LISP 1.5

PROGRAMMER'S MANUAL

July 1%, 1961

COMPUTATICN CENTER
and
RESEARCH LABORATORY OF ELECTRCNICS
Magsachusetts Institute of Technology
Cambridge, Massachusetts

LISP 1.5

PROGRAMMER®S MANUAL

July 14, 1962

Artificial Intelligence Group

Jo
M.
P.
R,
D.
L.
D.
M.
D.

Ts

McCarthy
Minsky
Abrahams
Brayton
Edwards
Hodes
Luckhanm
Levin
Park
Hert

COMPUTATION CENTER

and

RESEARCH LABORATORY OF ELECTRONICS
Massachusetts Institute of Technology

Cambridge,

Massachusetts

Preface

LISP 1.5 is a programming system for the IBM 709 and 7090,
It has been used for symbolic calculgtions in differential and
integral calcoulus, elsctric circuit theory, mathematical logic,
and artificial intelligence.

T™his manugl contains 2 full description of the features of
LISP 4.5 as of July 1961. The LISP system is based on the theory
of recursive functions of symbolic expressions. An understand-
ing of this theory is importent in order to use LISP effilciently.
The necessary background is supplied in Chapter 1. If this sec-
tion of the manual is studied cerefully, many properties of the
LISP interpreter will be seem to follow automatically.

Chapters 2 through 6 contain the basic information necessary
to program im LISP. This ineludes the interpreter, the compiler,
the program feature, the arithmetic operations, and some infor-
mation on running and debugging LISP programs.

Chapter 7 1is s description of the way in which list struc-
ture is stored gnd modified in the computer. An understanding
of this will enable the user to devise more powesrful programming
methods .

A complate listing of LISP functions and detalled informa-
tion about waricusg espects of the system are included in the
gppendicies,

This manual wlll be supplenmented at various times by mem-
oranda,.

Acknowledgements

This manual was written by M. Levin starting from the
LISP I Programmsr's Manual by P. Fox.

The overall design of the system is the work of J., McCarthy.
Certain ideas wera borrowed from Fortrang Gelernter's FLPL;
Newell, Simon, and Shaw's IPL; and from N. Rochester.

The interpretaer was written by S. Russsell starting a pre-
liminary version by McCarthy.

The print and read programs were written by MoCarthy and
K. Maling.

The garbage collector and the arithmetic features were writ-
ten by D. Edwards,

The compller was written by R. Brayton with the sssistance
of D, Park,

All the listed authors contributed to the collection of
functions avallable with the system.

The secretarial work was done by E. Hottsl.

i.

2o

3o

Contents

Recursive Functions of Symbolic Expressions ccccococcoo 3

1.1

Punctions and Punction Dsfinitions pssscsssscessss 3

wox.i@ mre331o 000 00RCO00000RRR00V0O0000000Q00 0 1
LISP Intel"preter ;5“‘4‘L[gooocoooooooooooooooooooog] 22

mtmti@ in LmP OOOOOOQOOU90(‘0000090‘00000000000@000 31

3.1
3.2
3.3
3.4
The
The
5.1
5.2

Running the LISP Systelm .cccoccocccoceccsossccocconcosoo

6.1
6.2
6.3
6.3

Li@t Str’u@@m@ DAULOO0GOUJAVOTUVLIO0ECUCROVOVOOVOLCIPOOCRCRCGOC

Tk
T2
703
Tl
7.5

Vﬁ.:‘:!.@bles” fecoceoccocovocooonccococoooonononcoooo0ood 24
Constant [FPc000000o000000000000000000000000RCO 00T 26

@ mﬁﬁici@ 20000000 CRA0VCCUORDNOO00O0R00000000000C00 DT 26
W w‘ ctio EFleocooccovocococcooonocecocod 7

Sp&@i&l POMME 00000000000000000000000000000000000 28
Programming for the Interpréter c.oocccccccccccoo 28
Functions Avaeilable within the System .cccoccococe 30

Regding end Printing Numbers o:osccccccccccccccvos 31
Arithmetic Functions and Predicate® .cccccoccoccoo 33
Programuing with Arithmetic .ccccoccoccoccccvocccos 35
The Array PFegbture cccccoccccococcococvccccoscoscccve 30
Progrein FeRtUPe o.ccoocccccooccocsoccoacscccacancecce 38
COmPLler ccococococcocoveconoocsoneonoecoonoocoosoa i
The Compiler Modes coccoccocvoccccncocccvsooovoos &3
Sample Compller Program .cocccocococvecocoscesocoeso

Preparing & Card La&ck cccocvescoccoccecooosoceoos
TTRCANE 00000000500000000000060080060000000000600
Error Diagnostice8 ccococcccccvvevcococosoososonoso
The Cons Counter and Errorset c.cococcocsccccccoo

Representation of List Structure ccoccocscvecocsco
Gonstrustion of List Structure .ccocccocvcsccsscs
Property L18E8 cccocowococccccccocovoocoovssoscconso
List Structure Operatord .ccccovocecoccoscssccosce
e Free Storage list and the (Garbage Collector .

SPEBRARLBEEEE

Appendix A
Appendix B
Appendix C
Appendix D
Appendix ¥

{Contents -- cont'd)

Punctions in the LISP System .occvcscvoscusoe
The Interpreter .occonsvvscvoccnocssscceeauvuw
7he Compiler and Assembler ..c.ccecocococssnceacs
OVErlord 00000009200 0000000000v060N0A0RBBERA
LISP 1.5 Input-Oulput osoccveoccosunccocecocao

P
%mrﬂ &m@x PI00U00DOR0OINAN0TAO00UNDYLANUIVERAITVLONVADALAA

1. Recur-ive Functions of Symbolic §§pgeaaionsi

The ISP programming system is based on a class of func-
tions of :ymbolic expressions which we now proceed to describe.

1.1 Func-ions and Function Definitions

Ve shall need a numdber of mathematical ideas and notations
concernir;; functions in general. Most of the ideas are well
known but the notion of conditional expression is believed to
be new, 2::d the use of conditional expressions permits functions
to be def ned racursively in a new and convenient way.

&. Parti:l Funections

A pa-tigl function is a function that is defined only on
part of i s domain. Partial functions necessarily arise when
functions are defined by computations because for some values
of the arpuments, the computation defining the value of the
function ay not terminate. However, some of our elementary
functions will be defined as partial functions.

i
Most of 'his chapter is taken from "Recursive Functions of

Symbolic Expressions and Their Computation by Machine, Part I",

A A wa—— B

Machinery, Vol. 3, No. 4, April, 1960

b. Propositional Expressions and Predicates

A propositiocnal expression is an expression whose possible
values are T {for truth) and F (for falsity). We shall assume
that the reader is familiar with the propositional connectives
A ("and"), vV ("or"), and ~ ("not"). Typical propositional
expressions are

X<y
(x<y) A (b=c)
X is prime

A predicate is a function whose range consists of the truth
values T and F.

c. Conditional Expressions

The dependence of truth values on the values of quantities
of other kinds is expressed in mathematics by predicates, and
the dependence of truth values on “ther truth values by logical
connectives. However, the notations for expressing symbolically
the dependence of quantities of other kinds on truth values is
inadequate, so that English words and phrases are generally used
for expressing these dependences in texts that describe other
dependences symbolically. For example, the function [x/ is
usually defined in words.

Conditional expressions are a device for expressing the
dependence of quantities on propositionzl quantities. A condi-
tional expression has the form

(pg = &45--5,Pp " &)

where the p's are propositional expressions and the efs are ex-
preasions of any kind. It may be read, "If Py then e other--

wise if p, then e,,..., otherwise if p_ then e ,"or "p, yields

€4,000,P, Yields eno"

5=

We now giwfe the rules for determining whether the value
of (pl = ey,0005Pp ™" en) is defined, and if so what its value

is. Examine the pis from left to right. If a p whose value
is T is encountered before any p whose value is undefined is
encountered, then the value of the conditional expression is
the valus of the corresponding e (if this is defined). If any
undefined p is encountered before a true p, or if all p's are
false, or if the e corresponding to the first true p is un-
defined, then the value of the conditional expression is un-
defined. We now gilve examples.

(1<2 = 4,122+ 3) = 4§

(2¢1 = 4,21 = 3,24~ 2) = 3

(2¢2 = 4,7~ 3) =3

(21 =3,7—3) =3

(2<4 = 3,T = J) 1s undefined

(2¢1 = 3,4<1 = 4) 13 undefined

Some of the simplest applications of conditional expres-
sions are in giving such definitions as

| = {x<0 =+ -x,T = x)

A a (flmyg = -
»1.1.“'-:’ 1,T = 0)

sgn(x) = (x<0=* -1,%x=0= 0,T = 1)
d. Recursive Function definitions

By using conditional expressions we can, without circu- .
larity, define functions by formulas in which the defined func-
tion ocsurs. For example, we write :

ni{ = {(n=0= 1,7 n-(n-1)4)

When we use this formula to evaluate O! we get the answer 1;
because of the way in which the value of a conditional

expression was defined, the meaningless expression 0-(0-1)}
does not arise. The evaluation of 2! .according to this defi-
nition proceeds as follows:
24 = {2=0=> 4,7 =~ 2.{2-1)1)
= 201}
= 20 {1=0 = 1,T = 1°(1-1)1)
= 2100}
= 2040 (0=0 = 1,T =+ 0-(0-1)})
= 20401 '
= 2
We now give two other applications of recurslive function
definitions., The greatest common divisor, ged{(m,n), of two
positive integers m and n is computed by means of the
Euclidean algorithm. This algorithm is expressed by the re-
cursive function definition:
ged{m,n) = {w>n=* ged(n,m),rem{n,m)=0 =* n,T = ged(rem(n,m),m))
where rcn(n,m) denotes the remainder left when n is divided by m.
The Newtonian algorithm for obtaining an approximate square
root of & number a, starting with an initial approximation x
end requiring that an acceptable gpproximation y satisfy

‘ya-a,l <€, may be written as
sqrt (a,x,€) «f k°-ak €= x,T = sqrt (a,%(x-s-%),é‘))

The simultaneous recursive definition of several functions
is also possitle, and we shall use such definitions if they
are required.

There 1s no guarantee that the computation determined by
@ recursive definition wlll ever terminate and, for example, an
attempt to compute n{ from our definition will only succeéd if
n is a non-negetive integer. If the computation doees not ter-
minate, the function must be regarded as undefined for the
given irgumentso

The propositional connectives themselves can be defined
by conditional expressions. We write

pAQ = {p=* q,T = F)

pvqg = (p = T,T=* q)

~p = (p=*F,T=T)

poq = (D“Q,T-’T)

It is readily seen that the right-hand sides of the
equations have the correct truth tables. If we consider situations
in which p or q may be defined, the connectives V and A are seen
to be ncrcommutative, For example, if p is false and q 1S un-
defined, we see that according to the definitions given above
pAq 1s false, but qAp i1s undefined. For our applications this
noncommutativity is desirable, since pAq is computed by firat
computing p, and if p is false q ‘s not computed. If the com-
‘putation for p does not terminate, we never get around to com~
puting q. We shall use propositional cennectives in this sense
hereafter.

e. Punctions sand Forms

It is usual in mathem:tics--outside of mathematical logic--
to use the word “function” imprecisely and to apply it to forms
such gs ya%xo Because we shall later compute with expressions
for functions, we need a distinction between functions and forms
and a notation for expressing this distinction, This distinc-
tion end g notaticen for doscribing it, from which we deviate
trivially is given by chnrcho$

1A. Church, The Calculi of Lambda-Conversion (Princeton
University Press, Princeton, N. J., %941).

Let £ be an expression that stands for a function of two
integer variables. It should make sense to write f£(3,4) and
the value of thils expression should be determined. The ex-
pression y2+x does not meet this requirement; y2+x(3,4) 1s not
a conventional notation, and if we attempted to define 1t we
would be uncertain whether its value would turn out to be 13
or 19. Church calls an expression like y2+x a form. A form
can be converted into a function if we can determine the cor-
respondence between the variables occurring in the form and
the ordered list of arguments of the desired function. This
is accomplished by Church?s A-notation.

ir is a form in variables Xy,...,X,, then A((xi,.ou,xn),

will be taken to te the function of n varlables whose value 1is
determined by substituting the arguments for the variables
XqsooesXy in that order in and evaluating the resulting ex-

pressiop. For example, A({x,y},y%x) is a function of two
variables, and K((x,y),y2+x)(3,u)‘z 19.

The variables occurring in the list of variables of a
A-expression are dummy or bound, like variables of integration
in a definite integral. That 1s, we may change the names of
the bound varisbles in a function expression without changing
the value of the expresslon, provided that we make the same
change for each occurrence of the varlable and do not make two
variables the same that previously were different. Thus A{(x,y),
y2+x)9m{(u9v§,v2#u} and A((y,x),x2%+y) denote the same function.

We shall fregquently use expressions in which some of the
variables are bound by Ats and others are not. Such an expres-
sion may be regarded as defining a function with parameters.

The unbound variakbles are called free varilables.

An adequate notation that distingulishes functions from forms
allows an unambiguous treatment of functions of functions. It
would involve too much of a digression to give examples here,

J.

but we shkall use functions with functions as arguments later in
this manual.

Difficulties arise in combining functions described by
A~-expressions, or by any other notation involving variables,
because different bound variables may be recpresented by the same
symbol. This i3 called collision of bound variables. There 1s
a notation involving operators that are called combinators for
combining functions wikhiout the use of variables. Unfor-
tunately, the combinatory expressions for interesting combina-
tions of functions tend to be lengthy and unreadable.

f. Expressions for Recursive Functions

The A-notation is inadeguate for naming functions defined
recursively. For example, using A's, we can convert the
definition

sart(a,x,€) = (|x®-al<€ = x,7 = sqrt(a‘;%(m«%) €))
into
sqrt = A {(a,x,&), (‘ x@-al<€ = x,T = sqrt (a,%(m%),é)))

but the right-hand side cannot serve as an expresslion for the
function because there would be nothing to indicate that the re-
ference to sqrt within the expression stood for the expression
as a whole,

In order to be able to write expressions for recursive func-
tions, we introduce another notation: 1label(a,f) denotes the
expression £ , provided that occurrences of a within £ are to
be interpreted as referring to the expression &s a whole. Thus
we can write

label{sare,r{{a,x,€), (1x2-a/‘é - x,T = sqrt (a,%(xa-%),é))))
as a name for our sqrt function.

The symbol a in label{s.S) is also bound, that 1s, it may
be altered systematically without changing the meaning of the
expression. It behaves differently from a variable bound by a
», however. ‘

1.2 Symbolic Expressions

We shzall first define a ¢lass of symbolic expressions in
terms of ordered pairs and lists. Then we shall define five
elementary functions and predicates, and build from them by
composition, conditional expressions, and recursive definitions
an extensive class of functions of which we shall give a num-
ber of examples. We shall then show how these functions can_be
expressed as symbolic expressions, and we shall define a uni-
versal function evalqucte that zllows us Yo compute from the ex-
presasion for a glven function its value for given arguments.
Finally, we shall define soms functlions with functions as ar-
guments and give some useful examples.

a. A Class of Symbollc Expressions

We shall now define the S-expressions {S stands for sym-
bolic). They are formed by using the special characters

wa# O

{
and an infinite se: of distinguishable atomic symbols. For
atomic symbols, we shall use strings of capltal Latin letters
and digits. Examples of atomic symbols are

A

ABA

APFPLEPIENUMBER3

-11-

There is a twofold reason for departing from the usual
mathematical practice of using single letters for atomic sym-
bols. First, computer programs frequently require hundreds of
distinguishable symbols that must be formed from the 47 charac-
ters that are printable by the IBM computer. Second, it
is convenient to allow English words and phrases to stand for
atomic entities for mnemonic reasons. The symbols are atomic
in the sense that any substructure they may have as sequences
of characters is ignored. We assume only that different sym-
bols can be distinguished.

S-expressions are then defined as follows:

1. Atomic symbols are s-ezépressions°

2. 1If ey and e, are S-expressions, 8o is (e4°e5).
Examples of S-expressions are

ADB

(A-B)

((aB-C)°D)

An S-expression 1s then either an atom, or an ordered

pair, the terms of which may be atomic symbols or simpler S-

expressions. We can represent a list of arbitrary length in
terms of S-expressions as follows. The list

(ml’me’ L= 2 - ,mn))
is represented by the S-expression
(m1° (ma" (a o6 (mn"NIL)ee n)))

Here NIL 1s an atomic symbol used to terminate lists.

Since many of the symbolic expressions with which we deal
are conveniently expressed as lists, we shall introduce a list
notation to abbreviate certain S-expressions. We have

1. (m) stands for (m°NIL).

2, ({(my,...,m) stands for (m1°(°oa(mn°NzL).aﬁ))e

3. (mlgooo,mnox) stands for (m1°(°,g(mn°x)oo.))

«l2-

Subexpressions can be similarly abbreviated. Some examples
of these abbreviations are

((aB,C),D) for ((AB°(C°NIL))-(D-NIL))
({(a,B),C,D°E) for ((A-(B°NIL))-(C-(D:E)))

Since we regard the expressions with commas as abbreviations
for those not involving commas, we shall refer to them all as
S-expressions.

b. Functions of S-expressions and the Expressions that
Represent Them

We now define a class of functions of S-expressions. The
expressions representing these functions are written in a con-
ventional functional notation. However, in order to clearly
distinguish the expressions representing functions from S-
expressions, we shall use sequences of lower-case letters for
function names and variables ranging over the set of S-expressions.
We alsoc use brackets and semicolons, instead of parentheses and
commas, for denoting the application of functions to their arg:-
ments. Thus we write

car{x]

car{cons| (A-B);x]]
In these M-expressions (meta-expressions) any S-expressions that
occur stand for themselves.

¢, The Elementary S-functions and Predicates

We introduce the following functions and predicates:

1. atom

atom{x] has the value of T or F, accordingly as x is an
atomic symbol or not. Thus

-13-

atom{x] = T
atonl (X°A)] = F

2. eq

eq[x;y}lis defined if and only if either x or y 1s atomic.

eqlx;y] = T %f x and y are the same symbol, and eqlx;y]l = F
otherwise., Thus

eqlX;X} = T

ea[X;A] = F

eq{X; (X;A)] = F

3. car

car{x] 1s defined if and only if x is not atomic
car{ (e °2,)] = e, Thus
cari{x] 1s undefined.
car{ (X-A}] = X
carl ((X-4)-¥})] = (X-A)

b cdr

cdrix] is also defined when x is not atomic. We have
car[(ey°ep)] = e;. Thus
cdr{X] is undefined.
cdrl (X-A,] = A
ecarl {(XA)-¥Y}] = ¥

5. gors

cons[x;7] is defined for any x and y. We have
cons{eigéal = (ei"ea)° Thus
cons{X;A] = (X°A)
consf {X-4);¥] = {{X-A)-Y¥)
car, cdr ané cong are easlly seen to satisfy the relations
carfcons %531} = x
cdr{consix;yll = ¥ .
consf[ear x]l;cdrix]] = x, provided that x is not atomic.

-14-

The names "car” and "cons" will come to have mnemonic sig-
‘nificance only when we discuss the representation of the system
in the computer. Compositions of car and cdr give the subex-
pressions of a glven expression in a given position. Composi-
tions of cons forw expressions of a given structure out of
parts. The class of functions which can be formed in this way
is quite limited and not very interesting.

d. Recursive S-functions

We get a much larger class of functions (in fact, all com-
putable functions) when we allow ourselves to form new functions
of S-expressions by conditional expressions and recursive
definition.

We now give some examples of functions that are definable
in this way.

1. rflx]

The value of ff{x] is the first atomic symbol of the S-
expression x with the parentheses ignored. Thus

eel ({(A°B)°C)] =A
We have

£f{x] = [atomi{x] = x;T — fflcar(x]]]

We now trace in detall the steps in the evaluation of
£l {(a B):C)1s
el {(A-B)-C); = latom[({A-B)-C)] = ((A°B)°C);T = £f{carl[((A-B)°C)]]]

= {F— [{AB)C);T = £flcar[({a°B)-C)]]]

= b1 = 2flcar] ({A-B)-C)]]]

= fi{car ({A-B)-C)1]]

= ££{(A-B}]

= {atom! {A-B)] ={A'Bl,T = £r{car[(A-B)1]]

= {F= {AB);T = £ficarl(A-B)]]]

= [T f£flcar{(A°B)]]]

-15-

= ff{car((A-B)]]

= £f{A]

= [atom[A] = A;T = £flcar(al]]

= [T= a;7~ fflcar(al]l

= A

2. substix;y;z]

This function gives the result of substituting the S-
expression x for all occurrences of the atomic symbol y in the
S-expression z. 1t is defined by

subst{x;y;z] = [atom[z] = [eqlz;y] = x;T ~* 2];T = cons[subst
[x;y;car[z]];subst{x;y;cdriz]]]]

As an example, we have
subst{ (X-A);B; ((A-B)°C)] = ((A°(X°A))-C)

3. equallx;y]
This 18 a predicate that has the value T if x and y are
the same S-expression, and has the value F otherwise. We have

equallx;y] = [atom[x]Aatom[y]Aeqlx:y]lviratom[x]A~atom{y]A
equallcar{x];cariyllAequallcdrix];cdr{yl]]

It is convenient to see how the elementary functions look
in the abbreviated 1list notation. The reader will easlly verify
that

(i) carf (m1;m23°°°9mn)] = ml

(11) cdrE(ml,m2,o.o,mn)} = (D, 000,0,)

(111) cdri(m)] = NIL

(1v) consimy;(my,ccc,my)] = (my,mppcc0,my)

{v) cons{m;NIL] = (m)

We deflne

null{x] = eqlx;NIL]

This predicate is useful in dealing with lists.

=16~

Compositions of car and cdr arise so frequently that many
expressions can be written more concisely if we abbreviate

cadr{x] for carlecdr(x]],

caddrix] for car[ecdr{ecdr(x]]], etec.

Another useful sbbreviation 1s to write listleses;...ze,]
for cons{e,;consle,;...5consle, sNIL]...]]. This function gives
the 1list, (evowgen) , @8 & function of its elements.

The following functions ere useful when S-expressions are
regarded g3 lists,

1. apperdix;y]

append{x;y] = [nuli[x] = y;T ~ cons{car(x];append{cdrix];syll]
An exampie is

append[(A;B); (C,D,E)] = (A,B,C,D,E)

2, amonglx;yl

This predicate is true if the S-expression x occurs among
the elements of the list y. We heve

among{x;y] = ~nulllylAilequai{x;cariy])]vamonglx;cdriy]]]

3. pairlisix;y;al

This function gives the list of pairs of corresponding ele-
ments of the lists x and y, and sppends this to the list a. The
resultant list of pairs, which is like a table with two columns,
is called an associgtion list., We have

peirlisixsysal = [null{x] = 23T = cons{cons{car(x];carlyl];

pairlis{cdrix];cdriy]l;alll
An exsmple is
Pairlia({AyB.y@); (‘Uﬂva)ﬂ ((D°x)9 (EoY))} =
((a.0), (B.V), (C.W), (D.X), (E.Y))

4, associx:al

If a is an association list such as the one formed by pairlis
in the above example, then asscc will produce ths first pair whose
first term is x. Thus it is a table sesrching function,

We have
assoc{xsa) = [equailcaar{al;x] = carl[a];T = assoclx;cdr{all]

-47-

‘ An exampie 1s
assoc[B; (A. (M,N)), (B. (CAR,X)), (C. (QUOTE,M}), (C. (CDR,X)))]

= (B, (CAR,X))

5. sublisia;y]
Here a is assumed to be an association list of the form

((giavi),oga,(unovn)), where the u's are stomic, and y is any
What sublis does, is to treat the ufs as variables

S=-expresasion,
when they occur in y, and to substitute the corresponding v's
from the pair list. In order to define sublis, we first define

an auxiliary function. We have
sub2(a;z] = [nullla) = zzeqlcaar(al;e] ~ cdar{al;T -

sub2{ecdrial;z]]

and
sublis{a;y] = [atomly] = sub2{a;y];T = cons[sublis{a;carly]];
sublis{a;ecdr{y]]]]

An example is
sublis| ((X.SHAKESPEARE), (Y.HAMLET)); (X,WROTE,Y)]
= (SHAKESPEARE,WROTE,HAMLET)

€. Represantetion of S§=-Functions by S-Expressions

S-functions have been described by M-expressions.

give a rule fcr translating M-expressions into S-expressions,
in order to be able to use S-functions for making certain com-

putations with S-functions and for answering certain questions

We now

about S-functions.
The translation is determined by the following rules in

which we dencte the translation of an M-expression £ by £+,
4, If £ 4ie an S-expression £* is (QUOIE, £).
2. Variables and function nameés that were represented by
strings of lower-case letters are translated to the correspond-

ing strings of the corresponding upper-case letters. Thus car#
is CAR, and subst® ie SUBST. ’

18-

3. A form r[eisow,en] is translated to (f*,e{,wo,e*)
Thus {cons{carix]scdr[x]]} # 1s (CONS, (CAR,X), (CDR,X)).

“'o Epl - 915 ooo’pn -> en] * is (COND, (pI,et),aoop(pg,ez))o

5 ?-\..ngi;‘\n“gxn];? J * 1s (LAMBDA, (xI,ooagxa), *)o

6. labelila;] * is (LABEL,a®, #),

f. The Universal S-Function evalquote

There is &n S-expression evalquote{fn:;x] with the property
that if fn = £ * where £ is a function form, and if x = (argi,
coo,argn), then cvalquote{fn;x] = flargi;...;argn] unless both
are undefined. For example,

aMIxsylseonsl carix);yl 10 (A,B); (C,D)]

=evalquotel (LAMBDA, (X,Y), (CONS, (CAR,X),Y));s ((A,B), (C,D))]

E(A,G»D)

The S-funetion evalgquote is defined by

evalquote[fnyx] = applylfnsx;NIL]
where

applylfn;x;e] = [eqlfn;NIL] — NIL;

atom{fn) = [eqlfn;CAR] = caar{x];

eq{fn;CDOR] = cdar(x];

eqlfn;CONS] = cons[ecar(x]):cadrx]];

eqlfn; ATOM] = atom{car{x]];

eqlfnzEQ] = eqlxar{x];cadrix]];

T = sppilylevallfn;alsxsall;
eqlcar[fn];LAMBDA] = evallcaddr{ ru)spairiis{cadri{fn);x;all;
eqlear{#n] ;LABEL] = spply(caddr{fn];x;conslcon{cadr(fnl;
caddr{fn}l;alll

evailesa) = [atom[e] = cdrlassocle;all;
{atoml carlel={
[eql car{e] ;QUOTE] =* cadrle];
[eqlcar(e]3COND] = evconlcdriel;al;
P = applylcarie]seviis{cdr(el;al;sall
¢ = gpplylcarlelseviis[ecdr{el;al;]]

pairlis and assoc were previously defined.
eveonfosa] = [evallcasr(cl;a] = evallcadar{c];al;T =
eveon{edricl;all
and .
eviie(msa] = [cons[evallcar{m]lsal;eviis{car(m)sallls

We now explein a number of points about these definitions.

i. =pply labels s function by pairing its name with 1ts
definitions and adding this to the pair 1list. If a function
begins with LAMBDA, then spply peirs the bound varisbles with
the arguments and gives the result to eval. If a function is
atomic, then apply looks for ites definition on the pair 1list.
This would be the case for successive recursions of & lgbeled
function. In the remaining cases, the function is evaluated,

2, evalle;a] has two arguments, an expression e to be
evaluated, ani an association 1list a. The first item of each pair
43 gr stomic symbol, and the second is the expression for which
the symbol stands.

3, If the expression to be evaluated is stomis, eval
evaluates whatever is paired with it first on the list a.

4, ¥f e is not atomic but car[e] is atomic, then the ex-
pression has one of the forms (QUOTE,e) or (ATOM,e) or (EQ,ey,ey)
or (COND, {pﬂ@i)gowgipwen))p or (CAR,e) or (CDR,e) or
(CONS, e, e,) or (fgeiygoogen) where £ is an atomic symbol,

«20-

In the case (QUOTE,e) the expression e, itself, is taken.
In the case of {ATOM,e) or (CAR,e) or (CDR,e) the expression e
is evaluated and the appropriate function teken. In the case of
(EQ,ei,eQ) or (cons,ei,ea) two expressions have to be evaluated.
In the case of (COND, (p4,€4),-05,(Pp,e,)) the p's have to be
evalusted in order until a true p is found, and then the corres-
ponding e must be evaluated. This is accomplished by evcon.
Finally, in the case of (f,e;,...,e,) we evaluate the e,'s and
give the result to apply s a 1list of arguments.

The 1ist g could be eliminated, and LAMBDA and LABEL ex-
pressions evaluated by substituting the arguments for the vari-
ables in the expression £. Unfortunately, difficulties involving
collisions of bourd varisbles arise, but they are avoided by using
the list a.

8. Functions with Functions as Arguments

There are & number of useful functions some of whose argue-
ments are functions. They are expecially useful in defining
other functions. Cne such function is waplist{x;f] with an S-
expression argument x and an argument f that is a function from
S-expressions to S-expressions, We define

meplist{x;f] = [nuli{x] = NIL;T = cons{f[x];mapiist{cdrix]se]]}
The usefulness of maplist le illustrated by formulas for the
partiel derivative with respect to x of expressions involving
sums and products or x and other varigbles., The S-expressions
that we shall differentiate are formed as follows.
4. An atomic symbol is an allowed expression.

-21-

2. If eq,e,,¢.-,8, are allowed expressions, (PLUS, ey,
20s,@,) and (TIMES,e ,...,8,) are also, and represent the sum
and product respectively, or ei,.o.,eno1 |
This is, essentially, the Polish notation for functions,
except that the inclusion of parentheses and commas allows func-
tions of variable numbers of arguments. An example of an
allowed expression is (TIMES,X, (PLUS,X,A),Y}, the conventional
algebraic notation for which is X(X+A)Y.
Our differentiation formula, which gives the derivative of
y with respect to x, 1is
airely;x] = [atom{y] = [eqly;x] = 1;T ~ 0];eqlcar(y];
PLUS) = cons[PLUS;maplistlcdrly];a[[z];a1ee] '
carlz];x]]]);eqlcarly]; TIMES] = cons[PLUS;maplist|
cdrly);»{{z);cons[TIMES; maplist{cdriy]l;nl[w]; eql
zsw] = car{w];T = diff{carlw];x]11]1111]
The derivative of the allowed expression, as computed by
this formula, is (PLUS, (TIMES,1,(PLUS,X,A),Y), (TIMES,X, (
PLUS,1,0),Y), (TIMES,X, (PLUS,X,A),0))
Besides maplist, another useful function with functional
arguments 1s search, which is defined as

search{x;ps;f;ul = [null{x] =* ull;plx] = £[x];T = search
[edrix);psfsull

The function search is used to search a list for an element that
has the property p, and if such an element is found, f of that
element is taken. If there is no such element, the function u
of no argument is computed.

1For more exact information on arithmetic functions see Section 2.4.

eln LISP 1.5 actual numbers can be used in these forms, and the
corresponding arithmetic function will be performed. This is
described in Section 2.4.

2, The LISP Interpreter System

The folliowing sxample is a LISP program that defines three
functions unicn, intersection, and member, and then applies
these functions to some test cases. The functions union and
intersection are tu be spplied to "sets", each set being repre-
sented by a list of atomig symbols. The functions are defined
a8 follows. HNote that they are all recursive, and both union
and interssction make use of membsr,

member{asx]) « [nulllx] = P;eqla;carlx]] - 77—
menmber{a;edr{x]]]

wnion{x;y] = {nulllx] =* yimembsrlcar{x];y] = wnion
[cdnlx}sylT = cons{carlx];unionledr(x];y]]]

intersection{x;y] = [null{x] = NIL;member{car{x];y]
= cons{car{x];intersection{ecdr(x];yll;T —
irtersestion{cdr{x];y]}

To dafine these funetions, we use the pseudo-function
define., The program looks like this:

DEFINE {{

(MEMBER (LAMEDA (A X) (COND ({NULL X) F)
((EQ A tcaw x}) T) (T (MEMBER A (CIR X))))))

(UNLION (LawBIa {X 7) (COND ({NWOLL X) ¥) ((MEMBER
(Car X) ¥) {UNION (CDR X) ¥)) (T (CONS (CAR X)
(UNION (CDR X) Y))))))

(INTERSECTION (LAMBDA (X ¥) (COND ((NULL X) NIL)
((MEMBER (CAR X) ¥) (CONS (CAR X) (INTERSECTION
(CCR X) ¥))) (T (INTERSECTION (CHR X) Y)))))

B

INTERSECTION ({A2 A2 A3} (AL A3 A5))

TNTON ({X¥ ¥ 7} {00 & W ¥))

-23-

-

This prigram contains three distinet functions for the
LISP interpreter. The first function is the pseudo-function
gefine. A pseuvdo-function is a function thst is exscuted for
168 effect on the system in core memory as well as for its
value, Define causes these functions to be defined and
available within the system. Its value is a list of the
functions defined, in this case (MEMBER UNION INTERSECTION).

The value of the second function is (A1 A3). The value
of the third function is (Y 2 U V'W X). An inspection of the
way in which the recursion is carried out will show why the
Telements” of the "set” appear in Jjust this order.

The following are some elementary rules for writing
LISP 1.5 programs.

1. &4 program for executlon in LISP consists of a se-
Quence of doublets. The first list or atomie symbol of each
doublet i3 interpreted as & function. The second is a list
of arguments for the funetion.

2, ‘There is no particulgr card format for writing LISP.
Columng 1-72 of arny number of cards msy be used. Card
boundaries are ignored. The format of the gbove example,
including indentation, was chosen merely for ease of reading.

3. & blenk is the equivalent of a comma. Any number of
blanks end/or ¢ uwrss can oceur at any point in a programs
excent in the pidcis of an atomic symbol.

4. o nit use the forms (QUOTE T), (QUOTE F), and
{(QUUTE NYI). TUse %, F, ard NIL instesd. :

5. Atomis sysbols should begin with alphabetical charac-
ters to diatinguish them from numbers.

6. Dot notation may be used in LISP 1.5. Any number of
blanks before or after the dot will be ignored.

2l

T. Dotted pairs may occur as& elements of a list, and
lists may occur as elements of dotted pairs. For example

((A:B) X (C.(E F @)))
is 2 valld S-expression, It could alsc be written

{((AB). (X. ((C.(E.(Fo(G.NIL)))).NIL))) or

((a.B) X (c EF @))

8., A form of the type (A B C.D) is an abbreviation for
(A.(B.{(C.D))). Any other mixing of commas (spaces) and dots
on the same level is an error, e.g. (A.B C).

9. A selection of basic functions is provided with the
LISP =ystam. Cther functions may be introduced by the pro-
grammer. The order in which functions are introduced 1s not
gignificant. Any function may make use of any other function.

2.1 Variables

A variable 1s a symbol that is used to represent an
argument of & function. Thus one might write "a + b where
a=34 and b = 216," In this situstion no confusion can
result and all wiil ggree that the answer is 557, In order
to arrive at this result, it is necessary to substitute the
actual numrbers for the variables, and then add the two num-
bers {on an adding machine for instence).

One reason why there is8 no ambiguity in this case is
that "a" znd "b" ere not acceptable inputs for an adding ma-
chine, and it is therefore obvious that they merely represent
the actusl arguzernts., In LISP, the situation cen be much
more complicazted., An atomic symbol may be either a variable
o. an actual argument, To further complicate the situation; a
part of an argument mey be g variable when a function inside
another function is evaluated. The intultive approach is no
longer adequate., An understanding of the formalism in use is

nacessary to do any effective LISP programming.

Lest the prospective LISP user be discouraged at this
point, it shouid be pointed out that nothing new 1s goling to
be introduced here, This section is intended to reinforce
the discussion of Chapter 1. Everything in this section can
be derived from the rule for translating M-expressions into
S-expressions, or alternately everything in this section can
be inferred from ¢he universal function evalquote of Chapter
1.

The formalism for varisbies in LISP is the Church-lambda
notation. The part of the interpreter that binds variables
is called apply. When apply encounters a function beginning
with LAMBDA, the list of varisbles is palired with the list of
argumente ami added to the front of the a-list. During the
evaluation of the function, varisbles may be encountered.
They are avaluated by looking them up on the a-list. If a
variable has been bourd seversl times, the first or most
recent value isg used. The part of the interpreter that does
this 15 called eval. The following example will illustrate
this discussion. 3Suppose the interpreter is given the follow-
ing doublst: :

fn: (LAMDDA (X ¥) (CONS X Y))
£s (A B)
Evalquote will give these arguments to apply. (Look at
the universal function of Chepter 1.)
applyl (LAMBDA (X ¥) (CONS X ¥)); (A B);NIL]
Apply will bind the varisbles and give the function and
a-1ist to evar.

evall (CONS X ¥); ({X.A) (¥.B))]

Eval wlil evaluate the varisbles and give it to cons.

cons{A;B] = (A.B)

fThe actusl interpreter skips ome step regquired by the
universal function, namely, apply{CONS;(A B)].

-26-
2,2 Constants

It 1s sometimes assumed that a constant stands for itself
@8 opposed to a varisble which stands for something else.

T™his is not a very workable concept since the student learning
caloulus is taught to represent constants by a,b,c... and
variables by x,¥,%2.... It seems more reasonable to say that
one varisble is more nearly constant than another if it is
bound at a higher level and changes value less frequently.

In LISP, = variable remains bound within the scope of
the LAMBDA that binds it. When a variable always has a cer-
tain value regardiess of the current a-list, it will be called
a constant, 7This is accomplished by means of the property
listi (p-iist) of the variable symbol. Every atomic symbol
has & p-1ist, When the p-list contains the indicator APVAL
or AFPVALL, then the symbol 1s & constant and the next item on
the list is the value., Eval searches p-lists before a-lists
when evaluating variables, thus making it impossible to bind
constante effectively.

Constants can be made by the programmer. To make the
varigble X aiways stands for (A B € D) use the pseudo-function

CSET (X {A B ¢ D))

An interesting type of constant is one that stands for
itself, NIL is an example of this. It can be evaluated re-
peatedly and wilil s€ill be NIL., T,F,NIL, and other constants
cannot be used gy veriables,

265 Funciiong

Whan a symbol stends for a funoction, the situation is

R e

i. Preperty lists are discussed in Chapter 7.

- 2=

similar to thet in which a symbol stands for an argument.

When a function is recursive, it must be given a name. This
is done by means of the form LABEL, which pairs the name with
the function definition on the a-1list. The name is then bound
to the function definition, just as a variable is bound to its
value.

In actual practice, LABEL is seldom used. It 1s more con-
venient to attach the name to the definition in a constant man-
ner. This is done by putting on the property list of the name,
the symbol EXPR followed by the function definition. The
pseudo-function define used at the beginning of this chapter
accomplishes this. When apply interprets a function repre-
gsented by an atomic symbol, it searches the p-list of the atomic
symbol before searching the current a-list. Thus g define will
override a LABEL. |

The fact that most functions are constants defined by the
programmer, and not variables that are mcdified by the program
is not due to any weakness of the system. On the contrary, it
indicates a richness of the system that we do not know how to
exploit very well.

2.4 Machine Language Functions

Somwe functions instead of being defined by S-expressions
are coded ag closed machine language subroutines., Sush g func-
tion wil. have the indicator SUBR on its property list followed
by & pointer that allows the interpreter to link with the sub-
routine, There sre three ways in which a subroutine can be
present n the system,

i. The subroutine was coded into the LISP system.

2. The function was hand-coded by the user in the assem-
bly type language LISP-Sap.

3. The function was first defined by an S-expression,
and then compiled %y the LISP compiler. Jompiled functions

«28-

run sbout 40 times as fast as when they are interpreted.

2.5 Special Forms

Normzlly eval evaluates the arguments of a function be-
fore applying the funecticn itself. Thus 1if eval is given
{CONS X Y), it will evaluate X end ¥, and then cons them.

But if eval is given (QUOTE X), X should not be evaluated.
QUOTE 18 & specigl form that prevents its argument from being
evaluated.

A speciel form differs from a function in two ways. Its
arguments do not get evaluated before the aspecial form sees
them, COND for exsmple has a very special way of evaluating
its arguments using eveon. The second way that special forms
differ from functions is that they may have an indefinite
number of arguments. Specisl forms have indicators on their
property lists called FEXPR and FSUBR for LISP-defined forms
and machine language coded forms, respectively.

2,6 Programming fcr the Interpreter

The purpose of this section is to help the programmer a-
void eertgin coumin errors.

Exampie 1
fns CAR
xz ({(& B))

The value 48 &, Note that the interpreter expects a list
of arguments. The one argument for car is (A B). The extra
pailr of parenthesis are necessary.

One could write (LAMBDA {X) (CAR X)) instead of just CAR.
This is correct but unnecessary.

Example 23
fns CONS
xs (A (B.C))

The value is cons{A; (B.C)] = (A.(B.C)).
The print program will write this as (A B.C).
Example 3 |

frvns CONS

xs ((cAR (QuoTE (A.B))) (CDR (QUOTE (C.D))))

The value of this computation will be ((CAR (QUOtE (A.B)))
CDOR (QUOTE (.D))). This is not what the programmer e:rracted.
He expected (CAR (QUOTE (A.B))) to evaluate to A, and exy ot
ed (A.D) as the value of cong,

The interpreter expects a list of arguments. It does ot
expect a iist of cxpressions That will evaluate €o the argu-
ments. Ezlow are two correct ways of writing this function.
The first one makes the car and cdr part of a function speci.
fied by a LAMBDA. The second cne uses quoted arguments and
gets ther evaluated by eval with a null a-list.

fri: (LAMBDA {X Y) (CONS (CAR X) (CDR Y)))

((a.B) (c.D))
EVAL
((coms (car (QUOTE (A.B))) (CDR (QUOTE (C.D)))) WiL)
The valua of both of these is (A.D).
fae (LAMEDA (A X) (MAPLIST A (FUNCTION
{(ramszpa {J) (cons (car J) X))))}
x: {({(Xxv 2Z) 8)

Thiz exampie ~sontains a new special form celled FUNCTION.
FUNCTION iz sovewdat similar to QUOTE in 1%s effect. It is
sometizes neaxded hen the quoted expression is g function.
This is explained in detail in Appendix B, For the present we
3tate the following rule,

When & quoted S-expression is to be used as a
fuaaticn, quote it with FUNCTION, not QUOTE.

The funstion in the exsmple replaces each element of the
list with a new element obtained by cons-ing it with the sec-
ond argument, 7The value of exsmple 4 is ((X.S) (¥.S) (zZ.8)).

=
1.
X

0 o9 (-1

-30-

2,7 Functlons Avallable within the System

Before attempting any major programming the user should
look at Appendix A so a8 to avold redefining functions that are
gvailable in the system.

It is general policy not to place unnecessary definitions
in the system, as this reduces the space available for compu-
tation., Extra features such as differentiation and algebra
simplification will be distributed in the form of card decks
with memos describing them.

The following list contains a few functions of the basic
system that sre of immediste interest.

A, Bssic Functions: cons, car, cdr, and all car-cdr
compositions of length 2,3, and 4, e.g. cadar, cdaddr.

B, Basic Predicates: atom, null, eq, and equal.

C. ILogical Predicates: and, or, and not.

D. Interpreter Components: apply, eval, eviie, and pair.

E, Defining Punctions: define and cset.

P, List Hendling Functions: 1list, sppend, subst, and
sublis.,

3. Arithmetic in LISP

LISP 1.5 has provision for handling fixed point and
floating point numbers and logical words., There are functions
and predicates in the system for performing arithmetic and
logical operations and making basic tests,

3.1 Reading and Printing Numbers

Numbers are stored in the computer as though they were g
special type of atomic symbol. This is discussed more thor-
oughly in Section 7.3. The following points should be noted
at this time:

1. Numbers may occur ln S-expressions as though they

were atomic symbols.

2. XNumbers are constants that evaluate to themselves.

They do not need to be guotedi.
3. Humbers should not be used a¢ variables or function
names .

g. Floating Point Numbers

The rules for punching these for the read program ave:

1. A decinal point must be included but not au the
first or last characster,

2. A plus sign or minus sign may precede the number.
The plus :igr: i3 not reguired.

3. ZAxpenent indication is optionel. The letter E
followed y the exponent to the base 10 is written directly
gfter the number. The exponenf consists of one or two digits
which may be preceded by & plus or minus sien,

l&o Abselu%e values must lie between 21’28 and =128
(16°° ama 10738y,

5. Significance is limited to eight decimal digits.

6. Any possible ambiguily tetween the decimal point und

=32

the point used in dot notation may be eliminated by putting
spaces before and after the LISP dot. This is not required
where there is no ambiguity.

The following are examples of correct floating point
numbers. These are all different forms for the same number,
and will have the same effect when read in.

60,0
6.E1

600,00E-1
0. 6E+2

The forms .6E4+2 and 60, are incorrect becguse the deci-
mal point is the first or last character.

b, Fixed Point Numbers
These are written as integers with an optional sign.
Exampless
=17
32719

¢. Ootal Humbers or Logical Words

The correct form consists of

i, 4 sign (optional)

2. Up to 12 digits (O through 7).

3. The ietter Q.

B, An optional scale factor. The seale factor is g
decimal integer, no sign allowed.

Exampies are:s

Ro TVTQ

b. T7TQL

. =3Qi%

d. =7Qd1

e. +7Q1:

The effect of the read program on octal numbers is as fol-
lows.,

L. The number is placed in the acoumulstor three bits per
octal digit with zero's added to the left hand side, to make

-33-

twelve digits. The right moat digit is placed in bits 33-35,
the twelfth digit is plasced in bits P, 1, and 2.

2. The acouwnulator is leftshifted three bits (one octal
digit) times the scale factor. Thus the scale factor is an
exponent to the base eight,

3. If there 18 a regative sign, it is OR-ed into the P
bit. The number ig ther stored as a logical word.

The examples a through e ghove will be converted to the
following octal words. Note that because the sign is OR-ed
with the 36th numbrical bit, ¢, d and e are equivalent,

a. O0CCOOOOOTTT

b, 000COTTTOCCO

6. TO00OOGOCCO0

d, 7T00000CO0C00

e, 700000000000

3.4 Arithmetis Functions aend Predicates

All of these functions work on either fixed point or
floating polnt srguments. If all of the arguments for a
rumerical functior sre fixed point numbers, then the valus will
te a fixed point value. If at least one argument is & floating
poiny nurrer, all arguments will be converted to floating
roant nawrers, and the vaiuve will be a floating point number,

piugx,s; .v.zx.] 18 a function of n arguments whose value
is the alizbisgie &\;m of the arguments.

digf.rercelx;y] hes as velue the algebraic difference of
1ts argum:nte

minus{x! baz ws value =X

tire.. {xﬁwa ¥ R is & function of n arguments, whose value
is the pr: “luct (w54 ga correct sign) of its arguments,

86diix] has x+1 as its value. The value 1s fixed point
or floating point depending on the argument.

subil{x] has x-i as 1ts value,

~3h-

w_[xlgwugxn] chooses the largest of its arguments as
its value. < ,

min{x.5... ;xn] chooses the smallest of its arguments as
its value.

recip(x] computes i/x. The reciprocal of any fixed point
number is defined to be zero.

gﬁotien‘@{xgﬁ computes the quotient of its srguments.
For fixed point srguments, the value is the number theoretic
guotient. A divide check or floating point trap will result
in a LI3F error.

remainder{x;y] computes the number thecretic remainder
for fixed point numbers, and the flogting point residue for
floating point arguments.

divide[x;y] = list{quotient{x;y];remainder(x;y]]

exptix;y] = x¥. If both x and y are fixed point numbers,
this 1s computed by reiterative multiplication. Otherwise the
power is computed using logarithms. The first argument cannot
be negative,

We now 1ist the srithmetic predicates. The ruies con-
serming mixed sxpressions and evaluation of arguments are the
same as for the: arithmetic functions. The value of g pre-
dicate is NIL (falise) or true.

lessplx:y! is true if x=y, and false otherwise.

gresterp{x] 4o true if x>y,

zercp(x] 15 true 1f x=f, or if x| = 3’60

onepix] is true 1f x=i.

minusplx] is true 1f x is negative.

oot 48 negative.

puntern/x] i true if x is @ number (fixed point or
floating point).

fixp{x] 1s trus only if x is a fixed point number. If x
is not & number &t all, an error will result.

floetplx] is similar to fixp{x] but for floating point
numbers,

-35-

_rgg{xsy} is true 1f xwy or if |x-y| <3°°

equel{x;y] works on any arguments 1m.1ud1ng s-»expraasions
incorporating numbers inside them. Ite value ig trus if the
arguments are identical. Floating point numbers must te ex-
actly equal.

The logical functions operate on 36 bit words. The only
acceptable arguments are fixed point numbers. These nay te
regd in g8 ostal or decimal integers, or they may be the re.
sult of & previous computation. '

ggégg'[xig ,w;;xn] performs a logical OR on its arguments.

logendx,; “..;xn] performs a logical AND on its arguments.

1ogx@r[xi;o“ gxn} performs an exclusive OR
(OVO=0,14V0=1, 1V1is0).
leftshirs{xsn] = x.2°, The first argument 1s leftshifted
by the number of bits specified by the second argument. If the
second argument is negative, the first argument will be right-
ahifted.

3.3 Programuing with Arithmetic

The srithmetic functions mway be used recursively like any
other furnctions availgble to the interpreter. As an example,
we define fastorial as 1t was given in Chapter 4.

nl={ns=sg=4; T no(n-1)t])
DEFINE {(
(PACPORIAL (LAMBDA (N) {COND
{{ZEROP X) 1)
(v (*IMES N (PACTORIAL (SUB1 N}))))))
))

It is sometimes convenient to refer to numerical constants
by name. The pseudo-function gonstval allows one to do this.
The argument of constval is & 1list of pairs, each pair consist-
ing of & name and & number,

After exscuting constvall ((PI 3.44) (E 2.18))] the gtomic

=36.

symbols PI and E will behave as though they wsre actually
numbers .

3.4 The arrvay Feature

_ Provision ig made in LISP 1.5 for allocating blocks of
storage for data. The data may coneist of numbers, atomic
symbols, or other 3-expreasions.

The pseuvdo-function array reserves space for arrays,
and turns the psme of an array into a function that can be
used to fill the array or locate any element of it.

Arrays may heve up to three indicies. Each element
{uniquely spseified by its coordinates) contains & pointeri
to an S-expressgion.

Arrgy is a function of one argument which is a 1list of
arrayes tc be declared. Each item is a list contalning the
name of gn erray, its dimensions, and the word LIST. (Non-
list arrays are reserved for future developments cof the LISP
system,)

For exampiz, t¢ make an array called alpha of size T7x10,
and one called L=ta of aixe 3x¥#x5 one should execute: '

array{ ({ALPHA (7 4g) LIST) (BETA (3 4 5) LIST))]

After this has been executed, both arrays exist and
their elexerts are gll set to NIL.

Alpha srd beta are now functions that can be used %o
set or losate elements of these respective arrays.

To et alphaié to x, exacute -

alphal SEFsx313s)
To uet alph%S?% to {A B C) execute -
ALPHA (SET (A B C) 3 &)
Inside a funstion or program, X might be bound to (A B C),

e e Sy - e s e c - o

1, See Chapter 7.

«37-~

1 bound to 3, and J bound to 4, in which case the setting
can be done by evaluating -
"(ALPHA (QUOTE SET) X I J)
o locate an element of an array, use the arrsy name as
a function with the coordinstes as axes. Thus any time after
exacuting the previous example - /
alphal3;4] = (A B C)
Arrays use marginal indexing for meximum speed., For
most efficlent results, specify dimensions in inereasing or-
der. Betal3:4:;5] is better than beta[5;3:4).

=38

4. The Progranm Feature

The LISP 4.5 program feature allows the user to write
a Fortran-like program containing LISP statements to be
executed.

An example for the program feature is the function
length, which examines a list and decides how many elements
there are in the top level of the list. The value of length
1s an integer,

Length is a function of one argument £. The program
uses two program variables u and v, which can be regarded as
storage locations Co be changed by the program. In English
the program is written.

This s a function of one argument f£.

It 1s a program with two program varisbles u and v.

Store £ in ¥,

Store the argument £ in u.

A If u contains NIL, Then the program is finished,

and the value is whatever is now in v.

Store in u, cdr of what 1s now in u.

Store in v, one more than what is now in v.

Go ©o A,

He now write vhis program 28 an M-expression, with & few
new notations., This corresponds lime for line with the pro-
gram written above, ‘

lengtn{] = progl{lu;v);
o= O
G o= 5;‘.
A cnuii{al = returniv]]
a = odrfuls
v o= v¢dg
go [al]

-39~

Rewriting this as an S-oxpressiocn, we get the following
program,

DEFINE ((

(LENGTH (LAMBDA (L)

(PrROG (G V)
(SETQ V §)
{SEIQ U L)

A {conb ((NULL U) (RETURN V)))
(sErQ U (CDR G))
{SETQ V (ADDL V))
(@0 Ay 23})

LERITH (A B ¢ D)

LENGTH {((X.X) ACAR {4 B) (XY 2Z))

The values of the test cuseg are four and five, respect-
ively.

The program form has the structurs -

(PROG, 1ist of program variahles, sequence of state-
ments and atomic sywbolBo.c.)
An atomic symbol in ¢he list iz the location marker for the
statement that fcllows. In the above example, A 18 a loeation
marker for the statement boginring with COND.

The first 1ist after Uhe symbol PRCG is a list of program
variables. If there are none, then this should be written NIL
or {). Frogram varisdbles are Urezted much like bound varisbles,
but they zre not towud by LAMBLA. The walue of each program
veriable is HIL until 1% has been set to something else.

To set &« progzam verisble, wie tie form SET. To set vari-
able PL to 3.44 weite (SET (QUOTE P4) 3.ik). SEMQ is like SET
except that it cactes ite first avgument. Thus (SETQ P1 3.14).
SETQ is usually more eorvanient. 3ET and SETQ can change vari-
ables that are on the a-list from higher level functions.

Statemenvs exe normslly executed in sequence., Executing
a statement mesns eveluating it with the current a-list and
ignoring it: valie. PFProgran statements are often executed for
their effest rather than their value,

«40-

@0 i3 a form used to cause a transfer, (GO A) will cause
the program to continue at statement A.

Conditional expressions as program statementes have a use-
ful peculiarity. If none of the propositions are true, instead
of an error indication which would otherwise occur, the program
continues with the next statement.

RETURN is the normal end of g progrmm. The argument of
RETURN i3 evaluated, and this is the value of the program. No
further statements are executed.

If & program runs out of statements, 1t returns with the
vglue NIL. '

The program feature, like other LISP functions, can be used
recursively. 7The funetion rev, which reverses a list and all
its sublists is an example of this.,

rev,x) = progliyssls
A [neilfx] - return{y];
z = car{x]; .
{atom{z] = go[B]]:
z = reviz];
%y = consluzyls
x = edrlx];
goLAll
The function rev will reverse a list on all levels so that
vev{{&# ((B €) Dj}} = ((D (C B)) A)

L.

5. The Compiler

The LYSP compiler writes machine language subroutines
from S-expressiocns defining functions. Compiled functions
run up to 60 times as fast as interpreted functions.

The sompiler 18 itself g pseuwdo-function which is avail-
able to the APPLY operator. The compiler is called in by the
LISP function,

comdef(x],
where x is 2 1ist of names of the functions to be compiled,
Each function on the list will be compiled into a binary ma-
shine program provided the function is defined on its associ-
ation iist by an indicator EXPR pointing to an S-expression.
The value of comdef 18 & 1ist of the names of the functions it
was gble ¢o complle,

The compiler proceeds in three stages

1) Generation of LISP-SAP

2) Generation of binary program

3) SUBR put on association list

LISF-SAP i3 SAP in list form, for example
{({v11. LD 0 %) (NIL TXI GQOCOT & -4i)
(Nil "TRA *5) {GC000B BSS O0) coo)

In this exsmple, the objects beginning with G are atomlc sym-
bels generated oy use within the compiler, The BSS © in the
last element atove i used as it is in SAP %o tag symbols
which need to kave a memory location assigned to them, but no
actual space reserved for them, i.e., the usual location-field
SAP symbol. '

After the compller has created the LISP-3AP program for
a functicn, the binary program 1s generated from LISP-SAP in
two passes., In the first pass all symbols associated with
BSS 0 are assigned locations in memory. In the second pass
egzh instruction iz gssembled into memory. Then any unassigned

-§2-

symbols found during the second pass are assigned locations in
memory following the generated instructions.

When the binary program has been generated, the compiler
puts on the function's assocliation list the indicator SUBR
pointing to a TXL to the binary program,

After g function has been compiled, it can be used as if
it had been defined;, but of course it will run much faster
than it would have as an interpreted expression.

If a function listed in comdef has SUBR on ite association
list already, the compiler ignores the request for compilation
and goes ghead after printing out

(function neme) HAS BEEN ALREADY COMPILED

If a function has not been defined at all, i.e. has
neither EXPR or SUBR on its associgtion list, the compiler
prints out

{function name) IS NOT DEFINED
and goes on.

If a programmer hes a collection of functions which he
wants to compile and if some of the functions use each other
as subfunctions, a certain order of compilation should be fol-
lowed. If a function f uses a function g as a subfunction,
then g should be included in a comdef which comes before the
comdef involving f except in the following special cases 1if
a elosed circle of funetion usage occurs, e.g.

fi uses fg
fg uses £3

T, uses £y,
then gll of the functions in the circle must be compiled in
the same comdef. Thus the functions listed in a given comdef
should be either uarelated or related in this circular sense.

-b3-

Any other subfunctions on which they depend should have been
compiled by a previous comdef.

Another pseudo-function, compile(f], is available to
compile functions not previously defined. The argument £ of
compile is a 1list of function definitions, each one of which
must be of the form

(LABEL NAME (LAMBDA (1ist of free varigbles) expression))

The compiler will accept most function definitions accept-
able to the interpreter, including the program feature. In
fact, the program feature will compile more efficiently than
functions using recursive definition, and should be used when-
ever possible when compiling.

SET is not allowed in compiled programs. SETQ must be used
instead,

The compiler will glve trouble in the following situations.

1. If any of the functions to be compiled call on FEXPR
defined functions, the compiler will fail.

2, If a function uses free variables not bound by its
own LAMBDA, this wlll cause trouble. The one way to make such
functions compile is as follows: Suppose f£i,...,fn 18 a se-
quence of functions each of which may use free variables bound
by the functions before it. They will compile correctly if the
order of compilation 1s to start with fn and end with £1. This
may be done in several comdef's or in one comdef. Functions
within & zomdef are complled in the order listed.

5.4 The Compileyr Hodes

The compiier modes are switches set by the function
gomplliemode. They control the manner in which complling is
done, and the compiler output.

To set a particular mode, execute gompilemode of the mode
name, e.g.

COMPILEMCDE (OPENCONS)
COMPILEMODE (NOPUNCH)

The wodes are:

PRINT: The LiISP-Sap program will appear in the
printed output.

NOPRINT: No printed LICP-Sap output.
PUONCH: The LISP-Sap program will be punched on
cards.

NOPUNCH: No punched LISP-Sap ocutput,

TRACES }
NOTRACE:

See Section 6,2

OPENCONS: When cons occurs in functions to be com-
piled, It will be compiled as an open sub-
routine or mMacIro.

CLCSECCHNS: Cons will be compiled g a TSX to the
closed subroutine cons,

Opencons is slightly fester than closecons in execution
but takes wore binary program space. Opencons cannot affect
the cons counter. (See Section 6.4).

Before they have been set otherwise, the modes are
UNPRINT, UNPUNCH, UNTRACE, and CLOSECONS.

5.2 Sample Compiler Program

The function member defined in Section 2.1 has been com-
piled as an example of the way in which the compiler works.
The printed ocubtput is listed below with comments to the right
of the assembly listing.

Begguse the function member is recursive, the subroutine
can be entered several Times during a single computation.

This requires thai certain partial results be saved at each
entry, Saving is done on the push down list which is simply a
large block of storage. A pointer to the head of the list is

stored in $CPPI., When the push down list is used, this pointer
must be updated.

Conventions for LISP subroutines are as follows:

=45

1 Arguments are put in AC, MQ, $ARG3,...,$ARGIO.
2 Answer 1s returned in AC.
3 Calling sequence is TSX SUBR,4.
4 All index registers must be saved.
5 Exit is TRA 1,4 ,
The program for member contains the following locations
for temporary storage

@00576
aeosTT
00578
Q00579
600583
@Co585
$ARG2

Ixh

A

X

Answer

car{X]

edr{X]

temporary saving of MQ

$ENPDL ie a test for out of push down 1list.

The printed cutput is as follows:
FUNCTICON EVALQUOCTE HAS BEEN ENTERED, ARGUMENTS..

DEFIRE

{((memeER (LAMEDE (A X) (COND ((NULL X) P} ((EQ A (CAR X)) T)
(T (mMEMBER A {(CDR X))))))))

' END OF EVALGUOIE,

(MEMBER)

FUNCTIOR EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..

COMDEF
((MEMBER))

(MEMBER B3SS $ZERO) entry point to function member

VALUE IS .o

(NIL SXD 300576 &) save IX }

{NIL STQ $ARG2)

gtore MQ

(NIL LXD $CFPI 4)

(NIL XEC $ENPDL)
(NIL LDQ GO00576)
(NIL s7TQ O &)

(NIL TIX #44 4 1)
(NIL SXD $CPPI 4)
(NIL LDQ $ARG2)
(NIL STO GOO577)
(NIL STQ G00578)
(NIL CLA GOC578)
(NIL TNZ GOO0584)
(NIL CLA $2ERC)
(NIL STC GOC573)
(NIL TRA GOC580)
(300584 BSS $ZERG)
(NIL LXD 800578 4)
(NIL CLA O &)

(NiL PAX O &)

(NIL SXD G0c583 4)
(NIL CLA GOOST7)
(N1L SUB GOCS5E3)
(NIL TRZ G00582)
{NIL CLA $O¥E)
{SIL STO GOCSTGH)
{NTL TRA GOCSBL)
(300582 188 $ZERC
{(91L 1XD G057 &)
{WIL CLA O &)

(w11 STD GOCR85)
(NIL LDQ GO05B5)
(NIL CLA GOLSTT)
(NIL TSX MEMBER %)
{NIL STO 30C0579)
{00580 B33 LZERC)

pick up the location of the next available
word on the push down list

test to see if out of push down list

save IX 4 on the push down list

update $CPPI

restore MQ

store A

gtore X

put X in AC

if X is not null, go to next condition
X is null, pick up false
store false in answer

go to end of program
start of second condition
get pointer to X

pick up X

get pointer to carlX]
store pointer to carl(X]
pick up pointer to A

eq test for car(X] and A
if not eg, go to next comndition
pick up true

store trie in answer

go to end of program
ptart of last condition
get pointer to X

pick wp X

store pointer to cdr[X]
cdrlX] in MQ

A in AC

recursive entry to member
store answer

(NIL LXD $CPPT 4} restore $CPPI
(NIL TXI *1 4 1)

(NIL SXD $CPPI &)

(NIL LDG O &) unsave IX 4§
(NIL 8TQ GOCS76)

(NIL CLA GOCS7S) - pick up answer
(NIl LXD G00576 %) restore IX &4
(NIL TRA 1 &) exit

MEMBER

BINARY PROGRAM OCCUPIES 23407 TO

END OF EVALQUUTE, VALUE IS ..
{MEMBER)

23474 OCTAL

=48

6. Running the LISP System

6.1 Prepering a Card Deck

A LISP program consists of several sections called pack-
ets, Each packet starts with an overlord direction card, fol-
lowed by a set of doublets for evalquote, and ending with the
word STCE.

Overlord directions control tape movement, restoration of
the system memory between packets, and core dumps. A complete
listing of cverlord directions is given in Appendix D,

Overlord direction cards are punched in Share symbolic
format; “he direction starts in column 8, and the comments
field starts in column 16, Some overlord cards are described
heres
PEST: Subsequent doublets are read in until the word STOP is

encountersd, or until a read error occurs. The doublets

are then evsluated and each doublet with its value is
written on the output tepe. If an error occurs, a diag-
nostic will be written and the program will continue with
the next doublet. When evalguote is finished, control is
returned to overlord which restores the core memory to
what it was before the TEST by reading in a core memoyry
image fros the tewporary tepe.

SET: The doub.lets are read and interpreted in the same man-
ner as a ‘“E&T., However when evalquote 1s finished, the
ecore meme vy 18 not restored. Instead, the core memory is
regd out snio the temporary tape over-writing the previous
gore image, and becomes the base memory for all remaining
packets, Definitions and other memory changes made during
a SET will affect all remaining packets.

Several SET's during a LISP run will set on top of
each other,

A SET will not set if it contains an error. The mem-

;qua- S

Sioy oW o cestoi=d Lrow She Seaporuary Gaps instead.

-49-

SETSET: This direction is like SET, except that it will set
even if there is an error,
FIN: Ernd of LISP run.

The reading of doublets is normally terminated by the
word STOP, If parentheses do not count out, STOP will appear
to be inside an S-expression and will not be recognized as
such. To prevent reading from continuing indefinitely, each
packet should end with STOP followed by a large number of
right psrentheses., An unpaired right parenthesis will cause
& read error and terminate reading.

A complete card deck for a LISP run wmight consist of:

a: LISP loader

b: 1D card (Optional)
c: Several Packets
d: ¥IN card

&

®

Twe blenk cards to prevent card reader from
hanging up

The 1D card may have any information desired by the computa-

tion center. It will be printed at the head of the output.

6.2 Trecing

Trecing i3 o« tecrmique used to debug recursive functions.
The tracer prists the nawe of a function and its arguments-
when it is entared, and its value when it is finished. By
tracing cervaii critical subfunctions, the user can often lo-
cate a fault 11 s large program.

Tracing i3 controlled by the pseudo-function traclis
whose argument is a8 llst of functions to be traced. After
traclis has been executed, tracing will occur whenever these
functions are entered,

When tracing of certain functions is no longer desired,
it can be terminated by the pseudo-function untraclis whose

=50-

argument is a 1ist of functions that are no longer to be
traced.

Tracliis can trace any type of fumcticn which is indicated
by EXPR, SUBR, FEXPR, or FSUBR. However, it can only trace a
function when it has been entered from the interpreter, Thus
when & complled function uses certain subfunctions, these sub-
functions will not be traced when entered from the higher lev-
el compiled function.

The ecompiler tracer called track is entirely independent
of traclis. It can trace compiled functions regardless of how
they are entered.

In order to track a function, it is necessary to complile
the function while the compiler is in a special mode. The
compiler is put in the tracing wode by -

COMPILEMCDE (TRACE)
and is restored by -
COMPILEMODE (NOTRACE)

If a function has been compiled in the tracing mode, then
1t can be traced at any time by track whose argument is a list
of functions to be traced., Untrack turns off the tracing for
a list of functioms.

6.3 Error Disgnostics

When an error occurs in & LISP 1.5 program, a diagnoctic
giving the nature of the error is printed vut. The diagnostie
glves the type of error, and the location in the mackine where
1% occurred, In some cases a back-trace ig slso printed. This
48 a 1list of functions that were entered recurgively but nct
completed at the time of the error,

In most ceses, the program continues with €th2 next doublet,
However certain errors are fatal and in {his case control 1is
given to the monitor overlord. Errors during overlord also
continue with ocverlerd.

-51-

A complete list of error dlagnostics is given belcw, with
comments .

Interpreter Errors:

A 1 APPLIED FUNCTION CALLED ERROR
The function error will cause an error disgnostic to
oceur, The argument (if any) of error will be print-
ed. Error is of some use as a debugging ald.

A 2 FUNCTION COBJECT HAS NC DEFINITION - APPLY
This occurs when an atomic symbol is given as the
first argument of apply, and it does not have a defi-
nition either on its property list or on the a-list
of a2ppiy.

A 3 CONDITIONAL UNSATISFIED - EVCON

None of the propositions following COND are true,

SETQ GIVEN ON NON-EXISTENT PROGRAM VARIABLE - APPLY

SET GIVEN ON NON-EXISTENT PROGRAM VARIABLE - APPLY

GO REFERS TO A POINT NOT LABELLED - INTER

TOO MANY ARGUMENTS - SPREAD

The interpreter can handle only 10 arguments for @

fenetion.

A 8 UNBOUND VARIABLE - EVAL .
The atomic symbol in guestion is not bound on the
a-118t for eval nor does it have an APVAL or APVALL.

A 9 FUNCTION OBJECT HAS NO DEFINITION - EVAL
Eval expects the first object on g list to be sval-
uated to be an atomic symbol. A 8 and &4 9 frequently
oceur when @ parenthesis miscount csus=e the wrong
phrase to be evaluated.

> > > P
~N v\ &

Compiler Errors:

e 1 NOT ERCUGH NUMBERS FOR SAVING - COMPILER
The function cannot be compiled because there are too
many varigbles that need to be saved. The limit is
curpently 15,

w n

NOT ENOUGH NUMBERS FOR UNSAVING - COMPILER
NOT ENOUGH BINARY PROGRAM SPACE - COMPILER
Lack of room to store compiled program.

Character Handling Functionsg
CH 1
CH 2
CH 3

TOO0 MANY CHARACTERS IN PRINT NAME - PACK
FLOATING POINT NUMBER OUT COF RANGE - NUMOB

TAPE READING ERROR - AIWANCE

The character handling functions are Jdescribed in
Appendix E,

Miscellaneous Errorss

F

F
F

I

&2

i

2
3

v}

CONS COUNTER TRAP

The cons counter is described in the next section.
FIRST ARQUMENT LIST TOO SHORT - PAIR

SECOND ARGUMENT LIST TOO SHORT -~ PAIR

Pair is used by the interpreter to bind varigbles to
arguments., If a function is given the wrong number
of arguments, these errors may occur.

CBJECT GIVEN AS INPUT - DESC

SR TRAP - CONTINUING WITH NEXT EVALQUOTE

When the instruction STR is executed, this error og-
curs. If sense switch 6 is down when en STR i3 ex-
ecuted,; control goes to overlord instead.

FLOATING PCINT TRAP OR DIVIDE CHECK

0T OF PUSH DOWN LIST

The push down list¢t is the mwemory device that k:eps
track of the level of recursion. When recursi n gets

very deep, this error will occur., Non-terminesing re-
cursion will cause this error.

Garbage Collector Errors:
Gc 4

FATAL ERROR -~ RECLAIMER
This errcr only occurs when the system is 80 chocked
that 1t cennot be restored, Control goes to overlord.

ac 2

=53

NOT ENOUGH WORDS COLLECTED - RECLAIMER
This error restores free storage @s best it cen and
continues with the next doublet,

Number Errors:

I 1

L e]
& W

Overlord

o 000 O 00
~N AWV W

NOT ENCUGH ROOM FOR ARRAY

Arrays are stored in binary program space.

FIRST ARGUMENT NEGATIVE - EXPT

BAD ARGUMENT - NUMVAL

BAD ARGUMENT - FIXVAL

Errore I 3 and I 4 will occur when numerical funetions
are given wrong arguments.

Errors:s

ERROR IN SIZE CARD - OVERLORD

INVALID TAPE DESIGNATION - OVERLOURD

NC SIZE CARD - OVERLCRD

BAD DUMP ARGUMENTS - OVERLORD

BAD INPUT BUT GOING ON ANYHOW - OVERLORD
END OF FPILE ON INPUT - COVERLORD
COVERLAPPING PARAMETERS - SETUP

Overlord is discussed in Appendix D,

Input = Output Errors:

P 1
R 1

s ®m
LS

=
(o)

PRINL ASKED TC PRINT NON-OBJECT

FIRST COBJECT ON INPUT LIST IS ILLEGAL - RDA

This error occurs when the read program ercouriers
& character such as "}" or "." out of context. This
oceurs frequently when there is a parenthesis niscount.
CONTEXT ERROR WITH DOT NOTATION - RDA

ILLEGAI, CHARACTER - RDA

END OF FILE ON READ-IN - RDA

PRINT NAME TOO LONG -~ RDA

Print nemes may contain up to 30 BCD charascters.
NUMBEE T00 LARGE IN CONVERSION - RDA

6.4 ‘The Cons Counter and Errorset

The cons counter is a useful device for breaking cut of
program loops. It automatically causes a trap when a certain
number of cons's have been performed.

The counter is turned on by executing count [n], where n
is an integer. If n cons's are performed before the counter
is turned off a trap wlll occur and an error diagnostic will be
given, The counter is turned off by uncount [NIL]. Ths count-
er is turned on and reset each time count [n) is executad. The
counter can be turned on 80 as to continue counting fres the
state it was in when last turned off by executing count [NIL].

The function speak [NIL] gives the number of cons‘s count-
ed since the counter was last reset.

Open cons's in complled functions wlll not be courted,

Errorset is a funstion aveilable to the interpreter and
compller for making & graceful retreat from an error coadition
encountered during a subroutine,

errorset{esn;m] is & function of three arguments. e is g
form to be evalusted, n is the number of conses to be permit-
ted before an errcr should be indicated. w is the mode of op-
eratlon; T if error dlagnostics are to be printed, F if they
are to be suppregsed.

Errvorset computes evalle;NIL]. Since e is evailuat>d once
tefore errorset sees i¥, it may need to be quoted. The value
of errorget is a list of the wvalue of e, that is,
list{eval[e;NIL]].

If an error condition ocecurs during the errorset evalua-
tion of e, errorset will return the value NIL. Toc mariy conges
will be treated as an error,

ng an aerrorset, the cons counter will be dscremented
whether 1t 1s turned om or off. An error condition will result
when either the origingl value of the gons counter is reduced
to zero, or the number specified in the errorset has been re-
duced to zaro. Whether an error was encountered or pot, the cons

«55-

counter will be left gt its originel velue minus the n.umber

of conses actually used, when errorset is completed. ‘The

on-off status of the cons counter will be as it was be’ore

entering the errorget. “
Errorset may be used recursively.

T. List Structures

In previous sections of this menual, 1lists have been
discussed using the LISP input-output language. In this
section, we discuss the representation of lists inside the
computer, the nature of property lists of atomic symbols, re-
presentation of numbers, and the garbage collector.

7.1 Representation of List Structure

Lists are not stored in the computer ss sequernces of BGD
characters, but as structural forms using computer words as
parts of trees.

In representing list structure, a computer word willi be

depicted as & rectangle divided into two sections, the address
and desrement.

l add, | dsc,

Each of these is a fifteen bit field of the word.

We define g pointer to a computer word as the fift=en bit
quantity that is the complemsnt of the address of the word.
Thus a pointer to location T7T77 would be 00001,

Suppose the decrement of word x contains a pointer to
word y. We diagram this gs-

t
X y
We can now give a rule for representing S-expressions in
the computer., 7The representation of atomic symbols wiil be
explained in section 7.3. When & compuber word contairns &
pointer to an atomic symbol in the address or decrement, the
atomic symbol will be written there:

| onren

T ot IS S

<57

The rule for representing non-atomic S-expressions is to start
with a word containing a poilnter to car of ths expression in
the address, and a pointer to cdr in the decrement.

Following are some dlagrammed S-expressions as they would
appqu_in the computer. I§~is convenient to indicate NWIL

by ingtead of __ | NIL]} .
(4.B) L7 T3
(4 B €) AN B —
{{(M.N) X (M.N))
M X «--—-){
L 3 3
M| N M | N

It i3 possible for lists to make use of common suvex-
pressions., ({(M.N) X (M.N)}) eoculd also be represented ss-

X

¥
- M N

Clreular lists are ordinarily not pernitted., They way
not be regd in; however they can occur inside the compiter as
the result of computations involving certein functicns. Their
printed representation is infinite 1n leng:h. For exsrple,
the strugture

—s B | 3

~> =

WLl print &8 (A B C A B C Acss

-58-

The following 1s an gctusl assembly listing of the list
{A (B (C.a)) (CoA)) which is diagrammed-

L=z

= C a

The gtoms A, B, and C are represented by pcinters to locg-
tions 12327, 12330, and 12331 respectively. NIL ie repre~
sented by a pointer to location 00000,

10425 © 65451 0 67352 <A, %1
10826 © 67350 O 67351 ¥, , %1
10427 © 67346 0 00000 =%.3

10430 © 65450 O 67347 =B, ,=%ud
10431 © 67346 O 00000 =®.q

104832 O 65847 O 65451 N

The advantapec of list structures for the storsge of
gymbollc expressiong are:)

i, The size and even the mmber of expressions with
which the progrem will have to deal cannot be predictes in
advance., Therefove, 1t is difflcult to errenge bloeks of
storage of fized Length to contain thew,

2, Registers can be put back on the free-storage list
when they are no longer needed. Even one register returned
to the list 1s of value, but if expressions are stored linegr-
1y, 1t 1s 4dAifficult to make use of blocks cf registers of odd
dizes that mey become gvallable,

3. An expression that occurs as a subexpression of
ssveral expressions need be represented in storage only once.

7.2 Construction of List Structure

The following simple example has been includec to il-
lustrate the exact construction of list structures. Twe
types of list structure are shown, and a function ror deriv-
ing one from the other is given in LISP. \

In the following example we assume that we have g iist
of the form |

£, = {((ABC) (DE F),e0a,(¥ ¥ 2)),
which 18 represented as

oL -

D { E | | F

A B

€3

and that we wish to construst & list of ¢he form

£y = {(a (B ¢)) (D (EF)),...,(X (¥2))
which is represented as

X _ L_Y;\§Z
~E H{! | E ¥ L~
5 L s i

= 60w

First we consider the typical substructure, (4 (B 7))
of the second list zao This may be constructed frem A B,
and C by the cperation
consEA,cons[cons[B;cons[CgNIL}IBNILB]
Or, using the list function, we can write the same thing as
11st{A;i1st[BsC]]
In any case, given a llst, x, of thres atomic symbols,
x= (ABC),
the arguments A, B, and C to be used in the previous c¢on-
struction are found from
A = car(x]
B = cadr{x]
C = caddr|x]
The first step in obtaining 22 from £, is to vefine a
function, grp, of three arguments which creates (x {y 2))
from a list of the form (X Y Z).
grplx] = listlcar(x]slist{cedr(x];caddr(x]}]
Then grp is used on the 1list £,, assuming £, <o be of
the form given. For this purpose a new funection, nitgp, is
defined as :
witgrplf] = [nuir{£] = NIL3T ~* cons{grplcer(f]];mitgrplecdr{£]]]]
So mltgrp applied to the list £, takes each threesume, (X Y Z),
in turn and applies grp to it to put 1t in the new for:,
(x (¥ 2)} until the list £, hus been exhausted and the new 1list
£, achieved.

7.3 Property Lists

In the previous sections, atomic symbols were con:idered
only as pointers. This section describes the prop rty lists
of atomic symbols which begin &t the sppointed locetions,

Every atomic symbol has a property list., Wher. an stomic
symbol is read in for the first time, e property list 1s cre.-
ated for 1it.

=6l

A property list is characterized by having the specisl
constant TTTT7g (i.e. minus 1) a8 the first element of the
list. The rest of the list contains varicus properties of the
atomic symbol. Each property is preceded by an atomic symbol
which is called its indicator. Some of the indicators are:

PNAME

EXPR

SUBR

AFVALL

APVAL

FLOAT
FiX

L

]

-

the BCD print name of the stomic sym-
bol for input-output use.

S-expression defiring & furnction whose
name is the atomic symbol on whose
property list the EXPR appears.

Function defined bty & machine lLangusge
subroutine,

Permanent value for the gtomic symbol
congidered as a variable,

Similar %o APVALL ~xcept that it points
to 2 full word instead of . ist structure.

Indicates a floating point number,

Indicates & fixed point number

The atomic symbol NIL hes two things on its property
list--1ts PNAME, and an APVAL which gives 't a value of NIL.
Its property list looks like this:

= [APVAL > »{PNAME L 17
p , 13
NILR2Y
00000 © 00134 O TTTTT -4, ,=NIL
77644 0 00133 o 14741 ~APVAL, , =1
TT645 0 00131 O 00132 ~8.1, -2
TT646 C 0000C G 00000 0

TY64%7 O 00130 © 10236 ~PHAME, , - % i

TT65C © 00000 O 00127 BUXY
77651 O 00000 O 00126 @i
TT652 4531837TTTTT BCD NIL?797

The print neme (PNAME) is depressed two levels to allow
for names of more than six BCD characters. The last word of
the print neme is filled out with the illegal BCD character
778“(?)0 The print name of EXAMPLE would look 1likes

——— _{m 7 | .
! b
EXAMFL 799 |
: 21 K79 i

*

The property list of a machine langusge function contains
the indicator SUBR followed by & TXL instruction giving the
location of the subroutine and the number of arguments. Por
example -

- - SﬁBﬁ' 3 .

TXL 37T72L,,2

The indicator EXPR points to an S-expression cefining a
function. The function define puts EXPR's on property lists.
After defining £f, its property list would leok 1ile -

[ﬁ -1 »| EXFR PAIAME|
¥
!Fﬂﬂﬂbﬁ —> —

4 b ——
X o T e e ! mf:i?:?]

-63-

The function getlxsi] can be used to Pind & propesty of
x whose indicator is 1. The value of get!"F;EXFR] would be
(LAMBDA (X) (COXD...

A property with its indicator can be removed hy
remproplx;1].

Compile, comdef, and.compsap are functions that put SUBR's
on property lists. ‘

The function deflistix;i] can be use¢ to put any indicator
on a property list. The first argument is a 1ist »f puirs as
for define, the second argument is the indilcator ¢» be used.,
defliet{x;EXPR] = define(x].

Numbers have property lists similar to those rfor atomie
symbols. The actual number is in a full word with the appro-
priate indicator, WLCAT or PIX. The property liet for the in-
teger 20 (decimal) is-

-4 b= 713t { s AFVALL 1~

‘“ l o

+00000000002%
|

Because nunvers have APVALL's pointing to Cheuselies,
they are constarts and do not need to be ¢uoted.

Numbers dc not have PNAME indicators. Convewriion to op
from BCI is made during reading or writing.,

Unlike atoric symbols, numbers are nct stored uniquely.
If a number is read in twice, there will be two separs:e pro-
perty lists ecv2ated. When a number is the pesult of & com-
putation, a property list for it is automstically creaced,

If a number is read in as an octal, it has an indicator
OCT in gddition to the indicator FIX. This signale the print
program ¢o print the number @s BCI octal rather then decimsl.

=6l=

T-4 ldst Structure Operators

The theory of recursive functions developed in Chapter 41
will be referred to as pure LISP. Although this language is
universal in teirms of computable functions of symbolic ex-
pressions, it 1s not convenient as a programming esystem with-
out additional tools to increase its power,

In particular, pure LISP has no ability ¢to modify list
structure., The only basic function that zPfects 1list struce
ture 18 cons, and this does not change existing lists, but cre-
ates new lists. Functions written in pur- LISP such &3 subst
do not actually modify thelr arguments, bu: malke the modifica-
tions while copying the original.

LISP is made general In terms of 1ist structure by means
of the basic 1list operators rplaca, and rplacd. These opera-
tors can be used to replace the address or decrement or amy
word in a list. They are used for their effect as well as for
thelr value, and are sometimes called pseudo-furations.

rplece(x;y] replaces the address of » with y. Its value
is x, but x is something different from what it wes belfore,
In terms of value, rplaca cen be describec by tne aquation:

rplaca(x;y] = cons{y:edr(x]]
But the effect is quite different. There is no cons involved,
and & new word is not created.,

rplacdix;y] replaces the decrement of x with v,

These operztors must be used with ca.ticn. Tiey can per-
mamently alter existing definitions and oiher buisi: memory.
They can be used to create cireular lists, which e e¢iuse in-
finite primting, and look infinite to funciione thiut s=arch
such as equal ard subst.

As an example, consider the function mltgrp o sestion 7.2.
This 18 a 1list altering function that alters a copy of its argu-
ment. The subfunction grp rearranges a subgrou;:

s | R [[—] to

A |
LoIB [¢]

The original function does this by creating new list structure,
and uses four cons’s. Because there are only three words in
the original, at least one cons is necessary, but grp can be
rewritten using rplaca and rplacd.

The modification is as follows:

=

A B -~

e
L3
1]
'
- d

v ELEL N

A B ¢

-‘w“ --.

The new word 1s created by cons{cadr{x]seddr{x]i. A pointer to
1t 18 provided by rplacalecdri{x];cons{cadr{x];cddrix]il].
The other modification ig to break the polrter from the
second to the third word. This is done by rplacd{edrix];mlo
pgrp is now defined as
perplx] = rplacdlrplacalcdrix];cons{cadr(x] ;cddr{x] 1] ;ml
The function pRLp 18 used entirely for its =ffact. Its
value is not usetful, bsing the substructure ((B 3)). Therefor a
new mitgrp 1s nceded that sxecutes pErp and igncres its valus.
Since the top level is mnot to be copied, witgrp should do no
consing.
pmitgrpl{£] = [null{£] - NIL;
T = prog2{grplcar{ £] };mitarp [cdr{£]]]]
Prog2 is a function that evaluates its two arguments. Its value
is the second argument.
The value of pmltgrp is NIL. It is & pure pseudo-function.

7.5 The Free Storage List and the Garbage Collecter

At any given time only a part of the wemory reserved for
1ist structures will actually be in use for storing S-expres-
sions., The remaining reglisters ars arrang:d in =2 single list
called the fres-storage list. A certain register, FREE, in
the program sontaine the location of the first register in ¢this
1iat. When a word is required to form som: additicngl 1ist
structurs, the first word on the fress-stor:ge list is taken and
the numbsr in register FREE is changed to hecome the location
of the second wurd on the free storage list. No provision nesd
be made for the user to program the return of registers to the
free-storage list.

This return takes place automatically whensver the free-
storage 1list hes bsen exhausted during the rumn:ng of & LISP
program. The program which retrieves the :torare I8 czlled the
garbage collector,

Any pilece of list struecture that ig p.gessg 3le to programs
in the machine is considered an gctive list and is not touched
by the garbage collesctor, The active l1ist: are accessible %o
the progrem through certain firxed sets of “ase iugisters such
as the registers in the list of atomic symiols, the registers
which contain pertial results of the LISP romputatiqgn in pro-
grass, etc., The list structures involved =ngy b: arbitrarily
long but each register which 1s active amus: be ~oniected tto a
base register through a car-cdr chein of r-gist rg. Any regis-
ter that cannot bte 80 reached is not accessible to any drogram
and is non-active; therefore its contents .re r. L nger of in-
terest,

The won-active, 1.8, avallable, reglsters gre reclsimed
for the fres-storage 1list by the garbage cullsctor gs follows.
First every active register which can be reached through & car-
edr chain is marked by setting its sign negative. Whenever &
negative ragister 18 resched in & chaln during whis procsss,

-67-

the garbage collsctor knows that the rest of the 1list involv-
ing that register has already besn marked. Then the garbage
collector dres = linsar sweep of the free storags aresa, col-
lecting all registers with a positive sign into a new free-
storage list, and restoring the original signs oF tne active
registers.

Sometimes list strueture'points to ful L woris 3such as
BCD print nezmes and numbers., The garbage collector cannot
mark theéese words bzceause the sipgn bit may b2 in use. The
garbage collectcor must also stop tracing berguse the pointers
in the address and decrement of a full word are rot meaning-
ful.,

These problsms are solved by p&téing fall words in 2 ve-
serv>d section f memory called full word s=pames. 1Ine garbage
collector stops traclng as soon as it leaves the free siorsge
s ace., Merking in full word space is aceorplishsd by a bit
tabls. ’

Appendix A

This appendix contains functions availabie in the LISP
System as of July 1961. Suppil:mentary functions and programs
such as integrate and simplify are not included.

The description of each function conteins the type (i.e.
EXPR, FEXPR, SUBR, FSUBR), the nature of the arguments, a LISP
definition when spplicable, and an explanation of its purpose,

FKeeping track of the contents of a particular system can be
8implified by the Ffollowing tricks:

i. The entir= set of objects (atomic symbols) existing in
the system cen be printed out by the doublet

EVAL, (OBLIST WIL)

2, The properties of sn stomic symbol can be printed by
executing printproplx],

Functions are arranged in groups in the degeriptive 1list-
ing. An alphabetical index follows.

Elsmentary Funsyi-ig

car{x] : SUER

sdel(x] : SUBR
£11 maltiple car’s and edris of length two, three, and four
are avallable in ihe system, e.g. cedr, ceddar, ete,

conslxsy] s BSUER
conslxzy] = (x.¥)

rplacalxsy]l s SUBR pseuwdo-function
This functior replaces the address of x with ¥. The value
of rplace is the new x,

-69-

rplacdlxsy] : SUBR pseudo-function

This function replaces the decrement of x with y. The value
of rplacd is the new x,

See Section 7.3 of this manual.

Elementary Predic:tes

stomi{x] : SUBR

The argument of atom is svalusted and the valus of atom is
true or falise depending on whether the argument 1s or is not an
atomic symbol. In list terminology (see Chapter 7) the argument
is an atomic symbol if and only 1f car[x] = -1.

nuli{x] : SWBR
The value of null 1s true if its argument is NIL, and false
otherwise.,

endlxs3x550005%,] ¢ FSUBR

- The arguments of and are evalusted in sequence, from left to
right, until one is found that is false, or until the end of the
list 18 reached, The value of end is felse or true respesctively.

g_g‘fxi;xgg coo3X,l 3 FSUBR

The argument: of or are evaluated in sequence, from left to
right, until one s found that is true, or until the end of the
1ist is reached. =he velue of or 18 trus or false respectively,

not{x] : SUBRR
The value of jot 18 true if its argument is false, and false
if its argument ... true,

eqixsy]l ¢ SUBR
if x and y ave atomlc symbols, then eq{xsy] is trus if they
gre identieal ard faise if they are different atomic symbols, If

=T0-

the arguments are not atomic symbols but S-expressions or numbers,
than the value eq will certainly be false if they are different,
and may be trus or false if they are identical, depending on how
they happen to be represented in the machine.

equai{xsy] s SUER .
Equal is true if its arguments are identical and false other-
wiss. The arguments may be any type of legal list structure such

23 numbers, atomic symbols, or S-expressions which way contain
mumbers,

equal{m:n] = [eqimsn] - 7;
atom{m] = m =1];
aton[n] = p; ‘ ,
equal[car{m];carin]] = equalfcar{ml;edrin]l;
T = P]

Interpreter Comporents

Information on these functions is contained in Chapters 1, 2,
and in Appendix B, evalquote[fnsargs] operates automatically on
the input doublets; however, it can also be called explicitly.

epplylfnsargssa-1ist] applies 1ts first (functional) argument to
its second argument, thereby computing fnlargisarg?;...sargn].
The a-11st is used to bind variables and function names. Apply
uses eval.

evallexpressionga-list] evaluates its first argument, and in par-
ticular eveluates variables using the a-list. Eval and apply are
interdependent.

tegt for numerical equallty

@ 71

‘Defining Function and Functions Useful for Property Lists

define[x] : EXPR pseudo-function

The argument of define, x, i2 a 1list of pailrs

((uy) (up v5) oo (w, v.))

where each u 13 @ name and each v 1s a A-expression for a function.
For each palr, define puts an EXFR on the property list for u
pointing to v. The function define puts things on at the front of
the property list. The value of define is the list of u's.

define[x] = deflist[x;EXPR]

deflisti{xsind]l : EXPR pseudo-function
The function deflist 18 a more general defining function.
Its first argument is a lis8t of pairs as for define, Its second
argumsnt 1s the indicator that is to be used. After deflist has
‘ been executed with (ui vi) emong its first argument, the pro-
perty list of u, will begin -

* LEr -
If deflist or defins is used twice on | the seme object with
the same indicator, the old value will Y4 y& réplaced by the
new one.

attriblxse]l : SUBR pseudo-function

The function sttrlb concatenates its two arguments by chang-
ing the last element of its first argument to point to the second
argurent. Thus it is commonly used to tack something onto the
end of a property list. The value of attrib is the second argu-
ment. For examplie
attrib[FP; (EXPR (LAMBDA (X) (conD ((ATOM X) X) (T (FF (CAR X))))))]
would put EXPR followed by the LAMBDA expression for FF onto the
end cf the property list for FF,

‘ prop{xzysul : SUBR
The functior prop searches the 1ist, x, for an item ldentical

-T2

with y, If such an element is found, the value of prop is the
rest of the list beginning immediately after the element, Other-
wise the value is u, where u is a function of no arguments.
proplxsysul = [nulllx] = ul)seqlcar{x];y] = cdar(x];
T =+ propledr{x)sysul]

getix;yl s SUBR .
Get 1ig scmewhat like props; however its value is car of the

rogt of the 1list 12 the indiecator is found, and NIL otheruige,
getixsy] = [nudilx]) = NiLseqlcar(x]l;y] = cadr{x];

7 -~ getledr(x];y]]

csetlobsval] : EXPR pseudo-function

This pseudo-furiction is used to create a constant by putting
the indicator APVALL and a value on the property list of an atomic
symbol, The first argument should be an atomic symbol; the second
argument is the value,

csetglob;val] : FEXPR pseudo-function
Cgetq is like cset except that it quotes its first argument
instead of evaluating 1t.

remprop{xsind] : SUBR pseudo-function

The function remprop searches the list, x, looking for all
occurrences of the indicator ind. When such an indicator is found,
1ts name and the wusceeding property are removed from the 1ist.
The two "ends® of the iist are tiled together as indicated by the
dashed 1line below.

——m -
[] L
L»(ind >~

—> property

The value of remprop is NIL.

List Handling Functions

113t[xlsx2§ Y gxn} 8 FSUBR
The function 1ist of any number of arguments has as value
the list of 1%s erguments,

apperdixsy] : SUER

The function gppend combines its two arguments into one new
1list., The wvalue of append is the resultant list. For example,

append{ (2 B} (c)] = (A B C)

append{ ((a)) (¢ D)] = ((a) ¢ D)

appendix;y] « [nulilx] = y;7 = cons[car[x]sappend[f:dr[x]sy]}]
Note that append copies the top level of the first 1list; append
is like nconc except that nconc does not copy its first argument.

conelx, sx,50005%,] : FEXPR pseudo-function

Cone concatenates its arguments by stringing them all together
on the top level, For example -

conc[(A (B.¢) D)s (F); (@ H)] = (A (B.C) DF @ H).

Conc concatenates its arguments without copying them., Thus
it changes existing list structure and is a pseudo-functéon.

neone{xsy] s SUPR pseudo-function
The function nconc concatenates its arguments without copying
the first one. Tte operation is identical to that of attridb ex-
cept that the value is the entire result, (i.e. the modified first
argument, x).
The program for neonclxs;y] hes the program varisble m and is
a8 follows:s
necone{xzy] = pros[[lnh
null{x] = return(y];
m = X

A) [otr)] —peof3]

m = cir(n]
B ZE::JI ;)
et

comy[x] ¢ sum

This function makes a copy of the list x. The value of copy is the
location of the copied list.
eow[x] -fﬁ;ﬂ.l[x] -ﬁm,atan[x]-—-y x;T -—-)ccnsfcpy[&r[i]]
copyf¢

&E‘WJ : SUBR
The function pair has as value the list of pairs of corresponding elements of
the lists x and y. The srguments x and y must be lists of the same nmber of elements.
They should not be atamic sysbols.
petr(Xy] = [prog[usvim]
u=x
V=Y

A mnxgx%ﬁgn-\:l'?]]*—? ret-m.[],'r-, error(f2]] ;

a - cos Tm[‘w[]w[v]] =t

sassoc [x;y;u] : SUR

The function sassoc searches y, vwhich is a list of dotted pairs, for a pailr
vhose first element is identical with x. If such a pair is found, the value of
sassoc is this pair. Otherwise the function u of no arguments is taken as the value
of sasgoc.

sassoc[x;y;u] = [ow1(y }— u[Jseqfcoar(y],x]--’ carfy];

T snasoe (367]

75~

substixsysz] : <UBR
The function subst has es value the result of substituting x
for all occurrences of the S-expression ¥y in the S-expression z,
subst{x;ysz] = [equally;z] = x;atom{z] = 23T = cons[subst[
xsyjcar(z]];sustixsy;cdr(z]]]])

sublislx;y] : SUBR
Here x is a liet of pairs,
(C2.99) (uy.wp) oou (uy v,))
The value of subiis{xzy] is the result of substituting each v for
the correspondin: u in y,.
Note that tine following M-expression is diffevent from that
given in Chapter :i, though the result is the same.
sublis{x:;y] = [nulllx] = y; .
nulify] = NIL;
T ~ searchix; . .
MiJjlsequallyscaarf 31113
A J3)sedar{3)];
»M[l:latomly] ~ y; .
T = cons[sublis[x;car(y]];sublisix;
cdrly]]1]]
1]

reverse{2] s 8gmR
Ihis is & fuiction to reverse the top level of g list. Thus
reverse[(A B (C.D))] = ((c.D) B a)
reverse{d] .« proglv]s
u o= g3 .
A rulll{u] = returnivi;
v = consi{car{u];sv]
U = e¢dr u]
golAl

~76-

Functionals or Functions with Functions as Arguments

maplist{xsf] : SUBR functional

The function maplist i1s a mapping of the list x onto a new
1ist rix]. ‘

maplistixsf] = [nuil{x] — mgi‘[“"‘ cons[f[x},mplist[cdr[x};f}]]

mapcon[xsf] : SUBR functional
The functiocn mapcon is like the function maplist except that
the resultant list is a concatenated one instead of having been
csrea’@ed by cons-ing.)
mapeon{xsf] = [nulilx] = NIL;T = neonc{fix]; mpcon[edr[x];f]]]

maplx;] : SUBR functional

The functior map is like the function maplist except that the
value of map is KiL, and map does not do a cons of the evaluated
functions. map is used only when the action of doing fix] is im-
portant.

The program Tor map{xg £] has the program variable m and is
the following:

map{xsf] a*@@iimﬁs

W = Xg
LOOP nuiifm] = returnﬁml,
lmis
m == ol mls
golLoCy]
searchixs;p;feul - BSUBR functional

The functiorn: gearch looks through a 1ist x for an element
that has the proszerty p, and if such an element is found the func-
tion £ of that elcment is the value of search. If there 1is no
such element, the function u of one argument, x, is taken as the
value of search (in this case x is, of course, NIL).

@earsn[x sps?yul = {null{x] = ulx]l;plx] = £Ix];T = search(

edr{xi;psfyull

Arithmetic Functions

These are discussed at length in Chapter 3.

function
plus
minus
difference
times
divide
guotient
remainder
addli
subi

max

min
recip
expt
lessp
greaterp
zZerop
onep
minusp
numberp
fixp
floatp
eqp
logor
logand
logxor
leftshift

constvallp]

¥SUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
SUBR
SUBR
SUBR
#SUBR
FSGBR
SUBR
SUBR
SUBR
SUBR

EXPR

number of args
indef.
1
2
indef.
2

[aad ol |V I)

indef.
indef,

RY

N N T)

value
xl+x2+0 Q o#xtl
=X

X=y

Xy %y 000 Ky
list{x/ysremainder]
x/y

x - &/

x+4

x=1

largest of xy

smallest of

1/x3 fixpix] =» ©

xy

X<y

X2y

!x1553310°6

X =1

x is negative

x is a number

X i & fixed point number
x is a floating point no.
‘xay1=i3x10“6 \
xiwxévooowxn ORA
xihxaﬁuo.ﬁxn ANA
xiﬁxevgo.Vxn ERA

x.2¥

Comstyal maies certain atomic symbols appesr as numbers, thus

w78¢=

turning them intc constants., Its argument is g list of pailrs
such as -

((PI 3.14) (E 2.748))
Its effect on each pair is as follows

Eal -1 % Am:m 1

|
i '
) \
; |)
i « : PI 2797
! .
olu * L e Wme mm Gme G o w—- 1.
|3—-)| -4 FLOAT APVALL
_ I
| 3.14
oomwaﬂp] = mapls.stﬁpb\[{ 3)rpiacd(caar| §] ;odrtncom{cadm»{ 31 .

cdaar{ 3}1111]

array(x] : SUBR pseudo-function
The Array Feature is discussed in Section 3.4,

Debugging and Trasing

errorix] : SUBR
This will cause error A1 to occur. The printout will include
x which may be usad a8 a dlagnostic.

errorset{esnsm] : SUBR
Errorset 1s discussed in Section 6.4,
error during evallesNIL] -+ NIL;
T~ 1istievaile;NIL]]

traclis - untraclis : for interpreter traeing} See Section 6.2

® 79

track - untrack : for compiler tracing. See Section 6.2

count - ungount - speak : for the cons counter, See Section 6.4

Compiler Pgeudo-Functions

comdef[£] : EXPR pseudo-function

The argument of comdef is a 1ist of the nagmes of functions
to be compiled. “hey must salrsady have EXPR dsfinitions at
compiling time, Subfunctions used by the functions to be com-
piled will also be compiled automatically if they are defined by
EXPR!'s, The order in which functions should be compiled is de-
seribed in Chapter 5.

‘ compile{#] : SUBR pseudo-function
The argument of compile is a 1list of functions each of the
form (LABEL FN (LAMBDA...

sap(ssorg] s SUER pseudo-function

This pseudo-function calls the LISP-Sgp assembler., The
first srgument is a symbolic listing such as ((SYM CLA O &)
(NIL TIX 0 4 1) ...). The second argument is the location for
the first assembled word. If org is NIL, the program will be
placed in the firrt free space available in binary program space.
LISP-Sap is discussed in the compiller-assembler appendix.

compsap{£] : SUER pseudo-function

This i8 an assembly pseudo-function that assembles at org =
NIL, and linkes with the interpreter by putting SUBR on the pro-
perty list of the obJject which is the location name of the first
assembly instructicn.

‘ opdefine{2] : SUBR pseudo-function
This pseudo-finction defines new machine instructions. For

example -
opderine(((CAL 45Q10) (TIX 2Q11))]

;gputoOutput Funct ions

reed[] : SUBR

The function read of no arguments reads one list from cards
or tape (depending on the sense-switch settings). The value of
read is the 1list it has read.

print{x] : SUBR pseudo-function

This function prints one S-expression (on the on-line printer
and/or output tape depending on the sense switch settings). The
value of print is its argument.

Print always starts printing at the beginning of a line or
record, !

punch{x] : SUBR pseudo-function

This function is exactly like print except that the output
appears on the puniched output tape.

printprop{x] : EXPR pseudo-function

The srgument of printprop is an atomic symbol. Frintprop
will print the nare of the atomic symbol, all indicators on its
property list, and the properties assoclated with certain indi-
cators that point to 1list structure.

punchdef{x] : E{PR pseudo-function

If x 18 & 1list of atomic symbols sach of which hes EXPR on
its property list, then punchdef will write the EXPR definitions
on the punched output tape.

=81~

Character Handling Functions

The following functions are deseribed in detall in the ap-
pendix in LISP input-output, resading, and printing operations
(and in Memo 223 until it is available).

advance n 1liter
charcount mknam
clearbuff numob
eurzhar opchar
dash pack
digit startread
endread terpri
intern unpack

Interpreter Specisl Forms

UOTE <<
The unevalueted argument o< is the valus of QUOTE.

(coND (py &) (P, 25) oo (P 2,))

COND evaluates each py in order until one is fournd whose
value is not NIL (0). Then the corresponding ey is evalugted,
and this is the velus of COND.

(FUNG"L'ION fn}
’ If the first slement of an S-expression is FUNCTION, the
secord element is understood to be the function. A new iist is
conatructed with first element FUNARG, second element sequal to fn,
and third element equal to the current 1ist of bound variables.
I.e.)

evall (FUNCTION fn);b] = (FUNARG fn b)

Having such & 1lizt of bound variables carried along with
the function insures that the proper values of the bound varia-

=82-

bles are used when the function is evaluated., Thus
applyl (FORARG £ b)sxsa] = apply[fsx;sb]

Program Feature

m[evo] s FSUBR

Prog signals the program feature. The first argument is a
list of program variebles. Each non-atomic argument after the
first is a statement. Each atomic symbol is a location symbol for
the next statement,

golx] : FSUBR pseudo-function
Go causes a transfer to the location x. Its argument is not
evaluated. The argument must be a location marking symbol.

set{x;y] : SUBR pseudo-function

Set can be used to change any type of varigble on the current
a-list. The first gargument is the variagble to be set. The second -
argument is the value, ~

setqlx;y] : FSUBR pseudo-function
Setq is8 like set except that it quotes its first srgument in-
stead of evaluating it.

return(x]

The argument of return is evaluated, and the program is ter-
minated with this value,

Miscellaneous Functions

prog2ix;y]l : SR

Prog2 is defined by Allxsyl;y]. It is an identity in its
second argumert. The first ergument is evaluated for its effect
rather than its value.

-83-

epifx] s SUBR
Cpl copies its argument which must be a 1list of a very spe-
elal type.

N O oy
¥ } ¥

full werd full word [fuil word

The copied l1list is the value of cpi.

gensym[] s SUBR

The function gensym has no arguments. Its value is & new,
distinet, and freshly-created atomic symbol with & print name of
the form GO000L, GO0002,...,399999,

This funetior is useful for greating atomic symbols when one
is needed; each ore 1s guaranteed unique. Gensym names are not
permanent end wilt not be recognized if read back in,

selectlqs {4y 2,); {4y 85)s50003(q, e,)58] ¢ FEXPR
The giﬂs 1n seleet are evalua@eé in seqyea@e from left @q
right until -one v found such ¢hat
9 = 9
and the vaiue of "2lect 1z the value of the corresponding e, I
no such a4 is f@uud the value of select is that of e.

makeblrix] : E¥*R pseudo-funection
This functici: speeds up the execution of multiple cars and
edrs ("makes car or cdr gbler"). The grgument is & list of pairs
such as :
((caar {A A})) (caDR (A D)) {CADDR ¢A D D)) ...).
Makoblr furns sach form sich a8 CAIR into a compiled function with

the appropriate definition as indicated by the string of Als gnd
Dig,

-84-

format[namesformsvariis] 3 EXPR pseudo-function
Arguments g

name:s an atomic symbol

forms any list structure

variis: & list of variables each of which oceurs once
and only once in form.

Effects

Format creates several compiled funetions.

Name becomes a function which has as many arguments as
there are varigbles in varlis., It is a sub-
gtitution function that substitutes its argu-
ments for the variables of variis in the
S-expression form,

Each varigble nagme becomes g function of one argument.
The function is a chaln of car's and cdris
thet 18 sufficlient to obtain the variable in

its proper locgtion in formab.
Jongider the Uvollowing exsmple:s

format{VICO: (HE IS HCE WITH ALP SHEM SHAUN AND ISEULT);
(HCE ALY SHEM SHAUN ISEULT)]
After executiqg the pseudo-function format, six functions
will have been defined and compiled.
Yico is now : substitution function. For example -
vieco{ {SUCH A 3RANDFALLER); (A POCKED WIFE IN PICKLE);TWO;
(IWILLING BUGS):; (ONE MIDGIT PUCELLE)]
= (HE IS (Si°H A GRANDFALLER) WITH (A POCKED WIFE IN PICKLE)
TWC (TWILL'NG BUGS) AND (ONE MIDGIT PUCELLE))Y

1 James Joyce, Flunegan's Weke, p. 29,

«85-

Hce, alp, shem, shaun, and iseult are now functions each of
which selects from its argument the substructure déetermined by
the position of the function namwe in form. ’

For exgmple -

shew((BUT THE (DUVLIN SULPH) WAS IN GLUGGER THAT LOST-TO-

LEARNING)]™
= QLUGGER

and

hoel ((HOHOHOHO MISTER FINN) (YOUR GOING TO BE) (MISTER
FINNAGAIN})]?
= (MISTER FINNAGAIN)

tempus-fugit{] : SUBR pseudo-function
Executing this will cause a time gtatement to appear in the
output. The value is NIL. (Tempus-fugit is for MIT users only.)

loadf] : SUBR psewdo-function
Program control is8 given to the LISP loader which expects
octal correction cards, TOE row binery cards, and a transfer card,

pit {1 3 SUWBR »seudo-function
This is equivalent to pushing "LOAD CARDS™ in the console in
the middle of a LISP program.

presiaim{] : SUBit pseudo-function
: Executing thi:s will cause a garbage coliection to ocecur, The
value is NIL,

game{] ¢ SUBR pseudo-function

Executing this will cause a program halt. Pushing START
will cause the progrem to continue by returning the value NIL.

Ly

:5_. Ibido 9 p() 2220
oD e X -
E b Ly o g

N

Alphebeticel Index of Funections

ADD1
ADVANCE
AND
APPEND
APPLY
ARRAY
ATOM
ATTRIB
CAR

CDR
CHARCOUNT
CLEARBUFF
COMDEF
COMPILE
COMPSAP
CONC
COND
CONS
CONSTVAL
CoPY
COUNT
CP1l

CSET
CSETQ
CURCHAR
DASH
DEFINE
DEFLIST
DIFFERENCE
DIGIT
DIVIDE
ENDREAD
EQ

EQP
EQUAL
ERROR
ERRORSET
EVAL
EVALQUOTE
EXPT
FIXP
FLOATP
FORMAT
FUNCTION
GENSYM
GET

GO
GREATERP
INTERN
LEFTSHIFT
LESSP
LIST
LITER

[EXERNEEFNRERE N R NN N XN ¥ RN
080 0CSPNORIOOIISINRGRELELOCT YW
[A X EN NN R RN R E R NN X XNNNNX N
0900900000082 000082000
2080502000908 000000cves
OGO ODNOBODPOOOCNOBIOGELSS S
CeNHNBSGessCRRLROOOCEOROOE S &
00 ACRONAIGOOPRPREABOBBIBEO L
(AN EE N E R XENE LR NN XN R R N3]
000903V OINLANNRODLEIY B
S0 00ReOO0DOINGCRORRAGEDORD
PO OB BQERPRIDOOLOCBIOEBNBOGD
0026000000000 R0620a8DS
RGO P2CRVOEO0OQBOLCNIEADERTED
00 QRGPS ICOHOOREREITDOES D
VPSP ISPLEIOETOROCREHROSD
(A EE N NERERERERENNE B ILERBENREN N
200 RSSAQCOESDIEIBDOIOCOCSBEORSES D
[E R KN RN EEX NN XN KR BN NN NEE N
AR R R NNENENERENRRJENNRNENXERE]
[A X E N EEENEERE RN R EENENENEN
(A X ENNENERE XX RN XN ER XX ENXERNE]
S8 00O0sEessNePOADOSGSOROIODGE R
[E A X RN N XN KRN RE RN NN NENR NI
e0 8050000080006 08300002 Y 2
(I ERERYRRRNENEENNNNWN NN
080D HNOGOTONOOEDOOOGEOLSEO®E N
20000000 QROESTIIGCRABOOESGE P
000 006002V CORROOOEDASD
GO0 BBDNOCOEVRCISRRATEBQCINO R
98O0 POV OCOOCRSIEOENREORNSGERD
2000000020000 080002000%
[I X E RN ENEN NN NN ENN NERN N
00000 0O0DODOPPBIPOESIRERESEDRD
#0000 BsOOORPBSOIARGOEIEGERRCEROS G
O2H OO PGS0 OO600C80ERANES
POV ORAVOOINOHSNIGLEDCGS
[AN E RN E R ENNENN NN XN NNNN NI
000 0P QLGOS OCOOGBOIINIGPROSD
I AN E R NN NENRNENRNENERERXHNE R NXNE I
2200000000000 0060000C0K30H
CODO B VSIS COOOOSIBDROGESED
0030000000080 020000860D
2900020200000 0000000e 2
[EEEEEE RN ENN RN NN XNNENNHRE RS
0200200000000 00200080s0
[A XN R XN E RN XN N X NN NN NNXNN R
PHBOIVCCOVEOEOINOIPDBDOERGESBDBBE D
([EE-RERENENR EXNNENEREESXR KRR NER]
ST HAORF 0280000000020 C0 D
2886 0D P009LBOEHNOEDN
(XX R ENE NN ENNXREZSE N E X NN NXN Y
OO BHICONDOOOESOOENAINOEOOECER

77
81
69
73
70
78
69
71
68
68
81
81
79
79
79
75
81
68
77
T4
79
83
72
72
81
81
71
71
77
81
77
81
69
17
70
78
78
70
70
77
17
17
84
81
83
72
82
77
81
17
77
77
81

LOAD
LOGAND
LOGOR
LOGXOR
MAKCBLR
MAP
MAPCON
MAPLIST
MAX

MIN
MINUS
MINUSP
MKNAM
NCONC
NOT
NULL
NUMBERP
NUMOB
ONEP
OPCHAR
OPDEFINE
OR

PACK
PAIR
PAUSE
PLB
PLUS
PRINT
PRINTPROP
PROG
PROG2
PROP
PUNCH
PUNCHDEF
QUOTE
QUOTIENT
READ
RECIP
RECLAIM
REMAINDER
REMPROP
RETURN
REVERSE
RPLACA
RPLACD
SAP
SASSOC
SEARCH
SELECT
SET
SETQ
SPEAK

scessecescesssvoesecsens 8D
escesaseccesssseessacos 17
soecececascsecocessasnes [7
coosesecscecevsesvosssenc 1
scovccoesessscessancns: O3
scsoesensscessacscsoesc IO
sssscsonsecesscnsssrasnr IO
ecssccoesenstsascev.ascHib
es0sncescoonsessesoavec (1
¢ecccsesosesccasessenccn (1
seceowuncesesoasosesess 11
soecvosececvecossacess 7
essamaceesssconescrncnsr 81
©060%0000000900060 68005 {3
svescoesoecscesecdscon s LU
09002000900 ssssesscnsea O
B P
o600sscsnesonsonecnescs Ol
sssvesssescesprodsneneas (7
esescessesecsossscssscs 851
s00scensssssssscssccncs 19
s00cssnsssesscsssasacca OF
svcocescossesosodenacra OL
cveoccsesssonssscacoocns 4
evesssssovassssesscsoas OO
[AR NN RN NN NN RN NN NN NN N X 85
eeo0v00es08000es000n0cee (7
evsacevsocvcscssssssv:e 80
ess0scscsoescoeseseasece OO0
cosoonsscsensscsceesecs 02
scoo0sc0nssesssescssnoncs 52
ceosesonesscssseessesce [1
eovoevsceocnsasesesssance OO0
se6srccosncecessctosesne 80
ecoeecoencscssscsassesvss Ol
esocsccecsesvsscossecwre 17
ecoscssssneoscsssesessce B0
eescoescecsesssvevsssesae (1
otecoessessesscsesossace 5D
scseoscecscssscsssecsens (1
cteesesceocncscossosenss 12
eescdsesceesceeessscsssa 82
coesseessesssssccesesae (D
ecoeccnsssssssscssnsces 08
cssoscescseesceasccsene OF
eceoccesesvensssvccscacs (9
cessesonosneeoseonssevas 4
soestssssssevseesocnsas (O
ecesssscecsesscesorosve O3
soesccssecscmoeconcesse G2
e80000c20e0e00008GOEC0E O

88 HACNHBOBESTOROPLOIDEEDSB L ?9

STARTREAD
SUBL1IS
SuBsT
SuB1
TEMPUS~-FUGIT
TERPRI
TIMES
TRACK
TRACLIS
UNCOUNT
UNPACK
UNTRACK
UNTRACLIS
ZEROP

B8O E00Q0UNNCGONIGILIOICENIOGIODEO®
0000000030000 0006080es4e
0......00.0..'0’...‘000
00.....‘...00‘..‘...'..

4000600200000 00 00000000
2800080000000 0090220000

26000000009 00000000RNOGOO®
0900000080080 02020006080 0
000s00ceecosoovcocoosooe e
2820000000090 0008%0802e0
260000000050 0e0CPGOLOLIETT
4000000008200 00C0000QSERLG
@3 000000088532085000806 00089

0000 R0PBCONRNGTOEEOGOCOIETDD R

81
75
75
77
85
81
77
79
78
79
81
79
78
17

	LISP_15_Prog_Man-1961_070001_a
	LISP_15_Prog_Man-1961_070002_a
	LISP_15_Prog_Man-1961_070003_a
	LISP_15_Prog_Man-1961_070004_a
	LISP_15_Prog_Man-1961_070005_a
	LISP_15_Prog_Man-1961_070006_a
	LISP_15_Prog_Man-1961_070007_a
	LISP_15_Prog_Man-1961_070008_a
	LISP_15_Prog_Man-1961_070009_a
	LISP_15_Prog_Man-1961_070010_a
	LISP_15_Prog_Man-1961_070011_a
	LISP_15_Prog_Man-1961_070012_a
	LISP_15_Prog_Man-1961_070013_a
	LISP_15_Prog_Man-1961_070014_a
	LISP_15_Prog_Man-1961_070015_a
	LISP_15_Prog_Man-1961_070016_a
	LISP_15_Prog_Man-1961_070017_a
	LISP_15_Prog_Man-1961_070018_a
	LISP_15_Prog_Man-1961_070019_a
	LISP_15_Prog_Man-1961_070020_a
	LISP_15_Prog_Man-1961_070021_a
	LISP_15_Prog_Man-1961_070022_a
	LISP_15_Prog_Man-1961_070023_a
	LISP_15_Prog_Man-1961_070024_a
	LISP_15_Prog_Man-1961_070025_a
	LISP_15_Prog_Man-1961_070026_a
	LISP_15_Prog_Man-1961_070027_a
	LISP_15_Prog_Man-1961_070028_a
	LISP_15_Prog_Man-1961_070029_a
	LISP_15_Prog_Man-1961_070030_a
	LISP_15_Prog_Man-1961_070031_a
	LISP_15_Prog_Man-1961_070032_a
	LISP_15_Prog_Man-1961_070033_a
	LISP_15_Prog_Man-1961_070034_a
	LISP_15_Prog_Man-1961_070035_a
	LISP_15_Prog_Man-1961_070036_a
	LISP_15_Prog_Man-1961_070037_a
	LISP_15_Prog_Man-1961_070038_a
	LISP_15_Prog_Man-1961_070039_a
	LISP_15_Prog_Man-1961_070040_a
	LISP_15_Prog_Man-1961_070041_a
	LISP_15_Prog_Man-1961_070042_a
	LISP_15_Prog_Man-1961_070043_a
	LISP_15_Prog_Man-1961_070044_a
	LISP_15_Prog_Man-1961_070045_a
	LISP_15_Prog_Man-1961_070046_a
	LISP_15_Prog_Man-1961_070047_a
	LISP_15_Prog_Man-1961_070048_a
	LISP_15_Prog_Man-1961_070049_a
	LISP_15_Prog_Man-1961_070050_a
	LISP_15_Prog_Man-1961_070051_a
	LISP_15_Prog_Man-1961_070052_a
	LISP_15_Prog_Man-1961_070053_a
	LISP_15_Prog_Man-1961_070054_a
	LISP_15_Prog_Man-1961_070055_a
	LISP_15_Prog_Man-1961_070056_a
	LISP_15_Prog_Man-1961_070057_a
	LISP_15_Prog_Man-1961_070058_a
	LISP_15_Prog_Man-1961_070059_a
	LISP_15_Prog_Man-1961_070060_a
	LISP_15_Prog_Man-1961_070061_a
	LISP_15_Prog_Man-1961_070062_a
	LISP_15_Prog_Man-1961_070063_a
	LISP_15_Prog_Man-1961_070064_a
	LISP_15_Prog_Man-1961_070065_a
	LISP_15_Prog_Man-1961_070066_a
	LISP_15_Prog_Man-1961_070067_a
	LISP_15_Prog_Man-1961_070068_a
	LISP_15_Prog_Man-1961_070069_a
	LISP_15_Prog_Man-1961_070070_a
	LISP_15_Prog_Man-1961_070071_a
	LISP_15_Prog_Man-1961_070072_a
	LISP_15_Prog_Man-1961_070073_a
	LISP_15_Prog_Man-1961_070074_a
	LISP_15_Prog_Man-1961_070075_a
	LISP_15_Prog_Man-1961_070076_a
	LISP_15_Prog_Man-1961_070077_a
	LISP_15_Prog_Man-1961_070078_a
	LISP_15_Prog_Man-1961_070079_a
	LISP_15_Prog_Man-1961_070080_a
	LISP_15_Prog_Man-1961_070081_a
	LISP_15_Prog_Man-1961_070082_a
	LISP_15_Prog_Man-1961_070083_a
	LISP_15_Prog_Man-1961_070084_a
	LISP_15_Prog_Man-1961_070085_a
	LISP_15_Prog_Man-1961_070086_a
	LISP_15_Prog_Man-1961_070087_a
	LISP_15_Prog_Man-1961_070088_a
	LISP_15_Prog_Man-1961_070089_a
	LISP_15_Prog_Man-1961_070090_a
	LISP_15_Prog_Man-1961_070091_a
	LISP_15_Prog_Man-1961_070092_a

