

Introduction ..

TABLE OF CONTEMTIS

Lanqulqe D.scription @ ¢ 6 06 B & 04 S0 I AT HEOETA SN OSSN ey

Syntax Specification Language .cecececacacecccccas

External Data FOIBALS ..ccvcccacvcccssncasnscaacs
Character and Token SYALAX c.ccccccncaccsannnae
Exanples Of TOKODS ...ceccvcsncsaccsaccacsaen
Structure SYNLAYX ..cecccenscccosacacnscsscceanana
ExaRples Of SLLUCLUL@S .ccceacccscncancacccnos

Scoping and Denotation BRUleS ccceveccccocavonane
Structure of the RUleS .ccccccccccccasncacncaa
CONBLADBLSE ccevceveccceccscscccnnscsccsansaasccccanas
Kinds ot Qb1.ct8 ® © O &5 0 559 00 2 9 OO EN O s SO0 OO ess 00N
Local and Global NaPes ...ccceaceccssscccscnna
The Default Talling Mechanism ...cccccenccncen
Lexical NeSting cevcccccecccsacscsscncecosncsnas
SCOPinq Rules ® 8 PN B GOSN P OT 0OV OO GPOO NSO E O
DYDRARIC CONLOXL cecacecacsossecnccccacscancnns
Denotation BULEB ceeeccceccancacccnascscscccsas
Compile Time Substitutions .c.cecececocccnsvas
O'n vatiubles ® @ 04 & ¢ o8 OO0 " a8 OO AN S OO S e 8O SSa e s e

Declarations,

Definitions, and Types ...c.ccceee

Tvpes @ N OO0 &0 GG OO 0O P SO P O A Y OO e EO SO0 OGSO ON S SR
Jdentifi€r tYPES ccceccceccccccctoscancacsans
“a.e tvpe B 00 6 00 O O OO TV O OO G SO OSSO OO OO OQTOS OO
BOOl@AN LYPE .ceoscccscosccoccccsccansacannsnsnse
Hnndle type O 9 9 Q@000 Q00 0GOSO OO TOTIN NSO SAS
uulbﬂr tvpes ® 00 80 °0 AT O OO OO0 GO 9O O N OE OB O T EDNS
Noden tvpes @ @ O O OO A OGO O O OO OO QA0 SO OO SO NG e
Atr" t'pea S 0 6 O H O 5O OO 9O OGO A0S SO O OSSOV OSSO enoe
Ntuple tYDES cceececcceccccncscccasncsnnascas
Genetal t,pe O 08 8 W 08 OO D OO0 O 0008 OEOS GO bae PN
T'pe ptedic.t.. S &% ©0 OB O OO0 5 OO O OSSO O PO SO SO O OGNS
D‘t‘ °b1ect fot.‘ts A 90 6 02 0 40O O OSSO O SOO RGeS
TYype determination cceccececscsccccncvncascane

Tho D‘Clate Po:. ® O 8 ° 0 0 0P e e 0O es 0908 &eAeSOSsS O00

Iaplicit

t'pinq ® SOV 00 S 90O OO PP E O QO a9 e e S0

Syntax of declares and typesS ..ccccccccncccs
Daclaration exasplesccccccecccccnconcas
Synonym declarations ...ccccecccecccsscccscen
Like daeclarationscccceceaencnncccccccen
Punction and processor deCB .esccecccccnsnces
TYPE FTef8 .ccvcccvcccccnccoasnscnccascsacanes
ALX8Y LYPES ceescecacscncncscsansecsacscansen
Ntuple declarations cccccceccccnsaccccncascas
Declarations and Redeclarationgcccccevee
Iten Beferencing and Subscripts cececcecececcas
Definitions .ciceccecaccccccecccacscccsonsecns

Arg list

® % e 0O WO OO OO OO EP OO NO ST OO RE SO OO OSSN

12/31/74

9

11
13

16
16
21
21
23

25
25
26
27
28
29
30
32
36
40
41
4y

us
46
48
50
51
51
51
52
53
53
53
54
54
56
59
59
61
65
67
67
68
69
71
74
84
88
97
98

CRISP -- SDC TM-5455,/000/00

Punction defScccecccccscseacccanvccnccees 101
Processor defS .eceeveconcas cecmcescscssccscaes 102
nacro defs @O & B ¢ OO 60 G S ° PSS DS OSSO SO T T T OO I 102
Transform defS ..cccccvccccccccncccccccsccees 103
Generator defB .cc.cccevccccccsccsnnccnsscnse 103
Expression TYPINGg c.ccceeevccecaccncccccnccncee 10U
Pti.itive fot-s ® © G 9 O D GO G PO N OB OI O AN SO OGS OL g 10“
lrith.‘tic for.s T 00 O 085 ¢ PO OGO T OO U OSSO Se S 0o 10“
Assignment typPing .cccccccecccccccncacccccccss 105
ﬂulti“tetlinal for.s e® 0080000 eeOtsetncnone 105
TYype CONVEerBlon ccccecccccccccacccccacscasccecece 107

Blocks W 0 O 08 0 0 O 0T N E BB OO G QOO GO0 O OO E OSSO S GO e e g0 ’09
Hulti"forl blOCkS ee ev S0 esaenaecesoecosevsccencoacs 111
DO DlOCKS cececancesccnccccsccsacencsacsccccsaccss 112
Binding blockS .cececcccescvcasncocncsccncsace 112
Statements and labelscccccecsccccencncce 115

Data Prisitives apnd Presets ..cccecceccccccasacs 119
Data Primitives .c.ccccececcccccsoncccecccccansces 119
Identifier and character prieitives ...cc... 119
Node primitives ..ccccccceccnccccccccccccces 122
Name Primitives cccccccecnccccccoacccacacceas 123
Numeric primitives cciccccceccccccccccccccces 125
Boolean primitivesccccccccvcccaceccces 125
u.ndle pri.iti"s ® O O O P OO PO OO OO0 O o0 e e OO e 9o 125
Array and ntuple prisitives ..ccececceccace. 126
pteaets ® 0 0 O 90 OO P OT O OO OO OO O OO OO 0N ® O WS Ve s OO e ‘27

EXPreSS8iONS ccceercesnccnsscccccacccscccncacsccecs 130
SL Infix EXpPresBsSionS ecccececcccccccnccccascsas 132
Locatives and AssSiqnments .c.cccceccccccccccse 135

B'te ® ® 00" 000 & Q0G0 SO0 0A0 PRGOSV OOOOLSITOOCES v 136
Core ® © 6 00 000 00O ORN GO O *PAL OO O N OOE TGO OEROOQEEOTDRS ‘36

Che.t ® O 0T OOU O ONOOO P OSSN OO NP OONOCAG GRS B ‘37

F“mtion Calls e ¢ PO G O P 0O OO OO0 OO OO OO E OO G SO0 9o 138
SpeCial Operands scccecescceccescccvcnnccnccce 140
Dri‘e -..............D.II........Q........O. 1“0

'ot B 9 OO 00 0 0O P OO O 0 SO0 00 PO O OGS POOOaPPORSOEOEOcoe ‘“1

Arithmetic prefix operands .cecececccecceccvees 101
clp ‘nd IL for.s ® O U O © 0 O 5 OO ¢S B OV S YPNHS O SGSS S e 1“2
order of Evalu‘tton ® @ O 9 O v O 00 © 0O %O 00O 0 OO OO s e 1“2

CONALt iONALS cccoevccvccnncccccaccacaccocccccscse 140
IP @ QOB G000 BOR O BC QOO AAG® 20000 OOV OGOSOSSOOTIOSSTSS 1“6
SELECT and SBLECT(Q cvecsccccsccscencccccsnccccas 1UB
SELECTH .ccccccccscssencnnscsccncscsccnsencsaaccs 150
SELBCTT ® 0 00 © 008 00 90 00 OO0 9O OO S COC OO C AN ©OeS 9 151

Por Loop ® O 8 0 09 C 0 PO O OO S QGO C O OO OO OCE S e e OO OOS O 153
Loop termination .cccececceccccccccccncccccces 155
Generator Descriptions ...ccccecceccccncccaces 159
Generators Producing Values c.ccevcceccaccccese 157

‘uD ® © O 000000 8D OO SO G OO O OE OO B OC NS SCS OGS OSSO S S0 157
lLL “...Q..l..‘....lll.-..l....l....‘..-.l. 157
OR .l..ll.l.‘.l..l.......l...'........‘..... 157

l'! 9 0 00 00090 0800 NeeNGICCSOCSSIOEOISTOEEITGCGCTEBOSTOOROBOSES ’57

PIRST ® S 0 80 508000 Es 000 CCE S0t eeGTsSeGsenB oo 158

Rough Draft

TN

Table of Contents

VALUB @ ® 0% § G O O OO N O ¢4 OO PSS G O S OP OE O o8 0O PO Se s
Sun 'EEENENREENNE NN I I I B I B B A B B R B R B N BCR S BE BN R N RE BN A Y]
pBODUCT T O B O O S PO OO OO O OGP O G OO P H OO QO OSSN OS O e
Uqu” ® ® 20 0 8 0 O &S O G TS O QAU S SO GO Q0 SO OGS OaeBOe oS
IuTgR 0O O B © 00 OO O S " O O OO O SO N S PO P S OSSOSO B O0 S s
D‘PPBND ® 0 00 O % GO S OO0 8B OO SO S B OO OOS OSSO0 O Ose
DAPPE’DB ® 8 S 0O OO DO OO O OO OO OO E PO PSSO T OO S OO
APPBED <uceccensccasaccscncoscaraacascacanss
lPPBuDB ® OO OO E OO O DS O OOES PSS POOOE O NS S a8
IHITIALLY O % O O 5 OO SN O RO B Y SO O SO NE SO SN SsDESS Oee
PI'ALL! B OO & 00 00§ O O OO O SO OO OGO O OO O R OOS OO O
COUBT ® O O ® 00 8 OO O OO NS BT OO S0 G SO 0O ¢S OS8O Oa 0
LIST ® O ® 9 04 0O OGO O H OB O OG s C O OO OSSO e O O - OO o808 acnn
LISTE ® OO 9 OO0 O O 2O SR SO OO DO B OV O D SOOS SO 2O NS OE SO
Ordinary GERETAtOrS cccceccccccccccsacosacnnccans
Is ® O G OO F O OO OO O OO P SO OO Qe P aESOE P Oe SN OO e e o0
DO ® B O G O 5 O ¢ 6B 0 GO OO O O NS E S DY OSSO OO O S OO NS SBEE e
B!GI' 2 0 0 0@ 0O BH 6O GO A OGE OO OO OO OO O T OP OO S
FOR ® 9 O O 08 O 59 00O OO S O QAN GOV U OO OO U e S PO P E O sy
I“ S 5 O 0 00 OS5 0 OO0 0 OO PO O O OB S S N OO O EAD OO OO RSSO S
ou 9 O 6 © 0 G 0 0 60 O G0 OB OB O QO IO OE OO OO QOO B OSSO SE SN
RBSET ® 0 OO O G OO OO O OO0 OO O OH OO OO ONHA O SO SO SO OEN Osas
St‘pper ® B ® OO0 GO W OO O OSSOV OSSO0 OO0 OH sSSP eSO See
Conditiona 18 O G O B O O 5 OO O OUW DO VO T O OO OS 0O OO SO NG
“az' ® O O O 00000 00U O GO OO0 OO P P OO O N OGO OO OOSORS SO
UNLBSS ® S O O 06 O PO PO OO BE O OSBOPHOOOO O SIS SE COBSIS VTOOOS
'HILB S 8 ® 0 OO B O OO0 OO O E O T O E O OO P OSSO S OO S OO 0wy
u-TIL ® 0 O O O 9P OOV O LT O ON ODS S OSSO OSSO sEGE 9%
IP cecccavncecnasecocccvecncsscnncenscssnsnscsanas cea

BI’D ® 0 0 8 QGO OSSO 0N OGO O GO EEOONOO PO OSSO NGO g

For Loop Ex‘-ples O 0 00O 800800000 PO OSSR OO
Por LOOD S'ntax S 0 0 0% O SO BEU GBI OOOOIN OGSO BSSe 00D

Processors and PIOC@ESEE ccecccossescnccsasccsne
Prwesses ® O O 00 O O PG OSSOSO OB OB D OISO O® OO s SO
ACtivity State .c.cecececcerccsanannscnsocnnnasna
Internal 8tate ..ccsceccccacnccsccccsacacncese
thetn.l state ® O SO0 0 OO 0N O O ES OO OO aa 8 a0 s o0
ptocesaors ® 0 8 ¢ 0P O OO P OO O OO B OO A O OO ES O me O O
Processing Primitivescccccccccccccccacce
Pailset fOLBMB +eccsccccccvcccccccasnascacnces
Process copy primitivesc.cicececcccncece
External state primitives c.ccceccccccccccsce
ACtivity ChangeOrs ...ccececcecccnccoccnccccne
zxa.ple Ptoqra.s ® 00 08 OO0 OO0 O QN OO0 OO0 SO OO TO OO 000

The CAP ASSERDlEOr cecccsccctcscoscnscssnmencosnce
INStruction FOrmAtS ..cceccccccccccsccsnncccncee
Operand FOLMAtS .cccecscccccancconrcacsccccncacas

Reqister and rid operand ..ccececececccacces
ﬂask Operllld ® O U O OO0 OF0 0O OO WO OGPPSO OBOBQETSABES
Nlll!!.‘ic Opetand ER I W I I A I W I RIS ICA IR B
.ddtess operand - S O O B O S O T OO LB Y OO eSO SN 8GO0
ua.e ® 00 © 08 008 OO OO T OB ET OO OO TAO OSSO OO 00O e
Lﬂbelop O O 08 O OO T T O U T OSE D OO 2T G OO0O OT SO OSSO SN
SYSOP cececenccaccsncsacnccanssncsnsncsncnces
Litetal ® S 8 OB O U OGO 08 O OO N O OE VO OEOOLOe s O ee a0

stackop QO GO OO E PO N OO D NSO TSSO EHCSSSes e e

12/731/74

158
158
158
159
159
159
159
160
160
160
160
161
161
161
162
162
162
162
163
163
163
164
164
165
165
165
165
165
166
166
168
171

173
174
175
175
177
178
179
182
185
185
185
188

192
194
195
195
196
196
196
197
197
198
198
200

it CRISP -- SDC TM-5455,000/00

ldr ® @ % 0 80 G AN SO 590 0en T P SO O N O WSS v e e - s & 06 o0 @ 202
Ladr and implenqgth ..cecceccccnccnrsoancncas «s 202
EXDI P 0 0 OB ® Q8 A0 0O S OE)OO W OQ O SOPAEN s40s g cea 203
Pseudo INStrUCtiOnNsS ccececccvcccscncscancnsasces 204
CAP DlOCKS cccescsaccacsaccncnsansncsecscacnsces 2008
Branching pseudo inStructions® .c.cceceaceaas 206
Stack pseudo IRStructions .eceecccesscescece 207
CAllOrSE csceccacacecnacesas cscsccccasacecaance 207
SYNONYMS cceececoscecacsnsasnsancsascsscassascass 208
SYS pBeud o inSIruction ..cccceccccncsaccescss 209
TRY pseudo insStruction ...c.cececcecssscnceece 209
SPACE teSYt cnnecnvcccesnccvssascsascnsasccecses 210
CAP MHACLOS evcecosmscacncscsancssonscnncens eeacae 211

Svst‘. Description S ® ® 9 0 S 0 9 0 0O 0 P OO "N VOSSO O o 213
How to Login and Get Started (not included)

The I/0 Pacility .ecceccacececccsscacaracencaaas 214
The Pile Descriptor List ...ccececveaccnceacse 215
Pile identification .c.cecccecceccnccnacaceeee 215
Pile usage information ..ceccccccccccccccnecae 217
File Handling Primitives ...ccceevcevaccnnccee 223
OPE! ® 9 O BT O 00 B S OO P OO O O SO GO VOO NS OO OSSN 223
CLOSE ccccecccunsscncsnccsassssscsacssacasncaas 22U
TURN‘ROUHD . ¢ 0 0 05 OO0 B OGO O N O E OO G OO LTSS A eSS e 8RS 225
BtTlnD G ® O & B O 6O QO F OP A0 LSOO OSSP O S eS Q0O S8 eN eSS 225
cu‘!cz ® ® 0 0 00 ¢ 0O OO O P O U N T O DO T OO S 9SO SO N OO a0 225
POSITIOH I B B BN B B I R BECBC I BN B NN N Y B R NN NN R W R NN R R R RN R R R R 225

SEEK S 0 @0 9% 6 O D 9O T O H SO H S0 OO T 9E OO SO S e s Ee e e 226

BRASE G 0 0 9 0 GG P OO OB SN OSSO A0 ST OO Q0O 9 e 226

RBN‘HE * @ 6 8 00 @9 G 8 a0 P OO B O OY VO O E Y S CH SN NS 226
Binary I/0 Primitivesceccevccecee ceecsces 226
"RITB S W 8 9 8 ¢ 0 00T QG OO A S OSSO 0N G Oe e L0 N SN OO S 226
WBITEX cccececaccncencccccsvocnccccancacenae 227
BRB.D L B BN BE BN BN BN NN BE BY BN BN B BN BN BN B BN BN Y BN BN NN BN BN B B N BN B B NN BN OB B Y B W) 227
BREADX cccceccaccsncncccssasncscsoncsncsnnaancsnee 227
Symbolic I/0 Primitives c.cccecececccecccnceaaas 228
BBADCH ® ® 9 9% 0 O G O O 8OO OSSP O SO OO OO N O 0P OO e eN 9 a0 229
RBADCHI ® 9 Q0 0T 00 A G OOV O OO OO OO0 SO OO O ST e OSSN 229
BACKCH ® & O 900 O O OO OB B OOV O DO O O OO OO TG S0 a0 e 8O 229
READTOK ® B O OO B QOO O OO S SO O D 8OO OSSO * S GO SO Se A 230
BEADTOKU @ & O 5 0 2 06 OB O OGO OO OO OB TH O OO0 O 9 e ac 230
BACKTOK .S OO OO DO OO OO OO TR OO OT WO C SO OOHe e 230
RB“DI'T S 0 0 O 0 50 0O OO OO OO L GO 900000 SS e 0 Sbe e 231
RE‘DPLT ® 0 0 00 O OB O PO OO T O ON N OB O OO EOO SN Sa 231
RB‘Dl.q..l....'.......'....‘Q....Q. 231
cau'c“'......................‘... *T e 232
R!ADSL ® 28 00 0 CP G OO PO O ESE 00 OT 0 OSSO NDCOOCOB s 232
TIBI.TO 90 © 00 608 09990 0N 8OO O8G0 G YOO OO OG0 9eoe 232
TlBI'BY e 9 60 2GS POV OO0 O EE QOO ED OO O 0L OB ASeS S 233
ENDLIVWEIN ,.ccccccccncncscsacnccscnancnasscccncse 233
NEXTLIFNEIN .c.ccececccosocccncascsaccccsconcnsces 233
PRI'TCH ® % 9 S0 0 &SP OO0 0SSP E G0 0D O OSSO PO OD O 90 23“
PRI“TCHX L L B BN I B B BN BN R BT I BE K I B I B B N N BN B NN O BN NE BN N NN NE N X NN) 23“

PBI’T G5 08 40000000 20O RS ES CPOCE PP EPOOSOTRTISOTCES 23“

PRI“ ® S 0 OB B 8O OO Y S PSS QOO OO RGOS0 eSS O 23“

Rough Draft

Table of Contents

BL‘.“ [EEERENENERERENEEEEAEEEENEEES R R R R SR RAS A
BL&"KS S 9 @ 6 80 GG 8 00 CA" S0 50 49 PSS TDaactenossasacs

BLA.KTO ..."‘.....-'....‘..............I..-.

T‘BOUTTO ® 9 0 9 O 0 G 8 G O S OSSOSO A VO TS S6aOEs S
TABOUTBY ccccccccccancvcsccccscsonccancscsansssesce
B.DLIIBOUT ® 9 @ O 8 & O O F SO 0 OO SO PO AO 9O S | OO S QeSS @0
TOPPAGE O 0 OO W O O G G OO OO S VD EO OO SO QG AN eSO O
BLI'KP‘GE ® O N O VOB OO0 O OO 8 SO G OEWON S A O e N
NOADVANCE cccccceccrcccncccconscncscssncencasn
FORBCONTROL 2csccccaccccocaascsasoncacccasses
PRI'TLIST ® O 0 © © P 0O N O O T O GO 8D OO S SO H OO0 OS0as ase
PRINLIST ccecccsccancsccsssscaacasecccacsoces
PRI'TI.D!F O 0 O Q9 OO O 0O O TS O ¢ 69 NH OO ASSE S HEOS O NS
PRI!I!DBP ® 9 0 00 @ OO OO U SO OP O O QAN S e NS OBNES e
PRINTI!T B 0 0@ ¢ 0O Y 0@ GO O E P OO 8O TS OT O E B OO NS b oo
PRININT .ccccevvcaccanccccscscssscccsanccseannscscsns
PRI'TPLT S 0 O 00 ¢ 0O O8O 00T 8 O SN ¢SOOSO S W OSSO POS
PRI'PLT O ® 5 6O OH OO R 0O OO OSSO0 O OS N 0O S GO O s eSS
PRI“THEX S © © 0 O 95 ¢ OO0 00 008 00 04O O8O 0T O 000 a0
pRIuB!x o ® % 00 O 00 95 00 OO OO OV H OO OSSO P OO s Ses
PHINTGEN .ccceccccccncoanccccsocscnacccncsccassanse
pRI'GE! * 9 ® 00 O 5 G O6 T O OF O S OO OQ OSSO0 S OS LSS EY »e
dystem Primitives .ccceeecccceccecsccoccccnsccnasne
TIHBR ® O © 00 O 0O b O VO O S GO0 SO O S AaS e A S Ve L EeSS OO
HO“ 9 ® ¢ O ® & S Q@ G PO QO OOV A QO S S E OO Y O OAD SO S OO O OC 9 e
RCHS ® 0 @ O 0 0O 400 9O OO0 OO SO R OO OC HY SO OESS e
CALLCHS . O 009 S OO0 60T O @ OSSOSO O OO OO SO C S O eSS 00 s
CILLCP ® 90 O 0@ 00O O SO PO O S u 0SSO O H OO O PSSO e S e oacs
SUBSBT ® O % © O G 5 98 9O OO 2T © OO YA O O et a s 0% e aae 90
BYNANE cccevocosccnaocsacsosscnscsnssancscsnnosoas
Slv! " O R 40 0 90 S0 RSO OC OO ONE NGO OSEO 9E S S SO CS a0

SUSPEHD ®® © 00 #9000 04000 0009 SO OOASSAaNSSSeE M

Genernl Pri.iti'es ® ® O 90 8 S O O P OE A NS E OO NS eSS 0
Bit Loqical S 9 ® 8 05 0 009 0 S 009 NSO QSN S S SAa s S a0 s eeoe

INV tiececncconcasscacsecscnnsocascscncccncae
BARD $ 02 000 0 *V P ECLESTERTOORESISBACLQEBLESNEES PO
BOR 5 00 000000 ARPECOBOINILOETSSESINOOACENTO SO
BXOB ® @0 00 PO E VPO QOISO IEBNS OB OOESIBRBROTOTOGRES
Arith.etic ©8 0008000 c Rt es0eacssasTesOs00eBS
PLUS (AR NNEERENERNEEXNER NN NN NN R NI I SN NN
HINUS ® 9 08 @O COENCOIV ROOERETLEEOREOCEenBOOs e
DIFFBR 000 00090 N0CCI 0000000000000 0CSGELRQCIESIRBOITTOTS
TIHBS ® £ 0 NV NOCOPONCEEBELPOE NP SEOINEEIOOETOESO NS
RECIP 000 0000 09000500000 LQASINOSOBOIECELIRSOIOSTSTIE
QUO 90 0000 C0IDPCIERINOISUTNELLEOQEIEBLSBOOREBNGCS
IQUO S © O A L0 OYOSGOELIOESIOERNONCEOENOSBRORSSEOENNTITFOORS
RBHAINDBR Yoo e sReeRe SRR RPESOOOINROECELIEROSEISEOTGSTS
ENTIER cccceccccaccscncacocaceccscsonccncccas
ROUHD S 0 80 08¢ 000 TCOROOCTCEIOIOOASOESOSOOEOIOSCEOETRTIIES
Hlx €0 000 02000 TERCEN IS FEE BN QEOEOSOEONSEITOOIOTGSOES
HIN © 8 8400000 0000000 Ces®e00Te0EOSOSSRIOSIGTEARTETSDES

SIG“ G 98 50O 00O SCO OO 00 S GO OO DO DO EISOOEBNSSEEVDS

Triqonometric ccacececcacacvcccscccssccccscscnas
Boolean LOGiCaAlE cccacencsccccccssccscccnncscs
HOT ® 8 4 6 0 50009 G0 O OB G O HO OO OGO GO OO G OE SO EEGO SOOI
AND cecevecesccnsccaannncasnsnsassoasascccssss

u‘uD @ 5 & @S0 G0 HOEHSHOE B LSS0 SOOES0ecCLasNne Ese

12731774

234
234
235
235
235
235
235
236
236
236
236
2136
236
237
237
237
237
237
237
237
238
238
236
238
239
239
239
239
239
239
239
280

281
241
241
241
242
242
242
242
242
243
243
243
243
243
243
244
244
244
2u4
245
245
246
246
246
246

CRISP -- SDC THM-5455/000/00

on PN @ 0 90 0O % P* 09 0008 B OO PO AN DS E 0SSO0 s e 0 e 2“6
'OR @@ ©® 9 0 © 0 8 ¢ 8 00 5 6 O H 8 OO WO O OO0 0C TS OS¢ g se OOt Sse 2“7
IHPL! ® @ 0 © 9 0% 0 QP G G0 O 9P OO PO OO NSO AV SO SSes sOe 2"7
IBPLIED .ccececcccacaaccsncssnoascscncscscnsanace 247
Relationals ccccececescancnccesoncscnnanccncane 287
GR,G0,LS5,L0 ccaecactscccsscccncsancssccscsnes 287
EQ T EEEEREEREEENNEY RN I BN I BE B W B RN B I B N I B ECE BN] 2“8

IQ v..‘.-....'.‘.-......-.‘Q........ LN] 2“8

IQUIL IR R E R EEEEEEEE R I I I A SO A0 I B RN N IR R B N) 2"8
'EQUIL ® 0 © 00 9 O O QG O O OO O N O8O OO PO S OO O SO Ese 0ne 2“8
DineRBIiONSE cececcccrcascnsncacssstsoccanncevense 2ZUHI
NUMDIN ..ccecceconcncnvoncsancscancsascnnnsnncace 209
SIzBDIH ® ® B O 00 80 QP OO GO O A0 0T AGEGSOS 80 48 e s 2“9
!RL' N O P ED O OGN OGN ® SO U OO SO NS SN S Re O seSS S 2“9
LISP Primitives .ccccccveccacecececccccccnsasas 209
IRT!R ® 5 4 9 T 0 5 O 8 B OB OIS O OO OO OGS B OE SO SO eB a8 80 60 2“9
U'Ic' ® O ® 8 ® 0 O GO O O N PO OO S B OO ORGSO B O A LS eSS e 250
Iu ® O @ @ 0 9 OO 00 O GO O QOO O OO OO 6N OE OUNS OB O OO e G 00 250
anaBR l.l......‘....'.0..........0.0...‘..I. 250
0“ ® 5 6 6 O GO0 H OO E B OHE OO P S A GO SO SO S S e n s OSSO e 250
lpplub ® @ O & © 00 O OGN OO OO S N OO OO O e oe o2 eT e s an 250
D‘pPE!D ® O @00 GO O O E VS O S D OO OO OO PO E O GO SO e O he s s 250

PINn @ © © 60 0 0G0 OGO OSSO QT PPN G OOIS BSOSO LSS 251
PIND! ® @ © 0 500 FO U R T OHN A0 ENO TN BSOSO OEOSECSesvesse 251
DGBT ® =P 0@ 0085000 000 O QB ¢SOOSO VO OESO OO0 SN &R oS 251

DGET' 4O " GO0 ON GO RO ECESS G ECOGESEOSnadese e 251

sz!asg ® 0 O 8 OO OO N 08 0T 0 G OO OO O Q OE O G OESOaS S Ve 25’
DRB'!RsE ® O OO 6 0O O O QO PO O O HE SO OO OO OGO OEeN e 252
LIST ® O O 9 O & © 006 OO OO OO S PO E S DO 0GOS SO TN S OO SO S 252
LE'GTH S S0 O U 60 GO0 O OO O OO LS OSSOSO O O OSSO OA SO 252
HT“ S @ O 5 0 O O G OO G OO O OO S OO T O PH OE OO OO SO P OO S0 252
lou ® @ 0O O 0O O SO O PO O e P L OO SO T O Y OSSO PO O G OSSO 252
qur ® 9 G 40 G OO G OO OO W O WS DO S OD OO OO NS e OE s a0 e e 253
LAST cececossccsncscscacsssscsanscaccsscsanccnanssse 253
Delete fUNCLIONE c.ccececvcccccensnvcaasscces 293
SuBST T ® OO 0 4 08 OO O PG OO O G OO eSO e OV NSNS O 253
SUBST“ @ O % 0 00 09 9O G OB O VT OO OO S O OO 9 oG e e O 25“
Hanpers ‘.‘......‘.....................l.... L AN N) 25“
Copiers-.‘........-.'.. 255
Cop' ® % 6O O O O U G OO SO OO OOV O WG K A0SO SO G ONPAaT &S 255
COP!'ODE 0 @O ¥ O8O QOO OO ON G OO U COCE N OO0 PSS 255
uov! * 5 00O PO SO R GRO OO OO S PO O PO QY RONO S 0SS S 255
no'z'zw ® O 0O O 00O O 0N OH OO GO OO 9SO O8O SC O e ese 256
BYBlS ciccccccccacccccsncnccsccsnccnancsacnces 256
E'AL ® @ 0 @ &5 OO0 TO QA OO D OO NS LSO OSSP A OSSO s 257
BVALQ cceccceccvcoccsccccncscacscsocnossacccncese 297
APPL! > 8 8 8 00 8 O 0O OO GO OO SO0 GO OB L DO S OOSe 00 257
APPLYQ S S GO VO OGO OO O CGEI O OO OGNOGOOGOSOCIOSOESES 258
COHPILE S 0 0 O % O GO OO H OO AS OO OOO O OO0 e DO OE PO SO S 258
COHPILRI ® O 00 $ 0 OO OO G G OO O S G A S P OO SS OO SO G OO OO 258

Tr‘ce’ L L B B N BN BN BE BE BN BN BN DR BE AU BN BN BX B B BU BRI BN B B B B N BE IR U NCBE BN BN NI) 258

Tree Structured Files and the Disk Compiler 259

RU“ O OO0 & &0 &S OGO P OB G HOE NS OO OGO TAINOEC TSSO CO e 262

B‘TCH ® @ & " © 50 OF CVOOOVSE SO ONOERCTIOCBDTOEEOOEdDOISIPO e 263

LISTI’G LR I BB B I I B B BR AN 2 BC B BN B I B B B A SRR B B I IR WY BB A R S) 263
COHBI.E ® 6O 8 POO OO PO OO O C OO OO ET Y OOON GOSN NE SRS 26“
vISITTBEB € 6 800 0 00T 0C0 00O CE O GE O OTCEOSSS LNSEs s 26“

Rouqh Draft

Table of Ccontents

HAKETREE ® 6o o a0 gacseoe

9 0 @ @ 9 0 @ O©CP LSO AEsES QS ESPOES

GETTRBE @ 5 &80 8 00O 0GOS GEEOHSE OO PP PO GOSN SPESE S

Interactive Supervisor (not included)

Memory NManagement Facility ...cccicecccccccccncas

Core uaps ® ® ® O & 8O oo s
Garbage Collection ...
The marking pbhase ..

The pruninq ph‘se 4 ® 580 08 0e0 80 0e e Cs OO OS S0

The planning phase .
The update phase ...

The MOVing PhAB6 cccevencoccoscscsssnssnscnsnsne

The fixing phase ...

® 9% 0 A 0E 0000 SGCO OSSNSO E ONS

> ® o ameo e ® 000000 s 0 0asce oo

® ® 9 68 6000 0CES OO OO SSOS 4SS

Space ror.ats ® @ & WO O0G SO0 Ca 0 O0 PO CESOORTOON OGS

Nodetl...Node8 ..c...
Identifier .cecuveees
Characteér ccccecceccee
Inteqder ccccevccsance

® 0 0 % a® *esaa0ee s0es0000 00

® 8 660 ® 0 "s G40 S0 s OSOO SO

® © 9 9 QPO NSOCOS SO OOEPOES SRS

Ploat @@ 00 09 ¢ 80GOS0 C O PO AN O BSSCSESETES VOSBRSS

CO.Dlex LA A B B B B B B B I

Atray ® © 8 00O NGOONS PO OO OSSOSO ORGSO E OSSO RSSE e

utuple Peccencsscone

la.ﬂﬂ and ua.eb ® ® © 0 % 9NN OO S50 00S0SSSsOOES SO
Binaty proqra.‘ ® 9 O 9 OO OEOOCS SO0 OBOO SO SS SO

Handle ® ®» o8P O 0 Oee e

pOintGr StaCk 9 6 0 © 0O SO0 OO PO ORO 4SO ON RSSO Os

Numbher 8tack .ccccees

process heap ® 80 0N S8 S 00 00 Qe ECSOENITEOs A s 0

Space Pri.itives ® ® © G 08 O QOO OO0 O 0PN O OC OO OO OO OO NG

SDGCE NARGS ccccscvancsce

seleCtable Spaceﬂ ® ® 94 GG O 0 F NGOG OO OO OGS OLSSAEs OO

NE"SPACB ® ® O 4O O 0 OO 9o
Allocation primitives

Register Allocation and Linkage .c..ccccceccccocce

Register Allocation ..

® © 0 ® 09 © 030 00" Q9S8 00 S0

® 6 aaveaees 4 008 0o0ansasevas e

® 9 0 6000 09O PO O OSSO AEASSOSS OSS

Floating point reqisters .cccececccccecccecases

General purpose [eqQiStersS .c.ccececcccccccncs

Function Linkage

Globﬁl Bindinq nechanis. ® ® 9 00 0 00 OO OSSO OO NS 9 e

The Programs Check Handler (not included)

Appendices ® % 0 00 00 SO OO RNAGT OO0 COOY SO CSOOOLON ST oo

I -- IBM 370 Instruction

I1 -~ CAP Operand POCNALE cccecceccccccsscccnons

!erats ® o8 eoss00 0000 s 0

III -~ CAP Pseudo Instructions ..cceecccccccaccece
IV -- Key Woxds and their Alternatives ..cccceec-

vV -- Initi&l COndiinDS es e e s 0doeeneRecOssc00ase e

VI -- System Limitations

VII -- Static Page AllocAtion ec.ccecececccvsvocces

VIII -- Spaces Sumpsary .

9 © 800 09 OO GO0 SN OSOON SO OO

12731 /74

264
265

266
267
269
269
270
270
270
271
271
271
272
273
275
276
2717
278
279
280
281
283
284
285
288
289

291
291
292
293
294

297
297
297
297
302
305

309
310
312
315
317
320
321
22
323

CRISP -- SDC TN-5455,000,/00

List of Piqures and Tables

Lexical Nesting ..cccceecvccccencccncccncnnce
Example of Scoping RUleS c..cccecvcccccccancas
Process Tree Variable Bindings .c.ciccececeee
TYPe HierarChy cecececcrcceccctanncencsassasne
Flat vs. Nonflat ACFAYE cccesceacsoccconcosccs
Ntuple and Array StLUCLULES .cecascaccccncoccs
ILIST EXaRPleS socecnccccccaconnnssncassaccee
Recursive Plattening ..ccccececcscncaccescoan
Initial Field Values .cc.cneccceccccaccnnsone
Initial Variable Values ¢...cccvcecacccccccce
SL Infix Operator Definitions ..cccceeceecenns
Comparison of FOr LOOD GeRera&tOr8ceeecsee

Register Contents and BneaonicB cceececeacees

Rough Draft

3
35
38

49

85

126
129
133
167
298

M

IEIRORUCIION

CRISP is a proqramming lanquage and systea that will operate
on an IBmM 370/145 under VM. The goal is to provide an
efficient implementation of and experimentation vith
programs that contain a mixture of numeric calculation and
symbol manipulation such as speech and vision systems. The
desiqgn of the lanquage 4nd system has been most strongly

influenced by LISP 2, PL/I, SINULA, and SDC and BBN LISPs.

The major system characteristics of CRISP are:
eAutomatic memory aanagement - garbage collection,
eAn incremental compiler and assembler,
eInteractive and batch supervisors,
eSystem aids to better utilize virtual memory resources,
eRfficient arithmetic and sysbol manipulation, and

eAids to groups constructing large systeas,

Some important lanquage features are:
oThree language levels available to the user:
(1 Source Lanquage (SL) - an ALGOL-like lanquage with
infix operators.
(2) Intermediate Lanquage (IL) - a LISP-like, list
structured, Polish prefix lanquage.
(3) CRISP Assembler Lanquage (CAP) - a macro assembler.
eBlock structuring in the normal LISP tradition.

eStandard LISP special variables in addition to
local and own variables.

eFPull availability of aulti~-dimensional arrays,
ntuples with repeating elements, functionals, and
process handles.

eProvision for giving global items first and last nanmes,

12/31/74

10 CRISP -- SDC TH-5455/000/00

thereby alloving name pooling and controlled access.
eSynonyas, both local and global.

eAvailability of a wvide variety of language extension
capabilities.

sGeneral ability to save, restore, and switch
contexts of evaluation.
This document has been written concurrently with the design
of the language and system. Therefore, it contains sonme
inconsistencies. Hovever, ve are releasing it in its
present state so that your cossents and suggestions can be
included in later revisions. It will serve eventually as
the basis for the users' quide and systea nmaintenance
sanual. Please send vyour critigue to Jeff Barnett, Systesm
Developsent Corporation, 2500 Colorado Avenue, Santa Monica,

California 90406, or to ABPAnet mailbox JAB at SDC~LAB.

The rest of this document is orqanized into tvo sections:

The first section is the lLanquage Description and the second

section is the Systea Description.

Rough Draft

1

LARGUAGE DESCRIPTION

The first half of this document describes the CRISP
lanquage. There are three languages available in which to
vrcite CRISP prcgrams: Source Language (SL) is an ALGOL-like
lanquage with infix and prefix operators. Intecrmediate
Langquage (IL) is & Polish prefix, LISP-like lanqguage. CAP
is an asseably language for the IBE 370 series computer; it
features autosatic stack manipulation and block structuring.
The descriptions of SL and IL are presented together.
However, all examples, unless otherwise stated, are given in
SL. SL is alwvays translated to IL before compilation.
Therefore, a knowledge of IL is helgful to those users vwho

employ macros and other compile-time substitution forms.

CRISP 1is a "syntaxy"™ langquage. That is, there are many
forms with specialized formats and therefore many keywords.
This may be contrasted with pure LISP and APL, where only a
dozen or so forms are ©provided and everything else is
constructed frow these forms. The reasons for not taking
that approach are many. Perhaps the most important is that
CRISP is designed as a tool for the construction of very
large prograas by qroups of programmers. In this context,
there i3 no virtue in the ability to write one liners; you
can't build very much of the program that way in any event.
Also it is imperative that the system be able to compile
high perforsance code. This task is simplified vhen foras

properly signal the user's intent. Por instance, it is amuch

12/31/774

12 CBISP -- SDC TH-5455,000/00

easier to compile a good loop when it is introduced by the
word POR than when the same intent must be discovered in a
LISP recursive nest. (Even special handling of MAPCAR does
not help with nested 1loaps.) Further, keywords tend to
enhance the readability of prograss, particularly to someone
other than the original author. 1In the SDC LISP systea,
users have a choice betuween a fora that resembles SL (called
INFIX LISP) and the normal LISP, Almost without exception,
vhen qgiven the choice, programmers prefer INFIX. This is
particularly true for large, cosplicated functions or for
any calculation involving arithmetic. In CRISP, the choice
is still available; if you are not content without the

mother parenthesis, then write in IL.

Tvo lanquage features have been planned but are not yet
fully designed. Therefore, they are not described in this
document. The first feature 1is enbedded function anad
processor definitions, This would not give static scoping
but would allow own variables to be shared. The otﬁer
feature is a2 finite state machine (PSH) primitive to allaw
pattern~ratching satching tc regular sequences of any data

type.

The sections in this part of the document are: Syntax
Specification Lanquaqe; External Data Formats; Scoping and
Denotation Rules: Declarations, Definitions, and Types;
Blocks: Data Primitives and Presets; Expressions;
Conditionals; FOR Loop: Processors and Processes; and The

CAP Assenmbler.

Rough Draft

13

SYNTAX SPECIFICATION LANGUAGE

The syntax specification language used in this document to
describe CRISP is satandard BNF with the usual augmentation
-- namely, operators that specify repeated occurrences. The
terainal symbols in BNP are keywords and wmeta names.
Keyvords are norsal sysbols -- for example, BRGIN, +, and A.
Examples of wmeta napes are <block>, <expression>, and
<function-def>. MNeta names are enclosed in angle brackets.
If a meta name consists of a sequence of more than one word,
then the meta name has conventionally been concatenated by
hvyphens rather than spaces. Met a names are the pares of
syntax rules. Por instance, this is a rule:
<a>::=<c>

<a> is defined as equivalent ¢to a followed by a <c>.
Given this definition, the following two rules have the same
reaning:

Cx>::={y><a><z> and <J<x>::=<y><h><c><z>

The general fors of a rule is a meta name followed by ::=.
This means that the meta name is defined as equivalent to
the right side; the part following the ::=. Right sides are
sequences of pattern parts. In operation, a rule is said to
match (or gqenerate) an input string if anmd only if each
pattern part matches the input in the order in vhich the
parts occur in the rule and if the matched parts are
coatiguous and 40 not overlap. The kinds of pattern parts

are:

12/31/74

L) CRISP -- SDC TM-5455,000,00
aeta-variables - match the pattern defined by this wmeta
name:
key-word - match exactly this keyword in the input;
fp1 ... Pn} - match this sequence of pattern parts;

P1i <<. IPD ~ match any pi, 1Sisn;

fpt ... PN} =~ match this sequence of pattern parts or
nothing e.g., the sequence is cptional;

$p - match zero or more occurrences of p;

$splep2 - wmatch =zero or more occurrences of p2
separated by pls;

£p - match one or more occurrences of p;

feplapl2 - match one Or more occurrences of p2 separated
by pls;

vhere bp and pi are pattern parts. In the rules,
concatenation of a sequence of pattern parts takes
precedence over (binds wmore tightly than) alternation.
Therefore, braces -- ({ } ~- are often used to overcaome the
normal interpretation in much the same way in which
parentheses are used 1in arithmetic expressions, Some

examples of pattern parts and input strings that they satch

are:
fabc) abc
ajhjc abec
[abc] nothing abc
$a nothing a aa aaa etc.
fataa nothing a ata ata+a etc.
ca a4 aa aaa etc.
fatal a ata ata+a etc.

The characters, "{n, W}n, wjn urn_ «ajn wgn uwgn ngn Hyu

g, nwg® apnd "=", have special wmeaning in the sSsyntax
specification lanquage. If any of them is used as a keyword
in CRISP itself, then its occurrence in a rule is underlined

toc avold ambiquity.

Rough Draft

Syntax Specification Lanquage 15

There are two basic sets of syntax rules: rules for the
syntax of tokens (described in the saction on external data
formats, page 16) and rules for the syntax of data
structures and proqrass. The token syntax defines the
meabers aof the tocken classes gsuch as <integer>,
<identifier>, and <global-name>. The keywords in the token
syntax are characters. The token syntax rules 40 not allow
any implicit spaces between characters. In a few instances,
liberties have been taken to improve the readahility of the
rules. For exaaple, the pattern part, <character~'>, means

any <character> excapt prine.

The key wvords in the rules that describe data structures and
progqrams are token class namses and special symbols such as
BEGIN, FOR, and ¢+. Between the contigquous occurremce of any
tvo tokens, there may be spaces. The delimjtation rules
given with the token syntax specify vhen this is necessary
to avoid asbiquity. In any event, spaces are always legal

between tokens.

12/31/74

16

EXTERNAL DATA FORMATS

Charactex and Ioken Syntax

The data read from a symbolic input file (such as the user
terainal) is a sequence of characters. The character
sequence is8 norsally segmented into a token sequence. The
syntax of CRISP programs and the external format of data
structures is described in terms of tokens. Examples of

token classes are inteqer aund identifier.

A character is amn 8-bhit byte viewed as an EBCDIC code.
Because many character codes are npot available on certain
I1/0 devices, a special character aechanisms is provided to

allov all characters to be entered by their explicit codes.

<character>::=<{special-character>|{<reqular-character>
<special-character>::a%%<hex-digit><hex-digit>
<hex~-digit>::=<digit>ta ... fIA ...?

<diqitd>::=1 ... 9

<reqular—-character>::=any EBCDIC character

A four-byte <special-character> is translated by the
character-reading progras into the EBCDIC character with the
specified code. 1In all subsequent processing of the input
character sequence, no distinction is made betveen a regular
character and its equivalent special character. Thus, if i

were the hex code for %, then ¥Xi4%xy is equivalent to %%Xxy,

Rough Draft

TN

Bxternal Data Formats 17

vhich in turn would bDe equivalent to the character whose

EBCDIC code is xy.

The character sequence is seqmented into the corresponding
token sequence by the token parsing strateqy. The strategqy
has two parts: (1) determine the boundaries of a token, and
(2) convert the character sequence coaprising the token into

the appropriate internal format or representation.

The first part of the strategy applies the delimitation
rules. The functions READTOKU and READTOK are used to
isplement the token strategy. (READTOXU parses signs as
separate tokens from succeeding numbers.) They start at the
next character position and scan until the token is
delimited. If certain tokens are next to each other,
determining the ending of the first and the beginning of the
second might be ambiguous. In these cases, the tokens must
be separated by a character string called a <spacer>. A
<{spacer> is not a token, and the characters making up the

<spacer> are lost in the conversiom of characters to tokens.

<spacer>::=<blanks>f <comament> [<spacer>]
<blanks>::=¢<tlank>
<blank>::=a space

<coament>::= %'$ {<character-~'>{*"}

The next step perforsed by the token functions is the
conversion of the character string into the internal

representation. The wmajor token categories and their

12731774

18 CRISP -- SOC TN-5455,000/00

corresponding internal representations are: nil - ©NIL,
fixed point - integqer, floating pcint - float, string -
string, gqlobal name - name pointer, delimiter -~ identifier,

jdantifier - jdentifier, escape - identifier.

The function READTOKU uses the following token syntax

equations for parsing the input stream.

<token>::=<nilt>|<unsigned~inteqger>{<unsigned-floating>{
<string>} <global-naxe>|<delimiter>|<identifier>|
<escape>

<nilt>::=NIL

<uns igned-inteqer>::=<{decimald>i<hex>

<decimal>::=¢<diqgit>

<hex>:i=<diqit>$<hex-digit> (x| X}

<unsigned-floating>::=<{mantissadl <characteristic>]

<mantissa>::=£<diqit>.<diqit>

<characteristic>::= {ef E}<integer>

<string>::=*${<character=~'>|'")'

<qlobal-name>::=<identifier>$<identifier>

) = '
St 21 .1

<identifier>::=<special-id>i<regqular-id>

<delimiter>::= | |

| &1 (1 { 1L 111+
| L *1: 1 i i SR I S I X

<speclal-id>::=§'${<character-">('*}?

<reqular-id>::=<{character~(<delinmiter>{<digit>{<blank>{$}>
$<character-~{<delimiter>| <blank>|$}>

<escape>::s=%

The function READTOK uses the above set with the following

substitutions:

Rougqh Draft

External Data Forsats 19

Ctoken>:i=<nilt>j<integer>{<floating>|<stringd|
<global-name> |<delimiter>|<identifier>|
<escape>d>

<inteqger>::=[+] -]<unsigned-integer>

<floating>::=[¢}~ Kunsigned-flocatiang>

Thus, sigqns in front of numbers belong with the nusbers.
READTOKU 1is used by the SL read progras and READTOK by
nearly evervything else. The function READCH is also
provided. It inputs the next character and moves the
rointer ahead. RBADCH also causes the next line to be input
vhen the present line is exhausted and another character is
requested. The value of READCH is the identifier with the
one character name coresponding to the character input.
¥hen an end of file condition is encountered, READCH returns
¥IL. (See the section on the I,0 facility, page 214, for

psore information.)

The following paragraphs briefly describe the individqal
token classes in sore detail. In comments, strings, and
special identifiers, a '' stands for a single * and does not

delimit the spelling.

<nilt> is the notation for the token representation of NIL.
NIL is not an identifier while $*'NIL' is,. The character
sequence "{)" jisg divided into the two tokens " (" and ¥%)w,
However, the function READ would treat NIL and () as

equivalents.

12/31/74

20 CRISP -- SDC TM-5455,/000,/00

fUnsigned) inteqger or floating-pcocint tokens are converted to
their equivalent internal inteqer or floating-point fors.
In either case, if the nuaber is too large (or too small) to
be representable in the computer in full word format, the
ercor sessaqge "HUMEBRIC SIZE ERROR ON INPUT" is given. For
hex inteqers, the X is required. If the leading digit of a
hex inteqer is not a deciral diqit, then it wmust be
preceeded by a 0. (Thus, write OA1X not A1X; the latter
vould be interpreted as an identifier.) Extra digits in the
santissa of a floating-point number are discarded and do not

cause errors.

A string token is a convanient way of entering a
one-dimensional character array. If this forsat is used,
there must be fewer than 265 characteps in the body of the
string. If more are entered, the error message “STRING

OVERFLOW QN INEUT" is issued.

A global name specifies the first and last name for a global
obfect such as a gqlobal variable, function, etc. The first
and last names must conform to the rules for identifiers.
If a $ is to be used for purrcses other than constructing a
qlobal name, it should be separated from a preceding

identifier by a <spacer>.
Delisiter tokens are convertad into the corresponding

identifiers with one~-charactaer names. Delimiters are

norsally used to build SL operators.

Rough Draft

TN

External Data Pormats 21

Identifier tokens must not be 1longer than 255 characters.
The $' form is provided to represent identifiers with

unusual nases.

The escape token is provided to allov an input to be

aborted. The error message issued is "ESCAPE%.

Exasples of Tokens

Some examples cf members of the varicus token classes are:
<nilt> - NIL
<integer> - 12, -1407, +2
<floating> - 0.92, 9.0 -13.4E-%5, +0.17E+6, 1.0E1
<string> - 'THIS IS A STRING', ‘CAN*'T BE'
<global-pname> - A$B, $'X Y'$$*123*, XYZS$AB
<delimiter> - <, &
<identifier> - HELLO, $°'SPECIAL ID'

<ascape> - %

StEucLure _SYRLa X

The function READ converts an input sequence of tokens into
an internal structure representation. The hracketing pair
"{)" is used to enclose binary node lists, and the pair "t
1* is used to enclose cosmplex numbers, nodes, arrays or
ntuple structures, Thus, the delimiters "(" and "(" are
used to introduce special syntax for complex structures. 7To
input them as identifiers, write $°'(' and $'{*. Similarly,

if ")" or "I" is used other than as a closer (balancer), the

12/31/74

22 CRISP -- SDC TN-545%,000/00

error messaqge "UNBALANCED)" or “UNBALANCED }™ will be
issued. To enter thes as identifiers, write $') ' and $*'}°'.
The syntax of external structures is:
<external-data>::=C(simple—external>j<composite-external>
<simple~external>::a<nil>|<number>j<global-named|
<delimiter>|<identifier>
<pil>::=<niltd} ()
<number>::=<integer>j<floating>|<complex>
<complex>::=fCOMPLEX (<floatd>i{<integer>}
{<float>|<integer>}}
<composite-external>::=<string>|<array>|<ntupled>i
<list>|<noden>
<list>::=({#<external-datadl . <external-data>])
<noden>::=(NODEi r<external-data>}
<ntuple>::=fd{ntuple-type>$<external-datad}

<arrayvr>::={<arravy-type>3$<external-datad}

From the above, it is obviocous that structures in several
kinds of data spaces cannat be input by the READ function.
The excluded spaces are: pdp, pdn, bps, handle, and heap.
The meaning of pointers into these spaces (and hence the
addressed structures) has a highly implementation-dependent
usaqe. Therefore, their external aad internal rmanipulation
is the responsibility of the kncvledgeable user or systens

proqraamer.

The external format for a list structure is the standard

LISP syntax. The optional dot ending signifies a CONSed

Rough Draft

External Data Formats 23

pair. Otherwvise, the final CDR is NIL.

The <ntuple-type> is any declared ntuple type. The external
data following the type must be in one to one correspondence
with the ntuple iiteas. Por repeating groups, the last
{inper) subscript is varied most rapidly. The 1input items
rust be convertible to the specified item type. If not, the
ercor message " INCORRECT NTUPLE ITEM TYPE ON IRPUT" will be
issued. If the ntuple type is unknown to the system, the

pessage issued will be "INCORRECT NTUPLE TYPE ON INPUT™.

The <array-type> may be any leqgal type of array iancluding
one with flattened items. If not, the message TINCORRECT
ARRAY TYPE ON INPUTY will be issued. The specified
dimensions wust be positive and less than 32768. (The *
option may not De used.) Othervise, the error message
"DIMENSION OUT OFP BOUNDS ON INPUTY will appear. The
external data following the dimension must be in one to one
correspondence to the array elements. Last subscript varies
post rapidly, etc. If fewer than the specified number of
elements appear, then the missing elements are initialized
to the standard default values. If extra ealements appear,
the error wmessaqe fgsued is "TOO MANY ELEMEBNTS ON INPUT®,
If an element is not convertible tc the required type, the

error message "ILLEGAL BELENENT ON INPUT®™ will be given.

Exaaples of Structures
The following are some examples of the format of structures

that have aulti-token printing representations.

12/31/74

24 CRISP -~ SDC THN-5455,000,/00

{INTEGER ARERAY(2,3) 1 2 3 4 5 6}
(IMTEGER ARRAY (*,*) ARRAY(2)
{INTEGER ARRAY (2,3) 1 2 3 4 S 6}
{INTEGER ARRAY(4,2) 1 2 3 4 56 7 8}}
(A B . C) and {NODE2 A {NODB2 B C}} are the same
{CONPLEX -4.7 18.1B-12)
{NODE4 17.5 NIL XYZ 14}
(THIS IS A LIST)
With the declaration, DEC A$B<X INT, Y FLOAT>;
fASB -17 1.5}
{ASB 0 -8.Bu4}

See section on declarations, definitions, and types (page

45) for more information.

Rough Draft

TN

25

SCOPING AND DENOQTATION RULES

The tokens that make up a CRISP program are names. This
section describes the rules that assigqn wmeaning to these
names ~- that is, the rules for deciding what ohject a name
denotes. There are three major categories of naaes:
constants, identifiers, and global names. AS a category,
identifiers include delimiters (normally used as operators),

syntax keywords, and others.

Skructure of the Rules

Detersining the correspandence of a name to an object
depends upon lexical context, dynamic execution state, and
the default tailing mechanisa. Lexical context is
deterained by the progqram's block structure and the mode of
name usage. The rules operate in two parts: Scoping rules
that are used at conpile time, and denotation rules that

operate at execution time.

The scoping rules convert a name to a proper name. The
proper nase of a constant is the data object to which it
refers -~ that is, itself. The proper name of a 1local
obiect is an identifier, and the proper name of a global
obiect is an ordered pair of identifiers separated by a §
(defined as a <global-name> in the section on external data

formats, page 16). The scoping rules use lexical context

12/731/74

26 CRISP -- SDC TN-5455,/000/00

and the default tailing mechanise to assign proper names.

The denotation rules pair a proper name as determined by the
scoping rules with an obiact, The denotation rules operate
at execution time and make use of the dynmamic state. O0f
course, the denctation of a ccanstant is equally well

detersined at compile time by the scobping rules.

Consiants

Any data obiject may be used as a constant. Hovever, the
forn of a datums may conflict syntactically vith an
evaluatable proqras part. As an exaeple, the use of the
identifier X could be interpreted as a variable name. For
those cases vhere interpretation is ambiquous, the coapiler
assumes that the object 1s not a constant. To force the
compiler to treat an object as a constant, the gquote

sechaniss is providead.

sgLe
<constant>::=<unambiguous-data-obiect>|"<external-data>
<unasbiguous-data-object>::=<nil>|<string>i<array> |<ntuple>|
<noden>|<unsigned-integer>|
<unsigned-floating>j<complex>
TL

<coustant>::=<unasbiquous-data-ocbiect>|
{QUOTE <external-data>>)

<unambiquous-data-obiectd>::=<nild>|<string>| <array>|<ntupled|
<nodend> {<integer>i<floating>|
{ccmplex>

Rough Draft

Scoping and Denotation Rules 27

For example, in SiL, to use the identifier X as a constant,
vrite "X, In IL, write (QUOTE X). Other exasmples of
constants in SL are:

12, 8.2B-6, (INTEGER ARRAY(3) ~-17 18 -19}, ®HELLO,

YTHIS IS A CONSTART STRING', {COMPLEX 3 -4.5}, NIL,

" (SAMPLE LIST), " {NODE2 SAMPLE (NODR2 LIST NIL}},

{)y, {NODE3 1 2 3}, "{(NODE3 1 2 1}
Note, that whether a binary nocde (nodel) constant is entered
as a list or as a noden construct, it 1is ambiguous in a

prograe definition and therefore must be quoted.

Kinds_of Oblects

The kinds of objects that are referenced wvith non-constant
nares are synonyms, macros, transforas, functions,
processors, generators, data spaceg, code places (labels),
and variables' bindings and values, For wmuch of the
discussion below, it is assumed that the appropriate
substitytions have been made for synonyss and by macros and

transforas.

In CRISP, there are no label-valued variables., For scoping
and denotaticon resolution, labels are treated as if they
vere local names bound in the outermost block in which they
are visible. One exception is that branching out of an

expression is illeqal. PFor example, in

12731774

28 CRISP -- SDC TN-5455,000/00

BEGIN;
L:A:=B;
C:=BEGIN;
IF X THEN GOTO L;
BRETURN 5;
END;
END
the form ™“GOTO L*" is illeqal because the inner block (in
which the GOTO resides) is used as an expression. See the
section on statements and labels (page 119) for mare

inforaation.

In CRISP, the object denoted by a variable name is called a
binding. A binding is a proper name paired with a data
obtiect called its value. Several variable obiects
(bindings) may have the same name and/or the same value.
The rules for determining which binding is referenced by a
name are described in the following paraqraphs. The legal
operations with bindings are: «creation (called binding),
destruction (called unbinding), and retrieving or changing

the value (called referencing and setting, respectively).

local.and _Global Nameg

A local name always refers to a variable binding vhose place
of creation way be deterasined by lexical inspection. That
is, it is not possible to reference a variable obfect with a
local name outside the function, processor, block, etc. that
binds it. Thus local wmeans local to a definition anmd a

nested set of blocks within that definition.

Bough Draft .

Scoping and Denotation Rules 29

A global name nmay denote a variable binding whose place of
creation cannot be determined by lexical inspection. In
general, the bindingq referenced by a global name may be
created ia the function containing the reference, another

function, or even another process as descriked below.

Ihe Default Tailing Nechbaniss

The default tailing mechaniss directs the cospiler in
assigning global proper names to identifiers that reference
qlobal obiects. The transforms, DEFAULT, and the function,
DEFAULTX, are provided. PRach specifies a default tail (last
name) for identifiers beinqg declared, defined, or bourd,
Also, an ordered set of possible tails to be used with an
identifier appearing in reference mode (operator, left side
of an assiqnment form, or as an expression for value) is

gdiven by DEFPAULT and DEFAULTX.

sSLe
<default-form>::=<default>(<defaultx>
<default>::=DEPAULT <identifier)> ($a,e<identifier))

<defaultx>::=DEFAULTX (<expreasion>, <expression>)

SIL*
<default-form>::=<default> |<defaultx>
<default>::=(DEPAULT <identifier> ($<identifier>))

<defaultx>::=(DEFAULTX <expression) <expression>)

The function, DEFAULTX, has two arquments. The value of the

12/31/74

30 CRISP -- SDC TH-5455,000/00

first is the default tail and =must be an identifier. The
second argument is the ordered default 1list and aust bhe a
list of identifiers. The value of DEPAULTX is its first
arqument. When executed, DEBFAULTX informs the compiler of
the nev default information that is to be used until changed

by another usage of DEBPAULTIX.

DEFAULT is a transforam that nmerely quotes its two arguments
and cenerates a call on DEFAULTX. Thus, the following two
SL forss are equivalent:

DEPAULT XYZ(XY¥Z,CRISP)

DEFAULTX("XYZ,"(XYZ CRISP))
More informztion on the use of the default tail and the
ordered Jdefault tailing 1ist is given below in the section

on scoping rules ({page 32).

The systes is initalized with the form

DEFAULT USER (USBR,CRISP)

lexical. Nesating

CRISF proqrams are made up of function, processor, and space
definitions, variable declaraticns, and the coapile time
substitution wmechanism (synonyms, wmacros, generators, and
transforms) . This subsection describes the nested structure
of function, processor, macro, and generator definitions.
To sieplify the discussion, all such definitions will herein

be called function definitions.

Rough Draft

Scoping and Denotation Rules 31

r— FUONCTION P (A,B,QC)
B
BEGIN X,Y,Z:
51
v— BEGIN A,Y,H;
| T
L END:
s2
— BEGIN A,Z,N;
| u
L END:
83
END;

r...—_-_—-_.—-_.——
Ff=m=="=""""7

LEXICAL NESTING

Figqure A

The outer level of the 1lexical nest 4is the function
definition. The inner levels are blocks. Each level of the
nest may bind variables. Fiqure A is an example. The
function, F, binds the variables (parameters) A, B, and C.
The body of F contains the block that binds the variables X,
Y., and 2. Within this block are two other blocks: the first
binds the variables A, Y, and M, and the second binds the
variables A, Z, and N. The lines to the left of the figure
show the (lexical) scope of the function definition and the
blocks. 81, S22, and S3 are three groups of statements in
the outer block that are not in any inner block. T is the
group of statements 4in the first iamner block, and U is the
qraup of statements in the second 4inner block. B is a part

of the body of P not in any block.

At any poipt in the JQefinition of a function, there 1is a

127317774

32 CRISP -- SDC TH-5455,000/00

lexical nest of the fuoction definition and some blocks that
properly contain that pcint. From these, a lexically
derived search list may be formed. It consists of the name
of the function, the functiont's parameters, and the block
variables bound by the nest. This list is derived using the
post nested bindings first. For example, in the part of F
marked B, the lexically derived search list is:

C,B,A,F:
at the points called 51, S2, and S3:

2,Y,X,C,B,A,F;
at the point called T:

4,Y,2,2,Y,X,C,B,A,F:
and at the point called U:

¥,2,1.2,Y,%,C.B,A,F.
The next subsection, on s$coping rules, describes how the
proper names put on this list are derived and how this list
is used in assigning proper names to identifiers appearing
in definitions. The lexical 1lists for the akove exasple
vere constructed (for the sake of illustration) without

regard for praper names.

Scopipg_Rules

This vataataph details the scoping rules for transforsing a
name to a proper name. Por constants and global names
(ident ifier pairs separated by e $), the transformation is
trivial:; in both cases, the proper name and the original are

identical. The remaining case, identifiers used as naames,

Rougqh Draft

S

///’\\
: i
!

sScoping and Denotation Rules 33

is more cosplicated.

Determination of an identifier's proper name depends upon
lexical context (nesting and mode of usage) and the default
tailing mechanism. If the mode of usage equals declaration
or definition, then the identifier is paired wvwith the
default tail to produce the glokal proper name. {(Mode of
usage equals declaration means that the name is an object
whose attributes are being gqiven by a declare form; mode of
usage equals definition means that the name identifies a

function, pracessor, macro, etc., that is being coampiled.)

When an identifier is used in binding mode (parameter of a
function, processor, macro, etc., or as a block variable),
an optional scope attribute may be specified by the program
writer. The attribute may be LOCAL or GLOBAL. (For use of
ONN scope see the subsection on own variables, page 44). 1If
the scope attribute is LOCAL or not specified, then the
proper name is the identifier itself, a 1local nanme.
Otherwise, if the value is GLCBAL, then the proper name is

the identifier paired with the default tail.

The remaining case is an identifier used in reference mode,
@.d. as an operator, on the left side of an assignment form
or referenced as an expression for value. First, the
lexically bound search 1list 1is examined to see if it
countains any member vwhose name (if local) or vwhose first
name (if global) is the identifier. If such an element

exists, then the proper name of the first one found is used

1273174

3a CRISP -—- SDC TN-5455,/000,/00

as the proper name of the identifier. (Remember that the
l1ist is built in reverse order, most deeply nested bindings

firat: see preceding subsection.)

The rules above supply the proper name for an identifier
that is bound 1lexically. If the name is not determined by
this search, then the ordered dJdefault list of identifiers
qiven hy DEFAULTX is consulted. The identifier 1is paired
with the first identifier in the crdered list as its last
name (or tail). If a declaration or definition exists for a
qlobal object with that paired name, then the pair becoames
the proper name of the identifier. If not, the next
identifier in the list is tried as the tail. This procedure
is repeated until a proper name is determined or the list is

exhausted.

It has not yet been completely decided what to do when the
above fails to produce a proper name for an identifier used
in reference nmode. The choices are: (1) qive an error
message, (2) quess a local declaration and force a bhinding 3
13 FCRTRAN, (3) quess a global declaration and use a global
proper name 3 la LISP, and {4) ask the user. In any event,
conflict in type between declaration of a namre and its
sanner of use may produce compile or run time errors and
diaqnostics. See the section on declarations, definitionms,

and types (page 45) for more discussion.

Piqure B shows a set of fores before and after the operation

of the scoping rules. The first set of fores are in a

Rough Draft:

f//-‘\‘

Scoping and Denotation Rules
Before Scoping Rules

DEFAULT SYS(SYS,CRISP) ;
DECLARE GENERAL A, GBHNERAL BS$SYS:

PUNCTION SUBST? (LOCAL X)
WHIN B=X THEN A

WHEN MNODEP(X) THEM SUBST1(CAR(X)) #$SUBST 1(CDR (X))

ELSE X:

PUNCTIOR SUBSTSCRISP (GLOBAL A, B$SYS, C)

SUBST1(C) ;

After Scoping Rules

DEFAULT SYS(SYS,CRISR):
CECLARE GENERAL A3S5YS, GENERAL B$SYS;
PUNCTIOR SUBST1$SYS(X)
WHEYX B$SYS=X THEN ASSYS
WHEN NODEPSCRISP (X)
THER SUBST18SYS (CARSCRISP(X))#
SUBST1$SYS (CDRSCRISP (X))
BLSE X:

FUNCTICR SUBSTSCRISP(ASSYS, BSSYS, C)
SUBST185YS (C) ;

Fiqure B

EXAMPLE OF SCOPING RULES

12/31/74

36 CRISP ~-- SDC TH-5455/000/00

format that wight very well be written by the programmer;
the second set has all names except those that function as
special lanquage naases (DEFAULT, DECLARE, parentheses,
comsa, etc.) converted to the appropriate proper names. In
the function SUBST1, the lexically bound search list is:

X, SUBST1$5YS
and in the function SUBST, the lexically bound search list
is:

C, BSYS, ASYS, SUBSTSCRISP

Poth these lists are built froa proper names.

Rypamic_Context

The dynamic state of execution is determined by an ordered
set of process states and a set ¢of top-level objects. Each
variable with a qlobal naze has a top-level binding (and
associated value) that is visible whenever the variable has
not been explicitly bound. Global names of objects, other
than variables, alwvays refer to a single obdject that is
called the name's top-level cor its only value. The global
proper names of functions, processors, eacros, transforms,
gqenerators, spaces and global synonyms may not be bound.
Therefore, these global names are like constants in that the
object they denote may be unambiquously determined at
compile time. Further, all global names, variable or other,

alwvays have exactly one top-level denotation.

AsS a process executes, functions and blocks are entered in

Rough Draft

Scoping and Denotation Rules 37

some order and exited in inverse order. On entry, variables
(function parameters and block variables) are bound. That
is, bindings for the bound variables are created and added
to the front of a list called the process's variable
context. On exit, the bindings edded by the function or
klock are removed (unbound) from the process's variable

context.

Consider the operaticon of

SUBST(1,2,"(1 (3 2) 4))
The definition of SUBST is given in Fiqure B (page 35).
W¥hen SUBST is entered, the process's variable context |is
augmented by:

fC, (Y (2 3) 4 YWB$SYS,2)A$S5YS,11
The square brackets denote a binding (which consists of a
variable's proper nase and a data object called the value.)
If ve trace the acticn of SUBST and SUBST! to the point
vhere 2 is passed as the arqument to SUBST1, the total
augqmentation to the process's variable context will be

(X2 Xo (D WX, (3 DUXL((3 2) YUK, (1 (2 3) 8))

Fc, (1 (2 3) 4) [BESYS,2)(AS$SYS, 1)
Hotice that this list is built in inverse order in much the

same vay as the lexically bound search list.

Associated with each process is another process (or the
top?level set of objects) called its parent context. If
process 1 is the parent of process 2, then we say that
process 2 is embedded in process 1. Thé set of processes in

the system at any moment form a tree vith the processes

12/31/74

38

CRISP -- SDC THM-5455,/000/00

r——— <TOP-LEVEL

1AS$S]|
JAST
IBST|
1BSU |
r—> |C$5|
I [CsU |
| | S—
|
<P 1
I ASSY
| B |
JCSS|
2> X |{emm————
| [A [
1 s |
| i
— <P 11 r———y <P12
| B | I X |
1AS5 ID$S|
|CSU) 1 Y i
1 X |} > |D§S <~~~
s i VASTY |
{ e [
) 1
—=q<P121 r——<P 122
I A | |BST}
t B § 1 X |
I X} |B$T|
1 ASS) 1 X
| Y | | ISU— |
| S |
Pigure C

PROCESS TREE
VARIAELE BINDINGS

Rough Draft

Scoping and Denotation Rules 39

being the nodes and leaves, the relation embedded-in (or
parent-of) forsing the arcs, and the top-level collection of
objects formwing the root node. Piqure C shows such a
configuration for the processes P11, P11, P12, P121, and

P122. The boxes contain the processes! variable contexts.

The total variable context of a process is the concatenation
of the (ordered) variable contexts of itself, its parent,
its parent's parent, etc., up to and including the top-level
set of obvects. (Siace there is no name duplication among
the top~level objects, their ordering is immaterial.) Fronm
Fiqure C, the processes and their total variable contexts
are:

P1 Y, X, CS, B, AS, CU, CSS, BSU, BST, AST, ASS

P11 X, CSU, ASS, B, Y, X, Cs, B, As, CU, Cs, BsU, BST,
AST, ASS

P12 AT, CSs, Y, Cc$S, X, ¥, X, CS$S, B, AS, CuU, C$s, BsU,
BST, AST, ASS

P121 Y, ASS, X, B, A, AST, Cs, Y, Cs, X, Y, X, C$5, B,
AS, CSU, Cs, BSU, BST, AST, ASS

P122 x. B’T. x. BST. AsT' css. !. CSS. x' Y. x. CsS. B' Ass'
Cu, CS, EB$U, BST, AST, ASS

A process may be moved froa being enmbedded in sone
particular parent to being enmbedded in another parent so
long as the result still forms a tree (not a forest and no
loops). To ensure that the concept of a process's total
variable context is well defined, one of the following two
conditions is necessary: (1) only one process say execute at
a gqiven woment, or (2) the following operations are
indivisible: binding, wunbinding, referencing, setting, and

12/731/74

40 CRISP -- SDC TN-5455,000/00

process esbedding. Though the present systea design
satisfies the ficst criterion (because there are no explicit
provisions for parallelism), the iaplementation will also
satisfy the second criterion in style and spirit, so as to

not exclude future possibilities.

Repotatian Bules

The denotation rules operate at execution time, pairing
proper names {as determined by the scoping rules) with the
appropriate data obijects. The denotation of all rames
except variables say be determined at compile time by the

scoping rules as described in previous subsections.

A variable appearing in binding mcde (parameter or block
variable) causes binding (adding of a name-value pair to a
process's variable coatext) upon entry to a function or
block and unbinding upon exit. The other possible use of a
variable is in reference amcde. 1In this case, the proper
name of the variable is used to search the total variable
cantext of the process containing the reference, for the
first binding vhose name part is the proper name of the
variable. Depending on usage of the reference, either a
copy of the value part is retrieved or the value part is
set. The rules of the CRISP lanquage guarantee that every
binding contajins a value part. Thus, there is no such run

time diagnostic as Yreference to unkound variable.”

Rough Draft

Scoping and Denotation Rules 41

The following table shows the binding cbjects referenced by
proper variable names vhen appearing irn the processes as

shown in Pigure C.

* Referenced in Process
*
Yariable® P11 P11.1 P12 1 P1211 P122|
|
Al =~ 1 =~ 1 =~ 1 P12} =~ |
B PT § P1YT | -~ } P121} =~ |
Xt PY } PVY | P12 | P12V =~ |}
YI PV | = | P12 | P121}| P122}
A$SSt P1) P11 } P11 | P12%t P11 |
AST]I tl1 t +t1) P12 | P12 | P12 |
BS$TI tl } t1 ¢ €1 { tl1 | pP122}
BSU| tl1) t1 | tl | t1 | ¢tl1 |
C$s1 P1 | PV} P12 | P12 | P12 |
C$0I tl | P11 | t1l | t1 | tl1 |}

Process names refer to last binding of the
appropriate name. '
tl - top level obiject
- = local variables do not reference nase
outside of process containing reference.
Scoping and denotation strategies of the kind contained in

this section are often called "dynamic scoping rules."

Coppile Time Substitutionsg

To enhance readability and compactness of representation in
CRISP proqrass, an extensive coapile time substitution
mechanisn is included in the gysten. A transform
substitutes the forms used as its arguments for its
parameters' nases in its body. The transforsation 4is done
at compile time and the result is compiled in place of the

oriqginal form. For example, DEFAULT may be coded as:

12/731/74

42 CRISP -- SDC TN-5455,000/00

TRANSPOBM DEFAOLT(A,B) DEFAULTX("A,"B) ;
The paraseter values to a transfora are IL forss. They are
substituted into the IL form of the body. The substitutions
are done in "parallel®™ so that the actual values of the
paraseters do not cause strange effects. Thus,

DEFAULT X(A,Y) means

DEFAULTX("X,."(A Y})) not

DEFAULTX ("X, "(X Y)) .
Transforms substitute through all node2 structures including

quotes.

Macros also perform compile time substitutions. A macro is
a function of one arqument, an IL fore that has the macro's
name as its fors operator. The macro is called at coampile
time, and its value is used in place of the original form.
To write DEPAULT as a macro,
MACRO DEFAULT(X)
LIST("DEFAULTX,LIST("QUOTE,CADR (X)),
LIST ("CUOCTZ2,CALDR(X)))

M qenerator is used as a "bottos up" macro for forms that
require special handling. Exanples are IF, BEGIN, etc. A
description of the operations of generators vill appear in

the document, CRISP Cospiler and Assembler Structure.

Macros, transforms, and generators are global objects. They
are used at cowspile time vwhenever their proper name, as
deterained by the scaping tules, appears as a fore operator.
Synonyms, on the other hand, may be local or global. At

cospile time, vhenever the scoping rules produce a proper

Rough Draft

N

Scoping and Denotation Rules 43

nase that is the name of a synonya, the value of the synonym
is ismediately substituted for the occurrence of the nanme.
Por example,
BEGINX SYM S:=CABR(FROO(X,Y)).X:
A:=5+4C0OS {S)
END
is equivalent to
BERGIN X:
A:=CAR{FOO(X,Y)) +COS(CAR(FOO (X,Y)));
ENRD
Notice, a synonym merely does a substitution; it does not
remember the context of its definition, and its use does not
inhibit nultiple evaluation. (A variable setting dces all
this.) Thus, if POO has side effects, the two applications

of PCO in the example may produce different values.

Local synonyms have the same visibility (scope) as a local
variable appearing at the same spot. Global synonyas,
introduced by a declare fors, have the same visibility as
function, macro, etc., defined at the same spot. Synonyms
may be used anywhere in reference mode unless specifically
stated othervise. However, synonyss may not be used as
substitutions for nares appearing in = declaration,
definition, or binding mode. Alsc, synonyms may not be used
as substitutes for Kkeyword names that have syntactic
siqnificance or vhere they introduce ambiguity in
translating SL to IL. All synonya substitution is perforamed

after traanslation to IL.

12731774

44 CRISP -- SDC TM-5455,/000/00

Qup. _Yariables

An ovpn variable mechanism is provided as a convenience for
programming certain kinds c¢f alqgorithas in which
communication is needed between different calls on the
algorithm. Ap own variable has only one binding; that is,
it may not be rebound. The declaration of an own is made
vhen a block variable 1is gqiven the scope attribute, own.
The variable is visible only in places vwhere a local
variahle appearing 4in the same spot would be visible: the
block where the declaration occurs and nested blocks that do
not rebind another variable with the same (first) name. At
coapile time, a preset value is computed. Entering thae
block during execution has no automatic effect on the
variable's value. However, the operation of statements
vithin the block may change its value. This use of own more
closely reseables the PL/I STATIC attribute than the OWN of

ALGOL.

AR example use of an own variable is a program that
generates random numbers., A seed has some preset value,
Each time the generator is used, the seed teceives. a nevw
value 80 that the generator will not return the same thing
every time. The <following is an exaample random nuasber
gJenerator that uses an own:
PLOAT FUNCTIGCE EANDON()
BEGIN INTEGER OWN SEED:=1;
SEBD:=(SEED®*65536) 6E7PPFFFFPX;

RETUBN SREED*2.0#%%-31
END:

Rough Draft

,/"\\

4s

DECLABRATIONS, DEFINITIONS, AND TYPES

This section describes the uses of data types in CRISP. The
first subsection defines and explains the motivation for the
inclusion of types in the lamquage. Other subhsections
describe declare foras, definitions, item referencing,
processing of declarations, and determination of expression

types. -

12/31/74

46 CRISP -- SDC THN-5455,000/00

Types

A (data) type is a collection of obtjects. The value of a
nawe with a type attribute is raestricted to a meamber of that
collection. The order of a typre is the number of objects in
that collection. The order say be indefinitely large, such
as for the inteqers, or very small, such as for the boolean
collection that contains only two obijects, In wost
instances, the aorder of a type 1is somehow restricted by the
size of the computer syateam or the organization of its

mneaory -- 32-bit word, 8-bit byte, etc.

Most proqramsing systems not only allow type attributes for
names but require them (maybe implicitly like PORTRAN's
first létter convention). Languages such as LISP without
name attributes are the exception. They are sometiames
incorrectly called "typeless" lanquages. But if that is
correct, wvhat is the nmeaning of such predicates as ATOHN,
NUMBERF, etc? In fact, these lanquages should he called
“attributeless" lanquages. The advantages of giving type
attributes to names are numerous. Some advantages are: (1)
improved efficiency because the compiler knows wmore about
the situation, (2) possibility of compile as well as run
time error checking, (3) commentary -- improves readability
of prograss, (4) coercion -- automatic type conversion, (5)
resolution of ambiquity, and (6) iamproved tepresentation of

abstractions.

An object may be atomic or cosposite. An atomic object is

Rough Draft

SN

Types 47

not decoaposable into elements by conventional techniques
such as subscripting or name qualification. Said another
vay, a field ip a composite data object may be changed by a
simple assiqgnment. Por example, in most systems a floating
point obdect is atomic even though its sign, characteristic,
and mantissa are cosputable. The distinction between atomic
and comsposite obiects 1is pot sharp and depends in a large
measgre upon the programming language and its set of
primitives. A composite obiect is composed of elements that
may be individually referenced (and/or set) by conventijional
techniques. It is normal that all composite eleaents of
each obfect in a type collection have corresponding elements
of each obifect that belonq to a type collection associated

with that element.

CRISP and wmost other progranming languages use a data
structure tesplate as the method of describing the set of
abjects that belong to a type. A set of basic types are
given, and newv types are defined as composite structures
vhose element types are basic types or other user defined
types. An example of a bhasic type is an integer, and a
defined type wvould be an integer array or even an array of
integer arrays, etc. The basic types provided are not
necessarily atoric (e.qg., nodes). Hovever, vhen this is the
case the motivation =may be efficiency or some other aspect
of isplementation. On the other hand, almost 1o language
allows the definitiocn of new atomic types. Purther, the
kinds of cosposite objects that are definable is usually

restricted. In CRISP, the only definable object structures

12/31/74

48 CRISP -- SDC TH-5455,/000,00

are ntuples and arrays.

A get of type collections form a partial ordering
(hierarchy) under the relationship of proper containment.
Por example, the collection of integer arrays is contained
in the collection of all arrays. Figure D shows the type
hierarchy available in CRISP. An obfject in a lower type is
alvays convertible to a higher type without 1losing 1its
jdentity (except for byte and half -- see belowvw). That is,
an integer being ‘Ykept" under the type general would still
be deiected by both the predicates INTEGERP and NUMBERP.
(Corrasponding to each type shown in Figure D is a predicate
function that is the type name fcllowed by the letter "p%),
Dovnward conversion is not always possible. For instance, a
pame is not convertible to both a function and a variable.
Conversion of one subtype of number to another is often
done, However, these conversions lose the original identity
of the obiect. Thus,
INTEGERP (FLOAT(4))

is false. (This does not mean that 4 has lost its idenmtity
as an integer. Rather, the same value of FLOAT could just
as well be derived from FLOAT (4.0).) The following
varaqraphs briefly describe the individual type classes

shown in Piqure D.

Jdentifier types
Identifier objects are local names and the pieces used to
build global names. The type, character, contains the 256

identifiers with one-character names. 1Identifier objects

Rouah Draft

/,»"’\\

Types 49

GENERAL
]
|

[4 k 3 t 2 b 3 v - 8]
IDENTIFIER NODEN ARRAY* NTUPLE! NAME BOOLEAN NUMBER HANDLE
| | | |
1 | |
1 ‘ [2 + |
CHARACTER STRING FLOAT INTEGER COMPLEX
|
i

oty
BYTEZ HALF2

1

pr e e g

[4 - h 4 |
NODEY NODE=EODE2 ... NODES

%

1
#HACRO TRANSFORMNM

i

|

i

i

i

!

|

i

|
L L %
SYNONYN GENERATOR |
i
|
A

r v T 1
PBOCESSOR! FUNRCTION! VARIABLE! SPACE

TYPR HIERARCHY
Figure D

! Must be subspecified, e.g. INTEGER ARRAY (%) .

¥ HMay only appear as element type in arrays
and ntuples.

12/31/74

50 CBRISP -- SDC TH-5455,/000,00

are unique. That is, there are never two separate
identifier obfects with the sase printing representation.
Associated with each identifier is a systeam property object
and a user property object. The system property obiject is a
link structure used by the compiler and the asseabler to
locate global names that have the identifier as their first
namse. The user property object is provided so that the
prograsmer can build an associative memory using identifiers
as search keys, as in LISP. The individual characters in an
identifier's print name are not settable or referenceable as
they would be in a string. When an ntuple or array element
is declared of type character, storage is saved by storing
only the 8-bit (one-byte) EBCDIC equivalent. (Identifier

objects are stored as 32-bit pointers to the unique object.)

Nampe typas
The type, name, consists of qlobal names. The subtypes are:
function, ©processor, (qlobal) variable, macro, transfors,
generator, (qlobal) syhonym, and space. The types
function, processor, and variable are further subspecified,
i.e.,

INTEGER VARIASLE - variable vith integer value

INTEGER FUNCTIQN(FLOAT) -~ integer valued function
with one floating argument

PROCESSOR(NAME) -~ processor with one arqument
of tyre name.

Variables, function values, and array and ntuple elements
may have a type attribute ¢f nase Or a subspecified type of
function, processor, or variable. When used as type

attributes, the words FUNC, PROC, and VARB are used for

Rough Draft

Types 51

FUNCTICON, PROCESSOR, and VARIABLE to avoid syntactic
ambiquity. Thus, the type attribute of a variable with
values of the type

INTEGER PUNCTION(FLOAT)
is vritten

INTEGER FPUNC(PLOAT).
This differentiates a name that is a variable with
functional values froms a function name (which is for aost

intents and purposes a constant).

Boolean type

The type., boolean, contains only two objects, NIL and the
identifier TRUE. When ob1{ects are converted to boolean,
everything except NIL is changed to TRUE. When boolean is
used as an ntuple or an array element type, an 8-bit field
is usaed to conserve storaqe. Even though boolean could be
considered as a subtype of identifier, it would be so

unna tural that it is not,

flandle type
A wepber of the type, handle, is a process. That is, &
processor that has been put intc operation along with its

control state and variable context.

Number types

The type, nusber, contains the three subtypes integer,
float, and complex, Integer and floating objecta are 32-bit
quantities in the standard IBN 370 format. Complex objects

are pairs of floating point numbers. (It should be noted

12/31/74

52 CRISP -- SDC TH-5455,/000/00

that cosplex obfects are provided only as a user convenience
and are handled very inefficiently. All computations that
have complex arquesents or produce complex values make
function calls.) Wbea an cbject is converted from one of
number's subtypes to another, it loses its original
identity. Thus, the value of

INTEGERP (FLOAT (4))
is falsge fust the same as

IRTEGERP (FLOAT {(4.0)).
Hovever, the conversion of an integer object to a number or
a general object preserves the original type classification

as an integer. (Similarly with float and complex.)

The inteqer subtypes,?! byte and half, are provided for
efficient storage of small quantities a2s elements of ntuples
and arravs. A byte ob4Yect is an inteqer in the range O
throuagh 255, and a half object is an inteqer in the range
-32768 through 32767. When a byte or half element is
accessed, it is immedlately converted to integer, and its
original identity is lost. Thus, there are no such

predicates as BYTEP or HALPP.

Noden types
The type, noden, is wnade up of the eight subtypes nodel,

node2, nodel, node8, nodeS, ncde6t, node7, and nodeB. The

! These Jinteger subtypes are really a combination of the
type attribute, integer, and a precision attribute. Since
the only precision control in CRISP is with integer elements
and themn to only full, half or quarter words, 1liberty has
bean taken.

Rough Draft

Types 53

type, node, is exactly equivalent to node2, the binary tree
node of standard LISP. The type, nodei, is 1like an ntuple
with i elements of type general. The elements are named
FIRST, SECOND, THIRD, POURTH, FIPTH, SIXTH, SEVENTH and
EIGHTH. The fields of node2 obijects may also be referenced
vwith CAR - CDR primitives. The fields are referenced and
set as if the noden ohject vwere an ntuple aobject with the
above ordinals as 1item names. Howvever, NTUPLEP of a noden

ob{iect is false.

Array types

Array objects are subtyped by their number of dipmensions and
the type of their elementa; for instance, INTEGER ARRAY(¥)
is a one dimensional integer array. In CRISP, the extents
of an array's disensions are not pact of the array's type.
All arrays carry dimensioning inforaatiomn with thea. A
string is a one dimensional array vhose elements are

characters.

Ntuple types

An otuple is an ordered collecticn of elements. Each
€lement has a type attribute, a name, and a repedt count
associated with it. Ntuple subtypes are defined through the

declare forn.

General type (
The type, general, 1is the collection of all ohkjects in the
CRISP systeam. The value of a variable with type attribute

qeneral say be any data object in the systens.

12/31/74

S4 CRISP -- SDC TH-5455,/000,00

Type predicates

For each type shovn in Fiqure D (page 49) (except byte and
half) there is a type predicate that returns the boolean
value TRUER if its argqument is of the specified type and
returns MIL otherwise. The predicate names are formed by
appending the letter "P" to the type name. The predicates
are: IDERTIFIERP, CHARACTERP, NAMEP, FUNCTIONP, PROCESSORP,
VARIABLEP, HACROP, TRANSFORMP, GENERATORP, SYNONYNP, SPACEP,
BOOLEANP, HANDLEP, NODEXKP, NODE1P, NODE2P, NODEP, NODE3P,
NODBQ?. NODESP, NODE6P, NODE7P, NODES8P, NTUPLEF, NUMBERP,
INTEGERP, FLOATP, COMPLEXP, ARRAYP and STRINGP. A universal
type predicate, TYPEP, is also provided. TYPEP has two
arquaents, a type and an expression. TYPEP returns TRUE if

its arqument is of the specified type and NIL otherwise.

sSLE

<typep>::=TYPEP (<type-ref>,<expression))

IL

<typep>::=(TYPEP <type-ref> <expression))

A <type-ref> is any specifiable type including an ntuple or
a subspecified func, proc, varb, or array. See the
subsection on the declare fora {page 59) for forsal
definition of <type-refd. The following two forms are
equivalent:

NUMBERP (X) and

TYPEP(NUMBER,X) .

Rough Draft

-

TN
\
i

Types 55

Data Obhfect Forsmats

In the system, objects are represented by one, two, or four
byte numbers. One and tvwo byte nusmbers may only appear as
elements of arrays and ntuples to represent byte, boolean,
character and half objects. 1In all other cases, objfects are
represented by four-hyte (32-bit) numbers in one of three
formats: (1) 32-bit inteqer, (2) 32-bit floating, and (3)
32-bit pointer with high order 8 bits unused. A pointer is
the byte address of the obdject. Except for integer, float,
byte, half, and character or boclean (when used as an array
or ntuple element) types, obiects are Jimplemented as
pointers. W¥hen an integer (float) obiject is converted to
nuaber or qeneral, a copy of the integer (float) is put in a
special integer (float) space and a pointer at it is the
"value". Canversion of an obiect from one pointer format to
another (assuming the conversion is legal) is an identity
transforsation. Upward conversion (see Fiqure D, page 49)
from one pointer type to another is always legal. Downward
conversion may or may not be legal. For instance, a general
pointer at a wmacro can be downward converted to a name but
not to an array. In error checking mode, all downvard

conversions are diaqnosed for possible type aismatches.

The obdject, NIL, may arise in any po{nter type. For
exaaple: |

DECLARB ILIST<X IMTEGER, Y ILIST>
This declares ILIST to be a two element ntuple whose first
elesent, X, is an integer. The second element, Y, is a

rointer either at an object in the same ntuple subtype,

12731774

56 CRISP -~ SDC THM-5455,000/00

ILIST, or at the obiject NIL. If NIL vere not allowed, then
ILIST woauld have to be a looping structure (some kind of
rinqg) and could not simply be a list of integers. Hovever,
TYPEP (ILIST,NIL)

is false. 1In qgeneral, the object NIL appearing in a pointer
type indicates either the "terminal condition" of recursion
or partial inpitalization. When these cases can arise, the
user's prograe should check for them. Inline structure
access code vroduced by the compiler does not. (To do so
vould cause an unreascnable expansion in the size of the
generated code.) The obiect, NIL, is represented by a

pointer at address 0.

Type deteraination

This paraqraph is a slight digression from a CRISP
description. The question investigated 1is whether the type
of a structure should he determined a priori by tagging or a
posteriori by inspection. With a priori typing, a structure
recaives its identity (type) when it is created and carries
that information with it as long as it exiats; even when the
value of an element is set. With a posteriori typing, it is
assumed that (1) the ¢type of an atosic object wmay be
determined by inspection, (2) the elements of a composite
structure may be distinquished (frosm each other), and (3)
therefore some (total) alqoriths exists that determines
vhether or mot a particular object belongs to a particular
type collection. The basic result is that if (1) recursive
definitions of type collections are alloved and (2) the

values of elements of composite abijects can he set (for

Bough Draft

TN

Types 97

instance to fors rings, etc.), then a posteriori type

determination is iapossible.

The first question tc¢ be addressed is vhether recursive type
declarations are necessary or advantageous. Consider the
following, vhich defines a list of integers:
INT.LIST=[INTEGBR,INT.LIST|NIL]

Surely such definitions as this ougqht to be alloved by any
dqeneral mechaniss. The second <capability, the ability to
change the value of an element, is also necessary. Pure
LISP is an exasple of a langquage that dces not allow this
(no RPLACA or RPLACD), but no one writes programs in pure
LISP except to prove a point or to use as an exasple for a
proqgras correctness technique. All languages used for

serious proqrasaing efforts allow element setting.

Bow consider the above definition of an INT.LIST. It says
that (with a posteriori typing) an object is an INT.LIST if
and only if it is a cosposite structure with two elements,
the ficrst of which is an inteqer and the second of which is
an INT.LIST or NIL. et x be a two element composite
structure vwhose first eleaent is an integer, say 6, and
¥hose second element is (a pointer at) the structure x
itself, Then the a posteriori type pfedicate could
determine that x is an INT.LIST 4if and only if x is an
INT.LIST. Thus, it would be consistent to say either yes or
no. Obviously, in this situation a convention could be
adopted, probably to say yves. Rowever, let us alter this

exanple sliqghtly:

12/31/74

58 CRISP -- SDC THM-5455,000/00

XYZ=[INTEGER, ~XY2]
This says that a structure is an XYZ if and only if it is a
tvo element caomposite structure and the first element is an
integer and the second element is not in the XYZ collection.
Nov consider the two element structure described above: the
first elesent is the integer 6 and the second element is the
structure x itself. Now the a posteriori type predicate can

deduce that x is am XYZ if and only if x is not an XYZ.

To trace the steps that brought about this dileama: (1) a
recursive definition was alloved, (2) a "blank®™ two element
structure was created (and named x), (3) the first elesent
of x vas set to the integer 6, and (4) the second element of
X was set to x itself. (These operations are in no wvay
different from creating a one element ring.) After these

operations, ve attempted to determine type membership.

Compare this to the a priori tyring scheme using the same
example: (1) make the definition of XYZ as above, (2)
create a blank two element structure (named x) with type
identification 1Y2Z, (3) set the first element of x to the
integer 6, and (4) attempt to set the second element of x to
itself. An error is jiamediately detectable. Thus, the

above contradiction is never generated.

Rough Draft

The Declare Forn 59

JThe. leclare Form

The <declare> form is one of two major methods available to
qive gqlobal names type attributes. The other method is the
definition mechanism described in the next subsection. The
declare form creates tap-level obdjects with the specified
name and type attributes. For ‘vatiables. the top-level
value is generated as part of the hinding. Data spaces are

declared using the function NEWSPACE (page 293).

Many problems arise when the type attribute of a name is
changed. Compiled code and data may already reference the
nare and make assumptions aboutv the structure of the object
associated with that name, If the name is given a nev type
attribute, the assumptions may no longer be correct and may
lead to unrecoverable errors. The solution to this probles
that has been adopted is described below in the paragraph on
redeclarations. The rest of this section assumes that the
declare fors is not doing any redeclarations. See the
gection on data presets (page 127) for handling of initial

value assignment to declared variables.

Implicit typing

In many circusstances, the type attribute of a name |is
determined implicitly by exasining the first character of
the nage in a wsanner similar to PORTRAN. The
<implicit-fora> details the relation betveen the first
character of a name and its 1implicit type. The syntax of an

<isplicit-form> is:

12/73/74

60 CRISP -- SDC THM-5455,000/00

*SLe
<implicit-form>::=INPLICIT $({<imp-type> ($s,e<imp-range>)}
<imsp-type>::=GENERAL |INTEGER| FLOAT

<imp-range>: :=<character>{ THRU <character>]

ILe
<implicit-form>::= (IKPLICIT $(<imp-type> $<imp-range>))
<imp-type>::=GENERAL|INTEGER{FLOAT

<imp-ranqe>::=<character>| (<character><{character>)

For example, to establish the normal FORTRAN conventions
{vhere names can baegin only uith_A-Z). use the following:

INPLICIT PLOAT (A THRU H, O THRU 2)
INTEGER(I THRU N);

¥hen an implicit fors is executed, the default type of all
characters is initialized to general. Then the sub-phrases
are interpreted in left to right order. A range of a single
character nakes the implicit type of that character the
spacified <imp-typed>. A two character range makes the
implicit type of all charcters whose EBCDIC code falls in
the inclusive range the specified type. Thus, these two
forms are equivalent:

INPLICIT FLOAT(I THRU I);: and INPLICIT PLOAT(I):
Alsa, the system is initalized with either of the following
tvo exactly equivalent foras that set the implicit type of
all names to general:

INPLICIT: and INMPLICIT GENERAL(X%X00 THRU XXFF);

An implicit fore may be used only at the top level; it may

Rough Draft

The Declare FPors 61

not be embedded in other foras. The function

GEMERAL FUNCTION IMPLICIT(ID,CHAR,CHAR)
is available for dynamic use. Its first arquaent is an
<imp-type>, and jits other arquments are the character

extrema of the range. The value is RIL.

syntax of declares and types

A <declare> fors gives type attributes to global names. The
most common usages are to declare variables and synonyas.
In addition, the <declare> forem may be used to give type
attributes to function and processor hnames. This is
sometimes necessary when forvard references are made to
functions or processors that are not defined in the sanme
file as the references. See the secticn on disk compiling
(page 259) for more inforsation. A declare form must appear
on the top level; it may not be embedded in any other fornm.

The syntax of the <declare> form and types is:

SL
<{declare>::=DECLARE 3% ,s<declaration>

<declarationd::=<synonys-dec>{<like-dec>|<variable-dec>|
<fungtion-dec>|{<processor-dac>

<synonym-dec>::=<{syn-dec>[<synx-dec>
<syn-dec>::1=SYN <name>i=<fors>
<synx-dec>::=SYNX <name>;=<expression>
<like-decd::=<name> LIKE <name>

<function-dec>::=[<value-type>] FUNCIION <name>
<arg-type-listd>

<value-type>::=NOVALUR|<type-ref>

12/31/74

62 CRISP -- SDC TH-5455,000/00

<processor—-decd>::sPROCBSSOR <nale><ntq—type~list>

<arg-type-listd>::=($s,ultype-refd) |
(${<type~-ref>,}<type-ref> INDEF)|
($ {<type-ref>,}<type~-ref> LIST)

{variable-dec)::=<var-dec>|<ntuple-dec>

<var-dec>:=[<type-ref> Y <global-scope>){ VARIABLE]
<name>{ <preset>]

<ntuple~-dec>::=[NTOPLE }{ <glotal-scope> J[VARIABLE <nare>
{<item-rep-count>f <item-typed]j<qroup-defd>}

<name>::=<identifier>j<qlobal-name>
<qlobal-scope>::=GLOBAL

<preget>::= ;= (<expression>|*)
<item-rep-count>::=(fe,s ([<integer>/)<integer>})

<item-typed;:=<{type-refdi<flat-type>|
<qroup-def>|<short-type>

<group-def>: =5¢-.-(<itel-na|e>r<ite|—rep-count>]
[<item-type>1}i2

<ites-name>::=Cjidentjifier>

<flat-type>::=FLAT <named-type>
<named-type>::=<name>

<short-type>::=BYTEB|HALY
<type-ref>::=<named-type>|<array-tyre>|<simple-type>

<arrav-type>::=<element-type> ARRAY <array-rep-countd>|
STRING

<arrayvy~-rep-count>::=(%s,s {{ <integer>/)<intaeger>|*}}
<elesant-typed::a<type~-refd>i<flat~-type>i<short-type>
<simple-type>::=<general-type>|<identifier-type>|
<noden-type>|<name-type>|
<boolean-type>}<number~-typed|
<handle-typedi<composite~type>
<genseral-type>::=GENEBAL
<identifier-type>::=IDENTIFIER|CHARACTER

<noden-type>::=NODEN {NODE1|NODE2|NODE| NODE3 |}
NCDE4 | NCDB5 | NODE6 | NODR7 | NODES

<name—~type>::=KANE| SPACE|<proc-type>|

Rough Draft

The Declare Forn 613

<func-type>|<varb-typed>
<prac~-type>::=PROC <arg-type-list>
<func-typed>::=<type-ref> PUNC <arg-type-list)
<varb-typed>::=<type-ref> VARB
<boolean-typed>: :=BOOLEAN
<number-type>: :=sNUMBRR| INTEGER {FLOAT {COMPLEX
<handle-type>::=HANDLE

<composite-type>;::=ARRAYINTUPLE

sIL*
<declare>::= (DECLARE $<declaration>)

<declaration>::=<synonym-dec>|<like-dec>{<variable-dec>|
<function-dec>|<processor-dec>

<synonym-dec>::=<syn-~dec>|<synx-dec>
<syn-dec>::= (<named> SYN <form>)
<synx-dec>;::= (<name> SYNX <expressiond)
<like-decd>::= {<name> LIKE <named)

<function-dec>::= (<name> FUNCTION [<value~type>)
<arg-type-list>)

<value-type)>::=NOVALUE| <type~-ref>
<processor-type>::= (<nane> PROCCESSOR <arg-type-listd)
<arg-type-~listD>::= ($<type-ref>
[(INDRF <type-refd>)|
(LIST <type-ref>)))
<var iable-dec>::=<var-dec>{<ntuple-dec>

<var-dec>::=<name>} (<name>|[VARIABLE }Jf <global-scoped]
f<type-refd>) {presetd>])

<ntuple-dec>::= (<name>[VARIABLE }J{<global~-scope>]
{<item-rep-count>{ <itea-type> }i<{group-def>}
f<preset)>})

<name>::=<identifier>i<global-nama>

<glolkal-scope>::=GLOBAL

<preset>::= (SET {<expression>|*})

12731774

64 CRISP -- SDC THM-5455,/000/00

<ites-rep-count>::=(REP £{<integer>{ (<integer><integer>)})

<item-typed::=<type-refrj<flat>|
<qgroup—-@defr>i<short-type>

<qroup~def>::=(GROUP #([<item-name>|
{¢itea-name>[<item-rep-count?>]
f<itez~typed>]} })
<itel—nane>::=<identi§1¢t>
<flat-type>::s{FLAT <name-typed)
<named-type>: :=<nase>
<short-type>: :=BYTE| HAL?P
<tvve—ret>::=<naned-typed>|<atray-type>|<si-p1eftype>

<array~type>::={ARRAY <array-rep-count><element-typed) |
STRING

<array-rep-count>::=(REP $(<integerd>} {<integer><integer>|*})
<element-type>::=<Ctype-ref>|<flat-type>|<short-type>
<simple-type>::=<general-type>|<identifier-type>|
<ncden-type>|<name-type>|
<bhboolean-type>i<number-typed|
<handle-type>|<cosposite~-type>|
<func-type>{<proc-type>|
<varb-type>
<general-typed>::=GENEBAL
<identifier-type>::=IDENTIFPIER|CHARACTER

<noden~type>::=NODEN |NODE1|{NODE2| NODE{| NODE3|
MODRE4 | NODE5 | NODEG | NOBE7| NODES

<name-typed>::=BANE|SPACE|<proc-type>|
<func-tyre>|{<varb-type>

<proc-type>::=(PROC <arg-type-listd)
<func¥tvpe>::=(runc <value-type><arg-type-list))
<varb~type>::=(VARB <type-refd)

<boolean~-type>: :=BOOLBAN
<nusber-type>::=NUMBER|INTBGER| FLOAT {CONPLEX
<handle~type>: :HANDLE

{composite-type>::=ARRAY|INTUPLE

Rouqh Draft

The Declare Poram 65

Declaration examples
By several exaaples, sisple usaqge of the <declare> form will
be delonstfated. Pollowing that, several paragraphs will
describe the syntax and usage in wmore detail. 1In most
instances, shortened type nases such as INT (for INTEGER)
will be used. Also, the shortened name, DEC, will be used
for DBCLARE. See Appendix IV (page 317) for a coamplete list
of legal abbreviations. Also see the section on scoping and
denotation rules (page 25) for a description of the naming
conventions. For this section, it is assumed that the
<default-fora>,

DEPAULT USBR{(USER,CRISP):;
is in effect. Therefore, all names that are not explicitly
tailed (identifiers) will be automatically tailed with the
last name, USER. The default <isplicit-foram>,

IAPLICIT;
is in effect. Therefore, all names without an explicit type

attribute are gqeneral.

Example 1:

DEC IRT A, GER B, FLOAT C:=17;
Three global variables, A, B, and C, are declared of type
integer, qeneral, and flcat, respectively. A receives an
initial value of 0, B receivas an ipitial value of NIL, and

C receives an initial value of 17.0 (forced conversion).

Exaaple 2:
DEC GLOBAL A, VARIABLE B, GLOBAL VARIABLE C:

The three variables, A, B, and C, are all declared of type

12/31/74

66 CRISP ~-- SDC THM-5455/000/00

qeneral with a preset of NIL. The scope, GLOBAL, and the

class name, VABIABLE, are redundant but may Le used.

Example 3:

DBC INT ABBAY(*,*) A, A ARRAY (*) B;
In this example, the global variable, A, is declared as a
tvo dimensional integer array. The variable, B, is declared
as a one dimensional array vhose elements are the same type
as A. That is, B is a one dimensional array, each of whose

elements is a two dimensional integer array.

Example 4:

DBC INT ARBAY (*,*) ARBAY(*) B;
B has the same declaration as in example 3 -- namely, a one
dimensional array wvhose elements are two dimensional integer

arrays.

BExample S:
DEC SYN X:=A+BeC;
The expression form, "“Ae+BeC® vill be substituted for

subsequent occurrences of the proper name XSUSER.

Example 6:

DEC FLOAT FUNC (PLOAT) TRIGP:=COS:
TRIGF is declared as a variable vhose value is a functional
that returns a floating value and receives a floating

arqument. The preset is the functios, COS.

Rough Draft

w

The Declare Pora 67

Synonya declarations
A <J<synonym-dec> defines a global pame as a synonys. An
exaaple is 5 above. In the following, a <synx-dec> form is
used:

DEC SINX X:=A+BeC;
The keyword, SYNX, specifies that the value of the
expression "A+B«C" ghould tbLe immediately computed (at
compile time). The value is the fora that will be
substituted for appearances of X. Recall that synonym
substitution works on IL foras {(or SL forms after
translation to IL). The following ¢two pairs of forms are
equivalent:

DEC SYN X:=A¢B*»C;
DEC SYNX X:="(PLUS A (TIMES B C)):

DEC SYN PI:=3.14159;

DEC SYBEX PI:=3.14159;
Like declarations
A <like-dec> specifies that the first name should be
declared with exactly the same attributes as the second
name. Thus:

DEC X LIKE COS:
means that X is the name of a function that receives a
foating arqusent and returns a floating value. This should
be contrasted to the use of a named type}

DEC COS X;
In this case, X is declared as a global variable whose type
attribute is:

FLOAT FUNC(PLOAT)
This would be the case wvhen one vished to write such foras
as:

12731774

68 CRISP -- SDC TM-5455,/000/00

s=C08 or X:=SIN
etc. The second name in the like declaration (the type
*sender") must be & variable, a function, or a processor;}

othervise, an ercror diagnostic will be issued.

Function and Processor Decs

A <function-dec> and a <processor-dec> give a type attribute
to a name as a subspecified function or processor,
respectively. In a <function-dec)> declaration, the optional
<tyve-refd>, if present, specifies the type of value returned
by the function. If not present, then the value 1is
determined as the implicit type of the name. Thus,

DEC FUNCTION X(), INT FUNCTION Y{):

declares X to be a function of no arquments that returns a
general value and Y to be a function of no argueents that
returns an integer value. A function that returns no value
(Like a POBTRAR subroutine) wmay be declared with a
<value-type> of NOVALUE, in which case the function may be
called only as a statement or in other places where a value
is not needed. Since a processor has no value, none |is

declared.

An <arg-type-listd gives the type of each argqument to a

function or processor. An <arg-type-list> may specify that

there is an indefinite number of arqguaents. FPor exaample:
DEC PLOAT PUNCTION Z(GEW,INT IWDEF);

The function, 2, is declared to return a floating value.

Its first argument is8 of type general, and there are zero or

more argqupents of type integer. See the section on

Rough Draft

S

//\\

The Declare Fora 69

definitions (page 97) for more information on indef

acrquaents.

Type refs

A <type-ref> is the mafor syntax mechaniss for specifying
type attributes 4ia CRISPE. There are three kinds of
<type-refd>s: (1) <simple-typed>, (2) <named-type>, and (3)
<array-type>. The simple types are shown in FPigure D (page
49). 2 <named-type> is a name. The type of that name is
"borroved®., If a <type-ref> pame is a global name, it is
used as is. If it is an identifier, then the standard
scoping rules are used to turn it into a proper name. The
most common use of a <type-ref> is to borrow a subspecified

ntuple type.

Some conversion is perforamed in this type borroving if the
naae is 5 function, procesor, or variable. By example:

DBC INT X, FLOAT FUNCTION Y(), PROCESSOR Z (GEN) :

DRC X A, Y B, Z C;
A, B, and C are variables with types borrowed from X, Y, and
2, respectively. The second declare forz is equivalent to:

DEC INT A, FLOAT FUNC() B, PROC(GEN) C:
That is, the ¢type attribute of a variable is bkorrowed, not
the type of its name, Borrtowed function and processor types
are converted to the corresponding func and proc types. See
the <like-dec> form for the other possibility (page 67). In
the above, B is a variable whose values are (the names of)
functions of no arquaents that return float values. The

typre derived from a <type-ref> aust be a legitimate simple

12/31/74

70 CRISP -- SDC TH-5455,/000/00

type, array type, or a subspecified ntuple type. If the
<type-ref> nasme 18 any of the excluded subcategories of name
(macro, generator, transform, synonym, space), then the

<type-ref> type uill be converted to naame.

<type~ref>s try to substitute immediately. Thus, in

DEC INT X, X Y. Y 2
X, Y, and Z are integer variables. Y loses its identity as
an "X*, and 7 looses its identity as a "y", Therefore, a
change in the declaration of X does not affect Y or 2 and a
change in the declaration of Y does not affect Z. The
exception to this is vhen a subspecified ntuple type |is
borroved. Consider:

DBC ILIST<X INT, Y ILIST>, ILIST A, A B;
ILIST is a subspecified ntuple whose type is also called
ILIST. The variables A and B are also subspecified ntuples
of type ILIST. That is, if the value of ILIST, A, or B is
printed, the type identification would be ntuple of subtype
ILIST (actually ILISTSUSER.) A redeclaration of A would
have no affect on B. Hovever, a redeclaration of ILIST
vould affect both A and B. Their type would now be the
hidden version of ILIST. See the section on declarations

apnd redeclarations (page 84) for more information.

Assumse that the value of the variable V is an ntuple of the
subtype ILIST:; then the value of all three of the following
forms is TROE:

TYPEP (ILIS1ISUSER, V)

TYPEP (ASUSER, V)

Rough Draft

The Declare Fora 71

TYPBP(BSUSER, V)
(It is necessary to explicitly tail the names in these foras
only in contexts where ILIST, A, or B have been locally
bound with other meanings.) The <type-ref>s in the <typep>
form also underqo ismediate substitution by the compiler.
Array types and their uses in <type-ref>s are described in

the following paragraph.

Array types
An <arrayvy-type> defines the type of the array's elements
and the number of dimensions. An array declaration may or
ray not include inforsation on the extents of the individual
dimepsions. Hovever, this information is not considered a
part of the array's type: it is used only for allocation.
When not specified, the lowest subscript value is assused to
be the value of the variable LOWSUBSCRISP vhen the type
definition is coapiled. The systes is initalized with

LOWSOB: =1
in effect. Thus,

DBC INT ARBAY(*) A:;
means that A is a one disensional integer array whose first
elesent is A[1) and that A has an unspecified number of
elements., To specify the actual range of subscripts, use a
pair of integqers separated by "/".

DEC INT ABRAY (0/256,-4/17) A3
The first number of the pair is the lowest subscript value;
the second is the extent of the subscript (not the bhighest
subscript value). Thus, A is a 256 by 17 integer array.

The first subscript ranges betveen 0 and 255 and the second

12/3V/74

72 CRISP ~- SIC TM-5455,000,00

betveen -4 and 12 (both ranges are inclusive). If a single
number 1is used as a dimension, then that numsber is the
extent of the diamension.

DEC INT ARRAY(14,17) A;
means that A is a 14 by 17 jinteger array. The first
subscript ranges between 1 and 14 inclusive and the second
betvween 1 and 17 inclusive. The three kinds of dimension
specification may be mixed in a single declaration.

DEC INT ARRAY(0,256,10,%) A;
This declares A to be a three dimensional integer array.
The first subscript ranges between 0 and 255, the second
betveen 1 and 10, and the third between 1 and the actual
exteant of the arxay's third dimension (all ranges

inclusive).

As stated previously, the element type of an array can be
byte or half. A byte array is an array vhose elements are
8-bit unsiqned inteqers, and a half array is an array whose
clements are 16-bit (balf word) signed integers. Using byte
and half arcays saves storage. Hovever, there are
penalties: (1) it takes more code (both space and time) to
access (reference or set) byte elements, and (2) most
operations with half gquantities are slower than the
corresponding operations with inteqers. Por these reasons,
it is suqgested that INTEGER arrays be used unless a large
space savings will be achieved using the short types, byte

and half.

The arctay subtype, string, is exactly egquivalent to

Rough Draft

N

N
\. E
S~

The Declare Porm 73

CHARBRACTER ARRAY (*)
That is, & strinq is a osne disensional array whose elements

are characters. The individual elements may be referenced

. and set by the standard subscripting mechanisa.

The type of an array's eleaments may be declared flat. The
word, FLAT, has no meaning unless the <named-type> is an
ntuple. Thus, these two declare forms are equivalent:

DBEC INT X, FLAT X ARRAY (*) A:

DEC INMT X, X ARBAY(*) A:
In both cases, A is a one dimensional integer array. The
folloving two foras are different:

DEC FQO<X INT, Y INT>,
YOO ARRAY (2) A;

DEC POOLX INT, Y INTO>,
PLAT FCO ARRAY (2) A:

Fiqure E shows the difference. The top diagram corresponds
to the first declare form with the unflat elements. The
bottoa diagram corresponds to the flat element case. The
flattened representation obviously conserves storage (8
words vs. 14 words including the array and ntuple headers).
Hovever, the unflattened representation allows more general
processing. The array elements in the unflattened case may
be processed individually. For examsple,
:=Af 1)

vhere B is a variable with type attribute FOO, would make
the value of B a pointer at the same structure as A[{1]. If
A is flat, as in the second diagram, the above assignment
would be 1lleqgal. A copy of the pair, A_X[1] and A_¥Y[1]

could he wmade using the ntuple copy primsitives, See the

12/31/74

74 CRISP -- SDC TM-5455/000/00

A= ey
IOAM 1) Dy 2 <~A[1]
i | A_X[1])
| A[2) —4—=q oy
s | | A_Y[2] |
‘ | FT————
|
=D gy <=A[2]
I A_X[2] |

A=D p— -

A Y[1] |

|
PAY[1Y |
'
{ A_X[2] |
o e
LAY 21 |

|

FLAT vs. NON-FLAT ARRAYS
Fiqure B

sect ion on copiers (page 255) for more details.

Ntuple declarations

An <ntuple-dec> gives a variable name a subspecified ntuple
type attribute. Purther, a name with such an attribute may
be used, as a <type-ref>, to confer the same attribute on
another name. Ntuples are coaposite obiects. An object in
a particular ntuple subtype has a fixed number of elements.
Zach elesent has a name and a type attribute, and the
elements occur in a particular, specified order. The name
of an element is a combination of item qualifiers (other
item names) and subscripts. The formation of an element

Rough Draft

5,
N .
~—

=

The Declare Fors 75

nage is described in detail in the section on iteam
teferencing and subscripts (page B88). (The terms "item"and
"element" are used interchangeably in this section and
throuqbout this document.,) The ters field refers to the

occurrence of an elesent.

Ntuples may be satructured in a variety of wvays. In the
simplest case, an ntuple is merely an ordered tuple with
sisple elements. For example:

DBC N¥<X INT, Y PLOAT, Z NODE2>:
N is declared to be ap ntuple with type N. (Actually, the
variable, WNSUSEB, is declared to be an ntuple with type
attribute N$USER, assuamaing that the original default form is
in effect.) N is an ordered 3-tuple: the first element
(named X) is ar integer, the second element (named 1Y) is a
float, and the third elesent (named Z) is a binary node.
Example values of the variable N are:

{NSUSER 27 -13.68B~4 (X Y 2)}

{NSUSER -13 1701.2 (14 . 17)})
When an ntuple structure of type N is created, the initial
value is:

{§SUSER O 0.0 NINL)
The elements of an ntuple may be repeated. Hovwever, the
nuaber and extent of the repetitions must be specified vhen
the declaration is campiled. (Therefore, there is no option
to use "*" as with array declarations.) For exanple:

DBC WN<X INT, Y (3) FLOAT, Z RODE2>;
N is declared to be a S-tuple. The elements are X, Y[1],

Yf2), Y31, ARD 2, where X is an integer, Y 1] - Y[(3] are

12/31/74

76 CRISP -- SDC TH-5455,000/00

floats, and 2 is a binary node. Note, Y itself &xay not be
independently referenced. An example value of N is:

fNSUSER 1 3.7 -4.5 1.0 (A B)} |
Repeat ing element declarations reseable arxray declarations
in that either the extent or the lovest value subscript and
the extent of a repetition may be specified. If the lowvest
value subscript is not specified, then the value is assumed
to be the value of the variable, LOWSUBSCRISP, when the
declaration is compiled. The initial value of LOWSUB is 1.
For example:

DEC N<X(0,/2,2) INT, Y FLOAT>:
N is declared as a S-tuple with the elements X{0,1), X[0,2],
Xr1,%1, x{1,2), and Y. An example value of N is:

(NSUSER 1 2 3 4 5.0}
Rtuples may also be partitiocned into groups. A group is a
collection of elements and other groups. For exaaple:

DEC COUPLE<MANCAGE IMNT, NAME ID>,
WONANCAGE INT, NANE ID>D>;

In this example, COUPLE 4is a 4-tuple with the elaements
BMAN_AGE, MAN_NANE, WONAN_AGE, and GOMAN_NANE, A exaaple
COUPLE is

fCOUPLESUSER ({MAN 37 FRANK)
fWQNAY 13 NARY}}

Groups may also be repeated. This has the effect of
repeating all the elements and groups that nmake up the
group. PFror example:

DEC CORNEBSSTOPLIGHT BOOLEAN,
STRERT (2) <MAME ID, SURFACE ID>>;

CORNER is a 5-tuple with the elenents STOPLIGHT,
STREET_RARE[1], STREET_SUBFACH 1], STREET_NAME[2], and
STREET_SURPACE[2]. aAn example value {is:

Rough Draft

.

The Declare Fora 7

fCORMERSUSER TRUE
{STREET MAPLE CONCRETE}
{STREET MAIN TAR}}
When the extent of repetitions is not known, an array may be
used as an ntuple element, and of course, if necessary, the

elements of the array may be ntuples. For exasple:

DEC WORD<PBINT ID, SPELL PHONE ARRAY(*)>,
PHONE<GRAPHIC ID, FEATURES NODE>;

KORD is a 2-tuple with the elements PRINT and SPELL. An
example value cf WORD is:
{WORDSUSER TEEN
{PHONRSUSER ARRAY (3)
[PHONESUSER T (ALVEOLAR PLOSIVE)}
{PHCNEBSUSER 1Y (VOWEL BACK)}
{PHONESUSER R (NASAL ALVEOLAR) }}1}
Ntuples may contain groups nested to any depth, any of which
say specify any number of repetitjons. The net result is
that to access an element, it 1is necessary to use the total
nuamber of subscripts specified by all groups ccntaining that
element and the element itself. For example:
DEC N<A INT,
B(5) GEN,
C(3.2) <D FLOAT,
E(4) 1D,
P(17)<G INT, H(6) HODE3I>>>;
N is a 750-tugple. The elements are (not in their order of
occurrence) A, B{1]1 - B[5], C_Df1,1] - C_D{3,2). C_E(1,1,1]
C_F_Hl[1,1,1,11 - C_Pr B 3,2,17,6]1. The order of occurrence

of the elements is

12/731/74

78 CRISP ~-- 5DC TM-5455/000/00

A,
Bf1] - BIS)
of1, 11
Bl1,1,1]) - B1,1,4]
6f 1.1,1]
H[‘n1n1o,] - Br111'106]

EQD

]
] - 8[1,1,17,6)

ofr 3,21
Ef3,2,1) - 8[3,2,4)
Gf 3, 2,1}
H[3¢201c‘] - H[3'20 1.6

6f 3. 2,171
H{3.2,17,17 - B[3,2,17.6)

The elements and qroups are repeated in their lexical order
of appearance, with the last (inner) subscript varying most
rapidly. When a group is repeated, all of its elements and
qroups are also repeated. It is necessary to know the order
of accurrence of elesents only 1f binary data are exchanged

with proqrams that are not written in CRISP.

An item's type may be omitted. When this is done, the
iten's type is the implicit type of the itea's name. Thus:
INPLICIT FLOAT(A TO H) INT(I TQ N):
DEC N<A, I, 0>
is equivalent to:

DEC N<A FICAT, I INT, O GEN>;

A group may be created in an ntuple by using a flat type.
(As vith arrays, the word, PLAT, does nothing unless the
namned type is a subspecified ntuple.) The following two
declare forms define N as an ntuple with identical
gtructure.

Rough DpPraft

Sl

The Declare Forn 79

DEC N<X INT, Y FLAT N>, M<Z FLOAT, Q 1D>;
DEC N<X INT, Y<Z2 FLOAT, Q ID>>;
In both cases, the elements of ¥ are X, Y_Z, and Y_Q. With
the following declaration, the elements of N are X and Y:
DEC K<X INT, Y N>, HM<CZ FLOAT, Q ID>;
Hovever, the elements of M may still be referenced with the
same qualifier sequences as in the above two examples,
namely Y_X and Y_Q. See the section on item referencing and

subscripts (page 88) for more details.

Assume that M has been declared by:

DEC M<Y GEN, Z INT>;
then Piqure F shows the structure for each of these four
declarations of M:
I. DEC N<A INT, B(2) M, C FLOAT>;
II. DEC N<A IKT, B(2) PLAT M, C FLOAT>;
III. DEC N<A INT, B M AREAY({(2), C FLOAT>;
IV. DBC N<A INT, B PLAT M ARRAY (2), C FLOAT>;
The following describes the properties of each of the four
N's, The size computations are given, assuming that the
repeat count had been "n" and specifically for n=2 (as in
the actual exasples). Sizes include all array and ntuple
header information.
1. A 3-tuple

Blements in N - A, B{ 1], B{2], C

Total size=5n+4, n=2 size=14 wvords

Referenceable fields - A, Bf1], B_Y[1V]), B_Z2[1], B[2],
B_Y 21, B_2[21, C ‘
II. A 6-tuple
Elesents of ¥ - A, B_Y(1], B_2[1], B_Y{2], B_2[2], C
Total size=2n+4, n=2 size=8 words
Referenceable fields - A, B_Y[1], B_z[1], B_Y[2]),
B_2[2), C

12731774

80

CRISP -- SDC TH-5455,000/00

r~ -
g———————q =2} B_Y[V1) | N<A INT, E(2) M, C PLOAT>
oA I et
e | I B_Z{ 1] 1
t BIf1] 4= s
P
t Bl21 -4 -
ey t=>} B_Y[2] 1
i C i L e —
e d ! B_2[21
| S |
P —————
f A | N<A INT, B(2) PLAT N, C FLOAT>
$———d
I BLI[1T |}
s] .
I B 21114
| e e
1 B_Y[21 ¢
e e |
t B 221}
| e e |
i C i
| FORRES——
re B |
e—>1 B_Y[1] § HN<A INT,
P [- B M ARBAY (2),
i A { g § | B_2{1] | C FLOATY
b I OB[1]) —4=3 b
{ B -4 >4 4
1 | Bl2] —4=4 ¢m—mmmmm—y
{ C I d &> B_Y[2]
e d e Rt |
I B 2[2])
| WSS |
Fe—————
e e ey | B_Yf1) { Wu<A INT,
1 A | L e a— | B FLAT M ARRAY (2),
| DRSS t B_2[1) C FLOATY
i B 4> § 4
g 1 B_Y(2) |
i C | e s
e - I B_2(27 |
| RS |

NTUPLE and ARRAY STRUCTURES

Piqure F

Rough pDraft

The Declare Porm 81

III. A 3-tuple

Elements of ¥ - A, B, C

Total size=5n¢9, n=2 size=19 vords

Referenceable fields - A, B, B[1], B_Y[1], B_2[1],

B 21, B_Y21, B_2[(2], C

Rlements of B - A, B, C

Total size=2n+¢9, n=2 size= 13 wvwords

Referenceable fields - A, B, B_¥{1], B_2{ 1], B_Y[2],

B_2{ 2], C

As can be seen from Figqure F and the above, there are a
variety of sizes, shapes, and referenceable fields,
depanding on wvhich of the four declaration forms is used. A
virtue of wsaking B an array is that the number of
repetitions need not be known in advance. Declarations III
and 1Y are then written:

DEC N<A INT, B N ARBAY (*), C FLOAT>;

DEC N<A INT, B PLAT M ARRAY(*) , C PLOAT>;
When coanservation of storaqe is a factor, then an analysis
of which fields need to be referenced should be made to
determine which wusable representation is the nmost compact.
%hen the number of repetitions is known, use a repeating
element or group instead of an array. (This effects a minor
savings of S5 words per structure for single repeats.) Also,
vhen possible, use a flattened representation. (This saves
3n vords per structure vhen there is a single repeat of a
gqroup of order n.) PFurther, to aid in parameterizing
storage declarations, synonymas with numerical values may be
used to specify the extent and lowest subscript of a
repetition in an array or an ntuprle. However, if the value

of the synonys is changed, then it is necessary to recompile

the declarations and the code that references then.

12/73v/74

82 CRISP -~ SDC TN-5455/000/00

[eclaration 1III above is the mcst flexible, Whenever
storage conservation is not a sajor concern, or when it is
hard to predict in advance the ways in vhich a structure
vill be decomposed, 40 not use flat groups but do use arrays
for repeats. The referencing and subscripting mechanism has
been desiqned to allow convenient switching among the four
styles of declarations without change to programs that
reference the fields that are still reachable. Thus, the
storage layout may be optimized later, after all the

evidence 18 in.

Ntuple types may be defined recursively. For exaample:

DBC ILIST<I INT, L ILIST>;
This defines ILIST as a 2-tuple with the elements I and L.
The value of the element L must be either an ntuple of type
ILIST or MIL. Sose exasples of ILIST structures are shown
in Fiqure @. The first diagram is a list of integers. 1Its
external, printing representation is:

{ILISTSUSER 1 {ILISTSUSER 2 {ILISTSUSER 3 NIL}}}
The second diagram is a simple three element ring. The
third diagqras shows a sort of combination of a list and a
ringq. The printing representation of both the second and
third example is:

(ILISTSUSER 1 {ILISTSUSER 2 (ILISTSUSER 3 SCIRCULAR?®}}}

In sone instances, a flat type and a recursive definition
are incosmpatible. An obvious exasple is:
DEC ILIST<I INT, L FLAT ILIST>:

Other examples can occur when definitions are autually

Rough Draft

T
, N

The Declare Form 83

———=n
| I=1 |
b——d p——
| L= ——>| I=2 |
| WOSS—— ’-—-—-—-—*

po———=q
I L= —4—=>)| I=3 |
L 4 } 4
I L=(}1
| SR |
———=
j I=1 < 2
| ey |
P L= ~—>1 I=2 | |
b S ‘r { r i ‘
I L= —4—>] I=3 | |
e 4 } L
| Le —4=—d
b d
gy
| I=1 }

| L= ~==>| I=2 < 4
e e S S R
{ L= —4—>1 I=3 { |

e e B

| L= -4

| IOV |

ILIST EXAMPLES

figure G

recursive. For instance:

DEC A<I INT, L PLAT B>, B<F PLOAT, L PLAT A>;
The problem, in both cases, arises with the recursive
(circular) definition because, at some point, a flattened
ntuple must be inserted into "itself" an indefinite number
of tinmes, This is cbviously an ill-defined situation.
Three legal examples are:

12/31/74

84

DEC A<I INT,
DEC A<I INT,
DEC A<I INT,
Fiqure H portrays

top diagqgras is an

CRISP -~ SDC THN-5455,000/00

L B>, BKF PLOAT, L A>;

L FLAT B>, B<F FLOMT,

L &>;

L B>, BCF FLOAT, L FLAT &>;

these three exansples.

A ntuple and the bhox

The left box in the

on the right is a B

ntuple. The field L_L may either point at an A ntuple or be
NIL. 2he second Adiagraam corresponds to A in the second
example, where B is flattened in A. The field L_L is a
pointer at another A or is NIL. The left box in the third
diagras corresponds to A in the third example, vhere A is
flattened in B. The rigqht box corresponds to a B ntuple.
The field L_L1_L either points to a P ntuple (like the right

box) or is NILl.

Declarations and Bedeclarations
As a general rule, all nanmes that nake wup a CRISP
declaration or definition must have been given type
attributes before they are used. The exceptions are the
keyvords in the lanquage such as DECLARE, +, BLOCK, and
names that appear in a position wvhere they are given
attributes such as v, W, X, and Y in this exaaple:
DEC ¥V INT:
IRT PUNCTION W (X)
BEGIN FLOAT Y:
HETUBH X+Y
EXD:
This may ceuse probleas when several functions call each
other recursively or wvhen declared types make circular
references to each other. Also, there may be a desire to
vrite functions 4{in a "top down" manner, vhich would cause

forvard references. One method of handling these cases is

Rough Draft

—

‘\\4,

/—\
N,
{

7Y

The Declare Forns 85

} L_.L +--->alternate As and Bs
. J

Frmrm————1
1 I |
b
1 L_F |
$——q
{ L_L-~+4-——Danother A structure
| W

e
D S
. | g
{ L ~4=—2>] L_F |
e d P
IL_L_IY
| USSR |
{i_L_L4——D>another B structure

‘.———-J

BRCURSIVE FLATTENING

Pigqure H

to write a <declare> fora that gives the attributes of all
function pames before the definition of the functions. This
is very ocusbersome. The coampiler helps alleviate this by
operating a declaration pasa on each file. When a file isg
compiled, all SL is translated to IL. All <declare> forms
are then joined togetder with all definitions. At this
point, all the names are given their attributes
simultanecusly. In Figqure B (page 35) a definition of the

functions SUBST and SUBST! vas given along with a <declare>

12/31/74

86 - CRISP ~- SDC TN-5455,/000/00

form. The definition pass processes the derived form:
DEC GEN A$SYS, GEMN BS$sYS,

GEN FUNCTION SUBST18SYS (GEN),

GEN FUNCTION SUBSTSCRISP (GEN,GEN,GEN) ;
In interactive mode, because there is no file to process,
forms are processed one at a time. However, all names given
attributes by the same <declare> form are handled in the
same fashion, simultaneously. Therefore, up to the order of

preset computation, it never matters in what order the

declarations appear in a <declare> fora.

Anot her problem arises vwhen names are redeclared with
different attributes. Compiled code and data structures may
reference the name and mnmake assumptions about the name's
value. To sisply redeclare the name could lead +to
unrecoverable proqras checks. To avoid this, a "hiding"

mechanism has been created.

Associated with each (global) name is a binding (with a
value cell) and a symbol table entry. The syabol table
entry includes, among other things, the name's first name,
last name, type attribute, and some descriptor bits. Also,
all (vnhidden) name structures with the same first name are
linked together. When a name with a type attribute |is
redeclared vith a different attribute, the present structure
associated with that namse is hidden and a nev npame
structure, vith the same first and last name, is created
with the new attributes. All code and data references that
exiated before nov poiant to the hidden structure. All new

references point toc the new structute.

Rough Draft

~

N

The Declare Fora 87

Part of the operation of the declaration pass is deteramining
vhich names are to be hidden because of redeclaration.
Before nwmaking the declarations, all of these names are
hidden, and all references to theas in the IL are changed to
point at the new structure with the same nase. Then all
declarations are pmade. After this, the rapresaentations of
all constant ntuples and arrays with ntuple elements are
made into the proper data structures. Compilation of IL
follows the same dgeneral pattern: a declaration pass
followed by constant conversion. For usey programs that
generate IL programs asd cause them to be coepiled, some
primitives are available. However, they do not operate in
as gqeneral a mananer. That is, they will not tolerate
redeclarations. When necessary, these generating programs
sust explicitly hide the name being redeclared using the

function HIDENANE (see below).

The procass of hiding a name is simple. First, a bit in its

symbol table entry 1is set to indicate that the name is

bidden:; second, the name structure is removed froe the list"

of all structures with the same first name. Thus, the name
is no longer found by the normal sgearching alqgorithms. To
explicitly remove a name and its associated value object
from the system, use the function:

NAME PUNCTION HIDENAME(NANME)
This hides the name. When there are noc longer code or data

references to the hidden name, it will be reclaimed.

12/31/74

88 CRISP -- SDC TH-5455,000/00

Itea Beferencing and Subscripts

This section describes the syntax and mechanisa for
referencing and setting ntuple and array fields. A field is
an element in a particular ntuple or array. The syntax has
been desiqned to permit declarations to be nodified from
flattened to unflattened form and from repeating groups and
elements to arrays without changing proqrams that have
already been written. Of course, the programs containing
such references would need to be recompiled because the
field references would now have a different meaning. The
syntax for referencinqg ntuple fields vhen not subscripting

is:

SL

<field>::=<ntuple-expression>fs_w<item-named>

sYL®

<fiaeld>::=([_1<ntuple-expression> #<item-named)

An <ntuple-expression> is any expression vhose value is an
ntuple and whose exact subtype is known at compile time.
For example, qgiven:

DEC N<X INT, Y PLOAT>, R M;
the variables X and n would be instances of
<ntuple-expression>s with type N, . In this section,
variables will be used as <ntuple-expression>s. For more

complicated examples, see the section on expressions (page

130) .

Rough Draft

~—

Itea Referencing and Subscripts 89

In the above example, the elements X and Y may be referenced
in the ntuple ¥ as the fields N_X and N_Y, respectively.

Similarly, for the ntuple M, write M_X and M_Y.

In this 4-tuple:

DEC M<X, Y, Z<a, X>>;
the fields are N_X, N_Y, R_Z_A, and N_I_X. It is also
permissible toc reference the field N_Z_A as N_A. But the
field N_Z_X wmay not be referenced as N_X because there is
another field kncvn by that exact nbnane. For another
example, consider:

DEC M<A, X<X, &>, X<A, XD, X>;
The fields of N are N_A, N_A_X, N_A_A, N_X_A, N_X_ X, and
B_X. B¥o shortening of any of these names is permitted. all
short forms wvould conflict with other names. In:

DEC N<A, B<A, B<A, C, D>>, C>;
the fields are N_A, N_B_A, N_B_B_A, N_B B C, HN_B_B_D, and

0 s " e T e P s g " e

NC. HN_B_B_C rmay be shortened to ¥_B_C and N_B_B_D may be
shortened to N_B_D or N_D. The shortening rule is: (1) the
ntuple expression may not be deleted, (2) the last item name
may Dnot be deleted, (3) any subset of the interior
(remaining) item namses pmay be deleted as long as the

resaining sequence 1is not another field's name or another

field's short name.

In order to handle subscripting of array and ntuple
elemnents, the above syntax nust be extended. Note, the
actual specification of legal field forms is highly context

dependent; these BNFP forms serve only as the starting point

12/31/74

90 CRISP -- SDC THM-5455,/000/00

for the description:

xSL*

<field>::=<composite-expression>f{_<item-name>|
<gubscripts>)

<subscripts>::=[{¢s,e<subscript>]

<subscript>::=<{inteqger-expression>

IL

<field>::=([_ JKcomposite-expression>f(<item-name>|
<subscripts>})

<subscriots>::= ($<subscript))

<subscript>::=<integer-expression>

A <composite-expression> is an expression vhose value is an
ntuple or an array. The full subspecified type aust be
known at conmpile time. An <integer-expression> is any
expression whose value is integer or is convertible to
inteqer. The simplest case of subscripting is an array with
sisple elements. Por instance,

DEC INT ARRAY(®%) A:
Typical fields are A[1] and A{X~-3*Y]. A @more coaplicated
example is an array vith array elaements.

DEC INT ARBAY (*,*) ARRAY (*) A;
As above, typical fields of A are Af{1] and A[X-3*Y). One
way to subscript the fields in the fields of A is with forms
like Al 1 X,J¢42) and A[{ZXH 3,1]. Ancther way is to coabine
all the subscripts as 4in Af 1,I,3¢21 and A(Z,3,1). These
latter two forms are equivalent to the prior two forams. Yet
another way of rewriting the forms with the same meaning is

Af1,IWJ+27 and A[Z,3) 1) Also, with the declaration:

Rough Draft

S~

Ites Referencing and Subscripts 91

DEC INT ARRAY (*,*) B:
the I Jth field could equally well be written as B[I1,J] or
B{INJ1. In general, the subscripte in a field reference
say be arbitrarily qrouped and placed. The compiler gathers
them all toqether, presecving their 1lexical order of
appesrance, and then regrcups and allocates thea as
appropriatae. In any of the equivalent groupings and
placements of subscripts, their relative order of lexical

appearance will be identical.

The next example is an ntuple vith a repeat:

DEC CORNERCSTOPLIGHT BOQOL,
STRERT (2) <NANE ID, SURFACE ID>>;

The fields are CORNER_STOPLIGHT, CORNER_STREET[I]_NAME and
CORNER_STREET{ I1_SURFACE where I=1 or 2. The following are
eguivalent under the item name deletion and the subscript
novement rules:
CORNEE_STREET[I {_NANE
CORNEBR[I1_STREET_NANE
CCRNER_STREET_NAME[I}
CORNER[II_NANE
CORNBR_NAXEB[{I]
A more coaplicated example is:
DEC N(2)<A(3), BLC(4,5)<A, D>, E>, F);
The following are from among 40 egquivalent field foras:
N_II]1_B_ClrJd,K1_a
N_B_C_AlI,J,K]
N_CII,J) AfK]
N{I,J,K1_B_A
The following is not an equivalent:
N A[X,Jd,K]
That is, ambiquity is not resolved by the nusber of

subecripts alone. (There is a field, N_A[X,Y], in N.) When

12/31/74

92 CRISP -- SDC TN-5455,000/00

the compiler searches a type definition for the neaning of a
field form, it first determines whether the form gives the
full name of aan eleaent (all containing gqroup names
present). If so, that element of the value of the composite
expression is the field denmoted. If a full element name has
not been given, then the compiler searches for the first
element (in the lexical order of the declaration) that can
have this shortened name. If the value of the variable
CHKEIBLDSCRISP is TRUE, then the ccapiler will continue the
search to see whether this shortened name is ambigquous. If
it is, a warning diagnostic is 1issued. In any event, the
first element with the shortened name is wused. The systes
is initialized with the form:

CHKPIELDSCRISP:aTRUE

So far, the field referencing mechanism is wvirtually
identical to PL/1. However, CRISP allows structure itess to
be arrayvs, ntuples, or even functiopals (funcs and procs).
Therefore, many cases that do not arise in PL/I can occur in
CRISP. The rest of this section describes these cases and

the mechanisa for handling then.

The next example shows some ntuples, flattened and
unflattened, that are included in other declarations:

DEC M<A N, B FLAY ¥, C O, D PLAT P>,
<X, ¥>, 0<@¢, B>, P<R, S>:

is declared as a 6-tuple with the following fields in the
value of N: M_A, N_B_X, M _B_Y, M _C, M_D_R, and #_D_S. In
addition, the folloving fields may be reached from NM:
M A_X, M_A_Y, M8_C_Q, and M_C_R. H_A_X and M_A_Y are the

Bough Qraft

N

Ites Referencing and Subscripts 93

fields in the ntuple of type N pointed at by the field R_A.
H_C_0 and M _C_R are the fields of the ntuple of type O
pointed at by the field K_C. In total, ten fields are
reachable from M in this example. All may be accessed using
the field forms shown above. Only ¢two of the field forms
may be shortened: M_D_S may be written M_S, and M_C_Q may
be written M_Q. Thus, part 3 of the shortening rule refers
to all reachable fields. (This restriction is slightly

relaxed for recursive definitions. See below.)

The next exarple is an array with ntuple elements:
DRC N<X, Y, 2>,

N ARRAY (%) &,

FLAT N ARRAY (=) B:
The fields in A are writen A[IXI] and each is a pointer at an
ntuple of type N (or NIL). The fields in the fields of A
are: A[T)_X, A[TI1_Y, and A{I1_Z, or with the subscript
moved, A_X[1], etc. In B, there is no such field as B{I].
The fields in B are B{ I} _X, B I) Y and B{I1]_2%2, or the

versions with the subscripts moved such as B X[I].

A more complicated exasple is given next:
DEC WORD ARRAY (*) SENT,

WORDCPRINT ID, SPELL PHONE ARRAY(*)>,

PHONEBCGRAPHIC ID, FEATURES NODED>;
The fields in SENT axe of the form SENT{I] and are ntuples
of type WORD. The fields in the WORD ntuples may be
referenced by writing SENT[I]_PRINT or SENT[I]_SPELL, an
array with fields of the type PHONR. To reference the Jth
ntuple of type PHONE in the Ith WORD, write SENT[I]_SPELL{J)]

or one of the equivalent foras, SENT[I,J]_SPELL or

12/731/74

94 CRISP -~ SDC THN-5455,/000/00

SENT_SPELLII1,J). To reference the field, GRAPRIC, in the
PHONE ntuple, write any of these equivalent foras:

SE!T[I.JI_SPBLL,GEAPBIC

SE!TfI]_SPBLL[J)_GRAPHIC

SENT{I)_SPELL_GRAPHIC[J]

SENT_SPELL[I,J)_GRAPHIC

SENT_SPRLLITI 1 _GRAPHIC[J]

SERT_SPELL_GRAPHIC[I,J]

SENT{I,J1_GERAPHIC

SENTI I 1_GRAPHIC[J3)

SENT_GRAPHICII,J)]
The last three forms are shortened names. For purposes of
resolving the denotation of field forms, the coapiler does
not distinquish gqroups and repeating elements from pointer
tyves at arrays and ntuples. The FEATURES flelds are
referenced in a manner similar to the above. Since the type
of this field is node (node2), a _FIRST or _SECOND nmay be
appended to access the CAR and CDR gortions. Por examples:

SENT_SPELL_FEATURES_PIRST(I,J}
SENT{I,J]_PIRST

poth of these fores would retrieve the CAR field: the first

feature of the Jth phoné in the Ith wvord of the sentenence.

The next topic to be discussed is referencing of fields from
structures that have recursively defined types, or
structures that eventually point at structures with
tecursively defined types. The rproblem arises because the
set of fields referenceable fros such a structure is
indefinitely large and because for all fields in a
recursively defined structure, there are arbitrarily wmany
other fields with the sase short names. To handle these
cases fand to keep searching routines from going into
infinite loops when processing 1illegal names), the coempiler
keepg a 1list of all definition; and groups in these

Rough Draft

)

_//

™.
/,/'

/—\\
/ .
{
1

Itea Referencing and Subscripts 35

definitions that bhave been examined while looking for the
i+1st item name since locating a tentative candidate for the
ith ites nase. The searching routines will terminate this
portion of the search tree if an attempt is made to pass
through any member of this list again. A simple exaample is:
DEC X<i¥, L X>:
In processing X_L_Y, an error, the compiler matches the iten
named L and sets the list wvwith the single element X_L. The
definition of X is then recursively examined for Y. Ris
not Y, and L is not Y, 80 an attempt is then initiated to
search from the element X_L. But this is already on the
list. Therefore, processing stops, the recursion unwraps
and, finding nc other possibilitiea, the coapiler reports an
error. Exasples of 1legal field forms are X_N, X_L, X_L_N,

X_L_ L, etc.

So far, all the inforsation and examples above have been
about SL <field> forss. The Il <field> forms is virtually
identical., The first thing in an 1L <field> form may be _,
which is optional. If the <field> form has a legal
<composite-expression> (that is, 1if tthe compiler can
deteraine the array or the ntuple subtype), then the
serves no purpose. However, 1f there is an error in the
cosposite expression or if its subtype can not be properly
detersined, the use of the _ leads to Dbetter diagnostibs.
Assume that the variable ¥ is undeclared, then the IL fora:
(B A (I O))
is in error. The diagnostic mechanism wvwill interpret this

as an illegal function call form with the arguments A and (I

12/31/74

96 CRISP -- SDC THM-5455,/000/00

J). The second arqusent looks like a call on the function I
vwith arqueent J. If the form had instead been written:
L NA (I D))

the fors would still be in error (N's type is gtill unknown)
but the diagnostics would know that A wvas an iter name
rather than a variable and so would ignore it. Also, I and
J would be treated as subscripts, hence variaktles, and a
diagnostic abhout I beirg an illegal fora operator wvould not

result.

~Rough Draft

D

T

Definitioans 97

Jefinitions

This section gives a syntax and a prose description of the
CRISP mechanism for defining functions, processors, macros,
transforas, and generators. See the section on declarations
and redeclarations (page 84), for information on what
happens when the definition redefines a namse with a

different type attribute. The syntax of definitions is:

L3R

<definitiond>::i=<function-defd>|<processor~def> |<macro-def)|
<{transforn-def>|<genqerator-4def)

<function-~def>::=[<value-type>] PFUNCTION <name>
<arg~list><expression>

<processor-def>::=PROCESSOR <name><arg-list><expression>
<macro-def>::=4ACRO <nanme> ([{arg-scope> }<name>) {expression>

<transfora-def>::=TEAUSFORK <name> ($=a,s<identifier>)
[<gen=-fore> Xform>

<qen-fot->::-G!!ID ¢u,nlidentifier>

<generator-def>::=GENERATOR <name> {[<arg-scope>]J<name))
<expression>

{arqg-list>::= ($a,slarq~-dec>)t (§ {<arg-dec>,}1<indaef-arg-dec>)
<arqg-dec>::=[<type-ref> [<arg-scope> [VARIABLE]J<name>

<indef-arqg-dec>::=[{typae-ref>] INDEYF <identifier>|
[<type-ref>) <arg-scope>] LIST <name>

<arg-scoped: :=<global-scope>i<local-scoped>

<local-sicope>: :=LOCAL

sIL® X

<definition>::=»<{function-def>|<processor-def> |<macro-def> |
<transform-3def>|<generator-def>

<function-def>::=(FUNCTION (<named>! {(<named><value-type>)}
<arg-list><expressiond)

12/31/74

98 CRISP -- SDC TH-5455/000/00

<processor-def>::= (PROCESSOR <name><arqg-list><expression>)
<macro-def>::=(MACRO <name> (<name>[<arg-scope>})
<axpression>)

<transform-def>::= (TRANSFOBN <name> ($<identifier>)
{ <gen-form> }J<forad)

{gen-form>::=(GEKID ¢#£<identifier>)

<generator-def>::= (GERERATOR <name> (<named>s<arg~scopedas)
<expression>)

<arg-liat>::=($<arqg-dec>[<indef-arg-dec>])
<arg-dec>::=<{name>} (<nane>[<arg-scope> }{ <type-ref>})

<indef-arg-dec>::=(<identifier> INDIRF [<type-refd>])|
(<name> [<arg-scope>] LIST [<type-ref>))

<arg-scope>::=<global-scope>}<local-scope>

<local-scope>: :=LOCAL

Por all the above, the name being defined is global. If it
is an identifier, then it is paired with the default tail to
der ive the proper name, The section on scoping and

denotation rules (page 25) gives amncre information on this,

Ara list

An <arg-list> specifies the parameter names for a function
or processor. It also determines each parameter's type
attribute. First, the proper name of each parameter is
determined by the rules given in the section on scoping and
denotation rules (page 25). To repeat, there are six cases:
the <arq-scope> wmay be LOCAL, GLOBAL, or omitted, and the
paraseter name may be either an identifier or a global nanme.
This table sumsarizes the action in each of the six cases

for determining a parameter's proper name.

Rough Draft

e

Definitions 99

* Used Nane
E
~-250pe* 1 I__ASB__1|
1
LOCAL}) §] errcor |
GLOBAL| Ifdefsult | ASB {
opitted| I 1 AS$B |

I and A$B are arbitrary examples of, respectively, an
identifier name and a global namne. I 3default 1is the
identifier name paired wvith the default tail to form a

qlabal name.

After the parameters' proper nases have been determined,
their type attributes are determined. There are six cases:
the proper name may be local (an jdentifier), a global name
with a type attribute, or a global name without a type
attribute, and a <type-ref> nmay be present or omitted as
part of the <arqg-dec>. The following table summarizes the
action in deterasining each parameter's type attribute inen
its proper nane. Ltr is the <type-ref> given in the
<arg-dec> if ©present. Gtr 1is the globtal npame's type
attribute if it exists. Global name 1 is a glotal name with
type attribute, and global name 2 is a qlobal name without
type attribute.
** Proper Name

* Jlocal | global ¢t global |
Sype ref*__nape _|_nape 1 | _pape 2 |
i

| | ecror {make dec|
present| 1tr | unles | using |
i {ltr=gtr | gtr 1

| | | i

: | use | imake decj
omittedi implicit] gqtr } using |
| type | jimplicit]|

If a gqlobal name is used that has a type attribute, amn error

12/731/74

100 CRISP -- SBC TH-5455,000/00

occurs if the <arqg-dec> attempts to redeclare it. Also, if
a qlobal name does not have a type attribute, the compiler
forces a declaration for it. If a <type-ref)> is given with
the <arq-dec>, then that becoumes the name's type attribute.
If the <type-refd> is omitted, then the declaration of the

nane is made using the name's ieplicit type.

Essentially, the above applies to ap <arg-dec> or a list arg
(an <indef-arq-dec> with LIST specified). A noreal
<indef-arq-dec> is handled sliqhtly differently. The indef
arq name is alvays an jdentifier and is always treated as a
local variable with the type attribute integer. When the
function is called, the initial value of the variable is the
number of values of the indef. The type of the indef values
is determined by the <type-refd> if present in the
<indef-arqg-dec>. Othervise, the type is the implicit type
of the identifier, To retrieve the value of the Nth
indefinite, use the pseudo function, ARGN, with an integer
arqueent. The legal value of ARGN's argueent is N vhere
1<k<L and L is the nuaber of arquaents. A simple example of
a function vith an indefinite nuamber of argusents is:

NODE FUNCTION FOO(INT X, FLOAT INDEF L)

POR I:=1 THRU 1L,
LIST ARGN (I)**X
RRDPF:

FOO returns a 1list of its floating, indef arquments raised
to the pover of its integer arquaent. For exaaple, the
value of |

FoO(2, 4.0, -1.5, 6)
is

(16.0 2.25 36.0)

Rouqh Draft B

N’

’./_\\\

——

Pefinitions 101

4 list arq is another methcd by vhich a function may receive
an indefinite nusber of arquments. The indef args are
CONSed together into a node2 1list. The list arg naame
naturaly has the type attribute, node2. The <type-ref> is
the type of the list elements. The function FOO above,
could be revritten as
RODEZ FUNCTION FOO (INT X, FLOAT LIST L}
FORE M O% L, VALUE L

DC CAR (M) : =CAR (Y) **X;
ENDF:

Function defs

When a function (or processor) is called, the arguments are
converted to the types specified by the <arg-list>, All
such conversions are error checked for legality at compile
time wvhen possible, otherwise at run time. If error
checking mode has been turned off (by setting the variable
ERBRCHKSCRISP tc NIL) compile time error checking is still
done but at run time there is no error checking when
conversions are made from one type with pointer values to
another type with pointer values. Conversions from general
and number to integer or float are diagnosed at «rup time
vhether or not error checking wmode is used. All argument

passing is by yalue.

After a function is entered and its argument variables
bound, its expression body is avaluated. If the function's
<value-type> is NOVALUE, then the function simply returns.
Othervise, the value of the expression is converted, if
necessary, to the type specified by the value type. As with
arqumwent type conversion, error checking is done. If the

12731774

102 CRISP -- SDC TK-5455,/000/00

function is compiled with error checking mode turned off,
then pointer type to pointer type error checking is not done
at run tiase. See the section on data object formats (page
55} for more information on types vith pointer

representations.

Processor defs

A <processor-def> has an <arq-list> that is handled exactly
as is a <{function-~def>'s arq list; see above paragraphs.
¥hen a processor is entered, a nev process is created and
the calling ovprocess 1s suspanded. For information on
process evaluation, see the section on processors and
processes (page 173). The expression body of a process is
not regponsible for producing a value, because a processor

has no value.

acro defs
A macro is just like a functicn with the type:
GEN PUNCTION (NODR2)

A macrc operates at cospile tise. Its argqument is an IL
form being compiled, whose operator is the name of the
macra. The value of the expression body of the wmacro is
coapiled in place of the original form., The arqument and
value of a macroc are IL forms. An exaaple is:

MACRO INMPLY(P)
LIST ("OR, LIST (“NOT, CADR(F)), CADDR(M)):

Example arqueent-value pairs are:

(INPLY A B)
(OR (NOT A) B)

Rough Draft¢

e J

f\

Definitions 103
{INPLY (NOT A) (AND B C))
(OR (FROT (RGT A)) (AMND B C))

The SL forms corresponding to these twoc are:
IXPLY (A, B) or AD>>B

INPLY(~A, E8C) or -MA>BEC

Although this example of a macro 1is so siaple that it could
be replaced by a transform, macros aay be extresely coamplex,
involving conditional cosputation. For instance, the
<for-loop> form is handled through macro expansion. It
turns loop foras into fores made up of language primitives

likxe BEGIN, PLUS, GOTO, etc.

Transfora defs

Transforas are described in the section oan compile tinme
substitutions {(page &1) . Another example would be rewriting
the INPLY macro above as a transfora.

TRANSPORY INMPLY (A,B) ~A}B:

A transform wmay use an optional <gen-form>. A <gen-form>
specifies a set of 1dentifier symbols for which unique
identifiers should be substituted each time the transform is
used. The new identifiers are created using GENID. 'This is
particularly useful for creating labels when the transfora

vill be used more than cnce in a single function.

Generator defs

Generators are described in the forthcoming document, CRISP

Compiler and Assembler Structure.

12/31/74

104 CRISP -- SDC TN-54855/000/00

Expression._3yping

The topic of this section is how the compiler determines the
type (of the value) computed by an expression. Expressions
are defined recursively: first as a set of primitive forms
and second as forss made up from other expressions. The
rules for determining an expression's type follow the same
pattern. It is assumed that the reader is fasiliar with
other parts of this document that deal with constants,
variables, function calls, arithsetic forms, expressions and
blocks. Throughout this section, reference is made to the

type hierarchy shown in Piqure D (page 49).

Primitive forms

The type of a constant forem 4is the Jlowest type in the
hierarchy that caontains that object. Thus, 3.7 is typed as
float rather than number or genaral. The type of a variable
form is its type attribute. The type of a function call

fora is its value type.

Aritheetic forms

Some aritheetic forms act like function calls in that they
alvays return the sase type of value. For instance, the
infix operator "//" returns an integer value from integer
division. However, the infix operators ¢+, -, *, /, and *=*
return a value whose type depends upon the types of their
arquaseats. The possible argumsent and value types are
integer, float, complex, ard pusber. If any argument is

complex, then the value is complex. Otherwise, if any

Rough Draft

Expression Typing 105

arquaent is number, them the value is nuaber. Otherwise, if
any argqument is float, the value is float. Othervise, all

arqueents are integer and the value is integer.

The type of value produced by the unary + and - is the same
type as its arqument. The pseudo functions ABS and NABS
produce the same value type as their argument unless the
arqueent is coarlex. In this case the value type produced

is float (the norm or the negative ncrm).

Assignrent typing

An assignsent fora may be used as an expression (as opposed
to a statement), in wvhich case it produces a value. The
type of the assiqnment form is the type of its left side,
the receiving field, Thus, if I 4is an integer variable,
then the form %I:=5.7" has the value "5%", If the types of
the left and right sides are different, and if both are
tvpes represented by pointers, them the type is the most
restrictive that can contain both sets of values (lovest in
Fiqure D, page 49). For instance, if A has the type
attribute INTEGER ARRAY(*) and G has the type attribute
ageneral, then the value type of both these foras is INTEGER
ARRAY (*) :

A:=G and G:=}

Multi~-terminal forms
Sevaral lanquage forms may compute their values in more than
one apot. Each such spot is called a terminal computation.

Examples are A and B in the 1¥ form

12/31/74

106 CRISP -- SDC TH-5455,000/00

IF P THEN A BLSE B
Other forms that may compute values in sore than one place
are selectors and blocks. (Bach return form in a block is a
terainal.) In all these cases, the type of each tersinal is
determined. Then, the type of the parent foram is the lowest
type (in Fiqure D, page 49) that contains all the objects in
the terainals' types. Por exarple, the value type of

IF P THEN 1 BLSE 1.0
is nusber. The type of

IF P THEN "X ELSE "“ABC

is identifier.

Rough Draft

_

Type Conversion 107

Iype.Canversion

Type conversion 1is always possible upvards as defined by
Fiqure D (page 49). Sidewards and downwards conversions are
not always possible. Whenever it makes senge, it is
alléled. Boolean is always convertible to identifier.
Inteqer is always convertible tc float and coaplex, even
though precisicn (lcov crder bits) may be lost. Float is
alvays convertible to camplex. Cosplex conversion to float
or cosplex and float comaversion to integer may not be
possible. In these cases, a run time error will occur if
the value of the bocolean variable PRECISIONP is TRUE;
otherwise, scae such value as 0, "very large" positive, or
“very large" neqgative vill result. The systen is
initialized with

PRECISIQHP :=TRUB;

An interesting case occurs when a func (proc) of one type is
converted to a func (proc) of another type. Assume that it
is desired to ccavert a value of the type

vl FUNC(al1l ... atn) to the type

v2 FUNC(aZ21 ... a2m)
This is permissible if and only if:
{1) n=p

{2) alp and a2s must both be of the same form -- e.g., both
indefs, lists, simple, or non-existent

{3) vi=v2 or v and v2 are represented hy pointers and vicv2

(4) for 1<isn, ali=a2i or ali and a2i are represented by
rointers and a2icaii.

Sismilarly for proc values. If it is desired to convert a

12/31/74

108 CRISP -- SDC TN-5455,000/00

value of the type v1 VARB to the type v2 VARB, then either
vi=vZ or vi ahd v2 must both be represented by pointers and
vi<v2. The operator "<" ig the order relation in Figure D

{page 49).

_Bounah Draft

/—\

109

BLOCKS

There are three kinds of <block> forms in CRISP:
<binding-block>s, <do-block>s, and <multi-form-hlock>s. A
binding block can bind variables; the other two kinds of
blocks cannot. <bindinqg-block>s and <do~-block>s have a body
cousisting of zero or more statements and labels, vwhile a
<multi-form-black> is an ordered collection of forms. All
types of blocks may be used either as statements or as
expresgions (in which case they produce values). The
sections on scoping and denotation rules (page 25);
declarations, definitions, and types (page 45); and data
presets (paqge 127) should be reread along with this section

for Ltetter comprehension.

This section gives the syntax of blocks, statemeants, and
related forms, then describes them vith the subsections
Multi-fors blocks, Do blocks, Bind blocks, and Statements

and labels.

The syntax is:

25 L€

<block>::=<binding-block>|<do-block>|
<multi-fors~block>

<binding-block>::=BEGINK <hlock-bind-list>;
[<attribute-list>]
<block-body>
END
<8o~block>::=D0 <block-body> END

12/31/74

110 CRISP -- SDC TM-5455,000,00
<multi-form~-block>::s<(multi-statement-block>|{
<sulti-expression-block>
<prulti-statement-blockd>::= (§e,elstatenentd)
<multi-expression-hlock>:: = ($e,e<cxpressiond)
<block-bind-list>::=3%e,s {<block-var-dec>|<local-syn-dec>}

<block-var-dec>::=[<type-ref> J{ <block-scope>][VARIABLE]
<name > <{preset)>)

<hlock~-scope>::=<qlobal-scope>|<local-scope>|<own-scope>
{oun-scope>::=0NN

<local-syn-dec>::=SYN <identifierd>;=<fors>

<attrihute-list>::=$ (<attributesd>;})
<attributes>::=ATTRIBUTE $<blaock-attr>

<block-attr>::={<type-ref>[<block-scope> li<block-scope>)
($= ,u<naned)

<block-body>::=$s; e {<statement>|<labeld>}[;]
<statement>::s<expressiond|<statement-only>
<statement-only>i:=<go>|<zeturn>|<leave>
<go>::=<simple-qo>|<computed-gqgo>
<siaple-qo>::={GO{GOTO} <label>

<computed-ga>::={GO|GQTO} (#fe,a<label>) [CN]
<integer-expressicn>

<retaru>: :=RETURN <expression>
<leave>::=LBAVE [<integer>)

<labeld>::=<idantifier>

sIL*

<block>::=<binding-block>|<do-block>|
<multi-form-block>

<binding-block>::=(BEGIN <block-bind-list>
<hlock-~body>)

<do-block>::={DQ <block-body>)

<muylti-form-block>::=<multi~-statement-blockd>|
<multi-expression-block>

Rough Draft

_

™

Blocks : 111

<pulti-statement-block>::= (BULTI $<statement>)
<multi-expression-block>::= (MULTI $<expressiond)
<block-bind-1list>::=($ {<block-var-dec>|<local-syn-dec>})
<b10ck-vér~dec>::=<nane>l
(<name>[<block-scope>) <type-ref>]

f<preset>d>))
<block-scope>::=<global-scaope>|<lccal-scope>|<own-scope>
<ov¥n-scope> :;=0WN
<local-syn-dec>::=(<identifier> SYN <form>)
<block-body>::=${<stataent>}<label>}
<statement>::=<expression>|<statement-only>
<stateament-only>::=<go>j<raturnd>j<leave>
<go>::=<simple-qo>|<computed-qo>
<simrle-qo>::= (G0 <lahel>)
<computed-qo>:: (GO (f£<label>) <integer-expressiond)
<return>::={RETURN <expression)>)

<leave>::= (LEAVE [<integer>))

<label>::=<{jdentifier>

Mult i-form blocks

A nmulti-fors block allows the insertion of several
expresgions (statements) wherever the syntax allovs a single
expression (statement) to appear. 7The forms in a multi-foras
block are evaluated one at a time, in a left to right order.
khen the multi-form block is used as an expression, then the
value of the last expression is the value of the form. The
most trivial usaqe is vith only one expression to break the
norsal precedence relation of operators. Thus, (A+B)*C say
be used to overcome A+ (B#C) as the normal interpretation of

A+B*C, Some other examples of <multi-expression-hlock>s

12/31/74

112 CRISP -~ SDC TM-S5455/000,00

are:
A:=(B:=C, D)
(F{G) , H(I), J(K))
In IL, the <multi-form-block> is equivalent to the LISP
PROGN. A <aulti-form-block> of nc arquments, e.g. (MOLTI),

is the same as NIL.

When used as an expression, all except the last expression
say produce no valuwe -- for instance, by calling a novalue
function. However, the last expression must produce a value
that becomes the value of the form. Also, the type of the
last expression's value is the type of the multi-expression

block.

When a multi-fore block is used as a statement, the body of
the block is a sequence of statements. There are no

provisions for placing labels in a multi-fors statement.

bo blocks

A <do-block> is exactly equivalemt tc a <binding-block> with
the same block body, a null <block-bind-list>, and no
attribute foras. The <do-blcck> 4is provided only as a

convaenience to the user.

Binding blocks

A <binding-block> is cne of the 1wmost powerful and useful
forss in the language. It allows local and global variable
bindings, local synonyss and own variables to be created,

and statement mode to be used.

Rough Draft

)

(/"\“

&

Blocks 113

A <block-bind-list> specifies the variables to be bound when
the block 1is executed, along with their type attributes,
scopes, and initial (preset) values. In SL,
<attribute-list>s say be used tc specify the variables!
attributes and scopes. (There is no attribute form in IL.)
The attribute form is a purely syntactic mechanisam that
operates as SL is translated to IL. The name specified in
an attribute forms must be exactly a name appearing in the
<block-bind-1ist>. The following is an error:

BEGIN A GLOBAL;
ATTRIBUTE IMNT (ASE);

That is, the information given by an attribute form 1is
distributed hefore proper names are determined. The
follovwing is ambiguous, and therefcre an error:

BEGIN A, A GLOBAL:
ATTRIBUTE INT(A):

Redundant tyvype or scope specification is permissible.
Hovever, 1If there is a conflict amonqg the attributes and
<block-bind-list>, then it is an error. For instance,

BEGIN INT A
ATIRIBUTE FLOAT A;

and
BEGIN A;
ATTRIBUTE INT(A) ;
ATTRIBUTE PLOAT(A);

are hoth errors.

once the attribute forms' inforsation has been distributed,
local and global variables' (nct 1local synonyas'! and owns'‘')
proper names and type attributes are determined in a aanner
identical to that used for processing a function's or a
processor's arqgument list. See the section an arq list

12/731/74

114 : CRISP -- SDC TM-5455,000/00

(paqe 98) for a complete description.

A scope of OWN may be specified for a block variable with an
identifjier name. For such a variable, the preset value is
computed at compile time. An own has only one binding and
thus i8 not rebound when the block is entered. The scope
(visibility) of an own variable is the same as that of a
local variable bound in the same <block-bind-list> -- that
is, in this block and other blocks nested in the one with
the own declaration. See the section on own variatles (page

44) for more information.

A local synonym specifies a language form that is to be
substituted for occurtences of the synonya's name within its
scope. The scopa of a local synonyr is the sase as the
scope of a local variable bound in the same
<block~-bind-liat>. See the section on coapile time

substitutions (page 41) for more information.

When a block is entered, all presets are evaluated in the
left to right order in which they appear in the
<block-bind~list>. All the block variables are then bound
simultaneously. This is similar to making a function call
vhere arguments are all evaluated, then the function 1is
entered and the parameters are bound. This means that the
preset computations cannot use the other variables in the
same <block-bind-liat>,

BEGIN A:=1, B:=2;
BEGIN A:=B, B:=A;

In the inner block, the initial values of the variables A

Rough Draft

a

Blocks 118

and B are, respectively, 2 and 1 (net 2 and 2).

Statements and labels

The Lkodv of a binding or do blaock is an ordered sequence of
statements and labels separated by semicolons and terminated
by the word END. It is not necessary, but is permissible,
to include a final semicolon before the END. Statements may
be any expression except an identifier, which is interpreted
as a label. Also, there are several lanquage forms that may
be used only as stateaents, not expressions. All
<{st atement-only> foras cause some sort of control transfer.
Moat forams in the lanquage may appear as either statements

or expressions.

That a form appears in statement or expression mode 1is an
hereditary property of many forms. If an if form is a
statement, then its terminals (then and else clauses) are
also statements. If an 1f form is used as an expression,
then its terminals are also expressions. Sililarly. for the
selector foras, the terminals are statements or expressions

as the parent is a statement or exgression.

As can other foras, do and binding blocks (hereafter sisply
called blocks) wsay be used either as statements or as
expressions. The <ceturn> form is used to generate the
value of a block used as an expression. When executed, the
expression body of the return form is evaluated, and its
value becomes the value of the mamost closely npested

expression block that contains the return. The bound

12731774

116 CRISP -- SDC TN-5455,000/00

variables in all the inner blocks and the expression block
are unbound. For example,
A:=BEGIN X:

IF P THEK RETURN P (X);

X:=G() :

BEGIN Y:=17:

RETORN H (X,Y):
END

ERD
This assiqnment form sets the value of the variakle A to the
value of the cuter block: first the cuter block is entered,
then X is bound, and P is tested. If the value of P is
TRUR, thaen P(X) 1is evaluated, X is unbound, and the value of
F(X) becomes the value of the outer block and is stuffed in
A. DNote, this outer block is used as an expression. If the
value of P is not TRUE, then X is set to the value of G{()
and the inner block is entered with the local variable Y
init falized to 17. The inner block is a statement block
because it appears asg a statement in the outer block. The
form H(X,Y) is then evaluated and becores the value of the
guter, expression block. After B(X,Y¥Y) 1is evaluated and

before the value is stuffed in A, the variables X and Y are

unbound.

The <leave> form is used to terminate execution of a set of
statement blocks. The form LEAVE is identical to LEAVE(1).
The integer part of the <leave> form specifies how many of
the most closely nested blocks (that contain the <leave)
form) to terminate. If all the terminated blocks are not
statesent blocks, a compile time error diagnostic will be
issued. When a set of blocks is terminated, control "falls

throdqh' the outermost terminated block. The <leave> fora

Rough Draft

Blocks 117

is provided as a user convenience to avoid dreaming up label
nazes for this purpose. A cauticn vwhen using wsacros and
<lsave> forms toqether should be remembered. If a sacro
(like FOR) expands in terms of a block, and a <leave> foras
is in the 1interior of that expansion, then the leave count

must be ilncreased by one tc ccunt for the invisible block.

A <label> marks a place in a prograa that may be addressed
by a <go> fors. In CRISP, there are no label variables. If
L is a label and B i3 the block in which L is defined, then
the folloving rules define the spots where L is visible,
that is, the places where forms such as "GO L" may appear.
1. L is visible to the top level statements in B.
2. If L is visible to amr IF, amulti-stateamant block, or
selector form, then it is visible to the terainals of

that fors.

3. If L is visible to a block, then it is visible to the top
level atatements of that block.

4. If the block in which L appears (B), or a block to which
L is visible by this rule (part 4 is a statement block
that binds no local or glecbal variables, then L |{is
visible to the next outer block.

The following example shows a label, L, and a variety of

legally placed tranches to L.

BEGIM X:
IF P THEN BEGIN A; GO L ENL;
IF Q
THEN BREGIN:
L:P(X):
BEGIN A
I¥ B IHEN GO L
BLOCK B; GO L END;
GO L
BAD
GO L
EED;
GO L
END

12/31/74

118 CRISP -- SDC THM-5455,000/00

There arae two types cf qo forms: <simple-go> and
<computed-qo>. 1In both cases, if the go branches out of one
or mare (statement) blocks that bind variables, then the
variables bound by the terminated blocks are unbound before
program contrcl resumes at the label. A <computed-go>
specifies a 1list of 1labels. The value of the integer
expression selects which label to transfer to. If the value
of the expression is less than or equal to 1, then the first
label 4in the 1ist 1is transferred to. If the value |is
aqreater or equal to the number of labels in the list, then
the last label is transferred toc. In all other cases, if
the value of the inteqger expression is i, then the ith label

in the list is transferred to.

In any one functicn, ©processor, Rmacro, Or dgenerator

definition, there may not be any duplicate label names.

Rough Draft

N

119

DATA PRIMITIVES and PRESETS

This section describes the available prinmitives for
allocating data structures, accessing their fields, the
mechanism that initalizes variables appearing in declare
forams, and the mechanism that coaputes the presets (initial

values) for block variables when a block is entered.

Data_Rrinitives

Many forms in the lanquage automatically allocate data
structurss, For instance, evaluation of “A+BY sums the
current values of the variables A and B and allocates a data
structure of the appropriate type to hold the value.
However, this section describes only those prisitives that
are explicitly used for alleocation. It should be noted that
the various read primitives also create structures. Each of
the paraqraphs following 1in this section describes the
allocation and accessing vprisitives associated with a
particular kind of data object. All prisitives have the

last name (or tail), CRISP.

Identifier and character prisitives
An identifier obkiect can be created with the function,
1D PUNCTION COMPRBSS (NODE2)
The arqument to COMPRESS is a list of character identifier

obfects. The value is the identifier vhose name is that

12731/

120 CRISP -- SDC THN-5455,000,00

strinqg of characters. Thus,
CONPRBSS("(A B C)) 1is ABC
CONPRESS (" (A $* * B)) is $'A B!
The function,
HODE2 FUNCTION EXPLODE(ID)
takes an identifier as an arqument and returns a list of
character obiects that are the id's print name. Thus,

EXPLODE ("ABC) is (A B C)

GEWID may be used to create a unique, new identifier. The
jdentifier is created without a name, just a structure. If
a genid (generated identifier) is printed or exploded, then
it is gqiven a name of the fors Gxxxxxxx, vhere x is a digit.
¥hen the name is generated, it is quaranteed to be different
from the name of any existing identifier. The declaration
of GEXID is
ID PUNCTION GENID()

The implicit type of a genid, before it receives a name, is
general: if it receives a name, then it is treated as an

ordinary identifier.

The functions CHAR2INT and INT2CHAR convert a character
identifier to its integer EBCDIC eguivalent and vice versa.
The integer must lie in the range 0 to 255. Thus,
CHARZINT("a) is 0C1X
INT2CHAR(OCIX) is A
The declarations of these pseudo functions are
CHAR PUNCTION INT2CHAR (INT)

INT PUMCTION CHARZINT (CHAR)

Rough Dratt

/

h

4

&

Data Primitives and Presets 121

BEach identifier has a property object of type general. The
property object may be accessed using a form such as I_PROP,
where I is a variable with type attribute ID or CHAR. Such
a form as

INT2CHAR (X)_EROP
is also 1legal and may even appear as the left side of an
assiqomsent form. It is normal to maintain the property
obiect as a set of pairs. One element of the pair is an
identifier that is used as a search key, and the other
member of the pair serves as the value of that property. To
facilitate this usaqge, three functions are provided:

GENERAL FUNCTION SETPROP (ID,ID,GERERAL)

GENBRAL FUNCTION GETPROP(ID,IL)

GEVWERAL FUNCTION REMPROP(ID,ID)
In all three, the first arquament is the identifier vhose
Fropercty set is to be manipulated and the second arquaent is

the property name (or search key).

SETPROP gives the named property the value of its third
arqusent. If a property with that name already exists, then
it {8 replaced; othervise, a nev pair is added to the
property set. The value is the third argument.

SETPROP ("AB,"P,12)
The value is 12, The value of the property P under the
identifier AB is now 12. GETPROP retrieves the value of the
specified property. If none exists, then NIL is returned.
After execution of the above SETPROP,

GETPROP ("AB,"P) is 12

RESPROP removes the specified progperty pair. Thus, after

12/31/74

122 CRISP -~ SDC TR-5455,/000/00

RENPROP ("ABR,™P),
GETPROP ("AB,"P) {is NIL.

The valua of REMFROP ig its second argqument.

Caution: if any of the above functions arc used, use of the
id_PBOP form should be avoided because it may corrupt the

assumed, standard format of the property obijact.

An additional set of property functions is being considered
but has not vet been designed. These new functions would
allow the use of an ordered sequence of property names
instead of Just one. This, in effect, would make the
property obiect into a tree with the identifier and property
nanes identifying the nodes, thereby allowing private

property seats.

Node primitives
The allocation primitive for all node objects is the pseudo
function CONS. CONS may have one to eight arquaments of type
deneral. The value 4is a node with as many fields as there
are arquaents. ror exaasple,
the value of CONS(“A,"B,"C) is (NODE3 A B C},
the value of CONS(1,%X,3.7,"AB) is [NODE4 t X 3.7 AB} and
the value of COMS (17) is (NODE1 17}.
In S1, the intix oparator, #, nmay be used for consing nodel
structures, and the infix operator, #&, may be used for
consing node2, nodel, ... nodeB8 structures. See the section

on expressions (page 130) for details.

Rough Draft

L

Data Primitives and Presets 123

The fields in a node object nay be accessed by the pseudo
item names FIRST, SECOND, THIRD, FOURTH, FIFTH, SIXTH,
SEVENTH, and RIGHTH. Por examnple, if N is a variable with
type attribute ncdeld, and the value of ¥ is (NODE3 A B C},
then

N_FIRST is A

N_SECOND is B

N_THIRD is C
These forms may also appear on the left side of an

assignment fornm.

The pseudo functions, CAR, CDR, ... CDDDDR, are available
for accessing the fields of node2 objects in the LISP
tradition. The form is a C followed by one to four As or Ds
followed by an B appearing as an operator. By example,
CADDR (X)
is exactly equivalent ta
CAR(CDR (CDR(X)))
CAR(X) is like X_FIRST and CDR(X) is like X_SECOND. If the
CAR - CDR forms have a general arqument, then they assume
that the arqgument should be of type node2. The pseudo itesm
nase forms msake no such assusption. The compiler must be
able to determine that the expresaion part is some kind of
node or an error diagnostic is issued. CAR and CDR foras

mayv appear on the left side of an assignment.

Nape primitives
Ob{ects of type name (or omne of its subspecified types) may

be created or "found® by the functica,

12/31/74

124 CRISP -- SDC THM-5455,/000/00

BANE FUNCTION MAKENAME(ID, ID)
The two arquaents are the name's first and last name {or
tail). If that npawme already exists, then MAKENANE returns
it as itg value. Otherwise, an object by that name is
created (with the type attribute name) and returned. The
function,

NAME PUNCTION PIHDNAME(ID,ID)
is also available and is similar to HMAKENANE. However, if
the name does not already exist, then none is created and
the value is NIL. A pame may be hidden by using

HAMB PUNCTION HIDENANE(NANE)
See the secticn on declarations and redeclarations (page 84)
for use and seaning of nase hiding. The value is the

argunent.

The accessors to pamse objects are the pseudo functions
FIRSTNANE and LASTNANE. Their arqument is avnane and their
value is the id first or last name.

FIRSTNAME (“ABCSXY2Z) is ABC

LASTHANE ("ABCSXYZ) is XYZ
These forms msay not appear on the left side of an assignment

forn.

The functions,

RAME FUNCTION LOCKYANE(NAME)

SAME FUNCTIION ONLOCKNAHME(NANR)
are used to protect and unprotect, respectively, a name froam
inadvertent redeclaration or redefinition. Their value is

their arqument. #Bost functicns with the last name, CBISP,

Rough Draft

Data Primitives and Presets 125

that are used ty the system have been protected by LOCKRANE.

Nuseric primitives
Most allocation of and access to numerical objects is
‘iaplicitly through use of various operators such as '+ or
CO0S. The few explicit prisitives are used for creating and
accessing caosplex numbers. The function,

CONMPLEX PUMCTIOFV CMPLX(PLOAT,FLOAT)
creates a complex nusber. The first arqument is the real
part and the second arqument is the imaginary part. The
value of

CHPLX (18.5,-13.6) is (COMPLRX 18.5 -13.6}

The accessors of complex obiects are the pseudo functions
REAL and INAGINABY. Their arqument is a complex obdject and
their value is a flcat aobiect.

REAL((CONPLBX 18.5 -13.6)) is 18.5

INAGINARY ({COEMPLEX 18.5 -13.6}) is -13.6
These forms may not appear on the left side of an assiqneent

fors.

Boolean prisitives

There are no allgcators or accessors for boolean objects.
Handle priamitives

The prisitives for manipulating handle obdects are described

in the section on processors and processes (page 173).

12731774

126 ‘ CRISP -- SDC TH-S5455,/000/00

Table 1I
INITIAL FIBLD VALUES

PIELD | |
_IIZJ__fgxllIIELLEB%_._QBBAIB
1D | NIL P $°
CHAR i £%00 I %X%00
RODER | BYL | NIL
NODE1 | NIL | {NODE' NIL}

.o l HIL | e
NODEB KIL | {(NODEB NIL ... NIL}
NAME i ¥ILl | NIL
PROC! | MIL | trap®
FUNCEY NIL | trap?

VARBY | NIL | NIL
BOOL I BIL } NIL
NUNBER | NIL 1 0

PLOAT |} 0.0 it 0.0
COMPLERX| NIL | {COMPLEX 0.0 0.0}
INT t 0 (I

BYTR 0 | 0

HALF | 0 1 0
HANDLE | RIL | NIL
ARRAY | MIL i NIL
ARRAY S | MIL I ARRAY?
NTUPLE | NIL | NIL
NTUPLEl |} NIL { BTUPLE?

L Subspecitied type.
2 Exrror trap routine.
3 Array or ntuple allocated by CREATE.

Array and ntuple primitives

The section on itea referencing and subscripts (page 88)
describes the mechanisa for accessing fields in arrays and
ntuples. The two forams used to allocate atrrays and ntuples
are CREATE and CREATEBLANK. Table I shows the initial
value, given each type of field, vhen the structure is

2llocated. The arqument to CREATEBLAKX or CREBATE is a

Rouqh Draft

&

&

Datas Primitives and Presets | 127

<type-ref>: the value is a newv structure of the specified
kind. If the <type-refd> is not a subspecified array or
ntuple type, the value is WIL, O, or 0.0, as appropriate.
Also, if the arqument 1is an array type with any =*'s in its
outer dimension, then the value is NIL.
EBEA!BBLAIK operates much faster than CREATE. When the
former is used, the structure is allocated and zeroed. This
pakes the pointer fields NIL. CREATE, on the other hand,
examines the type of each field and initializes it to a
default value as shown by the table. Because subarrays and
ntuples are allocated, a problem could arise vith recursive
definitions. The tactic adopted is simple; vhen CREATE runs
into a field that involves a recursive definition, it uses
the value that would have been generated by CREATEBLAKK, a
ﬁIL. Por instance, given the declaration,

DEC A<X INT, Y B, Z C>,

B<M ID, N RODE>,
C<Q FLOAT, R A>;

The value of CREATE(A) is

fASUSER O (BSUSER $'* (NIL)} (CSUSER 0.0 NIL}}
and the value of CREATEBLANK(A) is |

{ASUSER O WIL NIL}

Presets

Variables in a <declare> form and variables bound by blocks
may have a preset expression associated with thesa. The

preset may be omitted, be an explict expression, or be *

12/31/74

128 CRISP -- SDC TH-5455,000,/00

(vhich means use CEEATRBLANK to compute the initial value).
Table J qives the initial value of a variable for each of
its possible type attributes when the preset is either
omitted or is *. Recall that every time a block is entered,
the presets for its variables are recalculated (except for
own variables whose presets are calculated once, at compile
time). The real use of the * option is to cut down the
amount of writing when allocating arrays and ntuples. To
allocate using CREATE instead of CREATEBLANK, call CREATE
explicitly as a preset expression. For instance, after
compilation of
DEC INT ARRAY(J1) ARBRAY(2) A:=CREATE(A);
the value of A is
{INT ARRAY (3) ARRAY (2)
fINT ARRAY(3) 0 0 0)
(INT ARRAY(3) 0 0 0)}}
If * had been used instead of CREATE(A), the value of A
would be

fINT ARRAY(3) ARRAY({2) NIL NIL)

Rough Draft

INITIAL

TYPE |
__.__._{SIIIIID:
ID | BIL i
CHAR | NIL i
NODEN | MNIL l
NODE1 | NIL 1

oo | MIL |
NODEB | NIL |
NANE I ¥IL 1
PROCY | NIL |
FUNCY | NIL |
VARBY | WIL |
BOOL i NIL 1
NUMBER | NIL i
FPLOAT | 0.0 |
COEFPLEX| W¥IL l
INT i 0 i
HANDLE | NIL |
ARRAY | NIL |
ARRAY! | NIL |
NTUPLE | NIL 1
NTUPLEY'| NIL |

129

Table J
VARIABLE VALUERS

PRESET FORMN

*

S"

%%X00

NI

{NODE1 NIL)
{NODE8 NRIL ... NIL}
NIL

trap?

trap?

NIL

NIL

0

0.0

(CONPLEX 0.0 0.0}
0

NIL

RIL

ARBAY3

NIL

NTUPLE3

1 Subspecified type.
2 PBrror trap routine.
3 Array or ntuple allocated by CREATEBLANK.

12/31/74

130

BEXPRESSICHKS

Bxpressions are the basic building blocks of CRISP prograas.
They are used anywhere a value is required or needed. There
is also a class of no-value expressions, €.9. the
invocation of a function with NOVALUE <value-typa>.
No-value expressions may appear as the non-final forms in a
<multi-expression-block> or as statemeants. Any expressions
say also be used as statements for side effects. The syntax

of expressaions is:

SL
<expression>::=$ulinfix-operator>=<operand>

<operand>s:=<constant>|<locative>i<control> {<block> |
<for-loop> |<typep>|<special-operand>

Xlocative>::=<Cnane> |{field>i{<machine~field>
<machine-field>::=<byte>|<core>i<cheat>

<byte>::=BYTE {<integer-expression>, <{integer>,
<integer-expression>)

<core>::=CORE(<inteqer-expressiondf ,<integer>])
<{cheat)>: :=CHEAT ({type-ref),{type-ref>,<expressiond)

<control>::=<conditional>f{<processing-primitive>i
<functiom-call>

{function-call>::=<{func-expression> ($<expression>)|
<pseudo-func-name> ($<expresion>)

<{special-operand>::=<drive>|<prefix-operand>|
<IL-form>}<CAP~form>

{drive>::=pDRIVE(<type-ref>,<expression>)

<prefix-operand>::=-<goperand>}
{+*i-1ABS|NABS}<number-operand>

<IL-form>::=1Il, <external-data>
<CAP-form>::=CAP {(<type-ref>INOVALUR}

Rough Draft

o

Expressions 131

$s ;0 <CAP-SL-form>
[:] BuD

IL

<expressiond>::=Cconstant>|<locative>|<control>} <block>}
<for-loop>|<typep>i<special-operand>

<locativel>::=<nase>|<field>}<machine-field>
<machine-field>::=<byte>|<core>}<cheat>

<byte>::=(BYTE <integer-expression><integer>
<integer-expression))

<core>::= {CQRE <integer-expression>{<integer>))
<cheat>::= (CHEAT <type-ref><type-ref><expression>)

<control>::s<conditionald>|<processing-primitived|
<function-call>

<function-calll::= (<func-expression> $<expression>) |
(<pmseudo-func-name> $<expressiond)

<special-operand>::»<4rive> {<{prefix-operand>|<CAP-form)>
<drive>::=(DRIVE <type-ref><expression>)

{prefix~-operand>::= (ROT <expression>)|
({BINUS {ABS|¥ABS} <number-expression>)

<CAP-form>::=(CAP {<type-ref>|NOVALUE} S$<CAP-IL-form>)

The SL and 1IL syntaxes are very different. In Il there is
no concept of an operand as opposed to an expression. In
SL, the concept of an operand arises because of the use of
infix operators and their relative binding satreagths. The
following sections describe the S1 precedence schesme and
varions kinds of SL operamds (IL expressions) that are
referenced by the syntax. The operands not described below

are detailed in other sections of this document,

12/31/74

132 CRISP -- SDC TH-5455,/000/00

SL.I1nfix Expressions

If an expression consists of more than one operand, then it
is a sequence of operands separated by infix operatars. For
example, in the fora
A*B+C/D

A, B, C, and D are the operands and *, + and / are the infix
operators. Fach infix operator, which must be an identifier
or sequence of delisitera, is defined by a 4~-tuple. The
fields are: (1) the 1left binding strength, (2) the right
bindinqg strength, (3) the indef flag, and (4) the TIL
(prefix) form aperator. Table K gives the values of these

fields for each of tha SL infix operators.

The left and right strengths are used to determine to which
cperator an operand “belongs". The algorithe that fully
parenthesizes an input expression is straightforwvard.
Basically, the operand - operator sequence is input until an
operator is found whose left strength is less than the right
strenqth of the previous operator. #hen this happens, the
last two operands and their included operator are enclosed
in parentheses and act as a single operand for tke duration
of this processing. Hhen no more cperators are found, the
renaining operands are parenthesized in a right to left
order. Whenever possible, the operands of an operator that
is marked indef are strung together. (This can happen only
if the intervening operators are all of higher strength.)
Thus,

A+B*C+D is (A+ (B*C) +D)

Rough Dratt

BExpressions 133

Table K

SL INFIX OPERATOR DEFINITIONS

QPERAIOR BIGHI L.BI% IBDEF PREFIX

: 1000 SET
s 901 900 EXP
. 810 810 X TINES
/ 800 801 auo
7/ 800 801 IQUO
+ 700 700 X PLUS
- 710 711 DIFFER
6¢ 620 620 X BANL
X 610 610 X BOR
BXOR 600 600 X BXOR
> 500 S00 GR
\ ~> 500 500 LQ
< 500 500 LS
~< 500 500 6Q
>= 500 500 6Q
2 500 500 6Q
~>= 500 500 Ls
<= 500 500 LQ
s 500 500 LQ
~<= 500 500 GR
INTER 490 490 INTER
UNICN 481 &80 UNION
a 471 470 APPEND
@ 471 w70 DARPPEND
2 46S 465 X CONS
460 461 CONS
IN 301 300 IN
~IN 301 300 NIN
oN 301 300 oy
~0¥ 301 300 NON
= 200 200 EQ
= 200 200 ¥Q
== 200 200 EQUAL
am= 200 200 NEQUAL
-~ 150 150 X NAND
£ 140 140 X AND
~1 130 130 X NOR
) 120 120 X OR
>> 110 111 IMPLY
<< 110 111 IMPLIED

12/31/74

134 CRISP -- SDC THN-5455,/000/00

but

A*B+C*D is ((A*B)+ (C*D))

Consider the expression

ASB/C*DESESRF+Ge* e IR
The following lines show the steps in processing the above
i(refer to Table K for the operators' binding strengths).

A*B/

{(A*B) /

{A*B) /C*D#}

fA®B)/ (C*L) #¢

({A®B) /(C*D)) &%

((A®B} / (C*D)) $8ESSP+G*H+

{(A®*B) /(C*D)) $6B#8F+ (GsH) +

{(A*B) /(C*D)) SE 8P+ (GOH) +1#
((ASB) / (C*D)) $0E#4% (P+ (G*H) +I) ¢
{((A*B) /(C*D)) #8R## (F+ (G*H) +I)) #
({(A*B) /(C*D)) BEESE(F+ (GeH) +1))8%J
({((A®B) / (C*D)) $SES# (F+ (G*H) +I)) #J)

After the eaxpression is ccmpletely parenthesized, the
gperators are replaced with their prefix equivalents and
noved to the first (operator) position in the 1list. This
produces an IL expression. Thus, the IL for the above

exaaple is

(CONS
(CONS (QUO (TINES A B) (TINES C D))
B
(PLUS F (TIMES G H) I))
J)

Note, the inner CONS (because it is marked indef) ends up
vith three arguments in this instance. Therefore, it will
produce a node3 obfect when it is executed, The operator,
#¢, is not marked indef, so it vill alwvays qrab precisely two

operands and produce a node2 obiect when it is executed.

The _ used to make fiaeld foras and the $ used to make global
names appear to be infix operators but are not. Both are

Rough Draft

Expressions 135

associated vith specialized syntax and seanings and are
therefore handled separately. The interpretation of

ASB_C DI _R2W)_P |
is

(((ASB_C_D_Ef 1]} (J)}_F)
Presumably, the following is true: ASE is a variable with
an ntuple value. (ASH_C_D_PB[1I]} is a field that is accessed
(in 48B) with a single subscript, I. The value of that
field is a fupc that takes one argument -- in this instance,
J. The value of ¢the function call is an ntuple and the
field whose item name is P is being accessed in that ntuple.
Thus, A$B_C_DI[I]_P(J) is an ntuple expression and the entire

expression is a field. (It nmay, therefore, appear on the

left side of an assignment fora.)

locatives and Assiqpuspts

An assiqneent fora is used to set (change) the value of a
variable or a field. 1In SL, an assignment is specified with
the infix operator, :=. In IL, the operator is SET. A
<locative> is the syntax description of the leqal foras that
may appear as the left side (receiver) of an assgignment. In
operation, the right side of an assignment is evaluated, and
its value is converted to the type of the left side. Then
the value is set into the left side. The value type of an
assigneent form is the type of the left side. If both the
left s8ide and the right side are types with objects

represgnted by polinters, then the ¢type will be the nmost

12/31/74

‘136 CRISP -- SDC TN-5455,/000,/00

restrictive. For instance, if either side is a character
and the other side is an identifier, then the value is

character.

Not all forms that are locatives syntactically can appear as
receiving fields. All fields can, but the only: names that
can are variahles. The <machine-field>s are described below
along with the conditions under which they can appear as a

receiver.

Byte
A <bvte> form i3 used to reference a contiguous string of
bytes in an integer obiect. The first arqument specifies
the offset in bytes from the left of the integer obiect.
The second arqument ie the length of the byte string in
bytes. Evaluation of the third argqument produces the
integexr obfect in which the bytes are referénced. Some
exaepples are:

BYTE(0,4,01020304X) is 01020304

BYTE(O, 1,01020304X) is 01X

BYTE (1,2,010203048X) is 0203

BYTB(3, 1,01020304X) is OuXx
A <byte> form may be used as a receiving field if and only
if (1) the third arquaent is a locative that can be a
receiving field and (2) the type of the third arquaent is
intecer vithout any conversion. This specificaliy excludes

the types, number and general. Tha value type of the fors

is integer.

core
A <core> form treats memory as if it were a byte array. Any

Rough Draft

K\,/

.

BExpressions 137

core fora may appear as a receiving field. The firsmt
arqguaent is the byte address (subscript), and the Second
arqument, which is optional, is the lenqth of the field in

bytes. 1If the second arqument is omitted, it is assumed to

‘he 4, The value type ¢f a core forms is integer.

Cheat
CHEAT evaluates its expression body and converts its value
to the type of the first <type-ref>., Then, without further
conversion, the value is assumed to be of the type specified
by the second type ref. Por instance,

CHEAT (FLOAT,INTEGER,1.0) is 40100000X
Similarly,

CHEAT(PLOAT,INTEGER,1) is 40100000X

because 1 is floated before it 1is cheated. Cheating froam a

type with pointer obfects works on the pointer. Similarly,
cheating to a type with painter objects creates a pointer.
Thus, if G 1is a variable with type attribute general, then
the value of
CHEAT(GEN,INT,G)
is the byte address of the structure pointed at by G. Using
core, cheat, and byte forms together, many lanqguage foras
may ke simulated. For instance, CDR, the second field of a
node2 ob{ect, could he represented as
CHEAT(INT,GEN,CORE (CHEAT (NODE2,INT,Xx) +4))
where x is an arbitrary expression that produces a value
that can be converted to ncde2. The value of the inner
cheat is the byte address of the node2 object. The four

byte field starting four bytes to the right in that object

12/31/74

138 CRISP -- SDC THM-5455,/000,00

‘ds the CDR field. The core fcre references this field, and
the outer cheat specifies that the type of the field is

qenezal.

A <cheat> forsz amay be used as a receiving field whenever (1)
its third arqumeent is a locative that may appear as a
receiving field and (2) the value of the ¢third arqument is
the same as the firat <type-ref> without conversion. Thus,
the above equivalent of CDR is a legal receiving field, as

is CDR itself.

WARNIEG: Use of BYTB, CORE, and CHEAT can lead to
unrecoverable progqram checks. Their use is intended only
for the prograammer who is very knowledgable in the system

storage conventions. Therefore, use them at your own risk.

Zunctign Calls

A <function-call> is the @wmechaniss used to instantiate a
function. A8 opposed to a process start, the activity
remaing in the currently active process. A function call
evaluates its arquments and places their values on the
stack. The <func-expression> 1is then evaluated, and the
function, vhich is its value, is entered. At this point,
the arquaent values are paired with the parameter names,
creating variable bindings. The expression body of the
function is then evaluated, the variables are unbound, and

the value of the expression is returned as the value of the

Rough Draft

()

()

Expressions 139

call. The value returned is converted to the value type of
the function (except when the value type is novalue). The

order of arqument evaluation is not guaranteed.

A <func-expression> is any expression whose value ¢type is
known to the ccapiler as a subspecified type of function or
tfunc. The siaplest examples are a function name or a
variable with a subspecified func type attribute. A
function call with a pseudo func name as {its operator
reseables a standard function call in most respects. The
name may bhe a @macro or transform nase, or the name of some
pseudo function that the compiler handles specially. Some
examples are TIMES, ABS, and QUO, for which the compiler may
produce aopen code. Rany foras in the language, for which
the syntax has been specifically spelled out, could be
handled as function calls wvith pseudo func name operators.

When this has not been done, it has been to present a more

orqanized description.

All arquments to functions and processors are passed by
value. Assume that this function definition has been made:

HOVALUE FUNCTION FOO(XINT I, INT ARRAY(*) A)
(I:=1, A{I1:=9);

Then operate this block:
BEGIN INT J:=4, INT ARRAY (Q4) Bi=%;
FOC(J, B): .
PRIKT(J):
PRINT(D) ;
BKD:
The printed value of J is &4, and the printed value of B is
fINT ARRAY(4) S O O O0}. when values are passed to a

function or processor they are copied. However, a value

12/31/74

140 CRISP -- 5DC TM-5455,000,/00

that is an array, ntuple, ncde, identifier, etc., is a
pointer at a structure: therefore, the thing copied is the
.pointer. not the pointee. When FOO is entered, the variable
A in 700 and the variable B in the block point at the same
array. But an assiqonment foram such as "A:=array expression”
in PQO has no effect on B in the block. It merely "points™
A at another array. The call by value technique wused in
CRISP is 1identical to the argument passing regime used in
11SP; it has sometimes been called the weak form of call by
copy. In CRISP there is no equivalent of call by location
tor call by reference). Call by name can be sinmulated by
using the process contrcl prisitives in combination with

func, proc, and handle arquments that are passed by value.

Special_Operands

The operands described 1ia this section are a amiscellaneous
collection that are not described elsewhere or fores that

have a special syntax.

Drive

A <dri§e> fors evaluates its arqument and converts it to the
type specified by the type ref. If error checking mode is
not being used, theam no run time check is wmade when an
object in a type represented by pointers is converted to any
other type with objects that are represented by pointers.

Some examples of <drive> forass are:

Rough Draft

N

Expressioans 141

DRIVE (INT,1) is 1

DRIVE(PLOAT,1) 48 1.0

DRIVE (FLOAT,3.5) is 3.5
DRIVE(INT,3.9) is 3
DRIVE(FLOAT,DBRIVE{(IKT,3.5)) is 3.0

All type conversion that is performed in the system is done

either explicitly or isplicitly by a <drive> foras.

Not
¥OT returns TBUER if 4its arqument 1is NIL and returns NIL
othervise. In SL, ¢the prefix operator, ~, applies only to
the next operand. Thus, |

~AEB is (AND (NOT A) B) in IL
To "neqate" the entire conjunction, vrite

< (ASB)

Arithmetic prefix operands

The operators +, -, ABS, and NABS apply to the following
overand. If it is deaired tc apply them to a naore
cosplicated expression, then enclose that expression in
rarentheses, making it into a sinqle operand. The unary +
and - 4o the usual thing. ABS returns the absolute value of
its arqument and FABS is egquivalent to -ABS. The type of
value produced by unaty + and - 1is the same type as its
arqument. The value produced by ABS and NABS is the same
type as its argqument except vhen the arqument is complex.
.In this case, the value is the norm (or negative norm) of

the arqunent/and is an object of type float.

12/31/74

142 CRISP -~ SDC TH-5455,000/00

CAP and IL fores

<CAP-form>s and <IL-form>s are used ¢to insert forms written
in CAP or IL into programs that are written in SL and IL.
. The IL operand is an external datum, normally a node2
ob{ect, that is used as an gperand in the SL program without
furt her translation. A <CAP-form> may be used to drop into
rachine lanquage at any point in an SL program at which an
operand is expected and at any point in an IL program at
vhich an expression is expected. The <type-ref> in a
<CAP-farm> is the type of value ¢that is returned by the
machine code. The value is assumed to be in register FO if
floating, RS otherwise. 3An SL or IL program may not branch
into a CAP form. Also, a CAP form must not branch to labels
placed by the higher level 1lanquage form. This restriction
will be lessened after the proper communication with the

compiler's flow apalysis has been wvorked out.

Qrder of Evglugatign

Unlike LISP and many other lanquages, CRISP guarantees order
of evaluation only in a fev places. This section summarizes
the rules that pertain to ordering. See the sections that
specifically describe the particular forms for more

information.

Order of evaluation is gquaranteed wben:
(1) Preset computations for block variablea are calculated

in the left to right order of their appearance.

Rough Draft

()

Expressions 143

(2) Statements (or expressions) appearing as the top level
foras in blocks are evaluated in their order of occurrence
except as amodified by <go>, <leave>, <return>, and <exit>

foras,

(3) A¥D, OR, NAND, and HOR evaluate their arguments in a
left to riqht crder. Evaluaticn ceases as soon as the value

of the form is kaown.

:{4) The generators of a FOR loop are evaluated in their
order of occurrence except as nmodified by conditional

qenera tors.

{5) Conditionals evaluate their embedded forms in the order
dictated by their definitions. For instance, the predicate
in an if forme is evaluated before the evaluation of the then

or else clause selected by the value of the predicate.

Some sSpecific areas where order of evaluation is not

quaranteed are:

(1) The order of evaluation of subscript expressions is not

quaranteed in a field fora.

(2) The order of evaluation of function and processor

argusents is not guaranteed.

(3) The order of evaluation and combination of expressions

inveolving arithmetic is not guaranteed.

12/31/74

144

CONDITIONALS

This section describes several forms that allov for
conditional evaluation. 1In all these forms, one of several
enbedded forms is selected for evaluation. The fornm
selected depends upen the results of predicate tests. The
kind of test depends upon the kind of <conditional> form
used. The exbedded forams are statements if the parent form
is a statement and are expressions if the parent form is an
expression. The embedded forms are called terminal
computations or, sore simply, ternrinals. The type of value
produced by a conditional =expression is the minimal type
that contains the values of all the terminals. See Pigure D

(page 49). The syntax of <conditicnal>s is:

SL
<conditional>::=<if>)1<select>|<selectg>|<(selectnd |{selectt>

€if>::={IPI WHEN} <predicate> THEN <{form>
${{ORIF|VHEN} <predicate> THEN <formd}
{ ELSE <form>]

<predicated>::=<boolesn-expression>

<{select>::=SELECT <expraession>
$ [YHEY e ,s<expression> THEN <foram)}
[ELSE <form>]

<selectq>::=SELBCTQ <expresmsion>
${VREN fe ,aexternal-data> THEN <forad}
[BLSE <form>]

<selectn>::=SBELECTN <numsber—-expression>
$ (WHEN £=,s<nselx> THEN <formd}
[ELSE <form>]

<nselx>::=<number—expression>|
(2i<t=l~=2={<=1< 2]} <number-expression>|

Rough Draft

N

&

&

C

Conditionals 145

f212=<nuaker-expression>
fTOITHRU}<number-expressiond>

Cselectt>::=SELRCTT {<name>|<identifier>:=<expressiond)}

$ (WHEN (<type-ref>|NIL} THEN <fora>}

[ELSE <form>)
*sILe®
<conditionald>::=<if>|<Belect>|<selectq> {<selectn>|<selectt>
<if>::= (IF <predicate> <form> {<form>))
<predicate>::=<hooclean-expression>
<select>::=(SELBCT <expression>

${(e<expression>) <formd)
<fora>)

<salecta>::=(SELECTQ <expression>

$((2<external-datad>) <formd)
<form>)

<{selectn>::=(SELECTR <number-expression>
$((£<nselx>) <form>)
<form))
<nselx>::=<numaber-expressiond>|
((EQ) MQ1GQILAIGR}LS) <numlker-expression>)|
{{THRU}JTO} [GRI1GQ] <number-expression>
<number-expression)
<gelaectt>::=(SELRCTT {<name>] (<identifier> <expression>)}
$({<type-ref>|RIL} <form>)
<form>)
Yor all the (S1) <conditional> forms there is an optional
else clause. If owitted, then the clause “EBLSE NIL" {s
assused. Also, nested comditionals with some of the else
clauses opitted could be ambigquous. The SL to IL translator
uses the ALGOL rule in these instances; namely, when an else
clause is found, it is attached to the most deeply nested
conditional to which it could belong. PFor instance,
IF IF P THEN A THEM IF Q THEN B BLSE C
is interpreted as

IF (IF P THEN A) THREN (IF Q THEW B BELSE Q)

12/31/74

146 © CRISP -- SDC TH-5455,/000/00

which also could have been written

Ir P6A THEN (IF P THEN B ELSE C) ELSE NIL

3k

<i1f£> itorls provide the normal if-then and if-then-else
conditional primitives. In the following, p' ... pn are
predicates and f1 ... fn are foras. {predicate>s are
expressions that are evaluated to determine a baolean value.
If the value of a predicate is anything other than NIL, then
the value will be treated as if it were TRUE. The meaning
of
IP p1 THEN £1
is that if the value of pl1 is TRUE then evaluate f1. If the
if is an expression, then the value of f1 is the value of
the if. If ¢the if im a statement and f1 is not a goto, a
leave, or a return, then after £1 is evaluated, control
falls throuqh the if. If the value of p! is NIL, then
sothing more is evaluated., If the if is a statement, then
control falls through. Otherwige, the if is an expression
and its value is NIL. The fora,
IF pY THEN £f1 ELSE f£2

behaves identically to the first example when the value of
pl is TRUB. dhen the value of ptl1 is NIL, then £2 |is
evaluated. If the if is a statement and f2 is not a goto, a
leave, or a return, then after f2 is evaluated, control
falls through the if. Otherwvise, the if is an expraession

and the value cf £f2 1is the value o©of the if. Recall that

Rough Draft

;

[

Conditionals 147

these two forms are equivalent.

IF p1 THEN £1 and IF pl! THEN f£1 BLSE NIL

Therefore, we can talk as if all <if> forms have both a then

and an else clause. Thus, an if evaluates either the then
or the else clause, not both. The form evaluated depends
upon the value of the predicate; the else clause is
evaluated if the predicate 1is MIL and the then clause is

evaluated othervise.

It is natural to write nested if forms using an indentation
scheme like the following.

IT pt THER f1
ELSE IF p2 THEN £2 BLSE £3

IP pY THEWR f£1
ELSE IF p2 THER £2
ELSE IF p3 THEN £3 RLSE fu4
However, with lonq or cosplicated forms, one soon runs off
the rigqht side of the listing. A4s a 1lexical convenience,
several alternative methods of representing if-then and

if-then-else logic are provided. The above two examples can

be revwritten as

WHE¥ p1 THEN f1 | I p1 THEN f£1
WHEN p2 THEN £2 t ORIF p2 THEN f2
ELSE £3 | BLSE £3

WHEN pl1 THEN f£1
WHEN p2 THEN £2
WHEN p3 THEN £3

ELSE f#4

ir p1 THEW f1
ORIF p2 THEN f2
ORIF p3 THEN £3

ELSE f4

Also, the various foras could be aixed as in

WHEX p1 THER £1
OBRIP p2 THEN f2
else £13

vhich is eguivalent +to the first formss. The WHEN and ORIF

keywords (appearing vhere ELSR could appear) are dJust

12731774

148 CRISP -- SDC TH-5455,000/00

equivalents to the two-vword sequence, ELSE IF. They give
the lanquage no new power, rather they provide a "“pretty®
format for involved conditional logic. However, there is a

case to watch out for. <Contrast the meaning of these rvo

examples,
BEGIN; i BRGIN;
WHEN pt1 THEN f£1 { WHEN p1 THEN £1:
WHEN p2 THEN £2 { WHEN p2 THEN f2
END | END

The only difference is the seamicolon appearing after f1 in
vthe second exaample. The first block has one statesment in
its body. The second block has tvwo separate statements in
its body. In the first case, either f1 or £2 or neither
vill be evaluated. In the second case, it is possible for
both £1 and f2 to be evaluated. Thus, a very subtle error

say be introduced by an added or a deleted semicolon.

SELECT and SELECTOQ

<select> and <selectqg> foras are very siwilar. They have an
enhedded expression called their selectrix. The selectrix
is evaluated precisely once per evaluation of its parent
form. The when clauses are introduced by the word WHEN and
folloved by one or more expressions. In the case of
<{selectqg>, the expressions are external data that are
implicitly quotaed. The expressionms in“the wvhen clauses are

called selectors.

The evaluation of a select or a selectq proceeds along the
following lines: Evaluate the selectrix and call its value

Rouqgh Draft

N

Conditionals 149

x. BEvaloate the first selector in the first wvhen clause.
If its‘value is BQ (=) to x, then perform the terminal
associated with the first when clause (i.e., the first then
clause). Othervise, evaluate the second selector in the
'first wvhen clause and see vhether its value is EQ to x.
Continue in this manner with all selectors in the first when
clause. If none are BQ, then gc omn to the second when
clause. If apy are BQ to x, then perform the second
terminal, etc. If none of the sgelectors are BEQ to the
selactrix, then evaluate the else clause. If the select or
selectq is used as an expression, then the value is the
value of the evaluated terminal. 1If the select or selectq
is used as a statement and the evaluated terminal 1is not a
goto, a leave, or a return, then cantrol falls through the

whole fors.

Iin the folloving, £1, f2, and f3 are forms, and e 4is an

expression. These two are identical in smeaning and

interpretation:
SELECTQ e i SRLBCT e
WHEN A,B THEN £1 i WHEN "A,"B THEN f£1
WHEN QR THEN £2 i HHEN “(QR THEN £2
WHEN 17 THEN £3 | WHEN 17 THEN £3
| ELSE NIL

If the value of e is the identifier A or B, then f£1 is
evaluated. Otherwvise, if the value of e is the identifier
QR, then f2 is evaluated. Othervise, if the value of e is
17, then £3 is evaluated. In all other cases, NIL is

evaluated.

When one of the terminal foras is selected, its evaluation

12/31/74

150 CBISP -- SDC TH-545S5,/000/00

‘terminates the evaluation of the select or the gelectq forn.

SELECIN

h <selectn> forms provides an easy method of conditionally
selecting a terminal for evaluation depending upon the value
of a number expression. A number expression wmust have the
type integer, float, complex, number, or general. A8 vith
select and selectq foras, the embedded expression is called
the selectrix, and the clauses in the when clause are called
selectors. Let X be the value of the selectrix and nt1 and
n2 be nuaber expressions. Then the following lists the

rossible foras of the selectors and their meanings.

n1 eval then clause iff x=n1
>n1 eval then iff x>n1

<n1 eval then iff x<n1

=n 1 eval then iff x=n1

~=n1 eval then iff x-=n1

>=n1 eval then iff x2n1

<zn 1 eval then iff x<nt

nl TO a2 eval then iff n1<x<n2

nt THRU n2 eval then iff ni1sx<n2

>n1 TO n2 eval then iff ni1<x<n2

>n1 THRU n2 eval then iff ni<xs<n2
>xn1l T0 n2 eval then iff n1<x<n2
>=n1 THRU n2 eval then iff nisxsn2
The selectrix is evaluated only once. The selectors are
evaluated in the corder im wvhich they appear, 1left to right
in the first when clause, then left to right in the second
vhen clauyse, etc. A8 soon as one selector is satisfied, the

corcresponding terminal (then clause) is evaluated. If no

selector is satisfied, then the else clause is evaluated.

SELECTN X
WHEN 3, 7 THRU 9 THEW £
WHEN <0 THEN £2

ELSE £3

Bough Draft

v

(Y

Conditionals 151

In this example, if the value of X is 3, 7, 8, or 9, then £1
is evaluated. If the value of X is negative, then £2 is
evaluated. Otherwvise, f3 is evaluated. Exactly one of the
terminals is selected for evaluation. If the selectn is

used as an expression, then the value is the value of the

’selected terminal,

AELBCIT

A <selectt> fors picks one of its tersinals for evaluation
depending upon the type of its selectrix. The selectrix is
either a variable or an assignment form with an identifier
as its lef: side. If the selectrix is a variable name, then

the selectors (<type-ref>s or NIL) are more specific types.

For imstance, if G is a general variable, then the following

would he typical.
SELBCTT G
WHER 1D THEN £1
WHEN NODE THEMN £2
BLSE £33
When a terminal is evaluated, the type attribute of the
variable is known ¢to be the <type-ref> selector. This may
be particularly useful when “recovering" an ntuple or array

object from the type general.

If the second form of the selectrix is used, then the value
of the expression is put in the named local variable, which
is automatically bound while in the selectt form. The
variable is visibla.onlv vhile the terminal forms are being
evaluated. The type attribute of the variable in a

12/31/74

152 CRISP -- SDC T#¥-5455,/000,00

particular terminal is picked up from the corresponding
selector. In the else clauaé. the variable is considered of
type general. If the selecteor is NIL, then the variable is
not visible. Thus, in the above example, the type attribute
in £1 is 1id, in £2 the attribute is node, and in f£3 it is
general. It 1s not leqal to branch into a terminal of a

<selectt),

Rough Draft

\

153

FOR LOQP
The CRISP <for~-loop> form permits easy, concise
representation of iterative computations. The laop

functions provided not only can be used for numeric value
generation, but also can manipulate elements of 1lists,
ntuples, or other CRISP data types. For loops are organized
so that any nuaber of loop variables can be updated during
each iteration, and update functions can be executed
conditionally, individvally, or in groups. HMHultiple 1loop
bhodies containing any valid CRISP statements are permitted,

resulting in a poverful computational tool.

Por loops can be used as either statements or expressions.
A mechanisa 1is provided for computing a value (or values)
upon aormal termination of the loop. The For loop wmay be
used in both SI and XL and has the followving foram (a formal
description appears at the end of this section):
ISR

FOR

f1 or nore for-foras)
ENDF

L@ R
(POR (1 or more for-foras})

The Por loop is implemented as a macro. It is expindad as a

<binding-block>, which has the following form:

12/31/74

154 CRISP -- SDC THN-5455,000,00

DO set-old-value-1; set-old-value-2; ...; set-old-value-n;
initial-1; initjal-2; ...; initial-n;
BEGIN
bind~-variable-1,bind-variable~2,...,bind-variable-n;
t: code-for-first-qenerator;
code-for-second-generator;

code-for:n'th-qenetator:

GOTO t:

r: final-1; final-2; final-3; ...; final-n;

RETURN returned-value-computation;
- E¥D

END
Where:

'set o0l1ld value i*' indicates vpresetting of any loop
variables vwhose bindings exist outside the loop.
*initial i' indicates statements used in INRITIAL
gqenerators.

tbind variable i*' indicates binding (asd optional
presetting) of new loop variables.

‘code for i'th generator' indicates code needed for a
given generator, conditional, or 1loop body. These
pieces of code appear in the same order as the
generators.

tfinal i* includes statemente that appear in FINALLY
generators.

‘returned value computation' indicates code necessary
t©o generate values for va;ue-producinq generators. If
rore than one valué—producinq generator is used, all
the values are returped as a (node2) 1list in whatever
order the generators producing them appear in the loop.

Any of the above for loop components not necessary for a

given loop will not be included.

Rough Draft

()

e

FOR Loop 155

Leop Tersination

There are two methods of leaving or terminating a for loop;
normal and abnorsal. Normal termination occurs vhen a
qenerator that is capable of terainating the 1loop does so,
or vhen a LEAVE POR form is executed in a loop body. Noraal
termination causes the normal ending and value-producing
code, if present (at 1label r above), to be executed.
Abnormal termination occurs when, in a loop body, a return

or leave is executed or a go leaves the loop. In these

’casea. cosputation normally performed at the end of the loop

is bypeassed, and the user is responsible for generation of

any valve(s) desgired.

Senerator Descrintions

The for loop generators and conditionals are described
telovw. In the syntax and expamsion descriptions, the

following syabols are used:

SIMBQY BEAMING
v a variable (identifier or global name)
expl ... expn expressions
r ~ a genid latel placed before the

code that is executed upon normal
loop termination (value computation,
etc.)

t a genid label placed before the
first statemant of executable cade.

g.q9! ... an qenid variables or labels used in
expansion ¢of the loop.

12/31/74

156 CRISP -- SDC TH-5455,/000/00
forv a loop variable carrying
optional type informationt

nuav like forv, but can only be
a sisple numeric type

If a lover-case 'if' followed by a capitalized word appears
in a description, the action(s) immediately following is
taken only if the capitalized word appears in the fora.
This 1is used, for example, vwhen the code produced by a
generator varies depending upon the presence of optional
keyvords. In addition, the function TESTANDSET is wused in
some qenerator code. Although isplemented as a single
Syastem/370 instruction, it may be viewed as the following
transfora:
TRANSPOBRNM TESTANDSET (POQ)
IF POO THEN TRUE
ELSE (FQQ:=TRUE,NIL):

This has the effect of bypassing the consegquent of an if
(using TBSTANDSET as its predicate) the first time the if is

executed. Subsequent coxecutions of the if will execute the

copsequent.

In the following descripticns, things following
IKITIALIZATION are normally bound, optionally with explicit
type attributes and presets. Some initialization wmay not
involve hinding, but merely setting o0ld4 variables. 1If this
is the <case, it will be indicated. ENDING values are
returned upon norsal exit froa the loop except in the case
of FINALLY.

! in SL, this appears as [OLD}j<type-ref>] v
in 1L, the form is (OLDj<type-ref> v) or just v

Rough Draft

o

FOR loop 157

Ssnaxasgxn_rxnﬂysina_xalnsa
AR

SL -- AND exp

IL -- (AND exp)

INITIALIZATION -- BOQL q := TRUE
GBNERATOR -- IF -~ exp THEN (g:=NIL, GOTO r)
ENDING -~ g

TRUE is returned if exp is non-NIL for all evaluations. The
loop terminates and returns NIL the first time exp evaluates
to NIL.

Al
SL -- ALL exp

IL -~ (ALL exp)

INITIALIZATICN -~ BOQL g 3= TRUR
GENEBATOR -- IF - exp THEN ¢:=KIL
ENDING ~- g

Like AND, but does not terminate the loop if exp evaluates
to NIL.

QR
SL -~ OR exp

IL -~ (OB exp)

INITIALIZATION ~- BOOL g
GENEBRATOR -~ IF exp THEN (g:=TRUE, GOTO r)
ENDIRG -~ g

The 1loop terainates and returans TRUE when exp first
evaluates to non-NIL. If all evaluations of exp are NIL,
NIL is returned.

ANY
SL -~ ANY exp
IL -~ (ANY exp)

INITIALIZATION ~-- BOOL ¢
GENEBATOR -- IF exp THEN g:=TRUR
ENDING -~ g

Like OB, but does not terminate the loop if exp evaluates to
non-~NIL.

12/31/74

158 CRISP -- SDC THN~5455,/000/00

2IBS1 .
SL -- FIRST exp

IL -- (PIRST exp)

INITIALIZATION -- GENERAL g

GENEBATOR -- if (g:=exp) THEN GOTO r
EKDING -—- ¢

Like OR, but returns the value of exp the first time it
evaluates to non-NIL.

JALUE
SL -- VALUE exp

IL =~ (VALUE exp)

INITIALIZATION -~
GENEBATOR --
ENDING -~ eXxp

Upon normal exit of the loop, exp is evaluated, and its
value i3 returned.

2UN -
SL -- TINT|{FLCAT| YU MBEBR|COWPLEX] SUM exp \;)
IL == (SUN [INT|PLOATINUMBER|{COMPLEX] exp)

INITIALIZATION -- [type] g :=(
GENEBATOR ——- q:=q+texp
ERDING -~ @

Returns the sum of all evaluations of exp. If type is not
specified, number is assumed.

2RO DICT
SL -~ [INTIFLOAT| NUNBER|{COBPLEX] PRODUCT exp
IL -- (PRODUCT [INTIFLOATINUMBER|CONPLEX] exp)

INITIALIZATION -- [type]l q :=1
GENERATOR -- q:z=g%*exp
ENDING -- g

BReturns the product or all evaluations of exp. If type is
not specified, nuamber is assumed.

Rough Draft

AT

POR Loop 159

UNIGH
SL -~ UBION exp
IL ~- (UNION exp)

INITIALIZATION -- NODE q
GENEBATOR -- qi=exp UNION q
ENDING -~ ¢

Returns the union of all evaluations of exp.

LANIER
SL ~~—~ INTEBR exp
IL -- {INRTER exp)

INITIALIZATION ~- NQDR gt,g2

GENBRATOR -~ IF TESTANDSET(g1) THQN g2:=exp INTER g
ELSE g2:=exp

ENDING -- q

Returns the intersection of all evaluations of exp.

RARREND
SL -~ DAPPEND exp
IL ~- (DAPPEND exp)

INITIALIZATION -- HODE g
GENERATOR -- g:=q 38 exp
ENDING -~ ¢

Builds a list using DAPPEND. Each evaluation of exp is
DAPPENDed onto the previous list (initially NIL), and the
constructed list is returned upcn ncrmal exit of the loop.
Exp must evaluate to a list.

RAERENRE
SL -- DAPPENDR exp
IL -- (DAPPENDR exp)

INITIALIZATICN ~-- NODE g
CENERATOR -~ q:=exp 83 ¢
ENDING -- g

Like DAPPEND, but returned list will have componeats
(evaluations of exp) put tagether in reverse order. This
form is more efficient computationally if order of 1list
elements is not imsportant.

12/31/74

160 CRISP -- SDC THM-5455,000/00

ARREIR
SL -- APPEED exp
IL -- (APPEND exp)

INITIALIZATION ~-- MODE g
GENERATOR -~ ¢:=qdd (expalNIL)
ENDIRG -- g

Builds a list like DAPPEND but uses APPEND.

ARRENDF
SL -- APPENDR exp
IL -- (APPENDR exp)

TEITIALIZATION -~ NODR g
GENEEATOR -- q:=exp @ ¢
ENDING -~ q

Builds a list like DAPPENDR but uses APPEND.

AALIIALLY
SL -- INITIALLY statement

IL == (INITIALLY $statement)

Causes insertion of specified statement (8) before the
binding of varjiables for the POBR lcop. If aore than one
INITIAL is used, the statements are executed in the order of
appearance.

EINALLY
SL -~ FINALLY statement

IL -- (PIRALLY $statement)

INITIALIZATIOR --

GEREEATOR ~-

BRDING -~ (evaluate but do not return) statement

Causes the statement(s) to be evaluated upon normal 1loop
exit., Evaluation is done bhefore any value computation.

Rouqh Draft

POR Loop 161

Loun3
SL -~ COUNT exp
IL -~ (COUNT exp)

INITIALIZATION -- INTEGER q :=0
GENBEATOR -- IF exp THEN g:=q+1
ENDING -- g

Returns the nuamber of times exp evaluates non-NIL.

LIST
SL -- LIST exp
IL == (LIST exp)

INITIALIZATICON ~-~ NQDE g
GENERATOR -- Qg:=exp # g
ENDINKG -- DREVERSE(q)

A list of the values of each evaluation of exp is returned
such that CAR(list) is 1st value, CADR(list) is 2nd value,
etc.

LISIR

SL -- LISTR exp

IL -- (LISTR exp)
INITIALIZATION -- NODE q
GENEBATOR -~ qgizexp # g
ENDING -- g

Like LIST, but returns the list of values in reversed order.
Comaputationally more efficient if ordering of elements is
not tequired.

12/31/74

162 CRISP -- SDC TN-5455,000/00

Qrdimary. Geperators
18

SL -- forv IS s€xp
IL -- (IS forv exp)

IRITIALIZATION -- {[typa] v]
GENEBATOR -~ v:=eXxp

Vis set to the value of exp each time the generator is
executed. If OLD appears, an existing binding of v |is
assumed and no new one is created. If type 1is not
specified, implicit typing rules will apply.

DO
SL -- DO block-~hbhody {(ENDJENDF)
IL -- (DO $statement)
INITIALIAZATICY -~
GENERATOR -- stat1

stat2

statn

The specified statements are executed each time the DO
generator is executed. Mulitiple DOs may appear in a loop.
In SL, using ENDP instead of END terminates the DO and the
for loop.

BEGIN

SL -=- BEGIK block-tind-list; [attribute-list]
block-body (END]ENDPR}

IL -~ (BEGIN block-bhind-list block-body)

INITIALIZATION -~
GENEBATOR -~ BEGIN block-bind-list;
attribute-list;

gstati

statn
END

Similar to DO, but permits binding of variables.

Rougqh Draft

FOR Loop 163

EQR
SL -- FOR loop

IL -- (FOR loop)

A for loop wmay be nested within another and used as a
qenerator. The POR keyword is used to free the ouser fronm
coding

DO FOR ENMDF END

IN
SL -- forv IN {exp } COLD var}
IL -- (IN forv fexp |} OLD var})

INITIALIZATION -~ [[type] v}
if aot OLD irn forv, NODB g := exp
GENERATOR -~ IF NULL if OLD, var
otherwise, g THEN GOTO r
if OLD with var, v:=CAR(var)
othervise, v:=CAR(g)
if OLD with var, var:=cdr(var)
otherwise, q:=cdr (g)

IN gives v (through successive iterations) the same values
that MAPIN would present to its functional argument. Exp
BUst evaloate to a list. When the list is exhausted, the
loop is terminated. If the 'OLD var* form appears, a genid
variable is not created to hcld the Successive CDRs.
Rather, the existing variable, var, is used. Normally, this
would result in var being NIL upon termination of the loop
unless another generator causes termination before the list
is exhausted. If OLD appears with the forv, an existing
binding for v is assumed and a nev one is not created. If
no type is specified, implicit typing rules will apply.

4} |
SL -- [OLD) v CH (exp | *)
IL -- (ON (v | (OLD v)} f(exp t *})

INITIALIZATION -- NODER g :=zexp [,NODE v]
GENERATOR -~ IF NULL ¢ TEENK GOTO r

ve=g

a:=CDR(q)

Like IR, but sets v to successive CDRs of exp rather than
CARs of successive CDRs. T.e., like MAPON instead of MAPIN.
If OLD and * are used togather, v itself is CDRed instead of
a genid.

12731/

164 CRISP ~- SDC THN-5455,/000,00

BESEY
SL -- forv := fexpl §{ *} HESET exp2
IL -- (RBSET forv fexpl | *) exp2)

INITIALIZATION -- if OLD, set v:=exp and bind g
othervise, bind [type] v:=exp,q
GENEEATOR -~ IF TESTAERDSET(q) THEN v:=zexp2

The first time throuqgh the loop, v will have the value of
expl. On subsequent iterations, exp2 will be evaluated and
its value stuffed in v. If OLD appears, an existing binding
of v is assumed and a new one 1s not created. 1If no type is
specified, implicit typing rules will apply. If OLD and *
are used together, then v will have its original value on
the first loop iteration.

alepRer
SL -- numv := faxpl | *}] [{TO[>=|<=|>|<}=l~=] | THRU} exp2]
, [(BY|STEP)} exp3]
IL -- (§BYISTEP} nuav f[expl | ¥}
fexp3 [fexp2) ((GQILQIGRILSIEQINQ} exp3)} 1]

IRITIALIZATION -~ if OLD, set v:isexpl
otherwise bind [type] v:=exp1l
if T0, bind g:x=exp2
if BY, bind gql:=exp3
bind g2
GENBRATOR -—- IF TESTANDSET(g2)
THEN if BY, v:=v+q1
otherwise, if STEP, v:=vtaxp3
othervise, v:i:svel
if T0, IF v specified-relational or GQ g
if THRU, IF V GR g
THEN GOTO r

A standard arithmetic stepping loop. BY causes incresent to
be pre-cosputed; STEP causes expl to be evaluated each time.
If npneither BY nor STEP appears, °'BY 1' is assumed. TO
causesz ending test value to be pre-computed. If TO appears
without specifvying a relational, GQ i3 used. THRU causes a
GR test to be made. To get ending value computed each tirme,
use:
UNTIL v desired-relational exp2 _

If OLD appears, an existing v is assumed and is merely set
to exp! rather than bound with that preset. If no type is
specified, implicit typinq rules will apply. If * is used
vwith 0OLD, then v has its original outside value during the
first loop iteration.

Rough Draft

_/

FOR Loop 165

conditionals

JOEN

SL -~ WHER exp

IL =~ (WHEN exp)

GENERATOER -— IF =~ exp THEN GOTO ¢t

Whenever exp evaluates to NIL, the rest of this iteration of
the loop is skipped.

UNLESS
SL -- UNLESS exp
IL -- (UNLESS exp)

GENERATOR -- IF exp THER GOTO t

Whenever exp evaluates to non-NIL, the rest of this
iteration of the loop is skipped. (like 'WHEN ~ exp!')

JHILE
5L -- WHILE exp
IL -- (WHILE exp)

GEREBATOR -~ IF -~ exp THEN GOTO ¢

When exp first evaluates tc NIL, the loop is terminated.

JNI11

SL -- UNTIL exp

IL -~ (UNTIL exp)

GENERATOR -- IF exp THEN GATO T

When exp first evaluates tc non-NIL, the loop is terminated.
{like *WHILE -~ exp?')

12/31/74

166 CRISP -- SDC THM-5455,000/00

LK
SL -- IF exp {qenerator | ($generator)})
IL -~ (IF exp S$generator)

GEKERATOR —-- IF exp THEN (generatori,
generator2,

generatorn)

The specified generator(s) is executed only if exp evaluates
to non-NIL. Note that the generator may be of the control
type, as:

IF NUMBERP (X) UNLESS X <=2 0
Since VALUER and FINALLY have no generator part, it 1is
illegqal to use thea as consequents of IF.

R1XR
SL -~ BIND <block-hind-list>
IL -~ (BIND . <block-bind=-list>)

INITIALIZATION -- <block-bind-list>
The specified variables are added to the FOR loop's bind

list. There is no facility for wusing attribute forms as in
SL blocks.

Rough Draft

N '

FOR Loop

FOR LOOP FORNS
CRISR SDC-LISP
stepper (extended) stepper
AND
ALL
QR
ANY
FIRST
VALUE VALUE
UNION
INTER
COUNT
FINALLY
LIST LIST
LISTH
SUN
PRODUCT
IS LOOP/AT
IN IN
ON ON
DO/BEGIN TOP/BOTTOM/DO
RBSET RESET/NOW
HHER WHEN
UNLESS UMLESS
URTIL UNTIL
WHILE WHILE
1F
DAPPEND
LAPPENDR
APPEND
APPENDR
BIND BIRD

167

INTERLISE

stepper
ALWAYS

THEREIS

CGUNT
FINALLY
COLLECT

sun

(EACHTINE)
IN

ON
DO/EACHTIME

WHEWN
UNLESS
UNTIL
WHILE

JOIR

A COMPARISON OF POR GEMERATORS FOR VARIOUS L ISPS

Fiqure L

12/31/74

168 CRISP -- SDC TM-5455,000/,00

KoK loop. Exaaples

A sample code expansion (in SL) is included with each FOR
loop example. Although the code produced in the exaaples is
correct, it dces not reflect certain optimizations that
would be perforsed by the actual FOR macro (such as the
collapsing of TESTANDSETs, if possible, and the removal of
extraneous branching). In the examples, the following

INPLICITS are in effect:

A-H GENERAL
I-H INTEGER
and O0-Z FLOAT

{1) Find the sum of a vector of flcat nusbers:

sSL*
FOR I:=1 THRO ABLN(X)
PLOAT SUM X(I)
EMDF

SIL*
(FOR (BY I 1 1 (ARLE X)) (SUM FLOAT (X (I))))

Expansion:

BEGIN XI:=1,g1:=ARLN(Y),PLOAT g2,93;
t:IF TESTANDSBET(g3) THEN I:=I+1;

IF I > gt THEW GOTOQ r;

g2:=qi*X(1);

GATO t:
r: RETURN g2:

END:

Rough Draft

\ /’
S

FOR Loop 169

(2) Print an endless list of Fibonacci numbers:

*SLe
POR I:=1 STEBP J
J:=1 RESET I-J
DO PRINT (J)
EWDF

IL
(FPOR (STEF I 1 J) (RESET J 1 (DIPPERENCE I J))
(DO (PRINT I)))

Expansion:

BEGIN I:=1,0:=1,g1,42;

t:IP TESTANDSET (q1) THEN I:=1+J;
I? TESTANDSET (92) THEN J:=I-J;
PRINT(J) :
GOTO ¢t
ERD;

{3) Produce a list of the first 10 prime numbers and number
them sequentially, as:

(V. 2)(2 . 33 . 54 . e (10 . 29))
This loop assumes the existence of a function PRIME(X) that
returns non-NIL if X is prime.

SL
FOR I:=1
WHEN PRINE(X)
J=1
LIST J#X
UNTIL J = 10
ENDF

IL
(FOR (BY I 1) (WHEN (PRINE I)) (BY J 1)
(LIST (CQNS J I)) (UNTIL (EC J 10)))

Expansion:

BRGIN X:=1,J:=1,80DR g1,42,q3;
t:IF TESTANDSET (g2) THREN I:=1+1;
I? ~PRINB(I) THEN GOTO ¢t;
IF TESTAMDSET(q3) THEN J:=J+1;
gqlz:=(J8I) #g1:
IF J = 10 THEN GOTO r:
GOTO t3 ,
C:RETURN DREVERSE (g1):
RED:

12/31/74

170 CRISP -~ SDC TH-5455,/000/00

(4) Example of the use of LIST, LISTR, APPEND, AND APPERDR:

»SLe
FOR A IN "((A B C)(D BY(F G H I) (J) (K L ¥) KIL (R 0))
LIST A
LISTR A
APPEND A
APPRNDR A
ENDF
IL
(FOR (IN A {QUOTE ((A B C)(D BY(F G H I) (J)
(K L M) NIL (N 0))))
(LIST A) (LISTR A) (APPEND A) (APPENDR 1))
Expansion:

BEGIN NODE A,NODE gl:z:=%((A B C) (D E)(F G H I)(J)
(K L M) NIL (N O)).,
, MODE q2,NODB g3,R0DE q4,NOLE g5;
t:I1IF ~q1 THEN GOTO «r
A:=CAR(q1) :
Q1:=CDR {g1):
gq2:=A8qg2;
qI:=A#8q3;
qU:=ql4dad (AdNIL);
aS:=Adq5;
GATO t3
C:RETURN LIST(DRBVE®SE(g2).93,q94.95);
BND:

The above loop will produce the folloving list:
{({(A BCY(D E)Y(FP G R I)(J)(K L M) HIL (N 0O))
({8 Q) NIL (K L M)(J)(P G H I)(D E)(A B C))
(A BCDEBEPFPGHIUJKLMNDNDO O
(R OKLEBJIJPGHIDTENAMNSEBDCOC)

Rough Draft

POR Loop 171

I0R._loop Syntax

*SLw
<for-loop>::=FOR ¢ {<for-form>[,]} ENDF

<for-form>::=<for-gen> |<for-cond>|<for-control>|
<for-bind>|<for-body>

- <for-gend>::=<stepper>|<value-gend>{<norm-gend |<reset-gen>
<stepper>::=[OLD{|<pnum-type> l<named::=(<Cexpressiond|*}

[{THRUJTO [21<12=1<=1=] =]} <expression)>]

[(BY|STEP}<expressiond]
<num~-type>::=INTEGER|{FLOAT | CONPLEX | NUMBER
<value-gen>::=<arith-val>|<norm-val)>
<arith-val>i::=f <nus-type>) {SUM|PRODUCT}<expression>
<norm-val>::={AND|ALL|OR|IANY{FIRST |VALUEJUNION{INTER|JCOUNT|

DlPPllDlDAPPBUDRIAPPE!DIAPPENDR]LISTILISTR}
<expressgion>
<norm~-gen>::=<in-gen>|<on-gen>j<is-gen>
<in-gen>::=[OLD |<type-raf>]<name> IN ({<expression|OLD <named}
<on-qgen>::=[0OLD] <name> O¥ {<expression>|*}
<is-gen>::=[OLD |<type-ref>] <name> IS <expression>

<reset-gen>::=[QLD |<type-ref)>]<named:={<expressiond>}|*}
RES BT <expression>

<for~-cond>::=<for-if>|<for-term>
<for-if>::=1IPF <expression> {(<Kfif-focrm>| (fa,elfif-fora>)}
<{fif-form>::=<for~qen>|<for-cond>|<for-body>
<for-term>::=(NHEN|UNLESS|WHILE|UNTIL) <expression>
<for-control>::=<init-gen>|<final-qgen>
<init-gen>::=INITIALLY <statement>
<final—-qen>: :=FINALLY <statement)
<for-bind>::=BIND <block-bind-list)>;
<for-hody>::=D0 <block-body> {END|ENDF}}
<for-loop>|
BEGIN<Cblock-bind-1list)>;
[<attribute-list)>]}

12/31/74

172 CRISP -~ SDC TN-5455,/000,00

<black~body>
{END| ENDF}

®IL*
<for-loop>::=(FOR a<for-form>)

<for-form>i:a<for-gen>{<for-condj<for-controld|
<for-bind>|<for-body>

<£ar-qen)::=<steppcr>|<va1ue—qen>n<norm—qen>|<reset-qen>

<stepper>::=({BY{STEP} <num-for-var> {expression>|*}
<expression> ({GQILQILSIGR{EQ| NQ} <expression>)))

<num-for-var>::=<name>| { {OLD|<num-type>} <name>)

<num-type>::=INTEGER|FLOAT |COMPLEX | NUMBER

<value-gend>::=<arith-val>|<norm-vald>

<arith-val>::= ({SUM JPRODOCT) [<num-type> J<expression>)

<norm-val>::=((ANDIALL{ORIANY|FIRST}|VALUE|UNION|INTER] COUNT |
DAPPBﬁDIDAPPB!DRIAPPINDIAPPENDB]LISTILISTR)
<expressiond)

<nors-gen>::=<in-gen>|<on-gen>|<is-gen>

<in-gen>::=(IN <for-var> {<expression>| (OLD <name>)})

<on-qen>::= (0N {<name>|(OLD <name>)} {<expression>|*})

<is-gen>::= (IS <for=-vard><expressiond)

{for-var>::=<name>| ((OLD}<type-ref>}<named>)

<reset-qen>::= (RESET <{for-var> (<expression>|*}<expression>)

<for-cond>::=<for-if>(<for-term>

<for-if>::=(IF <§xprcssion> £ (<for-gen>|<for-cond>| <for-body>})

for-term>::=({WHEN{UNLESS{WHILR)UNTIL) <expression>)

<for-control>::=<init-gend|<final-gen>

<ipit-qen>::= (INITIALLY $<astatement>)

<final-gea>::= (FINALLY $<statementd)

<for-bind>::=(BIND . <block-bind-1ligtd)

<for-body>::=<binding-block>|<do-block>|{<for-loop>

Rough Draft

_/

173

PROCESSORS AND PROCESSES

This section describes processes, processors, aand the
primitives for smanipulating thens. Using processors, a
"spaghetti®” stack! implementation may be achieved. However,
the cost of using processors instead of ordihary functions
is hiqh. Starting or resuming a process may easily exceed a
millisecond:; linkaqe to a function costs approxisately 40
microseconds. A system design criterion has been that
ordinary operation, function <calls, and in-line code (as
oppoged to process switching) should run as rapidly in CRISP
as the equivalent code would run in a LISP, FORTRAN, or PL/I
systeam with a good compiler and rum time support package.
It is believed that this objective has been met in the
current syatem design without severely penalizing prograas
that use the process switching capabilities.
Bultiprocessing is not a feature that {is automatically
invoked. A set of prisitives are provided as a parts kit
from which the prograsmer can tailor the systeam to meet his

particular needs.

This section contains subsections on Processes, Processors,
Processing Primitives, and Example Programs. The ssection on
scoping and denotation rules (pagqe 25) should be reread
along with this section for better comprehension.

1 See "A Model and Stack Implementation of HMultiple
Environaents®, Daniel G. Bobrow and Ben Wegbreit,

Cosmupications_of the ACH, October 1973, Volume 16, Number
10, pages S91-603.

12/31/74

174 CRISP -~ SDC THM-5455,000,00

Procseases

A process is a program that has been placed into execution.
Fach process is identified by a handle. A handle is a data
cbiect that contains the total state of a process. The
state of a process has three parts: activity state,
internal state, and external state. There are three
posgible activity statea: active, suspended, and dead. The
internal state of a process has twc related parts: variable
context and control context. The external state comprises
three links: context 1link, abort link, and last activator

link.

Several primitive operations are available that modify the
state of a process. The <cperations START, RESUME, and KILL
nodify a process's activity and external states. The
operations CONTRXT, ABORT, and ACTIVATOR can modify a
process's external state. The internal state of a process

is modfified by execution.

The iuplementation associates with each process a stack that
contains the internal state (control and variable contexts)
of the process. Function calls and variable bhindings are
handled on the stacks in a norsal, LISP-like wmanner. The
handle associataead wvith the process is a S-tuple. The
elements in a handle are (1) activity state, (2) context
link, (3) abort 1link, (4) last activator link, and (5) the

stack associated with the process.

Rough Draft

N

Processors and Processes 175

Activity state

When a process is started, a new handle and stack are
created and initialized, and the nevw process is made active,
that is, it is put into execution. Exactly one process in
the systes is active at any one smoment. When a process is
resumed, that is, put back into execution, the process that
is currently active is suspended. A process is suspended
vhenever it has been started, has not been killed (or died
of various computational ailments), and is not currently
active. When a suspended process is resumed, it beconmes
active and continues operaticn from the point at which it
had been suspended. A process becomes dead vwhen it is
killed (by the primitive KILL), shen an error or unvrap is
initiated in the process and there is no try in effect
vithin the process, or when the internal state of the

process becomes null. A dead process may not be resumed.

Internal state

The internal state of a ptocess is maintained on a stack.
The stack coftains return addresses, temporaries, variable
bindings, and fallset points established by the try
crinitive, If a process is suspended, its stack also
contains a program counter save so that the process can be
properly resused. There is no stack associated with a dead

process.

As an active process executes, its stack grows and shrinks.
When a function is called, the argument values are computed

and pushed onto the stack. Also, a return address (location

12/31/74

176 CRISP -- SDC TH-5455/000,00

at which to re-enter the calling functional) is pushed onto
.the stack. The called function is then entered, and the
arqument values are paired with the parameters' proper
names, thus creating bindings. As blocks are entered, the
initial (preset) values of all local and global variables
bound by the Llock are computed and pushed onto the stack.
After all presets have been computed and pushed, the values
are pajred with the bhlock variables' proper names, creating
bindings. When a function or a block is exited, its
associated bindings are popped off the stack, thus unbinding
the variables. A return address is a pair: a function or
processor definition aund a point in that definition at which
execution is to “resume™. Thus, vben a function is exited,
the return address to its caller (which is popped) supplies
the information necessary to restart the calling function.
When a process is suspended, the program counter is saved in

the same format as a return address.

Temporary values and results of coaputations wmay also be
pushed onto the stack, CRISP is sc designed that all such
stack usaqge follows a last in first out (LIFO) discipline.
Return addresses, temporaries, and failset points form a
process's control state, The variable bindings om a
process's stack form its variable context. Thus, the total
internal state of a process 1ls reflected by its stack.
Failset points are described below in the section on

processing priaitives (page 179),

Rough Draft

_/

Processors and Processes ” 177

External state

The external state of a process is a set of three handles.
One handle, the coptext 1link, is used to construct the
pProcess's total variable context. It a variable 1is
referenced by a process that is not bound in its internal
state, then the binding is looked for in the internal state
of the process located by the context link. If not bound
there, then the context link of that process is followed,

etc.

The set of processes in the system forma tree. The
processes are the nodes and the context links form the arcs.
The root node is the pseudo process that has RIL as its
handle. The NIL process is the set of top 1level variable
bindings. The section on dynamic context (page 36)

describes this in more detail.

The second part of a process's external state is its abort
link. The abort link is a handle. The set of processes in
the system alsc fors a tree vwith theaselves as nodes, the
abort links as the arcs, and the KIL process as the root
node. This tree need not be isomorphic to the tree formed
by the context links. The usages of the abort link are
described im the section on proceasing primitives (page

179) .

The third cosponent of a process's external state is its
activator 1link. ¥hen a process is made active, the

activator link is set to the handle of the process that

12731774

178 CBISP -~ SDC THM-5455,000,00

started or resuved this process., The activator 1links need

not form a tree and say be circular.

Processors

Syntactically, a processor definition (<processor-def>)
resenbles a function definition. See the section aoan
definitions (page 97). Both have a name, an argument list,
and an expression body. A processor is called amuch as is a
func tion. (See the description of the START prisitive
below.) When called, the arquments are avaluated, and
control is transferred to the processor definition. At this
point, the proccess making the call is suspended, and a new
process 1is created. On the new process's stack, the
arqument values are paired vwith the parameters! proper

panes. Then the hody of the process is evaluated.

The nporsal way for a processor tc exit is by resuming
another process. (Unlike function calls, processors need
not éxit in the order 4in which they are created.) If a
process completes execution of the processort's expression
body, then an unvrap is induced in the process pointed at by
the abort link. Tbe value passed back by the unwrap is " (h
COMPLETE), vhere b is the handle of the coapleted process.
The process is marked as dead wvhen this happens. The
expression body of a processor is a novalue expression,

thus, it is not required to produce a value.

Rough Draft

Processors and Processes 179

Frocessing Primitives

This section specifies the syntax of the prisitives
available for process control and describes their usage and
seaning. In the syntax equations, a <proc-expression> is
any expression whose value is & subspecified proc type (the
name of a processor, for example). A <handle-expression>,
or an <hexp> for short, is any expression whose value is of

the type handle. The syntax of the primitives is:

SL
<processing-primitives>::sC(failset-priaitive>|
{process-~copy-priamitive>|
<external-state-priaitived|
<activity-changer>
<failset-primitived:ia<try~form>|<exit-form>
<try-form>::=<try>j<tryu>|<trys>i<trya>
<try>::=TRY ({USEBR|SYSIALL} ¢{,<form>})
<tryu>::=TRYU(Ze,n<faorn>)
<trys>::=TRYS(fu,ulform>)
<trya>::=TRYA(fe,e<fOLrnm>)
<exit-form>::=<fail-fora>|<error-fors>
<fail-form>::=<fail>|<failkill>
<faill>::=PAIL ([<expressiond[,<hexp>))
<fallkill>::=PAILKILL (<expression>,<hexp))
<e:ror*fot|$::-(e:ror>|<errork111>
<error>::=EBROR ([<expression>[,<hexp>1))
<errarkill>::=EBROBKILL (<expression>,<hexp>)
<process-copy-primitive)::=COPYPROC (<hexp>)

<{external-state-primitived::=<myselfd|<activator>|
<context>}|<abort>

12/31/74

180 CRISP -- SDC TN-5455,/000/00

<myselfd>::=MYSELF

<activator>::=ACTIVATOR (<hexp>[,<hexp>)) |}
MYACTIVATOR ([<hexp>))

<context>::=CONTERXT (<hexp>[,<hexp>)|
BYCCHRTEXT ([<hexp> })

<abort>: :=ABOBRT (<hexp>{ ,<hexp>)) |
NMYABORT ([<hexp>}))

<activity-changer>::=<starter>|<kill>|<resumer>
<starter>::=<implicit-start>|<explicit-start>
<iuplicit—stact>::=<proc-expression>(S-,-(expression))

<explicit-start>::=START (<implicit-start>, {<name>|NIL},
<hexp>,<hexp>,<hexpd)

<kill>::=KILLPROC (<hexp>)

c<resumer>::=<resume |<resumec>|<resusek>| <resumeck>
<resume>::=RESUNECresume-body>
<resusec>::=RESUNECOPY<resume-body>

<resumek>: :=RESUMBKILL<resume-body>
<resumeck>::=RESUMECOPYKILL<resume-body>
<resume-hody>::=(<bexp>{ ,<expressiond(,<hexp>]))

<hexp>::=<handle-expression>

sIL*
<processing-primitive>::=<fajilset-primitive>|
<process-copy-primitive>|
<external-state~-primitived|
<activity-changver>
<failset-primitived::=<try-form>|<eiit-form>
<try-form>::=<try>i<tryu>{<trys>|<trya>
<try>::=(TRY (USER|SYSIALL) f£<farm>)
<tryu>::={TRYU {<name>{NIL>} f£<formd)
<trys>::=(TRYS g£<forad>)
<trva>::=(TRYA #£<form>)

<exit—-formw>::=<fail-form>i<errar~formd>

Rough Draft

K\//

S

Processors and Processes 181

<fail-fora>::=<faild>(<failkill>
<faild>::=(FAIL [<expression> [<hexp>1])
<failkill>::=(PAILKILL <expression> <hexp>)
<error-form>::=<error>| <errorkill>
<error>::= (ERROR [<expreszion> [<hexp>]]))
<errorkill>::=(ERRORKILL <expression> <hexp>)
<process-copy-primitived>::= (COPYPROC <hexpd)

<external-state-primitived::=<ayself>j{<activator>]
{comntext>|<abort>

<myself>::=(MYSELF)

<activator>::=(ACTIVATOR <hexp> [<hexp>)|
(MYACTIVATOR [<hexp>])

<context>::= (CONTRXT <hexp> [<hexp>])|
(SYCOMTRXT [<hexp>))

<abort>::=(ABORT <hexp> [<hexp>)|
(NYABCRT [<hexp>})

<activity-changer>::=<starter>f{<kill>|{<resumer>
<gstarter>s:=<implicit-stacrt>|<explicit-start>
<implicit-start>::= (<proc-expression> $<expression>)

<explicit-gtart>::=(START <implicit-start> {<name>{|NIL}
"<hexp> <hexp> <hexp>)

<kill>::= (KILLPRQC <hexp)>)
<resumer>::=<resume>jresunec>|<resymek>|<resumaeck>
<resume>::= (RESUME <resume-body>)
<resumec>::={RESUMECOPY <{resume-body>)
<resumek>::=(RESUNEKILL <resume-body>)
<resumeck>::=(BESUNECOPYKILL <resume-body>)
<resuymebody>::=<hexp>[<expression>[<hexp>]]

<hexp>::=<handle-expression>

In the following discussion, the syabols h, ht, h2, and h3

are handle expressions, and m is the handle of the currently

12/31/74

182 CRISP -- SDC TM-5455,000/00

active process. The symabol n is a name, and f1 ... fn are
forms, either statements or expressions, as indicated by the

text.

Failset foras

The failset primitives allov cne context of evaluation to be
left or aborted because of unusual circumstances and another
caontext to be restored and activated. The <try> forms
provide the “protection¥ points at which cantrol |{is

restored, The exit forms signal the unusual conditions.

<tryu>, <trys>, and <tryad> are equivalent to a <try> with
the keyword USER, SYS, ¢cr ALL, respectively. Thus,

TRYU(£f1 ... £n)
is equivalent to

TRY (USER, £f1 ... £n)

A try may be used as either a stateamaent or an expression.
Rhen a try is used as a statement, the embedded forms are
statements. ' A go form may branch out of but not into a try
statement. %fhen a try is used as an expression, the
enbedded forms are expreasions. The value type of a try
expression is the sinisal type (as shown in Figure D, page

49) that contains the value types of all the embedded fores.

In operation, the try evaluates the first emsbedded form. If
it evaluates normally, then the try is fipished. If it
evaluates abnormally (catches an unwrap caused by an exit

form), then the second fore is evaluated, etc. The

Rough Draft

Processors and Processes 183

evaluation of the try is finished with the evaluation of the
first embedded form that evaluates npormally. If the try is
used as an expression, then the value is the value of the
first forem that completes normally. If the last eabedded
form is evaluated and does not complete normally, then the

unpwrap continues through this try to the next "outer® try.

There are two kinds of <exit-form>s: <fail-form>s, vwhich are
for users, and <error-form>s, wvhich are used by the systen
to report illegqal situations at rum time, such as DIVISION
BY 0. Fails return control to a try with either USER or ALL
specified, and errors return to a try with either SYS or ALL
specified. The following pairs are equivalent:
FAIL() and PAIL(NIL)
ERROR() and ERBOR(NIL)

%hen FAIL or ERBOR is called vithout a second argueent,
control is returned to the last ¢try (with the proper
keyword) executed in the currently active process that has
not cospleted execution. If there 4is no appropriate try in
this process, then the unvrap continues in the process
pointed at by the handle in the abort link. The abort links
are followed in this manner wuntil an appropriate try is
found. As each process stack is searched for an appropriate
try, variable bindings and control =states are discarded
(ropred). If an entire process is unvrapped in this manner,
it becomes dead. When control is passed back to a try in
this manper, the internal state will have leen restored to
what it vas before the +trial evaluation was initiated.

Variables' bindings but not their values are restored. That

12/31/74

184 CRISP -- SDC TH-5455,000/00

is, if a value in a binding has been set by a failing form,
then the value is not reset on abnoreal evaluation. The NIL
process always has a TRYA in effect to ultimately catch all

unvraps that the user does not field himself.

The variable EXITVAL is set to the value of the first
arqueent of an exit foram, and the variable BXITKIND is set
to either the identifier SYS or USER to reflect the type of
the last exit. The settings occur after the unwrap in case

@it her variable has been rebound.

When a two arquaent exit fors is used, the process
containing the exit form is suspended, the praocess located
by the second acrgument is activated, and the unwrap occurs
in that process. For exasple,
FAIL ("XYZ,h)

The curreantly active process, m, is suspended and an unwvwrap
is ipitiated in the process h with the message XYZ. If the
process a is resumed, the value of the resume call wvill be
the value of the fail. (This can occur only in the two

arqusent case.)

The primitives PAILKILL and ERROBKILL work 1like fail and
error with two arqguments. The Jdifference is that the
process containing the exit foram call is killed. These kill
primitives should be used whenever it is undesirable to have

control return to the process, .

Rough Draft

Processors and Processes 185

Process copy primitives

The primitive COPYPROC has one arqument, a process handle.
A nev process with the same internal and external states is
made and returned as the value if and only if the process is
suspended or dead (in which case there is no internal
state.) It is illegal to <copy the currently active process,

BExternal state primitives
The primitive MYSELF has a value that is the handle of the
currently active process. The other three kinds of external
state primitives have tvo fores, either one or two
arquments. The following pairs are equivalent:
MYACTIVATOR() and ACTIVATOR (MYSELF)
MYACTIVATCR(h) and ACTIVATOR(MYSELF,h)
Similarly for the CONTEXT - MYCONTEXT pair and the ABORT -
BYABORT pair. If ACTIVATOR is called with one arquament, kL,
it returns the handle of the last process to activate h. If
ACTIVATOR is called with two arquments, h) and h2, then it
returns the last activator of h1 and sets the last activator
link of h1 to h2. Similar actions are takem for CONTEXT and
ABORT. 1In addition, a check is made to ensure that the set
of processes in the systes will still wmake a wvell formed
tree. If not, a run time error diagnostic and unwrap is

issued.

Activity changers
There are three kxinds of activty changing primitives:

starters, KILL, and the various resumers. If p is 'a proc

12/31/74

186 CRISP -- SDC TH~5455,000/00

expression and et ... en are expressions, then the following
forms are equivalent.

p(el ... en) and

START{(p(el1 ... en), NIL, MYSELF, MYSELF, MYSELF)
START creates a new process. The arquaments el ... en are
evaluated and passed to the processor that is the value of
p. The argument values are vpaired with the parameter names
on the newv process's stack. If a name is included in the
start form (instead of WNIL), then the handle of the new
process is placed there. Therefore, the name, if present,
must be a variable with a type attribute of either general
or handle. The three handle exrressions eabedded in the
start fors are, in order, the initial activator 1link,
context link, and abort link for the newly created process.
%hen the nevw process is started (activated), the currently
active process is suspended. When the starting process is
resumed, the value of the start fors is the value passed by

the resume primitive. (See below.)

The primitive KILLPROC deletes the internal state of the
process that is its arqument, thus rendering it dead. If
KILLPROC (MYSELF) is evaluated, the currently active process
is made dead and an error unwrap 1s induced in the process

located by MYABCRT ().

The resumer foras suspend (or kill) the cucrrently active
process anpd activate another process. If e is an
expression, then the follovwling rairs are equivalent:

RESUME(h) and RESUMEB(h, NIL, MYSELF)

Raugh Draft

_'/"‘

processors and Processes 187

RESUME(h, @ and RESUME(h, e, MYSELF)
The operation of a resume follows these steps: (1) evaluate
the three arguments, (2) set the last activator link of the
first arqument process to the value of the third arquament,
(3) suspend the currently active rrocess and (4) activate
the first arquament process and feed the value of the second
arqueent forward to the resume point. As an cxample:

PROCESSOR E{()

BEGIN:
PRINT(RESUNE(MYACTIVATCR(), "“P.STARTED));

END:

BEGIN HANDLE H:
PRINT(START(P(), H, MYSELF, MYSELF, MYSELF)):

§é§UHE(H. WRESUMED) ;

END:
When the processor P is started by the first line of the
block, its external state links are all initialized to the
process containing the block (call it M), and the handle of
the new process is stuffed in the variable, H. The first
thing done by the new process is to restart M and feed back
the value P.STARTED, which becomes the value of .the start
call in M. Therefore, the first thing printed is P.STARTED.
Eventually, the new process (with the handle in H) |is
resumed with the value BESUMEL, wvhich becomes the value of
the resume call in the (mew) procass. The second message
printed is therefore RESUMED. All message passing is done

vith data objects of type dgeneral even if this involves

conversion.

The primitive RESUMBCOPY is identical to RESUME except that
the first arqumsent process 1is «copied by COPYPROC. The

12/31/74

188 CRISP -- SDC THM-5455,000,/00

equivalences are:

RESUMECOPY (h) and RESUME (COPYPROC (h))

BESUMECOPY(h,e) and RESUME (COPYPROC (h),e))

BRESUMECQPY (h1,e,h2) and RESUME (COPYPROC(h1),e, h2)
RESUNECOPY is not normally used vith co-routine
isplenentations but becoses necessary when generalized
backtracking schemes are being implemented. See the first

example program in the next secticn.

The primitive RBSUMEKILL is identical to RESUME except that
the currently active process is killed rather than
suspended. RESUNBCOPYKILL, 1like RESUMECOPY, copies the
first arqument and, like RESUMEKILL, kills rather than

suspends the currently active process.

If an attespt 1S made to resume an active or a Jdead process,
an error occurs in the process containing the resume call.
Neither RESUMECOPY nor RESUMECOPYKILL may attempt to copy

the currently active process.

Exasple Prodrams

The follovingq program is an implementation of a full
backtracking parser that is built from a cosbination of
functions and processors. The processors are used to
provide the state saves necessary to correctly perform

backup. The equations are an internal representation of

Rough Draft

-

L

Processors and Processges 189

ENF. However, the algorithae does not handle left recursion.

DEC PAT.LISTC<PATITERNCNAMNE PAT.NAME, FAT PAT.PART>,
LIKK FAT.LIST>,
GEX PAT.PART, ID PAT.NAME, ID TERMINAL,
REP<MIN INT, MAX INT, PAT PAT.PART>,
ELM<KIND ID, ITEM FAT. PART ARRAY (¥*)>,
PAT.NAME START:

DEC NODE INPUT,
EXITLIST<PRO HANDLE, RESTCEE INPOUT, LINK EXITLIST>;

PAT.LIST FUNCTION FINDPAT (PAT.NANME NAME)

FOR PAT.LIST L:=PAT.LIST RESET L_LINK WHILE L
IF BAME=L_PATTERN_NAME [C RETURN L END
VALUE NIL
ENDF:

BCOL FUBCTION FARSER{(GLOBAL INPUT)
TRY(USER, BEGIN GLOBAL EXITLIST;
RPARSER (START)
FOR EXITLIST F:=EXITLIST
RESET F_LINK WHILE F
URLBSS F_PRO=MNYSELF
DO KILL (F_PRO) ENDF;
BETURN TRUER
END,
NIL):

NOVALUE FUNCTION RPARSER (PAT.PART RB)
SELECIT E
WHEN NIL THEN IF INPUT THEN EXIT()
WHEN ID THEN BEGIN PAT.LIST L:=FINDPAT(E) ;
WHEN L THEN RPARSER(L_PAT)
WHER INPUT&IRPUT_FIRST=E
THEN INBOT:=INPUT_SECOND
ELSE EXIT{()
END
WHEN REP THEM REPEAT (E)
WHEN ELM THEN SELECTQ E_KIKD
WHEN ALT THER ALTERRATIVE(E_ITEN)
WHEN CAT THEN COMCATENATE(E_ITEN)
ELSE ERBOR("SYNTX)
ELSE ERBQOR ("SYNTX);

NOVALUE PUMCTION EXIT()
IP EXITLIST

THEN BEGIN BXITLIST F:=EXITLIST;
EXITLIST :=BXITLIST_LINK;
INPUT: =P_RESTORE;
FAIL(NIL, F_PRO)
END

ELSE FAIL (NIL):

NOVALUE PFUNCTION EXITSET ()
BEGIN EXITLIST X:=%*;

12/31/74

190 CRISP -- SDC TH-5455,/000/00

X_PRO:=NYSELY;
X_BRESTORE:=INPUT;
X_LINK:=EXITLIST;
EXITLIST :=X

END;

PROCESSOR REBPEAT(REP BR)
BEGIR L:=R_MIN, H:=R_MAX, PAT.PART B:=R_PAT,
C:=MYACTIVATOR() ;
ATTRIBUTE IBT (L.H):
FOR INT I:=1 THRU L
DC RPARSER(BR)
ENDF;
IF L>H THEN EBXIT():
FOR I:=L+1 TO H FINALLY RESUNMEKILL(C)
DC TRY(USER, (BXITSET(), BESUKECOPY (C)),.
RPARSER (E))
ENDF;
END;

PROCESSOR ALTERNATIVE (PAT.PART ARRAY (¥) A)
BEGIN HANDE H:=MYACTIVATOR(), LRT C:=ARLN(A);
IF C=0 THEN EXIT();
POR INT I:=1 T0 C
DO TEY (USER, (BXITSET(),
RPARSER (A(I)),
RESUMECOPY (H)),

NIL)
END
FINMALLY (RPABRSEBR(A[C])), RESUMEKILL (H))
ENDF:

E¥D;
NOVALUE PUNCTION CONCATENATE (PAT.PART ARRAY (*) C)
FOR INT Iz:=1 THBU ARLN(C)

DO RPARSER(CI I))
ENDF;

The following program contains twvo co-routines, INPUT and
QUTPUT. OUTPUT priants characters in four groups of three
per line with each group separated by a space. INPUT
returns the next character in the string s. If the
character is a digit, them the next character is returned
that many times instead of the digit. The character
following the digit is then returned. Thus the string,
*A2BSE3426FGOZYW3210PQ89R?

Rough Draft

N

Processors and Processes 191

is like
'ADBBBEEEBERULUUGE66FGZYN222200P0999999G999R!
and is output as

AEB BEE EEE E4u4
446 66F GZY W22
220 OPQ 999 999
999 R

This contrived co-routine example has been borrowed frosm

Knut h. 2

NOVALUE FUNCTION CUTEBUT (GLOBAL STRING S)
BEGIR HANDLE H;
START(INPUT(), H, MYSELF, MYSELF, MYSELF):
TOR I:=1
CHAR C IS RESUME(H) WHILE C,
FINALLY IF REMAINDER(I, 12) =1 THEN TERPRI(),
DO PRINTCH(C):
WHEN REMAINDER (I,12) =0 THEN TERPRI ()
WHEN REMAINDER(X,3)=0 THEN PRINTCH(SPACE)
ENDP;
END;

PROCESSOR INPUT ()

BEGIN I:=1,L:=ARLN(S);
ATTRIBUTE INT(I,L):;
RESUME (MYACTIVATOR ()) ;

L:IF I>=L THEM BESUMEKILL(MYACTIVATOR()):
IF DIGITP(S[I])
THEN (FOR J:=0 THRU CHAR2INMT(S{ I])-CHAR2INT (%$'0")
DO RESUME (MYACTIVATOR(),S{ I+1]) ENDF,

I:=1+42)
ELSE (RESUME (MYACTIVATOR(),S[I]) ,1:=1I+1);
GO L
BND:

D e A @ A DS G WD W G D S T . - = -

2 See “Fundamental Algorithas, the Art of Conmputer
Programaing™, Knuth, Vol 1, page 191-194.

12/31/74

192

THE CAP ASSEMBLER

The CAP assesbler is used as the lastv pass of the CRIS?P
conpiler and is also available for those users who want to
program in machine language. There are tuo versions of the
CAP lanquage: CAP 5L, vwhich <closely resembles the standard
IBM assesbly language format, and CAP IL, which closely
resemables LAP languaqes. Besides the normal capabilities of
an assembler, CAP provides npmany fseudo instructions and
operands that are uysed to maintain the stack, bind and
unbind variables, and perfore linkages. Also, CAP code is

block structured in a manner that is similar to IL and SL.

CAP code sequences are alvays introduced into a program as
either a CAP operand in SL or as a CAP expression in IL;
either fore may be used as a statement. In SL, a CAP
operand is8 the word CAP followed Lty a value type, a sequence
of CAP instructions (in SL format separated by semicolons),
and the word END. In IL, a CAP expression is a form with
the word CAP as its operator followed by a value type and a
seguence of CAP instructions in IL format. The value of a
CAP form is assumed to be in register FO if floating and in
reqister RS if anything else. An example of a CAP sequence
that adds the value of the two integer variables I and J in
CAP SL format is

CAP INTEGER

L B5,I:
A RS5,J:
ERD

The same example in CAP IL format is

Rough Draft

\\\—/’

:/\\

//“\

The CAP Assembler 193

(CAP INTEGER

(L RS I)

(A RS J))
The syates accepts input definitions for functions,
processors, sacros, and generators in one of four formats:
SL, SL CAP, Il, and IL CAP. (See the section on tree
structured files and the disk compiler on page 259.) An
example of the same function written in each of these four
formats is gqiven next. The function performes the
calculation I+2%J, producing an inteqer value from its twva
integer arquments, I and J. (The value of the last
arqueent, in this case J, is passed in Rs.)

FORMAT SL:
INT PUNCTION PFOO(INT I, INT J)

CAP INT
AR R5,R5;
A B5,1;
END;

FORHAT SL CAP:
INKT FURCTION PCO(IRT I, INT J)

AR RS,RS5;
A RS, I;
END;

FORNMAT IL:
{(FUNCTION (FOO INT) ((I INT) (J INT))

(CAP IRT
(AR BS RS)
(A RS I)))

FORMAT IL CAP:
(FUNCTION {(FOO IMT) ({I INT) (J INT))
(AB RS BRS)
(A RS I))
Thus the SL CAF and the IL CAP formats remove the necessity

of redundantly entering the value type and the word CAP.

The scoping and denotation rules in CAP are the same as
those in CRISP. The block structuyring Adefined below

12/31/74

194 CRISP -~ SDC TN-5455,/000,00

interacts with the stack allccation primitives to
autosatically assign the proper field values to
instructions. The follovwing subsections describe
instruction formats, operand formsats, pseudo instructions,
and the macro facility. The secticn on register allocation
and linkage (page 297) should be read along with this

section for better comsprebension.

Inssrvction. Formats

Appandix I, Suamary of IBN 370 Instruction Formats (page
310), sunmarizes the available machine operations and the
format of their operand fields. In SL, an instruction is
written with its op code followed by the operands (separated
by cosmas) and terminated with a semicolen. For example,

LA R3,X:

A B6,14 (R3,6);

MVC 8(FOO,B2) ,X:
In IL, an instruction is a list with the op code appearing
as the fore operator and the operands appearing as
subsequent members of the list. The above SI examples would
appear in IL as

(LA R3 X)

(A BR& (14 R3 6))

{MVC (8 P00 R2) X)
If an fidentifier appears in place of a whole instruction,
then it is assumed to be a label: "X:" in SL or %“X% in IL
(vithout parentheses). Integers in the range -220 through
220-1 pay also be wused as labels. However, this can be
dangerous because the compiler and assembler use negative

Rough Draft

/‘\\

The CAP Assewltler 19%

inteqgerse as generated labels.

Because of the semicolon delimiter in SL and the 1list
structuring im IL, it 4is not necessary to start label
definitions in coluan 1. You may have zero or more
instructions on any line, and a single instruction may be
split over many lines. Thus, the input format is truly free

form and contains no coclumn rules.

QCperand. EQrmata

Appendix II, CAP COperand Formats (page 312), sumsarizes the
operand formats of CAP instructions and should constantly be

referred to vhen this section is being read.

There are six basic kinds of operand fields: registers;
(bit) masks: numerics; full addresses that include a 12 bit
displacement and two register fields; half addresses that
include a 12 bit displacement and a base register field; and
length addresses that include a 12 bit displacement, an
operand length, and a base register field. The following
paraqraphs describe the various abbreviations wused in

Appendix II.

Register and rid operand
When a register field is expected as an operand, only an
expression or a register mnemonic can bae used. (See the

gsectiop on register allocation, page 297, for listing of

12/731/74

196 CRISP -- SDC TK-5455,/000/0Q

reqister mnemopnics.) If an identifier, say R5, is used for a
register field, the asseambler loocks for the value of the
integer variable, RSSREGISTER. If no such variable exists,
then the identifier is assumed to be a sisple expression.
The value determined for the register is converted to an

inteqger and truncated to four bits.

Mask operand

A mask is used either as the branch condition for a BC or
BCR command or as the byte selector for ICH, CLM, and STCHM
commands. The expressiocn used for the mask is converted to

an integer and truncated to four bits.

Numeric operand

A numeric operand is a constant of four, eight, or twelve
bits, depending on its usage. The value of the expression
used as a numeric operand is converted to an integer and

truncated.

Address operands

A variety of operand formats are usable as full, half, or
length addresses., If the selected form produces both index
and base registers for a half or length operand, an error
diagnostic will be issued. The length field in a length
address is either a four bit or eight bit integer, depending
upon the instruction. The length value is implicit for
certain operand formats or is given explicitly by & ladr.
Because length values should be one less than actual operand

lengths, the assembler subtracts one from the specified

Rough Draft

-

N

The CAP Assembhler 197

length (after truncation) before placing it in the binary
image. (If the leagth 1is zero, then no subtraction is

performed.)

Name

A name wmay te either local or global. The same scoping
rules that are used in CRISP are used in CAP to determine
the proper name of an identifier. There are exceptions. If
the nawe is PUSHP., PUSHN., POPP., POPK., or RET., then the
name is assumed to be a stackop. (These identifiers may not
be used as local variable names in SL or IL.) Also, if an
identifier 1is not located by the 1local and global name
searches, then the nase tailed with "CAPSYN" is looked for.
If found, then the value of that synonys is used in place of
the identifier. Also, a global name explicitly tailed into
CAPSYN will be used as & gqlobal synonym. A local name is
transformed into a (stack) displacement and a base register
and thus may be used as a full, half, or length address. &
global name is transformed into a displacement, base, and
index reqister form and may therefore only be used as a full
address. The implicit length of a name operand is four

bytes.

labelop

Since a label and a variable may have the same name, a
syntax mechaniss is necessary to avoid confusion. Note that
a laktel may not be used as part of an expression. However,
an indexed branch may be specified using a labelop. If an

index is used, then a 1label operand gay appear only as a

12/731/174

198 CRISP -- SDC THM-5455,000/00

full address. Otherwise, a label cperand may be used as a
half or lenqth address. The iaplicit length of a label

operand is four bytes.

Sysop

A svsop is used to address an entry in sysi, sys2, numl, or
nus2 space. The identifier is the name of the entry. Sys
entries are defined by the function MAKESYS or by the
assamabler pseado-op SYS. The value of the expr, if present,
is added to the displacement of the entry (from the proper
base reqister) to form the complete displacement. The
reqister operand, if present, is wused as an index register.
If the index field is not specified, then the sysop may also
be used as a half or length addrecss with an implicit length

of 4 bftes.

Literal

Literal forms are used to introduce constant data in a
program. There are no pseudo-ops 1in CAP to generate inline
data. The reason for this is that the system aust be able
to disassemble a program sufficiently (when and if it is
qarbage collected) to knock down counts for namse Sspace
references. Data in the program isage would present randoms

conbinations against the eanvironment.

There are several types of literals. Quote, hquote, and
type allocate pointer constants that are stored in nase
space and may therefore be used anly as full addresses. Int,

float, half, byte, and sultint literals allocate numeric

Rouqh Draft

The CAP Assembler 199

constants that are stored in num!1 or num2 space and wmay

therefore be used as any kind of address.

A quote literal is translated into a full address of a namea
cell that contains a pointer at its value. If another quote
is EQUAL to this one, it =®may share the sase namea cell.
Sharing is not guaranteed but may occur. Therefore, dc not
damage quote cells or change the fields of their values.
The actual pointer put in the NANEA cell is to a copy of the
body of the gquote operand. An hquote literal is like a
quote except that the body is not copied, and EQ rather than
EOUAL is used for the sharing criterion. Hquote is norsally
used when CAP code is generated Ly another proqras, not for
constant fields in proqrams that are input from an external

source such as disk.

The body of a type literal {a <type-ref>) is forced through
the scoping rules and sisplified to a simple type name
(identifier), a global name of an ntuple, or to a function,
processor, or variable or array subtype. If the result is
an identifier or global name, then type responds like quote.
Otherwise, the result is hashed and sinqularized so that EQ
comparisons between <type-ref>s are possible. 1In any event,
a type literal may be used only as a full address. Also, a
coanand of the form

L RS, TYPE(ASB)
may be replaced by the faster cosmand

LA R5,A$B

assuming that A$B is the name of a variable with ntuple type

12/731/74

200 CRISP -- SDC THM-5455,000,00

A$B. Since quote, hquote, and type operands can be used

only as full addresses, they do not have an implicit length.

Int and float literals, after proper conversion, allocate 32
bit constants in numl or num2 space. They may be used as
any kind of address, and their 1isplicit 1length is four

bytes.

Half and byte literals allocate 16 and 8 bit integers in
numal oOr num2 space. They nay be used as any kind of
address, and their 1implicit lenqgths are two and one,

respecitvely.

A multint literal is used to allocate an integer in nums?! or
num?2 space. The first operand, an integer, 1is the byte
length of the operand. The following expressions are
evaluated and converted to integers. The proper numder of
bytes are extracted, four per expr, and the extra high order

bytes are truncated. The paximum length is 256 bytes.

Stackop

Stackops are used to reference unnamed dgquantities on the
stacks. All have an implicit lenqth of four bytes and all
excapt a TOPP. or TOPK. operand, with an additional
reqister specified, may be used as any kind of address. The

latter nmay be used only as full addresses.

The CAP assembler maintains virtual stack maps at compile

time and uses them to assign addresses relative to the stack

Rough Draft

N

The CAP Assenbler 201

reqisters PDP and PDN. Thus; the stackops do not change the
value of these reqgisters, they only change the configuration
of the virtual stack saps. Therefore, if the instruction
ST RS,PUSHP.

is executed in a loop, it references the same cell on each
iteration (for a given function invocation). <CRISP and CAP
have been designed to allow this static stack mapping at
compile time. With neither hardvare stack operations nor
hardvare display registers on the 370, this scheme bhuys back
execution time. Further, for a fevw code sequences, it is

actually faster.

The address field PUSHP. advances the virtual stack pointer
to the pointer stack by eight bytes and uses the updated
address. The address field POPP. subtracts eight bytes froa
that virtual stack pointer and uses the updated address.
The address field TOPP. uses the address of the top (last
push not matched by a pop) of the pointer stack. The
address field TOPP. {expr) adds the value of expr to the
address of the virtual top of the pointer stack to derive
the address. Recall that pointer stack entries are eight
bvytes lonq and that the value of expr is interpreted as a
byte offset. Also, the real stack pointer is 400x bytes
behind the return address on the stack for a given function
invocation, 80 neqgative values of expr are perfectly
appropriate. The address field
TOPP. (expr ,register)
uses expr in the same manner. The register field is used as

an index register. This latter forp may be used only as a

12/31/74

202 CRISP -- 5DC TM-5455,/000/00

full address.

The address fields PUSHN. and POPN. and the forms of TOPN.
are equivalent in fuactiogd to the same names ending in P.
The difference is that they refer to the number stack
instead of the pointer stack, and that the increments and

decrements performed by PUSHN. and POPN. are four bytes.

The stackop SBECOND provides a convenient method of
addressing the high order four bytes of a local stack name
on the pointer stack. Thug, SECOND (L) addresses the part of
the stack entry for L that is used for gqlobal binding cave
information, not the value component that would normally be
addressed by using the name, L. The stackop RET. acts like
a local variable vhose assigned stack location is the return
address for the current functicn invocation. (This 1is

stored on the pointer stack.)

Adr

An adr produces a 12 bit displacement and, optionally, a
base and index regqister. If both registers are specified,
the first is the index. If an index register is qiven, then
the adr may be used cnly as a full address. An adr pay not
be used for a length address because of the syntax conflict.
Therefore, it is meaningless to speak of the implicit length

of an adr.

Ladr and implength

A ladr is used whenever an instruction is expecting a length

Rough Draft

_

The CAP Assembler 203

address field. 1In the foras

expr {expr,reqister)
the first expr is the displacement and the second is the
operand length. The register is the base. If the implicit
length is not the one you desire, then any legitimate half
address (h) can be used with

IMPLENGTH (expr,h).

The value of expr will cverride the implicit length of h.

Expr

An expr is a rudiaentary expression that can be used to
compute a value at assembly time. The expression 1is
conputed in full nmixed mode, converted to the proper type,
and, if necessary, truncated to the proper nuaber of bits.
The only non—-obvious expr components are offsets and
lengths. The arqument for both is a full itea name. That
is, no containing group names may be oamitted. Also, the
specified item =sust be in the ntuple; 1links to other
structures are not automatically followed, as they are by

the compiler. Purther, subscripts are not used.

The value of an offset forma is the distance in bytes fros
the beqinning of the ntuyple to the first byte of the
specified item. (This offset includes eight bytes for the
pntuple header.) If the itea would normally be subscripted,
the value of the offset is the distance to the item with the

lovest legal subscript values.

The value of a length form is the length in bytes of the

12/31/74

204 CRISP -- SDC THN-5455,000/00

specified item including any interior or trailing slack
bytes. Length of an ntuple name is the 1length of the

atructure, not including the header.

Pseudo Instructions

Appendix III, CAP Pseudo Imstructions (pagqe 315), summarizes
the formats of the pseudo instructions available in CAP and
should be read along with this section. Bach pseudo

instruction is described below.

CAP blocks

B CAP klock islthe asseably lanquage equivalent of a CRISP
<binding-block> (See the section on blocks, page 109.) The
vord BEGIN is folloved by the sequence of instructions that
comnpute the preset values for the variables, A BIND pseudo
instruction that binds the block variables, the block body
fanother sequence of instructions), and the vord END. The
preset computation leaves the initial variable values on the
stacks in the order in which the variables appear in the
bind pseudo instruction. For example, the CRISP block
proloque:

BEGIN I:=17,J:=~12,FLOAT F,NODE2 N:=" (A B);
ATTRIBUTE INT (X,J) GLOEAL(E, N)

Rough Draft

K\,/

The CAP Assambler 205

would appear in CAP as:
BEGIN LA RS, 17;

ST RS,PUSHN.

MVC PUSHN.,INT (-12);

ST ZERO ,PUSHN, ;

L BS,%"(A B)

ST R5,PUSHP.

- BIND INT X,INT J,GLOBAL FLOAT F,GLOBAL NODE2 N;
The format 0f the body of the bind instruction is the same
as the format ¢f a CRISP block bind list, except that: (v
ovn variables are not allowed, (2) <local-syn-dec>s are not
allowed, (3) no preset forws are permitted, and (4) no

attribute forms may be used.

If aay of the variables in the bind list are global names
for the scope attribute is GLOBAL) then the biad pseudo
finstruction outputs the code necessary to globally bind
those variables. If none of the variables are global, then
the bind instruction does not outrut any code; it Just
alters the virtual stack maps. Also, in ¢this case it is
peraissible to branch out of the block using any of the
tranch instructions. When global variables are bound, it is
necessary to use the GO pseudo 4instruction or to “fall
through" the block to make sure that globhals are properly
unbound. That 4is, the unbinding sequence for blocks that
bind gqlobal variables is automatically generated at the end
of the block. If the block binds nc variables, then it is
permissible to branch into the block at any label. ©Note,
you are not considered to be in the block until the bind has
been executed and the block body is entered. The preset
sequence acts like part of an outer block. This means the

bound variables are visible only in the block body.

12731774

206 CRISP -- SDC THM-5455,000,00

Branching pseudo instructiaons
The branching pseudo instructions are the standard IBM
extendad op code set defined in the "little yellow cardm,
plus branch on true (BCNT), branch on false (BONF), and GO.
The extended cp codes all expand to BC or BCR instructions
vith masks that select the prcper values of the condition
code. For imstance, BZ means branch on a zero result. The
codes ending with an R produce BCR instructions, and the
others produce BCs. The label required by BONT, BONF, GO, or
the extended ops that produce & BC may simply be 2 label
name. It is not necessary tc write out a labelop operand
unless vou wish to use an index as well as a bhase register.
If the opcraﬂd is an identifier or amn integer, it is assuaed
to be a label name. The iastruction

BONT r,L
is equivalent to

BXH r,ZERO,LABEL (L)
and

BONF r,L
is equivalent to

BXLE r,ZERO,LABEL(L)

The pseado instruction, GO, is an unconditional branch to
the specified label. 1Its operand =asust be a label (an
inteqer or identifier) or the identifier *"RET.%. RET. used
as a GO operand means return from the program that |is

currently in operation. GO may branch out of blocks that

S . R - - - .

1 IBM System/370 Reference Summary, ¢GX20-1850-n.

Rough Draft

The CAP Assenhler 207

bind qlobal variables. If it does, then code is generated to
unbind the variables automatically. Therefore, the amount
of code generated by a GO pseudo imstruction is variable.
If no qlobal bindings are crossed, then "GO RET." generates
the tvo byte instruction "BR FPNRT", and "GO L" generates the
four byte instruction %B LY. Fcur additional bytes are
generated for each block that is crossed that contains

qlobal bindings.

Stack pseudo instructioas

The stack pseudo instructions cause the assembler to
increment or decrement a virtual stack pointer by the number
of bytes specified by the value of their operand, expr. The
value of expr is rounded upvards to a multiple of eight for
the instructions PUSHP. and POPP. (which refer to the
pointer stack), and to a multiple of four bytes for PUSHN,
and PCPN. (which refer to the number stack). These
operations do not ©produce any code and therefore do not
initialize the stack entries. They are normally used to
reserve an area of stack to use as a scratch area for local
computation or to inform the asseabler that certain stack

temporaries are no longer in use.

Callers

The caller pseudo imstructions provide an easy method of
coding linkages to other prograss. CALL is used to link to
an ordinary function, PUNCALL is used to invoke a func
valued expression, START is used to start a processor,

STARTPRBOC is used to start a proc valued expression, and

12/31,74

208 CRISP -~ SDC TM-5455,/000/00

SYSCALL is used to imvoke a function in sys1, sys2, nusl, or
nueZ space. Because arquments wmnay be transaitted on the
stacks, the assembler automatically returns the virtual
stack confiquraticns to the <cnes that existed before the
caller vas executed. Thus, the stack entries used as
arqumaents are autosatically popped. Some exaaples of the
use of callers are:
APPEND (A,B) CALL (APPEND
L RS5,A:;
L RS,B):
READ{() CALL (READ) ;
F{(A.,B) vhere LCEC FUNC F(FLOAT,INT)
FONCALL(L FO,A;
ST FO,PUSHN. ;
L RS,B;
L R7,F);

LENGTH(L) without error checking
SYISCALL (LENGTH L RS,L);

CALL, FUNCALL, START, and STARTPEOC output the usual linkage
sequence which includes
BALR LINK, PNLK:;

CALL and START also output the 1load address necessary to
locate the name cell of the called prograam. SYSCALL only
outputs the BAL necessary to reach the proper SYS space
entry. Normally, code reached by a SYSCALL expects all of
its arquments in registers; the stacks arc not actually
incresented by the function linkage sequence, as they are in

the cther cases.

Synonyas
The CAP local synonys capability is very limited. The expr

body must contain no forward references and cannot include

Rough Draft

\\._/

The CAP Assembler 209

any labels or other nanon-synonym names. The scope of the
synonym is lexically forward for the duration of the block
(or program definition) in which it is defined. (Recall

that preset calculations are part of an outer block.)

S1S pseudo imstruction

The SYS instruction requests the assembler to locate the
binary of the progras in which it arrears in the next set of
available 1locations in the specified system space. It
should appear somewhere near the beginning of the definition
(hov near has not vet been detersined). The SYS command
inhibits the assembler fror automatically outputting the
instructions that place the last arqument on a stack, the
instructions that automatically split the stack for
processors, and the return via "BR FNRT" at the end of the
definition. Code placed in numl cr num2 space must not
nodify itself because parts of it may double as numeric

literals.

TRY pseudo instruction

The 7TRY pseudo instruction is used to establish protection
points against stack unwraps. The first operand specifies
the kind of unwvraps to stop. The remaining operands are an
ordered set of instruction seguences. If an unwrap occurs
in the first sequence, then the second seguence is
automatically attempted, etc. If unwrap occurs in the last
sequence, it continues through the current try to the next
outer try that is in effect. In all but the last sequence,

there sust be at lease c¢one ENDTRY pseudo instruction.

12/31/74

210 CRISP -- SDC TM-5455,/000/00

ENDTRY is the only legitimate method of branching out of a
ron-tersinal try sequence without exiting or failing. The
operand for ENDTBY is a label. The try entry on the stack
is zapped, and a GO to the label is performed that unbinds

any necessary globals.

Space test

A space test determines what kind of space a pointer
addresses. The specified register contains the pointer.
The pointer is clobbered by the operation of the space test.
The following phrases specify space kind name and transfer
point pairs. NIL means "fall through" the space test. A
label way be specified, in which <case the proper BC to that
label is generated; or "R register® may be used, in which
case the appropriate BCR tc that register will be generated.
fo not use RO as a branch address register; it may lead to a
surprising memory protect violation. If the word RET. is
used, it will be treated identically to "R FNRTY. A space
test may not branch out of bLklocks or prograss that bind

qlobal variables.

Assume that vyou wish to test the pointer in R2; if it is an
array, then vyou vwant to branch to label L. If it is an
inteqef. vyou want to fall through the test. If anything
else, then you want to return from the progranms. To
accomplish this, code the space test,

SPACE R2,ARRAY L,INT KIL,RET.:
As capn be seen from this example, the last phrase can

specify a "nothing vorks" branch point. After execution of

Rough Draft

The CAP Assembler 211

a space test, the specified register contains the byte
address of the QCM (Quantized Core Map) entry corresponding

to the addressed page (see section on core maps, page 267).

CAR_Bacios

The macro facility for CAP programs has not yet been

desiqned. The @most probable ismplementation is through the

transform facility with the addition of some conditional

pseudo ops.

12731774

212

Rough Craft

.\—Z/',

N

213

SYSIEN DESCRIPTLON

The second half of this document describes the CRISP system.
It is necessarily incomplete because the system has not yet
been written. The sections included are: The I/0 Facility,
Primitives, Tree Structured Files and the Disk Compiler,
Hemory Management Pacility, and PRegister Allocation and
Linkage. The secticns that are not included are: How to
Login and Get Started, Interactive Supervisor, and The
Proqram Check Handler. For the typical user, the naost
important sections are The I/0 Facility, Primitives, and

Tree Structured Files and the Disk Compiler.

12/731/74

214

THE I/0 FACILITY

The I/0 facility available in CRISP provides a flexible
capability for coamunications through the CMSY' systens.
There are primitives for both btinary and sysbolic data
transfer. The devices that may be used are disk, tape, card
reader, card punch, printer, and terminal. The card devices
and the printer are of course, the spools provided by CP
(the VM Control Proqgram, which is responsible for management
of the user's “machine"). 1In the future, a facility to use
VM's channel-to-channel adapter simulation (CTCA) will be
implemented. Using a CTCA, CRISP programs may initiate
connections via the ARPA netwark to other computers. Also,
virtual machines may communicate with each other through a
CTCA connection. Another <capability anticipated for the
future is a formatted output package similar to that
provided by PFORTHBARN or PL/I systems. The original systen
vill have automatic formatting for structuring output called
"pretty® printing, but no provisicns for user specified

formats.

Besides the I/0 facility, this section describes the other
kinds of CP and CNS services rrovided to CRISP prograas.

These include access to the tiser, program saves, and

D D — D Sh B D DO 42y s s W Y DO AP Y > >

1 CMS 1is the VM Conversational Mcanitor System. It is the
operating system that usually runs in a user's virtuval
machine and provides a file system, utilities, etc. See the
IBM Virtual Machine Pacility,/370: Coamand Language Guide for
General Users (GC20-1804-n) for a complete description.

Rough Draft

J

I1/0 Facility 215

construction of command tables.

File Descriptor List

In order that a CRISP program be able to propérly access a
file, two types of information must be specified: (1) the
information necessary to locate and correctly identify the
file and (2) the features that describe the intended use and
the format of the tiler Both types of information are
grouped together im a file descriptor 1list (FDL). In an
FDL, the file identification information appears £first,
folloved by the usaqgqe information. The file identification
information is hiqhly order dependent, while the usage

information may be permuted without effect.

File identification

The format of the file identification varies with the type
of device., The following description explains, by using
examples of PDLs that contain only the identification, the
legal formats. A terminal file identification 1is (c-name
TERMINAL) vhere c-name is an identifier that will be used as
the internal name of the file im CRISP. Several of the I/0
primitives require only the internal name as an arguament.
Similarly, the formats of card and printer file
identifications are (c-name READER), (c-name PUNCH), and
(c-name PRINTERE). The format of the identification of a
file on tape is (fc-namel] TAPn). If the c-name is omitted,

then TAPn will be used as the internal name. TAPn, wvhere n

12/731/74

216 CRISP -- SDC TH-5455,/000,00

is a single diqit, ideptifies the tape unit address as 16n
hex in the normal CHS tradition. Since you are not allowed
to have tvo files simultaneously opened on the same tape
unit, there 1is no loss in generality by using TAPn as the

internal name.

The idemtification format for a file on disk 1is slightly
more complicated. The possibilities are

(c-name DISK f-pame {f-typel*} (f-mode|*})
(f-name {ftype|*} {fmodej *})

In the second format, the internal name is not given
explicitly and is assumed to bhe the same as the f-nane.
P-name, f-type, and f-mode are the file name, type, and mode
as known to CHuSs. That is, f-name and f-type are
identifiers, and f-mode 1is either a single letter (A to G,
Y, 2, or S) or an alphanumeric combination such as A1, C3,
etc. A star (*) may only he used as the f-type or f-mode
when an existing file is opeﬁed for input or for output
extention. The * implies that the system should search for
a file that meets the rest of the specification. The
identification format (f-name f-type *) means the first file
ancountered with the specified name and type, by going
through the modes in the same order as would CMS. See the
IAM VM/370 Command Lanqguage Guide for General Users for

explanation of file paming conventions and search ordering.

The 1d§ntitication format (f-name * f-mode) means the first
file encountered with the specified name and mode, by going
through the types named by ¢the variable FILETYPES. The
initial value of FILETYPES is (CRISP INDEX DATA). You may

Rough Draft

_/'/

_/

I/0 FPacility 217

change the type search order by re-ordering, adding, or
deleting elements from this list, The identification format
(f-name * %) means the first file with this nase, encounterd
by searching FILETYPES and the CMS modes. For example, the
total search oaorder for (XYZ * *), assuming that the CMS
search order is (A B) is:

{XYZ CRISP A)

(XYZ INDEX A)

{XYZ DATA A)

(XYZ CRISP B)

{XYZ INDEX B)

{XYZ DATA B)

As can be seen in the above, the type is varied faster than

the mode.

File usaqe information

The following describes the possible members of the usage
specification portion of an FDL. The wmeasbers follow the
file identification and may appear ian any order. Not all
usage specifications can be used with every kind of file.
The restrictions, such as input vs. output, Dbinary vs.
symbolic, disk vs. tape, etc., and the use of the PFDL, open
vs. close, are also noted. If a set of usage parameters are
described together and one of thew is the default, the

default is underscored.

SIBRALIC., BINARY

Binary files are used to h¢ld byte etrings of data that are
directly transferred to and from the user's buffer with no
interpretation by CRISP, Symbolic files are used for both
formatted and unformatted data that is represented in either
EBCDIC or ASCII characters. All program text and most data

12/31/74

218 CRISP -- SDC TM-5455,/000,00

files are symbclic. Note, this distinction is apparent only

to CRISP; CMS has no such cateqorizatjon of files.

R, W, WE

The respective peanings are 1input, output, and output
extebsion to an existing file. Qutput extension, ¥E, pakes
sense only to a disk or tape fila. 1If specified for a tape,
the unit is spaced ahead to the next file mark, and the aark
ls erased. The default value is W for PUNCH and PRINTER

files and R for all cther files.

pLipyipH

The respective meanings are for density: low, nedium, and
high. This nmakes sense only for an output tape file
because, on reading, a tape unit automatically determines

the density.

V., F, (SIZE 1)

These mean, respectively, variable and fixed length records,
and SIZB specifies that the record size is 1 for F files and
a paxisum of i for v files. All size, iength, and margin
information for lines is given in bytes. The default values
depend upon vhether the file is R, W, or WE and whether the
file 1is binary or syabolic. The table sumnmarizes the

default actions:

Rough Draft

N

170 Pacility 219

R R-B WE WE-B W W-B
DISK Q 0 4 6] v80 v
TAPE v8go Y F80 v F80 v
CARD F80 J - - F80 v
PRINTER - - - - vi3io v
TERNINAL vi3do v - - vi2 v

B means that the file is binary, and V without a length
geans simply input or ocutput the nusber of bytes specified
for a binary file. Por all syabolic 1I,/0, an upper bound
lenqth must be specified because CRISP associates a buffer
vith each symbolic file. O means that whether the file is V¥
or P is determined by opening the file and looking at the
CHs control block, If P, then the size information 1is
deduced by locking at the contrcl bleck. If V and binary,
the lenqgth information is not needed. However, if the file
is v @nd syabolic, then the default lenqth will be the
caxinum of the longest record written to date and 80 bytes.
If you d40 not like the defaults, then override them with an

explicit usage paraaseter.

ERASE, REWIND

These option words are meaningful only when a file is being
opened, Wwhen opening an output disk file (W), ERASE
specifies that if a file already exists with the same nane,
mnode, and type, it should he erased. If EBASE had not been
included in the PFDL and the file had already existed, then
OPEN wvould siqnal an error. REWINI is useful only in open
calls for tape files; it ensures that the tape is positioned

at its load point.

12731774

220 CRISP -- SDC TH-5455/000/00

PURGE, CONT, REW, BEU

These option words are meaningful only when a file is being
clogsed. PURGE aborts the spool for card and printer files,
erases a disk file, and is a nop for tape and tersinal
files. Por card and printer files, CONT closes the file am
far as CRISP is concerned but does not close the spool.
CONT closes a tape file without writing a tape wark. PFor
disk aﬁd terminal files, CONT is a nop. REW and REU are
meaningful only for tape files. Their respective meanings

are revind and rewind and unload.

Ok, 1D, TH, TTY, TI, PDP1O

These option words are meaningful cnly for sysbolic output
files. They specify the available character set assuming
that a human will try to read the file. That is, they
specify which characters aust be printed using the %%

mechanism to ensure visibility. The meanings are:

OK do not use %% for any char
TD using TD print train
™" using TN print train

TTY using a Model 33 TTY
TI using a TI 700 or Model 38 TTY
PDP10 using the SBYI PDP-10 printer

The default setting for each device type is:

DISK TI
TAPE CH
PUNCH QK
PRIRTER TD

TERMINAL TI

JBCDIC., ASCII
Specifies whether <charactars are to be in EBCDIC or ASCII

format in the file. These specifications are meaningful
only for symbolic files. Note, 2 terminal is handled as an

Rough [Lraft

I/0 Pacility 221

EBCDIC device by VM. This option is intended primarily for
symbolic tape exchange hetween the 370 and the PDP 11 or the
Ravytheon 704, Therefore, if these two character sets turn
out to be sufficiently different from each other, two brands

of the ASCII option will be available.

CCA

This option word specifies that a symbolic output file is to
have c&;riaqe contrel information added to the data. This
is useful primarily for printer files and disk files of file

type listing that will ultimately be output on the printer.

PAGEN, (HEAD s), (TPMG t), (BTIMG b), (PAGEL 1)

If any of these options is used, then the sysbolic output
will appear in page format. PAGEN specifies page nuabering
on the top line of each page. The phrase “PAGR i", where i
is the page nusber, will be right dJustified. (HEAD s)
specifies that the value, s, should be left justified in the
top line of each page; s must be an identifier or a string.
(TPHG t) specifies that t lines should be left before the
begqinning of text at the top of each page. t includes the
headinq and numbering line. (BTMG b) specifies that b blank
lines should be left at the bottos of each page. (PAGEL 1)
specifies that the total puaber of lines on a page is 1.
When page formatting is selected by the user and any or all
of t, b, or 1 are not specified, then their default values
are 3, 3, and 66, respectively. The folloving conditions
aust be satisfied:

t+b<1
t21 if FAGEN or HEAD

12/731/74

222 CRISP -- SDC TH-5455,/000/00

If CCA has been specified, then most of the formatting will
occur with carriage control characters. Otherwise, blank
lines will be used. CCA is useful without page format to

force an occasional skip to tcg of fora.

(LFMG 1), (RTEG r), LINEN

These option wcrds are meaningful only for symbolic files.
{LFMG 1) means ignore the first 1 columns of input or
automatically print 1 blanks in an cutput line. (RTMG r)
seans ignore the last r columns of an 4input line or put
blanks in the last r columns of an output lins. LINEN is
equivalent to (RTMG 8). CRISP does not use or generate line
numbers. LIKEN is merely a coanvenient method of skipping
over line nusbers on input or to leave room for them on

output.

RBEIIY, UGLY

These option vwords apply only toc syabolic output files.
PRETTY aeans do an automatic formatting of printed
structures. UGLY aseans fust print the structure as a token

string with the necessary separating blanks supplied.

ASIH, SIM, NWSYM, BYE

These options are meaningful cnly for syasbolic output files.
SYM means "sysmetric“ primting is required. That 1is, the
structure must be output in a form that allows it to be
reread by a CBISP program. If anything is printed in a sSYH
file that is deemed to he not rereadable, then an error is

siqnalled. Exawples of such unprintable structures are

Rough Draft

N

//ﬁ\.

I1/0 Pacility 223

handles, pointers into heaps, and circular structures. When
necessary, identifiers will be ©printed using the §°¢
mechanism, and strings will be printed with primes. ASYM,
the default, is like SYM except that no error is signalled
vhen a non-rereadable structure is printed. NSYM is like
ASYN except that the $' mechanism is never used. However,
strings are still printed with primes. With EYE, neither is

the $' mechanism used ncr are primes used to print strings.

CARS . NCAPS

These options are meaningful only for symbolic input files.
CAPS specifies that imput <characters should bLe raised to
upper case, if necessary. This 1is the default. NCAPS

spaecifies that no capitalization should be performed.

File _Handlipg. Erimitives

This section describes the set of priamitives that =may be
used to change the status of a file. Following sections
describhe the primitives that can actually result in data

transfer.

OPEN (PDL)

OPEN defines and makes a file usable to CRISP programs. The
FDL is error checked, and if found faulty, an error
condition is signalled. Bxamples of errors besides the FDL
format are:

egspecified file does not exist
efile is already open

12/31/74

224 CRISP -- SDC TB-5455,/000,/00
etape unit, printer, reader, cr punch already in use
edisk full and other CMS detected errors

Once a file has been opened, it is alvays referred to by its

internal name. The system is initialized with the following

OPEN calls:

OPEN("(ITERM TERMINAL R)):
OPEN({" (OTERN TEBMINAL W)):

The value of OPEN is a copy of the file identification
portion of the FDL. If * had been used for either the type
or the mode, then the value of OPEN would include the actual
values used. Only one file each is permitted for the card
reader, printer, card punch, ¢r any single tape drive at any
given time., Also, an open disk file may not be opened again

without first closing it.

CLOSE{c-name | FDL)

CLOSE removes the specified file from the set of active
files usable by CRISP programs, If the internal name is
specified (by use of a c-nape arqument) then the default

action for each device type is:

DISK sake an FSCLOSE call
CARD close the spoocl, NOCONT
PRINTER close the spool, NOCONT
TAPE write a tape smark

TEBMINAL no operation
If an PDL is specified, the opticn words PURGE, CONT, REW,
and REU are obeyed as specified in the previous section. In
any event, if the specified file is not open (to CRISE),
then CLOSE 4is & nop and the value is NIL. Othervise, the

value is TRUEK.

Rough Draft

I/0 Pacility 228

TURNABQUND (c-name)

The arqument is the internal name of a file currently opened
for ocutput. It is closed and then re-opened as an input
file. If the file 1is on tape, then a tape mark is written
and the tape is backspaced one file. Note that the tape is

not rewound.

RXT ERD (c~nane)
The argusent is the internal name of a file currently opened
for input. It is closed and then re-opened as a WE (vwrite

extension) file.

CHANGE (c-name,$s,sattributes)
The 8pecified usage attributes of the specified symbolic
output file are¢ changed. The possible arquments are:
{HEAD s)
PRETTY, OGLY
ASYM, SYM, ESYBR, EYE
The heading may be changed only if page formatting was

selected by the open call.

POSITION({c~-name|TAPD} ,connand)

A tape unit is positioned. Whether or not a file is opened
on this unit, TAPn may be used tco identify the drive. The
possible commands and their meanings are:

RE¥ revwind

REU rewind and unload

ERG erase a gap

BSR backspace 1 record

BSF backspace 1 file

FSR forward space 1 record
FSF forward space 1 file
WTH write a tape mark

Bote, everything mentioned deals with physical records,

12/31/74

226 CRISP -- SDC THN-5455,/000,/00

files, and drives. If you start positioning around syambolic
files vyou either need to know exactly the format of the

records or be the recipient of divine gquidance.

SEEK (c-name, i)

The pointer to the specified disk file is set to the ith
tecord. If i is zero, then the pointer is set at the file's
end. For restrictions on the use of this coamand, see the

CMS documentation.

ERASE{f-name,f-type,f-mode)
The specified disk file is erased. If the file is opened,

then it will iemediately be closed.

RENAME (f-namel1,f-typel,f-podel,f-nanel, f~-type2, f-node2)
The file, (f-namel f-typel f-mcodetl) is renamed as (f-nanel
f-type?2 f-mode2) by CMS. The file wmust not be open in

CRISP.

Bivaxy. 1/9 Primjitives

This section describes the primitives that are wused to

transfer data to and from binary files.

N¥RITE (c-name,structurs)
The content of the structure (not including 1its header) is
output to the specified file. The structure must be an

array or ntuple that contains nc elements that are

Rough Draft

I/0 Facility 227

represented by pointers. The length of the structure is
determined from its header. If the data structure is longer
than can be countained in a single record, then multiple

records are output.

WBRITEX (c-pame,loc,offset,lenqgth)

lac is the inteqer byte location of the buffer, offset is a
hyte offset avay froa loc, and length is the nuater of bytes
that are to be ocutput. WRITEX promises to do nothing that
vill cause a garbage collect; therefore, 1loc will remain
valid., WNRITEX is pure hacking and should be used only by

the knowledgeable hacker and only in emergencies.

BREAD(c-name, structure)

The content of the structure (not its header) is filled from
the specified binary input file. If necessary, multiple
records are input. Unused bytes in the last input record
are discarded. The structure must contain no fields that
are represented by pointers. If the end of file condition
is encountered, the value 1is NIL; otherwise the value is

TRUE.

BREADX (c~name, loc,offset,lenqth)

BREADX is the 4input equivalent of WRITEX. It 1is even more
of a hacker's delight. No error checking is done other than
to ensure that the file is orpened and that the input occurs
wit hout channel or device error. If you exceed memory
bounds or clokber the system, you are on your own; the

program check handler will probabley be turned into a basket

12/31/74

228 CRISP -- SDC TH-5455,/000/00

cagse. The value of BREADX is the same as that of BREAD. If
an end of file is encountered by either function in the
middle of Qdata input (can occur only in sulti-record reads),

an error will be signalled.

It should be noted that binary 1/0 primitives do not move
data to and from system buffers. The transfer is done “in
place®. To do otherwise wcould Create a severe page

thrashing and execution time penalty for large transfers.

Symsbolic 1/9 Prigitives

This section describes the primitives used to transfer data
to and from syabolic files. Unlike the primitives that
transfer binary data, the file 1is not Specified as an
arqumsent. At any msoment, one input and one output file are
selected for syabolic data transfer. The primitives alwvays
vork with a file that is currently selected. The value of
the variable READFILE 4is the internal name (identifier) of
the currently selected symbolic input file, and the value of
the variable PRINTPILE is used in a like mamnner for the
selected symbolic output file. Both variables have the last

name CRISP.

File selection may be accomplished easily by assigning a new
value to one of the variables. Also, file selection may be
protected agqgainst error or fail unvraps by binding the

variables. Another method, borrowed <from LISP, is also

Rough Draft

I/0 Facility 229

available for selecting files. The function RDS has one
arqument, the internal name of a syabolic dinput file. RDS
sets READFILE to the argqument value and returns the old
value of READFILE. Thus, RDS(r) is equivalent to:
BEGIN ID I:=REALFPILE;

READFPILE:=r;

RETURN I:

END;
The function PRS is available to select an output file. Tt
vorks in a manner identical to RDS but with the variable

PRINTPILE. The following paraqraphs describe the syambolic

I/0 primitives.

READCH ()

The next charcter in the input line is input and converted
tc a character identifier. If the current input 1line is
exhausted, the the next line is read. If the end of file
condition is detected, the value of READCH is NIL.
Characters represented by %X and two hex digits are
converted to a single character. A blank is inserted as the
last character of each input line. TIf that imsplicit blank
is the character input, then the value of the boolean

variable ENDOFL INESCRISP is set TRUE.

READCHX ()

Just like READCH except that noc X% conversion is perforamed.

BACKCH ()

BACKCH causas the last character input by READCH or READCHX
to be re-input wvhen one of the character readers is next
called. Provisions are made only for one character backup.

12/31/74

230 CRISP -- SDC TM-5455,/000/00

Therefore, repeated EACKCH calls are equivalent to a single

call.

READ TOK {)

READTOK skips over leading spaces and comments in the input,
parses the next token, ccnverts it to internal form, and
returns it as its value. If the implicit blank, sSupplied at
line end by READCH, occurs in the middle of an identifier
input using the $' nwmechanisz or a string surrounded by
primes, then it is discarded and not used in building the
token. If the input token is an ideatifier input with the
$' gechanisa, then the boolean variable USEDOLLAR in section
CRISP i8 set TRUE. READTOK includes ¢ and - as part of a
succeeding number. Thus, -15 1is input as one token, not
two. If an end of file is encountered, the value 1is the
identifier EOF and the boolean variable EOFS$CRISP is set

TRUE.

BEADTOKYU ()
READTOKU is identical to READTOK except that + and - are
considered as separate tokens from succeeding nusmbers.

Thus, =15 is input as two tokens.

BACKTOK ()

BACKTOK functions for tokens in a wmanner siailar to the way
BACKCH works for characters. That is, after a call on
BACKT0K, the next call on READYOK or READTOKO will return
the token a second time. Provisions are made for backing up

only one token. Therefore, multiple calls on BACKTOK are

Rough Draft

~

I/0 Facility 231

equivalent to a single call. If a siqgned token has been
input by READTOK and backed up, then a call on READTOKU will
retrieve the signed nusber. Token backup does not imply a
corresponding character backup. The next character pointer
and character backup flag are not atfected in any manner by
BACRTCK. Therefore, in general, am input streas should be
considered to be either a token sequence or a character

sequence and caution should be used when mixing modes.

READINT ()

READINT inputs the next token. If it is an integer, that is
the value. If it is a float, it is converted to an integer
and retuyrned. Othervise, an error 1is siqnalled. If the end
of file condition is encountered, the value is zero, and the
toolean variable EOF is set TRUE. Using READINT instead of
READTOK, when posaible, is acre efficient because the

inteqer dces not need to be converted to a general datua.

READEFLT ()
Like READINT except that it inputs a floating value. It is

villing to couvert from an integer input.

READ ()

READ inputs the next external datum in the dinput stream.
BREAD can input 1lists, nodes, strings, arrays, cosplex
numbers, and ntuples as well as one token data such as
integers and floating point nuambers. khen the tokens $' (',
$¢) ', $*{*, and $'}' are encountered, they are treated as

identifiers and not as structural delimiters. If the end of

12/31/74

232 CRISP -- SDC THN-5455,/000/00

file condition appears in the nmiddle of an incoaplete
structure, an error is signalled. If the end of file
condition is met after skipping leading spaces and comments
and ktefore any structural data are encountered, the value is
the identifier EOF, and the boclean variable EOF is set

TRUE.

CRUNCH(1)

The arqument is a list of tokens. The tokens are treated as
an input s;rean to READ. If a token would have been input
using the $' mechanisa because it would otherwise have been
a structural delismiter, then it should be in a sublist.
Signs may be included. Also, numbers may be negative. The

value of

CRURCH (" ($' {* GEN ARBAY 3'(* 4 $*)* - 4
=17 ($') ') ABO)Y)

is
{GEN ARRAY (4) -4 =17 $') ' ABC}

If the input 1ist 1is not exactly exhausted, an error is
signalled. Kotice that type-refs are given in token forna

just as everything else is.

READSLY()
An SL top level expression is input from the file. The
value is the IL equivalent. The dinput must be delimited by

a semicolon.

TABIRTO (i)
The 4input character pointer is set to the ith character

position of the current line. If i is less than the left

Rough Draft

I/0 Pacility 233

marqgin, the pointer is set to the first character followving
the margir. If i would cause the pointer to be set into or
bevond the right marqin, then it is placed in a position
such that the next character input will come froa the next
input line. 1In any event, the variables EOF, ENDOFLINE, and
USEDOLLAR are set to NIL, and any token or character backup

is cleared.

TABINBY (1)
Identical to TABINTO except that 1 represents a delta
instead of a character position. Of course, negative values

of i are meaningful.

ENDLINEIN ()

Sets the next character input pointer so that the next call
for a character input will cause another line to be read.
USEDCLLAR is set to NIL, and any token and character backup

is cleared. ENDOPLINE is set TROE.

NEXTLI NEIN ()

Inputs the next line. Beturns NIL and sets EOP TRUE if the
end of file condition is encocuntered. Otherwise, TRUE is
returned. USEDOLLAR and ENDOFLINE are set to NIL, and any

character and token backup is cleared.

Hote: An attempt by any input operation to pass through the

end of file a second time will cause an error to be

signalled.

12/731/74

234 CRISP -- SDC T™M-5455,000/00

PRINTCH (c)

The argumsent, a character identifier, is entered into the
output buffer. If appropriate, it is printed as a %% and
tvo hex digits. Ifythis character fills the line, then the

line 1s output to the file. The value is the arqument.

PRINTICHX (c)

Like PRINTCH except that the %% mechanise is not used.

PRINT(X)

The arqument is printed. If the currently selected output
file has the usage attribuyte PRETTY (as opposed to UGLY),
the output is formatted. The last line of the output is
padded with blanks, if not completed, and writtem out. The

value is the arqument.

PRIN(X)

Like PRINT except that the last line is not padded nor is it
forced out. Thus, several PRINs say be used to enter data
on the same output 1line. Hovever, blanks are anot

automatically insmerted.

BLANK ()

Does a PRINTCH cf & space.

BLANKS (1)

outpyts i spaces using PRINTCH.

Rough Draft

-

I/0 Facility 235

BLANKTC (i)
Moves the next character output pointer to column i. Blanks
are printed wuntil column i is reached, even if this means

soving to the next output line.

TABQUTTO (1)

Moves the next character output pointer to colusn i. Blanks
are not output and you stay in the current line unless { is
in or beyond the right margin, in which case the current

line is sisply ocutput.

TABOUTBY (1)
like TABOUTTO(i) except i is used as a delta rather than a

colusn number.

ENDLIREOUT()

Blanks the remainder of the current output 1line and
transfers it to the file. 1If this 1is a v file, the line is
output at its current leagth with no padding except for the
rigqht marqgin (if any). This is the function wused by PRINT

and others to pad and transfer incomplete lines.

TOPPAGE ()

Meaningful only for outpyt with page formatting or CCA.
causes the rest of the current page to be blank unless
cutput is exactly at the top of the page. In the latter

case, ho aoperation is performed.

12/31/74

236 CRISP -- SDC TH-5455/000,00

ELANKPAGE ()
Like TOPPAGE Ltut is perfectly willing to output an entirely

blank page.

NOADVANCE()

Will not advance paper before printing the next 1line and
will inphibit incrementing of the line count for the page
vhen that print is done. Useful for underscoring, but does

not work for TERMINAL files.

FORMCONTROL (c)
Specifies a form coatrol character to be used with the next

output line.

PRINTLIST (1)

The arqument is a node2 list. Each element in the list is
qutput with PRIN, and blanks are used to separate the items.
The last line of the ocutput is padded with blanks and forced

out to the file.

PRINLIST (1)
Like PRINTLIST except that the last line is not padded or

forced out.

PRINTINDEF($s,sX)
Like PRINTLIST except that there are an indefinite nusber of
arquments instead of a list. The cutput items are separated

by blanks, and the last line is padded and forced out.

Rouqh Craft

_

I/0 Pacility 237

PRININDEP ($.,ex)
Like PRINTINDEF except that the 1last line is neither padded

nor forced out.

PRINTINT (c, i)

The inteqer i is printed, right justified to column c if
c>0. Otherwvise, i is printed left Justified to column -c.
The line is padded with blanks and output. Interior parts
of the line skipped over are blanked. If the next character
pointer is already too far to the right, then printing

occurs on the next line.
PRININT {c, 1)
Like PRINTINT except that the remainder of the line \is

neither padded nor forced out.

PRINTFLT (c,f)

Like PRINTINT except the printed number is floating.

PRINFLT (c.f)

Like PRININT except the printed numbter is floating.

PRINTHEX (C,X)

Like PRINTINT except number is output in hex.

PRINHEX (Cc,X)

Like PBININT except number is output in hex.

12/31/74

238 CRISP -- SDC TH-5455,000/00

PRINTGER (c,.q)

Like PRINTINT except the printed value may be anything. 1If
an attempt is wade to print a ncde, array, cosplex nuamber,
or ntuple wvwith rigqht d{ustification, then a space will be
printed and the structure will be output vithout

fustification.

ERI RGEN {c ,q)
Like PRINTGEN except that the 1last line is neither padded

nor forced out.

Note: At present, we believe that the output primitives will
be able to handle circular structure when the file 1is not
SYIN. This assumes that none of the symbolic output
primitives will use any dynasically allocated space other
than stacks. When a circular pointer is detected,
"e«CIRCULAR*" will be output instead of reprinting the

structure.

System Primitives

This section describes the primitives that use CP or CHS

facilities other than 1/0.

TIMER()

The value is a floating nusber that gives the value of the

virtval CPU timer in aicroseconds.

Rough Draft

\\,/

./

1/0 Facility 239

KON {)
The value is a list in the format:

(month day yvear hour aminute second)

RCHS (1)
Permanently returns control to CMS with the value i. ¥Normal

exit from the CRISP systenm.

CALLCHS (1)
CMS is called to perfors a 38ingle subset command. The
arqueent, 1, is a 1list. Each top level element of 1 is

turned into an 8 byte request table entry.

CALLCP(1)
This is equivalent to CALLCHS ("CP#l). This causes CMS to

pass the reguest through te CP for action.

SUBSET ()
CRISP will turn terminal contrcel over to the CMS subset

handler. To re-enter CRISP, simply type RETURN.

HYNRAME()
Returns the identifier name of ¢the presently operating

nodule.

SAVE(1d | FDL)
Outputs the presently operating copy of CRISP. If the
arquaent is an id, then the file will have that name, and

will be of type MODULE on the A disk. If the arqumsent is an

12/31/74

240 CRISP -- SDC THN-5455/000/00

FDL, then only the identification portion will be used. It
wust specify a disk file, and the usage attribute ERASE is
always assunmed. When a acdule save generated by SAVE is
reloaded, all 1/0 files will autceatically be shut, and
operation will continue in the top level supervisor process

after reopening the terainal files ITERM and OTERAN.

SUSPEND

The primitives necessary to suspend and resume a module and
maintain its entire state have not yet heen designed. Also,
the prismitives necessary to stack pseudo terminoal input

lines have not vet been designed.

Rough Draft

241

GENERAL PRIMITIVES

This section describes a variety of primitives that are
available in the system. The descriptions are grouped by
the kind of task performed and the type of argquments. MNany
of the primjitives are not functions; they are forms that are
handled specially by the compiler or are the names of macros
or transforms. For primitives that are functions or pseudo
functions, a declaration is given, If there is a special SL

oper ator, it is mentioned.

Bit. logical

211 primitives described in this section are pseudo
functions. They prcduce in-line code. Bach treats its
arqumaents as 32 bit strings and performs a logical operation

on the bita.

INT PUNCTION INV(INT) SL=INV
INV returns the cne's cosplement of its integer arqument.
MINUS (- in SL) may he wused to compute the tvo's complement

of an inteqer.

INT PUWCTIOF BAND(INT INDEP) SL=gE
BAND ands together all of its integer arguments to produce
an inteqger value. The value of BAMD with 0 arguments is

OFFFRFFFPX.

12731774

42 CRISP -- SDC THM-5455,000,00

INT PUNCTIQON BOR(XINT INDEE) SL=} |
BOR computes the inclusive or of its argquments. The value

of BOR with 0 arguaents is 0.

INT FPUNCTION BXOR(INT INDEF) SL=BXOR
BXOR computes the exclusive or of its arguments. The value

of BXOR with 0 arquments is 0.

INV (OCX) is QFPPPFFP3X
IRV(OAX) is OFFFFFFrPESX
BAND (0OAX,0CX) is 8
BOR(OAX,0CX) is OEX
BXOR(0AX,0CX) is 6

Arithaetic

A1l primitives described in this section are pseudo

functions and say produce in-line ccde.

PLUS SL=+¢

PLUS has an indefinite number of numeric a:qdlents. The
value is the sum of the arquments' values. The value of
PLUS with 0 arquaents is 0. The type of value produced by
PLUS is complex if any argument is complex, or float if any

arquaent is float; otherwise, the value is of type integer.
BINUS SL=-

The value of MINUS is the negative of its arqumsent. The

value type is the same as the arqument type.

Rough Draft

SN

General Primitives 243

DIFPER SlLl=-
CIFFER subtracts its seccond argument fron its first

arqueent. DIFFER(A,B) is equivalent to PLUS (R,MINUS (B)).

TIMES SL=*

TI®ES has an indefinite number cf numeric arguments. The
value is the product of the arquments'! values. The value of
TIMES with 0 arquaents is 1. The type of value produced by
TINES is cowplex if apny argument is complex, or float if any

arqument is float; otherwise, the value is of type integer.

RECIP

RECIP éonputes the reciprocal of its numeric arguament. 1If
the arqument is of type integer or float, the value is of
type float. If the argument is complex, the result is

coaplex.

QU0 SL=/

QUO(A,B) is equivalent to TIMBS(A,RECIP (B)).

INT FUNCTION IQUO(INT,INT) SL=//
The value of ICUO is the integer quotient of its two integer
arqueents, If the division is nct exact, then the result is

rounded tovards zero.

INT FUNCTION REMAINDREE (INT,INT)
The result is the resainder that results froa integer
division of the first arqueent by the second, assuming the

quotient has been rounded towvards zero. The sign of the

12/31/774

244 CRISP -- 3DC THN-5455,/000,00

result is the sign of the dividend (first arquaent).

INT FOURCTION EXTIER(FLCAT)
ENTIER converts its float arquement to an integer by
truncating towards Zero. ENTIEBR(F) 1is equivalent to

DRIVE(INT,I) .

INT FUNCTION ROUND {FLOAT)
ROUNL (P) is equivalent to ENTIER(F+0.5) or ENTIEBR(P-0.5 as

P is positive or neqative.

NAX

MAX has an indefinite number of numeric argquments. The
value is the larqest. The value of MAX with 0 argquaments is
8C000000X, the smalleat integer. If any argument is
complex, the value is caomplex;: if any argument is float, the
value is float: otherwvise, the value is integer. The noras

of complex numbers are used for the comparison.

HIN

¥IN has an indefinite number of numeric arquments. The
value is the saallest. The wvalue of MIN with 0 arquments is
TJFFFPFPFFX, the largest integer. 1If any argqument is complex,
the result is coamplex;: 1f any arqument is float, the value
is float; otherwise, the value is inteqgqer. The noras of

complex numbers are used for the ccmparison.

Rouqgh Draft

N

General Prisitives 2485

SIGN

The value of SIGE 1is -1 if the argqument is 1less than 0, +1

'if the arqument is greater than 0, and 0 if the arquaent is

0. SIGN of a complex is 1 unless the arqument is {COMPLEX

0.0 0.0y.

Note, none of the above (including the bit logical
primitives) quarantee the order of evaluation or combination
of their arqueents. That is, A+ (B+C) may evaluate and add
A, B, and € in any of the possihle permutations. If you
desire to control the order of comktination and/or the order
of evaluation, write the forms as a segquence of statements

and use variahles to hold temporary results.

Trigenometric

The functions SIN, COS, TAN, ARCTAN, LOG, LOG10, SQRT, EXP,
and E.EXP all have float arqueent and produce a float value.
All except EXP have one arquement; EXP has two. E.EXP raises
e to the power of its arqument. Errors are detected iu the
standard way, e.q., SQRT of a negative is an error. The
functions NSIN, NCOS, NTAN, HNARCTAN, NLOG, HNLOG10, NSQRT,
NEXP, and NE.EXP are alsc available. Their arguments are of
type number, and the value is of type number. This means
that the arqumant and/or the the value can be complex.

SQRT(~1) is an error

RSQRT (-1) is {CONPLEX 0.0 1.0}

The rules that deterzine which value is returned vhen there

12731774

246 CRISP -- SDC TH-5u455,000/00

is a choice will be detailed 1later.

In SL, EXP is represented by *=*,

Boolean Logicsls

The primitives described in this section have boolean
arquaents. Interpreted as a boolean, any obiject other than
NIL is eguivalent to TRUR. All the primitives are pseudo

functions that generate in-line code.

BOOL FUNCTION NQT(BOGL) Sl=~
The value of NOT is TBUR 4Af the hrqunent is NIL. Otherwise

the value is NIL.

BOOL FUNCTICN ABD(BOOL INDEF) SL=¢

The value of AND is TRUE if none of its arquments 1is NIL:
othervise, the value 1s NIL. The value of AND with O
argueents is TRUE. The argqueents are evaluated left to
right. If one of the arquments is NIL, the remaining

arquments are not evaluatad.

BOOL PURCTION NAND(BQOL IMNDEF) SL=-6

NAND (b1 ... Dn) i3 egquivalent to NOT(AND(b1 ... bn)).

BCOL FUMCTION CE{BOOL INDRF) SL=|
The value of CR is NIL if none of its arquments 1s TROE;

othervise, the value 1is TRUE. The value of OR with O

Rough Draft

\\\’ Y,

General Primitives 247

arqueents is NIL. The arquments are evaluated left to
right. If one of the arquments is TRUE, the rewmaining

arqupents are not evaluated.

BOOL FUNCTION NOR (BOOL INDEP) SL=~|

NOBR(b?1 ... bn) is equivalent to NCT(OR(b1 ... bn}).

EOOL FUNCTION IMPLY (BOOL,BOOL) SL=>>

IMPLY(A,B) is eguivaleat to OR(NOT({A)},B).

BOOL FUNCTION IMPLIED(BOOL,BOOL) SL=<<

IMPLIED(A,B) is equivalent to OR{A,NOT(B)).

Belatiopals

This section describes the relational operators. All are

pseudo functions and may qenerate in-line code,

GR,GQ,LS,LQ Sl= >40=,<,<= (among others)

If either arqument is non-numeric, the value is NIL.
Othervise, the value of the ficrst arqument is coapared to
the value of the second argument. If the first is greater
than, greater than or equal, less than, or less than or
equal to the second arqument for the operators GR, GQ, LS,
and 1Q, respectively, then the result is TRUE. Otherwise,
the result is NIL. If an arquaent is complex, 4its norm is

used for the comparison.

12/31/74

248 CRISP -- SDC TN-5455,000/00

EQ SL=t'=?

EQ takes two arquaents of any type and compares them for
equality. Por them to be EQ, one of the following aust
hold: (1) both are pointers at the same structure, (2) both
are integers with the same value, or (3) both are floating
with the sape value. Thus, EQ is an exact equality test.
The types of otiects represented by pointers for which EQ is
alvays TRUE for arquments vwith the sSame print pname are
character, identifier, name, subspecified name, Lkoolean, and
numrber or general obfects with inteqer values in the range
-220 to 220-1%, EQ 8hould not be used vwith complex obhjects
or other types of numbers kept under the cover types number

and general.

NQ SL= ==

BQ{A .B) is equivalent to NOT(EQ(A,E))

BOOL FUNCTION EQUAL (GEN,GEN) SLat'==?

EQUAL returns TRUE if its arquments are EQ, if Dboth
arquesents are the identical type of node, array, or ntuple
and the corresponding fields are RQUAL, or both arguments
are numeric and their values are the same after type
conversion. Otherwvise, EQUAL returns NIL. EQUAL can enter
a nonterainating loop if its arquments are circular

structures,

BOOL FUNCTION NEQUAL(GEN,GEN) SL='-a=!

NEQUAL (A, B) is equivalent to NOT (EQUAL (A,B)).

Bough Draft

General Prigitives 249

Dipsnsions

The following are pseudo functions for which the compiler

may generate in-line code.

INT FUNCTIOR NUMDIN(MDEBBRAY)

The value is the number of dimensions the argqument has,

INT FUNCTION SIZEDINM(ARRAY, INT)
The value is the extent ¢f the dimension selected by the

second arqument.

INT PUNCTION ABLN (ABRRAY)

ARLN {A) is equivalent to SIZEDIM(A,1).

LISE.Prinitives

The folloving primitives are borroved froa LISP. All work
with binary node arquments. In all cases, the node2
arquments are assused to be lists. A list is either NIL or
a node2 objfect whose CDR is a list. Many generate in-line

cole and are pseudo functions.

NODE2 FUNCTIOR INTER(NODE2,NODE2) SL=INTER
The value is a list of the common elements in the two
arquaent lists. PEQUAL 4is used to deteraine equality of

elements in the listae.

1273 /74

250 CRISP -- SDC TM~-5455,000/00

NODE2 PUNCTION ONICN (NODE2,NODE2) SL=UNION

The value is the second argument augmented by mesbers of the
first arqument list that are not already in the second
arqueent list. The value of UNIOK(1,NIL) is & copy of 1

with duplicate members deleted.

NODB2 FUNCTION IN(GEN,NODE2) SL=IN

The list is searched for a CAR (or a CAR of some CDR) that
is EQ to the first arqument. If found, the value is the
rTewaining list, starting with the item that was EQ. IXf no
match is found, then the value is NIL.

IN("B,"(A B C)) is (B C)

NODEZ FUNCTION MEMBER (GEN,.MODE2)
MEMBER is equivalent to IN except that EQUAL 1instead of EQ

is used for the search.

NODEZ2 FUNCTION ON(NODE2,NOQLDE2) SL=0N
ON searches the list arqument for a CDR that is EQUAL to the
first arqument. If it is found, it is returned. Othervise,

the value is NIL.

NODEZ2 FUNCTIOK APPEND (NODE2,NODE2) SL=38
APPEND appends the first arquament 1list to the second by
copying the first and CONSing the elements to the second.

APPEND("(1 2 3) ,"(A B C)) is (1 2 3 A B Q)

NODE2 FUNCTION DAPPEND(NODE2,NODE2) SL=3d

DAPPEND is the LISP NCONC. It is like APPEND except that

Bough Draft

\\//

GCeneral Primitives 251

the first arqument list is not copied. The eveantual CDR
that is HIL is changed to point at the second arqument list,
If the value of ¥ is (1 2 3), execution of DAPPEND(N,"(A B
C)) would produce the value (1 2 3 A B C), and the value of

N would also be (1 2 3 A B CY.

NODE2 PUNCTION FIND (GEN,NODE2)

The arqument 1list is presumed to be a 1list of node2
structures. The list is searched for the first mesber whose
CAR is BQUAL to the first argument. If no wmatch is found,
then NIL is the value.

PIND(3,"((1 A} (2 B)(3 C) (4 D))) is (3 C)

BODE2 FUNCTION PINDN (GEN,NODE2)
FINDK is8 like FIND except that EQ instead of PFEQUAL is used

for the search.

GEN PUNCTION DGRT(GEN,NODR2)
DGET is like FIND except that the CCR of the first matching
structure is returned as the value.

DGBT(3," ((1 A) (2 B) (3 C) (4 D))) is (C)

GEN FUNCTION DGETN (GEN,NODE2)
DGPTN is 1like PINDN except the CDB of the first matching

structure is returned as the value.

NODR2 PUNCTICON REVERSE(NODE2)
The value 1is a copy of the input 1list with the top level

items reversed.

12/31/74

252 CRISP -- SDC TM-5455,/000/00

REVERSE("(1 (2 3) 4)) is (4 (2 3) 1)

NODE2 PUNCTICN DREVERSE (NODE2)
[REVERSE is like reverse except that the input 1list is not
copied. The top level nodes (succesive CDRsS) are reused.

This destroys the original list.

NODE2 FUNCTION LIST(GEN INDEF)

LIST returns a list made of node2 okjects of all of its
arqueeants. For exaaple, the value of LIST(1,2,3) is (1 2
3). This is equivalent to

CONS (1,CONS (2,CONS (3,NIL))).

INT FUNCTION LENGTH (MODE2)

The value returned is the length of the argqument list.

GEN PUNCTION NTH(INT,NODE2)

The value returned is the nth (as specified by the first
arqueent) item in the list. If the list is not long enough,
then NIL is returned,

NTH(2,"(A B C)Y is B

BODB2 FUNCTICN NON(INT,HNODRE2)

The value is the arqument list with N (=first arqgument
value) CDRs resmaoved. If the list is not long enough, the
value is HIL. If 8 is zerc or negative, the value 4is the
original 1list.

HON(2,"(A B C D)) 1is (C D)

Rough Draft

General Primitives 253

NODE2 PUNCTION NOFF(INT,NODE2)

The value is a list that is made up of the first n (= first
arqusent value) top level items of the arqument list. 1If
the list is not lonqg enouqh, then the result will have the
same length as the list argument.

NOFF(2,"(A B C D E)) is (A B)

GEN FUNCTION LAST({(NODE2)
The value returned is the last element in the arqument list.
If the list is empty, e.g. NIL, then NIL is the value.

LAST{"({A B) (C D) (E P))) is (E F)

Relete Fupctions NODE2 PUNCTION deletefn (GEN,NODE2)

There are eiqht delete functionms: DELE, DELEN, DDELE,
DDELEN, DELETE, DELETEN, DDELETE, and DDELETEN. All have
tvo arquments;: the first is a general object and the second
is a 1list. The DELE functions work with a list of node2
structures like FIND and FINDN, and the DELETE functions
work with simple 1lists like IN and MEMBER. Names ending in
N use EQ for the search, and others use EQUAL. Names
begqinning with DD reuse the nodes ir the imput 1list, hence
they destroy some of it: the others copy vhere necessary.
They remove all items in the 1list that match the search

test,

GEN FUNRCTION SUBST (GEN,GENX,GEN)
The first argument is substituted for the second argument in
the third arqument. EQUAL is used to detect the presence of

the second argument. SUBST works recursively through the

12731/74

254 CRISP -- SDC TH-5455,000/00

third argumnent as long as its type is node2 structure.,
SUBST(1,"(A) ,"({X A) (A) (NODE3 {A) B C} (A))) is

((X . 1) 1 {NCDE3 (2) B C} 1)

GER PUNCTION SUBSTN (GEN,GER,GER)
SUBSTN is like SUBST except that EQ instead of EQUAL is used

for the testing.

HapasLs

The mapping functions take tvo arquments: a list made of
node2 objects and a func with the type GEN PUNC(GEN). The
pappers are BAPIN, NAPINL, MAPON and MAPONL. MAPIN and
BAPINL apply the func to the CAE of the list, then to the
CAR of the CDR, then to the CAR of the CDDR, etc. MHAPON and
MAPONL apply the fuac ta the list, the CDR of the li§t. then
the CDDR, etc. MAPIN and MAPON return NIL. HAPIﬁL and
BAPORL return a node2 1list of the values of ‘the function
calls. Given the definition,

GEN PUNCTICN FOOSABC(GEN X) PRINT (X*1);

BARPIN(" (1 2.0 3),FOCSABC) and

MAPIBL (" (1 2.0 3),PO0$ABC)
both print 2, 3.0, and 4. MAPIN returns NIL. MAPINL
returns (2 3.0 4). (Recall that the value of PRIRT is its
arqueent.)

MAPON("(1 2.0 3) ,PRINT) and

MAPONL ("{1 2.0 3),PRINT)

both print (1 2.0 3), (2.0 3), and (3). MAPON returns NIL.

Rough Draft

N

~

N

Ganeral Primitives 255

MAPQNML returns ({1 2.0 3) (2.0 3 ().

copiers

The following primitives are used to copy structures. COPY
and COPYNODE should not be used on circular structures
because they ray enter a nonterminating loop. All are
pseudo functions. MNOVE and MOVENEW may produce some in-line

code.

copy

1f the arqument is not a node, array, or ntuple, the value
of COPY is its arqumsent. If the arqument is a node, ntuple,
or array, then a new structure with the same type is
allocated, and each field is initialized to a COPY of the

corresponding field in the arqument object.

COPYNGODE

If the arqument is not a node, the value of COPYNODE is its
value. If the arqument is a node, then a new node with the
same number of fields is allocated, and the fields are
initialized to a COPYNODE of the corresponding fields inm the

arqusent obiect.

NOVALUE PUNCTION MOVE(GEN,GEN)
Both arquaents to NOYE must be of exactly the samse type of
node, ntuple, or array (wvith precisely the same outer

dimensions) . Pither or both arguments may be flattened

12/31/74

256 CRISP -~ SDC THN~5455,000/00

fields. The fields in the second arqument are copied bit
for bit into the corresponding fields of the first argument.
Given the following declaraticn,
DEC X<A INT, B FLOAT>,

I ¥,

2<Q FLAT X, R X>,

X ARRAY (*) R,

FLAT X ARRAY(#*) N
then any of the following may appear as the first and/or

second arqueent of MOVE: X, Y, 2_Q, Z_R, M[XI] and ¥[J].

MOVENEW

If the arqument to MOVENEW is not a node, ntuple, or array,
the value is the arqument. Qtherwvwise, a new structure is
allocated and the fields of the argument are moved, bit for
bit, into the corresponding fields of the new object. The

arquaent may be a flattened field.

Exalsg

The eval formes are normally used by programs that compute IL
expressions and then wish toc evaluate thesx. The eval
process is very expensive. Therefore, if a particular piece
of IL is to be used several times, compile it. The compiler

may be called fror a program as described below.

All the eval forss have an optional arquaent of type handle.
If present, the IL Aargqument is evaluated with the handle
used as the variable context. When this option is selected,

a ne¥ process may be created, so beware of rucking about

RBough Draft

__

General Primitives 257

vith the external context of MYSELF.

All free references from the IL arqument are to objects with
qlobal names. That 1is, 1local variables in the program
containing the use of the eval form are not visible. 1If
identifier nawes are used freely, then the default tailing

conditions in force at the time of the evaluation are used.

GEN FUNCTIOK EVAL (GEN[,HANDLED)
The arqument 1is evaluated, and its value 1is the value of
EVAL. The valuye of EVAL(REAC()) is 3 1if (PLUS 1 2) is

input.

GEN PUBCTION EVALQ (GEN[,HANDLE])

The arqument is evaluated only "one deep" instead of two
deep ax with RVAL. Thus, the value of EVALQ(READ()) is
(PLUS 1 2) with the above example input. The real use of
EVALQ is evaluation in a different context, For exaample,
the value of EVALQ (A$X+BSY,H) is the sum of the values of
the variables A$X and B$Y in the frocess selected by the

handle, H.

GEN FUNCTION APPLY (GEN,NODE2Z[,HANDLE))

APPLY applies its first arqument to the list of argument
values in 1its second arqument. Thus, APPLY (A,B) 1is
equivalent to EVAL(A#B). The value of APPLY (LIST," (A B)) is
a tvo element list of the values of A and B vhen the apply

form is evalanated.

12/31/74‘

258 CRISP -- SDC TmM-5455,/000/00

GEN PUNCTION APPLYQ (GEN,NODB2[,HANDLE])
APPLYQ applies its first arquaent to the guoted items in the

list. The value of APPLYQ(LIST," (A B)) is (A B).

NAMB FUNCTION COMPILE(GEN,ID,NODE2)

The first arqument is an 1L definition to be compiled; the
second and third arquments are the default tail and ordered
default tail list, respectively, that are to be used for the
comrpilation., The value is the name obiject that is the name

of the compiled definition.
RAME PUNCTION COMPILEX(GEN,ID,NODE2)
COMPILEX is like COMPILE except that the coapiled definition

is not protected fron garbage collection after all

references to the name of the coepiled definition disappear.

1racss

The gset of tracing functions has not yet been determined.

Rough Draft

/‘\

259

TREE STRUCTURED PILES AND THE DISK COMPILER

To aid in the construction of larqe programs, CRISP provides
an extenaive capability that allovws development of syabolic
program text within the CMS file systen. The key features
of this capability are:

etree structured program files,

elibrary files,

efull declaration pass, and

saccess to an editor during compilation.

Two kinds of files are used to construct CRISP prograas:
(1) files of file type CRISP that conmtain a sequence of
proqras text, forsat comamands, and library commands, and (2)
files of file type INDEX that provide the branching nodes of

the file tree.

An ipdex file must be of file type INDEX. It contains a
list. The elements of the list are either file names or
file descriptor lists. The files named in this list are in
turn other files of file type CRISP or INDEX. When the disk
processor functions described in this section visit an index
file, they automatically continue onward to visit each of
the files mentioned in the index. Thus, starting froam an
index file, an entire file tree may be visited and

processed.

A file of file type CRISP contains a sequence of top level

12/31/74

260 CRISP ~-- SLEC TM-5455,/000,/00

foras.

<filed>::=$ {<SL-top-level-furm>;|<IL-top-level-forad}

<top-level-form>::=a<default>t<implicit-form>|<declare>|
<definition>|<expression>j
<format-corrmand>|<library-coemsand>

<format-command>::=PORMAT {ILISL}[CAP];

<library-command>::=LIBRARY(${file namejfile descriptor})

Format commands specify whether the top level fores
following in this file are in SL or IL format, e.q., whether
the fores obey SL or IL syntax. If the CAP option is used,
then it is assumed that the bodies of all the following
function, processcr, macro, and generator definitions are
sritten in CAP. This option relieves the necessity of using
CAP-forms for the bodies and redundantly entering the
definitions' value types, All non-index files have an

initial implicit "FORMAT SL:" assumed at the beginning.

The 1library coemand specifies the names of a set of
"library® files that are necessary to compile and/or execute
the foramas in this file. These files are themselves of file
type CRISP or INDEX. In a wvay, a library file resembles an
embedded index file. However, there are differences: (1)
vhen files in a file tree are listed, the library files are
not and (2) library files are coampiled without editor
support. Therefore, programs used as library files should

be reasonably debugged.

In the above, provisions have been mentioned only for files

Rough Draft

Tree Structured Piles and the Disk Coampiler 261

of file ¢types CRISP and INDEX. Other file types can be
used. However, if this is done, then the file can not be
found from the file name alone; a file descriptor list must
be used that specifically wmentiaons the fila type. The
functions provided to operate with tree structured disk
Programs are:

RUN(f-d ,m0de)

BATCH(f-d4, mode, (NIL}JTERMINALIPRINTER|F~4d})

LISTING (f~4d,m0de)

CONBINE {f -4 ,m0de, f-4)

VISITTREE(f-d,mo0de,ncvalue func(id,id,id))

MAKETREE (f ~tree,node)

GETTREE (f-4,m0de)
vhere £f-4 is a file nase or a file descriptor, mode is
either a file mode or %, and f~-tree is a file tree that is
described below. The mode parameter 1is used as the default
file mode in locating a file specified only by a file nanme.
If it is @*, then the file is 1looked for in the
CMS—-deterained search order. When the system is trying to
locate a file ¢that 1is specified only by its name, the
default file types INDEX and CRISP are tried in that order.
Thus, if only the file name P is specified along with a mode
paraseter of * and the default search order is A, B, C, then
the sequence of search is
INDEX
CRISP
INDEX
CRISP

INDEX
CRISP

g "4 vy 'Y g 0
.. R..NoNeR N

Each of the tree traverse functions is described below.

12731774

262 CRISP -~ SJIC TM~5455/000/00

BUN (f-4, mode)

The file located by f-4 (and wmode) is visited by RON. If it
is an index file, the files in the index list are visited in
their order of occurrence, left to right. Thus, the entire
tree that has f-d as its root is traversed in preorder. If
the visited file is pot ar index file, then it is evaluated.
The evaluation operation on a file follows four ordered
steps: (1) turn all SL into IL, (2) for all 1 such that 1
is a library file do BATCH(l,mode,NIL), (3) operate the
declaration pass, and (4) complete the compilation of forms
in this file. During step 4, the top level forms that are
definitions are compiled, and the top level forms that are
expressions are aevaluvated, in the order of their
occurrences. The name of compiled definitions and the
velues of evaluated expressions are output on the usert's
terminal. If any errors occur during steps 1, 3, or 4, the
user is placed in edit wmcde with the entire text of this
file available for correction. The text should be corrected
and rewritten to the disk before compilation of this file is
restarted. (The editor will be a subset of the CMS editor
that has been wmade part of CRISP. The exact design of the

subset has not yet been coapleted.)

If an atteapt is made to visit a library, index, or other
file that has already been visited by this call to RON (or
BATCH, etc.), then that file will be skipped. Therefore, no
harm or 1lost time results from a file's being used as a

library file maore than once.

Rough Draft

TN

S

Tree Structured Files and the Disk Compiler 263

Each non-index file is assumed to start with the implicit
sequence,

PCRMAT Sl:

DEFAULT USER, (USER,CRISP):;

INPLICIT:

Operation of format, default, and implicit forms has no

effect on conditions outside of the file.

BATCH (f-d,mode, {NITJTERMINAL|PRINTER|f-d})

BATCH visits files and handles libraries in exactly the same
manner as RUN. The essential difference is that BATCH does
not provide editor support for errors. The third arguaent
specifies the output device for the names of compiled
definitions, expression values, and error and warning
messaqges. TERMIMAL, PRINTER, and f-d do the obvious things;
NIL squelches output except for error and warning messages,
vhich are printed on the usert's terminal. If the third
arquaent is a file name (trival case of a file descriptor),
then the output is to a file so0 named with file type LISTING
and file mode A. All foresating, default, and ieplicit fors

assuaeptions are the same as for RUN.

LISTING (f-d,m0de)

LISTING visits files in the same o¢rder as RUN except that
library files are not visited. Bach file is copied, lipe
for line, to the virtual 1line printer. Pages are numbered,
and the output for each file starts on a new page. A table
of contents is provided at the back of the listing and gives
the files and their page numbers. Neither RUN nor BATCH

provides its own listing facility; LISTING does.

12731774

264 CRISP -- SDC TM-5455,/000,/00

COMBINE (f-d, mode, f~4)
COMBINE visits files in the same <crder as RUN except that
library files are not visited. The file specified by the
third arqument (if it exists) is erased and then opened for
output. If only a file name is specified, them the file
type is assumed to be CRISP and the file mode is assumed to
be A. Bach non-index file that ig visited is copied into
the file specified by the third arqument. In front of each
copied file, three lines are inserted:

FORNAT SLi:

INPLICIT:

DEFPAULT USER, (USER,CRISP);

This ensures that the interpretation of the program text is

unifores whether or not the file has been comrbined.

VISITTREE (f-4d,m0de,novalue func(id, id,id))

VISITTREER visits files in the same order as RUN axcept that
library files are not visited. As each file, index or
other, is visited, the third arqument is called wvith the
file name, file type, and file =mode as arquments. The file
is opened and selected for reading before the func is called
and closed after the func returns. VISITTREE is a tool in
the parts kit for users who wish to build their own file

tres processors.

MAKEBTREE (f-tree,mcde)

MAKBTRER provides a method of generating a file tree; that
is, a method of generating the index files that wmake the
file tree. An f-tree 1is either an f-4 or an (INDEX f-d

$f-trae). The latter specifies an index file whose name is

Rough Draft

\,//

Tree Structured Files and the Disk Compiler 265

the f-4 following the word INDEX. The $f-tree foras are the
sub trees to be reached from this index. The second
arqueent, mode, is the disk on which to write index files
vhen only their name is specified. For a simple example,
WAKSTREE (" (INDEX I

:IIDBX J B C)

D)y, "&)
The index file, (I INDEX A), would be created with the
contents (A J D), and the index file (J INDEX A) would be
created with the contents (B C). If an index file already
exists before output by MAKETREE, then it is first erased

and then rewritten.

GETTRER (f-d,.m0de)
GETTRER starts from the specified file and returns the
f-tree with that file as the root node. Assuming that all
files are on the A disk and that all non index files are of
file type CRISP, then the value of GETTREBE(¥YI,"A) qiven the
above use of MAKETREE is
(INDEX (I INDEX A)
(3 CRISP M)
(INDEX (J INDEX 1)
(B CRISP A)

{C CRISP A4))
(D CRISP 1))

12/31/74

266

MEMOBY MANAGEMENT FACTLITY

The CRISP menmory management facility couprises the
allocation wechanisa and the garbage collector. The
following paraqraphs describe the allocation strategy and

sechanisa and the organization of the garbage collector.

A principal qoal of the systew is to allow user and systeew
components to make efficient use of a virtual wmemory
resource. Because the IBM 370 has a large address space
{224 bytes), the problems of address management and.nenory
managesent may be partially Jdecoupled. For instance, a
space Wwith fixed maxisum size wmay be fully allocated even
though only a small fraction is generally in use. This is
reasonable vhenever the amount of "wasted® address space
doeg not qrov¥ too large. In the CRISP system, many of the
data spaces, such as pushdown stacks and small integers,
vill be gtatically allocated to a saximum size at core image

qeneration tiae.

Another wmajor feature of allocation is the concept of
Selectable spaces. For instance, there may be several node2
spaces, say NODE2$X, NODEB2$Y, and NODE2$Z. Then, the user
{for a system cowmponent) could say USESPACE(NODEZ2$Y) and
furt her CONSing of binary nodes would take place in NODE2SY
space. Thus, proqram segments building structures that will
be usged together frequently may create and select spaces for

that particular task. In many situations, this will help

Rough Draft

KewOory Management Pacility 267

alleviate page thrashing when something is known about the
proqram's dynamics. The value of USESPACE is the space

previously selected for the same structure kind.

New spaces may he defined dynamically by using the function
NEWSPACE (see ©page 293). The creation of a new space
requires (among other things) the specification of
functionals that provide the allocation policy, planning
policy, update policy, and the moving policy for the space.
Throuqh the use of these functionals, NODE2%X could be
folded, NODE2SY could use a simple avail 1list, and NODE2$2Z
could use a spart CONS. Thus, different spaces for the same
kinds of structure may use gquite different management
techniques. The description of the garbage collector

({below) will elaborate on the use of these policy gquides.

Lore Maps

Each space is sade up of a set of reqions and each reqion is
made up of a set of contiguous quanta of memory. A quanture
is a 4096 byte page of memory. (Mavybe 2048 bytes .. not yet
decided.) The system's memory map is also built as a three
level hierarchy corresponding to quanta, regions, and
spaces. The quantum core aap (QCM) contains one byte of
information for each quantum. The Lyte specifies the space
kind. The possible space kinds are:
eXODE1 ... NODES8,

sIDENTIFIER,

12/31/74

268 CRISP -- SDC TM-5455,/000/00

oCHARACTER - identifiers with one character nanes,
eIRTEGER - inteqer values of general data,

o FLOAT - real values of general data,

*COMPLEX,

eARRAY,

e NTUPLE,

oNAMEA - programs reference space ... bindinq cells,
eNAMEB - proqram reference space ... declarative info,
*PDP - pointer stack,

e PDN - nuaeric stack,

*BPS -~ binary progras space,

e HANDLE ~ handles for retained contexts,

eHEAP - heaps,

eSMINT - small integer values of qgeneral pointers.

The region core map (RCM) is made up of region control
blocks (RGBs). An RCB includes:

eBegining quantua of the regqion,

eEnding quantum of the region,

eCurrent ending address in the regqion,

eLink to other RCBs for the space.

The space core safp (8CM) is built up from a sgpace control
block (SCB) for each space. An SCB includes:

eSpace name,

eSpace kind,

eSpace property (communication cell),

sRegion link - 1link to RCBs faor this space,

Rough Draft

Nemory Management Facility 269

eMax regions - the number of reqgions to be allocated
before automatic garbage collection,

eRegion size - number of quanta per region,

eSpace link - link to other SCBs,

eAllocation policy function,

ePrune policy function,

ePlanning policy function,

eUpdate policy function,

eMoving policy function.

Gacrbage.Collection

The qarbage collector is customarily invoked by an
allocation policy function. When a structure creator such
as CREATE or CONS cannot find enough room to build a
structure in the currently active region of the selected
space, the allocator for that space can either attach a new

region or initiate garbagqge collection.

The qgarbage collector is organized 1into six logical phases:

marking, pruning, planning, updating, moving, and fixing.

Ibe_nacrking_pbase locates each structure that is active and
sarks it for retention. For some space kinds, there is a
sark-loop driver. Por instance, for the pointer stack, the
loop driver would iunitiate marking of each structure
addressed by a stack item. The loop driver is the space's

marking policy function. Also, for each space kind, there

12/31/74

270 CRISP -- SDC TH-5455,/000/00

is a sarking function. The marking function is called with
anh active structure as an arqument. For each pointer field
in that structure, the addressed structure is also marked.
& universal mark function 1is provided. It will mark a
structure of any kind by detersining the structure's kind
and passing the structure to the marker associated with that

space kind.

The_psuping pbase of garbage collection "restrings®™ certain
systen link structures. Among these are the identifier hash
links and the system property lists. The pointer iteas
foraing these link structures are not chased during the mark

phase.

Ibe._plapnipg_rbage determines where each structure will be
and the amount of structure remaining in each region at the
conclusion of «gqarbage collection. The planning policy for
cach space is provided by its SCB. For instance, for arrays
(vhich are normally compacted), each header will be set to
the forwarding address of the array; for nodes (which are
normally folded), foldinqgq takes place and the forwarding
addresses of the nodes that are aoved are left in the

vacated sites.

The_updating phage changes each pointer field to the address
that the addressed structure will occupy after garbage
collection,. Essentially, each field chased during the
marking phase must be updated. For each space, an

update—-loop driver visits each active structure in the space

Rough Draft

Memory Management Facility 271

and updates the appropriate fields., The loop driver is the
update policy function. For each space kind, there is an
update function that takes as an arquaent a structure and
returns as its value the new address. The universal update
function takes as an argument any structure., It determines
the space kind and applies the corresponding specific update

function.

The_povipng phase is controlled by the moving policy function
specified for each space. Structures that are compacted,
such as arrays and binary prograes, are moved to their fiunal

resting places.

Jhe fixipg phase goes through the RCHM and deletes all RCBs
that correspond to regions holding no active structure. The
associated gquanta are also released. Also, each space for
which a delete request has been received and for which there

are no RCBs is released.

Space.Fokmats

The following pages describe each space kind in more detail.
A qraphic representation of the structures in each space is
included. The breakdown of elements is into bytes, half
vords, ot full words ag appropriate. Ellipses represent
indefinite numbers of occurrences, and GCM and MOVE stand
for qarbage collector mark and forwarding address fields,

respectively.

12/731/74

272 CRISP -- SDC TH-5455/0600/0v

BORE3 5o+ NODES _SPACE

(2
@]
=

i-—lr-qr—r-q
o
L-‘ﬁ'-'*"'—-w--i

FIRST

o

SECCND

o

ith

b-—-l-—-o-—-L—J

4*i tyte entries (for NODEi spaces)
allocation — wmultiple salectable spaces
region=quantua

CQHNS

qc alqgorithas

loop -

prune -

plan ~ fold
udate = mark
aove -

The default garbage collection algorithm for node spaces is
folding. However, other management strategies are provided
for. The first two words of each quantun are reserved for
use by the various allocation and management tasks. These
words are used for such things as avail lists and move / no
move breaks after folding.

Rough Draft

Memory Management Facility 273

IRENILEIER SPACE

[g T |
! GCHM { PRCP |
¢ + 4
I FLAG | SYS—-PROP 1
i LINK ; LEN -1
¢ - 4 ')
I oc(h o . | . | . i
- +— + pmmmmma—y
} . | .] . } C(LEN)

L | ;] e]

FLAG in {reqular,special,genid) *keyword*type~nanme

12+4¢ (LEN+3)//4 byte entries

allocation -~ single space
single region
GENID, COMPRESS, STRING2ID

accegsors — PROEF, EXPLODE, ID2STRING

qc alqocithas

loop —~ if PROP then mark self & PRCP
mark —

prune - SYS-PROP chain

rlan — copy thru LINK if appropriate
update - PROP

pove -

There are four types of identifiers. 1Identifiers with one
character names are stored in character space. In id space
the three kinds are: reqular; special ids, which wust be
prioted using the "$'" gmechanism toc avoid ambiguity vhen
reread; and gqenids, vhich have been created without specific
names. The SYS-PROP field is the <chain to all global names
that have this identifier as their first nase. LINK chains
together all 1ids with the same hash address to facilitate
searching and all genids. LEN specifies the number of
characters in the identifier's print name. C(1) ... C(LEN)
are the EBCDIC characters that are the name of the
identifier. Enough pad characters are used to make the
structure an integral nuamber of words. LEN for a genid is 8
to allow for later name generation.

During the plan phase cf the garbage collection, a decision
is made vhether to reallocate id space. The decision is
based uporn the number of new 1ids created since the last
qarbage collection, how much space is left, and how long it
has been since the space has been reallocated. If it is
decided to reallocate identifiers, a nev id space 1s created
and the marked ids are moved there. The copying is through

12731774

274

the hash links.

CRISP -- SDC TH-5455,000/00

This assures that hashed searching for an

i4 wvill not page thrash.

Rough Draft

o

N’

Memory Management Facility 275

SHABACTER (IDEMIIFIER) SPACE

A A
1 EROP]
- ————
i SYSPRQP |
'

L 8 v ¥ L] ‘
{ KEY® | CLASS | DOL | byC |
- + + +- —
i ASC } EBC { 1IMP | 0 |
L PGS § A A Il

CLASS in BLANK*DELIM*DIGIT*HEX*SUPER*ALPHA*LCASE
OOL in NEEDDOLLAR®*CAUSEDOLLAR
DVC in TTY*TI*PDP10*TD*TN

IMP in {GENERALIINTEGER| FLOAT)

16 byte entries

allocation - single static space
single guantup=reqion
COMPRESS, STRING2ID

accessors ~ PROP, EXPLODE, ID2STRING
qc algorithas
loop - prop

mark —

prune - SYS—-PROP chain
plan -~

update -~ prop

aove -

Character identifier space contains the structure of
identifiers vith one character primt names. The space is
statically allocated so that the 1d's print pame may be
computed by its relative poasition in the space. KEYIW is
true if the identifier is am SI keyword. CLASS 1is used by
the token parsing routines to classify characters. DOL
tells whether this 4identifier needs to be printed with the
$' wmechanism to be correctly reread and wvhether the
inclusion of this character in ancther identifier's name
causes that identifler to be printed with the $' mechaniss.
Ve tells whether this character has a graphic
representation on the named output device. ASC is the
equivalent ASCII code for this BRBCDIC character. EBC is the
EBCDIC code for the ASCII character. 1IMP is the iasplicit
tvype associated vith this character.

12/31/74

276 CRISP -- SDC THM-5455,000/00

INTEGER_SEACE
r)
i VALOER |
[N 4

4 byte entries

allocation — multiple selectable spaces
region=quantun
INTEGER2GENERAL

accessors — GENERALZ2INTEGER

qc algcrithas
loop -

mark -

prune -

plan - fqld
update -
nove —

Integer space contains fixed-point values of number or
qeneral data. The first two words of each quantum are used
to aid the gqarbage collector and allocator mechaniss. See
description of node space (page 272) for more information.
An additional 32 word (1024 bits) bit vector is also left at
the beqinning of each gquantum tc be used as a mark table.

Rough Draft

N

N

Memory Management Facility 277

ILOAI _SEACE

I VALUE [

4 byte entries

allocation — multiple salectable spaces
regicn=quantuns
FLOAT2GEMERAL

accessors — GENERALZFLOAT

qc algorithes
loop -

Rark -

prune -

plan - fold
update -
ROvVe -~

Float space contains floating-point values of number or
general data. The first two words of each quantum are used
to aid the garbage ccllector and allocator nmechanism. See
description of node space (page 272) for more information.
An additional 32 words (1024 bits) bit vector 1is also left
at the begqinning of each quantum for use as a mark table.

12/31/774

278 CRISP -- SDC TM-S5455,/000/00

COBRLEX_SEACE
1 REAL h
P IMAGINARY i

8 byte entries

allocation -~ multiple selectable spaces
reqign=quantun
CONPLEX

accessors — REAL, IMAGINARY

qgc algorithas
loop -
mark -
prune -
plan - fold
update -
rove -~

Complex space contains pairs of floating point numbers. The
first two words of each quantur are used to aid the garbage
collector and allccator mechaniss. See description of node
space (paqe 272) for more information. An additional 32
words (1024 bits) bit vector is alsc left at the beginning
of each quantuom for use as a mark table.

Rough Draft

Memory Manaqement Facility 279

ABRAX _SPACE
i GCM MOVE [
k + -
i FLAG | TYPE |
¢ —_—t]
1 NDINM | LENGTH |
r . - i
| DIN1 i ees]
¢ +)
) “es i DIMn |
k 4 - -
! {
| ELEMENTS |
| H
| —— 4

FLAG=BARKP*FLAT

12¢44%(NDIN+1) //2¢ 49 (LBNGTH¢3)//4 hyte entries

allocation - multiple selectable spaces
variable length reqions
CREATE

accessors -~ TYPEP, SIZEDIM, NUMDIM, subscripting

q¢ algorithms

loop -

mark - pointer elements and TYPE
prune -

plan - set move tc forwarding address
update = mark

move - compact

An arrayv is constructed so that the first eleaent begins on
a word boundary and padder is added so that the array ends
on a word boundary. The flaqg field specifies whether any of
the elepents are pointers and wvhether they are flat ntuples.
In any event, {if the MARKP bit is not set, then the array
does not need to be marked from or updated by the garbage
collector. The length field specifies the exact nunmber of
bvytes occupied by the array elements.

12/31/74

280 CRISP -- SDC TM-5455,/000/00

NIURLE SRACE
4 -y ——
| GCH | MOVE |
k 4 4
{ MARKP | TYPE !
I —L 4
I 1
! ITENS |
! |
(s —— -

8+4% (length+3)//4 byte entries

alloation - multiple seletable spaces
variable length reqions
CREATE

accessors - TYPEP, item-nanmes

gc algorithas

loop -

wark — pointer items and TYPE

prune -

plan — set MCVE to forwarding address
update = sark

move -~ compact

An ntuple is alvays padded to occupy an integral number of
words. Ntuple items are marked and updated only if MARKP is
gset., In this case, the TYPE 1information is copsulted as to
which items are pointers and thus wmust be chased. The
ntuple length is also derived from the type field.

Rough Draft

Memory Management Facility 281

NABEA_abnd_NANBB SPACES
r -
i VALUE 1 NAMEA
[R]
r T =
| GCHN | LAST NAME i NAMEB
¢ -+ 4 |
] COUNT | LIKK {
b + .
] FLGA } FIHRST NAME]
bt =~ 4
{ FLGB i TYPE |
L 1 3

FLGA in {SYNONYM|MACHG|GENERATOR|TRANSPORM|SPACH|
VARIABLE|FUNCTION|PROCESSOR|NAME|FASTI|
QUOTE| FREE}

PLGB in {BPS|ISYSINUMBER|POINTER}*PROTECT*HIDDEN®*
FREEABLE

4 bvyte entries in NAMEA
16 byte entries in RAMEB

allocation - single space
single regqion
MAKENANE, NEWSPACE

accessors ~ FIRSTNAME, LASTRAME

gc algorithes
loop ~ if ~FREE|COGUNT~=0 then mark
mark —~ TYPE, FIRSTHARE, LASTNANE,

if PLGB in POINTRR then VALUE

prune -~ through LINXK with id prume
plan -~
update = mark
nove -

The pame spaces contain the objects referenced by global
namses., Namea contains the (shallow bound) value cells for
global variaktles, code pointers to functions, etc.
Associated with each one word obdect in namea is a four word
object in naweb that 3$s the compller's and asseabler's
syebaol table. All objects in namea space are covered by
base reqisters. Therefore, the valuve cells may be directly

referenced froa code. (Tfrue only for RX format
instructions: see section on General Purpose Registers, page
297.) FLGA denotes the object's type vwithout

subspecification, e.g., function, space, variable. For
types that require subspecification (variable, processor,

12/31/774

282 CRISP -- SDC TH-5455,000,00

and function), the additional inforwmation is provided by the
field, TYPE. The FLGA value, NAME, denotes a global name
that has been generated but not declared or defined.
Besides the subtypes of name, name space contains obijects
for non-numeric constants and srecial purpose code chunks
(called FAST). Name objects that have not been allocated
are marked FRER.

The system maintains an avail list of free obiects in this
space, linked through the LINK field. All global obdects
with the sase first name are strung together (starting from
the identifier) through the LINK field. In a similar maner,
all quotes are also strung. In all cases, the LINK field is
a naseb pointer. '

FLGB contains imformation for the garbage collector and the
declaration mechanise. A PFREEABLE indication says that this
structure may be reclaimed as FRFE as soon as COUNT is O and
no pointer references it. HIDDEN indicates that this
structure has been redefined with different attributes and,
therefore, ancther structure may exist with the same first
and last name. The PBOTECT indicator siqnals a vital systenm
ob4iect that may not be redefined. See section on Name
Primitives (page 123) for a description of the unlocking
pechanism. The other subfield in PLGB describes VALUE, the
corresponding object in NAMEA.

Obdectsg in name spaces are never moved. The COUNT field
specifies the nusber of references to the object frona
assenbled code., It is, therefore, necessary neither to amark
from nor update address computation in compiled code.

Rough Draft

K_//

N

N

Memory Management Facility 283

BINABY RROGEAM ZSPACE
; 0 *: NAME }
¥ 4 L |
| LENGTH | |
4 - 4 |
i |
} CODE |
| |
L -

LENGTIH byte entries <= 4096 bytes

allocation - multiple selectable spaces
variable length regions
GETBPS

accessors - EXCISR, invocation

qc algorithas

loop -

mark -

prune -

plan — update loc (MAME) to forwvarding address

and move
update -
nove —

Binary programs may be a maximum of one core page in length.
Thus, the coapiler and assembler do not have to face
prohlems of multiple code bases. The NAME field locates the
name structure that defines the proqram's arqument and value
types. #When code 1is moved, the namea vword associated with
the program is updated to the new location. The only
pointer references from code are to the stack that 1is
automatically chased during 1loop phase and to name
structures that have count fields, so the references do not
need to he chased from the code.

12/31/74

284 CRISP -~ SDC TH-5455,/000/00

EANDLE SPACE
r - -]
| GCA | STACKS |
- + -
i FLGY | CONTEXT |
+— + - 1
| PIG2 | AEORT |
F + —
} FLG3 1| ACTIVATOR |
[- | 3

FLG1 in {STACK{HEAPY*VARACT®*CODEACT*KILLED

16 byte entries

allocation -~ single static space
single reqion
STARTPROC, COPYPROC

accessors — CCNTEXT, ABORT, ACTIVATOR

qc alqoriths
loop - if CODEACT
mark — CONTEXT, ABORT, ACTIVATOR, STACKS
prune -
plan -~ link free list
update = park
ROVe —

An obtect in this space is a centrol block for a process.
If this entry is in use, then STACKS points to a block on
the pointer stack (PDP) if FLG1 is STACK, and points to the
process heap if FLG1 i3 HEAP. If FLG1 is CODEACT, this
abtect is associated with the process that is currently
active., VARACT iadicates that this process is part of the
total context of the prccess that is currently active.
KILLED indicates that this process may no 1longer receive a
program counter. However, it is not necessary for a process
to be KILLed in order to be garbage collected; it is
necessary only that this process not be referenced.
COKTEXT, ABORT, and ACTIVATOR are pointers to other obijects
in handle space or WIL. PLG2 and FLG3 are markers used by
the process svitching algorithas.

Obdects in handle space are not moved by the garbage

collector. PFree entries are collected on an avail list that
is linked through the CONTEXT field.

[}

Rough Draft

Memory Management Facility 285

PQILNIEB_SIACK SEACE (BRDE)

LENGTH

PDN.LOC

I
|
]
|
§ I S

HARDLE

BACKL INK

FRONTLINK

-

PDE.LN PDP.SET

PDN.LN PDN.SET

l
iy -
T
|
N |

PDP.ENT

PDP.ENT

.‘--‘—‘-"‘-.F—*—“-QP""P—,-q
I-—-—-.—'b--il—dh—l—*—

LENGTH hyte entries

allocation - single static space
fixed size reqgion
EVAL, EVALPEROC

acce ss0ors - assembled cole

ac alqorithm
loop -
mark — pointers in PDE.ENT
prune -
plan -
update = mark
zove -

A block on the rointer stack (PDP) is, together with an
obiect in handle space and a block on the number stack, a
complete process variable and control state. The blocks on
the two stacks may be packaged together and stored in the
process heap. Only the top-mest block oan PDP is associated
with the process in execution. This block grows and shrinks
as the process computes, and its size may be detersmined by
examining the value of the pushdown peinter register. All
other blocks in PDP are stationary with a length of LENGTH
hvtes {always a multiple of 4). PDN.LOC is the location of
the number stack block associated with the same process, and
HANDLE is a pointer at the handle ob{ect for the process.
BACKLINK and FRONTLINK are two-wNay threads that allov some
of the process control primitives and the garbage collector

12731274

286 CRISP -- SDC TH-5455/000/00

to work their way around the stack blocks. PDP.LN eguals
LENGTH and is the lenqgqth of the block. PDP.SET is the
placement for the pushdown pointer register, relative to the
beqginning of the block, when the process resumes execution.
PDP.LN is the lenqth of the associated block on the number
stack, and PDN.SET is the placement of the numeric pushdown
pointer reqister, relative to the beqginning of that block,
when the process resumes execution.

The PDP.ENT fields are either eight or sixteen byte entries.
They are used for 1local variable bindings, temporaries,
qlobal binding saves, return addresses, and failsets.

The format for local bindings and temporaries is:

VALUE

0

r—«--l

b = A

Globhal binding saves are used as part of the shallow binding
mechanism of global variables. In general, the latest
active binding is in namea space, and o0ld, saved values are
on the stack. The format is:

T 9
| VALUE }
': T ""“
| 0 | VARIABLE NAME {
L A Jd

The format of a returnr address is:

{ DELTA CCDE EBASE |
} -y = ‘,
i 0 { FUNCTION NAME |
[A, d

DELTA CODE BASE is the distance past the beginning of the
function (in byvytes) at which the function call was made.
The hiqh order 8 bits may contain the garbage generated by
the EALR operation. Function returns are distinguished from
global binding saves by examination of the name pointed at.

Rough Draft

Ncmory Management Pacility 287

The format of a failset is:

| o]
{ DELTA CQLE EASE)
t —— 1
H 0 i FUNCTION NAME)
} 4 ———
| COUNT |} DELTA PDP }
t - {
{ FPLAG i DELTA PDN 1
L 4 Jd

The first two vords have the same format as e return address
and tell ¢the unwrap wmechanism where to resume execution.
The DELTA PDP and DELTA PDN fields specify vwhere to realign
the pointer and number pushdown registers when execution is
resyped at the indicated spot. The COUNT and FLAG fields
are used by the TRY forms to wmark the number of trial
expressions already evaluated and the kind of unvraps to
catch, respectively.

To allow proper operation of the program check handler, it
is conventional that even-numbered (second and fourth) words
of PDP.ENTs be zeroed when they are rpopped.

12/31/74

288 CRISP -- SDC TH-5455,/000/00

NUBBER SIACK. SEACE(RDN)

PDN.ENT

[e T e T

PDN.ENT

e o o "= . e o

variable lenqth entries

allocation -~ single static space
fixed size region
EVAL, BYALPROC

accessors - assemnbled code
qCc alqorithnm

loop -

mark -

prune -

plan -

update -

move —

The length on a block on the number stack is deterained by
an associated block on the pointer stack (PDP). The topamost
block is associated with the process currently in execution,
and its length is determined by the number push down
reqister. See descripticn of PDP (page 285) for more
information.

The entries in a PDM block (PDN,ENT) are 32 Lit numbers,

either inteqger or floating:; only the code that put them
there knows which.

Rough Draft

Nemory Management Facility 289

RBOCESS_BEAR

r -9
1 LENGTH I
3 . e
| PREEP | 0 i
‘ ~ 1
! HANDLE i
- -
] BACKLINK I
+ 1
i FRONTLINK |
> - 4
| PDP. LN i PDP.S BT |
t + 1
! PDP.LN | PDN.SET i
- 4 4
! PDP.ENT {
! . |
1 . !
i . I
! PDP. ENT "
! t
i PDN.ENT i
l . |
I . |
I . !
i PDN.ENT |
Y d

LENGTH byvyte entries

allocation - single static space
single region
MAKEPROC, COPYPROC

accessors — process switching primitives

gc alqorithas
loop -
mark — from pointers in PDP. ENTs
prune -
- plan -
update = mark
aove — compact

The Process heap hclds obiects comprising a pointer and
number stack pair. The formats of objects in this space and
PDP and PDMN are chosen so that stacks pay be quickly saved
and restored. The formats of PDP.ENT and PDN.ENT are
described on the pages detailing stack layouts. LENGTH is
the length of the heap ob{fect in bytes (alvays a multiple of
8. FREEP specifies whether the block 1is allocated.
BACKLINK and FRONTLINK are tvo-way threads to other blocks.

12/31/74

290 CRISP -- SDC THM-5455,/000,/00

The heap is maintained by the buddy system between garbage
collects and allocated with a first fit strategy. At
garbage collection time, the entire space is cospacted, and
only those blocks whose HANDLES are marked are kept.

PCP.LN and PDN.LN are the lenqths of the saved pointer and
nunber stacks, rTespectively. PDP.SET and PDN.SET are the
relative placement pocints for the pushdcwn pointer registers
vhen this process resumes execution. HANDLE points at the
handle obiect for this saved process.

Rough Draft

—

291

SPACE PRIMITIVES

This section describes the facility that manages data space
utilization, the primitive that creates new spaces, and sose
of the primitives used by the syster to allocate structures
within a space. The structure allocation primitives for
users are described in the section on data primitives (page
119). The section cn memory wmanagement facility (page 266)
describes the individual data spaces, their formats, and the

gqarbage collectcr.

Space. Nanpgs

Global names, e.q., NODE2$X, are used to name spaces. The
first name of the global name is a space kind, and the last
nage may be any identifier. The npames of the space kinds
are NODE1, NODE2, NODE3, NODE4, NODES, NODE6, NODE7, NODES,
IDENTIFIER, CHARACTER, IBTBGER, FLOAT, COMFLEX, ARRAY,
NTUPLE, NABME, ©PDP, PDN, BPS, HANDLE, HEAP, and SMINT. Of
these space kinds, CHARACTER, NAME, PDP, PDN, HANDLE, and
SMINT are statically allccated. That is, there 1is exactly
one space of each kind, and that space is allocated to its
paxisum size at system qeneration time. 2Although there is
only one identifier space, its size may vary in time. Heap
spaces Bmay be created and destroyed. Therefore, neither

identifier nor heap spaces are statically allocated.

12/31/74

292 CRISP -- SDC THN-5455,000/00

When the system is generated, there is one of each kind of
space except that there are two heap spaces. The names of
these spaces are the space kind tailed with SYSTEN. For
example, ARRAYSSYSTEM and BPS$SSYSTEM are space names. The

second heap holds process states and is named HEAP3 PROCESS.

Selectable Spaces

Spaces of the kinds ncdel, nodel, node3, node4, nodes,
node6, node?7, node8, integer, float, complex, array, ntuple,
and bps are selectable. There may be more than one space of
each of these kinds, and, for each kind of selectable space,
one of them is said to be selected at any given moment. By
convention, all structures are allocated in a selected
space. variables (of type name) wvhose first names are
selectable space kinds and wvhose tails are SELECTED
determine the currently selected spaces. Thus, all CONSing
of binary nodes is d4cne in the space whose name is the value

of NODE2S$SELECTED.

If a program has created several sgaces of the same kind and
selects from one to another, then a problem can arise Qhen a
fail or exit primitive is executed: when control is resumed
at a try, the wrong space may be selected. To handle this
problem, some sequence such as

TRY(«..,BEGIN NODE2SSELECTED:=a NODE2 space;

ERD,...)

may be used. The user c¢an write a macro or transform to

Rough Draft

_

Space Primitives 293

generate the protection blocks around the try terminals.
(The current I/0 file selection &may be protected by a
similar mechanisa.)

Karping: there is very little protection or error checking
on the SELECTED variables; they must be used very carefully

or unrecoveratle program checks may result.

NEYSEACE

NEWSPACESCRISP creates nevw spaces or podifies the space
control block of an existing space. The declaration is:
NAME FUNCTION NEWSPACE (NAME,INT,INT,INT,

GEN PUNC (NANME),

NOVALUE PFUNC(NAME,INT),

NCOVALUE FUNC {NANE)},

NCVALUE FUNC(NAME),

NOVALUE PUNC (NANE))
The arthents. in' order, are the space name, number of
quanta per reqion, maximum number of regions for the space,
space property value, allocation gpolicy function, prune
policy €function, glan policy function, update policy
function, aud the soving policy function. Only selectable
spaces and heaps can be created with NEWSPACE. The argument
to each of the funcs (when <called by the garbage collector)
is the space naame. If any func is NIL, the garbage
collector does not call the function associated with the
space during the corresponding phase. If the space does not
already exist, a space control bleck is built for the new
space. If it does exist, the call to NEWSPACE updates the
SCB. Only the non-zero integers and the non-RIL funcs are

prlaced into the existing SCB.

12731774

294 CRISP -- SDC TM-5455,/000,/00

A general purpose allocaticn function is available:
GEN FUNCTION ALLOCATESCRISP (NAME,INT)

The second arqument is Jignored. A region of appropriate
size is added to the space, and a pointer at the first byte
of the reqion is returned. In general, the second arqument
to an allocation policy function is the size (in bytes) of
the structure that is being allocated. (This allows for
reqions of variable size.) Usually, the allocation policy
function is called only vhen a structure vwill not fit in the
space without an additional reqicn or garbage collection.
ALLOCATE adds a region only if the maxisum number of regions
alloved for this space has not been reached. If it has
reached maximum size, the garhage collector is invoked. If
no regions are reclaimed for this space, an error |is

induced.

The mark, prune, plan, update, and move policy functions are
as described in the scction on garbaqe collection (page
269). A space Bpay be entirely reclaimed if it contains no
structure and if its name has been hidden by the function

HIDEMAME (see section on name drimitives, page 123).

Allecation Prisitives
Most of the primitives for allccating structures in data

spaces are described in the section on data primitives (page

119) . The rest are described below.

Rough Draft

N

K\//

Space Primitives 295

NODE1 PUNCTION CONS1(GEN)
NODEZ2 FUKCTION CONS2 (GEN,GEN)

NODE8 PUNCTION CONS8 (GEN,GEN,GEN,GEN,GEN, GEN, GEN, GEN)
For each kind <¢f node space, there is a CONS function. At
compile time, the psevdo function, CONS, determines which

actual CONSn to use. All CONSn functions have the last name

CRISP.

ID FUKCTION MAKEID$SSYSTEM(INT,BOOL,GEN,INT)

The first arqument is the number of characters in the print
nampe. The second arthent is TRUE if this id needs to be
printed with the $' nmechaniss in order for it to Dbe
re-readable. The third arqument points to the structure
containing the name (a string, for instance), and the fourth
arqument is the offset from the pointer to locate the first
bvyte of the name. If an identifier by this name exists, it
is returned as the value. If not, a new identifier with the

specified name is created.

NUMBER FUNCTION INTEGER2NUMBERSSYSTEM(IRT)
NUMBER FUNCTICK PLOAT2RUMBERSSYSTEM (FLOAT)

Bach of these functicns places its arqument in an integer or

float space and returns a pcinter at it.

ARRAY FUNCTION MAKEABRAY$SSYSTEM(GEN, BOOL, INT INDEF)

The first arquaent is the array type, the second is TROE if
the array is flat, and the indef ints are the extents of the
disensions, The array type aust have been hashed by one of
the assembler pseudo functions. The new structure is

uninitialized.

12/31/74

296 CRISP -~ SDC TM-5455/000/00

NTUPLE PUNCTION MAKENTUPLESSYSTEN (NAPME)
The arqument is the ntuple type. The created ntuple is not

initialized.

NAME PUNCTION GETNAMESSYSIEM()
The value is a pointer at a name structure that has not been

initialized.

GEN PUNCTION GETBPSSSYSTEN (INT)

The arqument is the length of the bps area needed to hold a
prograe image, including its header. No initialization is
done. The value is a pointer at the first byte of a home

for the image.

HANDIE FUNCTION GETHANDLESSYSTEHM ()

The value is an uninitialized handle.

All of the above functions can call the garbage collector

throuqbh the allocation functicn associated with the space.

fough Draft

297

REGISTER ALLCGCATION AND LINKAGE

This section is a "aust" for anyone who wishes to write
assembler lanquage in the CRISP system. The topics covered
are reqister allccaticn and usage conventions, the linkage
mechanism, and the wsechanise that binds and unbinds global

variables.

Begigter Allocation

This section describes the usage of the floating point and
general purpose reqgisters in the CRISP system. The contents

of reqisters are not guaranteed over function calls.

Floating point reqisters

The four floating reqisters, 0, 2, 4, and 6, are known by
the =mnemonics FO0, F2, P4, and P6, respectively. By
convention, if the last argument to a function or processor
is a floating point number, then the value is passed in FO.
If the value of a function is a floating point number, then
it is returned in FO. Within a function, processor, etc.,
the floating pcint reqisters may be used for any purpose the

proqrasmer desires.

General purpose registers
Table ¥ qives the anemonics and the contents (if coanstant)

of the 16 general purpose registers. By convention, if the

12/31/74

298 CRISP -- SDC TH-5455,/000,00

Table M -- Register Contents and Mneamonics

Begister Coptents Mnemopics

0 - RO

1 - R1

2 - B2

3 - R3

4 - RY

! - RS

6 - R6, LINK
7 - R7, CB2
8 - R8, CH

9 0 RS, ZERO
10 - R10, PCP
1 R11, PDN

12 20000x R12, SYS1, FNLK

13 21000x R13, SYS2, FRRT, QCH
14 23000x R14, NUN1, BIND

15 24000X R15, NUM2, UNBIND

last arqusent to a function, processor, etc., is a pointer
or an integer (including an indef count), 1its value is
passed in RS5. If the value is an inteqer or a pointer, it
is returned in R5. Within a rroqram, the prograamer may use
reqgisters RO through R6 for any purpose. R7 is also
available in programs whose length does not exceed 4096
bytes. R8 is the code base. R7 1is the second code hase
reqister used in programs longer than 4096 bytes. R6, also
named LINK, is used as the "return address" reqister by the
BALR or BCR command tbhat transfers to the function call,
function return, qlobal variable binding, or global variable

unbinding sequences described below.

R9 1is also «called ZBRO, and its contents are always 0.
Besides easy access to the constant 0, use of R9 makes
vossible a one 1instruction NIL test. Thus, "“BXH r,ZERQ,1"™

branches to location 1 if the contents of general reqgister r

Rough Draft

Register Allocation and Linkage 299

are strictly positive. “BXLE r,ZERC,1l" branches to location
1 if the contents of general reqister r are less than or
equal to 0. PRecall, RIL is represented by a pointer at
address 0, and all other pointers are strictly positive
addresses. Therefore, if r contains a pointer, then BXH is
a transfer on non-NIL, and EXLE 1s a transfer on NIL in
reqister r. For this trick to work, the register ZERO must

ke an odd numbered general register.

The registers R10 and B11 are also named PDP and PDN and
are, respectively, the pointers toc the pointer stack and the
numeric stack. By convention, both registers are operated
400X bytes behind their virtual top of stack 1locations at
function entry. Only the function call, function return,
and processing primitives ever 1increment or decrement the
stack reqisters. All cther stack allocaticon is done by the
assembler, which assigns virtual locations at assemble time.
Promiscuous mucking with the stack registers is S sure way

to develop an unrecoverable proqgram check.

The reqisters R12, R13, R18, and R15 are used by the systen
for a variety of purposes, and each has several names to
reflect these usages. CRISF is loaded at byte address
20000X. Therefore, the four registers contain the addresses
of the first, second, fourth, and £ifth pages of the systen.
(These five paqges are a systeaz heap.) The first and second
pages are used to hold such things as garbage collector
tables and code sequences that cannot conveniently be

operated in binary program space. These pages (anad

12731774

300 CRISP -- SDC TH-5455,/000,/00

registers R12 and R13) are named SYS1 and SYS2. The first
several words of SYS1 contain the function call seqguence. A
function call is initiated by the command “BALR L INK,FNLK",
where PNLK is another name for the register SYS1. The first
several vords of SYSZ2 contain the functicn return sequeunce.
This sequence is initiated by any branch to the beginning of
S¥YS2; for 1instance, the command, "BR FNRT", where FNRT is
another name for the reqgister R13. Another usage of R13 is
to access the quantized core map, QCHM. QCM is a 4096 byte
table with each bhyte ccrresponding to a page of memory. The
byte identifies the kind of space to which the page belongs.
The first four bytes of QCM cccury the last four bytes of
SYS2. Thus, to test whether pointer p addresses a page of

space kind k, use the following.

L R6,p:

SRL RE,12;

LA B6,4092 (B6,QCH) ;
CLI O(R6),t:

The condition code will be set to indicate the value of the
test. Such code sequences as the above are normally
generated by compiler and assembler macros. Since the bytes
of OCH are alvays relatively addressed, having SYS2 and QCHM

occupy the same register provides sufficient coverage.

R14 and R15 each cover a page of floating point, integer,
half, and byte constants, and are also named NOM1 and NUM2.
The first several wvords of NUMY are the code sequence used
to bind qlobal variables. The cosmand, "BALR LIKK,BIND",
where BIND is another name for R14, is used to invoke this
sequence. The first several words of NUMZ are the code
sequence that unbinds global variables. The command, "BALR

Rougqh Draft

N

Reqister Allocation and linkaqge 301
LINK,UNBIND", where UNBIND is another name for R15, is used
to invoke this sequence. Beth binding and wunbinding

sequences are normally invoked through the use of assenmbly

pseudo instructions.

The reqisters R12, R13, R14, and R1S have yet another major

use in the systenm. That is, they are used as base - index
rairs so that namea space can be directly accessed by RX
format instructions. {Only RX format instructions can use

koth a base and an index reqister in computing the effective
address.) Advantaqe is taken of the symmetry in usage of the

base - index pair. Using the four registers, addresses

§G000X through U48FFFX (the 9 full pages of namea) can be

addressed. The page - pair correspondences are:

$0000X-40FFFX delta(R12,R12)
41000X~-41FFFX delta(R12,R13)
42000X-41FFFX delta(B13,R13)
43000X-43FPPX delta(R12,R14)
44000X~44FFFX delta(R13,R14)
5000X-45FFFX delta(E13,R15)
46000X~46FFFX delta(R14,R14)
47000X-47FFFX delta(R14,R15)
48000X-48FFFX delta(R15,R15)

vhere 0<delta<y(0%6. The particular placement or R12 -~ R15

has been selected to maximize the nusber of contiguous pages

that can be spanned using four registers, two at a tinme.

This selection is a solution to an equivalent "postage

stamp® problem.! The asseabler converts global pnames used as

. . T G B Wy Y e T S A P s S > D S

$ Lunnon, K.F., "A Postaqe Stamp Frobles™, 1969.
The postaqe stamp problem consists of choosing, for a given
n and m, a set of positive integers (stamp prices) such that
(a) sums of = or fewer of these integers can realize
the nuwmbers 1,2,3...8-1 (postage due)

(b) the value of ¥ in (a) above 1is as large as
possible.
The IMB 360,370 register allocation vproblem has w=2 and n

12/31/74

302 CRISP -- SDC THM-5455,000/00

addresses into the proper delta and register pair

~
combination. <4)

Evnction. linkags

Functions, processors, Bmacros, and generators are norsally
called by the CALL, START, etc., pseudo instructiomns. This
sect jon describes the actual code sequences used to call and
return from functions. There is no essential difference in
the calling and return sequences from functions, processors,

macros, and instructions.

when a function is called, the address of its namea word is
loaded into R7. Control is then transferred to the linkage '
sequence at the beqginning of SYS1., For example, to call the —/>
function FCNS$USER, the CALL pseudo instruction provides
LA R7,PCNSUSER;
BALR LINK,FNLK;
~-pdp bump-
-pdn bump-
vhere -pdp bump- is the distance in bhytes between the return
address from the calling function (cn the pointer stack) and
the nev return address to the calling function and -pdn
buap- is the distance in bytes fLetveen the top of the
numeric stack upon entry to the calling function and the
present top of the numeric stack. Both —-pdp bump- and -pdn

tump- are half word fields. (Fertunately, the pseudo

instructions generate thesm.) Assume that FQO is a variable

- G P - I D G T e G G e W > =

the number ot available general registers. For m=2, it is
easy to show that n&/4+c(n) <n2/2+c(n).

Rough Draft

Register Allocation and Linkage 303

with a PUNC value;: then the invocation sequence to the value
of POO is:

L R7 ,PCC;

BALR LINK,FNLK;

-pdp bump-
-pdn bump-

The following code is the linkage sequence at the beginning

of SYS1 that is activated by the above calls.

AH PDP,0 {LINK) ¢ %'Increment stack pointers!
AH PDP,2 (LINK):

SH LINK,CB; %'Compute return address?
ST LINK, 400X (PDF); %' relative to CB!

L CB,SYS{IFD): X¢System word IFD always!®
ST CB,404X (PDP) ; %' contains function that!?
ST R7,SYS (IFD); %' is currently active!

L CB,O0(R7) ; %*The new code base!

B 6 (CB); %'Enter just past header!

Note, only registers CB, LINK, R7, PDP, and PDN are modified
by the calling sequence. This is a guaranteed feature., The
return sequence from a function is any branch to the
beginning of SYS2. Por instance, the cosmand “BR FNRT".

The code sequence at the beqginning of SYS2 is:

L CB,404X (PDP) ; %*'Restore systea word IFD!

ST CB,SYS(IFD) ;

ST ZERC,U04X (PDP); X'Doutle word pop!

L CB,0(CB); %'Restore CBs from namea’'

L B7,404X (PDP) ; %'Get rest of return address!
SH POP,.0 (CB,BT7); X'Unkump stacks!?

SH PDN,2(CB,R7) ;

B 4 {CB,R7); %' Re~-enter function'

Beside the process control primitives, the only things that
increment or decrement the stack pcinters are the above AH
and SH commands. The total overhead for a call and return
including the ¥LA R7,fcn" to the instruction following the
-pdn bump-, e.qg., the time to call and return from a
function that does nothing, is 37.928 microseconds. If and
when the system allows binary prograes that are longer than

12/31/74

304 CRISP -- SDC TN-5455,000/00

4096 bytes, the command “LA CB2,4092(CB)" will be inserted
as the next to last instruction in both the call and return
sequences. This increases overhead time to 4G.832
microseconds. (All timings quoted in this section are for

the IBM 370, NMadel 145.)

The following describes the arqument passing conventions.
All except the last arqument (indef count if present) are
passed on the appropriate stack. The last argqument 1is
passed in FO if a float and in RS if anything else. First,
the 1indefs are placed on the appropriate stack in their
order of occurrence; then the cther arquments (except the
last or indef <count) are placed on their appropriate stack
in their ordet of occurrence. Given the declarations,

FUNCTION A {INT,PLCAT,NQDE)

FUNCTION B (GEN,GEN,FLOAT)

FUNCTIONK C({NOCDE,INT,GEN INDEF)

then some examples of calling sequences are:

for A(I,F,N)

L RS, I
ST RS ,PUSHN. ;
L FO,F:
ST FO,PUSHN, ;
L RS,N:
CALL A

for B(G1,G1,P)
L RS,G1;
ST RS ,PUSHP. ;
L R5,G2:
ST RS ,PUSHP. ;
L FO,P;
CALL B¢

for C (N.I.(ﬂ oGZ)
L RE,G1;
ST RS ,PUSHP.
L RS,G2;
ST RS, PUSHP.
L RS,N:
ST BS ,PUSHP. ;
L BS5,1;

Rough Draft

Register Allocation and Linkage 305

ST R%,PUSHN.:
LA R5,2: X*Indef count'
CALL C:

The only quarantee of register values when calling A, B, and
C is RS in A and C and FO in B. 1That is, the cospiler or
programsmer may use other, almost equivalent sequences that
leave values on the stacks in the riqht order and the last

arqument ir the proper register.

When processors are called (started), the registers RY, R2,
R3, and R4 are loaded with the address to stuff the new
handle, the abort link, the context link, and the activator
link, respectively. Macros and generators are called in the

same way as a FUNC with one general argument.

Glebal Binding Mechapiss

The qlobhal variable biading and wunbinding mechanism is
invoked automatically or semiautomatically by assembler
pseudo instructions. The binding mechanism is activated by
transferring to the code sequence at the beginning of NUM1
using

BALR LINK,BIND;

~# pointer variables-

~¢ numeric variables-

-pointer binding locations-

-pumeric binding locations-
-% pointer variables- is the number of global variables with
rointer wvalues that are to be Yound, and -# ngumeric

variables- is the number of gqlobal variables with numeric

values that are to be bound. Each flield is a half word.

12/31/74

306 CRISP ~- SDC THM-5455,000,00

For each pointer variable to be bound, there is a
corresponding -pointer binding locations- that consists of
two half word fields: the first half word is the location
relative to PDP to make the value save (also contains the
new value), and the seccnd half +word is the location of the
variable's shallow binding (nasea) cell relative to the
teqinning of namea space. For each variable with a numeric
value, there is a corresponding -numeric binding locations-
that consists of three half word fields: the first half
word is the stack lccation, relative to PDP, where the old
value is to be saved. The second half word is the location
of the variable's shallow binding cell relative to the
beginning of namea space. The third half word is the stack
location of the newvw value relative to PDN, The binding

sequence at the beginning of NUM1 is

LH R1,0(LIEK) ;
LH RO,2 (LINK):
LTR R1,R1
B2 X3
LiLH R2, 44 (LINK)
LR R3,6 (LINK) ;
A R3,SYS {(KANE):
ST E3,4(PDP,R2);
LE F4 ,0 (PDR,R2);
LE F6,0(R3);
STE ¥6 ,0(PDP,R2) ;
STE F4 (O,R3):
LA LINK, 4 (LINK) ;
BCT R1,LABEL(L):
X:LTR RO,RO0;
BZ 4 (LINK) s
Y:LH B1,8 (LINK):
LH R2,4(LINK) :
LH R3,6 (LIHK);
A R3,SYS(NAME) ;
5T R3,4 (PDB,R2):
LE P4,0(PDN,R1);
LE F6,0(RJ) :
STE F4,0(R3):
LA LI BK,6 (LINK)

Rouqh Draft

N

Register Allocation and linkage 307

BCT FO,LABEL (Y);
i:B 4 (LINK);

Note that of the proqramser usable registers, only R4, RS,

FO, and F2 are not clobbered.

The in-line sequence to unbind a set of global variables is

BALK LINK,UNBIND:
-bind location--

where -bind 1lccation- is the location of the ip-line bind
sequence (shown above) relative to CB. It is a half word

field. The ccde sequence at the beginning of NUM2 is

LH R3,0(LINK):
AR R3,CB:
LH R1,0 {R3);
. LH RO,2(RI)
LTR B1,R1;
B2 X:
L:LH R2 .4 (R3) ;
ST ZERO,4 (PDP ,R2) ;
LE F6,0(PDP,R2) ;
LH R2,6 (R3);
A R2,SYS(NAME) ;
STE F6,0(R2) :
LA R3,4 (R3):
BCT R1,LABEL(L) ;
X:LTR BO,RO;
BZ 2(LINK) ;
Y:LH R2,4 (R3);
ST ZERO, 4 (PDP,R2) ;
LE F6,0(PDP,R2) ;
LH 82,6 (R3);
A AR,SYS(NAME) ;
STE F6 ,0 (R3) ;
LA R3,6(R3):
BCT RO ,LABEL(Y) ;
B 2 (LINK);

Of the proqramser usable raegisters, only R4, RS, FO, P2, and
FU are not clobbered. The total run time to bind a set of p

rointer variables and n nuneric variables (all global) in

12734 /74

308 CRISP -- SDC TH-5455,000,/00

microseconds is

26.396+pe35,.131+4ne37.426+3.5«[p=0]-.084e[n=0]] _J)

If the programmer vants to improve the execution time at the
expense of storaqe, then the fallowing technique can be used
to bind and unbind qlobal variables. Assume that 1 is the
name of the stack location on PDP that is to hold the save
value, VSVAR is the name of the global variable to be bound,

and the new value is in RS5. The bindiug sequence is

LA R1,VEVAR:
L RU,0(R 1)
ST R5,0(R1) ;
ST R4 ,1;

ST R1,1+4;

The unbinding sequence is
ST ZERO,1+l4; i
L RS, 1;)
ST RS ,VEVAR: -

The timing o©f this sequence is 14.247ey, where v is the

total number of variables. The time to load the new value

into RS is included. Also, the operand "1l+4" yould be

generated using SECOND(l).

Rough Draft

309

APPENDICES
I -- IBM 370 Instruction Formats
II -- CAP Operand Formats
III -- CAP Pseudo Instructions

IV -~ Key Words and their Alternatives

V -~ Initial Conditions

VI -- Systenm Limitations

VII -- Static Page Allocation
YIII =-- Spaces Summary

12/31/74

310

APFENDIX 1

Suamary of IBM 370 Instruction Formats

The following table summarizes the IBM 370 instruction
repertcire sorted by format. Por wmore information, see the
“"little vellow card®"t or the manual, IBM System/370
Principles of Operaticn.?2 In the takle, the following

abbreviations are used:

rt, £, r3 -- register number (4 bits)
b1, b2 -- base reqister (4 bits)

x2 -- index register (4 bits)

nl, a3 -- mpask (4 bits)

dl, az -- displacempent value (12 bits)
11, 12 -- field length (4 or 8 bits)

i, 11, i2, i3 -- number (4, 8, or 12 bits)
op ~- instruction mnemonic
In the abbreviations, the number sgpecifies to which operand

\
the expression aprlies.

- e - - D -y G - D = -

1 IBM Systen/370 Reference Summary, GX20-1850-n.
2 GA22-7000-n

Rough Draft

CLASS

RR

RR

RR

ER

RX

RX

RS

RS

RS

SI

SS

S5

Ss

FORMAT

ap

op

op

op

op

op

op

op

op

op

op

op

op

op

op

rl,r?2

rt
i
ml, 1

r1,d2(x2,b2)

al1,d2(x2,b2)
r¥,r3,42(r2)
r1,42(b2)

r1,83,482(b2)
a1(Ln ., i2

d1(11,b1),d2(12,b2)
d1{11,b1) ,42(b2)
d1(11,b1) ,42(b2),13

d2(b2)

cl1,r2,i3

N

INSTRUCT ION MNEMONICS

-y TP WD On . - —— -

AR ALR NR BALR BCTR CR CLR
CLCL DR XR ISK LR LTR LCR
LNR LPR HMVCL MR OR SSK SR
SLE MXR ADR AER AWR AUR CDR
CER DDR DER HDR HER LTDR
LTERB LCDR LCER LDR LNDR LNEE
LPDR LPER LRDR LRER LER MXR
MDR MXDR MER SXR SDR SER SHR
SUR

SEN

sSvcC

BCR

A AR AL N BAL BCT C CH CL
CvB CVD T X BEX ICL LA LH
LRA M BH O ST STC STH S SH
SL AD AE AW AU CD CE DD DE
LD LE MD MXD ME STD STE SD
SE SW SO

BC

BX4 BXLE ICTL LM STCTL STHM

SLDA SLDL SLA SLL SRDA SRDL
SAA SRL

ICHM CLK STCH

NI CLI XI MC MVI QI RDD
STNSH STOSM TM WRD

AP CP DP MVO MP PACK SP UNPK
ZAP

NC CLC ED EDMK XC MVC MVN
MVZ O0C TR TRT

SRP

HIO HDV LPSW BRB SCK SCKC
SPT SSM SIO SIOF STIDC STCK
SICKC STIDP STPT TS TCH TIO
DIAG

PTLB

12/31/74

312

APPENLIX II

Summary of CAF Operand Foraats

There are six kinds of operand fields that may be used in
CAP instructions. For each kind, there are several operand
formats that may be used. The bLbasic form and alternative

formats for each operand kind are:

Kind Basic Fora Operand Formats
reqister ri rid | expr

mask ai expr

nuseric ii expr

full address di (xi,bi) name | label | literal |

stackop | sysop | adr

half address di(bi) name | label | literal |
stackop | sysop | adr

length address di (1i,bi) name | label |} literal |
stackop { sysop | ladr

The operand formats are syntactically different in SL and

IL. Their definitions follow:

flough Draft

Summary of CRF Operand Formats 313

SLL

Jgperand Format

rid
name
labelop
sysop

literal

stackop

adr

ladrc

exXpr

CAPoperator

CAPop

offset
leng th

iten

Definiticn

identifier | synonym-name

identifier { glcbal-naxe | synonym-name
LABEL ({identifierjintegeri[,register])
SYS({identifier{ ,exprf{,register]])
"external~-data | HQUOTE(external-data) |
TYPE (type-ref) |
(IITIFLOATIHALPSBYTE](expr) {

FULTINT (inteqger,${, expri)

PUSHP. { PUSHN. | POPP. | PCPN. |
TOPP.[(exprf ,register])] 1|

TOEPN.{ (exprf,reqgister})] i

SECOND {identifier) | RET.

exprfl {registerf ,reqister]))

expr(expr,reqister) |
IMPLER (expr, half-address)

CAPop S${CAPoperator CAPop}

+ -t *t /0 /71 86|
11 | BXOR

nuasber | synonya-name | offset |
length | [+]-}JINV]ICAPOp | (CAPOP)

OFFSET itesn
LENGTH itenm

{identifier jqlobal-name} ${_ identifier)

12/731/74

314

*TL™

Operand Pormat

- — T —- ——— - .

rid
name
label
sysop

literal

stackop

adr

ladr

eXpr

offset
length

item

CRISP -- SDC TM-5455,000,/00

Definition

identifier | syncnym-name

identifier | global-name | synonym-name
(LABEL ({identifier)integer} [reqister))
(SYS identifier [expr [regqister]])
({QUOTE| HCUQTR) external-data) |

(TYPE type-ref) :
(fINTJFLOAT{HALP| BYTE) expr) |

(MULTINT integer $Sexpr)

PUSHP. | PUSHN. | POPP. | PGCGPN. |
(TOPP. [expr [register}]) |

(TOPN. [expr [(register])]) |

(SECORD identifier) | RET.

expr | (expr [register [register]})

{exXpr axpr reqister) |
(INPLEN exp half-addresas)

number | synonym-pame | offset |
length § ({MINUS)|INV} expr) |
({PLUS|TIMES|BAND {BOR{BXOR) $expr) |
({DIFFRBR|QUO{ IQUO} expr expr)
{OPFSET itenm)

(LENGTH itenm)

{identifierjqglchal-nase) $identifiar

Rough Draft

;
e’

315

APPENDIX III

CAP Pseudo Instructions

The following summarizes the fcormat of the CAP pseudo

instructions in SL:

PSEUDO INSTRUCTION FORMAT

CAP hlock BEGIN $({instruction;}
BIND $e,s<block-var-dec>;
$e;ainstruction :
ERD

branches {BONT] BONF) register,lahel |
special-branch label |
special-branch-r register |
GO flabel|RET.}

special-branch B | BH { BL { BE | BO | BP | BM | BNE |
BNC) BNH | BNL | BNP | BNM { BNZ | BZ

special-branch-r BR { BHR § ELR | BER | BNHR | BNLR |
BNER | BOR | BPR | BMR | BNPR | BNMR |
BNZR | BNOR

label identifier | full-address
stackint {PUSHP. { PUSHN. |POPP. |POPR.} expr;
callers CALL (f-name $m;einst) |

FPUNCALL ($s:einst) |
STABT (p-name $s;einst) |
STARTPROC ($s:sinst) |
SYSCALL(s-name S$e,einst)

synonyn identifier := expr

sysint SYS (SYS1JSYS2|INUMTINUN2])

try TRY[{USERISYSIALL} #(%$s;m{instjendtry})

endtry EXDTRY label

space test SPACE reqister ${.s-name slabel}
[,slabel]

slabel label | NIL | B register | RET.

12/31/74

316

CRISP -- SDC TH-5455,/000/00

The formats in IL are:

PSEUGDO INSTRUCTION

- - —— — —— — - — -

CAP block

branches

{GO {label|RET.})

spacial-branch

special-branch-r

label
stackint

callers

synonvye
sysint
try
endtry

space test

slabel

FOBMAT

{BEGIN $instruction
{(RIND $<block-var—-dec))
$instruction)

{{BONT | BCNF} reqister labelop) |

{special-branch label) |
{special-branch-r reqister) |

B | BH | BL | BE { BO | BP | BM | BNE |
BNO § BNH { ENL | BNP | BNM | BNZ | B2
BR { BHR } BLR | BBER | BNHR | BNLER |
BNER | BOR | BPR | BMHR | BNPR | BNMR |
BNZR | BNOR

identifier | full-address
{{PUSHP. |PUSHN,. |POPP, { POPN.}] expr)
(CALL f-nase $inst) |

{FUNCALL $inst) |

(START p-name $inst) |

(STARTPROC $inst) |

(SYSCALL s-name $inst)

(SET identifier expr)

(SYS (SYS1}]SYSZINUMTINUNZ))

(TRY (USER}JSYSJALL} ¢(${inst]endtry}))
{ENDTRY label)

(SPACE register $(s-name slabel)
[slabel])

label | NIL } B register | RET.

Rough Draft

_

\“/i

N

—

317

APPENDIX IV

Key Words and their Alternatives

The following acre keywords and characters having syntactic
significance in CRISEP. Though it may work correctly to use
thea as variable or function names, extreme caution should
e observed. When more than one word is listed on one line,

the words are equivalent in meaning.

Nt ¢ #88 38 0HIVIAVA L o~ o

Q@ Ak J == Qg ws ee

ABS

ALL

AND

ANY

APPEND

APPENDR

ARRAY

ADDRIBUTE / ATTR
BEGIN

12/731/74

318

BIND

BOQLEAN / BOCL
BXOR

BY

BYTE

CAP

CHARACTER / CHAR
CHEAT

COMPLEX

CCUNT

DAPPEND
DAPPENDR
DECLARE / DEC / DCL
DEPAULT

DO

DRIVE

EIGHTH

ELSE

END

ENDF

FIFTH

FINALLY

FIRST

FLAT

FLOAT / FLT
FCR

FOURTH

FUNC

FUNCTION
GENERAL / GEN
GENERATOR
GLOBAL

GOTO / GO
HALP

HANDLZ
IDENTIPIER / ID
IF

TL

InPLICIT

I

INDEF
INITIALLY
INTEGER / INT
INTER

Is

LEAVE

LIKE

LIST

LISTR

LCCAL

MACRO

MYSELF

KABS

NA HE

NODE1

NODE2

NODE3

NODE4

CRISP -- SDC TB-5455,/000/00

Rouqh Draft

NODES
NODE6
NODE?
NODEBS
NOVALUE
HNTOPLE
NUMBER
OLD

OR

OR

ORIF
OWN
POPN.
PCPP.
PROC
PROCESSOR
PRODUCT
PROP
PUSHN.
PUSHP.
RESET
RETUEN / RET
RET.
SECOHND
SELBCT
SELECTN
SELECTQ

"SELECTT

SEVERTH
SIXTH

SL
STRING
sSun
SYNONYM / SYN
SYNX
THEN
THIRD
THRU

TO

TOPNK.
TOPP.
TEANSFORHN
TYPEP
UNICH
UNLESS
UNTIL
VALUE
VARB
VARIABLE
WHEN
WHILE

Key Words and their Alternatives

12/731/74

319

320

APPENDIX V

Initial conditions

When CRISP is loaded, the follcwing initial conditions

cxist.

DEFAULT USER (USER,CRISP) ;
FORMAT SL;

INPLICIT:

LOWSUB:=1;
FILETYPES :=" (CRISP INDEX DATA):
OPEN (" (ITERN TERMINAL R)):
OPEN("™ (OTERM TERMIKAL W)):
BDS (“"ITERM) :

PRS(“CTERMN) ;
PRECISIONP:=TRORE;
CHKFIELD:=TRUE;
ERRCHK : =TRUE;

SPACEs=ng§!

LPaAR:z="g (*

RPAR:s=Ngt)¢

LBRC:=%g"* {*

RBRC:=ng')}

DOLLAR:="$¢§*
PERCENT ;=" %

Standard data spaces are selected.

Rough Draft

321

"APEENDIX VI

Systea Limitations

The folloving are some limitations imposed by the CRISP

system and the IBM 370 as opposed to the language.

id length < 256 chars

lenqth of string representable with primes < 256 chars
-2-32 < inteqer value < 232

~220 < small int value < 220

16-¢8 < maqnitude of float < (1-16-¢)*16673

nuaber of array dimensions < 256

extent of a single dimensicn < 213-1

I/0 record lenqth < 2t6é hytes

nusber of records in a file < 213

nusber of pointer args to function or processor < 128
number of numeric args tc functicn or processor < 256
number of NAME space entries < 9216

maximum size of binary proqras < 4096 (maybe 8185) bytes
nurber of handles < 1024

rointer stack entries < 8192

number stack entries < 8192

process heap < 2!% bhytes

nusber of forms in a try < 256

12/3v/74

322

The following

allocated pages: that is,

APPBNDIX VII

Static Paqge Allocation

summarizes

are statically allccated.

PAGE
20
21
22
2]
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
kR
32
33
34
35
36
37
38
39
3a
3B
3cC
K}
3E
r

USAGE

CHAR

PDP
PDP
pPDP
PDP
PDP
FDP
PDP
PDP
PDP
PDP
PDP
PDP
PDP
PDF
PDP
PON
PDN
PDN
PDN
PDN
PDRN
PDN
PDN

PAGE
40
41
42
43
4y
45
46
47
48
49
Ga
4B
4C
4D
4R
4r

S1
52
53
54
S5
56
57
58
59
SA
5B
5C
5D
S5E
SP

which

the

locations

of

statically

pages helong to spaces that

Pages are numbered in hex,

NA MEA
NAMEA
NAMEA
NANEA
NANEB
NANEE
NAMEB
NAMEB
NAMEB
NAMEB
NAMEB
NAMEB
NANEB
NAMEB
NANKEB
NANEB
NANMEB
NAREB
NAMEB
NAMEB
NAMEB
NAMEE
NAMED
NAMEEB
NANEB
NANER
RANMEB

PAGE
60
61
62
63
64
65
66
67
68
69
64
6B
6C
6D
6E
6F
70
71
72
73
T4
75
76
77
78
79
7A
78
7C
7D
7E
7F
80

- - em s wn

PHEAP
PHEAP
PHEAP

PHEAP.

PHEAP
PHEAP
PHEAP
PHEAP
PHEAP
PHEAP
PHEAP
PHEAP
PHEAP
PHEAP
PHEAP
PHEAP

Where PHEAP is the process heap and HNDLE is handle space.

Rough Draft

_/

” ~

323

APPENDIX VIII

Spaces Sumpary

The following table suamarizes the default management schenme
for each space kind. The included information is the
possible number of spaces of that kind, whether the space is
static or selectable, the reqion size, the reclamation
technique, vhether there is a local mark taktle, and the

number of regions in the space.

SPACE NUMS STATIC SELECT RSIZE HNOVE LMARK NREG

- - - - - e - - ——— - —— -—— - ——ay - -—— e

NODE 1 Y N Y Q F N N
NODB2 M N Y Q F N M
RODE]] N X Q F N M
NODEY | N Y Q F N N
NODES M N Y Q F N H
NODES6 M N Y q F N M
NODE? M N Y Q F N M
NODES " N Y Q F N M
ID 1 N N B CcC N 1
CHAR 1 Y N 1 - N 1
IRTEGER M N Y Q F Y M
FLOAT H N Y Q F Y |
COMPLEX M | | Y Q F Y N
ARRAY | N Y B C N "
NTUPLE] N Y B C N .|
NAMEA 1 Y N 9 EL N 1
NAMBE 1 Y N 36 EL N 1
EDP 1 Y N 16 - N 1
PDN 1 b ¢ N 8 - N 1
BPS M N Y E C N M
HANCLE 1 4 N ‘4 EL N 1
HEAP N N N B ~ N !
SHINT 1 Y N 512 - N 1

8 - saultiple B - multi guantum regions Q - region=quantun
F -~ fald C - compact EL - erasure list CC - copy collect

12/31/74

	Table of Contents

	Introduction

	Language Description

	External Data Formats

	Scoping and Denotation
 Rules
	Declarations, Definitions, and Types

	Blocks

	Data Primitives and Presets
	Expressions

	Conditionals

	For Loop

	Processors and Processes

	The CAP Assembler

	System Description

	The I/O Facility

	General Primitives

	Tree Structured Files and the Disk Compiler

	Memory Management Facility

	Space Primitives

	Register Allocation and Linkage

	Appendices

	I Summary of IBM 370 Instruction Formats

	II Summary of CAP Operand Formats

	III CAP Pseudo Instructions

	IV Key Words and Their Alternatives

	V Initial Conditions

	VI System Limitations

	VII Static Page Allocation

	VIII Spaces Summary

