J is Cl, and the printed value of B

ABRl!(") 5 0 0 Ol • Wben values are passed to

is

a

function or processor the, are copied. However. a value

12/31/1_

140 CBISP -- SDC TS-5Q55/000/00

that is an array, ntuple, node, identifier, etc., is a

pointer at a structure: therefore, the thing copied is the

pointer, Dot the pointee. "hen FOO is ent.ered, the variable

I in roo and the variable B in the block point at the saa.

array. But an a85iqaaent fora such as "A:=array expression"

in Poo bu no effect on B in the block. It merely "points"

A at anotber array. !be call by value techniqae used in

CRISP is identical to the arquaent passing regime used in

IISP: it has soaetiaea been called the weak fora of call by

cOPY. In CBISP tbere is no equivalent of call by location

for call by reterence). Call by Dalle can be sillulated by

using the process control priaiti,es in cOllbination with

func, proc, and handle argullents tbat are passed by value.

the operands deacribe4 in this section are a liscellaneoQs

collection tbat are not described e18eMhere or toras that

bave a special synta ••

Drive

1 <dri.e> fora evalaates its arquaent and converts it to the

type specified by tbe type ref. If error checking a04e is

not beinq used, the. no run tiae cbeck is .ade when an

obieet. in a type represented by pointers is converted to any

other type with ob1ects tbat are represented by pointers.

Soae exe.ples of (driYe) for.s are:

BOUgh Draft

)

c

c

ExpreS8ioQs

DRIY!CIIT.l) i8 1

D8IYIC'L01T.1) ia 1.0

ORIYI(FLOA!.3.S) is 3.5

DRIY!(I"!,3.5) is 3

DBIVB(PLOIT.DBI1!(IIT.3.5) is 3.0

141

All t,pe COD version tbat is perfot.~d in the syste. is done

~lther explicitly or laplicitly by a <drive> fora.

lot

lOT retarDS TBUB it its ergu.ant is NIL and returns NIL

otherwise. In st. the prefix operator, .. , applies only to

the next operand. Tbus.

,&&B is (AND (HO! 1) 8) in It

To Maegate" tbe entire conjunction. write

.... (A&8)

lri thl.tie: prefix operands

The operators +, -. lDS, and "leS apply to the following

operand. If it is deaired to apply the. to a more

cOIPlicated expressioD. then enclose that expression in

~arentheaes. aakinq it into a sinqle operand. The unary +

and - do the usual thing. A8S returns the absolute value of

its arGa •• nt and 118S 1. eqqiJalent to -A8S. The type of

value pro4uced by u.naty + and - is the saae type as its

arqa •• nt. The yalue produced by lBS and lABS is the saa.

type as its aegg.ent except when the aegu.ent is coaplex.

In this c •• e. the value is the nor. (or negative nora) of

the erQu.ant and is an Qb1ect of type float.

12/31/14

142 CRISP -- SDC TM-S45S/000/00

CAP and It forls

,

<C1P-fora>s and <1L-for.>8 are used to insert forMs written

in CAP or IL into programs that are written in 5L and IL.

The 11 operand i8 an external ~etum, noraally a node2

ob1ect. that is used as aD operand in the SL program without

further translation. A <ClP-fora> aay be used to drop into

machine laaquaqe at any point in aa 5L program at which an

operand is e IPected and at any point in an It progr::am at

The <type-ref> in a

that is returned by the

to be in register FO if

which an expression is expected.

<CAP-fora> Is the type of valne

lachine code. Tbe value ia assuaed

floating. as otherwise. in SL or IL program may not branch

into a ClP form. 11so. a CAP fori aust not branch to labels

placed by the higher level language form. This restriction

will be lessened after the proper co •• unication with the

compiler's flow analy.is has been worked out.

Unlike LISP and aaDY otber languages. CBlSP guacantees order

of e,aluation only in a fev places. This section 5u •• arizes

the rules that pertaiD to ordering. See the sections that

specifically describe the particular foras for aore

infor.atioD.

Order of evaluation 1. guaranteed wben:

(1) Pre •• t coaputatioDs for block ,eriables are calculated

in the left to right order of their appearanc~.

Rough Draft

J

Ixpressioft8

(2' statea.nt. (or expre •• ions) appearing as the top level

fota. in blocks are evaluated in their order of occurrence

except as 80difiea by (qo>, <lea"e>, <return), and <exit>

fora ••

III 110. OR. J.B». and loa eyaluat~ their argu.ents in a

left to riqbt order. E1aluation ceases as soon as the value

of tbe fora is known.

,(11) The qenerator8 of a rOR loop a re e val ua ted in thei r

order of occurrence except as aOdified by conditional

qeneta tora.

(5) Conditionals ••• laat. their .ab.dded toras in the order

dictated by tbeir definitioDs. POt instance, the predicate

in an if fora is •• aluat.d before the eyaluation of the then

or else clause selected by tbe value of the predicate.

SO •• specific areaa vhere order of eyaluation is not

Quatant.ea are:

(1) Tbe order of e.aluation of subscript expressions is not

Quatanteed in a field fora.

(2) The order of .,.luation of function and processor

arQu .. nts 1s Dot Quarantee4.

(3) Tbe order of eyalaatioD and coablnatioD of expressions

iDYclylnq arithaetic is not quarantaed.

12/31/74

COIIDITI01ULS

This section describes several toras that allow for

conditional evaluation. In all these toras, one of several

a_bedded fora. i& .elected for evaluation. The fora

selected depends UPCD the results af predicate tests. The

kind of test depends upon the kind of <conditional> forll

used. The e.bedded foras are statements if the parent fora

is a state.ent and are expressions if the parent forll is an

exoression. Th. e.bedded fOlas are called terminal

co.patations or, aore siaply, terMinals. The type ot val ue

produced by a conditional expression is the mini.a1 type

that contains the values of all the terainals. See Figure D

(paqe 49,. The syntax of <canditional>s is:

<conditlonal)::-<il>l<s.lect>l<selectq> I<selectn> I<sel ectt>

<if>::-{IPIMMEIl <pre41cate> THEM <fora>
S({OBIPIIUEJ. <predicate> THEN <fora>}
(ELS) <for_>]

<prEdicate>::~<boole.a-eIPte8sion>

<select)::-SBLECT <expression>
SrUHS. ~ ••• <expression> THEN <fora>}
r ELSE <fo,a>]

<selectq>::=SJL!CTQ <expre.sion>
'(VH!N '.,.<external-data> THEN <fora>)
r ELSE <f cra> 1

<selectn>::-SILICTI <nu.ber-expression>
SfWHEM '.,.<oaelx> THEI <fora>}
r HLSE <fora> J

<nse1x>::~<nu.ber-@xpressloD>1
{~.~t=I'·ll:I~=l~l~l<nuaber-expression>1

Rough Draft

l

c

Con cJit. ionl18

r~I~·l<nuaber-expres&icn>
fTOITHBU1<nuaber-expression>

<select.t>::-SELICTT f<naae>l<identifier>:=<expressioo>}
$ {WHIM ,<type-ref> I NIL} THE. <fora>}
r Rsa <fora> 1

<conditional>::-<if)l<aelect>l<selectq>l<selectn>'(selectt)

(if>::a,IP <predicate> <fota> [<fcrl»)

<predicate>::-<boo1eln-expression)

<.elect>:s-'SELICT <expresaion>
S((~<expression» <fora»
<fora»

(selectQ>::-CSIL!CTQ <expresaicn>
'(_<external-data» <fora»
(fora»

<selectn>::a(SILBCTJ <nuaber-expression>
'(t<nselx» <tor.»
<fora»)

<nselx>::-<nulber-expre88ian>I
f(IQIIOIGQILOIGB'LS} <nuater-expression»,
'(TBRUlTO) (GB'GQ] <nuabet-expression>

<nuaber-expression»

<selectt>::-(SBtBCTT «na •• > 1 «identifier> <expression»)
• U<tJpe- ref> .IIL I <fora»
(fora»

Par a.11 tile (St) <collai tional> for.s t.here ls an optional

else cla •• e. If alittecJ, then the clause "ItS! NIL" is

assu •• d. 1lso. nested conditionala with soa. of the else

c1au.es oaitted could be .abiguous. the st to IL translator

uses the ALGOL rule 11l tile •• instances: naNely, when a.n else

clause i. fOU8d, it 1. attached to ta. .Ost. deeply nested

condit.ional to which it cOllcJ belonq. Por instance,

l' I. P THII 1 TIll If Q THIM B ILSE C

is interpreted aa

IP (IF P !HEN A) tHEI (IF Q tHII B ILS! C)

12/31/'4

CRISP -- SDC ~ft-5455/000/00

which a1ao could haw. been written

IP PSl THB. ,11 P THE. e ELSE C) BLSE NIL

II

<it> .. for.. provide the noraal if-then and if-then-else

conditional priait!v ••• In the following, pl ••• pn are

prediea tea and t 1 tn are toras. <predicate)s are

expres.ions that are evaluated to deter.ine a hoolean value.

If the value of a predicate is anything other than IlL, then

the value will be treated as if it were TRUE. The Meaning

of

IF p1 THE" f1

is that if the value of p1 is TRUE then evaluate f1. If the

if is an e xpres.ion .. then the value ot f 1 is the value of

the if. If the if ia a state.ant and fl is not a goto, a

leave, or a return, then atter £1 is evaluated, control

falls tbrouqb the if. It the ,alue of pl is NIL, then

Dothinq .ore ls evaluated. If the if is a state.ent, then

control falls throuqh. Otherwi •• , the if is an expression

and its value 1. IlL. ~h. fori,

If p 1!811 f 1 ILSI f2

behaves identically to the first ela.ple when the value of

&>1 Is TIUI. ahen tbe value of p1 is HIL, then f2 is

evaluated. If tae if Is a atat ••• nt and f2 1s not a gato, a

lea ye, or a return, then after f4 1s eYaluated, control

falls throuqh the if. otherwise, the if is an expression

Ind the value ef f2 1s the value of tbe if. Becall that

Bough Draft

J

c

Coad i tiona 1s 147

these tvo forms are equivalent.

I. p1 THEN £1 and IP pl THEM f1 ELSE NIL

Therefore, we can talk as if all <if> foras have both a then

and an else clau.e. Thus, an if e,aluates either the then

or the else clause, not both. The for. evaluated depends

apon the value of the predicate; the else clause is

evaluated if the predicate is III and the then clause is

evaluated othe~wise.

It is natural to vtite nested if foras using an indentatioD

ache •• like tbe followinq.

II I) 1 'fHIM f1
ELSE Il" p2 'tH!N f2 ELSE f3

IP 01 THER f1
ELSE IP 1)2 THIN £2

EtS! IP p3 THEN f3 !L5! fll

Ho"e,er. with long er co.plicated forms, one soon runs off

the riqht side of the liatinq. AS a lexical convenience,

se,eral alternative aethods of representing if-then and

if-then-else loqic are provided. The above two exa.ples can

be re"ritten as

WHII 1'1 THEII f1 I IP p1 TBIM fl
NBBI 02 THEI f2 I ORIF p2 THBN f2

BLS! fl I ELSE f3

WHEN 01 ,. If 11 t 1 I Il p1 THEI f1
WHEN p2 THII f 2 I OIIP p2 '.tHII t2
IH'EM 03 THEII f3 I 08IP pJ '1' HIM f3

ItS! f4 I ELSE f4

Also. the .arious fora. could be mixe4 as in

IHEI p1 THEI f1
OB11 p2 TBII f2

elae £3

which is e(lQ 1.& lellt to the first fot.s. The IHEN and ORIP

keywords laPJlearil1Q wbere ELS! could appear) are just

12/31/74

148 CIISP -- SDC Tft-54SS/OOO/OO

equivalents to the two-word sequence. ELSB IF. They qi ve

the 1.nQuaQe no new power. rather they provide a "pretty"

foraat for involved conditional loqic. However. there is a

case to watch out for. Contrast the a.&oing of these rwo

exa a$lles.

BEGIII:
W HBII p 1 THIU' t 1
IIHBI p2 THIUI f2
END

I
I
I
I

810111:
IHEN pl THEM f1;
iI H BM p 2 THEN f 2
EID

Tbe aBly difference is the se.icolon appearing after f1 in

the second exaaple. The first block has one state.ent in

its body. The seeoDd block bas two separate statements in

its body. In the first case, either f1 or f2 or neither

will be evaluated. ID the second case, it is possible for

both f1 and f2 to be evaluated. Thus, a very subtle error

.ay be introduced by an added or a deleted se.ieolon.

<select> and <selectq) fora. are vety similar. They have an

embedded elPression called their selectrix. The selectri x

is evaluated precisely once per evaluation of its parent

fora. The when claus •• are introduced by the word WHEN and

followed by ODe or aore expressions. In the case of

<selectq>. the expre.aioQs are external data that are

iaplicitly quoted. Tbe expressions in the wben clauses are

calltd •• lectors.

The evaluation of a .elect or a selectq proceeds along the

followinq lines: Evaluate the selectrix and call its Yalue

Rouqh Draft

)

\

.~

c

Coa4i tioaals

x. Ivalu.te the first selector in the first when clause.

If its value la IQ (z) to I, then perforll the terlinal

associated with tbe fitst when clause (i.e., the first then

clause) • otherwise, evaluate the second selector in the

'first "beD cIa use aDd see whether its va lue is BQ to x.

contiDUQ in this manner with all selectors in the first when

clauae. If nODe are IQ, then qo on to the second when

clause. If aD, are IQ to x, then perform the second

ter.inal. etc. If DODe of the selectors are . EQ to the

selectrix. then eval aate the else clause. If the select or

aelecta i8 used as an expression, then the value is the

value of the evaluated terminal. If the select or selectg

is used as a state.ent and the evaluated terminal is not a

Qoto. a leave, or a return, then control falls through the

whole for ••

in the follow 10(3. f1. f2. and f3 are forlls, and e is an

expr •• ion. '.theae two are ideDtical in aeaning and

inte tPreta tion:

S!LECTQ e I sltSeT e
VHSM 1. B THllI fl I V 1'111 "A,lIe TH!II £1
1f HIli OR THIN f2 I IIHEN "OR THEN f2
WHEM 17 THlSlI f3 I WHEN 11 THEN f3

t ELSE !IlL

If the value of e ia t.he identifier 1 or B, then f1 is

evaluated. otherwi ••• 1f the value of e is the identifier

OB. then f2 is evaluate4. Other"ise, if the value of e is

17. then fl ia e.,.luated. In all other cases, tilL is

eva I ua ted.

When one of the terainal for.s is selected, its evaluation

12/31/14

150 CBISP -- SDC 1'"-5455/000/00

"terainatea the evaluation of the select or the seleetg fora.

A <a.lectn) fora prQvides an easy lethod of conditionally

selectinq a terainal for evaluation dependinq upon the value

of a nuaber expression. A number expression lust have the

type inteqer. float. co.plex, number, or general. As with

select and selectq fori., the embedded expression is called

the selectrlx, and the clauses in the when clause are called

selectors. Let x be the value of the selectrix and n1 and

02 be nu.ber expre •• ions. Then the following lists the

p08sible for.s of the selectors and their meanings.

n1 eval tllen clause iff I_ n 1
>01 e9a1 tben ift x>n1
<n1 eft.l then iff x<n 1
IIn 1 eval then ift x=n1
"'=01 eval tben iff x""=n1
)=n1 e,al then iff I~n 1
<an 1 aV4l tllen iff xSo1
01 TO 82 eftl then iff n1Sx<n2
n 1 TRIU 02 Elyal tben iff n1SISn2
)n1 TO n2 eval tlaen 1ff n1(x<n2
)n 1 TRIU 02 e,al then if f n 1 <x :So 2
>sn 1 1'0 n2 e.al then 1ft nlSx(n2
):n1 fBRU n2 .,al tb.en 1ff nl~xSn2

'lhe se lee tri x i. evaluated only once. Tbe selectors are

evaluated in the ctder in which the, appear, left to riqht

in the first when clau ••• theD left to riqht in tbe second

when clause. etc. la soon as one selector is satisfied, the

corcespondlnQ terainal (then clause) is evaluated. If no

selector i. satisfied. then the else clause ia evaluated.

SILIC'UI X
V 8BI 3. i 'lHR U 9 TIIEM f 1
WHBI <0 THEM f2

ELSE f3

Bouqh Draft

c

Coaditiollala 151

In this ex •• ple. if the •• lue of X is 1. 7, 8. or 9, tbea f1

is evaluated. If the value of X is negati,., then f2 is

evaluated. Otherwis., f1 is evaluated. ! laC tl J one of the

terainals is selected for evaluation. If the selectn is

used as an expresslon, thea the value is the value of the

selected terainal.

1 <selectt> for. picks one of its terainals for evaluation

dependinq upon the type of its selectrix. The selectrix is

eit her a var1able or an assignaen t for8 vi th an iden titier

as ita lef" side. If the selectrix is a variable na.e, then

the .. lectors «type-ref)s or Mlt) are aor. specific types •

. ·Por iaatance. if G is a qeneral variable, then the following

would b. typical.

SBLae!! G
WHZI ID THI. £1
WHBII NODI 'lB.11I t2

!LSI f 3

When a terainal ls .valuated, the type attribute of the

variable is knOWD to be the <type-ref> selector. This aay

be particularl, u •• fal wben "recoverinq" an ntuple or array

oh1ect froa the type teneral.

If the second fora of the selectrix is used, then the value

of the elPresaioft is put in tbe na •• d local variable, which

is autoaatically bOURd while in the selectt fora. The

variable is visible cnly while tbe terainal foras are beinq

evaluated. The type attribute of the variable in a

152 CRISP -- SDC Tft-5455/000/00

particular tet.inal ls picked up fro. the corresponding

selector. In the ela. clause, the variable is cODsidered of

type qeneral. If tbe selector is .IL, then the ,ariable is

not visible. tbus, in tbe above ela_ple, the type attribute

in f1 is id, iD f2 the attribute is node, and in £3 it is

Qeneral. It i8 Dot leqal to branch into a tee.inal of a

<selectt).

Bough Draft

~)

c

c

c

153

lOB LOOP

'Ihe CRISP <for-loop> perlll its easy, concise

te p te se n ta ti OD of iterative cOIPutations. The loop

functions pl:oyided not oaly can be used for nUllleric value

Qeneration, but also can manipulate elements of lists,

ntuples, or other CRISP data types. For loops are organized

so that any nu.ber of loop variables can be updated during

each iteration. aDd update functions can be executed

conditionally, individually. or ia groups. ftultiple loop

bodieS containinq any 9alid CRISP state.ents are per.itted.

resultinQ in a powerful co.putatiaaal tool.

lor loops can be u •• d as either state.ents or expressions.

A aechanisl is pro"fided for cOlputinq a value (or values)

upon Dotaal termination of the loop. The For loop lIIay be

used in both S1 and It and bas the following fora (a formal

descriPtion appeatli at the end of this section) :

st .

IL

1'O.B
f1 or Dore for-forla}

ENDP

(POR (1 or lore for-forls})

!be Por loop ia ilpl.lented as a aacto. It is expanded as a

<bindiaq-block>, which ba. the tollcwinq fori:

12/31/14

154 CRISP -- SDC T!-5455/000/00

DO set-014-value-1: aet-old-value-2; ••• ; set-old-yalue-n;
iDitial-l: initial-2; ••• ; initial-n;
BIGIN

bind-Yariable-l.bind-variab1e-2, •••• bind-variable-n;
t; code-for-first-geaelator;
code-for-second-qenerator:

lID

lih.re:

•
•

code-for-o'th-qenerator;
GO'fO t; r. final-l; f10al-2: fin41-3; ••• ; fina1-n:
RltURN returned-va1ue-co.putation;
EID

'set old .alu. i' indicates presetting of any loop

variables whose bindings exist outside the loop.

'initial i' indicates state.ents used in INITIAL

qenera tors.

'bind variable i' indicates binding (aod optional

presettinQ) of D8~ loop ,ariables.

'code for 1'th generator' indicates code needed for a

qiven qenerator, conditional. or loop body. 'rbese

pieces of code appear in the sa.e order as the

qenerators.

'final i' include. state.enta that appear in PINALLY

qenera tors.

'returned value co.putation t indicates code necessary

to qenerate va10es for ,alue-producing generators. If

.ore than ODe Yalue-producinq generator is used. all

the yalues are returned as a CDode2) list in vhate.er

order the qenerators producing the. appeer in the loop.

Any of the above for loop co.ponents not necessary for a

Qiven loop will not be included.

Rouqh Draft
---------------------------------- -----------

J

lOR LooP 155

There are two lethods of leavinq or ter.inatinq a for loop;

nor.al and aboor.al. lorma1 teraination occurs when a

qeDerator that is capable of teraiaatinq tbe loop does so,

or "ben a LEAVE 1'01 for. Is executed in a loop bod y. Roraal

ter.inltion causes the norlal ending and Yaloe-producing

code. if present (at label r aboye), to ~ executed.

Abaor .. l teraination occurs when, in a loop body, a return

or leaye is executed or a qo leaves the loop. In these

cases, co.putatioD Dorlally perfor,ed at the end of the loop

is bypassed, and the user is responsihle for generation of

any yalue (s) desired.

The for loop qeD.ratora and conaitionals are described

telov. In the .,ntax and expaasion descriPtions, tbe

follovinq sy.bols are used:

JIU.oI

v

exp1 ••• expn

r

t

Q, <11 ••• Cl n

a YeriabIe (identifier or qlobal naae)

expressions

a qenid latel placed before the
code that ia executed upon Dorlal
loop termination (value co.putation,
ete.)

a geoid label placed before the
first stat •• ent of executable code.

qenld variables or labels used in
expansion of the loop.

12/31/74

156 CRISP -- SDC Tft-5455/000100

fory

nuay

a loop variable carryinq
optional type inforaation 1

like forv, but can only be
a siaple numeric type

If a lower-case 'if' fQlloved by a capitalized word appears

in a description. the action(s) iaaediately following is

taken only if the capitalized word appears in the fora.

This is used, for ex •• ple, when the code produced by a

Qenerator varies depending upon the presence of optional

keywords. In additiQn, the function TRSTANDSET is used in

808e qenerator co~ •• Altbouqh itplemented as a single

Syst •• /310 instruction, it aay be viewed as the following

transfor. :

T81115'OB 11 TEST & _DS ET (POO)
11 FOO THEN TaU!

ELSB CPOOa-TIU!.NIL):

This has the effect of bypassing the consequent of an if

(usinq TBST1HDSIT aa its predicate) the first time the if is

execoted. Subsequent executions of the if will execute the

conaeque Dt.

In the following descr ipt iellus, tbinqs following

IHITIALI~ATIOH are noraally bound, optionally with explicit

ty~ attributes and presets. Soae initialization la, not

inyolve bindinq. but aetel, setting old variables. If this

is the case. it will be indicated. ENDIIG values are

returned upon norlal exit fro. the loop except in the case

of P'IttlLLt.

-----~~--~~---~~-----~-

I in SL, this appears as rOLD,<type-ref>] ,
in IL. the fora 1s (rOLDI<type-ref> v) or just v

RoUgh Draft

)

!

FOB toop

.AIR
SL -- AID ell'
IL -- (1110 exp)

IJI'fI1LIZ1'fIO)l -- llOOt q := TBU!
GBM8BlTOB -- IP ~ exp ~HER (q:=8IL. GOTO r)
EIIDIIIG -- q

157

TRU! is returned if exp is nOD-IIIL tor all evaluations. The
loop ter.inates and returns NIL the first ti.e exp evaluates
to IlL.

III
SL -- ALl. ex J)
IL -- (ALL exp)

IIIl'fIAtIZA'fIOII -- 8001 q := TIIU!
GEIEB1TOR -- 11 ~ exp THEH 9:=81L
ENDING -- q

Like AIID, but doe8 not ter.inate the loop if exp evaluates
to IlL.

DJ
5L -- OB exp
It -- (OB ex p)

INITIALIZATION -- BOOL q
GENERATOR -- IF exp TB!I (q:=TBO!. GOTO r)
EtlOIRG -- q

The loop ter.inates
evaluates to bon-RIL.
lIIL is returned •

.6.11
5L -- .. HY elP
IL -- (llIY exp)

and returns TROE when exp first
If all evaluations of exp are NIL.

INITIALIZATIOI -- BOOt 0
GEIIEB1'fOR -- If elp TBER ;:-1'BUI
ENDIIQ -- q

Like OB. but does Dot teralnate the loop if exp evaluates to
non-NI L.

12/31/74

158 CRISP -- SDC Tft-5455/000/00

nJU
SL -- fIBST elp
IL -- (PIllS! ex)))

IIfITlll.IZ1TIOH -- GBIBRAL q
GENEBATOB -- if 'q::el))) TBEN GOTO r
.NDIIG -- q

Like OB. but returns tbe value of exp the first ti.e it
evaluates to non-HIL.

JAJ,JUS
SL -- YALO! exp
IL -- (VAlUl exp)

111 'fI' LI ZATI 0 N
GEM!B1TOa -­
EIDIIG -- exp

UPOQ noc.al exit of tbe loop, elp is evaluated, and its
value is returned.

~U.IS
SL -- rt"TIFlCl'fI'U~8IBICO"PL!Xl SUB exp
IL -- (SUft r IN~IPLOlTINUftBEBICO"PLEJ] elp)

INITIlLIZ1TIO" -- rtype1 q :-0
GIIBBlTOR -- q:zq+exp
ENDlNG -- 0

Retuxas the su. of all ~yaluations of expo If type ia not
specified, Du.ber is asau.ed.

muJLQ:
SI. -- fII1IFL01TIMUeBIRICO!PLBXl P;ODUCT exp
IL -- (PRODUCT r IJ'lIPLOl'fINOftBERICOftPLEX] elP)

IIIIIlLIZlTION -- [type] q :=1
GBHERA~OB -- q:-q*exp
BIIDIIlG -- Q

Returns the product or all evaluations of exp_
Dot specified. nu.ber is asau.ed.

Rough Draft:

If type is

)

)

J

POR LooP

lZllal
SL - .. UIIOJ esp
IL -- (UNIOI exp)

INITIALIZATION -- lOO! Cl
GEJi&l'OR -- q:=eap UIION q
!NDIRG -- <I

Returns the union of all evaluations of exp.

l.l.l.El
5L -- lifT!! exp
IL -- (I.TER exp)

1 NI TI1LI ZATI 0 1/ -- I'ODI q 1.g 2
GEISBATOR IF TESTAIDSET(q1) THOI g2:=exp INTEB q

ItS! g2:=exp
INDING -- Cl

Returns thE intersection of all evaluations of exp •

.DJ£RJlUl
5L -- DAPPEID exp
IL -- (DAPPEID Gap)

INITIALIZATION -- 10DI Q
GENERATOR -- q:cq •• eap
ENDIIG -- Cl

159

Builds a list usinq DJPP!'D. Each evaluation of exp is
DAPPEIDed onto the previous list (initially If IL), and the
CODstructea list is returned apen ncrlal exit of the loop.
EXII .nlt • val ua. te to • list.

JtiiUJU
5L -- DAPPIIDR exp
IL -- (DAPP!MDB exp)

INITIALIZltIOI -- 10DI q
GBIEtATO! -- q:-exp I1 Cl
ENDIIG -- q

Like DAPPI"D. but retur.ed list will have co.ponents
(e'laluatioDs of elP) put together in reverse order. This
fota ia lore efficleat cOlputatioDally if order of list
el.aeats 18 aot llPOttant.

12/31/74

160

AU,.
5L -- 'PPBID exp
IL -- (APPEND exp)

IHITI1LIZ1!IOI -- MODI q
GBI.8ATOR -- O:-qii,expiHIL)
ENDING -- q

CHlSP -- SDC Tft-5455/000/00

Builds a list like DAPPIND but uses APPEND.

AUUU
SL -- APP!HDR exp
It -- ·'lPPENOB exp)

~'IfIALIZATION -- RODI q
GEIBB1TOa -- q:-exp i 0
ENDI MG -- q

Builds a list like DAPPENDR but uses APPEND.

iJlll.Ull
5L -- INITIALLY stat •• ent
IL -- CIIITI1LIY Satatelent)

Causes insertioD of specified statelent(s) betore the
bindlnq of yariable. for the FOB loop. If more than one
IIITIAL is used. the state.ents are executed in tbe order of
appearance.

lllJ1LI
5L -- fINllLY stat •• ent
IL -- fPII1Ltt Satat.lent)

IIITI1LIZ1TIOR -­
GZ.SiITOD --
EIDING -- (evaluatfl but de Q<lt reta,n) statellent

Causes the stateaent(s) to be evaluated upon norlal loop
exit. Evaluation is done before any value co.putation.

80uqh Draft

J

J

J

fOB Loop

c,gm
SL -- COONT ex p
It -- (COUIT exp)

IIII'fIALIZATIOJl -- IMTIGl!B <J :::0
GIH!B1TOR -- If exp THEN q:=q+1
END1 RG -- Q

Returns the nu.ber ot ti.es elp evaluates non-NIL.

U.51
SL -- LIST axp
IL -- (LIST exp)

INITIALIZATION -- ,ODI 9
GENERATOR -- Q:-exp • Q
ENDING -- DBEVEBSECq)

161

A list of the value. of each evaluation of exp is returned
such that CAR (list) is 1st value, CADS (list) is 2nd value,
ete.

J,1-SlJ
SL -- LIST! exp
I L -- (Lt STEt e Jp)

IIIITIALIZATIOJ -- MODI q
GENIBATOR -- q:-exp • Q
ENDI MG -- q

Like LIST, but returns the list of 'alues in reversed order.
Co.putationally .ore efficient if ordering of ela_ants is
not required.

12/31/74

162

IJ
SL -- fory IS exp
IL -- (IS forv exp)

INITI1LIZATIOJl -- r(type J y 1
G!NBBATOR -- v:-exp

CRISP -- SDC T8-5455/000/00

v is set to the ,aloe of exp each ti.e tb~ generator is
executed. If OLD appears. an existing binding of v is
asaa.ed end DO Dew one is created. If type is not
specified. i.plicit typiDq rules will apply •

.Q~
SL -- DO block-body UKDIEIDF}
IL -- (DO Istate.ent)

INITI1LIAZATIOI -­
GBNERATOR -- stat1

stat2
•
•

stato

The specified state •• nts are executed ea~h time the DO
qenerator is executed. Mulitiple DOs aey appear in a loop.
In SL, Qsinq ENDP iD.teed of END terminates the DO and the
for loop •

.uE~lj
SL BIGIN block-biad-list; r attribute-list]

block-body IIIDI!NDP}
It -- (BEGIN block- bind-list block-bod y)

INItIALIZATIOI --
GENEBATOR -- BEGIH block-bind-list:

attr ibute-list:
stat1

•
•

statn
END

Si.ilar to DO, but per.its bindinq of yariables.

Rouqh Draft

)

J

J

FOil Loop

l.!JJ
SL loa loop
lL (FOB loop)

1 for loop
qenerator.
codiog

DO POB

11

•••••

be nested within another and
FOR keyword is used to free the

Blor ElfD

5L -- forv II {esp I OLD varl
IL -- (IN forv texp I OLD varl)

INITIALIZAtION -- rrt,~el v1

163

used as a
aser frolll

if not OLD in for., NODE 9 :: exp
G!NBB1TOR -- IF NULL if OLD, Var

otherwise, q THEN GOTO r
if OLD with ,ar, ':~lB(var)
otherwise, v :=C1R (q)
if OLD with .ar, var::zcdr(var)
otherwi •• , q:-cdr(q)

IN gi.es v (through successive iterations) the same values
that "API. would pre.Ent to its functional argument. !xp
Eust e.alaate to 11 list. When the list is exhausted, the
loop is terminated. If the 'OLD var t form appears, a genid
varia.ble is Dot crea teeS to held the successi ve CDHs.
Rather. the existing variable, var, is used. Normally, this
would result in var beinq NIL upon termination of the loop
unle •• another generator causes termination before the list
is eXhausted. If OLD appears with the focY, an existing
binding for v is assuaed and a new one is not created. If
no type is specified, iaplicit typinq rules will apply.

gl
SL -- [OLDl y OJ '.JP I *l
11 -- (ON Iv I COLD vU (elP I *))

INITI1LI41TION -- BODI q ::aexp [,lODE v1
GB lE SlTOR -- I f MULL g THEM GOTO r

v:=9
g :-=CD8 (q)

Like Il, but sets y to successi •• CDIs of exp rather than
ClRs of SQCC~88iye CDBs. I.e., like !APON instead of M1PIM.
If OLD and * are use4 together, • iteelf is CDRed instead of
a Qenid.

12/31/14
------_. __ ._--_.

164 CRISP -- SOC T~-545S/000/00

J.I~U
SL -- for" :ar Jexp1 I *} BESET exp2
IL -- (aISIT forv {expl I *} e1P2)

tlITIALIZ1TIOH -- if OLD, set v:=exp and bind q
otberwise, bind [type] v:aexp,g

GB.EBlTOR -- IF TISflIDSBf(q) THEM v:=exp2

The first ti.e throuqh the loop, v will have the "alue ot
exp1. On subsequent iterations, exp2 will be evaluated and
its value stuffed in v. If OLD appears, an existing blndinq
of v is assuaed and a new one is not created. It no type is
specified, i.plicit t,pinQ rules will apply. If OLD and *
are used together, then 'will have its original value on
the first loop iteration.

n.tl2JW:
SL DU.":S: (exp 1 I *1 r (TO r >- I <=-I >1 <t =1 .,= 1 I THR U) exp2]

r fBI J STEP} exp3]
IL -- '(8tISTEP) nua. (exp 1 I *)

r exp3 r (exp21 UGQ I to I GB I LS I!O allQ) ex p3) }]])

INITIALIZATION -- if OLD, set .:=expl
otherwise bind [type] v:=exp1

if TO, bind g:zexp2 --"
if BY, bind q1:=expl J
bind q2 -

GEN!J1TOR -- IP TEST1MDSET(Q2)
TH!N if Bt, v:=.+q1

otherwise. if STEP, v:=v+expJ
otherwise, v:-v+1

if TO, IF , specified-relational or GO 9
if THIO. IP V OR q

THIM GOTO r

1 standard arith.etic stepping loop. BY causes iocre.ent to
be pre-coIPuted; STEP caus.a exp3 to be e,aluated eacb t1.e.
If neither BY nor StEP appears, 'BY l' is assuaed. TO
causee endinq test value to be pre-co.puted. If TO appears
without specifyinq a relational. GO ie used. THRU causes a
GR test to be a.de. To qet ending value coaputed each time,
use:

UMTIL v desired-relational exp2
If OLD appears, an exist1nq , is a.sOled and is
to ezp1 rather than bound with that preset. If
specified, i.plicit typinq rules Mill apply. If
with OLD, theD ,bas its original outside ,alue
first 1001 iteration.

Rouqh Draft

.erel y set
no type is
* is used

during the

----.-- ------------

J

10R toop

Jill-
SL -- V HBI ex p
IL -- IVH!I exp)

G!IfBIATOB -- If ""I exp THEN GOTO t

165

Whenever exp evaluates to IlL, the rest of this iteration of
the loop is skipped.

llJU~
5L -- UILESS e~p
IL -- {UILESS expl

GENERATOR -- 11 exp tHEM GOTO t

Vheaever exp evaluates to non-HIL, _ the rest of this
iteration of the loop is skipped. (like' WHEN ... exp')

JJlllJ
5L -- 11 HIL I exp
IL -- ,VHILB exp}

GEIIBATOR -- Il ... axp THBI OOTO r

When exp first evaluate8 to NIL. the loop is terminated.

J1J~.11
SL -- UHT IL exp
IL -- ,UNTIL elP)

GE.II1TOR -- IF exp T8!R GOTO r

Wben exp first eyaluates to noo-NIL. the loop is ter.ioated.
Clike 'WHILE ... eJp')

12/31/14 --- --- ------- -- -------

166 elISP -- SDe TM-S4S5/000/00

II
SL -- IF exp (qenet:atoI I (Sqenerator) 1
It -- (IF exp 'qenerator)

GENERATOR -- Il esp THEM (qenerator1,
genera tor2,

•

•
qeneratoIn)

'he specified qeoeratoc(s) is elecuted ooly if alp evaluates
to non-NIL. Note that the qeneIator aay be of the control
type. as:

If RU"BERP(X) U.LESS X (a 0
Since VALUB and PIIAtLI have no qenerator part, it is
illeQal to use tbe. as cCDSequenta of IF •

.un
5L -- BIND <blcck-biad-li8t>
It -- (8IID • <block-bind-list»

INI!I1LIZA7IOI -- (block-bind-list>

Tbe specified variables aIe added to the POR loop's bind
list. There is no facility for usinq attribute toras as in
SL blocks.

Rougb Draft

J

-------- .-._--_ .. - -------.----~-..

POR LOop 167

POR LOOP FOIUIS
f -----!

Cil.s.i ~.t::.L.l~R 11%IBJ,~j

stePJler (e Itended) stepper atepPEr
AND lLIIllS
A1.L
OR
AN!
FltST 'rHEREIS
VALUI V ILU J
UHIO.
INTEB
COUIT COUNT
PINAILY FINALLY
LIST LIST COLLECT
LISTS
SUft SUft
PRODUCT
IS LOOP/AT (EACHTlftB)
IN IIf IN
ON ON ON
DO/BEGII TOP/BOTTOIV DO DO/EACHTIKB
BSSET BESBT/NOW
WHEI WHElf IIHBI
DILESS UIL115S UILESS

\ UIIT IL UNtIL a»TI L '~

WHILE WHILB WHILE
IF
DAPPEID JOIN
tiP P IIDR
APPEliD
IPPltlDB
BIND BIID

1 COIPAllISON or poa GIIIIBATOBS loa VIRIOUS LISPS

fiqare L

12/31/74
-~----------.----.

168 CRISP -- SDC Tft-5Q5S/000/00

A sa.~le code expansion (in 5L) is included with each FOB

loop ex •• pIe. AlthoUQh the code produced in the examples is

correct, it does not reflect certain optimizations that

would be perfor.ed by tbe actual FOR macro (such as the

collapain4 of TESTANDS!Ts. if possible, and thE removal of

extraneous branchinq). In the examples, the following

I!PLICITs are in effect:

A-A GENERlL
I-It INTEGER

~nd O-Z FLOAt

(1) Pin4 the sua of a vector of float numbers:

rOB 1:*1 T9RO AiL.CX)
fLOAT SUt! X(11
IID1

(FOR (8Y I 1 1 (lRLII Xl) (SU 11 fLOAT (X Cl»»

8xJ)a naioD:

BEGII I:*1,Q1: 3 IBL.(1.),PL01T g2,q3;
t:lP T!ST1KDSIT(q3) TH!N I:~1+1;

IF I) Q1 TH!I GOTO r:
Q2:*q:2+X(11:
GO!() t:

r: RITURI Q2:
£10:

Rooqh Draft
._-----_._._--_ ... _-- ._---------

)

)

POI Loop

(2) Print an endless list of Fibonacci numbers:

*sL·

*IL.

POR 1:-' STEP J
J:=1 81511' I-J
DO PRIIT CJ)
EIDF

(P 0 R (S T E P I 1 J) (R ES ET J 1 (DIP'! R EN C 1! I J)
COO (PBIM'!' I)))

!xpauiQn:

BIGII t: s 1.J:=1.;1.<l2;
t;IP !!ST1IDSI'r(q1) 'rH!" I:=I+J:

If TEStlMDSETCq2) THEN J:=I-J;
PIINT (J) :
GOTO t:
EID:

169

(3) Produce a li.t of the first 10 prime numbers and nu.ber
the. sequeatially. as:

1(1 • 2) (2 • 3) (3 • 5) '" • 1) ••• (10 • 29)}
,!,his loop asau.es tbe existence of a function PRI"E(X) that
returns non-KIL if I 1s priae.

·SL·
POB 1:=1

WH!N pa111! (1)
J:=1
LIST J.1
U1IT1L J • 10
IIWl

·IL·
(POB (Bt I 1) (1ft •• f P811!! I,) (lY

CLIs'l (COlS J I») (U nIL (IC

I!xpans iOD:

BEGI. I:-1.J:=1.IODB q1.q2,q3:
t:IP tEStAIDSIT(q2) TH.I 1:-1+1:

11 ... 'IIftB Cl) !HIS GaTO t:
IF TIST1IDSIT(q3) TBII ~:·J+1:
Q1:-IJ.I) t01:
11 J 1II 10 THII GOTO r:
GOTO t:

r:RIfU •• DIIYER!IC"):
110:

12/31/111

J 1)
J 10)))

170 CRISP -- SDC Tft-5455/000/00

(4) Bx •• ple of tbe us. of LIST, L1S2R, APP!JD, I~D 'PPI.DB:

FOR 'Ill "'U B C) (0 I) (P G B 1) (J) (l{ L ft) IlL (B 0»)
tIS! J
LIST! ,
IPPBID A
'PPI.DB I
IIDF

(FOR (11 A 'OUOT. ((I BC) (D B)(F G H I)(J)
(It L ft) "I L (M 0»)

(LIS-r l) (LIStR 1) (lPPEND 1) (APPEIlDR A»

Expansion:

BEGII 1001 A, JODI gl :-" ((l 8 C) (I) I) (P G H 1) (J)
(K L ft) II L ()I 0»,

JOD! <l2,IOD8 Q3,IODI Q4,NODE q5;
t : II ~ q 1 T H BM GO TO 17 Z

A:-C1R(crl) :
Ql:-CDI'ql);
Cl 2: a l'Q2;
<.I3:-1'q);
q":2Ql&li ua.IL) ;
05:-&105 :
GCTO t.

r:BB~UB. LISf(Dil'IISI(Q2),g3,q_.qS);
liD;

The abole loop will produce the following list:

((1 B C) (D I) (' G R 1) (J) (It L K) IlL ,I 0))
~ ,. 0) NIL (K L 11) CJ) (' G H I) (D E) (A B C)
(I SeD B P G H I J K L " N 0)
(I 0 It L " J l G HID I A BC»

Rough Dtaft
~----- •. ----..

j

J

)

'08 Loop

<for-loop>::=POR '«for-fotl>[, U EIDr

(for-forl>::=<for-qen),<for-cond>l<for-control>1
<for-bin4>I(for-body>

, <for-qen>::-<stepper>,<value-qen>l<oora-qen>l<reset-qen>

<stepper)::a(OLDI<nu.-type)l<nale>::=f<expression>.*)
({TBIUtTO r ll~ll-'S:aI=1 :an <expression>]
r rBY I STEP} <expression>]

(nu.-type>::-IITIGIBllLOATJCO"PLIXIIUftB!R

<valae-Qen>::-<arith-yal>l<nora-yal>

<arith-val>::-r<nul-type>1,sU"IPBODUCT}<expre8sion>

171

<nora-val)::-rAMDI1LLIOBIAJYfFIRSTIV1LUEIUHIONIINTEBICOONTf
D1PPIID1D1PP8MD RllPPEIDIAPPEMDRILISTILISTR)
(expression)

<nora-qen)::=<in-gea)l<oa-,en>l(is-Qen>

<in-Qen>::-rOLDI<type-ref>l<na.e> II «expresaionIOLD (nale>}

<OD-080>::-(OLD1 <na.8> 01 (expres8ion>,.)

<is-Q80): :-(OLD I('type-ref») (Daae> IS (expression>

<reset-qen)::-rOLDI<type-ref>1<nale>:={<expressioD>I·)
RES!T <expression>

<for-cond)::-<for-if)l<ior-terl>

<for-if>::-XP <expression> «fit-forl>1 ('.,.<fif-fora»}

<fif-fora>::-<for-qen>l<for-cond>l<for-body>

<for-terl>::=rWH!I'UJL!SSIIHILB'UNTIL} <expression>

<for-control>::-<iDit-qen),<final-qeD)

<lnit-qen)::-INITIALt! <statelent>

<final-QeD>::-PINILLY (state.ant>

<for-bina>::=BIND <block-bind-list>;

<for-bodv>::-DO (block-body> rENDIEIDF} J
(for-loop> I
BBGIN<bloak-bind-iist>;

f<attribute-llst>]

12/31/14
-------------- --- --- ---

172

IL

<block-body>
(I'OIEIOF}

CRISP -- SOC TI-5455/000/00

<for-loop)::-(lOa a<for-forl»)

<for-for.)::~<for-qeD>I<for-condl<for-control>1
<for-biDd>l<for-body>

<for-qen>::-<stepper>l<yalue-Qen>,<norm-qen>l<reset-gen)

<st epper>:: = « (BY I STIP} <nuI- for- 'fa r> I<e xpression) '*)
<expression)r ({GO I LO J LS I GR I EO I MQl <ex press ion»)])

<nul-for-yar>::-(na ••)1 (fOLDI<nul-type»<nale»

<nua-t,pe>::=IITBGBRIILOATICOMPtBX'IU"BEB

<value-qen>::-<arith-yal>l<nor.-val>

<ar it h-val>::" « 'SU! IPRODUC'f} r <n UI- type) 1<e xpre ssion>}

<nora-val>::=«(1IOllLLIORI1N!IPIHS!I'lLOE'UNI0HIIITEBICOUNTI
D1PP.IDIDlPP •• DBIAPP!NDIAPPENDBILISTILISTR}
<ex pres8ioll»)

<norl-qen>::=<in-qen)l<on-qen>l<is-gen>

<in-q.n>::II(IN <£or-yar> «expression>, (OLD <nale»])

<on-qen>::=(OM '<nal.> 1 (OLD <nale»} «expression>,.})

<is-qen>::a: (IS <tor-yar><expression»

(for-var>: :-<n.I.)1 IIOLDI <type-ref)}<nale»

<rsset-qen)::-(BESIT <for-,ar),<expression>I.)<expression»

<for-cond): :-<for-it> '<fot-term)

<for-if>::-(11 <expre.sion> ~«for-g.n>l<for-cond)l<for-bodY)l)

<for-ter.>::=(twHBHtUIL!SSIVHILEIOK!IL} <expression»

<for-control): :-<init-gen> l<tinal-geD) .

<init-qen)::=CINITIA1Lr S<State •• nt»

<£inal-Q •• >::-CPIJ1LLY S<atatelent»

<tor-bind)::-(BIND • <block-bind-list»

<for-body>: p:<b in41 nq- block> I <do-b lock~ I <f or-loop>

Rough Draft
----- --_._------ ._-------- ---

)

173

PROCESSORS AND PROCESSES

This section describes processes, processors, and the

primitives for .aDipulatinq thel. Osing processors, a

"epaqhetti" stackl ilpl.mentation la, be achieved. However,

the cost of using processors instead of ordinar, functions

is hiqh. Startinq or resu.ing a process aay easily exceed a

millisecond: linkage tQ a function costs approxilatel, 40

microseconds. A syat.a design criterion bas been that

ordinary operation. function calls, and in-line code (as

opposed to process switching) should run as rapidl, in CRISP

as the equivalent code would run in a LISP, FORTRAN, or PL/l

systel with a qo~d campiler and rQn tile support package.

It is believed that this ob1ectiye has been let in the

current syste. design witbout seyerely penalizing programs

that use the process switching capabilities.

8ultiprocessing is not a feat&re that is autolatically

invoked. A set of priaitiYes are provided aa a parts kit

fro. which the progra •• er can tailor the syste. to .eat his

pa rticula t Deed a.

This section contains subsections on Processes, processors,

Proces.loq Priaitives. and 2xa.ple Proqraas. The saction on

seoDinq and denotatioD r&les (pag. 25) should be reread

alonq witb this section tor better co_prehension.

---~-------------------

1 See "A !ode1 and Stack Iap1e.entation of ftultlple
Environaents", Daniel G. Bobraw and Ben Wegbreit,
~.AaB~~i~~~l-lhl-~' October 1973, Voluae 16, Nu.ber
10, paQes 591-603.

12/31/14
.~"-----­

---,----.--------------------~.

CRISP -- SDC Tft-5455/000/00

A process is a progral that has beeD placed into execution.

Each process is identified by a baDdle. A bandle is a data

obiect that contains the total state of a process. The

state of a process has tbree parts: activity state,

int.rnal state, and external state. Tbere are three

possible activity states: active, suspended, and dead. The

internal state of a process bas two related parts: variable

context and control context. The external state co.prises

three lints: context link, abort link, and last activator

link.

Sevetal primitive operations are a.ailable tbat lodify the

state of a process. The operationa START, RESUME, and KILL

modity a process's activity and external states. The

operat iODS COIlTE!T, lBOBT, and ACTIVATOR can modify a

process's elternal state. !he internal state of a process

1s lod1fied by execution.

The IIPleaentation as.ociates with each process a stack that

contains the internal state (control and variable conte~ts)

of the process. Function calls and variable bindings are

handled OD the stacks in a noraal. LISP-like manner. The

bandle associated vitb the process is a 5-tuple. The

ela.eAts iu a handle are (1, activity state, (2) context

liat. (3) abort link. (4) last actiYator link, and (5) the

stack associated with the process.

ROUGh Draft
--- ---_._-------

\

Processors and Proce •• es 175

Acti,ity state

Wben a process is started, a new handle and stack are

created aad initialized, and the new process is aade active,

that ia, it ia put into execution. Exactly one process in

tbe systea is acti,. at any o~e .oaent. When a process is

~esu •• 4, tbat is, put back into execution, the process that

is currantly active i8 sU8pended. A process is suspended

whenever it has been started, has not been killed (or died

of varioas computational ailments), and is not currently

active. When a suspended process is resumed, it beeo.es

actiYe and continue. operation fro. the point at. which it

bad been suspended. 1 process beeo.es dead when it is

killed (by tbe prt.iti,. ~ILL). when an error or unwrap is

initiated in the process and thete is no try in effect

within the process, or when the internal state of the

process bacoaes null. 1 dead process aay not be resumed.

Internal ste te

Tbe internal state of a process is maintained on a stack.

The stack codtains return addreases. teaporaries, ¥ariable

bindinGS. an4 fail.et points established by the try

If a process is suspended, its stack also

conta1ns a proqraa counter save so that the process can be

properly re.uled. Tb.re i. QO stack associated with a dead

process.

Is an'ective process executas, its stack grows and shrinks.

When a function i. oalled. the a[qQaent values are coaputed

and pushed onto the stack. Also, a return address (location

12/31/74

116 CRISP -- SDC 111-5.55/000/00

at which to re-enter the calling functional) is pushed onto

,the stack. The called fanction is then entered, and the

arau.ent values are paired 11th the pa ra.e ters' proper

na •••• thus creating bindings. As blocks are entered, the

initial (preset) values of all local and global variables

bound by the block are cOIPuted and pushed onto the stack.

After all presets bay. been cOIPuted and pusbed, the values

are oaired with the block variables' proper nales, creating

bindings. When a function or a block is eXited, its

a •• ociated bindinqs are popped off the stack, thus unbindinq

the ,ariablea. 1 return address is a pair: a function or

proce •• or definition and a point in that definition at wbich

execution 1. to "reau •• ". Thus, wben a function is exited,

the return a~~re.s to its caller (Mblch i8 popped) supplies

the infora.tion necessary to restart the calling function.

When a process is suapended, the proqraa counter is saved in

the sale foraat as a return address.

Teaporar, ~alue8 and results of coaputations lay also be

pushed onto the stack. CBISP i8 so designed that all such

stack usaGe follows a last in first out (LIFO) discipline.

Deturn a4dresses. teaporaties. and failmet points fora a

proce.s-s control state. The variable bindings on a

proceas's stack fora ita variable context. Thus, the total

internal state of a process is rEflected by its stack.

Pail.et points are described below in tbe section on

Bouqb Draft
--~ ~-------

(
"'-...

Processors and Processes 171

Bl[ternal sta te

7he external state of a P£ocess is a set of three handles.

One handle. tbe coutext link. is used to construct the

variable context. If a variable is

,efe£enced by a process that is not bound in its internal

state. then the binding is looked for in the internal state

of the P£ocess located by the context link. If not bound

there. tben the context link of that process is followed,

etc.

The set of processes in the systell for. a tree.. The

processes are the nodes and the context links form the arcs.

The root node is the pseudo process that has NIL as its

handle. Tbe IlL process is the set of top level variable

bindinGS .. The seotion on dynalic context (page 36)

describes this in lore detail.

The second part of a process's exte£nal state is its abort

link. The abort link is a handle. The set of processes in

the syatea also fori a tree with the.selves as nodes, the

abort links as the arcs, an4 the IlL process as the root

node. This tree need not be isoaorphic to the tree for.ed

by the context liBk8. The usaqel of the abort link are

described ia the .ection on processing priaitives (pa~e

179, •

The third co.ponent of a process's external state is its

ac ti fa. tor link. When a process is aade active, the

activator link is set to the handle of the process that

12/31/74 -_._._--

178 CRISP -- SDC TK-S4SS/000/00

started or resuled this process. The activator links need

not fora a tree and lay be circular.

SYntactically. a processor definition «processor-def»

reseables a function definition. See the section on

defiaitions (page 97). Both have a naae, an argu.ent list,

and an expression bod,. 1 processor is called luch as is a

function. (See the description of the S'URT prilitive

belo".) When called, the argulents are evaluated, and

control is transferred to the processor definition. At this

point. the process lakinq the call is suspended, and a new

procESS is cre.ted. On the ne" process's stack, the

arQUI.nt values are paired with the paraleters' proper

naaes. Then the body of the process is evaluated.

Tbe Doraal way for a processor to exit is by resUling

another process. (Unlike function

not exit in the or4er in which

calls, proceSSors need

they ar~ crElated.) If a

peoces. co.plates elecution of the processor's expression

body, then an unwrap is induced in the process pointed at by

the abort link. tbe value passed back by the unwrap is "Ch

COftPLET!)~ wbere h is the handle of the co.pleted process.

The process is larked as dead when this happens. The

expression body of a processor is a novalue expression,

thus. it is not required to produce I value.

Rough Draft

J

Processors and Procesaes 179

This section specifies the syntax of

available for proce.s control and describes their usage and

leaninq. In the syntax equations, a <proe-expeession) is

any expression whose value is a subspecified peoe type (the

naa. of a processor. for exalple). A <handle-expression>,

or an <hexp) for sbort, is any expression whose value is of

the type handle. The syntax of the pri.itives is:

<processiDq-prialtiv.a>::-(failset-pti.iti'~>'
<process-copy-priaitive>I
<external-state-primitive>I
<activity-ehanger>

<failset-priaitive)::s<try-form> '<exit-form>

<try-fora)::=<trY>J<tryu>l<trys),(trya>

<try): :=TRY ({OSEB I SYSIALLl ",<form»))

<tryu>::=t8YO('_,.<fotl»

<trys>::·tRYS(~.,.<for.»

<exit-fora)::-<fail-fora>,<error-fora>

<fal1-fora>::-<fal1>a<failkill)

<fail>::-PAILff<expre •• ioo>r.<hexp>lD

<fal1k11l>::=lAILKILL«expression>.<bexp»

<error-fora>::-(errot),<errorkill>

<error)::-IIROR(f<expre8sion)(.<hexp>]])

<errorkill>:::BlaOIKILL«eIPression),<hexp»

<proces.-copy-priaitive)::-COPYPBOC«hexp»

<external-state-pri81ti,.)::=<mymelf>l<activator>I
<context>l<abort>

12/31/74
._--------------

180 CRISP -- SDC Tft-Sij55/000/00

<.yself>::=ftYSBLl

<actiyator>::=ICTI'ATO&«hexp>[,<hexp>]) I
tUACTI'ATOR er <hexp> J)

<context>::-CONT!XT«bexp>[,<hexp»)1
ftYCOITlXT er <hexp>])

<abort>: :=180BT '<he xp>(,,<hexp >)) I
ftYABORT er < bexp> 1)

<acti,ity-chaooer>::-<starter>t<kill>l<resuaer>

<starter>::=<iaplicit-start>l<explicit-start>

<iIPlicit-start>::-(proc-expression>(S.,.<expressioo»

<expliclt-start):::STABT«iaplicit-start>, {(na'.>INIL),
<hexp>,<heJp>,<hexp»

<kill>::-KILLPROC(hexp»

<resuaer>::-<resuae>l<resuaec>J<resQaek>l<resumeck>

<resu.e>::-BESOftl<resuae-body>

<resuaec)::=BISU!!COPY<resuae-body>

<resuaek>:::BESUftl~ILt<resu.e-body>

<resuaeck>::-RESUftICOPYKILL<resuae-body>

<resu.e-body>: :-«bexp>f .<eIPressioll>f .<hexp>]])

<heIP)::=<handle-eIPre.aion>

·IL·

<proce •• iDQ-priaiti.e>::=<failset-priaitive>1
(process-copy-priaitive>I
<external-state-priaiti.a>1
<act1vity-chanqver>

<failset-priaitive)::-<t4y-forl>l<exit-for.>

<try-for.>::=(trY>I<tryu>l<trys>l<ttya>

(try>::'III (TRY (USER I Sf! ULLl -<fota»

(trJu>::-(TRYO '<name>.NIL>) t<fora»

(trvs>::-(T8YS -<form»

<trJa>::=(TRYA -<fora»

<exit-fora>::=<fail-forl)l<err~r-fota>

BOQqh Dra.ft

Processors and Processes

<fail-forl>::-<fall>t<failkill>

<fail>::-'F1IL r<expression> [<hexp>]1)

(fallkl11>::=(PIIlIILL <expression> <hexp»

(error-forl)::=<error>l<errorkill>

<error)::-(EiBOa r<e.pression> [<help>]»

<errorklll>::='!iHOIKILL <expression) <hexp»

(proc.ss-coDy-priaitive>::-ICOPYPROC <hexp»

(external-state-prilltive>::&<lyself>l<activator)J
<colntext>l<abort>

<I,self)::- (!ItSELF)

<activator>::-(lCtl'ltOR <hexp> [<help>]) I
(~tlC!IY1TOB r<hexp>l,

<contest>::-(COI!IIT <hexp> r<hexp>]) I
("'COIlTaIT r <bexp>])

<abort>::-(&SOI! <bexp> r <bexp>]) I
(~Y1I08'l' r<bexp>])

Cactivlty-chanqer>::-<atarter>,Ckill>l<resuaer>

<starter>::=<1Iplicit-st.art)l(e2plicit-start>

<laplicit-start>::=(Cproc-expression> S<expression»

<explicit-atart>:: - (Stll! (l.pllei t-start> «na le> 1111 L}
Chexp> <hexp> <bexp»

<kill>::. (KI LLPBOC <Aexp »
<resuler>::-<resuae>J(Iesuaec>l<reSUlek>.<resUleck>

<resua.)::-(RESOKB <c.su.a-body»

<resuaec>:: -(R!SOIlECOPl < resUle-bod y»

<resuaek>::-CBBSOIlIKILL <resule-body»

<reaueeck>::-(BE5UMICOPIKILL (resule-body»

<resuaebody>::=<hexp>[<expcession>«hexp>]l

<bexp>::-<haodle-expressioa)

181

In t he follow iDq discussion. the syabols h. h 1. h 2. and h 3

are bandle expressions. and _ is the handle of the currently

182 CRISP -- SDC T"-5455/000/00

acti •• p~ocess. The .,.bo1 n is a naae, and f1 ••• fn are

fora •• either atateaents or expressions. as indicated by tbe J
text.

'ailset fora.

Tbe failset pri.itives allow one context of evaluation to be

left or aborted becaa •• of unusual circuastances and another

context to be restored and activated. The <try> toras

provide the "protection" points at which control is

restored. The exit for IS aiqnal the unusual conditions.

(trYu>. (trys>. and (trya) are equivalent to a (try> with

the keyword U5IB, SY5. or ALL. respectively. Thus.

TRIO (t1 ••• fn)

is equivalent to
)

Ta! (USER. f 1 ••• to)

A try aay be used as either a stat.aent or an expression.

When a try is used as a state.ent, the embedded foras are

atatea.ntl. 1 qo fora aa, branch out of but not into a try

stateaent. When a try is used as an expression, the

e.bedded fora. are expreslions. Tbe value type of a try

expression is the 11ail.l type (as shown in Figure D, page

49) that contains tbe value types of all the embedded forms.

In operation, the tt, e~alQates the first embedded form. If

it e.aluates noraally. tbea the try is finiShed. If it J
evaluates abnormally (catches an unwrap caused by an exit

form). tben the second form is evaluated, etc. The

BoUqb Dr aft

\
'----

/

Processors and Proca •••• 183

ayaluation of the try 1. finished with the evaluation of the

first embedded fori that •• aluates Dormally. If the try is

used as an ex~resaicn, tben the value is the value of the

first fora that coaplates normally. If the last •• bedded

fora Is e.aluated .ad does not complete normally, then the

unvrap continues thro~qh this try to the next "outer" try.

There are two kinds of <exlt-fora>s: (fail-form>s, which are

for users, and <error-fora)s, which are used by the system

to report illeqal situations at run time, such as DIVISION

BY O. Pails return control to a try with either USER or ALL

specified, and errors IetuED to a try with either SIS or ALL

specified. The follewing pairs are equivalent:

FAIL() and P1IL(IIL)

ERROR() and 18aOI(IIL)

~ben PAIL or ERBOa ia called without a second argusent,

control 18 returned to the last try (with the proper

keyword, executed in the currently active process that has

not coapleted execution. If there is no appropriate try in

this process, then the unvrap continues in the process

pointed at by the handle iD the abort link. The abort link.

are followed in this aanner until an appropriate try is

found. ls each pIoces. stack is searched for an appropriate

trY. .ariable hin4ino. aDd contIol states are discarde4

(popge4). If aD entire process 1s unvrapped in this aanner,

it beco... dead. When control is passed back to a try in

this •• n.er, the internal state will have been restored to

what it va. before the trial evaluation was initiated.

Variables' bindings but not their ,alues are restored. That

12/31/74

CRISP -- SDC TH-S4S5/000100

is, if a value in a bindioQ has been set by a failing form,
--

~'\

then the value is not reset on abuorlal eulna tioD. The NIL ~
process alva ys has a TIl 11 lD effect to ultillately catch all

unwraps that the user does not fie14 hilself.

Tbe variable BXlfVAL is set to the value of the first

arau.ent of an exit fora, and the variable !IITKIID is set

to either the identifier SIS or USER to reflect the type of

the last exit. The .ettings occur after the unwrap in case

eitber variable ha. been rebound.

When a two arqua.at exit fOIl is used, the process

contalninq the ezit torl is suspended, the process located

by the secood aeguaent i8 activated, and the unwrap occurs

in that process. Por exaaple,

flIL '''XYZ If h)

The currently active process. I, is suspended and an unwrap

is iaitiated in the process h with the aessage XY!. If the

process I is resuled. the value of the resule call will be

the value of t be fail. (T his can occur onl y in the two

arqu.ent case.,

The prtaiti.e. P1ILKILL and ERROBKILL work like fail and

error with two arqu.ents. The difference is that the

process contain.inq the exit form call is killed. These kill

pri.itiv •• should be used whenever it is undesirable to have

control return to the process, 8.)

Rough Draft
-------------------- ---------- -----

i i"

Processors an~ Processes 185

Process copy pri.iti, ••

The priaitiYe COPYPBOC has one argument, a process handle.

A new process with the saa. internal and external states is

made and returned as the .alue if and only if tbe process is

suspended or dead (in which case there is no internal

state.) It is illegal to copy the currently active process,

m.

!xternal state primiti,es

The primitive !Y5ELP has a 'alue that is the handle of the

cULrently active process. The other three kinds of external

state pri.itives bave two forms, either one

arQu.ents. The followinq pairs are equivalent:

In~lCTIVATOR()and ACTIVATOR unSELF)

l!lCTIV1TOB(h) end ACTIVATOB("YS!LP,h)

or two

Siailarly for the COVTIXT - ~YCONT!XT pair and the ABORT -

BYABORT pair. If ACTIVATOD is called with one argument, h,

it returns the handle of the last ptoce ss to /le ti 'la te h. If

ACTIVATOS is called with two arquments, hl and h2, then it

returns the last acti.ator of h1 and sets the last activator

link of h1 to h2. Si.ilar actions are taken for CO.TEXT and

ABORT. In addition, a check is .ade to ensure that the set

of processes in the syete. vill still make a veIl formed

tree. If not, a run tiae error diagnostic and unwrap is

issued.

Activity chanqers

There are three kinds of activty changing primitives:

starters, KILL, and the various resuaers. If p is "a proc

12/31/14
---- --,._------- -- - ------_.- -_._-_ .. ----... ------- ----,----~----- ----

186 CSISP -- SDC TK-S_S5/000/00

expression and e1 ••• en ate expres.ions, then the following

torls are equivalent.

p(el ••• en) and

S'IART(p(el ••• en). IlL. MYSELP. "YSELF, MYSELF)

STAB1 creates a Dew process. The arqu.ents el ••• en are

evaluated and passed to the processor that is the value of

p. ~he argulent values are paired ~ith the para.eter names

on the new process's stack. If a name is included in the

start form (instead of IlL). then the handle of the new

process is placed there. Therefore, the naae. if present,

lust be a variable with a type attribute of either general

or handle. Tbe three handle ex~ressions a.bedded in the

start fori are, in order, the initial activator link,

context link, and abort link for the newly created process.

When the new process is started (activated), the currently

active process is suspended. When the starting process is

resuled. the value of tbe start fori is the value passed by

the resume primitive. (See below.)

The priaitive KILtPROC deletes the internal state of the

process that is its aegument, thus rendering it dead. If

KILLPBOC(!YSELF) is evaluated, tbe currently active process

is .ade dead and an error unwrap is induced in the process

located by !YABOST().

The resumer forms sQspend (o~ kill) the currently active

process and activate aQother process. If e is an

expression. then tbe following pairs a re equivalent:

RESUftB(h) and RESU!!(b. HIL, MJSELf)

Rough Draft
--"---- "---" ""- ---------------------"-"--"----"""

Proceasors and Processes 187

BESUftE(h. ~ and RBSUME(h. e. MYSELF)

The opera.tion of a resulle follows these steps: (1) evaluate

the three arguments, (2) set the last activator link of the

first arquaent process to the value of the third argu.ent,

(3) suspend the currently active ~[ocess and (4) activat~

the first argument process and feed the value of the second

arquaent forward to the resuae point. As an cxaaple:

PROCESSOB PO
BIGIN:

'BI 14T (BESU IU (MIACT IV AToa (), "P. Sf ART ED)) ;
.. .. .
EIID;

BEGIN HANDLE H;
PBINT(STABT(PO. H, MYSELF. MYSELF, MYSELF»:

•••

. . .
END:

When tho processor P is started by the first line of the

block. its external state links are all initialized to the

process containing tbe block (call it M). and the handle of

the new process is stuffed in the variable, H. The first

thinq done by the new process is to restart ~ and feed back

the value P.STARTED, whicb baco.es the value of the start

call in K. Theretore, the first thinq printed is P.ST1RTED.

Eventually. the new process (with the handle in H) is

resuaed with the ,alue BBSUftEC, which becoaes tbe value of

the resua. cell in the (aeM) process. The second message

printed ls thetefote RESlJf!!D. All aessage passinq is done

with data obiects of type qeneral even if tbis involves

con version.

The priaitl'e RESU~!COPY is identical to RESUME except that

tbe first arQuaent ~tocess is copied by COPYPROC. Tbe

12/31/74
-----------------~----------.-.--.~

188 CRISP -- SDC T"-5455/000/00

eQuivalences are:

RESUf!BCOPY Ch) and RESUttE (COPYPftOC Ch»)

RESUftECOPY(h.e) and B!SU!!(COPYPROC(h),e»)

RESU!ECOPX (h1.e.b2) and RESU!E(COPYPROC(h1),e,h2)

BESUIIBCOPY is not normally used with co- routine

implementations but beco.es necessary when generalized

backtrack1nq sche.es are being i.pIe.ented. See the first

example proqram in tbe next sectien.

The pri.itive FBSDftlKILL is identical to RESU"E except that

the c urren tl y acti ye process is killed ra ther than

suspended. BESUftBCOPYKILL, like RESUMECOPY, copies the

first arquaent and, like B!SUHEKILL, kills rather than

suspends the currently active process.

If an attempt is aade to resume an active or a dead process,

an error occurs in the process centaining the resume call.

Neither RESUHECOPY nor RESU"ECOPY~IIL may attempt to copy

the currently active process.

the follovlnQ program is an i.pleaentation of a full

backtrackinq parser that is built fro. a coabination of

functions and processors. The processors are used to

proyide tbe state sayes nec~s5ary to correctly perform

backup. The equations are an internal representation of

Rough Draft
---~------------ ------~~--- ---------- ---- -_. - - ~ -- -- -------

(~

Processors ana Proces.es 189

BNF. However, the alqorithl does not handle left recursion.

DEC PAT.LIST<PlttEBN(IA~E PAT.NAft!, PAT PAT. PART>,
LI.~ PAT .LIST>,

GEl PlT.PlBT. ID PAT.NAft!, ID TBBMINAL.
BEP(ftIN INT. MAl INT, PAT PAT.PlBT>,
ELft<KIND ID. ITE! FAT. PART ARRAY(.»,
Pl'l.lUftE STABT:

DEC lODE INPUT.
EXITLIST<PBO HANDLE, R!5TOB! INPUT. LINK EXITLIST>:

PAT.LIST FUHCTION FIHDPAT(PAT.NAME NlaE)
FOR PAT.LIST L:spAT.LIST BESET L_LIN~ WHILE L

If lilftE=L_PATT!IIICNUIE to BETURN LEND
VALUE NIL
BIIDF:

SCOL FOICTION PABSEB(GLOBAL INPUT}
TRY(US!R, DEGllI GLOBAL EXI1LI5T;

e PI as BR (ST A BT) ;

NI L) :

FOR EIITLIST F:=EJITLIST
BES!T F_LIMK 1iHILE F
U.LESS F_PRO=!YSELF
DO KILL(F_PRO) ENDF;

BITU BN T BO l!
END.

NOVALUE FUNCTION RPlRSER(PIT.PART B)
SELECTT E

WHEN NIL THEN IF IWPUT THBH EXITO
WHEN ID THEN BEGIN PAt.LIST L:-PINDPAT(E);

WHEN L THEN BPABSER(L_PAT)
WHEN INPUTGIIPUT_FIRST=!

END
tlHEIf REP 1H Ell REPBI! Cl)

THEN INEOT:=INPUT_SBCOND
ELS B EX IT ()

WRER ELK TalK SBL!CTQ I_~IND
illiE. lLT TIiIR IL'l'BRN1'l'IV£CE_ITEft)
WHEN ClT THEN CO.CATENATE(E_ITE~)

ELSE ERBOBC"SYRTX)
ELSE EBB08("SYMTI);

ROVALUE PO.CTIOR EXITe)
IF EIITLIST

THEH BIGIN BII1LI!! l:-EXITLIS1i
EIITLIST:-!XITLIST_LINK;
IRPUt:-'_BISTOBE:
FAIL UIL. '_PRO)
END

ELSE FilL (IlL);

ROVALUE FUNCTION ~IITSET()
BEGIN EXITLIST X:=*;

12/31/14
------------------ ---- -------- ---- - ---- -- -- -----

190 CRISP -- SDC Tft-5455/000/00

x....P80:= IIYS!LP:
X.BESTORE:=IMPOT:
'_LI&I:-EIITL1ST;
EIITL15T :-X
IIfD:

PROCESSOR REPE1T{S!P B)
BIGII L:=I_"I&, H:-a_!AX. PAT. PART !:=R_PAT,

C:-ftYACTtVATOB() :
ATTRIBUTE IHTft.H):
POR INT 1:-' THau L

DO 'PlDS!! (E)
ENDF;

IF L>H THEI IXITt);
POft I:=L+1 TO H fIIALLY RESOftEKILL(C)

! ID:

DO TBY (US 2&, (SXITS.eT (), B E5Uft ECOPY (C)),
SPARSER (E))

.ENDP;

PBOCBSSOR ALTERNATIYE'PAT.PlRT ARRAY(.) A)
BEGIN H1IDI H:=ftYACTIVATOR(), IN1 C:=ABLN(A);

If CaO THEN IXIT():
POR INT 1:=1 TO C

BID;

DO TBI (USIB. UXITSIT (),
RPIRSER (l[I)) •
IUSU PtECOPY (R)) ,

RIL)
liD

PIHALLY (RPABSER(A[C1), RESUftEKILL(H»
!!lDP:

ROVALUE POleTIOI COBC1T!NATB(PAT.PART ARRAY(.) C)
FOR INT 1:-1 THBU AIL.(C)

DO SPARSER(Cf IU
EIDP:

The following pcoqra. contains two co-routines, INPUT and

OUTPUT. OUTPUT prints characters in four qroups of three

per line with each qroap separated by a space. INPUT

returns the next character in the string S. If the

character is a digit, then the next character is returned

that .any ti.es instead of the diqit. ThE! character

followinQ the diqit is then returned. Thus the string,

'A2BSE3426FGOZYW3210PQ89B'

Rough Draft

J

J

------------------ --- --- -------------- ---_._------_. --------_. ----------~~---.--------.-----------

Processors and Processes

is like

tlBBBEEBBEB4444666PGZYW222200P09999~9999R'

and is output ~s

leB BEE EEE E44
446 66' GZY W22
220 OPO 999 999
999 R

191

This contrived co-routine exaaple has been borroved fro.

[<nut h. 2

80V1LOE FUICTIOR OUTPUTCGLOB1L STRIIG S)
BEGIN H'IDLE H;

S'fARTUJPUTn. H, MYSELf, "'SELf', MYSELF):
POR I:::'

CHAR C IS R ESUft! on WHIL! C,
FI N ALLY IF BEIUIND!8 (I, 12) = 1 THEN TERPRl () ,
DO fBI.TeHce):

WHEN REK1INDER(I,12) =0 THEN TERPBI{)
WHEN BEMAINDER(I,3)=O THEN PRINTCH(SPACE)
!N DP;

1:10:

PROCESSOR INPUT')
BEGIN 1:-',L:-18LN(8);

AtTRIBUTE Ilt(I.L):
BBSUKECftYACtlVATOB() ;

L:1F 1>-L 'fHII BESUIlIKILL(ftY1CTIVATOR(»;
If DIGITP (Sr I])

THEN (FOR J:-O THRU CHAR21IT(S[I])-CHAR2INT(NS'O')
DO RESU"B(KYICTIVA'l'ORO.S[1+11) ENDF,

I:-l+2)
ELSE (RESUftE(ftYACTIV1TOR(),S[I]),I:=I+l):

GO L
END:

2 See "Fundaaental Algorithas, the Art
ProQra •• inQ", Knuth, Vol 1, page 191-19q.

12/31j1q
------ --------------- ------------

of Coaputer

192

TH! CAP ASSEMBLER

The CAP asae.bIer ia used as the last pass of the CRISP

compiler and is also available for those users who waht to

proQraa in aachine lanquaqe. Thete are two versions of the

ClP lanquaqe: CAP SL. vhlcft closely resembles the standard

IBM assembly lanquaqe format, and CAP IL, which closely

rese.bles tAP languaqes. Besides the normal capabilities of

an ass •• bler, CAP pro'ides many ~seudo instructions and

operands that are used to maintain the stack, bind and

unbind variables, and perform linkaqes. Also, CAP code iE

bloc k structured in a aanner that is siaila c to I L and St.

CAP code sequences are always introduced into a proqra. as

either a CIP operaad in SL or as a CAP expression in IL;

either form may be used as a statement. In SL, a CAP

operand is the word CAP followed by a value type, a sequence

of CAP instructions (in 5L for.at separated by se.ieolons) ,

and the word BID. In IL, a CAP expression is a form with

the word ClP as its operator followed by a value type and a

sequence of CAP instructions in It format. The value of a

CAP fora is assuaed to be in register PO if floating and in

ceQister as it anythiDQ elae. An elample of a CAP sequence

that adds the value of tbe two integer variables I and J in

CAP INTEGER
L BS. I;
1 B 5,J:
IND

The saae exaaplE in CAP IL fotaat is

BoUgb Draft

)

)
/

--~---- ----------------------------~-'--.--- -"-- ----------- -------------

The CAP Asseahler

(CiP IlfTEGIR
(t 115 I)
(A a5 J))

193

The s,stea accepts input definitions for functions,

processors, aacros, and generators in one of four forlats:

SL. SL CAP, It, and IL CAP. (See the section on tree

structured files and the disk co.piler on page 259.) An

exa.ple of the saa. function written in each of these four

formata is qi 'fen next. Tbe function performs the

calculation I+2.J, producing an integer value from its two

inteQer arQuaent., I and J. (The value of the last

arQuaent, in this case J, is passed in as.)

f'ORftAT 5L:
INT 1UICT101

POIH'!AT 5L CAP:

POO (liT
CAP lIT

IB
A
BND;

I, INT J)

R5,R5:
B5. I;

lIT FUJCTIOJ POO(IIT I, INT J}
AB 85,15.
A 95,1:
END:

rORftlT IL:
frUIICTIOM eroo liT) «(I INT) (J niT»

(CAP liT

rOBBlT I L ClP:

CAB 85 85)
Cl a 5 I))

U'UlfCTIOI (.00 I.T, «(I liT) CJ liT»
UB as IS)
(A R S Xl)

Thus the 5L elP and the IL CAP foraeta re.ove tbe necessity

of redundantly entering the value type and the word CAP.

The scopinq and denotation rules in CAP are the sa.e as

those in CRISP. The block stEucturing defined below

12/31/7&a

194 CRISP -- SDC TK-5455/000/00

interacts v itb tbe stack allc:cation pri.i ti ves to

auto •• ticall y assiqn the proper field values to

instructions. The following subsections describe

instruction for.ats. operand forlats. pseudo instructions,

and the macro facility. The section on register allocation

and linkaqe (page 297) should be read along with this

section for better cOlprehension.

lppendix I. Su •• ary of 18" 370 Instruction Formats (page

310) • sUI.ari~e8 the available machine operations and the

foraat of tbeir operand fields. In st, an instruction is

written with its op code followed by the operands (separated

by cOlllas) and terlinatEd with a se.ieoleR. For example,

LA B3.X:
A B6,14 '&3,6):
!Ve e (FOO , B 2) , X :

In It. an instruction is a list with the op code appearing

as the fora operator and the operands appearing as

subsequent me.bers ot the list. The above SI ~xa.ples would

appear in IL as

(LA 1t3 X)
(1 86 (14 83 6»)
(ltve (8 100 R 2) I)

If an identifier appears in place of a whole instruction.

theD it is as.uI.d to be a label: "I;" in SL or "X" in IL

,without parentbeses). IDteqetS in the range -2 z0 through

2 20-1 lav also be used a8 labels. However. this can be

danQerOU5 because the co.piler and assembler use negative

ROUgh Draft

-)

The ClP Asse.tIer 195

inteqers .a qenerated labels.

Becaa.. of the se.lcoloo delimiter in SL and the list

structuring io IL, it is not necessary to start label

definitions io coluao 1. You aay bave ~ero or aore

inetractions on any line, and a single instruction aay be

split oyer •• DY lia.a. Thas, the input foraat is truly free

fora and contains DO colu.n rules.

Appendix II, CAP Operand Poraats (page 312), summarizes the

operand foraats of CAP in.tractions and should constantly be

reterred to WhED this section is being read.

There are six basic kinds of operand fields: registers;

Cbit) aasks: nuaerics; full addtesses that include a 12 bit

displace_ent and two register fields; half addresses that

include a 12 bit displace.eat and a base register field; and

length addresses that include. 12 bit displaceaent, an

operand length, and & base register field. Tbe following

paraqraphs describe the .ariou8 abbreviations used in

Appendix II.

BeQister aDd rid operand

When a register field is expected as an operand, only an

expres8ion at a register aae.onie can be used. (See the

section on reQister allocation, page 297, for listing of

12/31/714

196 CRISP -- SDC Tft-SQS5/000/00

reqister .nemonies.) If an identifier, say 85, is used for a

reGister £1e14, the asse.bler looKs for the value of the

inteqer variable. R SSREGISTBR. I f no such variable exists,

then the identifier is assumed to he a simple expression.

The value deter.iDed for the reqister is converted to an

inteqer and truncated to four bits.

~as k operand

A mask is USEd either as the branch condition for a BC or

BCF command or as the byte selector for left. eLM, and STeM

commands. The expression used for the mask is converted to

an inteqer and truncated to four bits.

1 nuaeric operand is a constant of four, eight, or twelve

hits, dependinq on its usage. the value of the expression

used as a nuaeric operand is converted to an integer and

truncated.

A ddr ESB opera nd s

A variety of operand formats are usable as full, half, or

lenqth addresses. If the selected fora produces both index

and base registers for a half or length operand, an error

diaGnostic will be issued. The length field in a length

address is either a tour bit or eight bit integer, depending

upon the instruction. ~he lenqth value is iaplicit for

certain operand for •• t. or is given explicitly by a ladr.

Because lenqtb values should be one less than actual operand

lenoths~ the asseabler subtracts one from the specified

Rough Draft

j

)
/

The CAP lsse.~ler 197

lenoth (after truDcation) before placinq it in the binary

laaqe. (If the length is zero, then no subtraction is

pe rf oraed .)

Nalle

A naae aay he either local Ot Qlobal. The saae scoping

rules that are used in CRISP are used in CAP to determine

the ~roper name of an identifier. lhe~e are exceptions. If

the naae is PUSHP •• PUSHN •• POPP., POPN., or RET., then the

naae is aasuaed to be a stackop. (These identifiers aay not

be used as local vatiable nalles in SL or IL.) Also, if an

identifier is not located by the local and global naa~

searches, t.hen the na.e tailed with "CAPS"" is looked for.

If found. then the v.lue of that synony. is used in place of

the identifier. Also. a 910bal naae explicitly tailed int.o

CAPSYN viII be used as a glohal synonym. A local name is

transformed into a (stack) displaceaent and a base reqister

and thus •• y be used ae a full, half. or length address. A

global naae is transfora.a into a displaceaent, base, and

index reqister fora and •• y therefore only be used as a full

a.ddress. The illlPlicit lengt.h of a nalle operand is four

bytes ..

Labelop

Since a label and a variable aay have the saae name, a

syntax aechlnisl ia neces.ary to avoid confusion. lote that

a label aay not be used a. part of an expression. However,

an indexed branch aa, be specified using a labelop. If an

index is used. then a label operand say appear only as a

12/31/14

198 CSISP -- SDe T~-5455/000/00

full address. Otherwise, a label operand aay be used as a

baIt or lenqtb address. The implicit lenqtb of a label

operand is four bytes.

SvsoP

l SV80P is used to address an entry in sys1, sY52, nual, or

Dua2 space. The identifier is the n •• e of the entry. Sys

entries Ire defined by the function M1KESYS or by the

asseabler pseudo-op SYS. The value of the expr, if present$

is added to the displace.ent of tbe entry (from the proper

base teqister) to fora the complete displacement. The

reqister operand, if present, is used as an index register.

If the index field is not specified, then the sysop .ay also

be used as a half or lenqth addreas with an iaplicit length

of 4 bytes.

Literal

Literal foras are used to introduce constant data in a

proqra.. There are no pseudo-ops in CAP to generate inline

data. The reason for this is that the syste. must be able

to disass6ab18 a protta. Bufficiently (when and if it is

garbage collected) to knock down counts for naae space

teferences. Data in the prQgraa iaage would pres8nt rando.

combinations against the e.vironaent.

'lhere are several types of literals. Quote, bquote, and

tYDe allocate pointer CODstants that are stored in naa.

SDace and aay therefore be used only as full addresses. Int,

float, half, byte, and aultint literals allocate nuaeric

ROugh Draft

199

constants that are stored in nu.1 or nua2 space and .ay

therefore be used as any kind of address.

A quote literal is translated into a full address of a namea

cell that contaias a pOinter at its value. If another quote

is EQUAL to this ODe. it aay share the sa.e namea cell.

Sharing is not guaranteed but lay occur. Therefore, do not

o.maQe Quote cells or change the fields of their values.

Tbe actual pointer put in the N1"EA cell is to a copy of tbe

body of tbe quote operand. An hquote literal is like a

quote except that the body is not copied. and EO rather than

!OUAL is used for the sharing criterion. Hquote is norlally

used when CAP code is generated by another program. not for

constant fields in prOQra •• that are input from an external

source such as disk.

The body of a type literal (a <type-ref» is forced through

the seoping rules and si.plified to a silple type name

(identifier). a qlobal nale of an ntupl •• or to a function,

processor. or variable or array subtype. If the result is

an identifier or olobal nale. then type responds like quote.

Otherwise. the result is hashed an~ sinqularized so that EO

coaparisons between (type-ref)s are possible. In any event,

a type lite~al aay be used only as a full address. Also, a

co •• and of tbe for.

L R5.TYPEU.B)

lay be replaced by the ta.ter co ••• n~

LA 85.A$5

assuainq that 1$8 is the n •• e of a .ariable with ntuple type

12/31/74

200 CRISP -- SDC 1ft-5455/000/00

~SB. Since Quote. hquote, and type operands can be used

onlv as full addtes&es, they do not have an iaplicit length.

lot and float literals, after proper conversion, allocate 32

hit constants in nUll or Du.2 space. They may be used as

any kind of address, and their ilplicit length is four

bytes.

Half and byte literals allocate 16 and 8 bit integers in

any kind of Dual or Dum2

add cess. and

res P E C it vel v •

space. They aay be used as

their iaplicit lengths are two and one,

A multint literal is used to allocate an integer in nUll or

nu.2 space. The first operand, an integer, is the byte

lenQth of the operand. The following expressions are

evaluated and converted to integers. tbe proper nUlber of

byte~ are extracted, four per expr, and the eltra high order

bytes are truncated. The maxilul length is 256 bytes.

staekop

Stackops are used to reference unoa_ed quantities on the

stacks. All have an ilplicit length of four bytes and all

except a TOff. or TOP.. operand. with an additional

reqister specified, •• , be used as Iny kind of address. The

la t ter la y be used only as fllll addresses.

The CAP asaelbler •• intains virtual stack laps at co.pile

tia. and uses the. to assign addr&sses relative to the stack

BOUQh Dr aft

J

J

/
i
\

The ClP Asse.bler 201

reqisters PDP and PDI. Thus; the stackops do not change the

value of tbese registers. they only change the configuration

of the virtual stack aaps. Therefore. if the instruction

ST R5.PUSHP.

is executed in a loop. it references tbe same cell on each

iteration (for a qiveQ function inlocation). CRISP and CAP

have been desiQned to allow this static stack aappinq at

cOil"ile ti.El. With neither hardware stack operations nor

hardware display reqisters on the 370. this sche.e buys back

execution ti.e. Further. for a few code sequences, it is

actuallv faster.

Tbe address field PUSHf. advances the virtual stack pointer

to tbe pointer stack by eight bytes and uses the updated

address. The address field POPP. subtracts eiqht bytes fro.

that virtual stack pointer and uses the updated address.

The address field TOPf. uses the address of tbe top (last

posb Dot aatched by a pop) of the pointer st.et. The

address field TOPP.(expr) adds the value of expr to the

address of the Yirtual top of the pointer stack to dcriYe

the addX:88s. Becall that pointer stack entries a re eigh t

bytes lonq and that the value of eapt is interpreted as a

byt e offset. llso. tbe real stack pointer is .OOx bytes

behind the return addc ••• OD the stack for a given function

invocation. 80 n.qati,. ,alaes

appropriate. The address fi.ld

TOPP.(ezpr.re,iater)

of expr are perfectly

uses expr in the 8 ••• aanner. The register field is used as

an iQSlex reqister. !hia latter for. may be used only as a

12/31/74
----_._-_ .. _----

202 CRISP -- SDe Tft-5455/000/00

full address •

The • ~dreas fields PUSHtI. and POPN. and the forms of TOPN.

are equivalent in fUDctiodto the sa.e na lies ending in P.

The difference is that the'v refer to the nu.ber stack

instead of the pointer stack. , and that the increments and

deere.ents perfor.4!ld by PUS 8)1. and POPN. are four bytes.

The stae1c.op SBCOID provides a cony en ient III et hod of

addressioQ the high order four bytes of a local stack na.e

on tbe pointer stack. Thus, SEeOND(L) addresses the part of

the stack entry for L that is used for global binding save

intoraation. not the value eo.ponant that would normally be

addressed by using the na •• , L. The stackop RET. acts like

a local variable whose assiqned stack locat ion is the return

address tor the current function invocation. (This is

stored on the pointer stack.)

Adr

An adr produces a 12 bit displace.ent and, optionally, a

base and index reqister. If both registers are specified,

the first ls the 1ndex. It an index register is qiven, then

the adr .ay be used oal, aa a full address. An adr .ay not

be used for a lenoth address because of the syntax conflict.

Therefore, it 1s .eaningless to speak of the i.plicit length

ot all adr.

Ladr aDd lapleDQth

A ladr is used whenever an instruction is expecting a length

Rouqh Dr aft
- - --,---------,----------------_ •.. ,-------------"_."

J

J

The ClP Asae.bler 203

address field. In the for.

expr(expr,reqister)

the first expr is tbe displace.ent and the second is the

operand lenqth. The reqister is the base. If the iD\plicit

lenqth is not the one you desire, then any legitimate half

address (h) can be used with

l"PLEIGTHfexpr.h).

The value of expr will override the iapIicit length of h.

Expc

An exp~ is a rudi •• ntary expression that can be used to

co.pute a value at assembly time. The expression is

computed in full mixed aode, converted to the proper type.

and. if necessary. truncated to the proper number of bits.

Tbe only non-obYious expr components are offsets and

lenqths. The arqument tor both is a full ite. na.e. That

is, no containinq qroup n •• es aay be omitted. Also, the

specified itea mQst be in the ntupIe; links to other

structures are not auto •• ticall, followed, as they are by

the coapilar. 'arther. sUbscripts ate not used.

The value of an offset fat. is the distance in bytes froa

the beqinning of the ntuple t~ the first byte of the

specified ite.. (This offset includes eight bytes for the

atople header.) If the it •• would nor.ally be subscripted,

the ,.lue of the offset is the distance to the ite. with the

lowest l.~al subscript ,.1ae ••

1he ,alue of a length fora is thE length in tytes of the

204 CHISP -- SDC T~-545S/000/00

specified itea including any interior or trailinq slack

bytes. Length of an ntuple na.e is the length of the

structure. not includinq the head~r.

Appendix Ill, CAP Peeudo Instructions (paqe 315). suamarizes

the for.ats of tbe pseudo instructions available in CAP and

should be read along with this section. Each pseudo

instruction is described below.

CAP blocks

A CAP block is the asseably language equivalent of a CRISP

<binding-block) (See the section on blocks, page 109.) The

word BIGII is follOWEd by the sequence of instructions that

co.pute the preset values for the variables, a BIND pseudo

instruction that binds the block variables, the block body

~nother aequence of instructions). and the word END. The

preset cOlPutatioD lea'.8 the initial variable values on the

stacks in the order in which the variables appear in the

bind pseudo instruction. For ela.ple. the CRISP block

proloQue:

BEGIN I:a1'.J:--12.FL01! 1.MODI2 l:a"(1 8);
ATfRIBUTE IITfI.J) GLOBAL(',');

Bough Draft

)

The CAP Aaseabler

"ould appear in ClP as:

BEGI. LA
ST
"VC
ST
t
ST
SIlD

85.17 :
R 5. PUSHN •
PUSHII. (I INT (-12) :
ZBBO.PUSH!I. :
85. nUB) ;
R5(1POSHP.
INT I.INT J(lGLOBAL

205

PLOAT F.GLOBAL MODE2 M;

The foraat of the body of the bind instruction is the saa.

as tbe for.at of a CRISP block bind list. except that: (1)

ovn variables are not allowed, (2) <local-syn-dec)s are not

allowed. (3) no preset forlls ara permitted, and (4) no

attribute forms .ay be used.

If any of the variables in the bind list are global na.lles

(or the scope attribute is GLOBAL) then the bind pseudo

instruction outputs the code necessary to qlobally bind

thOSE variables. If Done et the variables are global, then

the bind instruction does not output any code; it 1ust

alters tbe virtual stack lIaps. Also, in this case it is

peraissible to branch out of the block using any of the

tranch instructions. When global variables are bound, it is

necessary to use the GO pseudo instruction 01: to "fall

throuqh U the block to .ake sure that globals are properly

unbound. that is, the unbindinq sequence for blocks that

bind qlobal Y6riables is autoaatically generated at the end

of t be block. If the block binds ~o vaIiables, then it is

peraissible to branch into the block at any label. Note,

YOU are not considered to be in the block until the bind has

been executed and the block boel, is entered. The preset

sequence acts like part of an outer block. This aeans the

bound yariab1es are visible only in the block body.

12/31/114
-.. ---.----------------~-.

206 CBISP -- SDC T"-5455/000/00

Branchinq D •• ado instructions

The branching pseudo instructions a~e the standard IBft

extended op code set defined in the "little yellow card"1.

glus branch on true 'B()IT). branch on false (BON P), and GO.

The extended OP codes all expand to BC or BCR instructions

with aasks that select the proper ,alues of the condition

code. Por instance. BZ aeans branch on a zero result. The

codes endinQ with an B produce BeR instructions, and the

othets produce DCs. 1he label required bv BONT, 80"F, GO, or

the extended ops that produce a BC may siaply be ~ label

aa.e. It ls not necessary to write out a labelop operand

unless yOU wish to use an index as well as a bas~ register.

If the operand is an identifier or an inteqer, it is assu.ed

to be a label naae. the iastruction

BOlT r,L

is equi,alent to

BIH r,ZEBO,L18ILCL)

and

BONE' e,L

is equi,alent to

BILE r,Z!BO,L1BIL(L)

The pseudo instruction, GO, is an unconditional branch to

the specified label. Its operand .ust be a label (an

integer or identifier) or the identifier HeET.". RET. used

as a GO operand aeans return froa the program that is

currentl, in operation. GO aay btanch out of blocks that

1 IBft Systea/370 Reference Summary, GX20-1850-n.

Rough Draft

J

The CAP Asseahler 207

bind Qlobal variables. If it does w then code is qenerated to

unbind tbe variables automatically. Therefore, the amount

of code <lenerated by a GO pseudo instruction is variable.

If no <llobal bindinqs are crossed w then "GO RET." generates

the two byte instruction "BB PNRT", and "GO L" generates the

four byte instruction "B L". Four additional bytes are

qenerated for each block that is crossed that contains

qlobal bindiDQs.

stack pseudo instructions

The stack pseudo instructions cause the assembler to

increment or decre.ent a virtual stack pointer by the nu.ber

of bytes specified by the value of their operand, expr. The

valu e of ex PI: is roundEd upwArds to a lIultiple of eigh t for

the instructions PtJSHP. and POPP. (which refer to the

~oi nte'r stack) , and to a .ultiple of four bytes for PUS RN.

and PCPN. (which refer to the nu.ber: stack). These

oper ations do not produce any code and therefore do not

init i41izfiI the stack e ntriee. They are noraally used to

reserve an area ot stack to use as a scratch area for local

coaputatioD or to infora the asseabler that certain stack

teaporariea are DO lonqer in use.

Caller.

The caller pseudo instructions provide an easy .ethod of

codina linkaaes to other prOQra88. CALL is used to link to

an ordinary function, PU.CALL is used to inVOke a func

valued eJ~ressioD. StilT is used to start a processor.

StlB'rPBOC is used to start aproc valued expression, and

12/J1/74

208 CRISP -- SDC Tft-5455/000/00

SYSCALl is used to invoke a function in sysl, sys2, nUI1, or

nua2 apace. Because arquments aav be transaitted on the

stacks, the asaelbler autotatica!l, returns th@ virtual

stack confiQurations to the cnes that existed before the

caller was executed. Thus, tbe staCK entries used as

arqUlants are autos.ticaIlv popped. SOle exaaples of the

use of callers are:

APPEJD(1.B) CALt,APPEND
1 R5,A;
S T R 5 • PU S HP. :
1 as.B);

a lAD () CALL (RBAD) :

FU.B) where [JEC IUMC P(PLOAt,IMt)
FOMC1LL(L rO,A;

S7 FO,PUSHN.:
L as. B:
L R1,F);

LEIGTH(l) without error cheCking
SlSCAlL(LIJGTH L RS,L);

CALLI FUNCALL I STABT. and ST1RTPBOC output the usual linkage

sequence wbich includes

Blla LINK.FltLl:

CALL and STAB! also output the load address necessary to

locate the DalE cell of tbe called proqram. SlSC1LL only

outputs the BAL necessary to reach the proper SlS space

entry. Norlallv. code reached by a SYSCALL expects all of

its arQu.ents in registers: the stacks ace not actually

incre.ented by the function linkage sequence, as they are iD

the Cltber casea.

Synonyas

The CAP local synony. capability is yery It.ited. The expr

body Must contain DO forward references and cannot include

RouQh Draft

)

The CAP lss.ahler 209

any labels or other non-synony. nales. The scope of the

synonym is lexically forward for the duration of the block

(or proqraa definition) in which it is defined. (Recall

that preset calculations are part of an outer block.)

sts pseudo instruction

The SYS instruction requests the assembler to locate tbe

binary of the progta. in wbich it afpears in the next set of

available locations in the specified syste. space. It

should appear sale where near the beginning of the definition

(how near

inhibits

has not yet been

the esselbler fro.

deter.lned). The SYS command

automatically outputting the

instructions that place the last argument on a stack, the

instructions that autolatically split the stack for

prOCEssors, and the return via "sa fMRT" at the end of the

definition. Code placed in nUl' er nOl2 space lust not

modify itself becaOSE parts of it aay double as numeric

litera.ls.

TRY pseudo instruction

the 1Bl pseudo instruction is used to establish protection

points aqainst stack unwraps. the first operand specifies

the kind of unwraps to stop. The t •• aining operands are an

ordered set of instractioQ segoenc... If an unwrap occurs

in the first $8queQce, then the second sequence is

autoaaticallY attelPte4, etc. If unwrap occurs in the last

sequence, it continue. throuqh the current try to the next

outer tty that ia in effect. In all but the last sequence,

there .ust be at lease one BMDTRY pseudo instruction.

210 CRISP -- SDC T"-5455/000/00

IIDTS! is tbe only leqitilate aethod of branchinq out of a

non-ter.lnal try sequence without exiting or failinq. The

operand for ENDT8! is a label. The try entry on the stack

is zapped. and a GO to the label is perfor.ed that unbinds

any necessary qlobals.

Space test

1 space test deter,ines Mbat kind of space a pointer

addresses. Tbe specified reqiater contains the pOinter.

The pointer is clobbered by the opetation of the space test.

The followinq phrases specify space kind nale and transfer

Iloint paira. NIL means "tall throuqh" the space test. A

label lav be specified. in which case the proper BC to that

label ls qenerated; or "R register" aay be used. in which

case the appropriate Bea to that register will be generated.

to not use BO as 8 branch address register; it .ay lead to a

surptisinq ae.oty protect violation. If the word RET. is

used. it will be treated identically to"R FMRT". A space

test .ay not branch out of blocks or proqraas that bind

Qlobal variabl~s.

Assuae that you wish to teat the pointer in B2i if it is an

array. then YOU want to branch to label L. If it is an

inteQer. YOU want to fall throuqh the test. If an ything

else. then you "aDt to return froa the proqr.a. To

accoapliah this, code the space test.

SPACE B2.ARR1Y 1.11T IIL,BET.;

As can be seED frol this exaaple, the last phrase can

specify a "Dothing works" branch point. After execution of

BOUQh Draft

J

The CAP Assemhler 211

a space test. the specified reqister contains the byte

address of the QC! (Oaantized Core ftap) entry corresponding

to the addressed paqe (see section on core maps, paqe 267).

The macro facility for ClP proqlams bas not yet been

designed. The most probable implementation is through the

transform facility with the addition of some conditional

pseudo OPS.

12/31/14

212

)

J

ROQC'lh Draft

213

Thp. second half of this docu.ent describes the CRISP system.

It is necessarily ince.plete because the system has not yet

been written. The sections included are: The 1/0 Facility,

Priaitives, Tree Structured files and the Disk Compiler,

Memory "anaqeaent facility, and Register Allocation and

Linkage. Tbe sections that are not included are: How to

Loqin and Get Started. Interacti,. Super9isor, and The

Proqraa Check Handler. .or the typical user, the .ost

i.portant sections are The I/O Facility, Priaitives, and

!ree Structured Files and the Disk Coapiler.

12/31/74

THI I/O PACILITY

The I/O facility available in CRISP provides a flexible

capability for co.aunications through the CMS' syatea.

There are priaitives for both binary and sy.bolic data

transfer. The ~evices that .ay be used are disk, tape, card

reader. card punch, printer, and ter.inal. The card devices

and the printer are of course, the spools provided by CP

(the '" control Proqra_, which is responsible for manage.ent

of the user's "aachine"). In the tuture, a facility ta use

Vft's channel-ta-channel adapter siaulation (CTCA) will be

illPleaented. Using a CTCA, CRISP prograas aay initiate

connections via the laPA network to other co.puters. 1lso,

virtual aaehines aay co •• unicate with each other through a

CTCA connection. Another capability anticipated for the

future is a for.atted output package si.ilar to that

provided by P08TR18 or Pt/I systeas. The original Byst.a

vill have autoaatic foraattinq for structuring output called

"pretty" printing, but QO provisions for user specified

foraa. tB.

Besides t~. I/O facility. this section describes the other

kinds of CP and CftS .er9ices pro11ded to CRISP programs.

These incldde ace... to the tta.t, ptogram saves, and

~--~-~-~-~-----~~~-~---

I CftS 1s the Vft Conversational fteDitor syate.. It is the
operatinQ system that usually rUQS in a user's virtual
maohine and provides a file syst ••• utilities, etc. See the
IBM Virtual MachinE Pacility/370: Co •• and Language Guide for
General Users (GC20-180Q-n) for a coaplate description.

Rough Draft

J

1/0 Facility 215

construction of co •• and tables.

In order tbat a CBISP proqra. be able to ptoperly access a

file. two types of information .ust be specified: (1) the

inforaation n~cessary to locate and correctly identify the

file and (2} the features that describe the intended use and

the for.at of the file. Both types of information are

qrouped tOQether io a file descriptor list (PDt). In an

lDL. the file identification infor.ation appears first,

followed by the usaqe iofor.ation. The file identification

information is hiqhly order dependent, while the usage

information aay be permuted without effect.

file identification

The format of the file identification varies with the type

of device. The followinq description explains, by using

examples of PDLs that contain only the identification, the

leqal formats. 1 terainal file identification is (c-name

TER"IM1L) where c-naae is an identifier that will be used as

the lnt.ernal naa. of tae tile ia CRISP. Several of the I/O

pri.itives require cn1y the internal naae as an arquaent.

5iailar1,. the fee.ats of car4 and printer file

identificatioDs are (e-Dale RE1DER), Cc-nam. PUNCH), and

(c-naae PIIltTEB). !he foraat of the identification of a

f11e on tape ia (fe-nale] 11Pn). If the c-naae ia oaitted,

then T1Pn vill be used as the internal n •• e. TAPn, whec. 0

12/31/74
.-_.-------------------- ------

216 CBISP SDC TK-5~55/000/00

is a single diqit, identifies the tape unit addre~s as 18n

hex in the nor.al eftS tradition. Since you are not allowed

to have two files siaulta •• ousl, opened on the saae tape

unit, there is DO loss in qenerality by using TlPn as the

interDAl naae.

The identification format for a file on disk is slightly

aore ooaplicated. The po.sibilities are

(e-n.ae DIS~ £-n •• e It-type,.} If-aode,.})
(f -naa. If type 1*) (fllode, *))

In the second foraat, the internal naaa is not given

explicitly aDd is aSBuaed to be the same as the f-naae.

P-n •• e, f-type, and l-aode are the file name, type, and aode

as known to efts. 'that is, f-nalle and f-type are

identifiers, aDd f-IIode is either a single letter (I to G,

!. Z. or S) or an alphaDuaeric comhination such as Al, Cl,

etc. A star (*) aay only be used as the f-type or f-IIode

when an existing file is opened for input or for output

extent ion. The * la~lies that the systea should search for

• file that aeet. the rest of the specification. The

identification foraat (f-naae f-type *) aeans the first file

encountered with the specified Dale and tyP., by going

through the lodes in tbe ••• e otdet as would efts. See the

IBM V"/370 COI.and Language Guide for General Users for

explanation of file a.linQ cODventions and search orderinq.

Thei4entif1catloD for.at (f-na.e * f-Iode) •• ans the first

file encountered wit h t be specified na ae and lod.8, by going

throuqb the t ,pes naled by the variable PI LETYPES. The

initial value of FILBTIPES is (CRISP INDEX DATA). You lay

Rough Draft

J

)

----------------------~

I/O Facility 217

chanQe the type searcb order by re-ordering, adding, or

deletinq elelents trol tbis list. The identification format

(t-naae * .) leans tbe first file with this name, encounterd

by searcbinq FILBT!PES and the CMS aodes. For exa.pl~, the

total search order for (IIZ. t). assuming that the CftS'

sea rch or1e r is (A B) is:

(lIZ CIUSP 1)
(XIZ INDEX A)
(lIZ DATA A)
(XYZ CRISP B)
(lYZ INDEX B)
IXIZ DATA B)

As can be se~n in the above. the type is varied faster than

the lode.

file usaqe infor.ation

The followinq describes the possible .~.be[s of the usage

specification portion of an POL. The members follow the

file identification and .a, appear in any order. Not all

Qsaqe specifications can be used with every kind of file.

The restrictions. 8ucb as input 'Se output, binary vs.

sy.balie. disk vs. tape, etc., and the use of the PDL. open

vs. close, are also aoted. If a £et of usage paraleters are

described toqetber Ind one of tbe. is the default, tbe

default is underscored.

BinarY files are u8.4 to held byte atrinqs of data that are

directly transferred to and frol the user's buffer with no

interpretation by CIISP" Symbolic files are used for both

foraatted and unforlatted 41ta that is represented in either

BBC~IC or ASCII char8~ters. All program text and most data

12/31/7,-
---------------------- -----------

218 CBISP -- SDC 1"-5455/000100

files are symbolic. Note, this distinction is apparent only

to CBISP: CMS has no such categorization of files.

B. W. WE

1he respective .eaninqs are input, output, and output

extension to an existing tile. output extension, WE, aakes

sense only to a disk or tape file. If specified for a tape,

the uait is spaced ahead to the Qext file .ark, and the .ark

is erased. The default value is ~ for PUNCH and FBINTER

files and R for all otber files •

. DL IJUU DH

The respectivE meaninQ8 are for density: lov, ~edium, and

biqh. This

because, on

the density.

.axes 8ens~ only for an output tape file

readinQ, a tape unit automatically deter.ines

v, F, (SI Z! 1)

These aean. respectively, variable and fixed length records,

and SIZ! specifies tbat tbe record size is i for F files and

a ~axiaQ. of i for' tlles. All si~e. lenqth, and .ar9i~

infor •• tioD for lines is given in bytes. The default values

depend UPOD whether the file is R. W, oc WB and whether the

file is binary or syabolic.

default actioQs:

The table sUI.arizes the

Rough Draft
---- - ---------------------------- ------------

)

)

\ ,-

1/0 Pacilit y 219

a ~-B WF. W!-B W W-B

DISK 0 0 0 0 v80 V
TAPE V80 \f Feo v 1"80 V
ClSD P80 V F80 V
PRINTER V130 v
TE RlU NiL V130 V V72 V

B lIean-.; that the file is binary, and V vi thout a lenqth

aeans siaply input or output the DUlber of bytes specified

for a binary file. Por all sy.bolic I/O, an upper bound

lenqth .ast be specified because CRISP associates a buffer

~ith each syabolic file. 0 aeans that whether the file is ,

or P is dEtermined by opening the file and looking at the

efts control block. If P, then the size information is

dedu ced by look i nq at the cent rol bloc k. If V and blnar y,

the lenqth information is not needed. However, if the file

is V aDd sv.bolie. then the default length will be the

maximum of the lonqest record written to date and 80 bytes.

If YOU do Dot like the defaults, then override them with an

exglicit usaqe para •• ter.

EiAS 8, REW IN D

!h08e option vords are meaninqful only when a file is being

opened. When opening an out~ut disk file (W), ERASE

specifies that if a file already exists with the same na.e,

mode, and typ~, it should be e~ased. If ERASE had not been

included in the PDL and the file bad already existed, then

OPE' vOlld signal a. error. RIIIIC is useful only in open

calls for tape files; it ensures tbat the tape is positioned

at its load point.

12/31/14

220 CRISP -- SOC T"-5455/000/00

These oPtion words are .eanlnQful only when a file is being

closed. PURGE aborts the spool for card and printer files,

Erases a disk file, and is a nop for tape and ter.inal

files. Por card and printer files, CONT closes the file as

far as CIISP is concerned but does not close the spool.

CONT close. a tape file Mithout ~xiting a tape .ark. Por

disk and ter.inal files. CON1 is a nop_ REW and BEU are

.eaniuQful onl y for tape files. Their respective meanings

are rewind and rewind aud unload.

OK. 10. TM. T~Y. TI, fDP10

TheSE option WQcds are .eaninqful cnly for sy.bolie output

files. The, specify the available character set assu.ing

that a hu.an will try to read the file. That is, they

specify which characters .ust be printed using the 11

mechanism to ensure visibility. The aeanings are:

OK
'I'D

do not use " for any char
using TD print train
using TI print train
using a lodel 33 TTY

TN
'fT'i
'1'1
PDP10

usino a Tl 700 or "odel 18 TTY
usinq the SII PDP-10 printer

Th~ default setting for each device type is:

DISI(Tt
TAPI 0 lC
PUNCS Of(
PII ITER T D
'1' BRrt III At 'I t

specifies whether characters are to be in EBCDIC or ASCII

for.at in the file. These specifications are •• aninqful

only for symbolic tiles. ~. a ter.inal is handled as an

Bough Ijr aft
----_. -'----------_.

)

IIO Facility 221

EBCDIC device by V!. This option is intended primarily for

svmbolic tape exchanqe between the 370 and the POP 11 or the

RaytheoD 704. Therefore, if these two character sets turn

out to be sufficiently different from each other, two brands

of the ASCII option will be available.

CCA

This OPtion word specifies that a syabolic o~tput file is to

have c~riaqe control information added to the data. This

is useful pri.arily for printer files and disk files of file

type listinq that will ultiaately be output on the printer.

P1G!II, (HBAD s), (TPKG t), (BTP1G b). (P1GEL 1)

If any of these options is used, then the sy.bolic output

will appear in paqe format. PAG!II specifies page numbering

on the top lin. of each page. The phrase "PAGB i", where i

is the paQe number. will be right iustified. (HElD s)

specifies that the value. s, should be left iustified in the

top line of each paqe; s must be an identifier or a string.

(TPftG t) specifies that t lines should be left before the

beqinninq of text at the top of each page. t includes the

heading and nu.bering line. (DTRG b) specifies that b blank

lines should be left at the botto. of each paqe. (P1GEL 1)

specifies tbat the total Guaber of lines on a page is 1.

When P4Qe tor.att1nq is selected by the user and any or all

of t, b. or 1 are not specified, then their default values

Are 3. 3, and 66, respectively. ~be following conditions

must be satisfied:

t+b<l
t~' if !lAGER or HElD

12/31/74

222 CRISP -- SDC TN-5455/000/00

If CCl has been specified. then Icat of the fO~latting will

oceut vith earriaQe control characters. Otherwise, blank

lines vill be used. CCl is useful without page format to

force an occasional skip to tc~ of fo~ ••

These option werds are leaningful cn1y for sy.bolic files.

ILFftG 1) leans iQnore the first 1 colulns of input or

auto.atically print 1 blanks in an output line. (BTHG r)

&eans ignore the last r colulns of an input line ot put

blanks in the last r coluans of an output line. LINEN is

€qui~alent to (RTftG 8). CBISP does not use or generate line

numbers. LINEN is a.rely a eon~eDient .athod of skipping

over line numbers on input or to leave rool for the. on

output.

Rli~lll. UGLY

Thes~ oPtion words apply only to sYlbolie output files.

PRETTY leans do an autolatic forlattinq of llrinted

structures. UGLY leans 1ust print tbe structura as a token

strinq with the necessary .eparatinq blanks supplied.

J~IA. 51ft •• SJ~. IY!

These options are •• aningtul cnll for sYlbolie output files.

StH .eaas "ay •• attic" priatinq ia required. !bat is, the

structure .uat be oatput in a fora that allows it to be

teread by a CSISt program. If anytlaing is printed in a Sfft

file that is deeaed to be not rere.dable, then an error is

siQualled. Exaaples of such unprintable structures are

Bough Draft

J

.,._--,--------------_.- .-~----------------+------------------

(

IIO Facili ty 223

handles, pointers into heaps, and circular structures. When

necessary, identifiers ~il1 be printed using the

aechanisa, and strings will he printed with primes. ASYM,

the default, is like Sy~ except that no error is signalled

~hen a non-rereadable structure is print~d. NSXft is like

AS!" except that the S' a.chanism is never used. However,

strinqs are still printed vith primes. With EYE, neither is

the S' mechanism used net are peimes used to print strings.

S;JRS. HCAPS

These options are meaninqful only for symbolic input files.

CAPS specifies that input characters should be raised to

upper case. if necessary. This is the default. HCAPS

specifies that no capitalization should be perforaed.

This section describes the set of priaitives that aay be

used to chanqE the etatus of a file. Following sections

describe the pri.iti,e. that can actually result in data

transfer.

OPEN (IDL)

OPEN defines and makes a file usable to CRISP prograas. The

rOL is error checked, and if found faulty, an error

condition is signalled. Bxa.ples ot errors besides the PDL

format are:

especified file does not exist
efile is already open

224 CRISP -- SOC Tft-5455/000/00

-tape unit. printer. reader, et punch already in use
-disk full and other CMS detected errors

Once a file has been opened, it is always referred to by its

internal nale. The syate. is initialized with the following

OPSN calls:

OPEN (" I ITERM T ERPUHAL R») ;
OPEN("{OTER! TBBftIMAl W):

!he value of OPE. is a copy of the file identification

portion of the PDL. If * had been used for either the type

or the mode. then the value of OPEN would include the actual

values used. Only ODe file each is permitted for the card

reader. printer. card ~unch, er any sinqle tape drive at any

QiVEO time. Also, an open diEk file may not be opened again

without first closinq it.

CLOSE(c-name I lOLl

CLOSE re.oves the specified file from the set of actiVE

files usable hJ CRISP proqrams. If the internal naae is

specified (by use of a c-name arqu.ent) then the default

action for each device type is:

DISK
ClBD
PIU !lTE R
TAPE
TEB!IIUL

.ake aD FSCLOSE Clll
elQse the spool, NOCO~T
close the spool, NOCONT
write a tape .ark
DO operation

If an PDL is specified. the opticn lords PURGE, CONT, RBV,

and BEU are oheyed as s~ecified in the previous section. tD

any event. if the specified file 18 not open (to CBISP) ,

then CLOSE 1s a nap and the value is Ill. otherwise, the

value is 'fBU!.

ROUqh Draft

)
-~

1
J

I/O facility 225

The arqulent 11 the internal naae of a file currently opened

fot:: output. It is closed and then re-opened 8S an input

file. If the file is on tape, then a tape mark is written

and the tape is backspaced one file. Note that the tape is

not rewound.

JlXT BND (c-name)

The arquaent is tbe internal name of a file currently opened

for input. It is closed and then re-opened as d WE (write

extension) file.

CH1HGE{c-name.Sa.aattributes)

The specified usaqe attributes of the specified symbolic

output file are chaDo.d. The possible arqumeDts are:

(H!AD 5)
PRETTY. UGLY·
ASYM. SIM. 151ft. EY!

lhe headinq may be changed only if page forlatting was

selected by the open call.

POSI1ION«(c-nameIT1PD).co'land)

A tape unit is positioned. Whether or not a file is opened

on this unit. TAPn la, be used to identify the drive. The

possible com.ands and their .eaniags are:

REil re wiad
IIU rewind and uoloa4
ERG eraae a Oap
BSI back. pace 1 recoId
ssr backspace 1 file
FSR forward space 1 record
FSF forward space 1 file
WTft write a tape .ark

Note. eYerythinq aentioned deals with physical records,

12/31/14

226 CRISP -- SDC Tft-5455/000/00

files, and drives. If you start positioning around syabolic

files YOU either need to know electly the for.at of the J
records or be the recipient Qf divine quidance.

Tbe pointer to the specified disk file is set to the ith

record. If i is zero. then the pointer is set at the file's

end. For restrictions on the use of tbis coa.and. see the

eMS documentation.

1he specified disk file is erased. If the file is opened,

then it viII i •• ediat~ly be closed.

\

RENA~E(f-naael.f-typel.f-.odel.f-na.e2.f-type2.f-.ode2) J
Tbe file, (£-n8Iel t-typel f-.ode1) is rena.ed as (f-oa.e2

f-type2 f-mode2) by C"S. Tbe file must not be open in

CRISP.

This section describes the pri.tti'fes that are used to

transfer data to and frol binary files.

WBIT!(c-naae,stroctur.}

!he content of the structure (not including its header) is)
output to the specified file. The structure must be an

arra, or atuple tbat contains DO elements that are

80ugh Draft
J

I/O facility 227

r~presented by pointers. The length of the structure is

deter.ine~ fro. its beader. If the data structure is longer

than can be contained io a single record, then Multiple

records are output.

W8ITEI(C-na.e.loc,offset,lenqth)

lac is th.e integer byte location of the buffer, offset is a

byte offset awa, fro. loc, and length is the number of bytes

that are to be output. WBITBX pto.i8e~ to do nothing that

vill causa a qarbaqe collect: therefore, loc will reaain

valid. WRITEX is pure backiog and should be used only by

the knovledqeable hacker and only in eaerqencies.

BR!AD(c-na •• ,structure)

The content of the structure (not its header) is filled fro.

the specified binary input file. If necessary, aultiple

record s a.re ioput. Unused bytes in t he last input record

are cUBeard.d. The structure .ust contain no fields that

are represented by pointers. If the end of file condition

is encountered, the value is NIL; othervise the value is

TRUB.

BR!lDX(c-na.e.loc.offset.length)

BREADX is the input equivalent of WRITEX. It is even more

of a hacker's deliqht. No error checking is done other than

to ensure that the file is opened and that the input occurs

without channel or device error. If you exceed .emory

bounds or clobber the system. you ate on your own; the

progtam check handler will probable, be turned into a basket

12/31)14

228 CRISP SDC 1ft-5455/000/00

case. The value of BifADX is the s.ae as that of BREAD. If

an end of file is encountered by either function in the

.14d18 of data input Ccaa occur only in Bulti-record reads) ,

an error vill be siqnalled.

It should be noted that binary I/O primitives do not Bove

data to and fro. syste. buffers. The transfer is done "in

place". To do otherwise would crea te a se ve re paqe

thrash1nq and execution tiae penalty for large transfers.

This section describes the primitives used to transfer data

to and froa sy.bolic files. Unlike the primitives that

transfer binary data. the file is not specified as an

arquaent. At any moment, one input and one output file are

selected for symbolic data transfer. The priaitives always

work with a file that is currently selected. The value of

the variable R!lDFILE is the internal na.e (identifier) of

the currently selected syabolic input file, and the value of

the variable PBIHTPILE is used in a like aanoer for the

selected symbolic output file. Both vaIlables have the last

Dame CRISP.

File selection aay be accoaplished ea8i1y by assigninq a new

value to one of the 'tariables. 1180. file selection lIay be

protected aqainst error or fail unwraps by binding the

war iables. Another method. borrowed froll LISP, is also

Rouqh Draft
---- ---------_._--- -----_._-----

J

" '--

1/0 Facility 229

available for selecting files. The function BOS has one

sets RBIDfILE to the arguaent ,alue and returns the old

value of RE1DFILE. 'thus, ROS (r) is equivalent to:

BEGIN ID I:=a!l~IILE:
BJaDflLE :=r;
RETURN 1;
EID;

The funct ion PRS is ayailable to select an output file. It

works in a eanner identical to RDS but with the variable

PRIITFIL!. The followinq paraqrapbs describe the symbolic

I/O prial ti ves.

BEADCH ()

the next charcter in the input lin@ is input and converted

to a character identifier. If the current input line is

exhausted, the the next liDe is read. If tbe end of file

condition is detected, the ,aluE! of RE1DCH is NIL.

Characters represented by J% and two hex digits are

con 'le rted to a single charactar. 1 blank is inserted as the

last character of each input line. If that ilplicit blank

is the character iaput. then the value of the boolean

Yariable !IDOFLIMISCRISP is set TRUB.

RIADCHX ()

Just like.alDeR except that no "" conversion is perforaed.

BACKeH n

SACKC" causes the last character input by REIDeM or READeHX

to be re-input when one of the character readers is next

called. provisions are made only for one character backup.

12/31/14

230 CRISP -- SDC T"-5455/000/00

Therefore, repeated EAC~CH calls are equivalent to a single

call.

IE1D"rO! n

RE1DTOK skips over leadinq spaces and co.ments in the input,

parses the next token, converts it to internal fora, and

returns it as its value. If the i.plicit blank, supplied at

line end by BIIDeH, occurs in the middle of an identifier

input usinq tbe $' .ecbanisa Ot a strinq surrounded by

pri.ea, tben it is discarded and Dot used in building the

token. It tbe input token is an identifier input with the

s' ,echani ••• then the boolean variab19 USEDOLLAR in section

CRISP is set TRUE. 8!ADTOK includes + and - as part of a

succeedinq nu.ber. Thus, -15 is input as one token, not

two. If aD end of file is encountered, the ,alue is the

identifier BOF and the boolean variable BOFSCBrSp is set

TaUE.

BJ!AD'tOICU ()

READ10KU is identical to BJUDTOK except tbat + and - are

considered as separate tokens from succeeding nu.be~s.

Thus. -15 is input as two tokens.

BACI'IOI n
!l~TOk functions tor tokens in a .anner si.ila~ to the way

SAC~CH works for characters. Tbat is, after a call on

B1CI10J, the next call on BE1D!OK or RB1DTOKU will return

the token a second time. Provisions are aade for backing up

only one token. Therefore, lultiple calls OD 81CKTOK are

Rouqh Draft

)

J

j

(

\

(

"'-

I/O Facility 231

equivalent to a single call. If a signed to~en bas been

input by BEaOTO! and backed up, then a call OD RBADTOKD will

retrievetbe signed nu.bet. Token backup does not imply a

corres~ondinq character backup. The next character pointer

and cbaracter backup flag are not affected in any manner by

BACRTOK. ~berefore. in general, an input stream should be

considered to be either a token sequence or a character

sequence and caution sbould be used when mixing aodes.

BEADIN! n

RE1DI1T inputs the Dext token. If it is an integer, that is

the value. If it is a float, it is converted to an integer

and returned. Otherwise, an error is 5 iqoalled. If the end

of file condition is encountered, tbe value is zero, and the

boolean variable BOP ia set TRUB. Usinq RBADINT instead of

BE1DTOK, when possible, is acre efficient because the

integer does not need to be converted to a general datum.

BEADfLT n

Like READtN! except that it inputs a floating value. It is

willinq to convert froa an integer input.

READ ()

READ inputs the next external datum in the input stream.

BElD can input lists, aodes, strings, arrays, coaplex

numbers. and atuples as well as one token data such as

inteqers and floating point numbers. Whe n the tokens $' (t,

$1)', S'P .. and S'}' are encountered, they are treated as

identifier. and not as structural delimiters. If the end of

12/31/74

232 CRISP -- SDC T"-5455/000/00

file eondition appears in the middle of an ineoaplete

structure, an error ie siqnalled. If the end of file

conditioD is aet after skippinq leadinq spaces an~ com.ents

and tefore any structural data are E~countered, the value is

the identifier !OF, and the boclean variable EOF is set

TRU E.

CRUNCIHl)

The arqument is a list of tokens. 1he tokens are trea~ed as

an input streal! to BBID. If a token would have been input

usinQ the S' mecbanism because it .ould otherwise have been

a structural delimiter, then it should be in a sublist.

Siqns aa, be included. Also, numbers may be negative. The

,al ue of

CHURCH ("(S' (f GI!I ARBAY $1(' 11 $')' - 4
- 11 ($.) '1 A BC))

is
fGEN ABIUY(CI) -~ -11 S')' ~BC}

If tbe input list is not exactly eXhausted, an error is

siqnalled. Notice that type-refs are given in token fora

1ust a8 everything else is.

REAOSLf)

An SL top level expression is input froa the file. The

value is the It eQulwalent. The input .ust be deliaited by

a seaicolo.n.

TABUITO (i)

The input character pointer is set to the ith character

position of the current line. If i is less than the left

RoUqh Draft

)

J

I/O racilitv 233

marqin. the pointer is set to the first character following

the .arqic. If i would cause the pointer to be set into or

beyond the riqht .arqin. then it is placed in a position

such that the next cbaracter input ~ill come fro. the next

input line. In any event. the variables EOF, ENDOFLINE, and

USEDOLLAR are set to NIL, and any tOken or character backup

is cleared ..

T ABI NBY (i)

Identical to tABINTO except that 1 represents a delta

instead of a character position. Of course, negative values

of i are .eaninoful.

ElfDLIlfEIII ()

Sets the next character input pointer so that the next call

for a cnaracter input vill cause another line to be read.

USEDCLLAB is set to IlL, and any token and character backup

is cleared. 21DorL118 is Bet TRUE.

lE XTLI IEI MO

Inputs th~ next line. Betarns NIL and sets EOr TRUE if the

end of file condition is encountered. Otherwise, tRUE is

returned. USEDOLL1R aAd !NDOFLIHE are set to NIL, and any

character and token backup is cleared.

J~: An atteapt ~, Iny input operation to pass through the

end of file a second tiae vill cause an error to be

sicuulled ..

12/31/74
-------------------- ----- ----_.-. __ . ------------------

234 CBISP -- SDC f"-S4S5/000/00

PRINTCD le)

The arou.ant, a character identifier, is entered into the

output buffer. If appropriate, it is printed as a 11 and

two hex diqits. If this character fills the line, then the

line 1s output to the file. The value is tbe arqu.ent.

PRI lItCH X (c)

Like PBINTCH except that the ~~ .echanism is not used.

PBI M'f (xl

The arQuaent is printed. If the currently selected output

file bas tbe U$aqe attribute PIETTY (as opposed to UGLY),

the output 1s for.atted. The last line of tbe output is

padded with blanks, if not completed, and ~ritten out. The

,alue is the aroo •• nt.

PRI N (x)

Like PRINT except that the last line is not padded nor is it

forced out. Tbus, aeveral PRINs lay be used to enter data

on the saae output liDe. Hovever, blanks are not

autolaticall, iasertea.

BLANK ()

Does a PRINTeH of a space.

SLAIIIS (i)

Outputs i spaces using PBINTeH.

Bouqh Draft

--)

""

/
1

\

I/O Facility 235

B LUUTC (i)

"oves the next character output ~ointer to coluan i. Blanks

are printed until coluln i is reached, even if this means

lovinq to the next output l~ne.

T lBOOTTO (1)

Moves the next character output pointer to eolu80 i. Blanks

are Dot output and you stay in the current line unless i is

in or beyond the right largin, in which case the current

'flBOllTB! (1)

Lik~ TABOUTTO(i) except i is used as a delta rather than a

col uan n alber •

I"DLII110UT ()

Bla nks the rellainder of the current output line and

transfers it to the tile. If this is a V file, the line is

output at its currEnt lenqtb ~ith no paddinq elcept for the

riqht •• rqio Cif any). This is the function used by PRINT

and otbers to pad and traD.ter inco.plete lines.

TOPPAG! 0

Heaninqful only for

Causes tbe r€lst of

ootput is • "actl y at

case. no operation is

outp,t "Itb

the current

t.he top of

perforaed.

12/31/14

paqe foraattinq or CCI.

page to be blank unless

the page. In the latter

236 CRISP -- SDC TK-SQ55/000/00

flLANKPAGE ()

Like TOPPAGE tut is perfectly ·villinq to output an entirely

bId n k paQe.

NOADYANCBO

Will not advance paper before printing tbe next line and

vill inhitit iDcre.entinQ of the line count for the page

when that print is done. Useful for underscoring, but does

not work for 1ER"111L fIles.

fOBI'ICONTROl (c)

Specifies a form control character to be used with the next

out put I i ne •

PBIN'ILIST (1)

The arquaent is a node2 list. Each ele.ent in the list is

Qutput with PRII, and blanks are use4 to separate the iteas.

Tbe last line of the output is padded with hlanks aDd forced

out to t be f i le.

PBIlCLIST (1)

Like PGINTLIST except that tbe last line is not padded or

forced out.

PRI ITI It DI' (S •• • x)

Like PBIRTLIST except that there are an indefinite Duaber of

arQuaents instead of a list. The output iteas ate separated

by blanks. and the last line i8 padded and forced out.

Rouqh Draft

J

J

J

',--

I/O f'acility 237

PRI 11 tlDEr (s. ,.x)

Like PRIMTINDEf except that the last line is neither padded

nor forced oot.

PRINl'IltT (c. i)

The integer i is P£inted, right justified to colulRn c if

c>O. Otherwise. i is printed left justified to colulRn -c.

The line is padded with blanks and output. Interior parts

of the line skipped over are blan~ed. If the next character

pointer is already too far to the right, then printing

occurs on the next line.

PBININ'r (c,i)

Like PBINTINT except that the re.ainder of the line i~

neither padded nor forced out.

PRI NTFLT (e, f)

Like PRltI'rIRT except the printed nu.ber is floating.

PRI HP LT Cc .f)

Likp. ~81 NI liT e xeept the print ed nUll ter is float i Dq.

PRI NTH! X Cc, xl

Like PRI.TINT except nUllber is output in hex.

PRr IIHE X (c. X)

Like PBIRIIT except nu.ber is output in hex.

238 CRISP -- SDC Tft-54~5/000/00

PRl II'rGE J Cc .q)

Like PBIR'lIHT except the printed .,.lue Bay be anything. If

an atteBPt is la de to print a node. array, cOBplex nUBber.

or ntuple vith right 1ustification. then Cl space vill be

printed and the structure will be output vi thout

1ustification.

PRl.GEI le ,q)

Like PBlN'lGEN except that the last line is neither padded

nor forced out.

Jg~#: At present, we belieye that the output primiti.,es viII

be able to handle circular structure when the file is not

SYM. This aS8Ules that Done of the sy.bolie output

) primitives viII use any dyna.ically allocated space other

than stacks. When a circular pointer is detected.

H.CIBCULAO." viII be output instead of reprinting the

structure ..

This section describe. tbe primitives that use CP or efts

facilities other tban I/O.

Tl"BR()

The 1alue is Cl floatlAq n.mber that qi.es the value of the

.,irtual CPU timer ia aicroseconds.

ROQgh Draft
-_ .•... _------_._-------.....---

\

I/O lacility 239

101 ()

'the value is a list in the forlat:

'tonth day year bour .inute second)

RC ftS (1)

Peraanently returns control to CMS ,lth the value i. Noraal

exit frol tbe CRISP syate ••

CALLCl!lS (1)

CftS is called to perforl a single subset cOllmand. The

arQuaent. 1. is a list. Each top level eleaent of 1 is

turned into an 8 byte request table entry.

C1LLCP (1)

!his is equivalent to CALLCBS("CP'I). This causes eMS to

pass the request thro'Qb to CP for action.

StJB SET ()

CBISP will turn teratnal control over to the CMS subset

handler. To re-enter CBISP. slaply type RETURN.

ItY NAft! ()

Return. the identifier Da.e of the presently operating

modu le.

SA VB Cid I PDt)

outputs tbe presently operatinq copy of CRISP. If the

arqu •• nt is an id. then the file will have that na.e. and

will be of type MODULE on the A disk. If tbe arquaent is an

12/31/74 -_._----- --­
.. -------- -----_. __ .. _-------------- ----- ----- -------- -

240 CRISP -- SDC T~-545S/000/00

POL. then only the identification portion viII be used. It

must BPecify a disk file. and the usaqe attribute ER1SE is J
alvays assu.ed. Wben a .edule sa,. generated by SlVE is

reloaded. all I/O files will automatically be shut. and

operation vill continue iD the top level supervisor process

afterreopeninq the terllinal files I1EB" and OTEI!.

SUSP IND

The pri.itives necessary to suspend and resume a lIodule and

maintain its entire state ha'e not yet been designed. Also,

tbe priaitives neceseary to stack pseudo terminal input

lines have not yet been designed.

')
/

Rouqh Draft

2" 1

GI~!8IL PRlftITIVES

This section describes a variety of primitives that are

available in the syatea. The descriptions are grouped by

the kind of task perforted and the type of arguments. "any

of the priaitives are not functions; they are foras that are

handled specially by thecoapiler or are the nases of macros

or transforas. For primitives that are functions or pseudo

functions_ a deolaration is givem. If there is a special SL

operator. it is aentioned.

All priaitives described in this section are pseudo

functions. They produce in-line code. Each treats its

arqUaeDts as 32 bit strings and perforas a logical operation

on the bits.

lIT lU.C!IOR IM',I'T) SLat"~

IM' returns the ODe's co •• l.lent of its inteqer arguaent.

"IHUS (- in SL) aay be u •• a to co.~ute the tvo's co~pleaent

of an integer.

lIT FU.CTIOI B1ID(II! IIDI,) 5La&&

BAlD aDda toqether all of its integer argulents to produce

an inteQer value. tbe value of BIID with 0 .rgulants is

orlr"'PlX.

12/3111"
-._-- -------"-----------~-. ------------,------------ --.~,--.. -.---" -- -- .",._------------_._,------------

~"2 CRI SP -- SDe T .. -5455/000/00

lilT PUleTIOI BORU'or llllla.) SL-II

BOR co.PUbes the inclusive or of its argu.ents. The value

of BOR with 0 arqu •• ata ia O.

I HT lUICTIOH BlOB Cl IT I lUll') S L= BXO&

BlOB co.putes the exclusive or of its a~9uaents. The value

of 810B with 0 aego.ents is o.

INf,OCI) ia orrrp",]X
IIV(Oll) is O""PPPSX
BlIDCOAI,Oel) 1. 8
BOB(011.0CI) Is OEI
BIOR(OAX.OCI) is 6

All prtai ti yes de8cribed in this section

functions and lay produce in-line cede.

PLUS 5L*.

are pseudo

~LUS has an indefinite nUlber of nu.eric arguaents. The

value is the sua of the arqu.ents· values. The value of

PLUS with 0 erQu.ents is O. The type of value produced by

PLUS is co.plel if aDY arquaent is coapl.x. or float if eny

arquaent is float; otherwise. the value is of type integer.

flllIDS 5Le-

The value of ftlRUS Is the neqative of its argu •• nt. The

value type is the sale as the arqulent type.

Bough Draft
-------------- -------- -----~~-- -- ------~ -~ ------- ------

)

)

General Pri.! ti.es 243

DIFFER ~1'1l.­

CIFPER subtracts its second arqument from its first

arqu.ent. DIPfBR(1.8) is equivalent to PLUS(A.MINUS(8»).

TIMES SL-=*

TI&ES has an indefinite nu.ber of numeric arguments. The

.alue is the product of the arquaents' values. The value of

TI"E5 with 0 arquments is 1. The type of value produced by

T1"£5 is complex if any arqua'3llt is complex, or float if any

arquaent is float; otheJ:wise, the value is of type inteqer.

BECIP

RECIP coaputes the reciprocal of its numeric argument. If

the arquaent is of type inteqer or float, the value is of

type float. If the arQu.ent is complex, the result is

complex.

OUO 5L=1

OUOCA,B) ls equivalent to tI"!S(l,RECIP(B).

INT fUNCTION IQOO(II!,IIT) 9L=11

The value of IOUO is tbe integer quotient of its two integer

arQu.ents. If the 41f1810n is not elact, then the result is

rounded towards zero.

liT fOICTION BI!lIMD!8(IMT,INT)

Tbe result Is tbe reaainder that results froa integer

division of the first arqu.ent by the second, a.su.lng the

Quotient has been rounded towards zero. The siqn of the

12131/14

CRISP -- SDC T!-545S/OOO/OO

result is the siqn of the dividend (first argument).

J
I IT POICTlOll !ltIBR (PLOIT)

ENTIEB converts its float arqument to an integer by

truncatinq to~ards zero. E IT I ! R , F) is equivalent to

DBY' B UIT, P) •

IMT lO)lCtIOH ROUND 'PLOAT)

BOOIDCl) is equivalent to BITI!R(F+O.5) or BNTIBB(P-O.5) as

, i8 positive or neqative.

IUI

~AX has an in~efiDite number of numeric arguments. Tbe

value is the larqe.t. The value of "11 with 0 argu.ents is
\

800000001. the saalleat integer. If any argu.ent is -~

co.plex, the value ia coaplel: if any arguaent is float, the

value is float: otherwise, the value is integer. The noras

of complex numbers are used for the comparison.

filM

fill has an indefinite nu.ber of nuaeric arguaents. The

value ia the saallest. The value of ftIH with 0 arguaents is

7FPFPPP'X. the larqest inteqer. If Iny argu.ent is complex,

the result is coaple.; if any argo •• nt is float, the value

is float; otherwise, the ,alue is integer. The noras of

coaplex nu.bers are u8ed for the cc.perlson.

ROUQb Draft
----------- ----- -----------------

~ ..

General Pri.itiYes 245

SIGN

The value of SIGI is -1 if the argument is less than 0, +1

if tbe ar(JuIDent is greater t.han 0, and 0 if the argument is

O. SIGM of a co.plex is 1 unless the arquaent is (COMPLEX

0.0 0 .. 01.

Note. none of the above (including the bit logical

primitives) Quarant.e tbe ordet: ef evaluation or combina.tion

of tbeir arqu.ents. that is, A+(3+C) may evaluate and add

A" B, and C in any of the possihle permutations. If you

desire to control the order of combination and/or the order

of evaluation, vrite the forms as a sequence of statements

and use variables to hold tem~Or8[Y £€sults.

The functions SIH, COS, TAN, ARC1AJ, LOG, LOG10, SORT, EXP,

and I.EXF all have float argulent and produce a float value.

All except EXP have one arquaent: EJP has tvo. E.EXP raises

e to the power of its .rqua.nt. Errors are detected iu the

stand:trd va" e.q., SORT of a negative is an error. The

functions ISIN. NCOS. ITAM, I'RCTAM, NLOG, HLOG10, HSQRT,

HEXP. and ME.EXP are a180 Ivailable. Their argo.ents are of

type number. ana the VAlue is of type nu.ber. This aeans

that the ArqUaent And/or the the value can be co.ples.

SOIT(-1) is an error

RSOIT(-1) is (COftPLBX 0.0 1.0}

Tbe rules that deter.loe ~hich value is returned when there

12/31/7q
--_.--------------

246 CRISP -- SOC Tft-5~55/000/00

is a choice will be detailed later.

In SL. EXf is represented by •••

The pri.ltives described in this section have boolean

arQUlents. Interpreted as a boolean, any object other than

NIL is equivalent to TRU!. All the primitives are pSEudo

functions that qenerate in-line code.

Boot FUIICtIOli IiOT(1I00L) St::.,.

The value of ROT is TIUI If the argument is MIL. Otherwise

the value is ~IL.

BOOL FUNCTION INDCSOOL INDEf) 5L=6

Th~ value of lID is TRUE if none of its argu.ents is NIL;

otherwise. the value is MIL. 'Ihe value of AND with 0

The aegu.ents are evaluated left to

riqh t. If one of the arquments Is NIL. the re.aining

arQ u.ents are not evaluated.

BOOL POICTIOI IiAIO(IOOL IIDEf) SL~~

NAHOCb1 ••• bn) is equivalent to MOT(AND(b1 ••• cn».

BCOL FUIeTIO. Oli(BOOL IIDI" SLE t

The value of OB is III if none of its argu.ents is TRUE;

otherwise. the value is TBUE. The value of OR with 0

Bough Draft

)

'\

)

"-

J

General Primitives 247

The arquaents are evaluated left to

riqbt. If one of the arqulents is TRUE, the remaining

arQuaents are not evaluated.

Boot fUNCTION NORCBOOt IIDEP) SL=~I

NOBlcl ••• bn) is equivalent to NOT(OR(bl ••• bn».

fOOL rulCTION IMPLI(BOOL,BOOL) SL~»

IMPLY{l,B) is equivalent to OR(NOT,l).B).

BOOL FUNCTION I!!PLIED (BOOt,BOOL) SL=«

IMPLIED(A. B) is equivalent to OR (A,NOT (B».

This section describes the relational operators.

ps~udo functions aDd .ay qen.tate in-line code.

GB.GO.tS.LO SL=).) •• <. <- (a_onq ot hers)

All are

If eit ber arqa •• nt is oon- nUleric, the va lue is NIL.

Otherwise, the yalue of the fiest argument is compared to

the value of the second argument. If the first is greater

than, qreater than or equal, less than, or less than or

equal to the second arquaent for tbe operators GR. GO. LS,

and to, respectiyel,. theD the result i8 TRUE. Otherwise,

the result is NIL. If an arqu_ent is coaplex, its nora is

used for the co.parisoa.

12/31/74
-.---.-.-.-------~-------..

248 CRISP -- SDe T"-5455/000/00

EO 5L='·'

EO takes two arQuments of any type and co_pares them for)
equality. For the. to be !Q, one of the following .ust

hold: (1) both are pointers at the saae structure, (2) both

are inteqers vi th the same value" or (3) bot bare float ing

witb the same value. Thus, EO is an exact equality test.

The types of otjects represented by pointers for which EO is

alva,s TRUE for arquaents with the saee print name are

character. identifier, name, subspecitied naae" booleaft, and

nuaber or qeneral ob1ects with integer values in the range

-2 20 to 220-1. EO should aot be used with coaplex objects

or other types cf nu.bets kept under the cower types nu~ber

and (le neral.

MO SL=-.II
)

50(A.B) is equivalent to IOT(EQ(A,E))

BOOL FU~CTION EQUlL(GBI,GIH) 5LII':2'

EOUAL returns TOU! if its arguments are EQ, if both

arquaents are the identical type of node, array, or ntuple

and the correspondinQ fields are IQU1L. or both arguments

are nu.eric and their values are the saae after type

conversion. otherwise. EQUAL returns NIL. EQUAL can enter

a nonterainatinq loop if its Irquaents are circular

structure ••

NEOU1L'I.B) is equivalent to NOT (EQU1L(1,B» •

80uqh Draft
----------_._------------

Gene tal Pri.i ti ves 249

Tbe followinq are pseudo functions for which the compiler

aay Qenerate in-line code.

I~T 'UleTICI MUftDI!(IBBAY)

The value is the nu.bet of di.~nsions the arqument has.

lIT 'UleTICN SIZEDI!fIBSAY,INT)

The value is tbe .xtent of the dimension selected by the

second arquaent.

INT 'U IICT IOM ABLI (IRRA y)

IRLHtl} is equivalEnt to SIZEDI"(!,1).

The follovinQ primitives are borrow4d from LISP. All work

wit h binary node arqu.ents. In all cases, the node2

arQuaents are a8Bua.4 to be lists.

a node2 obiect wbo •• COR is a list.

code and are pseudo faactioDs.

A list is either NIL or

Man y genera te in-line

10012 RUJCTIOJ 11111(IOD82.100£2) SL~IITIR

Tbe valu8 ia a list of the co.aon eleaents in the two

arqu •• nt liats. EQUAL is used to deteraine equality of

eleaents in tbe lists.

12/31/7 ..
--------­

~------------------------------------

250 CRISP -- SDC TH-S~S5/000/00

tfOD82 lUNCTION ONleN UIODE2,HODE2) SL=UNION

The value is tbe second arqument augmented by me.bers of the

first arquaent list that are not already' in the second

arQulent list. The value of UtiIO.Cl,NIL) is a copy of 1

with duplicate members deleted.

MODB2 rUHCTIOJ IM(GSI,"OD!2} 5L=11

The list is searched for a CAR (or a CAR of some COB) that

is EO to the first arguaent. If found, the value is the

reaaining list, starting with the it •• that vas EQ. If no

matcb is found, then the value is NIL.

1H("B,"(1 B C) is (B C)

NOD!2 fUNCTION ftEftBEB(GBR,JOD!2)

MEMBBR is equivalent to IN except that SQUAt instead of EO

is used for the search.

MODEl PUleTIO. OMCJODB2,MODI2) SL=OI

ON searches the list arqu •• nt for a CDB that is EQUAL to the

first arGument. If it is found, it is retuIned. otherwise,

the value is NIL.

IODI2 fOMCT laM IPPERD (60D£2. MODE2) 5L=1

APP!ID appends the first arqu.ent list to the second by

copvinQ the first and CORSlnq the el •• ents to the second.

APPENDC"(1 2 3, ,"u B C)) is (1 2 3 A B C,

IODI2 FUNCTION DAPPINDCIIODJ!2,MODB2) SLaaa

D1PPIND is the LISP le ONC. It is like APPEND except that

Bouqh Draft

-)

)

Gene ral prt.i ti Yes 251

the first arqu •• nt list is not copied. Th@ eventual CDR

that is HIL is chanqed to pOint at the second argument list.

If tbe value of N is (1 2 3), execution of DAPPEND(N,"(A B

C») would produce tbe value (1 2 3 1 B C), and the value of

N would also be (1 2 3 A B C).

NODE2 fUNCTION PIID(GBM,NOOE2)

The arqu.ent list is presumed to be a list of node2

structures. The list is searched fo~ the fi~st aember whose

CAS is EQUAL to the first a[Quaent. If no match is found,

then NIL is the value.

FIIO(3,"((11)(2 B)(3C)(4 0») is (3 C)

NODE2 fUNCTION PIMDI(G!M,BODE2)

rUID. is like PII» ezceptthat EO instead of EQUAL iE! used

for the search.

GBN PUIeTIO. DGIT(GII.IODB2)

DGET is like FIID except tbat the CDR of the fi~st matching

structure Is IEturaed .a tbe value.

DGBT(l."((1 A) (2 Bt (J C) ('I D») is Cc)

GEM .UHCTION DGBTN(GEN.IODB2)

DGETN is like PINDN except the COB of the first matching

structure is returned as tbe value.

10012 'Ule!IO. IIV!RSI(JODB2)

the valae i8 a copy of the input list with the top level

items reversed.

12/31/7'1

252 CRISP -- SDC TM-SqSS/OOO/OO

REVIIS!''',1 (2 3) 4)) is (4 (2 3) 1)

10012 lUNeTIO. DBEVBBS!(NOD82)

tREVIRS! is like reverae except that the input list is not

copied. rh. top level nodes fsuccesive CDRS) are reused.

This d •• troys the original list.

NODE2 FUNCTION LIST(GII INDEr)

LIST returns a list .ade of node2 ob1ects of all of its

ar(fulents. For exa.ple. tbe value of LIST (1.2,3) is (1 2

3). This is equivalent to

COIStl.CONSf2,CONS'3.IIL»)).

liT .UICTION LEIGTH(MODI2)

The value returned is the lenqth of the arquaent list.

GEM 'UNCTION NTH(IIT.'ODI2}

Tbe value returnta is the nth (as specified by the first

arqulentl it •• in the list. If the list is not long enough,

then HIL i8 returned.

HTH(2,"CA 6 C)f is B

IOD"82 FOllCTIOM 101(IIT.80DI2)

The value is

value) CDR.

the ergu.eat list with • ,-first argu.ent

re,oved. If the list i. not loog enough. the

If • 1 •• ero or negati •• , the value is the value is IlL.

oriqinal list.

101(2."(1 P CD)) i8 (C D)

Rouqb Draft

-)

~)

General Primitives 253

NODE2 'UNCTION MOfP(IHT,ROOB2)

The value is a list that is aade up of the first n (= first

arQuaent value) top level items of the argument list. If

the list is not lonq enouqb_ then the result will have the

HOFF (2_ "fA B C D E)>> is (A B)

GEN fUNCTION LAST (NOO!2)

The value returned is the last ele.ant in the argument list.

If the list is empty, e.g. NIL, then NIL i::; the value.

LAST("((A .8) (C D) (E P») is (E P)

MODE2 PUNCTION deletefn(GEM,NODE2)

There are eight 4elete functions: DELE, OEtE', DDELE,

DDEL! •• DELETE. DEL!!!'. DDELET!, and DDILETEN. All ha ye

t~o arQuaents: the first is a qeneral ob1ect and the second

is a list. The DELl functions work with a list of node2

structures like P110 and FIND M, and the DELETE functions

N use EO for the •• arch, and ot hers u se EQUAL. IIames

beqinninq with DD re .. e t~e no4es in the input list, hence

they destroy so.e of it: the others copy vhere necessary.

They re'OYe all it... iR the list that .atcb the search

test.

The first arau •• nt i. substituted for the second argu.ent in

the third arqaaent. EQUAL is used to detect the presence of

the aecond arqument. SUBST works recursivelJ through the

12/31/74
- ---"-- ----------------------

CRISP -- SDC Tft-SQS5/000/00

third arqu.ent as 10nq as its type is node2 structure.

SUBST(1."U),"«X A) (A) (NODE3 (A) B Cl fA)) is

C'X • 1) 1 'MCD!3 (I) B q 1)

GEN FUNCTION SUBSTN(GEN.GER,GEN)

SUBSTI is like sueST except that EO instead of EQUAL is used

for the testing.

The aappinQ functions take two arquaents: a list made of

node4 ob1ects and a func with the type GEl FUMC(GEN). The

aappers are IUfllf. IUPIRL, rUPON and MAPONL. MAPIN and

M1PIIL apply the func to the CAB of the list, then to the

CAR of the COB. then to the CAR of the CDDR, etc. "APON and

811'OIL apply the func to the list, the COR of the list, then

the CDDR, etc. !APIN and MAPON return MIL. "'PINL and

!APORt return a node2 list of the ya1ues of the function

calls. GiYen the definition,

GEl PUICTIOI FOO'ABC(G!! X) PBIIT(Xt1)i

ftlPII (" (1 2.0 3). POOSaac) and

"IPIIL (" ,1 2 .. 0 3), POO'lBC)

hoth print 2. 3.0. aod 4. MAPII returns NIL. ft lP IN!.

returns (2 3.0 14). (Recall that the value of PBIIIT is its

SIPOI("(1 2.0 3}.PRIIT) and

"APoNt,"el 2.0 J).PBIIT)

botb print (1 2.0 3). (2.0 J). and (3). PtlPON returns NIL.

BOUQh Draft
-.- .-.--------"--~----------.. ----

)

i
)

\
}

/
-~'

General Pr:1ai ti yes 255

It A P 0 !f L r et u r DS ((1 2. 0 3) (2. 0 3) (3» •

The followinq priaitives ate used to copy structures. COpy

and COPYMOOE should not be used on circular structures

because the, may enter: a nonterainatinq loop. All are

pseudo functions. ItOV! and MOV!NBW .ay produce some in-line

code.

COpy

If the arqu.ent is Dot a node. array, or ntuple. the value

of COPT is its arQu.ent. It the arquaent is a node, ntuple,

or arra" then a new structure with the saae type is

allocated, and each field is initialized to a COpy of the

correspondinq field in the ergu.ent object.

COPY!tODE

If tbe erguaent ia Dot. Dode, the value of COPYIODE is its

value. If the arou •• ut ia a node, then a new node with the

saae nu.ber of fie14s is allocated, and the fields are

initialized to a COPtJODI of the corresponding fields in the

ar<ltuent Object.

IOV1LUE PUICTIOI 10VI(011.G!I)

80tb acon.eDts to SOY •• uat be of .sactly the saae type of

node, ntuple, or arcay ,witb precisely the saae outer

di.ension., • Either or both arguaents .ay be flattened

12/31114
---.----.~----~-.--.----~" ---_ --- ----_._,------- --------_.-... _--------_._----------_._-_.--- .---

l56 CRISP -- SDC TB-5455/000/00

fields. The fields in the second arquaent are copied bit

for bit into the corresponding fields of the first arguaent.

Given the following declaraticn.

D!C 1<1 1Nl. B FLOAT>.
I Y.
Z<O PtAT X. B X>.
X ARRAI (.) I.
rtAT 1 lRltll(*) B:

then any of the following ma, appear as the first and/or

second arouaeDt of BOV!: X. Y. Z_O. Z_R. SrI] and '[d].

!OYE'!If

If the arguaent to BOYIISIf is not a node. ntupl~. or array.

the 'la lue is the arquaent. otherwiae. a Dew structure is

allocated aDd the fields of the arguaent are aO'led. bit for

bit. into the correapoDdinq fields of the Dew ob1ect. Tbe

acou •• at aay be a flattened field.

1he eyal foras are noraally used b, prograas that coapute It

expressions and tben .1sh to e'laluate tbe •• The eyal

process 1s very expensive. Therefore. if a particular piece

of It is to be used ae,era1 ti.es. coapile it. The co.piler

.ay be called fro. a pro9ra. 8S described belOW.

All tbe 8 .. a1 fora.ha.e an optiollal acquaent of type handle.

If present. the It argu.ent is ayaluated with tbe handle

used as the yariable context. When this option 1s •• lected.

a new process aay be created. so beware of .uckiag about

BOllqh Draft

/
I

~

Gene ral Primi ti ves 257

with the external coatext of MYSELP.

All free references frol the IL arquaent are to objects with

Qlobal names. Tbat is, lceal variables in the program

containinQ the use of the eval fori are not. visible. If

identifier nales are use4 freely. then the default tailing

conditions in force at the tile of the evaluation are used.

GEN lUIfCTION EVIL (GBlr , H1NDLE 1l

The arQumant is evaluated, and its value is the value of

EVAL. The value of EVll(REAC () is 3 if (PLUS 1 2) is

input.

GEN l'UJCTIOM EV1LQ(G!tlr.8ANDLJ!1l

Tbe ,rQua.at is .valuated only "one deep" instead of two

deep al'vith BVA1. 'thus, the value of EYALQ(B!lDO) is

(PLUS 1 2) vi tb the above example input. The real use of

EVALO ia evaluation in a different context. For exalple.

the value of EVALQ(ASX+BI!,ft) is the SUI of the values of

tbe variables ASI and eST in the ~rocess selected by the

handle, H.

GEN PUIC'1'IOII APPLY (GIII,lfODE2(,H1IDL! 1>

APPLY applie. its first argUlent to the list of arqulent

values in ita second argu •• nt. 'rhus, lPPLYfA,B) is

equivalent to ."L(l'!). The value of lPPLY eLIST,"(A B) is

a two ele"Dt list of the 9alues of A and B wben the apply

form is eYalnated.

12/31/1~

258 CRISP -- SDC Tft-S4S5/000/00

GEM PUNCTIOJ lPPLYQ (GEN.,lfOD!2f ,HANDLE])

APPLYO applies its first argulent to the guoted ite.s in the

list. ThE! value of lPPLYQ (LISt," (A S) is Cl B).

MA"! PUICTIOR COftPIL!(GBI.ID,NODE2)

The first arqument is ao lL definition to be compiled; the

second and tbira argu.ents are the default tail and ordered

default tail list, respectively, that are to be used for the

co_pilation. The value is the nale object that is the name

of the co.piled definition.

MAKE 'UNCTION COKPILEX(GEN,ID,NODE2)

COMPILE! is like COMPILE except that the co.piled definition

is not protected fro. qarbaqe COllection after all

refereDces to the na •• of the compiled definition disappear.

U&Q.l5

The set of tracinq functions has not yet been deter.ined.

Rough Draft
-- ----- -----~ ---------- ----- ~ ---

J

\

(

""'----

/

"'---

/

I
\,-

259

TRBE STRUCTURED PILES AID THE DISK COMPILER

To aid in the constraction of larqe programs. CBISP provides

an extensive capability that allows development of symbolic

proqram text within the CMS file system.

of this capability are:

-tree structured program fl1es.

-libra ry files,

efull declaration pass, and

The key features

-access to an editor durinq co.pilation.

!vo kinds of file. are u.ed to construct CRISP programs:

(1) files of file type CRISP that contain a sequence of

proqraa text, format co.aands, and library com.ands, and (2)

files of file type IIDEI that provide the branching nodes of

the file tree.

AD index file auat b. of file type INDEX. It contains a

list. The ele.ents of the list are either file names or

file descriptor lists. The files n.aed in this list are in

turn otber files of file type CRISP or INDEX. When the disk

processor functions deacrlbed in this section visit an index

file, the, autoaatically continue onward to visit each of

the files aentioned 10 the index. thus, starting fro. an

inde~ file, an entire file tree .ay be visited and

processed.

A file of file type CEISP contains a sequence of top level

12/31/14

260

foras.

<file>::-Sf(SL-top-level-forl>:I<IL-top-level-form>}

<top-level-fora>::-<default>l<implicit-form>l<declare>I
<definition>l<expression>J
<forlat-command)l<llbrary-co •• and>

<forlat-co.mand>::-PORftAT fILISLlrC1P];

<libtary-co •• and>:::LIBRARY(${file namelfile de~criptorl)

Format coa.ands specify vhether the top level forlls

follovinq in this file are in SL or IL format. e.g., vhether

the for.s obey 5L or It syntax. If the CAP option is used,

then it is assumed that the bodies of all tbe following

function. processor, lacro, and qenerator definitions are

written in CAP. This option relieves the necessi ty of usinq

CAP-forlls for the bodies and redundant ly entering the

def in it ions' value types. All non-index files have an

initial iaplicit "FORftAT 5L: " assumed at the beginning.

The library cOlmand specifies the nales of a set of

"library" files that are necessary to compile and/or execute

the forms in this file. These files are thelselves of file

type CRISP or IIDEl. In a way, a library file resembles an

e.bedded index file. How.ver, there are differences: (1)

when files in a file tree are listed, the library files are

not and (2) library files are compiled vi tbout edi tor

sapport. Therefore, proqraas used as library files should

)

be reasonabl, debug-ged. ')
_/

In the above, provisions have been .entioned only for files

Bough Draft
--- ... --_.. __ ._---

(
'--

Tree Structured Piles and the Disk Compiler 261

of file types CRISP and INDEX. other file types can b~

used. MONever, if this is done, then the file can not be

found frol the file naae alone; a file descriptor list must

be used that specificallv mentions the fila type. Th@

functions provided to operate ~itb tree structured disk

IlroQIaas are:

ROli (f-d .aode)
BATCH (f-d, lode. fNILJTERMINALIPBINTEBIF-d})
LISTING (f-d.lode)
COllBl liE (f -d ,lIode,f -d)
VISITTR!E(f-d,mede,ne'alue func(id,id,id)
K1KET8EE(f-tree,aode)
GlTTJEI(f-d,lode)

where f-d is 8 file nale or a file d~scriptor, lode is

either a file lode or *, and f-tree is a file tree that is

described below. The lode parameter is used as the default

file aode in locatinq a file specified only by a file name.

If it is *, the. the file is looked for in the

eMS-determined search order. When the system is trying to

locate a file that is specified only by its name, th~

default file types INDEX and CRISP are tried in that order.

Thus. if only the file na.e F is specified along with a mode

paraaeter of • and the default search order is A, B, C, then

the sequence of search is

F 11IDII I
P CRISP I
r IIDEX C
, CRISP C
F IIDEX e
P CRISP B

Eacb of tke tree traverse functions is described below.

12/31/7q
-~-----~- - ... ------------- --~ ---.. ------~.- -------_._ ... _.----------- --------- - -

262 CRISP -- S'C T~-5455/000/00

BUN (f-d •• ode)

The tile located by f-d (and .ode) is visited by BUN. If it)
is ao index file. the files in the index list are visited in

their order of occurrence. left to right. Thus, the entire

tree that has f-d as its root is traversed in preorder. If

the visited tile is Dot a~ index file, then it Is evaluated.

The evaluation operation on a fil@ follows four ordered

steps: (1) turn all SL into IL, (2) for all 1 such that 1

is a library file do BlTCH(l,lllode,NIL), (3) operate the

declaration pass. and (4) coaplete the co.pilation of foras

in this file. Durinq step 4, the top level toras that are

definitions are coapiled, and the top level forms that are

expr essions are evaluated, in the orde r of their

occ utrences. !he name of coapiled definitions and the

values of evaluated expressions are output on the userts

teralnal. If any errors occur dUIing steps 1, 3, or 4, the

user is placed in edit .ode with the entire text of this

file available for correction. The text should be corrected

and rewritten to the disk before coapilation of this file is

restarted. (The editor vill be a subset of the C"S editor

that has been .ade part of CRISP. The exact design of t.he

s~bset bas not yet been cOlpleted.)

It an atteapt is aade to visit a library, index, or other

file that bas already been Yisited by this call to RUN (or

BATCH. etc.). then that file will be skipped. Therefore, no

bar. or lost tiae ,.sults fros a file's being used as a

library file aore than once.
J

Bough Draft
- --~--------,.----------.---------------.--.- ~'----- -'---'----.

(
\
"'--

l

Tree Structured Files and tbe Disk Compiler 263

Each non-index file is assumed to start with the implicit

.sequence.

r08!lT SL:
DEPAULT USER. (USER.CRISP) ;
IftFLICIT:

Operat ion of foraa t. defa ul t, and implicit forms has no

effect on conditions outside of the file.

BATCH(f-d.aode.fNIIITBB!II1LIPRINTERlf-dl}

BATCH visits files and bandles libraries in exactly the same

.anne~ as RUN. The essential difference is that BATCH does

not provide editor support for errors. The third argument

specifies the output device for the names of co.piled

definitions. expression values, and error and warning

messaqes. TERMIM1L, PRINTER. and i-d do the ohvious thinqs;

NIL sQuelcbes output except for error and warning messages,

which are printed OD the user's terainal. If the third

arGument is a file naae (trival case of a file descriptor),

then the output is to a file so named with file type LISTING

and file modE 1. All formatinq, default, and i.plicit fora

assuIPtions are tb. sale as tor ROM_

LIS!ING(f-4 •• ode)

LISTING visits fileE in the saa. ordec as RUN except that

library files are not visited. Each file is copied, line

for line. to the ,irtual line printer. Pages are numbered,

and the oatput for each file starts on a new page. 1 tahle

of contents is provided at the back of the listing and gives

tbe files and their page Dumbers. Neither RUN nor BATCH

provides its own listinQ facilit'Y: LISTING does.

12/31/111
-------------- ------------- -------- ------------- - ----

264 CRISP -- SDC T!-SQS5/000/00

cortBINECf-d.aode.f-d)

COrtBIN! visits file. in the sa.e ceder as BUN except that

library files are not visited. The file specified by the

third arQuaeot (if it exists) is erased and then opened for

output. If only a file Dame is specified, then the file

type is assuaEd to be CBISP and the file mode is assumed to

be A. Bach nOA-index file that ie visited is copied into

the file specified by the third argument. In front of each

copied file. three lines are inserted:

FORMAT SI.:
IMPLICIT:
DEPAULT USIB.(OSBB.CBISP);

This ensures that the interpretation of the prograM text is

uniform whether OC not the file has been combined.

VISI!TBSE'f-d.Blode.novalue func(id,id,id))

VISITTRE! visits fil •• in the saMe order as RoI except that

librar, files are not visited. ls each file, index or

otbeE. is vi8ited. the third arguaent is called with the

file na.e. file type, and tile mcde as argu.ents. The file

is opened and selected for readinq before th~ func is called

and closed after the tunc returns. VISITTREE is a tool in

the parts kit for u •• rs who wish to build their own file

tree processors.

!lKB!III(f-tre ••• ode)

ftlll!ll! proyides a .etbod of qenerating a file tree; that

is. a .ethod of qeneratinq the index tiles that .ake the

file tree. ln f-tree is either an f-d or an (INDEX f-d

Sf-tree). The latter specifies an index file whose na.e is

Bough Dr aft

J

\
-)

--_ .. _._.-._- ----------------

!Eee Structured ,il •• and the Disk Co.piler 265

tbe t-d follovinq the word INDEX. The Sf-tree foras are the

sub trees to be reached fro. this index. The second

arqua.nt. wode, is tbe disk on wbich to write index files

wben only their naw. Is specified. ror a siaple example,

"AKSTREEf"(I.»IX I
1
(IIOBX J B C)
D). "I)

the index file, (I IND!X 1), '<lUId be crea ted vi th the

content. (1 J Dl. aDd tbe index flle (J INDEX A) would be

created vith tbe contents ra C). It an index file already

exist. before output by IUk!TB!E, then it is first erased

and then revritten.

GETT8!Bff-d •• ode)

GBTTRE! starts fro. the specified file and returns the

f-tree with that file as t.h. root node. lsau.inq that all

fl1e8 are on the I d1ak and that all Don Inaex files are of

tile type CBISP. then tb •• aloe of GETTRIE("I,"A) qiven tbe

above use of "AKITI!I is

(IIDIX (X INDEX A)
(l CBISP A)
(INDEX (J IIOIX A)

CB ealSP I)
(C CRISP 1»

(D CJUSP 1))

12/31/'· ------------------------------- --

266

"EIOHY IAJAGEftENT fACILITY

The CBI Sf lie lIory .anagement facility co.prises the

allocation lIechanislI and the garbage collector. The

followinq paraqraphs describe the allocation strategy and

mechanislI and tbe orQanization of the garbage collector.

A principal Qoal of tbe .Jstem is to allow user and syste.

components to .ake efficient use of a virtual mellory

tesource. Because the IBM 310 has a large address space

(2 Z • bytes), the problells of address management and lIemory

management •• , be partially decoupled. For instance, a

space witb fixed lIaxillu. size lay be fully allocated eYen

though only a saall fraction is generally ill use. This is

reasonable whenever the allount 0 f "wasted" a ddre ss space

doem not qrov too larqe. In the CRISP systea, many of the

data spaces, such as puahdown stacks and 511.11 integers,

will be a!Ati~All~ allocated to a laliaum size at core image

gener at ion t i ae.

Another aaior feature of allocation is the concept of

~.l~~AiJ& spaces. For instance, tbere may be several node2

spaces. say RODE2SI, MODa2SY, aDd MODE2SZ. Then, the user

'or a aystea co.poDent) could say USESPlCE(NODI2SY) and

further CONSin4 of binary nodes would take place in NODE2SY

space. Thus, prograll seQaents bui14i~q structures that vill

be used toqether frequently lIay c~eate aDd select spaces for

that particular task. In many situations, this will help

Rough Draft
---------- -~------ -~--

J

)

\
!

"emory "anagemeat Facility 267

alleviate paqe thrashinq when so~ething is known about the

proqram's dynamics. The value of USESPACE is the space

previously selectEd for the same structure kind.

New spaces may be defined

NEWSP1CE (see paqe 293).

requires

dynalically bV using the function

The creation of a new space

thi ngs) the specifica tion of

functionals that provide the allocation policy, planning

oolicy. update policy. and the moving policy for the space.

Through the use of these fUDctionals, NODE2Sx could be

folded, NODE2SY could use a siaple a,ail list, and NOOE2$Z

could use a .aart COMS. Thus, different spaces for the same

kinds of structure may use quite different manage.ent

techniques. The description of the garbage collector

'below) will elaborate on the use of these policy guides.

Each space is lada up of a set of reqions and each region is

made UP of a set of contiquous quanta of lemory. 1 quantum

is a 4096 byte paqe of a •• ory. (Maybe 2048 bytes •• not yet

decided.) The slste.'. a.lory aap is also built as a three

level hierarchy correspoad1nQ to quanta, regions, and

spaces. !he quantuI core aap (QC", contains one byte of

inforaation for each quantua. The tyte specifies the space

kind. The possible soacv kinds are:

-IODE1 ••• NODI8,

.IOIUf!IFIEB ..

12131/14

268 CRISP -- SOC T~-5455/000/00

-CHA8ACTES - identifiers with one character names,

-INTEGER - integer values of general data,

-PLOAT - real values of qeneral data,

-COIIPLEX.

elRBlY ..

eIlTOPLE,

-MAIIBA - proqral reference space

-MAilED - proqral reference space

-PDP - pointer stack,

-PDB - nUleric stack,

- BPS - binary proQral space,

. . .

...
binding cells,

declarative info,

-tiAIDLE - handles for retained contexts,

-HEAP - heaps,

-SlIl!T - slall integer values of qeneral painters.

The ['eqioD core lap (RC!) is made up of region con trol

blocks (RCes). An RCS includes:

-Beqininq quantua of the region,

-Ending quantuI af the region,

-Current endinq address in the reqion,

eLink to other ICBs for the space.

The space core .a~ (Sell, is built up frol a space control

block (SCB, for each space. An SCB includes:

-Space naae,

-Space kind,

-Spac. property (co.lunication cell),

-Region link - link to RCDs fo! this 5pace,

Rough Draft

J

--------- ----------------------

fte.o~, ftanaqement Facility 269

-ftax reqions - the nu.ber of regions to be allocated

before auto.atic garbage collection,

-geQion sizE - nu.be~ of quanta per region,

-Space link - link to other sess,

-Allocation policy function,

-Prune policy function,

-PlanDinq policy fUnction,

-Update policy function,

eftovinq policy fUnction.

'Ihe qarbaqe collctctoI: is custoaarily invoked by an

allocation policy function. When a st~ucture creator such

as CBEAT! or COlS cannot find enough room to build a

structUI:e in the currently active reqion of the selected

space, the allocator for that space can eitheL attach a new

re~ion or initiate garbage collection.

1he garbage collector is organized into six loqical phases:

Darkino. pruniDO. planninq. updating •• oving, and fixing.

l~S~_~~~~ locates each structure that is active and

nrks it for reteation. Por soae space kinds, there is a

lark-loop driver. Por instance, for the pointer stack, the

loop driver would initiate aarking of each structure

ad~essed by a stack it... The loop deiver is the space's

aarkinq policy function. Also, for each space kind, there

12/31//4
... -- ----------------- ._-----_ .. -

270 CRISP -- SDC Tft-5455/000/00

is a aarkinq function. The marking function is called vith

an active structure as an arquaent. For each pointer field J
in that structure. the addressed structure is also aarked.

A universal mark function is provided. It will lRark a

structure of any kind by deter.ininq the structure's kind

and passing the structure to the marker associated with that

space kind.

Ih~_J1'lJ.».1D . .!LR.b.l'§§ of qarbaqe collection "restr ings" certain

system link structures. Among these are the identifier hash

links and the system property lists. The pointer ite.s

forminq these link structures are not chased during the aark

phase.

\

Ibi_R.A»ai~_R~ •• ~ deter.ines where each structure viII be)

aDd the a.ount of structure re.aining in each region at the

conclusion of Q~rbaqe collection. The planning policy for

each space is ~rovided by its SCE. Por instance. for arrays

(which are nor.ally coapacted). each header will be set to

the forwarding address of the alIay; for nodes (which are

noraally folded). toldinq takes place and the forwarding

addresses of the nodes that are .oved are left in the

vacated sites.

Ih._~4I~_RA~~ cbanges each pointer field to the addre$s

that the addresa.d structure will occupy after garbage

collection. IsseDtially, each field chased during the

markinq phase aQat be upda ted. For each space. an

update-loop driver visi ts each acti ve struc ture in the space

Rough Draft
------- ------------ ---- -------- -- -------

/

("-

!emory Manage.ent Pacility 211

and u~dates the a~propriate fields. The loop driver is the

update policy. function. For each space kind, there is an

update function that takes as an argument a structure and

returns as its value the nev addreas. Th@ universal update

function takes as an arqu.ent any structure. It determines

the space kind and applies the corresponding specific update

function.

specified for each space. Str:uc tu[es tha t a re compacted,

such as arrays and hinary programs, are .oved to their final

r:estinq places.

lJl.t_.U,U.DL.Rj)a,je goes throuqh the RC" and dele tes all aCBs

that correspond to reqions holdinq no active structure. The

associated quanta are also r:eleased. 11so, each sp4ce for

which a delete request has heen received and for which there

are DO ReDs is released.

The follovinq paqes describe each space kind in .ore detail.

A qraphic representation of the structures in each space is

included. Tbe br:eakdovn of elements is into bytes, half

words. or tull word •• s appropriate. Ellipses represent

indefinite nuab€rs of occurrences, and GCH and HOVE stand

fo~ qarbaqe collector .ark and forwardinq address fields,

tespec ti vel y.

12/31/74

272 CRISP -- SDC TM-SQS5/000/00

,.------..------ -----_.-.,
I GC PI I lIRST I
..... ----+-------------------1
I 0 1 SECCID I

~-------+-----------------------f
I 0 I ••• I
..... ---f- ----------------~
I 0 J ith I L-._-.L_________ . --'

4.1 tvte entries (for NODEi spaces)

allocation - .ultiple selectable spaces
region-gQantua
COlS

accessors - C1B ••• CDDDDR. FIRS! ••• EIGHTH

QC alqorith.s
loop -
aark - fIRST ••• itb
prune -
1>1 an - fo14
udate :I: aark
.OVE -

The default garbage collection algorithm for node spaces is
foldiuq. However, other aanaqe.ent strateqies are provided
for. The first two words of each quantum are reserved for
use by the various allocation and manaqement tasks. Tbese
words are used for sucb tbinQs as avail lists and move I no
love breaks after folding.

Bouqh Dr aft

J

r---T-------------,
t GC,. , I?IOP I
,.----+--------------i
• fLAG I SYS-PROP I ""-__ .L___ , __ -,. ___
I tUIIC I LEN I
.- .,. ------, --_ .. --+- . -. ~
I c (1) I • I • I • I
lo- • -+---+----+-------,1
I I J I C(LBN)I L _______ ~ _____ __L_ ______ ~ ____ ~

FLAG in freqular. specia 1. genid) * key word .type-na ae

12+4*(LEN+3)lj4 byte entries

allocation - sinqle space
sinqle r.qion
GENID. COMPRESS. STRING2ID

acceesors - P~OP. BXPLODE. ID2STRING

QC a lqocith.s
loop - if PROP then .ark self S PROP
aark -
prune - SYS-PROP cbain
~lan - COpy thru LIIK if appropriate
UP dat El - PROP
.ove -

273

There are four tyP •• of identifiers. Identifiers with one
character na.es are atored in character space. In id space
the three kinds are: reqular; special lds, which .ust be
printed usinq the "SI" aechanism to ayoid ambiguity when
reread; and qenids. which have been created without specific
names. The SYS-PROP field is the chain to all qlobal names
that nave this identifier as their first naae. - LINK chains
toqether all id. with the sale haah address to facilitate
searchinq and all qenids. LEN specifies tbe Dumber of
characters ill tbe ideatifier's print naae. C(1) ••• C{LEN)
are the EBCDIC characters that are the oaae of tbe
iden t ifier. BnouQb pad cbaracte rs a re used to lake the
structure an integral nu.ber of words. LEN for a genid is 6
to allow tor later naa. generation.

Dur ioo the plan phase of tbe qarbaQe collection, a decision
is .ade whether to rQallocate id space. The decision is
based upon the Du.ber of new ids created since the last
qarbaqe collection, how aucb space is left, and how long it
has heen since the apace bas been reallocated. If it is
decided to reallocate identifiers. a new id space is created
and ~e marked ids are loved there. The copying is through

12/31/74
--_._------_._---

214 CBISP -- SDC T~-5_55/000/00

the hash links. This assures that bashed searching for an
id will Dot paqe thrash.

)

Rough Draft

Meeory ftanaqeaent Facilitv

r----------~~~---------,----- .,
I PROP I

~---------------------------i
I SYSPBOP I ,,----..-- .. " ____ ~--,
I KEYW I CLASS I DOL I DVC I
r-- + -+---+------1
I Ase I BBC , IPIP 1 0 I
.. _____ .-..1.

----~I ____ ~ __ ~L ________ J

CLASS in BLANK*DELla*OIGIT*HEX*SUPER*ALPHA*LC1SE

DOL in NEEDDOLLAR*CAUSEOOLL1R

Dve in TTY*TI*PDP10*TD*TN

IMP in (GENERALII~TEGERIFL01T}

16 byte entries

allocation - sinqle static space
sinqle quantu.-reqion
cO~paBSS. STRING2ID

accessors - PROP. EXPLODE. ID2STBIMG
qC alqorithlls
loop - prop
mark -
prune - SYS-PROP chain
plan -
update - prop
move -

275

Character identifier space coat,ins the structure of
identifiers with one character priat names. Ihe space is
atatieall, allocated so that the id's print na.e .ay be
computed by its relative position in the space. KEYW is
true if the identifier i8 aa SL ke,word. CLASS is used by
the token parsinq routioes to classify characters. DOL
tells whether this identifier needs to be printed with tbe
$' aechanisB to be correctly reread and whether the
inclusion of this character in aBother identifier's na.e
causes that identifier to be printed with the $' aechanis ••
DYe tells 11 het her this character has a graphic
representation on the na.ed output device. Ase is the
equivalent AS'CII c04e for this BBCDIC character. EBC i8 the
BBCDIC code for the ASCII character. IMP is the i.plicit
type associated with this cba~acter.

12/31/74

276 CRISP -- SDC TK-5455/000/00

r-------------------------------,
V1L UI

L __ • 1

_________________ J

4 byte entr ies

allocation - aultiple selectable spaces
region-Quantu.
IH TIGER 2G!N BRAL

accessors - GENB8AL2IItEGIR

QC a lqcri tb as
loop -
aark -
prune -
plan - fold
update -
lIo,e -

InteQer space contains fixed-point values of nu.ber or
qeneral data. The first two words of each guantua are used
to aid the qarbage collector and allocator aechanisa. See
description of node space (paQe 212) for .ore inforaation.
An additional 32 word (102_ bits) bit vector is also left at
the beqinninq of eacb quantaa to be used as a aark table.

Rough Draft

')
/

(
"---

i' - --.... -------------,-----------.

'ALUE I L ___ ,--____________ , ________ • _______ ~I

4 byte entriQs

allocation - aultiple selectable spaces
region-quantua
FL01T2G!JSBaL

accessors - GENEB1L2PL01T

QC alGorithas
loop -
aark -
prUDe -
plan - fold
up4a te
aoye -

277

Float space contains floatinq-point values of number or
general data. The first two words of each quantum are used
to aid the qarbage collector and allocator mechanism. See
description ot Dode space (page 272) for aore information.
ln additional 32 words (1024 bits) bit vector is also left
at the beginninq of each quantua for use as a mark table.

12/31/74

218 CP.ISP -- SDC T"-5~55/000/00

--------------------,
I R ElL I
~---------------------------~
I I!!lGIIABY I

8 byte entries

allocation - .ultiple selectable spaces
reqion=quantu.
COf!PL!X

accessors - REAL. I!!AGINABY

qc alqor it h.s
loop -
.ark -
prune -
plan - fold
upda te -
move -

Co.glex space contains pairs of floating point numbers. The
first two ~ords of each quantum are used to aid the garbage
collector and allocator .acbani... See description of node
space (paqe 212) for aore information. An additional 32
words (1024 bits) bit vector ia also left at the beqinninq
of each quantu. for uae as a mark table.

Rough Draft

-)

)

J

-----.--~-------------
.----- ----------------

Me.ory ManaQement facility

r------~------~------------_,
I GeM I MOVE I

...-----+---------------4
I FLAG I TYPE I
!-----+-- . -- i
1 NOI M I L BtI G 1: H I
... --.&.- T .. ----------1
t 01 PI 1 I I
1:-------------+---------..
I ••. I OIMn I
~-------------4---------------i
I I
I EL EH EN T S I
I I
~------------------------------~

12+4*(KDIM+l)//2+4.(LBICTH+3)114 byte entries

allocation - multiple selectable spaces
variable lenqth reqi~ns
CREATE

accessors - TYPEP. SIZEDI". NUKDIM. subscripting

QC al(Joritbas
loop -
mark - pointer ele.ents and TYPE
prulle -
plan - set .ove to tor warding address
update :a .ark
.ove - co.pact

279

An array is constructed so that the first ele.ent begins on
a word boundary and padder 1s added so th~t the array ends
on a word boundary. The flaQ field specifies whether any of
the elements are pointers and whether they are flat ntuples.
In any event, if the "lBKP bit is not set, then the array
does not need to be .aIked fro. or updated by the garbage
collector. The lenqth field specifies the exact number of
bytes occupied by the arra, ele.ents.

12/31/14 _______ _

280 CRISP -- SDC Tft-5455/000/00

, -~-----~-----------------------,
GCft I "OV! I

~ - ++-----------------------i
I fUIIP I TIPE I

~------~------------~----------.
I
I
I

ITE!S
I
I
I ~----------_____________________ J

8+4.,lenq~h+3)llq byte entries

alloation - aultiple aeletable spaces
variable lenqth reqions
CREAT!

accessors - TYPEP. ite.-na.~s

qC al(Jorithas
loop -
Ilark - pointer it •• s aad TYPB
prune -
plan - set nCvE to forwarding address
npdate :: .ark
.ove - co.pact

An ntuple is always padded to occupy an integral nu.ber of
words. Ntuple iteas are •• rked and updated only if ftARKP is
set. In this case, the TYPE infor.ation is consulted as to
which it •• s alE pointers and th \18 • ust bEl cha sed. Tbe
ntuple leD(Jth is also derived tro. the type field.

lOugh Draft

)

J

(

\
"--

JUI.LA.luLJ4 11 IJ.. .. 5 PAaI

~r-----------------------'-----~----' 'ILUE NAK!A L _________ ~ ___________ , __ • ____________ ,~

___ ••• _ I. --------,
• GC" LAST !lIKE I NAllEB

• _-+ _ I --- i
I COUIT I LIIII(I .. • ---------i
I FLGl I PIBST IU'U I
.---+--- -- -t
I FLGB I TYPE I
• I. --------'

PLGA in rSYMOIYft,RICIOIGII.RATORITBIIS'OBftISPICBI
Y1BI1BLIIPUICTIOI IPBOCBSSOI,llftEI F1STI
OUOTEIFREEl

PLGB in fBPS'SYSIMU"BERIPOINTER1*PROTECT*HIODEN*
FBEEIBL E

4 byte entries in I'KEI
16 byte entries in 11"8B

allocation - sinqle space
single region
~ll!.'"I, .IISPlC!

accessors - FIBSTI1"I, LASTII"!

QC al<loritbas
loop - if ~P8EIICOO'T~·O then aark
.ark - TYPE, PIISTI'BI. LISTIIII,

if PLGB in POIITI! then VILO!
prune - tbrouqh LIII with id prune
plln -
upda te = aark
aoye -

281

The Dale apaces contain the ob1ects referenced by qlobal
aa.ea. la •• a contai.s the (shallow bound) value cella for
q10bll variables. code pointer. to functions, etc.
Issociated with each oae word object in na.ea is a four word
obi.et. in na.eb tlaat ls the co.pl1er's and as.abler·s
sy.bol table. III ob1ects in naa.. spice are covered by
base reqisters. fbeEefore_ the valae cells aay be directly
referenced fro. code. (True only for RI for.at
instructions, see .ection on General Purpose Registers, page
291.) PLGl denotes the object's type without
subspecification. e.<I., function, space, variable. Por
types that require .ubspecification (variable. processor,

12/31/74

282 CRISP -- SDC Tft-5455/000/00

and function). the additional information is provided by the
field. TYPE. The FtGA value, HA"E, denotes a global name
that has been qenerated but not declared or defined.
Besides the subtypes of name. name space contains objects
for non-numeric constants and special purpose code chunks
(called FAST). Naae objects that have not been allocated
are marked FR!!.

The systea maintains an avail list of free ob1ects in this
space, linked throuqh the LINK field. All global ob1ects
with tha salle first name are strunq together (starting froll
the identifier) throuqh the LINK field. In a sillilar .aner.
all quotes are also strung. In all 'cases, the LINK field is
a na.eb pointer.

PLGB contaiAs iaformation for the garbage collector and the
declaration aechanisl. A fREEABLE indication says that this
structure .ay be reclailled as FREE as soon as COONT is 0 and
no pointer references it. HIDDEN indicates that this
5tructu~a has been redefined with different attributes and,
ther~fore, ancthet structure .a, exist ~lth the 5 •• e first
and last name. The P80TECT indicator siqnals a vital system
ob1ect that may not be redefined. See s~ction on Name
Pri.itiyes (page 123) for a description of the unlockinq
mechanism. The otber subfield in PLGB describes VALUE, the
corresponding obiect in NAMBA.

Ob1ects in na.e spaces
specifies the number
asse.bled code. It is,
fro. nor update address

are neyer aoved. the COUNT field
of references to the object fro.
therefore. necessary neither to wark
co.putation in compiled code.

BOuqh Draft

J

."
)

I

\,--

~e.orv ~8naqe.Ent Pacility

r--~~------.------------------~
J 0 NU! E I
.. " . .,.------------1
I LBNGTH I I

~----------------~ I
I I
I CODE I
t I
~------.--~-----------------------~

LENGtH byte entries (z 4096 bytes

allocation - lultiple selectable spaces
variable lenqth regions
G!TBPS

accessors - EXCISE. invocation

QC alqoritbJlis
loop -
mark -
prUDe -
plan - updat~ locC.AM!) to forvardinq address

and love
upda to
move -

283

B ina ry proq rams lIa, be a lIaxillulI of one core pa qe in length.
Thus. the compiler and assembler do not have to face
prohle~s of .ulti~le code bases. The NAME field locates the
name structure that defines the program's arqullent and value
types. Wben code is lo.ed, the na.ea word associated with
the proqram is updated to the new location. The only
pointer references from code are to the stack that is
automatically chased during loop phase and to name
str u et ures t hat have count fields, so the refe rences do not
need to be chased froll the code.

12/31/14
-------"---"----"" --

284 CRISP -- SDC T"-5455/000/00

r------~--~------------------__,
I GCl! I STACKS
~------+------ -------------i
I PLGl I COMTIXT I

.-------+-----------------------.
I FLG2 I ABORT I
't ----------1
I PLG3 t lCTIV ITO~ L-_____ ~ _____________________ --J

PLG1 in {STACKIHEAP1*VAnlCT*CODE1CT*KILLED

16 bvt e entr iea

allocation - sinqle static space
sinqle reqion
STlRTP80C, COPYPROC

accessors - CCNT!XT, lBOBT, ACTIVATOR

qC alqoritha
loop - if CODEACT
mark - CONTEXT, ABO~T, ACTIVATOB, STACKS
prune -
plan - link free list
upda·te = mar k
aovE' -

An oh1ect in this space Is a centrol block tor a process.
If this entry is in use, then StACKS points to a bloCK on
the pointer stack (PDP) if FLG1 is STACK, and points to the
process heap if PLGl is HEAP. If P'LG 1 is CODllCT, this
ob1ect is associated witb the process that is currently
active. VARICT indicates that this process is part of the
total context of the process that is currently active.
KILLED iodicates that this process aay no longer receive a
proQraa counter. Howeger, it is not necessary for a process
to be KILled in order to be qlrbage collected: it is
necessary only that this process not be referenced.
CORTEXT_ ABORT, and ACTIVATOR are pointers to other objects
in handle space or IlL. PLG2 and .LG3 are markers used by
the process switching algorithas.

Obieets ln handle apace are not Moved by the garbaqe
collector. Pree en~ries are collected on an avail list that
is linked tbrouqb the COITBXT field.

Bough Draft

)

)

)

.. _---_._-_._--- --- -----~--

Memory ~anaqe.ent Facility

r----------------------,
I LENGTH I
~-------------------------------f
I PCN .Loe I
1-----.- ----------....
I HlIDL! I
.- - ------- . f
I BACKL INK I
f---. ----------------t
, FRO NTLI NK I

I--------------~---- ---~
I PDF.LN I PDP.SE7 I
..... -+-----------4
I PDN.Lt! • PDN.sET I
~----------------~---- f
I P DP. EN T I
I I
I I
I • I
I POP.EIT I L _____ • _______________ ___________ ~

LENGTH hvte entries

allocation - sinqle static space
fixed size reqion
EVAL. EVALPROC

accessors - a5se.bl~4 code

QC a lqori thm
loop -
mark - pointers in PDt.ENT
prune -
plan -
upaate = mark
sove -

285

A block on the pointer stack (PCP) is. together with an
obiect in handle space and a block on the number stack, a
complete process variable and control state. The blocks on
the two stacks aay be packaged together and stored in the
process heap. Only the top-aost block on POP ls associated
wit. h t he process in execdtion. This block qrows a nd shrinks
as the process coaputes. and its size aay be deter.ined by
exa.ininQ the value of the pushdawn pointer register. All
other blocks in PDP are stationary with a length of LENGTH
bytes (always 8 .ultiple of 4). PD •• LOC is the location of
the Dumber stack block associated with the same process. and
HANDLE is a pointer at the handle ob1ect for the process.
BACKLINK and FRONTLIMK are two-"ay threads that allow soze
of the process control primitives and the garbage collector

12/3 1/:lJ! ... _.

286 CRISP -- SDC Tft-5455/000/00

to work their way around the stack blocks. PDP.LK equals
LENGTH and is the length of the block~ PDP.SET is the
place.ent for the pushdovn pointer reqister, relatiye to the
beqinninq of tbe block, wben the process resu.es execution.
PDP.LM is the length of the associated block on the nu_ber
stack. and PDN.SET is the place.ent of the numeric pushdown
pointer reqister, relative to the beqinning of that block,
when the process resumes execution.

The PDP.BHT fields are either eiqht or sixteen byte entries.
!hev are used for local variable bindings, temporaries,
qlobal bindinQ saves, retuln addresses, and failsets.

The foraat for local bindings and teaporalies is:

,.--------- . -- -------,
VALUE I

.. --------------.,.,. ·---f
o I l.. ____________ ~

Glohal bindioQ
lIechanislI of
act ive binding
on the atae k.

saves lIe used as part of the shallow binding
global variahles. In general, tbe latest
is in n •• ea apace, and old, sa ved val ues are
The foraat is:

r-------------.. ------------'--------,
, 'ALU! I
1------, . , --------i

o V18I18L! HAME I L ______ ~ ___________ ~~ __ _ __ -J

The format Of • return address is:

,.------------------ --,
t DELTA COD! BaSE I

,n f ~------~----------,---------------
I o rUIC~IOI lAME I L-______ ~ ____________ • ____________ -J

DELTA COOl BASE is the distonce Plst the beginning of the
function (in bytes' at which the function call vas made.
~he hiqh order 8 bits aay contain the garbage generated by
the EALR operation. Function retuIDS are distinguished from
Qlobal binding saves by ex.aination of the naae pointed at.

Rouqh Drat t

)

287

The tormat of a failset is:

r-------------------------------,
DELTA CotE EASE

~------~-----------------------l 1 0 I FUNCTION NAME
~----~ .--------------~
, COUNT I DELTA PDP I
l --~------------- f
I FLAG D!LtA PDN I ~L __ • ______ .~ ____ • _________________ __J

The first two words have the same format as a return address
and tell the unwrap .echanism where to resume execution.
The DELTA PDP and DELTA PDN fields specify where to realign
the pointer and nu.ber pushdown registers when execution is
resu.ed at the indicated spot. The COUNT and FLAG fields
are used by the TRY form to .ark the nu.ber of trial
expressions already evaluated and the kind of unwraps to
catch. respectively.

To allow proper operation of the program check handler, it
is conventional that even-numbered (second and fourt~ words
of PDP.ENTs be zeroed when they are popped.

12/31/14 ___ , __ ,
----------.-~---------.----

266 CRISP -- SDC Tft-SQS5/000/00

J,U.ftDljL,SlAk.l-UA.CJ .. U.DJIl

• --- ----------,
J PDN. EN T I
I I
I • I
I • I
I PDIf.ENT I
'---

_____ .J

variable lenQtb entries

allocation - sinqle static space
fixed size region
EVAL •• V1LPROC

accessors - assembled
QC alqor it ba

loop -
aark -
prune -
plan -
update -
move -

The lenQth on a block on the nu.her stack is d~ter.ined by
an associated block on the pointer stack (POP). The topmost
block is associated with tbe process currently in execution.
and its lenqth is deterained by the number push down
reqister. See description of POP (paqe 265) for aore
inf ox.a tion.

the entries in a
either inteqer or
there knows which.

~-~--~---~------~-

PDM block (PDN.!HT) are 32 tit numhers,
floatinq: only tbe code thdt put the.

Bough Draft

)

J

(
\

(

~ ..

r-------'--------------------------, LENGTH I

~-----T --------------------~
I PBEEP I 0 I • _____t.________ _ ~

I HllDLE I
f-------.. ---------~
I B1CKLINK I
.---------....-- . I

FBOHTLINK I

~-----------~-------------~ I PDP.lM PDP.SIT I
~ . . --------+---. - -----f
I PDP.LM I PD •• SET I
r--- I ---------..
• POP. ENT I
I I
I • ,
I • I
I PDP. ElT I
~--~---~---------------------f
I
1
I
I
I

P DII. EN T

•

•
PDII .. !NT

I
t
I
I
I ~ ______________________________ J

LENG~H byte entries

allocation - sioqle static space
sinqle reqion
K1KEPBOC, COPYPBOC

accessors - process svitchinq primitives

QC a lqorithas
loop -
mark - from pointer. in PDP.ERTs
l>rune -
plan -
update =: .ark
.Oft - co.pact

289

The Process beap holda objects co.prising a pointer and
number stack pair. The for.ats of objects in this space and
PDP and POJ are chosen so that stacks may be quickly saved
and restored. The for.ata of PDP.ENT and PDB.ENT are
described on the paQes detailing stack layouts. LBNGTH is
the lenqtb of the beap ob1ect in bytes (always a .ul~iple of
4). FREEP specifies whether the block is allocated.
BACKLINK and PRONTLINK are two-way threads to other blocks.

12/31/14 -----"--.----"-----_._---------------

290 CRISP -- SDC T!-SQS5/000/00

The heap is maintained by the huddy system between garbage
collects and allocated with a first fit strategy. At
qarbaqe collection time. the entire space is co.pacted, and
only those blocks whose HANDLEs are aarked are kept.

POP.Lt and PDN.LN are the lenqths of the saved pOinter and
number stacks, respectively. PDP.S!T and PDN.SET are the
relative ~lace.ent points for the pushdcwn pointer registers
when this process resumes execution. HANDLE points at the
handle ob1ect for this saved pIocess.

Rouqh Or aft

\
)

/

291

SPA C! P RI,. IT I V ES

This section describes the facility that manages data space

utilization, the priaitive that creates new spaces, and some

of the primitives us.d by the syste. to allocate structures

within a space. The structure allocation primitives for

users are described in tbe section on data primitives (page

119). The section OD aa.ory management facility (paqe 266)

describes tbe individual data spaces, their formats, and the

QarbaQe collector.

Global names, e.q., IOD!2SX, are used to name spaces. The

first naae of the global name is a space kind, and the last

n3ae aav be any identifier. Tbe Dames of the space kinds

are NODE1, NOD£2, NODE3, NOOE4, NOOE5, NOO£6, NODE1, NODE8,

IDlNTIFIER. CHARACTER, INTEGER, FLOAT, COMPLEX, ARRAY,

MTUPLE, NUJE. POP, PDN, BPS. HANDlE, HElP, and SMIN'f. Of

these space kinds, CHABACT!R, NAME, pop, PDN, HANDLE, and

SKIRT are statically allocated. That is, tbere is exactly

one space of each kind, and that space is allocated to its

.axi.ua s1ze at system qeneration tt.e. Althouqh there is

only one identifier space, its size aay vary in ti.e. Heap

spaces may be created and destroyed. Therefore, neither

identifier nor beap spaces are statically allocated.

12/31/14
- ~-~-----.--------- ----- -.--~------ -----------------.

292 CRISP -- SDC T"-5455/000/00

ahen the .,ate. is qenerated. there is on~ of each kind of

sPice except that tbere are two heap spaces. The na.es of -)
these spaces are tbe space kind tailed ..,i th SIST!". For

exa.ple. 18R&Y$5IS1:I" and BPS$SYSTBfl are space names. The

second heap holds process states an~ is named HEAP$PROCESS.

Spaces of the kinds node1. node2, node3, node4, nodeS.

Dode6, node7, nodeS, inteqer, float. complex, array, ntuple,

and bps are selectable. There may be aore than one space of

each of these kind., and, for each kind of selectablo space.

one of the. is said to be selected at any given ao.ent. By

convention. all structures are allocated in a selected

space. variables (of type naae) whose first names are

selectable space kinds and whose tails are SELECTED

deter.ioe the currently selected spaces. Thus, all CONSing

of binary nodes is done in the space whose na.e is the value

of IODE2SSELECTBD.

If a proqraa has created several s~aces of the same kind and

selects froa one to another. then a problea can arise when a

fail or exit primitive is execQted; when control is resuaed

at a try. the wronq space lay be selected. To handle this

problea. 80a. sequence such as

•••• J TBY(•••• !EGIN IODI2SSILECTBD:=a MODE2 space1

IND ••••)

aay be used. The user caD write a macro or transfora to

Bouqh Draft
------~------

i
\~

,
I

\
'----

Space Priaitives 293

Qenerate the protection blocks around the try terainals.

(The current I/O file selection aay be protected by a

siailar aecban1.a_,

jA~iD~: there is very little protection or error checking

on the SELICTED variables; they .uat be used very carefully

or unr.coveratie prograa cbecks aay result.

KEISP1CESCBISP creates new spaces or modifies the space

control block of an existinq space. The declaration is:

Nlftl fUNCTION MIV5PAC!(NAflE,INT,IHT,IMT,
GEN POIIC (IA"E),
10V ALue PUMC(NA!E, INT) ,
ROVALUE FUIC(IA"E),
1I0VALUE fUNC(NA"!),
MOVALOE FUNC(HA"!»)

The arqq .. nts. in order, are the space naae, nu.ber of

quanta per reqioD. aaxiau. nu.ber of reQions for the space,

space property value, allocation policy function, prune

policY function, plan policy function, u~da te policy

function. and the aovinq policy function. Only selectable

spaces and heaps can be created witb HEWSPAC!. The argu.ent

to each of the funcs (when called by the garbage collector)

is the space naae. If any func is HIL, the garbage

collector does not call the function associated with the

space 4urinq the corre.ponding phaae. If the space does not

already exist, • space control block is built for the new

space. If it does exist. tbe call to IiEWSP1CE updates the

SCD. Only the non-zero int.eqers and the non-IlL funcs are

~laced into the existinQ ses.

12/.11/7_

294 CRISP -- SDC TK-5455/000/00

1 Qeneral purpose alloeaticn function is available:

GEM FUNCTION ALLOCATEtCRISP(N1ME,INT)

The second argument is ignored. I region of appropriate

size is added to the space, and a pointer at the first byte

of the region is returned. In general, the second argument

to an allocation policy function i8 the size (in bytes) of

the structure that is beinq allocated. ('This allows for

regions of variable size.) Usually, the allocation policy

tunction is called only when a structure will not fit in the

spaCE without an additional reqien or garbage collection.

ALLOCAT! adds a region only if the laxillum nu.bet of regions

allowed for this space has not been reached. If it has

reached maxi.u. size, the garbaqe collector is invoked. If

no regions are reclai.ed for this space, an error is

induced.

the .ark, prune, plan, update, and mote policy functions are

as described in the section on garbage collection (page

269). 1 space may be entirely reclai.ed if it contains no

structure and if its naae has been hidden by the function

HIDE~A"! (see section on naae pri.itives, page 123).

Most of the priaitives for allocating structures in data

spaces are described in the section on data pri.itives (page

119). The rest are described below.

Rough Draft

)

Space Pri.itives

NODB 1 PUNCTION CONS1 (GEN)
NODE2 FUNCTIOJ CONS2 (GE.,GEN)
NODE8 PUNCTIO~ CONsa ,GEJ,GEN,GEN,GER,GEN,GEN,GEN,GEN)

295

Fo~ each kind ef node apace, there is a CONS function. At

compile time, the pseudo function. CONS, determines which

actual CONSn to use. All CONSn functions have the last naMe

CRISP.

ID FUNCTION nAKEIDSSYSTEft(INT,BOOL.GEN,INT)

1he first arqument is the number of characters in the print

naae. The second atqu.ent is TBUE if this id needs to be

pr in ted wit h the S' .echanis. in otder for it to be

re-readable. The third arQuaent points to the structure

containinq the naae Ca strinq, for instance), and the fourth

arqument is the offset froa the pointer to locate the first

byte of the nale. If 8" identifier by this name Exists, it

is returned as the Yalue. If not. a new identifier with the

specified name is created.

JUftBER fUNCTION II!EGBR2NUKBERSSYSTE!(IIT)
IW!B!B fUtlCTIOM PL01T2IU"BEBSSYST!fI (fLOAT)

Each ot these fUllcticns places its arguaent in an integer or

float space and returDS a pointer at it.

ARRAY FUNCTION lfAKEABBAY$SYSTEft(GEN,ElOOL,INT IND!P)

Tbe first arqu •• ut i8 the array type, the second is TRUE if

the ar~a, is flat. and the iodef ints are the extents of the

di~Dsions. The arra, type .ust have been hashed by one of

the assembler pseudo fUDctions. The new structure is

uninitialized.

12/31/74
------ . -----------------

296 CRISP -- SDC T"-5455/000/00

ITuPL! FUNCTION "AKENTUPL!$SYSTE"(HAftE)

The arQu.ent is the ntuple type. The created ntuple is not)
i ni tia 11 zed.

HAft! PUNCTION GETIA"B'SYS~E"()

The value is a pointer at a n8.e structure that has not been

initialized.

GEl paJCtIOH G!TBPSSS!STE~(IMT)

The arQu.ent is the length of the bps area needed to hold a

proQram i •• qe. including its header. No initialization is

done. The value is a pointer at the first byte of a home

for the illaqe.

)
The va lue is an untni tiali zed handle.

All of the 4Love functions can call the qarbage collector

throuqb the allocation function associated with the space.

Bough Draft
-----~----~-~--~-~

297

RBGIST!B ALLOCATION ABD LINKAGE

This section is a ".uat" for anyone who wisbes to write

asse.bler lanquaqe in the caISP syste.. The topics covered

are reQister allocation and usage conventions, the linkage

aechanisa, and the lechanisl that binds and unbinds global

variables.

This section describes the usaqe of the floating point and

qeneral purpose reqisters in the CRISP system. The contents

of reqisters are not Quaranteed over function calls.

Floatinq point reqiaters

The four floatinq registers, 0, 2, 4, and 6, are known by

the aneaonies 10, '2, 14, and P6, respectively. By

convention, if the last arquaent to a function or processor

is a floatinq point Du.ber, then the value is passed in FO.

If the value of a function is a floating point nuaber, then

it is returned in FO. Within a function, processor, etc.,

the floatinq point registers aay be used for any purpose the

proQra.aer desires.

Gene~al purpose reoisters

Table" qiYes the .ne.onics and the contents Cif constant)

of the 16 qeneral purpose registers. By conyention. if the

12/31/14

298 CRISP -- SDC T"-5455/000/00

Table M -- Reqiste~ Contents and Mnemonics
,
'\

B~gi§~~L ~2n~§ JlD.~mQJ!j,~2 ~
0 RO
1 Rl
2 82
3 R3
4 R4
5 R5
6 B6, LINK
7 R 7, eB2
8 B8, CB
9 0 R9. ZERO

10 Rl0, pep
11 B 11, PON
12 20000X 812, Syg 1. l'NLK
13 210001 R13, SYS2, FRBT. QC!
14 23000X R14. NU" 1, BIND
15 24000X R15. NU"2, UNBltW

last acqu.~nt to a function. processor, etc., is a pointe~

or an inteqe~ (includinq an indef count), its value is

passed in 85. If the ,alue is an inteqeL oc a pointer. it

15 eeturned in 85. Within a ~rogIa., the programmer may use

registers RO throagh n6 foe any purpose. R7 is also

available in proqraas whose length does not exceed 4096

bytes. R8 is the code base. 97 is the second code base

register used in prograas lonqer tbln 4096 bytes. R6, also

named LI.~. is used as the "return address" register by the

BALR or Bea co •• and tbat transfers to the function call,

function return, global variable binding, or qlobal variable

unbindinq sequences described below.

R9 is also called ZBRO, and its contents are always o.
Be8i~es easy access to the constant 0, use of 19 makes

possible a one instruction NIL test. Thus, "BXH r,ZERO,l" J
braDch~8 to location 1 if the contents of general register r

Rouqh Draft
----.• ----- ...

i

~-

"---

Reqister Allocation and Linkaqe 299

are strictly positive. "BXLE r,ZeaO,I" branches to location

1 if the contents of qeneral r9Qister r are less than or

equal to O. Recall, NIL is represented by a pointer at

address O. and all other pointers are strictly positive

a.ddresses. Ther~fore, if r contains a pointer, then BXH is

a transfer on non-NIL. and EXr~t is a transfer on NIL in

reqister r. For this trick to work, the register ZERO .ust

be an odd nu.bered qeneral reqister.

The teqisters R10 and 611 are also na.ed PDP and PDN and

are. respectively, the pointers to the pointer stack and the

numeric stack. By convention, both registers are operated

400X bytes behind their virtual top of stack locations at

function entry. Only the function call, function return,

and processinq pri.itives ever incre.ent or decreaent the

stack reQisters. All other stack allocation is done by the

assembler. which assiqns virtual locations at assemble time.

Promiscuous muckinq with the stack reqisters is a sure way

to dev~lop an unrecoverable proqram check.

The reQisters R12. &13, 914, and R15 are used by the system

for a variety of purposes, and each has several na.es to

reflect these usaqes. CBISP is loaded at byte address

200001. Therefore. the four reqistets contain the addresses

of the first, second, fourth. and fifth paqes of the system.

IT hese fiYe paQes are a ayste. hea p.) The first a nd second

paqes are used to hold such things as garbage collector

tables and code sequences that cannot conveniently be

operatad in binary program space. These pages (and

12/31/14 ------- ------------------

300 CRISP -- SDC T"-5455/000/00

reqisters 812 and R13) are named 5YS1 and SY52. The first

several words of 5Y51 contain the function call sequence. A

function call is initiated by the co •• and "BALH LINK,FNLK",

where PNLK is anothe4 na.e for the register 5151. The first

several words of SYS2 contain the function return sequellce.

This sequence is initiated by any branch to the beginninq of

5152: for instance, the coamand, ftBR PNBT", where FNRT is

another nase for the register 813. Another usage of R13 is

to access the quantized core map. QC"_ QC" i~ a ~096 byte

table with ei2ch bytE correspondinq to a paqe of lIlellory. The

byte identifies the kind of space to which the paqe belonqs.

The first four bytES of QC~ cccu~y the last four bytes of

5Y52. Thus. to test whether pointer p addresses a page of

space kind k. use the followinq.

L
SRL
LA
ell

86.p:
R6,12:
R6.4092 (B6.0Cl'!) ;
O(R6).t:

The condition code will be set to indica te the value of the

test. Such code sequences as the above are nor.ally

qenerated by co.piler and assembler .acros. Since the bytes

of QCK are always relativelY addressed, having STS2 and QC"

ocCUpy the samE reQister provides sufficient coverage.

R14 and R15 each cover a paqe of floatinq point, integer,

half. and byte constants. and ace also na.ed NOM1 and IUK2.

The first several words of WUKl are the code seqaence used

to bind Qlohll Yeriables. The co •• and. "BALR LII~.BIND",

~here BIND is another naae for R1~, is used to invoke this

se quence. The first several words of IU"2 are the code

sequence that unbinds qlotal variables. The command, "BALS

Rouqh Draft

)

)

)

/

I

I
~

ReQister Allocation and Linkaqe 301

LINK,UNBIND", where UISIID is another name for R15, is used

to invoke this sequence. Both binding and unbinding

sequences are l1or.a11y invoked throuqn the use of assembl y

pseudo instructions.

The r~Qisters R12, R13, R14, and R15 have yet another major

use in the system. That is, they are used as base - index

pairs so that namea space can be directly accessed by RX

for.at instructions. (Only RX format instructions can use

both a base and an index reQister in computing the effectivp

address.) Advantaqe is taken of the sy.metry in usage of the

base - index pair. Using the four registers, addresses

40000X throuQh 48fFlX (the 9 full paqes of namea) can be

addressed. The page - pair correspondences are:

400001-40f'Fl
4l000X-q1FFPX
42000X-41PPFX
43000X-43FPl'1
44000X-44FPFX
4S0001-45FtFI
46000X-4611'1X
470001-47FFlX
480001-4 8f lEX

delta (812, B12)
de1ta(R 12,R 13)
delta (913, R13)
de1ta(R 12,R14)
delta (8 13,R 14,
delta (813,815)
del ta (R 14, Et 14)
delta(B14,tH5)
del ta (R 15, R 15)

where OSdelta(4096. the particular placement or 812 - R15

has been selected to laxilize the nUlber of contiguous pages

that can be spanned using four registers, two at a time.

This selection is a solution to an equ ivalent tt postage

stamp" problem.' The esselbler converts global nales used as

1 Lunnon, v.r., "A Postage stamp Problel", 1969.
The postaQe stalP problel consists of choosing, for a given
nand ., a set of positi,. integers Cstamp prices) such that

Ca) Bums of • or fewer of these integers can realize
the n 1111 be r.s 1. 2, 3 ••• N - 1 (po S ta 9 e d ue,

(b) the value of .. in (a) above is as large as
possible.

The Ift.S 360/370 register allocation problea has 111=2 and n

12/31174

302 CRISP -- SDC T"-5455/000/00

addresses into the proper delt a and register pair

Functions. processors. aacros, and generators are noraally

called by the CALL. START, etc •• pSEudo instructions. This

section describes the actual code sequences used to call and

return fro. functions. There is no essential difference in

the calling and return sequences fro. functions, processors,

.acros. and instructions.

When a function is called, the address of its namea word is

loaded into R7. Contrel is then transferred to the linkage

sequence at the beginning of 5151. For exa.ple, to call the

function FCNSUSEB, the CALL pseudo instruction provides

LA
BAL8
-pdp
-pdn

R7, PCN SUSER:
LI.~,FNLIt;

tlu.p-
buap-

where -pdp buap- is the distance in ~ytes bEtween tbe return

address fro. the callinq function (cn the pOinter stack) and

the nev return address to the calling f unction and -pdn

bu.p- is the distance in bytes tetween the top of the

nUae tic stack upon entry to the calling function and the

preSEnt top of the nu.eric stack. Both -pdp bu.p- and - pdn

bUIlP- are half wOl:d fie 1d8. (Fer tuna tal y, the pseudo

instructions qenarate the ••) Assu.e that FaO is a variable

the nu.ber ot available general registers. For 1=2, it is
easv to show that nZ/4+o(n)<n2 /2+c(n).

Rough Draft

)

J

---- .--.- --~ .-~ -------- ._---------

Beqister Allocation and Linkaqe 303

with a FUMC value: then the invocation sequence to the value

of POO is:

L
BALR
-pdp
-pdn

R7.PCO;
LINK"FMLK;

bUIlP-
bu ap-

The followinQ code is the linkaqe sequence at the beginning

of SY51 that is activated by the above calls.

AH
1ft
SI1
5T
L
51
ST
L
B

PDP.O (Lll1l\) :
PDP.2ILINK) :
LINK.CB:
LI "K,4001 (POP) :
CB. 5T5 (IFD) :
CB,,404X(PDP) ;
Ri, SYS (IFD) :
CB,O (& 1) ;
6 (CB) :

~·Incre.ent stack pointers'

~·Co.pute return address'
I' relative to CB'
~'Syste. word IFO always'
~. contains function that'
~. is currently active'
%' The new code base'
"Enter just past header'

Mote" only registers CB, LINK, Ri" POP" and PON are modified

by the callinQ 8equence~ ~his is a guaranteed feature. The

return sequence froa a function is any branch to the

beQinninQ of 51S2. Por instance, the co.aand "BB FIOT".

The code sequence at the beqinning of SYS2 is:

L
5'1'
ST
L
L
58
sa
B

CB .404 X (PDP) ;
CB, S1S (IrD) :
2!BO.404X «PDP) i
CB.O (CB):
21.110 4X (fDP) :
PDP .. O eCB,D7);
PDN.2(CB,R1) ;
4,CB .. fl1);

%'Destore system word IFD'

~'Doutle vord pop'
~'8estore CBs froa naaea'
~'Get rest of return address'
I'Untuap stacks'

"'Re-enter function'

Beside the proc~ss control pri.itiv~s, the only tbings that

incre.ent or decreaent the stack pointers are the above AH

and sa cOII.ands. Tbe total overbead for a call and return

includinq the "LA R1,fcn tl to the instruction following the

-pdn buap-, e.Q., the tiae to call and return froa a

function that does nothing. is 37.928 aicroseconds. If and

when the systea allows binary proqraas that are longer than

___ ...:..;12::.o/L..:3=-1"-"I'-'i=-""-----------~-~ ____________ _

304 CRISP -- SDC T"-S455/000/00

4096 bytes, the co •• and "Ll CB2,4092(CB)" vill be inserted

as the next to last instruction in both the call and return

sequences. This increases overhead time to 40.832

microseconds. CAll tiainQs quoted in this section are for

the IBft 310, ~odel 145.)

The follow inq describes the arQulent passing con ven tions.

All except the last arQuaent (indef count if present) are

passed on the appropriate st ack • The last argu.ent is

lJassed in FO if a float and in 85 if anything else. First,

the indefs are placed on the appropriate stack in their

order of occurrence: then thp. other arguments (except the

last or indef count) are placed on their appropriate stack

in their order of occurrence. Given the declarations,

FUNCTION AfIaT,PLOAT,IODE)
PU NCT IOM B ,GEl ,GIB, FL01 T)
FUNCTION C(NODB.IMT,GEB IND!!)

than 80.e exa.ples of callinq sequences are:

for AU.F,N)
L
ST
L
ST
L
CALL

B 5, I:
85 .PUSH!. ;
FO, r;
FO,PUSH •• :
R5,1I;
A;

for: B (G1 ,Gl.P)
L B5.Gl:
ST SS,PUSHP.:
L B5, G2:
ST BS,POSHP.:
L FO,1':
CALL B;

for C (11. I.G1 .G2)
L 85,G1;
ST BS,PUSHP.;
L RS,G2;
ST SS,POSHP.;
L R S, M;
ST B5,PUSHf.:
L B 5, I;

Rough Draft

J

8eQister Allocation and Linkaqe

ST
LA
CALL C:

R5,PUSHN.:
R5,2: 'X'Indef count'

305

The only quarantee of register values when calling A, B, and

C is a5 in A and C and FO in B. ~hat is, the compiler or

proqra.mer aay use other, alaost equivalent sequences that

leaVE values on the ~tacks in the tight order and the last

arquaent in the proper register.

When processors are called (started), the registers R1, R2,

R3, and Rq are loaded with the address to stuff the new

ha ndle, the abort I ink, the con text lin k, and the ac ti Vd tor

link. respectively. "acros and generators are called in th~

same way as a FUNe with one qeneral argument.

The global variable biodinq and unbindinq mechanism is

invoked automaticallY or semiautomatically by assembler

,",seudo instructions. The bindinq mechanism is activated by

transferring to the code sequeoce at the beginning of NUK1

usinQ

BILR LINK.BIRD;
-. pointe r variables-
-. nu.eria va~iables-
-pointer binding locations-
-nu.eric binding locations-

-t pointer variables- is the nu.ber of global variables with

~Qintet values that are to be bound, and -. numeric

variables- is the nu.be~ of qlobal variables with numeric

valu es t hat arE! to be bou nd. Each field is a half word.

12/31/74

306 CRISP -- SDC T~-5q55/000/00

For each pointer variable to be bound, there is a

correspondinQ -pointer binding locations- that consists of

two half word fields: tne first half word is the location

relative to POP to lake the value save (also contains the

new value), dnd the seccnd half ~ord is the location of the

variable'S shallow binding (nalea) cell relative to the

beQinninQ of nalea space. Fo~ each ya~iahle with a numeric

value, there is a corresponding -numeric binding locations-

that consists of three half vord fields: the first half

vord is tb€ stack location, relati,e to PDP, where the old

value is to be saved. The second half word is the location

oft he var iable t 5 sba 110.. bind ioq cell re la ti ve to the

beqinninq of nalea space. The third balf vord is the stack

location of the nev value relative to PONe The binding

sequence at the beginninq of RUK1 is

LH
LH
LTR
B2

L:Lll
Ln
A
ST
LE
LE
STE
SIE
LA
BCT

X;LTB
BZ

Y:L8
LH
Lft
A
ST
LE
LE
ST!
S'.rE:
LA

Rl,O(lIIIO:
R 0 • 2 (L INK 1 :
R 1, R 1
X:
R 2, lPol (L 11 K) :
&3,6 (LIII) ;
IU, SYS (IeAM El :
p. 3, 4 (P DP , R 2) :
F4 .. 0 (PDP .. R2) ;
'6,0 (B 3) :
16.0 (PDP .. 1l2) •
F4 (O,R 3) ;
LINK. 4 (LINK) ;
91,L1BI1(L).
BO,S 0;
4 (LI NIO •
91,8 (LIIK) ;
R 2, 4 (LIIK) :
R3 ,6 (LI 11) :
R 3, SYS (111ft E) :
B3 .. 4 (PDP, B2) :
P4,0 (P DII .. & 1) :
F6, 0 (R 3) :
16.0 (PDP, 82):
pq, 0 (B 3) :
LIBK,6(lIBfI:) :

Rouqh Draft

."
J

'\
)

)

'-

Register Allocation and Linkage

BCT
Z;13

[\0. LABEt (Y) ;
4 CLINK) :

307

Not e t bat 0 f the laoqral'lIer usable teg iste rs, on1 y Hq, RS,

FO, and F2 are not clobbered.

The in-line sequence to unbind a set of global variables is

BALa LINK,UNBIND:
-bind loca tion--

where -bind location- is the location of the in-line bind

sequence (show n above) rela ti ve to CB. I t is Cl half word

field. The cede seguence at the beqinning of NO~2 is

LH R 3, 0 (L IN K) ;
Aa f!3,CS:
Lt! Bl,O(R3);
LH BO, 2 (83) :
LTa Ell ,Rl:
BZ X:

L:L8 82,4 (83) ;
ST ZERO,4 (PDP ,82) ;
LE F6.0(PDP,R2) :
LU R2,6 CIl3):
A R2.sYS (1I1ME) ;
STE F6,O(R2):
LA 83,4 (R 3) :
BCT Rl,LAB!L(L) :

I:LT8 BO,80;
BZ 2 (LIIK) :

Y;LH 82,4(83):
ST ZERO," (PDP ,82) :
LE PE! ,0 (PDP, 82) :
LH 82,6 CR 3) :
A la,StS(lU!E) ;
STE P6 ,0 (R3) ;
LA R 3,6 CR 3) :
BCT RO ,LABEL (t) :
B 2 CLINK) ;

Of the progra •• er usable registers, only B4, as, FO, F2, and

'4 are not clobbered. The total rUD time to bind a set of p

~ointer variables and n nu.eric veriables (all global) in

12/31/14
----------------- - ----------------

308 CRISP -- SDC T"-5455/000/00

aic [osecond 5 is

26.396+p.35.131+n e 31.426+3.S·fP=O]-.084·rn=O]] J
If th~ proqrammer v4nts to improve th~ execution ti.e at the

expense of storaqe. then the followlnq technique can be used

to bind and unbind Qlobal variables. Assume that 1 is the

name of the stack location on PDP that is to hold the Sdye

value. VSVAB is the name of the qlobal variable to be bound,

and the new value is in RS. The bindinq sequence is

LA B1.VSVA8:
L RI4.0(R1):
ST as,o (I~ 1) ;
ST H4 .. l:
ST R1.l+4:

The unbindinq sequence is

57 2EIW.l+4 :
L R 5.1:
ST £l5,VSVAB:

The tillinq of this sequence is

total nu.her of variables. The tiae to load the new value

into R5 is included. A Iso. the operand "1+4" would be

qeneta ted usinq SECOIIO (1) •

J

ROUQh Draft
-------.~~- ._--------- ._--

APPENDICES

I -- IBH 310 Instruction Formats

11 -- CAP Operand Formats

III -- CAP Pseudo Instructions

I V -- Key Words and their Alternatives

V -- Initial Conditions

VI -- System Li.itations

VII -- static Page Allocation

VIII -- Spaces Summary

12/31)14

309

----_._---------------

310

APPENDIX I

Suamary of IBM 370 Instruction For.ats

The followinq table su •• arizes tbe IB" 370 instruction

repertoire sorted by format. Por lore information, see thE

It li t tle ye llow card"1 or the manual, IBM Systel/370

Principles of Operation.' In the table, the following

abbreviations are used:

r 1, r2. r3 reqister nUlllber (4 bit.s)

b 1. b2 base reqister (4 bits)

x2 index ["egister (4 bits)

.,. .3 lDask (4 bi ts)

d1. d2 displace.ent ~alue (12 bits)

11, 12 field length (4 or 8 bi ts)

i. i 1, i 2" 13 number (q .. 8, or 12 hits)

op instruction mnemonic

In the abbreviations, the nUlber specifies to which operand
\

the expression applies.

1 IBM Systea/370 ReferencQ SUI.ary" GX20-1850-n.
2 GA22-7000-n

Rough Draft

.)

)

311

C LA SS FOB"lT

BR op r1.r2 Aa ALR NR BALH BCTS CB etH
CL CL DR XR ISK LR LTR LCR
lNS LPR "VCL M~ OB SSf(SB
S L R IX R "OR A ER AWR lUR COR
CER DDB DEB HOR HER LTDD
LTEB LCOD LerR LDR LNDR LHEE
LPDB LPSR LRDR LRER LE11 PlX Q

PlDB PlIOR KEN SXR SDn SER SWR
SUR

BR op r1 SPPI

RR op i SVC

fiR op .',rl BCR

RX 01' r 1, d 2 (x 2, b 2) 1 Aft At N BAL BCT C cn CL
cv B CV D tl I EX lC L LA LH
LRl " ~H o ST STC 5TH S SM
SL AD lE Ail AU CD Cl!! DD DE
LD LE MD MXD ME STO STE SO
SE SW SU

ox op .',d2(x2,b2) BC

DS 01) rl,r3,d2(h2) BIH BXLE lCTt Lf! STCT! ST"

RS op r1,d2(b2) SL01 SLDL SLA SLL saOA SROL
S 11 A S HL

as 01' r 1. 113, <12 (b2) rc" CL" STC PI

SI op d 1 (h 1) , i 2 NI CLl XI MC MVI or ROD
5T)1S" STOS" TPI WHO

SS 01' d 1 Ill, tll) ,42 (l2,b2) AP CP DP ,.vo PIP PACK SP UNPK
ZAP

SS op d 1 (ll,bl) .d2 (b2) 1fC CLC ED EDKK XC MVC MVN
"VZ OC TR TRT

SS OP dl(ll,bl) ,42(b2) ,13 sap

5 01' d2 (tl2) HIO HDV LPSW BRB SC f(SCKC
SPT SSPI 510 SIOF STIDC STCK
stC!C STIDP STPT TS TCH TIO

S op rl,r2,i3 DIAG

I S 01' PTLS '-

12/3,/1«1
---------------------------------_._--

312

APPENDIX I1

J
Su.mary of CAP Operand Formats

There are six kinds of operand fields that may be used in

CAP instructions. For each kind. there are several operand

fOLmats that aay be used. The basic fOLm and alternative

formats for each operand kind are:

Kind Basic Forll Operand Forma ts
---------- -------- ... ------

reQister 1:i rid I expr

mask 111 expr

nUlleric ii expr

full address di (xi. bi) name , label I literal
stackop I sysop I adr

half address di(bi) na.e I label I li teral
stackop I sysop I adr

lenqth address di (li.bi) n alBe I label I literal
stackop I sysop I ladr

The operand for.ats are syntactically different in 5L and

IL. Their definitioDs follow:

Rough Draft

/

I

"'---

Summary of CIP Operaod formats

5L

uper an d Pormat

rid

name

labelop

SYSOI)

literal

stackop

adr

ladr

ex pr

CAPoperator

CAPoP

offset

lenq th

i te 11

Definition

i4eotifier s 'I no 11 y 11- na IRe

identifier global-naae I synonym-name

L18!L({identifierlinteqerl[,register])

SYS(identifier£ ,exprr ,register]])

"external-data I HQUOTE{external-data)
TYPE (type- ret) I
(IJlTIPL01TIHltl',BT'lE) (expr) I
P.ULTIMT(inteqer,Sf, exprl)

PUSHP. I PUSHJI. I POPP. I POPN.
TOpp.r (expr[.register])] I
TOEII. [(eJprr , register])] I
SECONO(identifier) I RET.

e xpr[(reqisterr , reqist er])]

expr(expr.reqister) ,
IHPLEN (expr. ha If-add re ss)

C1Pop S(CAPoperator CAPop}

+ I - I • I I I 11 I &&
11 I BXOR

nUBber I synonym-name I offset I
length I (+I-IINV}CAPop I (CA-Pop)

OfFSET item

L !IIGTH item

(identifierlqlobal-name}${_ identifier)

12/31/7q ----_._---_._----

313

314

Operand Porlllat

rid

label

sysOp

literal

stackop

ad 1:

ladr

offset

lenath

item

CRISP -- SDC '1'11-5455/000/00

Definition

iden titier sync 11 ym-na lie

identifier global-name I synonym-nallle

(LA8EL {identifierlinteqer} [reqister])

(SYS identifier [expr (register]])

«(OOOTEIIi(;UOTB} external-data)
(TYPE type- ref)
({Ilf'l'IF1.0AT1HALPISYTB} exprl I
(tiULTI»T integer Sexpr)

PUSHP. I PUSHN .. I POPP. I POPM.
(TOFf. [expr [registerl]) I
(TOPN. r expt r register]]) I
(SECOND identifier) I RET.

expr I (expr [registel: [register]])

(expr expr reqister) I
(IltPLBM axp half-address)

nu.bet I synonya-name I offset
length • ((altiUS I INV} exprl I
C (PLUSITlMES,BAMD IBOBIBXOB} $ezpr)
({DIPlIBIOOOI lOUO) expr expel

(OFPSET item)

(LENGTH item)

(identifierlqlcbal-name}Sidentifier

Bough Draft

j

----------------- ----- --_._----

/
I

I

~.

315

APPENDIX III

ClP Pseudo InstLuctions

The follovinq su •• arizes the format of the CAP pseudo

instructions in 5L:

1'5 EO DO IMSTRUC'IION

CAP block

bra nche s

special-branch

special-branch-r

label

stackint

callers

synony.

sysint

try

ent! try

space test

s1abel

FORMAT

BEGIN SfinsttQction:l
BIND S •• -<block-var-dec);
S.;.instruction
END

(no KT I BOM.) regist er. label
special-branch label I
special-branch-r reqister I
GO (labelIRET.)

B I BH I BL I BE t no I BP t Brt I BNE I
BNe I BNH I BNL. BHP I BNP(I BHZ t BZ

BR I BHR t etR I BfR I BNHR I 8NLR I
BN!R I BOB I BPR I 8MP. I nNPR I BNMR I
BNZH I BNOR

identifier I full-address

fPDSHP. ,PUSHN.IPOIlP. ,POPN.} expr;

C1l.L (f-nale S.: -inst)
FUICALL (S- :_inst) ,
ST lBT (p-naae S - i -inst)
STABTPROC (S.;.inst) I
SYSC1Lt(s-name S-,.inst)

identifier := expr

SYS ISYS1t5YS2INDf!1IlUJf!21

1RY(US!RISYSIALL) t(S-;_(instlendtry})

EHDTHY label

SPACE reqlster S{.s-na.e slabel}
r,slabel1

label j NIL I B reqister I RET.

12/31/,4
--------- -_. __ ._--_ ...

316 CRISP -- SOC T8-5455/000/00

The forllats in IL are:

PSEUDO INSTRUCTION

CAP block

br anches

(GO (labelISET.»

spacial-branch

5pecial-braach-r

label

stackint

callE["s

s,non,r.

5,sint

trY

endtrv

s~ace test

slatJel

POBIUT

(BEGIN Sinstruction
(B INO $(block-va r-dec»
Sinstruction)

({BON'!' I BCNFl register labelop)
(special-branch label) I

(special-branch-r register) I

B I BH I BL I BE I BO I BP I Bft I BNE I
IHoIO I BNH I ElL I SNP I BN" I BIZ I BZ

BH I BtiR I BLS I I3!R I BNHR I BNLS I
BHEB t BOR I BPR I BMP I BMPS I BNftR I
BltZB I BIOR

identifier I full-address

({PUSHP.IPUSHN.IPOPP.IPOPN.} expr)

(CALL f- na.e Sinst) I
(FONCALL Sinst) I
(ST JST p-nalle Sinst) I
CSTlRTPROC Sinat) I
(SYSCALL s-naae Sinst)

(SET identifier expr)

(SIS fSIS1ISYS2INUM1INUr\2)

(T8! fUSERISYSIALLl t{S{instlendtryt)

(ENO'rRY label)

(SPACE reqistcH S(s-nalle slabel)
rslabel))

label I NIL I B register I RET.

Bough or aft

J

311

APPENDIX IV

Key Words and their Alternatives

The followinq are keywords and characters having syntactic

siqnificance in CBISP. Though it aay work correctly to use

them as variable or fUQction na.es. extreme caution should

be observed. When aore than one wOId is listed on one line,

the words are equivalent in aeaning.

(
)
{
1
r
1
<
>
S
~

=

" s
•
+

/

•
&
I ...
• I
ABS
ALL
AIIID
ANY
lPPBRD
APPEllOR
ARRAY
ADD8IBUTE I ltTR
BEGIN

12/31/74

318 CRISP -- SCC Tft-5455/000/00

BIND
BOOLEAN I BOCL

J BXOR
BY
BYTE
CAP
CHARACTER I CHAR
Cif EAT
COf!PLEX
COUNT
C1PPiND
DAPPENDR
DBCLARE I DEC I DCL
DEFAULT
DO
ORI YE
EIGHTH
ELSE
END
EtfDF
FIFTH
FINALLY
FIRST
FLAT
FLOAT I FL '!
FOR
lOURTH ,
FUNC)
FUICTION ~
GENESAl / GIN
GENERATOR
GLOBAL
GOTO I GO
HA LP
HAN DLlt
IDENTIFIER I ID
IF
Il
II'IPL IC IT
I.
IND!'
I NITI1LLY
IlIT2GER I INT
llTEB
IS
LEAY!
LIKE
LIST
LIST8
LOCAL
"ACRO
MYSELF
NABS \

HAKE ~
ICODll
NODI2
NODI3
NODE4

ROugh Draft
------,---------- .---- -----., --"---'-- ''''',---

~@' Words and tbeir Alternativ@s

MODBS
NODE6
liODS1
NODE8
NOVALUE
NTUPLE
NU!'lBE~

OLD
ON
OR
ORIF
OWN
POPN.
POPP.
P~OC
PBOCESSO~

PRODUCT
PltOP
PUSHN.
PUSHP.
RESBT
RE'l'UBN / R ET
BET.
SECOND
S I!LBCT
SELECTN
SELBCTQ

. SF.LBCTT
SEVENTH
SIXTH
SL
STaI MG
SU!!
SYNONY'" I SYlI
snn
THEN
THIRD
THRU
TO
TOP ...
TOPP.
'1'~lNSFOR"
TYPEP
OHICN
UNL ESS
OITIL
V1LUE
V1RB
V Aa IABLE
WHEN
WHILS

12/31/14

319

320

APPENDIX V

Initial conditions

When CRISP is loaded, the follc~inq initial conditions

Exist.

DEPAULT USERtUSBB,CBISP):

FORMAT 5L;

II!PLICIT:

LON5U8:"":

FILBTtPES:=" (CRISP INDEX DATA):

OPEN(" (ITERft TIR"111L fI)):

OPEN("(OTERft TB8R1I'L W»):

BDS ("ITEIHI) :

PSS(flOTERfI) :

PRECISIONP:=TBUE:

CH 1< FIE LD ::: T 11 U E :

ERRCHK :-TIIU£;

LPAS:-"S' C'

RPAR:::"S') ,

L BR C ::1 .. $' {'

RBRC:-"S'}'

DOLLA8;~"S'S'

standard data spaces are selected.

Rough Draft
- ~--~ "~~

\
J

J

--"-----"---~ --"~~----

I

~.

l

\
'- -

321

·lPPENDII VI

Syst._ Li_itations

The followinq are $o_e liaitations imposed by the CRISP

system and the ISft 310 as opposed to the lanquaqe.

id lenqth < 256 cbars

lenqth of strinq representable with primes < 256 chars

-2- 32 S inteqer value < 212

-2 20 S small int value < 2 20

extent of a sinqle dilenaion < 215-1

I/O record lenqth < 2 16 bytes

nUlber of records in a file < 2 1s

nu.ber of pointer arqs to function or processor < 128

nu.ber of numeric arqs to function or processor < 256

nu.ber of NAKE space entries < 9216

.axillUI! size of binary Ilroqral < 4096 (aaybe 8188) bytes

number of handles < 1024

pointer stack entries < 8192

nUlber stack entries < 8192

process heap < 2'6 bytes

number of forls in a try < 256

12/31/74
._-------_._------------------- --- --------------~

322

APPBNOIX VII

J
Static Paqe Allocation

The follovinq su •• arizes tbe locations of statically

allocated paqes: that is. which paqes belong to spaces that

are statically allocated. Paqes are nuabered in bex.

PAG! USAGE PAGE USAGE PAGE USAGE
----- ----- --- .. -

20 5151 40 NAlnA 60 NAM 8B
21 5Y52 41 NAMEA 61 NAMES
22 QC!! 42 .A~EA 62 NUIEB
2] NUM 1 '13 NAME! 63 NAMEB
24 NUM2 44 NAMEA 64 NA" EB
25 45 NAftE! 65 NUIEB
26 46 MAMEA 66 NAl'iBB
27 CHAR 41 NAPlEA 67 NAMES J 28 I'DI' 48 MAIUI 68 N A[IIJ EB
29 POP 49 NAMEB 69 NAMED
2A POP 4A NAME5 61 HMI EB
28 PDP 4B NAPlES 68 NAMEB
2C POP 4C NAMES 6C NAM IB
2D I'DI' 40 NAMES 6D HNOLE
2E POP 4E NAKEE! 6£ HMDLJ!
2P PDP 41' NAf'lEB 6F HNOLE
la I'DI' so MA"BB 70 HNOL!
31 I'DI' 51 MA"EA 71 £Ill EA P
32 PDP 52 NAftES 72 PHEAP
33 POP 53 NU\E8 73 PHE1P
34 POP 54 Nuue 74 PHE1P
35 POP 55 NAftED 75 PHE1P
36 POP 56 MU!!! 16 PREAP
37 POP 57 MAfl88 17 PHEAP
38 PON 58 NAftEE 78 PHEAP
39 POH 59 NA In~B 79 PHEAP
3A I'D" SA tUMES 71 PHEAP
3B PDII Sa II'!EB 7B PHE1P
3e PCN se NAttES 7C PHE1P
3D POR 50 NAIIES 70 PHEAP
3E PD)! 58 lUll! e 7E PHEAP

3' PO. 5F liftED 7F PHE1P
80 PHEAP ~\

-J
Where PH!IP is the ptocess heap and HIDLE is ha ndle space.

ROugh Draft
-----_._---------- ._---------------

323

APPENDIX VIII

(
'---

'the followinq table sU.larizes the default management scheme

for each space kind. The included information is the

possible number of spaces of that kind, whether the space is

static or selectable, the reqion size, the reclamation

technique. whether there is a local mark table, and the

nu.ber of reqions in the space.

SPACE IIU"S STATIC S ELBCT .RSIZ! ~OVE UI A RK NBEG ----- ------ ------ ----- -----
NODE1 M 11 Y Q f N ,.
tfODB2 ,. I Y 0 F N ,.
RODE3 It .. Y Q F N ,.
NODB4 " le Y Q F N l'l
NODES r1 N Y 0 F Jj " MODE6 " .. y Q F H I'l
NODE7 1'1 N Y 0 F N H
NODES ~ If Y <J F N fi1

ID 1 II M D CC N 1
CHAF 1 Y 11 1 N 1

INT HGBR H • Y 0 F Y H
FLOAT I'l " Y Q p y pt

COftPL£X PI .. Y 0 F Y " ARRAY " • y B C N 1'1
NTOPL! a 11 y B C N " HAIU:& 1 ! li 9 EL N 1

IUftBD 1 Y N 36 EL N 1
PDP 1 t M 16 N 1
PDR 1 t N 8 M 1
BPS " M Y E C N M

81111LI 1 t N • 11 EL N ,
HiAP ,. It JI B N [1

SKINT 1 Y R 512 M 1

/' .

" - multiple B - lulti QuantuI regions Q - reg ion-quantull (

(
\ F - fold C - compact Et - erasure list CC - copy collect
"--

12/31/111

J

)

	Table of Contents

	Introduction

	Language Description

	External Data Formats

	Scoping and Denotation
 Rules
	Declarations, Definitions, and Types

	Blocks

	Data Primitives and Presets
	Expressions

	Conditionals

	For Loop

	Processors and Processes

	The CAP Assembler

	System Description

	The I/O Facility

	General Primitives

	Tree Structured Files and the Disk Compiler

	Memory Management Facility

	Space Primitives

	Register Allocation and Linkage

	Appendices

	I Summary of IBM 370 Instruction Formats

	II Summary of CAP Operand Formats

	III CAP Pseudo Instructions

	IV Key Words and Their Alternatives

	V Initial Conditions

	VI System Limitations

	VII Static Page Allocation

	VIII Spaces Summary

