
· -_ _-_._---- .-.--

CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

SPICE PROJECT

Common Lisp Reference Manual

Guy L. Steele Jr.

with major contributions by
Scott E. Fahlman

Richard P. Gabriel
David A. Moon

Daniel L. Weinreb

5 August 1983

Excelsior Edition

Copyright © 1983 Guy L. Steele Jr.

,:~ Supported by the Defense Advanced Research Projects Agenc}'. Department of Defense, ARPA Order
3597, monitored by the Air Force Avionics Laboratory under contract F33615-78-C-1551. The views and
conclusions contained in this document are those of the authors and should notbe interpreted as representing
the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government

... _._---- ---_. ,---------,- ----,

TABLE OF CONTENfS

Table of Contents

1. Introduction
1.1. Purpose
1.2. Notational Conventions

2. Data Types
2.1. Numbers

2.1.1. Integers
2.1.2. Ratios
2.1.3. Floating-point Numbers
2.1.4. Complex Numbers

2.2. Characters
2.3. Symbols
2.4. Usts and Conses
2.5. Arrays

2.5.1. Vectors
2.5.2. Strings
2.5.3. Bit-vectors

2.6. Hash tables
2.7. Readtables
2.8. Packages
2.9. Pathnames
2.10. Streams
2.11. Random-states
2.12. Structures
2.13. Functions
2.14. Unreadable Data Objects
2.15. Overlap, Inclusion, and Disjointness of Types

3. Scope and Extent

4. Type Specifiers
4.1. Type Specifier Symbols
4.2. Type Specifier Lists
4.3. Predicating Type Specifier
4.4. Type Specifiers That Combine
4.5. Type Specifiers That Specialize
4.6. Type Specifiers That Abbreviate
4.7. Defining New Type Specifiers
4.8. Type Conversion Function
4.9. Determining the Type ofan Object

1
1
3

9
11
11
12
13
15
16
17
19
20
21
22
22
23
23
23
23
23
23
24
24
24
25

27

33
33
33
34
34
35
38
39
40
41

.-.. __ .- .----- ---------_ .. " ... _ .. _ ... -

·il

5. Program Structure
5.1. Forms

5.1.1. Self-Evaluating Forms
5.1.2. Variables
5.1.3. Special Forms
5.1.4. Macros
5.1.5. Function Calls

5.2. Functions
5.2.1. Named Functions
5.2.2. Lambda-Expressions

5.3. Top-Level Forms .
5.3.1. Defining Named Functions
5.3.2. Declaring Global Variables and Named Constants
5.3.3. Control of Time of Evaluation

6. Predicates .
6.1. Logical Values
6.2. Data Type Predicates

6.2.1. General Type Predicate
6.2.2. Specific Data Type Predicates

6.3. Equality Predicates
6.4. Logical Operators

7. Control Structure
7.1. Constants and Variables

7.1.1. Reference
7.1.2. Assignment

7.2. Generalized Variables
7.3. Function Invocation
7.4. Simple Sequencing
7.5. Environment Manipulation
7.6. Conditionals
7.7. Blocks and Exits
7.8. Iteration

7.8.1. Indefinite Iteration
7.8.2. General iteration .
7.8.3. Simple Iteration Constructs
7.8.4. Mapping
7.8.5. The UProgram Feature" .

7.9. Multiple Values
7.9.1. Constructs for Handling Multiple Values
7.9.2. Rules for Tail-Recursive Situations

7.10. Dynamic Non-local Exits
7.10.1. Catch Forms
7.10.2. Throw Forms

COMMON USP REFERENCE MANUAL

43
43
43
43
44
46
46
47
47
47
52
52
53
54

57
57
58
58
58
61
64

67
68
68
70
71
82
84
85
88
91
93
93
93
97
98
99

102
102
105
107
107
108

TABLE OF CONTENTS iii

8. Macros 111
8.1. Defining Macros III
8.2. Expanding Macro Calls 116

9. Declarations 117
9.l. Declaration Syntax 117
9.2. Declaration Fonns 120
9.3. Type Declaration for Forms 123

.10. Symbols 125
10.1. The Propeny List 125
10.2. The Print Name 128
10.3. Creating Symbols 129

11. Packages 131
11.1. Overview 131
11.2. Consistency Rules 132
11.3. Package Names 133
11.4. Translating Strings to Symbols 133
11.5. Exporting and Importing Symbols 135
11.6. Name Conflicts 137
11.7. Built-in Packages 139
11.8. Package System Functions and Variables 140
11.9. Modules 145
11.10. An Example 145

12. Numbers 151
12.1. Predicates on Numbers 153
12.2. Comparisons on Numbers 153
12.3. Arithmetic Operations 155
12.4. Irrational and Transcendental Functions 158

12.4.1. Exponential and Logarithmic Functions 158
12.4.2. Trigonometric and Related Functions 159
12.4.3. Branch Cuts, Principal Values, and Boundary Conditions in the Complex Plane 162

12.5. Type Conversions and Component Extractions on Numbers 165
12.6. Logical Operations on Numbers 170
12.7. Byte Manipulation Functions 175
12.8. Random Numbers 177
12.9. Implementation Parameters 179

13. Characters '183
13.1. Predicates on Characters 184
13.2. Character Construction and Selection 188
13.3. Character Conversions 189

'.;

. iv

13.4. Character Control-Bit Functions

14. Sequences
• 14.1. Simple Sequence Functions

14.2. Concatenating, Mapping, and Reducing Sequences
14.3. Modifying Sequences
14.4. Searching Sequences for Items
14.5. Soning and Merging

15. Manipulating List Structure
15.1. Conses
15.2. Lists
15.3. Alteration of List Structure
15.4. Substitution of Expressions
15.5. Using Lists as Sets
15.6. Association Lists

16. Hash Tables
16.1. Hash Table Functions
16.2. Primitive Hash Function

17. Arrays
17.1. Array Creation
17.2. Array Access
17.3. Array Information
17.4. Access Function for Simple Vectors
17.5. Functions on Arrays of Bits
17.6. Fill Pointers
17.7. Changing the Dimensions ofan Array

18. Strings
18.1. String Access
18.2. String Comparison
18.3. String Construction and Manipulation
18.4. Type Conversions on Strings

19. Structures
19.1. Introduction to Structures
·19.2. How to Use Defstruct
19.3. Using the Automatically Defined Constructor Function
19.4. defstruct Slot-Options
19.5. Options to d·efstruct
19.6. By-position Constructor Functions

COMMON USP REFERENCE MANUAL

191

193
195
196
199

·202
203

207
207
208
214
215
217
219

223
224
225

227
227
230
231
232
232
234
235

237
237
238
239
241

243
243
245
246
247
247
251

TABLE OF CONTENTS V

20. The Evaluator 253
20.1. Run-Time Evaluation of Forms 253
20.2. The Top-Level Loop 256

•
21. Streams 259

21.1. Standard Streams 259
21.2. Creating New Streams 261
21.3. Operations on Streams 263

22. Input/()utput 265
22.1. Printed Representation of LISP Objects 265

22.1.1. What the read Function Accepts 266
22.1.2. Parsing of Numbers and Symbols 268
22.1.3. Macro Characters 271
22.1.4. Sharp-Sign Abbreviations 274
22.1.5. The Readtable 280
22.1.6. What the p r i n t Function Produces 283

22.2. Input Functions 289
22.2.1. Input from ASCII Streams 289
22.2.2. Input from Binary Streams 295

22.3. Output Functions 295
22.3.1. Output to ASCII Streams 295
22.3.2. Output to Binary Streams 298

22.4. Formatted Output 298
22.5. Querying the User 311

23. File System Interface 313
23.1. File Names 313

23.1.1. Pathnames 314
23.1.2. Pathname Functions 316
23.1.3. Defaults and Merging 319
23.1.4. Logical Pathnames 320

23.2. Opening and Oosing Files 322
23.3. Renaming, Deleting, and Other Operations 326
23.4. Loading Files 327
23.5. Accessing Directories 328 .

24. Errors 329
24.1. Handling Errors 329
24.2. General Error Signalling Functions 329
24.3. Specialized Error-Signalling Forms and Macros 333
24.4. Special Forms for Exhaustive Case Analysis 334

-------------_._- .. _-------------_ .. -- ._-- ----------- - ----

vi

25. Miscellaneous Features
25.1. The Compiler
25.2. Documentation

, 25.3. Debugging Tools
25.4. Environment Inquiries

25.4.1. Time Functions
25.4.2. Other Environment Inquiries

25.5. Identity Function

References

Common Lisp Summary

Index

Index of Concepts

Index of Variables

Index of Constants

Index of Keywords

Index of Functions, Macros, and Special Forms

COMMON USP REFERENCE MANUAL

337
337
338
339
342
342
344
345

347

349

367

369

373

375

377

383

UST OF TABLES

List of Tables
Table 1-1: Sample Function Description
Table 1-2: Sample Variable Description
Table 1-3: Sample Constant Description
Table 1-4: Sample Special Fonn Description
Table 1-5: Sample Macro Description
Table 2-1: Recommended Minimum Floating-Point Precision and Exponent Size
Table 4-1: Standard Type Specifier Symbols
Table 5-1: Names of All COMMON LISP Special Fonns
Table 22-1: Standard Character Syntax Attributes
Table 22-2: Syntax of Numbers
Table 22-3: Standard Constituent Character Attributes·
Table 22-4: Standard Sharp-Sign Macro Character Syntax

.._----------. :--- .--.. , ... ,--_ .. __ .. _-----

vii

S
S.
S
6
6

14
34
4S

267
268
270
276

viii COMMON USP REFERENCE MANUAL

Acknowledgements

COMMON LISP was designed by a diverse group of people representing many institutions. The many people
who have contributed to the design of COMMON LISP are hereby gratefully acknowledged:

to

Alan Bawden1

Eric Benson2

Jon Bentley3, 4

Rodney A. Brooks1

Gary Browns
Richard L. Bryan6

Glenn S. Burkel
Howard I. Cannon6

George J. Carrette1

David DilI3

Scott E. Fahlman3

Richard J. Fateman7

Neal Feinbe~3
Ron Fischer

John Foderaro7

Richard P. Gabriel2. 9

Joseph Ginder3

Richard GreenblattlO

Martin L. Grissll. 12

,Charles L. Hedrick8

Earl A. Killian9

John L. Kulp6
Rob Maclachlan3

Larry M. Masinter13

John McCarthr
David A. Moon6

Don Morrison11

Kent M. Pitman1

Jonathan Rees14

\Villiam L. Scherlis3

Richard M. Stallman1.

Barbara K. Steele3

Guy L. Steele Jr.3,15

Peter Szolovits1 .
Walter van Roggen3 .

William vanMeUe13

Allan C. Wechsler6

Daniel L. \Veinreb6

JonL WhiteD
Skef Whole13 '

Richard Zippel1

Leonard Zubkoff3,15

1. Massachusetts Institute of Technology, Technology Square, Cambridge, Massachusetts 02139

2. Computer Science Department. Stanford University, Stanford, California 94305

3. Computer Science Department.. Carnegie-Mellon University, Schenley Park, Pittsburgh, Pennsylvania lSn3

4. Bell Laboratories. Murray Hill. New Jersey ,07974

5. Digital Equipment Corporation, Hudson, Massachusetts

6. Symbolics. Incorporated, Cambridge, Massachusetts 02139

7. Computer Science Division, Department ofEECS. University of California, Berkeley, California 94720

8. Laboratory for Computer Science Research, Rutgers University, New Brunswick, New Jersey 08903

9. University of California, Lawrence livermore Nationall..a.boratory, Livermore, California 94550

10. Lisp Machines Incorporated (1MI). Cambridge, Massachusetts 02139

11. Department of Computer Science. University of Utah, Salt Lake City, Utah 84112

12. Hewlett-Packard Incorporated, Palo Alto, California 94306

13. Xerox Palo Alto ReSearch Center, Palo Alto, California 94306
14. Department of Computer Science. Yale ,University. New Haven, Connecticut 06520

15. Tartan Laboratories Incorporated, Pittsburgh, Pennsylvania 15213

The organization, typography, and content of this document were inspired in large part by the MacLISP
Reference Manual by David A. Moon and others [12], and by the LISP Machine Manuai"by Daniel Weinreb
and David Moon [19], which in tum acknowledges the efforts of Richard Stallman, Mike McMahon, Alan
Bawden, Glenn Burke, and "many people too numerous to list".

ACKNOWLEDGEMENTS

Notes on This Edition

This edition is still in draft fonn. Please send remarks, corrections, and criticisms to:

Guy L. Steele Jr.
Computer Science Department
Carnegie-Mellon University
Schenley Park
Pittsburgh, Pennsylvania 15213

The chapter on the evaluator does not contain the proposed evaluator code, which is still under review.

ix

The case for a floating-point specifier, apparently mandated to be lower-case by the October 1982 ballot
(issue 1), is not specified in this edition. While an upper-case "s" can be confused with the digit "5", so may

" lower-case" 1 " be confused with the digit" 1".

All issues from the 1983 Memorial Day ballots have been dealt with.

x COMMON USP REFERENCE MANUAL

Would it be wonderful if, under the pressure of all these difficulties,
the Convention should have been forced into some deviations from that
artificial structure and regular symmetry which an abstract view of the
subject might lead an ingenious theorist to bestow on a constitution
planned in his closet or in his imagination?

-James Madison, The Federalist No. 37, January II, 1788

Chapter 1

Introduction

This manual documents a dialect of LISP called "COMMON LISP", which is a successor to MACLISP [12],
influenced strongly by Lisp Machine LIsp [19] and also to some extent by SCHEME [16] and INTERLISP [18].

1.1. Purpose

COMMON LISP is intended to meet these goals:

Commonality.

Portability.

Consistency.

COMMON LISP originated in an attempt to focus the work of several implementation
groups each of which was constructing successor implementations of MAC LISP for different
computers. These implementations had begun to diverge because of the differences in the
implementation environments: microcoded personal computers (Lisp Machine LISP, SPICE
LISP). commercial timeshared computers (NIL), and supercomputers (S-1 LISP). While the
differences among the several implementation environments will of necessity force
incompatibilities among the implementations, nevertheless COMMON LISP can serve as a
common dialect of which each implementation can be an upward-compatible superset

COMMON LISP intentionally excludes features that cannot easily be implemented on a
broad class of machines. On the one hand, features that are difficult or expensive to
implement on hardware without special microcode are avoided or provided in a more
abstract and efficiently implementable form. (Examples of this are the forwarding
(invisible) pointers and locatives of Lisp Machine LISP. Some of the problems that they
solve are addressed in different ways in COMMON LISP.) On the other hand, features that
are useful only on certain "ordinary" or "commercial" processors are avoided or made
optional. (An example of this is the type declaration facility, which is useful in some
implementations and completely ignored in others; type declarations are completely
optional and for correct programs affect only efficiency, never semantics.) Moreover,
attention has been paid to making it easy to write programs in' such a way as to depend as
little as possible on machine-specific characteristics such as word length, while allowing
some variety of implementation techniques.

Most LISP implementations are internally inconsistent in that by default the interpreter and
compiler may assign different semantics to correct programs; this stems primarily from the
fact that the interpreter assumes all variables to be dynamically seoped, while the compiler
assumes all variables to be local unless forced to assume otherwise. This has been done for
the sake of convenience and efficiency, but can lead to very subtle bugs. The definition of
COMMON LIsp avoids such anomalies by explicitly requiring the interpreter and compiler

-1-

2 COMMON USP REFERENCE MANUAL

to impose identical semantics on correct programs.

Power. COMMON LISP is a descendant of MACLISP, which has always placed emphasis on
providing system-building tools. Such tools may in tum be used to build the user-level
packages such as INTERLISP provides; these packages are not, however, part of the
COMMON LISP core specific~tion. It is expected such packages will be built on top of the
COMMON LISP core.

Expressiveness. COMMON LISP culls not only from MACLISP but from INTERLISP, other LISP dialects, and
other programming languages what we believe from experience to be the most useful and
understandable constructs.' Constructs that have proved to be awkward or less useful are
being eliminated (an example is the s tore construct of MAC LISP).

Compatibility. Unless there is a good reason to the contrary, COMMON LIsp strives to be compatible with
Lisp Machine LISP, MACLISP, and INTERLISP, roughly in that order.

Efficiency. COMMON LISP has a number of features designed to facilitate the production of high
quality compiled code in those implementations that care to invest effort in an optimizing
compiler. One implementation of COMMON LISP (namely S-1 LIS~) already has a compiler
that produces code for numerical computations that is competitive in execution speed to
that produced by a FORTRAN compiler [3]. (This extends the work done in MACLISP to
produce extremely efficient numerical code [7].)

Stability. It is intended that COMMON LISP, once defined and agreed upon, will change only slowly
and with due deliberation. The various dialects that are supersets of COMMON LISP may
serve as laboratories within which to test language extensions, but such extensions ~ be
added to COMMON LISP only after careful examination and experimentation.

The goals of COMMON LISP are thus very close to those of STANDARD LISP [11]. COMMON LISP differs from
STANDARD LISP primarily in incorporating more features, including a richer and, more complicated set of.

data types and more complex control structures.

The COMMON LISP documentation is divided into four parts, known for now as the white pages, the yellow
pages, the red pages, and the blue pages. (This document is the white pages.)

• The white pages (this document) is a language specification rather than an implementation
specification. It defines a set of standard language concepts and constructs that may be used for
communication of data structures and CiJgorithms in the COMMON LISP dialect This is sometimes
referred to as the u;core COMMON LISP language", because it contains conceptually necessary or
important features. It is not necessarily implementationally minimal. While some features could
be defined in terms of others by writing LISP code (and indeed may be implemented that way), it
was felt that these features should be conceptually primitive so that there might be agreemeut
among all users as to their usage. (For example, bignums and rational numbers could be
implemented as LISP code given operations on fixnums. However, it is important to the
conceptual integrity of the language that they be regarded by the user as primitive, and they are
useful enough to warrant a standard definition.)

• The yellow pages is a program library document, containing documentation for assorted and
relatively independent packages of code. While the white pages are to be relatively stable, the

INTRODUcnON

yellow pages are extensible; new programs of sufficient usefulness and quality will routinely be
added from time to time. The primary advantage of the division into white and yellow pages is
this relative stability; a package written solely in the white-pages language should not break if
changes are made to the yellow-pages library .

• The red pages is implementation-dependent documentation; there will be one set for each
implementation. Here are specified such implementation-dependent parameters as word site,
maximum array size, and sizes of floating-point exponents and fractions, as well as·
implementation-dependent information such as the nature of the file system, the method of
invoking the implementation, and so on .

• The blue pages constitutes an implementation guide in the spirit of the INTERLISP virtual machine
specification [13]. It specifies a subset of the white pages that an implementor must construct, and
indicates a quantity of LISP code written in that subset that implements the remainder of the white
pages. In principle there could be more than one set of blue pages, each 'with a companion file of
LISP code.

1.2. Notational Conventions

3

In COMMON LISP. as in most LISP dialects, the symbol nil (page 58) is used to represent both the empty
list and the "false" value for Boolean tests. An empty list may, of course, also be written "{)"; this normally
denotes the same object as '~n i.1". (It is possible, by extremely perverse manipulation of the package system,
to cause the sequence ofletters "n i 1" to be recognized not as the symbol that represents the empty list but as
another symbol with the same name. However, '''(),. always denotes the empty list This obscure possibility
will be ignored in this document) These two notations may be used interchangeably as far as the LISP system
is concerned. However, as a matter of style, this document will prefer the notation '4 ()" when it is desirable
to emphasize its use as an empty list, and will prefer the notation "n i 1 " when it is desirable to emphasize its
use as the Boolean "false" or as a symbol. Moreover, an explicit quote mark is used to emphasize its use as a
symbol rather than as Boolean '4false".

For example:

(append '() 'C»~ => ()
(not nil) => t
(get 'nil 'color)

; Emphasize use of empty lists.
; Emphasize use as Boolean "false".
; Emphasize use as a symbol.

Any data object other than n i' is construed to be Boolean "not false", that is, u true". The symbol t is
conventionally used to mean "true" when no other value is more appropriate. When a function is said to

"return false" or to ,cbe false" in some circumstance, this means that it returns n i , . However, when a

function is said to "return true" or to "be true" in some circumstanc~, this means that it returns some value

other than ni " but not necessarily t.

All numbers in this document are in decimal notation unless there is an explicit indication to the contrary.

Execution of code in LISP is called evaluation, because executing a piece of code normally results in a data

object called the value produced by the code. The symbol "=>" will be used in examples to indicate
evaluation. For example:

(+ 4 5) => 9

4 COMMON USP REFERENCE MANUAL

means "the result of evaluating the code (+ 4 5) is (or would be, or would have been) 9".

The symbol "==>" will be used in examples to indicate macro expansion. For example:
(push x v) ==> (setf v (cons x v»

means "the result of expanding the macro-call form (p u s h x v) is (s e t f v (c a n s x v))". This
implies that the two pieces of code do the same thing; the second piece of code is the definition of what the
first does.

The symbol "<=>" will be used in examples to indicate code equivalence. For example:
(- x y) <=> (+ x (- y»

means "the value and effects of (- x y) is always the same as the value and effects of (+ x (- y» for
any values of the variables x and y". This implies that the two pieces of code do the same thing; however,
neither directly defines the other in the way macro-expansion does.

When this document specifies that it "is an error" for some situation to occur, this means that:

• No valid COMMON LIsp program should cause this situation to occur.

• If this situation occurs. the effects and results are completely undefined as far as adherence to the
COMMON LISP specification is concerned.

• No COMMON LIsp implementation is required to detect such an error.

This is not to say that some particular implementation might not define the effects and results for such a
situation; it is merely that no program conforming to the COMMON LISP specification may correctly depend
on such effects or results.

On the other hand, if it is specified in this document that in some situation "an error is signalled', this
means that:

• If this situation occurs, an error will be signalled; see err 0 r (page 330) and c err 0 r (page 330).

• Valid COMMON LISP programs may rely on the fact that an error will be signalled.

• Every COMMON LISP implementation is required to detect such an error.

In places where it is stated that so-and-so "must" or "must not" or "may nof' be the case, then it "is an
error" if the stated requirement is not met For example, is an argument "must be a symbol", then it "is an
error" if the argument is not a symbol. In all ~ases where an error is to be signalled, the word "signalled" is
used explicitly.

Functions, variables, named constants, special forms, and macros are described using a distinctive
typographical format Table 1-1 illustrates the manner in which COMMON LISP functions are documented.
The first line specifies the name of the function, the manner in which it accepts arguments, and the fact that it
is a function. Following indented paragraphs explain the definition and uses of the function and often
present examples or related functions.

In general, actual code (including actual names of functions) appears in this typeface: (con s a b).

INTRODUcnON 5

samp 1 e-funct i on arg/ arg2 &opt i onal arg3 arg4 [Function]
The function s amp 1 e - fun c t ; 0 n adds together arg/ and arg2, and then multiplies the result by
arg3. If arg3 is not provided or is nil, the multiplicatio'n isn't done. s amp 1 e - fun c t ion then
returns a list whose first element is this result and whose second element is arg4 (which defaults to
the symbol f 0 0).

For example:
(function-name 3 4) => (7 fool
(function-name 1 2 2 'bar) => (6 bar)

As a rule, (sample-function x y) <=> (list (+ x y) 'fool.

Table I-I: Sample Function Description

sample-variable [Variahle]

. The variable *sample-variable* specifies how many times the special fonn
s amp 1 e - s p e cia 1 - form should iterate. The value should always be a non-negative integer or
nil (which means iterate indefinitely many times). The initial value is O.

Table 1-2: Sample Variable Description

sampl e-constan.t [Constant]

The named constant s amp 1 e - con s tan t has as its value the height of the tenninal screen in
furlongs times the base-2 logarithm of the implementation's total disk capacity in bytes, as a
floating-point number.

Table 1-3: Sample Constant Description

Names that stand for pieces of code (meta-variables) are written in italics. In a function description, the
names of the parameters appear in italics for expository purposes. The word "&0 p t ion a 1" in the list of

parameters indicates that all arguments past that point are optional; the default values for the parameters are
described in the text Parameter lists may also contain "&rest", indicating that an indefinite number of
arguments may appear, or "&key", indicating that keyword arguments are accepted. (The

&opt ional I&rest/&key syntax is actually used in COMMON LISP function definitions for these purposes.)

Table 1-2 illustrates the manner in which a global variable is documented. The first line specifies the name
of the variable and the fact that it is a variable. Purely as a matter of convention, all global variables used by
COMMON LISP have names beginning and ending with an asterisk.

-----_._-_ ... _----_ ... _ .. _--... _ _- .

6 COMMON USP REFERENCE MANUAL

Table 1-3 illustrates the manner in which a named constant is documented. The first line specifies the name
of the constant and the fact that it is a constant (A constant is just like a global variable, except that it is an
error ever to alter its value or to bind it to a new value.)

samp1 e-speci a1-form [name] ({var}*) {fonn} + [Special/onn]

This evaluates each form in sequence as an implicit progn, and does this as many times as specified
by the global variable • s amp 1 e·- v a r i ab 1 e·. Each variable var is bound and initialized to 43
before the first iteration, and unbound after the last iteration. The name name, if supplied, may be
used in a return-from (page 92) form to exit from the loop prematurely. If the loop ends
nonnally, sample-specia1-form returns nil.

For example:
(setq *samp1e-variable* 3)
(samp1e-specia1-form () fonnlfonn2)

This evaluates/onn/,fonn2,/onnl,/onn2,/onn/,/onn2 in that order.

Table 1-4: Sample Special Form Description

samp1 e-macro var {tag I statement}*

This evaluates the statements as a prog body, with th~ variable varbound to 43.
(sample-macro x (return (+ x x») => 86
(samp1 e-macro var . body) ==> (prog ((var 43» • body)

Table 1-5: Sample Macro Description

[Macro]

Tables 1-4 and 1-5 illustrate the documentation of special forms and macros (which are closely related in

purpose). These are very different from functions. Functions are called according to a single, specific,
consistent syntax; the &optiona1/&rest/&key syntax specifies how the function uses its arguments
internally, but does not affect the syntax of a call. In contrast, each special form or macro can have its own
idiosyncratic syntax. It is by special forms and macros that the syntax of COMMON LISP is defined and
extended.

In the description of a special form or macro, an italicized word names a corresponding part of the form
that invokes the special form or macro. Parentheses (" (" and")") stand for themselves, and should be
written as such when invoking the special form or macro. Brackets, braces, stars, plus signs, and vertical bars
are metasyntactic marks. Square brackets ("[" and "]") indicate that what they enclose is optional (may
appear zero times or one time in that place); the square brackets should not be written in code. Curly braces
("{" and "}") simply parenthesize what they enclose, but may be followed by a star ("*") or a plus sign

INTRODUcnON 7

(U + "); a star indicates that what the braces enclose may appear any number of times (including zero, that is,
not at all), while a plus sign indicates that what the braces enclose may appear any non-zero number of times
(that is, must appear at least once). Within braces or brackets, vertical bars ("I") separate mutually exclusive
choices. In summary, the notation "{x}*" means zero or more occurrences of "x", the notation "{x} +"

means one or more occurrences of "x", and the notation "[x)" means zero or one occurrences of "x". These
notations are also used for syntactic descriptions expressed as BNF-like productions, as in Table 22-2.

In the last example in Table 1-5, notice the use of 6'dot notation". The"." appearing in the expression
(sampl a-macro vaT • body) means that the name body stands for a list of forms, not just a single form, at

. the end of a list This notation is often used in examples.

The term "LISP reader" refers not to you, the reader of this document, nor to some person reading LISP
code, but specifically to a LISP program (the function read (page 291» that reads characters from an input
stream and interprets them by parsing as representations of"LISP objects.

Certain characters are used in. special ways in the syntax of COMMON LISP. The complete syntax is
. explained in detail in Chapter 22, but a quick summary here may be useful:

"
\

An accent acute ("single quote") followed by an expression fonn is an abbreviation for (quo te fonn).
Thus 'foo means (quote· fool and '(cons 'a 'b) means (quote (cons (quote a)
(quote b»).

Semicolon is the comment character. It and all characters up to the end of the line are discarded.

Double quotes surround character strings: "Th; sis a th i r ty -n; ne ch ar ac ter str i ng . ".

Backslash is an escape character .. As a rule, it causes the next character to be treated as a letter rather
than for its usual syntactic purpose. For example, A \ (B denotes a symbol whose name is "A(B", and
" \ "" denotes a character string containing one character, a double-quote.

The number sign begins a more complex syntax. The next character designates the precise syntax to
follow. For example. #0105 means 1058 (lOS in octal notation); #\L denotes a character object for the
character "L"; and #(abc) denotes a vector of three elements a~ b, and c. A particularly important
case is that # 'fn means (funct; on fo), in a manner analogous to tfonn meaning (quote fonn).

Vertical bars are used in pairs to surround the name of a symbol that has many special characters in it It
is roughly equivalent to putting a backslash in front of every character so surrounded. For example,
" I A (B) I " and "A \ (B \) " both mean the symbol whose name consists of the four characters" A (B) ".

Accent grave ("backquoteU

) signals that the next expression is a template that may contain commas. The
backquote syntax represents a program that will construct a data structure according to the template.

Commas are used within the backquote syntax.

Colon is used to indicate which package a symbol belongs to. For example, chaos: reset denotes the
symbol named reset in the package named chaos. A leading colon indicates a keyword, a symbol that
always evaluates to itself.

The square brackets, braces, question mark, and exclamation point (that is, 'l", "J", "{", "}", "?", and "I")
f" are not used for any purpose in standard COMMON LISP syntax. These characters are explicitly reserved to the

user, primarily for use as macro characters for user-defined syntax extensions. See section 22.1.3 (page 271).

8 COMMON USP REFERENCE MANUAL

All code in this manual is written in lower case. COMMON LISP is generally insensitive to the case in which
code is written. Internally, names of symbols are ordinarily converted to and stored in upper-case form.
There are ways to force case conversion on output if desired. In this document, wherever an interactive
exchange between a user and the LISP system is shown, the input is exhibited in lower case and the output in

uppercase.

Some symbols are written with the colon (:) character apparently in their names. In particular, all keyword
symbols have names starting with a colon. The colon character is not actually part of the print name, but is a
package prefix indicating that the symbol belongs to the keyword package. This is all explained in Chapter
11; until you read that, just keep in mind that a symbol notated with a leading colon is in effect a constant that
evaluates to itself.

Chapter 2

Data Types

COMMON LISP provides a variety of types of data objects. It is important to note that in LISP it is data
objects that are typed, not variables. Any variable can have any LISP object as its value. (It is possible to

make an explicit declaration that a variable will in fact take on one of only a limited set of values. However,
such a declaration may always be omitted, and the program will still run correctly. Such a declaration merely
constitutes advice from the user that may be useful in gaining efficiency. See dec 1 are (page 117).)

In COMMON LISP, a data type is a (possibly infinite) set of LIsp objects. Many LISP objects belong to more
than one such set, and so it doesn't always make sense to ask what the type of an object is; instead, one usually
asks only whether an object be~ongs to a given type. The predicate typep (page 58) may be used to ask the
latter question, and the function type-of (page 41) to ask the former.

The data types defined in COMMON LISP are arranged into an almost-hierarchy (a hierarchy with shared
subtrees) defined by the subset relationship. Certain sets of objects are interesting enough to deserve labels
(such as the set of numbers or the set of strings). Symbols are used for most such labels (here, and throughout
this document, the word symbol refers to atomic symbols, one kind of LISP object). See Chapter 4 for a
complete description of type specifiers.

. The root of the hierarchy, which is the set of all objects, is specified by the symbol t. The empty data type,
which contains no objects, is denoted by n; 1. A type called common encompasses all the data objects
required by the COMMON LISP language. A COMMON LISP implementation is free to provide other data types
that are not subtypes of common.

COMMON LISP objects may be roughly divided into the following categories: numbers, characters, symbols,
lists, arrays, structures, and functions. Some of these categories have many subdivisions. There are also

standard types that are the union of two or more of these categories. The categories listed above, while they
are data types, are neither more nor less "real" than other data types; they simply constitute a particularly
useful slice across the type hierarchy for expository purposes.

Each of these categories is described briefly below. Then one section of this chapter is devoted to each,
going into more detail, and briefly describing notations for objects of each type. Descriptions of LISP

functions that operate on data objects are in later chapters.

-9-

----.. __• " " __ . __ .-

10 COMMON USP REFERENCE MANUAL

• Numbers are provided in various forms and representations. COMMON LISP provides a true
integer data type: any integer, positive or negative. has in principle a representation as a COMMON
LISP data object. subject only to total memory limitations (rather than machine word width). A
true rational data type is provided: the quotient of two integers. if not an integer, is a ratio.
Floating-point numbers of various ranges and precisions are also providecL as well as Cartesian
complex numbers.

• Characters represent printed glyphs such as letters or text formatting operations. Strings are
particular one-dimensional arrays of characters. COMMON LISP provides for a rich character set,
including ways to represent characters of various type styles.

• Symbols (sometimes called atomic symbols for emphasis or clarity) are named data objects.' LISP
provides machinery for locating a symbol object. given its name (in the fonn of a string). Symbols
have property lists, which in effect: allow symbols to be treated as record structures with an
extensible set of named components, each of which may be any LISP object

• Lists are sequences represented in the form of linked cells called conses. There is a special object
(the symbol n i 1) that is the empty list All other lists· are built recursively by adding a new
element to the front of an existing list This is done by creating a new cons, which is an object
having two components called the car and the cdr. The car may hold anything, and the cdr is
made to point to the previously existing list (Conses may actually be used completely generally as
two-element record structures, but their·most important use is to represent lists.)

• Arrays are dimensioned collections of objects. An array can have any non-negative number of
dimensions, and is indexed by a sequence of integers. General arrays can have any LISP object as
a component; others are specialized for efficiency, and can hold only certain types of LIsp objects.
It is possible for two arrays~ possibly with differing dimension information, to share the same set
of elements (such that modifying one array modifies the other also), by causing one to be displaced
to the other. One-dimensional arrays of any kind are called vectors. One-dimensional arrays of
characters are called strings. One dimensional arrays of bits (that is, of integers whose values are 0
or 1) are called bit-vectors.

• Hash tables provide an efficient way of mapping any LISP object (a key) to an associated object

• Readtables are used to control the built-in expression parser read (page 291).

• Packages are collections of symbols that serve as name spaces. The parser recognizes symbols by
looking up character sequences in the "current package".

• Pathnames represent names of files in. a fairly implementation-independent manner. They are
used to interface to the external file system.

• Streams represent sources or sinks of data (typically characters or bytes). They are used to
perform I/O, as well as for internal purposes such as parsing strings.

• Random-states are data structures used to encapsulate the state of the built-in random-number
generator.

• Structures are user-defined record structures, objects that have named components. The
de f s t rue t (page 245) facility is used to define new structure types. Some COMMON LISP

DATA TYPES

implementations may choose to implement certain system-supplied data types as structures such
as bignums, readtables, streams, hash tables. and pathnames .

• Functions are objects that can be invoked as procedures; these may take arguments, and return
values. (All LISP procedures can be construed to return a value, and therefore treated as
functions. Those that have nothing better to return usually return n i 1.) Such objects include
compiled-functions (compiled code objects). Some functions are represented as a list whose car is
a particular symbol such as 1 ambda. Symbols may also be used as functions.

11

These categories are not always mutually exclusive. The required relationships among the various data
·types are explained in more detail in section 2.15 (page 25).

2.1. Numbers

There are several kinds of numbers defined in COMMON LISP. They are divided into rational numbers,
consisting of integers and ratios; floating-point numbers, with names provided for up to four different
precisions; and complex numbers.

2.1.1. Integers

The integer data type is intended to represent mathematical integers. Unlike most programming
languages, COMMON LISP in principle imposes no limit on the magnitude of an integer; storage is
automatically allocated as necessary to represent large integers.

In every COMMON LISP implementation there is a range of integers that are represented more efficiently
than others; each such integer is called a jixnum, and an integer that is not a fixnum is called a bignum. The
distinction between fixnums and bignums is visible to the user in only a few places where the efficiency of
representation is important. Exactly which integers are fixnums is implementation-dependent; typically they
will be those integers in the range - 2n to 2n -1. inclusive, for some n not less than 15: See
most-pos; t; ve-f.ixnum (page 179) and most-negat ; ve~fi xnum (page 179).

Integers are ordinarily written in decimal notation, as a sequence of decimal digits, optionally preceded by a
sign and optionally followed by a decimal point.

For example:
o

-0
+6
28

1024.
-1

15511210043330985984000000.

; Zero. .
; This always means the same as o.
; The first perfect number.
; The second perfect number.
; T\Vo to the tenth power.
; eftl

; 25 factorial (25!). Probably a bignum.
Compatibility note: MAcllsP and Lisp Machine LIsp nonnally assume that integers are written in octal (radix·S) notation
unless a decimal point is present INTERUSP assumes integers are written in decimal notation. and uses a trailing Q to .
indicate octal radix; however, a decimal point, even in trailing position, always indicates a floating-point number. This is of
course consistent with FORTRAN: ADA does not permit trailing decimal points, but instead requires them to be embedded In
COMMON USP, integers written as described above are always construed to be in decimal notation, whether or not the
decimal point is present; allowing the decimal point to be present pennits compatibility with MAcLlsP .

....... _ ... _•........ _--- ----- _ .. __ .. _

12 COMMON USP REFERENCE MANUAL

Integers may be notated in radices other than ten. The notation

#nnrddddd or #nnRddddd
means the integer in radix-nn notation denoted by the digits ddddd. More precisely, one may write "#", a

non-empty sequence of decimal digits representing an unsigned decimal integer ~ "r" (or "Rn
), an optional

sign, and a sequence ofradix-n digits, to indicate an integer written in radix n (which must be between 2 and

36, inclusive). Only legal digits for the specified radix may be used; for example, an octal number may

contain only the digits 0 through 7. Letters of the alphabet of either case may be used in order for digits

above 9. Binary, octal, and hexadecimal radices are useful enough to warrant the special abbreviations "#b"
for "#2 r", "#0" for "#8 r", and "#x" for "#16r".

For .example:

2.1.2. Ratios

#2rll01010l
#bll01010l

#b+ll01010l
#0325

#xD5
#16r+D5

#0-300
#3r-21010

#25R-7H

: Another way of writing 213 decimal.
; Ditto.
; Ditto.
; Ditto, in octal radix.
; Ditto, in hexadecimal radix.
; Ditto.
; Decimal -192, written in base 8.
; Same thing in base 3.
; Same thing in base 25.

A rat; 0 is a number representing the mathematical ratio of two integers. Integers and ratios are

collectively constitute the type rat ion a 1. The canonical representation of a rational number is as an integer

if its value is integra}. dud otherwise as the ratio of two integers, the numerator and denominator, whose

greatest common divisor is one, and of which the denominator is positive (and in fact greater than 1, or else

the value would be integral), written with "I" as a separator thus: "3/5". It is possible to notate ratios in

non-canonical (unreduced) fonns, such as "4/6", but the LISP function prinl (page 296) always prints the

canonical fOIll1 for a ratio.

If any computation produces a result that is a ratio of two integers such that the denominator evenly divides

the numerator, then the result is immediately converted to the equivalent integer. This is called the rule of

rational canonicalization.
Implementation note: While each implementation of CoMMON LIsp will probably choose to maintain all ratios in reduced
form. there is no requirement for this as long as its effects are not visible to the user. Note that while it may at first glance
appear to save computation for the reader and various arithmetic operations not to have to produce reduced forms. this
savings is likely to be counteracted by the increased cost of operating on larger numerators and denominators. In any case, a
CoMMON LIsp ratio can never have a denominator that evenly divides its numerator, for such a number is always
represented as an integer instead.

Rational numbers may be written as the possibly signed quotient of decimal numerals: an optional sign

followed by two non-empty sequences of digits separated by a " I". This syntax may be described as follows:

ratio:: = [sign] {digit} + / {digit} +

The second sequence may not consist entirely of zeros.

For example:

DATA TYPES

2/3
4/6
-17/23
-30517578125/32768
10/5

13

; This is in canonical fonn.
; A non-canonical fonn for the same number.

; This is (- 5/2)15 .
; The canonical form for this is 2.

To notate rational numberS in radices other than ten, one uses the same radix specifiers (one of flnnR, flO,

fiB, or fiX) as for integers.

For example:
#0-101/75
#3r120/21
#Xbc/ad

2.1.3. Floating-point Numbers

; Octal notation for - 65/61.
; Ternary notation for 15/7 .
; Hexadecimal notation for 188/1 7 3.

COMMON LISP allows an implementation to provide one or more kinds of floating-point number, which
collectively make up the type fl oa t. A floating-point number is a (mathematical) rational number of the
form s* I * be- P, where s is + 1 or -1, ·the sign; b is ~n integer greater than 1, the base or radix of the
representation; p is a positive integer, the precision (in base-b digits) of the floating-point number; lis a
positive integer between 11-1 and II' -1 (inclusive), the significand; and e is an integer, the exponent. The
value of p and the range of e depends on the implementation and on the type of floating-point number within
that implementation. In additio~ there is a floating-point zero; depending on the implementation, there may
also be a "minus zero". If there is no minus zero, then 660.0" and "-0.0" are both interpreted as simply a
floating-point zero.

Implementation note: The fonn of the above description should not be construed to require the internal representation to
be in sign-magnitude fonn. Two's-complement and other representations are also acceptable. Note that the radix of the
internal representation may be other than 2. as on the IBM 360 and 370, which use radix 16: see float-radix (page 168).

Floating-point numbers may be provided in a variety of precisions and sizes, depending on the
implementation. High-quality floating-point software tends to depend critically on the precise nature of the
floating-point arithmetic, and so may not always be completely portable. To aid in writing programs that are
moderately portable, however, certain definitions are made here:

• A short floating-point number (type short-float) is of the representation of smallest fixed
precision provided by an implementation.

• A long floating-point number (type long-float) is of the representation of the largest fixed
precision provided by an implementation.

• Intermediate between short and long formats are two others, arbitrarily called single and double
(types s i n91 e-fl oat and doub 1 e-fl oat).

The precise definition of these categories is implementation-dependent However, the rough intent is that
short floating-point numbers be precise at least to about five decimal places; single floating-point numbers, at
least to about seven decimal places; and double floating-point numbers, at least to about fourteen decimal
places. It is suggested that the precision (measured in "bits", computed as p*10g2b) and the exponent size
(also measured in "bits", computed as the base-210garithm of one plus the maximum exponent value) be at
least as great as the values in Table 2-1.

-.. - ._ .. _-._ .. __ ._-._-----..... _------- . __ ._--_._-_.. .--.. _ ..•..... --_._._--

14

Format
Short
Single
Double
Long

Minimum Precision
13 bits
24 bits
50 bits
50 bits

COMMON LISP REFERENCE MANUAL

Minimum Exponent Size
5 bits
8 bits
8 bits·
8 bits

Table 2-1: Recommended Minimum Floating-Point Precision and Exponent Size

Fioating point numbers are written in either decimal fraction or "computerized scientific" notation: an
optional sign. then a non-empty sequence of digits with an embedded decimal point, then an optiQnal decimal
exponent specification. If there is no exponent specifier, then the decimal point is required, and there must
be digits after it. The exponent specifier consists of an exponent marker, an optional sign, and a non-empty
sequence of digits. For preciseness, here is a modified-BNF decription of floating-point notation.

floating-point-number:: = [sign] {digit}* . {digit} + [exponent]
1 [sign] {digit} + [. {digit}*] exponent

sign ::= + 1-
digit: : = 0 I 1 I 2 I 3 I 4 1 5 1 6 1 7 I 8 I 9
exponent:: = exponent-marker [sign] {digit} +
exponent-marker:: = e lsi f I d I , I b lEI S I Flo I L·I 8

If no exponent specifier is present, or if the exponent marker "e" (or "E") is used, then the precise fonnat to
be used is not specified. When such a floating-point .number representation is read and converted to an
internal floating-point data object, the format specified by the variable *read-defau1 t-f1 oat-forma t *
(page 291) is used; the initial value of this variable is s i n91 e - f1 oa t.

The letters "s", "f", "d", and "1" (or their respective upper-case equivalents) specify explicitly the use of
short, single, double, and long format, respectively. The letters "b" and "8" are reserved for future definition.

Examples of floating-point numbers:

0.0
OEO
-.0

O.
O.OsO
OsO
3. 1415926535897932384dO
6.02E+23
602E+21
3.1010299957f-1
-0.000000001s9

; Floating-point zero in default format.
; Also floating-point zero in default format.
; This may be a zero or a minus zero,
; depending on the implementation..
; The integer zero, not a floating-point number!
; A floating-point zero in short format.
; Also a floating-point zero" in short format.
; A double-fOI mat approximation to 'IT.

; Avogadro's number, in default fonnat.
; Also Avogadro's number, in default fonnat.
; log10 2, in single format
; e'fTl m short format, the hard way.

While COMMON LISP provides tenninology and notation sufficient to accommodate four distinct floating
point formats, not all implementations will have the means to support that many distinct fonnats. An

DATA TYPES 15

implementation is therefore permitted to provide fewer than four distinct internal floating-point formats, in.
which case at least one of them will be "shared" by more than one of the external format names short, single,
double, and long according to the following rules:

• If one internal format is provided, then it is considered to be single, but serves also as short,
double, and long. The data types short-float, single-float, double-float, and
1 0 n g - flo a t are considered to be identical. An expression such as (e q 1 1. 0 s 0 1. 0 dO) will
be true in such an implementation, because the two numbers 1.0s0 and 1.0dO will be
converted into the same internal format and therefore be considered to have the same data type,
despite the differing external syntax. Similarly, (typep 1.010 'short-float) will be true
in such an implementation. For output purposes all floating-point numbers are assumed to be of
single format, and so will print using the exponent letter "E" or "F".

• If two internal formats are provided, then either of two correspondences may be used, depending
on which is the more appropriate:

o One format is short; the other is single and serves also as double and long. The data types
Single-float, double-float, and long-float are considered to be identical, but
short-float is distinct An expression such as (eql 1.0s0 1. OdO) will be false, but
(eql 1.0fO 1. OdO) will be true. Similarly, (typep 1.010 'short-float) will
be false, but (typep 1.010 'single-float) will be true. For output purposes all
floating-point numbers are assumed to be of short or single format

o One format is single, and serves also as short; the other is double, and serves also as long.
The data types sing 1 e -float, doub 1 e-f1 oat, and long -fl oa t are considered to be
identical, but short-float is distinct An expression such as (eql 1.050 1.0dO)
will be false, as will (eql 1.0fO 1.0dO), but (eql 1.0dO 1.010) will be true.
Similarly, (typep 1.010 ' short-float) will be false, but (typep 1.010
, do u b 1 e - flo at) will be true. For output purposes all floating-point numbers are
assumed to be of single or double format

• If three internal formats are provided, then either of two correspondences may be used,
depending on which is the more appropriate:

o One format is short; another format is single; and the third format is double and serves also
as long.

o One format is single, and serves also as short; another is double; and the third format is long.

Implementation note: It is recommended that an implementation provide as many distinct floating-point fonnats as
feasible,given Table 1-1 as a guideline. Ideally, short-fonnat floating-point numbers should have an "immediate"
representation that does not require consing, single-format floating-point numbers should approximate IEEE proposed
standard single-fOlmat floating-point numbers, and double-format floating-point numbers should approximate IEEE

proposed standard double-format floating-point numbers [9. 5, 6].

2.1.4. Complex Numbers

Complex numbers (type comp 1 ex) mayor may not be supported by a COMMON LISP implementation.
They are represented in Cartesian form, with a real part and an imaginary part each of which is a non-

~ complex number (integer, floating-point number, or ratio). It should be emphasized that the parts of a
complex number are not necessarily floating-point numbers; in this COMMON LISP is like PUI and differs

----_. _ ... _-.. _--

16 COMMON USP REFERENCE MANUAL

from FORTRAN. However, both parts must be of the same type: either both are rational, or both are of the
same floating-point fomtat

~ Complex numbers may be notated by writing' the characters "#e" followed by a list of the real and
imaginary parts. If the two parts as notated are not of the same type, then they are convened according to the
rules of "floating-point contagion" as described in chapter 12. (Indeed, "#e (a b)" is equivalent to

"#, (comp 1 ex a b)"; see the description of the function comp 1 ex (page 169).)

For example:
#C(3.0s1 2.0s-1)
#e (5 - 3) ; A Gaussian integer.
#e (5/3 7.' 0) ; Will be convened internally to #C (1.66666 7.0).
#C (0 1) ; The imaginary unit

The type of a specific complex number is indicated by a list of the word comp 1 ex and the type of the
components; for example, a specialized representation for ccmplex numbers with short floating-point parts
would be of type (complex short-float). The type complex encompasses all complex
representations.

A complex number of type (c omp 1 ex rat; on a 1) (that is, one whose components are rational) can
never have a zero imaginary part. If the result of any computation would be a complex rational with a zero
imaginary part, the result is immediately converted to a non-complex rational number by taking the real part.
This is called the rule of complex canonicalization.

2.2. Characters

Every object of type ch ar acter has three attributes: code, bits, andfon1. The code attribute is intended to
distinguish among the printed glyphs and formatting functions for characters. The bits attribute allows extra
flags to be associated with a character. The font attribute permits a specification of the style of the glyphs
(such as italics). Each of these attributes may be understood to be a non-negative integer.

A character object can be notated by writing "#\" followed by the character itself. For example, "#\9"
means the character object for a lower-case "g". This works well enough for "printing characters". Non
printing characters have names, and can be notated by writing U#\" and then the name; for example,
"#\return" (or "#\RETURN" or "#\Retu'rn", for example) means the (return) character. The syntax for
character names after "#\" is the same as that for symbols.

The font attribute may be notated in unsigned decimal notation between the "#" and the "\". For
example, #3 \A means the letter" A" in font 3. Note that not all COMMON LISP implementations provide for
non-zero font attributes; see c h a r - f 0 n t -, ; mi t (page 183).

The bits attribute may be notated by preceding the name of the character by the names or initials of the
bits, separated by hyphens. The character itself may be written instead of the name, preceded if necessary by
"\n. For example:

DATA TYPPS

#\Control-Meta-Return
#\Hyper-Space
#\Control-A
#\C-M-Return .

17

Note that not all COMMON LIsp implementations provide for non-zero bits attributes; see
char-bits-l imit (pagelS3).

Any character whose bits and font attributes are zero may be contained in strings. All such characters
together constitute a subtype of the characters; this subtype is called s t ring - ch ar.

2.3. Symbols

Symbols are LISP data objects that serve several purposes and have several interesting characteristics. Every
object of type s ymb 0 1 has a name, called its print name. Given a symbol, one can obtain its name in the form
of a string. More interesting, given the name of a symbol as a string one can obtain the symbol itself. (More
precisely, symbols are organized into packages, and all the symbols in a package are uniquely identified by
name.)

Symbois have a component called the property list, or pliSl. By convention this is always a list whose
even-numbered components (calling the initial one component zero) are symbols, here functioning as
property names, and whose odd-numbered components are associated property values. Functions are
provided for manipulating this property -list; in effect, these allow a symbol to be treated as an extensible
record structure.

Symbols are also used to represent certain kinds of variables in LISP programs, and there are functions for
dealing with the values associated with symbols in this role.

A symbol can be notated simply by writing its name. If its name is not empty, and if the name consists only
of upper-case alphabetic, numeric, or certain "pseudo-alphabetic" special characters (but not delimiter
characters such as parentheses or space). and if the name of the symbol cannot be mistaken for a number,
then the symbol can be notated by the sequence of characters in its name. Any upper-case letters that appear
in the (internal) name may be written in either case in the external notation (more on this below).

For example:
FROBBOZ
frobboz
fRObBoz
unwind-protect
+$
1+
+1
pascal_style
bA 2-4*a*c

. ; The symbol whose name is "FROBBOZ".
; Another way to notate the same symbol.
; Yet another way to notate it
; A symbol with a "-" in its name.
; The symbol named "+$".
; The symbol named "1+".
; This is the integer 1, not a symbol.
; This symbol has an underscore in its name.
; This is a single symbol!
; It has several special characters in its name.

f i 1 e . re 1 .43 ; This symbol has periods in its name.
lusr/games/zorl< ; This symbol has slashes in its name.

Besides letters and numbers, the following characters are nonnally considered to be "alphabetic" for the

.. _-_. __ ..• _ _-------_ _----._--, _ _.-._._------ --._-

18 COMMON USP REFERENCE MANUAL

purposes of notating symbols:

+ _ * / @ $ % A & _ = < > - .

Some of these characters have conventional purposes for naming things; for example, symbols that name
functions having extremely implementation-dependent semantics generally have names beginning with "%".

The last character, the period" . ", is considered alphabetic provided that a token does not consist entirely of
periods. A single period standing by itself is used the notation of conses and dotted lists; a token consisting of
two or more periods is syntactically illegal. (The period also serves as the decimal point in the notation of
numbers.)

The following characters are also alphabetic by default, but are explicitly reserved to the user for definition
as reader macro characters (see section 22.1.3) or any other desired purpose, and therefore should not be used
routinely in names of symbols:

? ! [] { }

A symbol may have upper-case letters, lower-case letters, or both in its print name. However, the LIsp
reader normally converts lower-case letters to the corresponding upper-case letters when reading symbols.
The net effect is that most of the time case makes no difference when notating symbols. However, case does
make a difference internally and when printing a symbol. Internally the symbols that name all standard
COMMON LISP functions, variables, .and keywords have upper-case names; their names appear in lower case
in this document for readability. Typing such names in lower case works because the function read will
convert them to upper case.

If a symbol cannot be notated simply by the characters of its name, because the (internal) name contains
special characters or lower-case letters, then there are two "escape" conventions for notating them. Writing a
"V' character before any character causes the character to be treated itself as an ordinary character for use in a
symbol name; in particular, it suppresses internal conversion of lower-case letters to upper case. If any
character in a notation is preceded by \, then that notation can never be interpreted as a number.

For example:
\(
\+1
+\1
\frobboz
3.14159265\50
3.14159265\50
3.1415926550
APL\\360
apl\\360
\(b A 2\)\ -\ 4*a*c

\(\b A 2\)\ -\ 4*\a*\c

; The symbol whose name is "(".
; The symbol whose name is "+1".
; Also the symbol whose name is "+1".
; The symbol whose name is "fROBBOZ".
; The symbol whose name is "3 .1415926550".
; The symbol whose name is "3. 1415926550".
; A short-format floating-point approximation to 'IT.

; The symbol whose name is "APL \360".
; Also the symbol whose name is "APL \360".
; The name is "(B"2) - 4*A*C".

It has parentheses and two spaces in it
; The name is "(b"2) - 4*a*c".

The letters are explicitly lower case.

It may be tedious to insert a "\" before every delimiter character in the name of a symbol if there are many
of them. An alternative convention is to surround the name of a symbol with vertical bars; these cause every
character between them to be taken as part of the symbol's name, as if "\" had been written befQre each one,

DATA TYPES

excepting only I itself and \, which must nevertheless be preceded by \.

For example:

I" I
l(b A 2) - 4*a*cl
Ifrobbozl
IAPL\3601

IAPL\\3601
lapl\\3601
1\ 1\ II
I(B A 2) - 4*A*CI

l(b A 2) - 4*a*cl

2.4. Lists and Conses

; The same as writing \ " .
; The name is" (b A 2) - 4* a*c".
; The name is "frobboz", not "FROBBOZ".
; The name is "APL360", because
; the .. \" quotes the "3".
; The name is "APL \360".
; The name is "a p 1 \ 360" .
; Same as \ I \ 1 : the name is "I I".
; The name is "(BA2) - 4* A*C".
; It has parentheses and two spaces in it
; The name is "(b A 2) - 4 * a * c".

19

A con 5 is a record structure containing two componepts, called the car and the cdr. Conses are used
primarily to represent lists.

A list is recursively defined to be either the empty list (which is represented by the symbol n; 1, but can also
be written as "()") or a cons whose cdr component is a list A list is therefore a chain of conses linked by
their cdr components and terminated by n; 1. The car components of the conses are called the elements of
the list For each element of the list there is a cons. The empty list has no elements at all.

A list is notated by writing the elements of the list in order, separated by blank space (space, tab, or return
characters) ~d surrounded by parentheses.

For example:
(a b c) ; A list of three symbols.
(2.050 (a 1) #*) ; A list of three things: a short floating-point number,

another list, and a character object.
This is why the empty list can be written as "()"; it is a list with no elements.

A dotted list is one whose last cons does not have n; 1 for its cdr, but some other data object (which is also
not a cons, or the first-mentioned cons would not be the last cons of the list). Such a list is called "dotted"
because of the special notation used for it: the elements of the list are written between parentheses as before,
but after the last element and before the right parenthesis are written a dot (surrounded by blank space) and
then the cdr of the last cons. As a special case, a single cons is notated by writing the car and the cdr between

. parentheses and separated by a space-surrounded dot

For example:

(a • 4)

(a b c . d)

; A cons whose car is a symbol
; and whose cdr is an integer.
; A dotted list with three elements whose last cons

has the symbol d in its cdr.

20 COMMON USP REFERENCE MANUAL

Compatibility note: In MACLIsp, the dot in dotted-list notation need not be surrounded by white space or other delimiters.
The dot is required to be delimited in COMMON LIsp, as in Lisp Machine LIsp.

It is legitimate to write something like (a b . (c d»; this means the same as (a bed). The
standard LISP output routines will never print a list in the first form, however; they will avoid dot notation
wherever possible.

Often the tcrm list is used to refer either to true lists or to dotted lists. The term "true list" will be used to

refer to a list terminated by nil, when the distinction is important Most functions advertised to operate on
lists expect to be given true lists. Throughout this manual, unless otherwise specified, it is an error to pass a
dotted list to a function that is specified to require a list as an argument

Implementation note: Implementors are encouraged to use the equivalent of the predicate endp (page 208) wherever it is
necessary to test for the end of a list. Whenever feasible, this test should explicitly signal an error if a list is found to be
terminated by a non-n i 1- atom. However, such an expliCit error signal is not required, because some such tests occur in
imponant loops where efficiency is important In such cases, the predicate a tom (page 59) may be used to test for the end
of the list, quietly treating any non-nil list-terminating atom as if it were ni 1.

Sometimes the term tree is used to refer to some cons and all the other conses transitively accessible to it
through car and cdr links until non-conses are reached; these non-conses are called the leaves of the tree.

Lists. dotted lists. and trees are not mutually exclusive data types; they are simply useful points of view
about structures ofconses. There are yet other tcrms, such as association list. None of these are true LISP data
types. Conses are a data type, and n; 1 is the sole object of type nUll. The LISP data type 1 i s t is taken to

mean the union of the con s and n u' 1 data types, and therefore encompasses both true lists and dotted lists.

2.S. Arrays

An ar ray is an object with components arranged according to a Cartesian coordinate system. In general,
these components may be any LISP data objects.

The number of dimensi9ns of an array is called its rank (this terminology is borrowed from APL); this is a
non-negative integer. Likewise. each dimension is itself a non-negative integer. The total number of elements
in the array is the product of all the dimensions.

An implementation of COMMON LISP may impose a limit on the rank of an array, but this limit may not be
smaller than 7. Therefore, any COMMON LIS~ program may assume the use of arrays of rank .7 or less.

It is permissible for a dimension to be zero. In this case, the array has no elements, and any attempt to

access an element is in error. However, other properties of the array (such as the dimensions thermselves)
may be used. If the rank is zero, then there are no dimensions, and the product of the dimensions is then by
definition 1. A zero-rank array therefore has a single element

An array element is specified by a sequence of indices. The length of the sequence must equal the rank of
the array. Each index must be a non-negative integer strictly less than the corresponding array dimension.
Array indexing is therefore zero-origin, not one-origin as in (the default case of) FORTRAN.

DATA TYPES 21

As an example, suppose that the variable foo names a 3-by-5 array. Then the first index may be 0, 1, or 2,
and then second index may be 0, 1, 2, 3, or 4. One may refer to array elements using the function aref
(page 230):

• (aref foe 2 1)

refers to element (2. 1) of the array. Note that aref takes a variable number of arguments: an array, and as
many indices as the array has dimensions. A zero-rank array has no dimensions, and therefore aref would
take such an array and no indices, and return the sole element of the array.

In general, arrays can be multi-dimensional, can share their contents with other array objects, and can have
their size altered dynamically (either enlarging or shrinking) after creation. A one-dimensional array may also
have a fill pointer.

Multidimensional arrays store their componen.ts in row-major order; that is, internally a multidimensional
array is stored as a one-dimensional array. with the multidimensional index sets ordered lexicographically, last
index varying fastest This is important in two situations: (1) when arrays with different dimensions share
their contents. and (2) when accessing very large arrays in virtual-memory implementation. (The first
situation is a matter of semantics; the second, a matter of efficiency.)

An array that is not displaced to ano~er array, has no fill pointer, and is not to have its size adjusted
dynamically after creation, is c~ed a simple array. The user may provide declarations that certain arrays will
be simple. Some implementations can handle simple arrays in an especially efficient manner; for exmaple,
simple arrays may have a more compact representation than non-simple arrays.

2.5.1. Vectors

One-dimensional arrays are called vectors in COMMON LISP. and constitute the type vector (which is
therefore a subtype of array). Vectors and lists are collectively considered to be sequences. They differ in
that any component of a one-dimensional array can be accessed in constant time, while the average
component access time for a list is linear in the length of the list; on the other hand, adding a new element to

the front of a list takes constant time, while the same operation on an array takes time linear in the length of
the array.

A general vector (a one-dimensional array that can have any data object as an element, but has no
additional pataphernalia) can be notated by notating the components in order, separated by whitespace and
surrounded by "# (" and ")".

For example:

; A vector oflength 3. #(a b c)
#(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47)

#()
; A vector containing the primes below 50.
; An empty vector.

Note that when the function re ad parses this syntax, it always constructs a simple general vector.
Rationale: Many people have suggested that brackets be used to notate vectors: .. [a beT' instead of ",< abc)". This
would be shorter, perhaps more readable, and certainly in accord with cultural conventions in other parts of computer
science and mathematics. However, to preserve the usefulness of the user-definable macro-character feature of the function
read (page 291), it is necessary to leave some characters to the user for this purpose. Experience in MAcLlsp has shown

-------- -------_.- ----------_ ... _-_._. __ ._._---_. __ .. _ .. _--_._----

22 COMMON USP REFERENCE MANUAL

that users, especially implementors of languages for use in artificial intelligence research, often want to define special kinds
of brackets. Therefore COMMON USP avoids using square brackets and braces for any purpose .

• Implementations may provide certain specialized representations of arrays for efficiency in the case where
all the components are of the same specialized (typically numeric) type. All implementations provide
specialized arrays for the cases when the components are characters (or rather, a special subset of the
characters); the one-dimensional instances of this specialization are called strings. All implementations are
also required to provide. specialized arrays of bits, that is, arrays of type (a r r ay b ; t) ; the one-dimenslonal
instances of this specialization are called bit-vectors.

2.5.2. Strings

A string is simply a vector of characters; the type 5 t r ; n 9 is therefore a subtype of the type vee tor. A
string can be written as the sequence of characters contained in the string, preceded and followed by aU""
(double-quote) character. Any 61"" or U\" character in the sequence mu~t additionally have a "\" character
before it

For example:
" F 00" ; A string with three characters in it
" " ; An empty string.
"\" APL \ \360?\" he cr ied. " ; A string with twenty characters.
" 1 x 1 = 1-xl" ; A ten-character string.

Notice that any_vertical bar "I" in a string need not be preceded by a "\". Similarly, any double-quote in
the name of a symbol written using vertical-bar notation need not be preceded by a "\". The double-quote
and vertical-bar notations are similar but distinct: double-quotes indicate a character string containing the
sequence of characters, while vertical bars indicate a symbol whose name is the contained sequence of
characters.

The characters contained by the double-quotes, taken from left to right, occupy locations within the string
with increasing indices. The leftmost character is string element number 0, the next one is element number 1,
and so on.

Note that the function p r ; n 1 will print any character vector (not just a simple one) using this syntax, but
the function read will always construct a simple string when it reads this syntax.

2.5.3. Bit-vectors

A bit-vector can be written as the sequence. of bits contained in the string, preceded by u#."; any delimiter
character (such as whitespace) will tenninate the bit-vector syntax.

For example:
fl· 10110 ; A five-bit bit-vector; bit 0 is a 1.
fl· ; An empty bit-vector.

Thebits notated following the "#*", taken from left to right, occupy locations within the bit-vector with

increasing indices. The leftmost notated bit is bit-vector element number 0, the next one is element number
1, and so on.

DATA TYPES 23

The function p r; n 1 will print any bit-vector (not just a simple one) using this syntax, but the function.
re ad will always construct a simple bit-vector when its reads this syntax.

2.6. Hash tables

Hash tables provide an efficient way of mapping any LISP object (a key) to an associated object They are
provided as primitives of COMMON LISP because some implementations may need to use internal storage
management strategies that would make it very difficult for the user to implement hash tables himself in a
portable fashion. Hash tables are described in chapter 16 (page 223).

2.7. Readtables

A readtable is a data structure that maps characters into syntax types for the LISP expression parser. In
particular. a readtable indicates for each character with syntax macro character what its macro definition is.
This is a mechanism by which the user may reprogram the parser to a limited but useful extent See section
22.1.5 (page 280).

2.S. Packages

Packages are collections of symbols that serve as name spaces. The parser recognizes symbols by looking up
character sequences in the "current package". Packages can be used to hide names internal to a module from
other code. Mechanisms are provided for exp<?rting symbols from a given package to the primary "user"
package. See chapter PACKAG (page PACKAG).

2.9. Pathnames

Pathnames are the means by which a COMMON LISP program can interface to an external file system in a
reasonably implementation-independent manner. See section 23.1.1 (page 314).

2.10. Streams

A stream is a source or sink of data, typieally characters or bytes. Nearly all functions that perform I/O do
so with respect to a specified stream. The function open (page 322) takes a pathnarne and returns a stream
connected to the file specified by the pathname. There are a number of standard streams that are used by
default for various purposes. See chapter 21 (page 259).

2.11. Random-states

For information about random-state objects and the random-number generator, see section 12.8 (page
177).

._----_._------ .. _------------- .. _-_.-." .. _ ---------._ _-.. _---_.- ... _.

24 COMMON USP REFERENCE MANUAL

2.12. Structures

Structures are instances of user-defined data types that have a fixed number of named components. They
are analogous to records in PASCAL. Structures are declared using the defstruct(page 245) construct;
~ e f s t r u c t automatically defines access and constructor functions for the new data type.

Different structures may print out in different ways; the definition of a structure type may specify a print
procedure to use for objects of that type (see the : pr i nt-funct i on (page 250) option to defs truct).
The default notation for structures is:

#S (structure-name
slot-name-l slot-value-l
slot-name-2 slot-value-2

...)
where "#S" indicates structure syntax, structure-name is the name (a symbol) of the structure type, each
slot-name is the name (also a symbol) of a component, and each corresponding slot-value is the represeQtation
of the LISP object in that slot

2.13. Functions

A jUnction is anything that may be correctly given to the funcall (page 83) or apply (page
83) function, to be executed as code when arguments are supplied.

A compiled-function is a compiled code object

A list whose car is the symbol 1 amb d a may serve as a function; see Chapter 5.

A symbol may serve as a function; an attempt to invoke a symbol as a function causes the contents of the
symbol's function cell to be used. See s ymb 0 1 - fun c t ion (page 69) and de fun (page 53).

2.14. Unreadable Data Objects

Some objects may print in implementation-dependent ways. As a rule, such objects cannot reliably be
reconstructed from a printed representation, and so they are printed usually in a format informative to the
user but not acceptable to the read function:

#<useful in/ormation>
A hypothetical example might be:

#<stack-pointer si:rename-within-new-definition-maybe 311037fi52>
The LIsp reader will signal an error on encountering "#<".

DATA TYPES 25

2.15. Overlap, Inclusion, and Disjointness of Types

The COMMON LISP data type hierarchy is tangled, and purposely left somewhat open-ended so that

implementors may experiment with new data types as extensions to the language. This section states

explicitly all the defined relationships between types, including subtype/supertype relationships, disjointness,

and exhaustive partitioning. The user of COMMON LISP should not depend on any relationships not explicitly

stated here. For example, it is not valid to assume that because a number is not complex and not rational that

it must be a flo a t, because implementations are permitted to provide yet other kinds of numbers.

. First we need some tenninology. If x is a supertype of y, then any object of type y is also of type x, and y is
said to be a subtype of x. lftypes x andy are disjoint, then no object (in any implementation) may be both of

type x and of type y. Types a1 through an are an exhaustive union of type x if each aj is a subtype of x, and

any object of type x is necessarily of at least one of the types Qi a1 through an are furthermore an exhaustive
parlition if they are also pairwise disjoint

• The type t is a supertype of every type whatsoever. Every object belongs to type t.

• The type nil is a subtype of every type whatsoever. No object belongs to type nil.

• The types cons, symbol, array,number, and character are pairwise disjoint

• The types rat i ona 1, float, and compl ex are pairwise disjoint subtypes of number.

• The types i!1 tege rand ra t i 0 are disjoint SUbtypes of ra t i on a 1.

• The types f i xn um and b i gn um are disjoint subtypes of in tag e r.

• The types short-float, s i ngl e-fl oa t, doub1 e-f1 oat. and 1 oog-fl oat are subtypes
of float. Any two of them must be either disjoint or identical; ifidentical, then any other types
between them in the above ordering must also be identical to them (for example, if
single-float and long-float arejdentical types, then double-float must be identical
to them also).

• The type nu 11 is a subtype of symbo 1; the only object of type null is ni 1.

• The types cons and null form an exhaustive partition of the type 1 i st.

• The type standard-char is a subtype of stri ng-char; stri ng-char is a subtype of
character. .

• The type stri ng is a subtype of vector, for stri ng means (vector stri ng-char).

• The type bi t-vector is a subtype of vector, for bi t-vector means (vector bi t) .

• The types (vector t), string, and bit-vector are disjoint

• The type vector is a subtype of array; for all types x, the type (vector x) is a subtype of
the type (a r r ay x (.». the set-of all one-dimensional arrays.

--_ _" ,,---_ ... -._.-

26 COMMON USP REFERENCE MANUAL

• The type simp 1 e-array is a subtype of array .

• The types simple-vector, simple-string, and simple-bit-vector are disjoint
· subtypes of simple-array, for they respectively mean (simple-array t (*»,

(simple-array string-char (*»,and(simple-array bit (*».

• The type simp 1 e-vector is a subtype of vector ,and indeed is a subtype of (vector t).

• The type simp 1 e - s t r i n g is a subtype of s t r i n g. (Note that although s t r in g is a subtype of
vector, simp 1 e-stri ng is not a subtype of simp 1 e-vector.)

Rationale: The type simple-vector might better have been called simple-general-vector, but in
this instance euphony and user convenience were deemed more important to the design of COMMON I.Jsp

than a rigid symmetry.

• The type simple-bit-vector is a subtype of bit-vector. (Note that although
bit -vec tor is a subtype of vector, simp 1 e-b it-vector is nut a subtype of
simple-vector.)

• The types vector and 1 is t are disjoint subtypes of sequence .

• The types hash-table, readtable, package, pathname, stream, and random-state
are pairwise disjoint

• Any two types created by defstruct· (page 245) are disjoint unless one is a supertype of the
other by virtue of the : inc 1 u d e (page 249) option.

, • An exhaustive union for the type common is formed by the types cons, symbol, (array x)
where x is either t or a subtype of common, fixnum, bignum, ratio, short-float,
single-float, double-float, long-float, (complex x) where x is a subtype of
common, standard-char, hash-table, readtable, package, pathname, stream,
random-state, and all types created by defstruct. An implementation may not unilaterally
add additional subtypes to common; however, future revisions to the COMMON LIsp standard may
extend the definition of the common data type.

Note that a type such as number or array may or may not be a subtype of common, depending
on whether or not the given implementation has extended the set o(objects of that type.

Chapter 3

~cope and Extent

In describing various features of the COMMON LISP language, the notions of scope and extent are frequently

useful. These arise when some object or construct must be referred to from some distant part of a program.

Scope refers to the spatial or textual region of the program within which references may occur. Extent refers

to the interval of time within which references may occur.

As a simple example, consider this program:
(defun copy-cell (x) (cons (car x) (cdr x»)

The scope of the parameter named x is the body of the defun fOnTI. There is no way to refer to this
parameter from any other plac~ but within the body of the defun. Similarly, the extent of the parameter x

(for any particular call to copy-cell) is the interval from the time the function is invoked to the time it is

exited. (In the general case, the extent of a parameter may last beyond the time of function exit, but that

cannot occur in this simple case.)

Within COMMON' LISP, a referenceable entity is established by the execution of some language construct,

and the scope and extent of the entity are described relative to the construct and the time (during execution of

the construct) at which the entity is established. For the purposes of this discussion, the term "entity" refers

not only to COMMON LISP data objects such as symbols and conses, but also to variable bindings (both

'ordinary and special), catchers, and go targets. It is important to distinguish between an entity and a name

for the entity. In a function defhrltion such as this:
(defun foc (x y) (* X (+ Y 1»)

there is a single name, x, used to refer to the first parameter of the procedure whenever it is invoked;

however, a new binding is established on every invocation. A binding is a particular parameter instance. The

value of a reference to the name x depends first on the scope within which it occurs (the one in the body of

foo in the example occurs in the scope of the function definition's parameters); it depends also on the

particular binding (instance) involved (in this case, it depends on during which invocation the reference is

made). More complicated examples appear at the end of this chapter.

There are a few kinds of scope and extent that are particularly useful in describing COMMON LIsp:

• Lexical scope. Here references to the established entity can occur only within certain program
portions that are lexically (that is, textually) contained within the establishing construct Typically
the construct will have a part designated the body, and the scope of all entities established will be
(or include) the body.

- 27-

- - -- . __ ._----._._--- -_._._---------_._. __ ._------- _ .. __ .. __ .. _---_ ... ,_. __ _ _--

28

l-

COMMON USP REFERENCE MANUAL

Example: the names of parameters to a function normally are lexically scoped.

• Indefinite scope. References may occur anywhere, in any program.

• Dynamic extent. References may occur at any time in the interval between establishment of the
entity and the explicit disestablishment of the entity. As a rule. the entity is disestablished when
execution of the establishing construct completes or is otherwise terminated. Therefore entities
with dynamic extent obey a stack-like discipline, paralleling the nested executions of their
establishing constructs.

Example: the wi th-open.-fi 1 e (page 325) opens a connection to a file and creates a stream
. object to represent the connection. The stream object has indefinite extent, but the connection to

the open file has dynamic extent: when control exits the wi th -open -f i 1 e construct, either
normally or abnormally, the file is automatically closed.

Example: the binding of a "special" variable has dynamic extent

• Indefinite extent. The entity continues to exist so long as'the possibility of reference remains. (An
implementation is free to destroy the entity if it can prove that reference to it is no longer
possible.)

Example: most COMMON LISP data objects have indefinite extent

Example: the names of lexically scoped parameters to a function have indefinite extent (By
contrast, in ALGOL the names of lexically scoped parameters to a procedure have dynamic extent)
This function definition:

{defun compose (f g)
#'(lambda (x) (funcall f (funcall 9 x»»

when given two arguments, immediately returns a function as its value. The parameter bindings
for f and 9 do not disappear, because the returned function, when called, could still refer to those
bindings. Therefore

(funcall (compose #'sqrt #tabs) -9.0)

produces the value 3. o. (An analogous procedure would not work correctly in typical ALGOL
implementations.)

In addition to the above terms, it is convenient to define dynamic scope to mean indefinite scope and
dynamic extent. Thus we speak of "special" variables as having dynamic scope, or being dynamically scoped,

because they have indefinite scope and dynamic extent: a special variable can be referred to anywhere as long

as its binding is currently in'effect

The ,-bove definitions do not take int0 account the possibility of shadowing. Remote reference of entities is
accomplished by using names of one kind or another. If two entities have the same name, then the second

(say) may shadow the first, in which case an occurrence of the name will refer to the second and cannot refer

to the first

In the case of lexical scope, if two constructs that establish entities with the same name are textually nested,

then references within the inner construct refer to the entity established by the inner one; the inner one

SCOPE AND EXTENT 29

shadows the outer one. Outside the inner one but inside the outer one, references refer to the entity

established by the outer construct For example:
(defun test (x z)

(let «z (* x 2») (print z»
z)

The binding of the variable z by the 1 e't (page 85) construct shadows the parameter binding for the function

te s t. The reference to the variable z in the p r i n t form refers to the 1 e t binding. The reference to z at
the end of the function refers to the parameter named z.

In the case of dynamic extent, if the time intervals of two entities overlap, then one interval will necessarily

'be nested within the other one (this is a property of the design of COMMON LISP).
Implementation note: Behind the'assertion that dynamic extents nest properly is the assumption that there is only a single
program or process. CoMMON LIsp does not address the problems of multiprogramming (timesharing) or multiprocessing
(more than one active processor) within a single LIsp environment. The documentation for implementations that extend
COMMON LIsp for multiprogramming or multiprocessing should be very clear on what modifications are induced by such
extensions to the rules of extent and scope.

A reference by name to an entity with dynamic extent will always refer to the entity of that name that has

been most recently established that has not yet been disestablished. For example:
(defun funl (x)

.(catch 'trap (+ 3 (fun2 x»»

(defun fun2 (y)
(catch 'trap (* 5 (fu~3 y»»

(defun fun3 (z)
(throw 'trap z»

Consider the call (fun 1 7). The result will be 10. At the time the th row (page 108) is executed, there are

two outstanding catchers with the name t rap: one established within procedure fun 1, and the other within

procedure fun2. The latter is the more recent, and so the value 7 is returned from the catch form in fun2.

Viewed from within fun 3, the cat chin fun 2 shadows the one in fun 1. (Had fun 2 been defined as
(defun fun2 (y)

(catch '.snare (* 5 (fun3 y»»

then the two catchers would have different names, and therefore the one in fun 1 would not be shadowed.
The result would then have been' 7.)

As a rule this document will simply speak of the scope or extent of an entity; the possi~ili~y of shadowing
will be left implicit.

A list of the important scope and extent rules in COMMON LISP:

.• Variable bindings normally have lexical scope and indefinite extent.

• Variable bindings that are declared to be s p e c ; a 1 have dynamic scope (indefinite scope and
dynamic extent) .

• A catcher established by a catch (page 107) or unwi nd-protect (page 107) special form has
dynamic scope.

-_. __ .. - .. _ _ _-------- ---_._------

30 COMMON USP REFERENCE MANUAL

• An exit point established by a bloc k (page 91) construct has lexical scope and dynamic extent
(Such exit points are also established by do (page 93), prog (page 100), and other iteration
constructs.)

• The go targets established by a tagbody (page 100), named by the tags in the tagbody, and
referred to.by go (page 102) have lexical scope and dynamic extent. (Such go targets are also
established by do (page 93), prog (page 100), and other iteration constructs.)

• Named constailts such as nil (page 58) and pi (page 161) have indefinite scope and indefinite
extent

The rules of lexical scoping imply that lambda-expressions, in general, produce "closures" over those

non-special variables visible to the lambda-expression; that is, the function represented by a lambda

expression may refer to any lexically apparent non-special variable and get the correct value, even if the

construct that established the binding has been exited in the course of execution. The compose example

shown above provides one illustration of this. The rules also imply that special variable bindings are not

"closed over" (as they may be in certain other dialects of LISP).

Constructs that use lexical scope effectively generate a new name for each established entity on each

execution. Therefore dynamic shadowing cannot occur (though lexical shadowing may). This is of particular

importance when dynamic extent is involved. For example:
(defun contorted-exa·mp 1 e (f g x)

(if (= x 0)
(funcall f)
(block here

(+ 5 (contorted-example g
#'(lambda () (return-from here 4»
(- xl»»»

Consider the call (contorted-example nil nil 2). This produces the result 4. During the course-of

execution there are three calls on contor ted -examp 1 e, interleaved with two establishments of blOCks:
(contorted-example nil nil 2)

(block here! ...)

(contorted-example nil #'(lambda () (return-from here! 4» 1)

(block here2 ...)

(contorted-example #'(lambda () (return-from here l 4»
#'(lambda () (return-from here2 4»
1)

(funcall f)
where f => #' (1 ambda () (return -from here l 4»

(return-from herei 4)

At the time the fun call is executed there are two b 1 0 c k (page 91) exit points outstanding, each apparently

named· here. In the trace above, these exit points are distinguished for expository purposes by subscripts.

The r e tu r n - from (page 92) form executed as a result of the fun call operation refers to the outer one of
the outstanding exit points (herel), not the inner one (here2). This is a consequence of the rules of lexical

._-.-_._ .. _------

SCOPE AND EXTENT 31

scoping: it refers to that exit point textually visible at the point of execution of the funct i on (page
68) construct (here abbreviated by the #' syntax) that resulted in creation of the function object actually
invoked by the funcal 1.

If, in this ex amp Ie, one were to change the fonn (f un cal 1 f) to (f u n call 9), then the value of the
call (contorted-example nil nil 2) would be 9. That is because the funcall would cause the
execution of (return-from here2 4), thereby cuasing a return from the inner exit point (here2).

When that occurs, the value 4 is returned from the middle invocation of contorted-exampl e, 5 is added
to that to get 9, and that value is returned from the outer block and the outermost call to

, contorted-example. The point of this is that which exit point is returned from has nothing to do with
being innermost or outermost, but depends on the lexical scoping information that is effectively packaged up
with a lambda-expression when the fun c t ion construct is executed.

The function contorted-exampl e above works only because the function named by f is invoked
during the extent of the exit point Block exit points are like non-special variable bindings in having lexical
scope, but differ in having dynamic extent rather than indefinite extent. Once the flow of execution has left
the block construct, the exit point is disestablished. For example:

(defun illegal-example ()
(let «y (block here #'(lambda (z) (return-from here z»»)

(if (numberp y) y (funcall y 5))

One might expect the call (i 11 ega 1 - e x amp 1 e) to produce 5 by the following incorrect reasoning: the
1 e t statement binds the variable y to the value of the b 1 0 c k construct; this value is a function resulting from
the lambda-expression. Because y is not a number, it is invoked on the value 5. The return-from should
then return this value from the exit point named here, th'ereby exiting from the block again and giving y the
value 5, which being a number is then returned as the value of the call to i 11 ega 1 - e x amp 1 e.

The argument fails only because exit points are defined in COMMON LISP to have dynamic extent. The
argument is correct up to the execution of the return-from. The execution of the return-from is an
,error, however, not because it cannot refer to the exit point, but because it does correctly refer to an exit point
and that exit point has been disestablished.

--_ _---

32 COMMON USP REFERENCE MANUAL

Chapter 4

Type Specifiers

In COMMON LISP, types are named by LIsp objects, specifically symbols and lists, called type specifiers.
Symbols name predefined classes of objects, while lists usually indicate combinations or specializations of
simpler types. Symbols or lists may also be abbreviations for types that could be specified in other ways.

4.1. Type Specifier Symbols

The type symbols defined by the system include those shown in Table 4-1. In addition, when a structure
type is defined using defstruct (page 245), the name of the structure type becomes a valid type symbol.

4.2. Type Specifier Lists

If a type specifier is a list, the car of the list is a symbol, and the rest of the list is subsidiary type
infonnation. In many cases a subsidiary item may be unspecified. This is indicated by writing • for the
unspecified subsidiary item. For example, to completely specify a vector type one must mention the type of
the elements and the length of the vector, as for example

(vector double-float 100)

To leave the length unspecified one would write
(vector double-float *)

To leave the element type unspecified one would write
(vector * 100)

Suppose that two type specifiers are the same except that the first has a • where the second has a more explicit
specification. Then the second denotes ~ subtype of the type denoted by the first

As a convenience, if a list has one or more unspecified items at the end, such items may simply be dropped
rather than writing an explicit • for each one. If dropping all occurrences of· results in a single tOT} list, then
the parentheses may be dropped as well (the list may be replaced by the symbol in its car). For example,
(vector doub 1 e-fl oat .) may be abbreviated to (vector doub 1 e -float), and (vector • .)
may be abbreviated to (vector) and then to simply vector.

- 33-

.. - ._ .. _--_._._ .. _-_ .. _-_._--------- - ... -. _. _._-----._---_._--_._--------_.--._. -_._----_._"--_.-._,, -----. ----_._---"._"._-----_.

34 . COMMON USP REFERENCE MANUAL

4.3. Predicating Type Specifier

A type specifier list (s at is fie s predicate-name) denotes the set of all objects that satisfy the predicate

flamed by predicate-name, which must be a symbol whose global function definition is a one-argument

predicate. (A name is required; lambda-expressions are not allowed in order to avoid seoping problems.) For

example, the type (satisfies numberp) is the same as the type number. The call (typep x

, (sat i sf i e s p» results in applying p to x and returning t if the result is true and nil if the result is
false.

As. an example, the type s t r i n g - c h a r could be defined as
{deftype string-char () '(and character (satisfies string-charp»)

See deftype (page 39).

As a rule, a predicate appearing in a sat i sf i e s type specifier shouid not cause any side effects when

invoked.

array
atom
bignum
bit
bit-vector
character
common
compiled-function
complex
cons
double-float

fixnum
float
function .
hash-table
integer
keyword
list
long-float
ni 1

. null

package
pathname
random-state
ratio
rational
readtable
sequence
short-float
simple-array
simple-bit-vector
Simple-string number

Table 4-1: Standard Type Specifier Symbols

4.4. Type Specifiers That Combine

Simple-vector
Single-float
standard-char
stream
string
string-char
symbol
t
vector

The following type specifier lists define a data type in terms of other types or objects.

(membe r objectl object2 ...)

(not type)

This denotes the set containing precisely those objects named. An object is of this type if
and only if it is e q 1 (page 62) to one of the specified objects.

Compatibility Dote: This is approximately equivalent to what the INTERUSP DECL package calls
memq.

This denotes the set of all those objects that are not of the specified type.

(and type] type2 •.•)
This denotes the intersection of the specified types.

TYPE SPEOFIERS 35

Compatibility Dote: This is roughly equivalent to what the INTERUSP DECL package calls a 11 of.

When typep (page 58) processes an and type specifier, it always tests each of the
component types in order from left to right, and stops processing as soon as one
component of the intersection has been found to which the object in question does not
belong. In this respect an an d type specifier is similar to an executable an d (page
64) fonn. The purpose of this is to allow a sat i sf i e s type specifier to depend on
filtering by previous type specifiers. For example, suppose there were a function p r ; me p
that takes an integer and says whether it is prime. Suppose also that it is an error to give
any object other than an integer to p rime p. Then the type specifier

(and integer (satisfies primep»
is guaranteed never to result in an error because the function p r ; me p will not be invoked
unless the object in question has already been determined to be an integer.

(0 r type] type2 •••)
This denotes the union of the specified types. For example, the type lis t by definition is
the same as (0 r null con s).' Alsq, the value returned by the function po sit ion
(page 202) is always of type (or null (i nteger 0 *» (either n; 1 or a non-negative
integer).

Compatibility Dote: This is roughly equivalent to what the INTERUSP DECL package calls oneof.

As for an d, when typep processes an or type specifier, it always tests each of the
component types in order from left to right, and stops processing as soon as one
component of the union has been found to which the object in question belongs.

4.5. Type Specifiers That Specialize

Some type specifier lists denote specializations of data types named by symbols. These specializations may
be reflected by more efficient representations in the underlying implementation. As an example, consider the
type (a r r ay s h 0 r t - flo at) . Implementation A may choose to provide a specialized representation for
arrays of short floating-point numbers, and implementation B may choose not to.

If you should want to create an array for the express purpose of holding only short-float objects, you may
optionally specify to make-array (page 227) the element type short-float. This does not require
make-array to create an object of type (array short-float); it merely permits it. The request is
construed to mean "Produce the most specialized array representation capable of holding short-floats that the
implementation can provide.'" Implementation A will th~n produce a specialized short-float array (of type
(array short-float», and implementation B will produce an ordinary array (one of type (array
t)}.

If one were then to ask whether the array were actually of type (a r ray s h 0 r t - flo at) , implementation
A would say "yes", but implementation B would say "no". This is a property of make-array and similar
functions: what you ask for is not necessarily what you get.

Types can therefore be used for two different purposes: declaration and discrimination. Declaring to

-_._--.,---------------_._._---------_._----- _._--_.---- ----

36 COMMON USP REFERENCE MANUAL

rnak e - ar ray that elements will always be of type s h 0 r t - flo at pennits optimization. Similarly, declaring

that a variable takes on values of type (arl"ay short-f 1 oat) amounts to saying that the variable will take

on values that might be produced by specifying element type s h 0 r t - flo a t to ma k e - a r ray. On the other
t
hand, if the predicate typep is used to test whether an object is of type (array short-float), only

objects actually of that specialized type can satisfy the test; in implementation B no object can pass that test

The valid list-fonnat names for data types are:

(array element-type dimensions)
This denotes the set of specialized arrays whose elements are all members of the type
element-type and whose dimensions match dimensions. For declaration purposes, this type
encompasses those arrays that can result by specifying element-type as the element type to
the function rna k e - a r ray (page 227); this may be different from what the type means
for discrimination purposes. element-type must be a valid type specifier or unspecified.
dimensions may be a non-negative integer, which is the number of dimensions, or it may be
a list of non-negative integers representing the length of each dimension (any dimension
may be unspecified instead), or it may be unspecified.

For example:

(array
(array
(array
(array

integer 3)
integer (* * *»
* (4 5 6»
character (3 *»

; Three-dimensional arrays of integers.
; Three-dimensional arrays of integers.
: 4-by-S-by-6 arrays.
; Two-dimensional arrays of characters

that have exactly three rows.
(a r r ay s h 0 r t - f 1.0 a t (» ; Zero-rank arrays of short-format

; floating-point numbers.

Note that (array t) is a proper subset of (array *). The reason is that (arr ay t)
is the set of arrays that can hold any COMMON LISP object (the elements are of type t,
which includes all objects). On the other hand, (ar r ay *) is the set of all arrays
whatsoever, including for example arrays that can hold only characters. Now (array
char acter) is not a subset of (arr ay t); the two sets are in fact disjoint, because
(array character) is not the set of all arrays that can hold characters, but the set of
arrays that are specialized to hold precisely characters and no other objects. To test
whether an array f 00 can hold a character, one should not use

(typep foo '(array character»

but rather
(subtypep 'character (array-element-type fool)

See array-elernent-type (page 231).

(simple-array element-type dimensions)
This is equivalent to (array element-type dimensions) except that it additionally
specifies tr..at its elements are simple arrays. (See section 2.5.)

(vector element-type size)
This denotes the set of specialized one-dimensional arrays whose elements are all of type
element-type and whose lengths match size. This is entirely equivalent to (array
element-type (size».

For example:

lYPE SPEOFIERS 37

(vector doub 1 e-f1 oat) ; Vectors ofdouble-fonnat
; floating-point numbers.

(vector • 5) ; Vectors oflength S.
(vector t 5) ; General vectors oflength S.
(vector (mod 32) .) ; Vectors of integers between 0 and 3l.

The specialized types (vector string-char) and (vector bit) are so useful that
they have the special names s t r i n g and b; t - vee tor. Every implementation of
COMMON LISP must provide distinct representations for these as distinct specialized data
types.

(simple-vector sue)
This is the same as (vector t size) except that it additionally specifies that its elements
are simple general vectors.

(comp1 ex type) Every element of this type is a complex number whose real part and imaginary part are
each of type type. For declaration purposes, this type encompasses those complex numbers
that can result by giving numbers of the specified type to the function comp 1 ex (page
169); this may be different from what the type means for discrimination purposes. As an
example, Gaussian integers might be described as (comp1 ex integer), even in
implementations where giving two integers to the function comp 1 e x results in an object of
type (complex rational).

(funct ion (arg]-type arg2~type ...) value-type)
This type may be used only for declaration and not for discrimination; ty pep (page
58) will signal an error ifit encounters a specifier of this form. Every element of this type is
u. fJnction that accepts arguments at least of the types specified by the argj-type forms, and
returns a value that is a member of the types specified by the value-type form.- The
&optional, &rest, and&key keywords may appear in the list of argument types. The
value-type may be a val ues type specifier, to indicate the types of multiple values.

As an example, the function cons (page 208) is of type (funct i on (t t) cons),
because it can accept any two arguments and always returns a cons. It is also of type
(funct ion (float stri ng) 1 i st), because it can certainly accept a floating-point
number and a string (among other things), and its result is always of type 1 is t (in fact a
cons and never null, but that does not matter for this type declaration). The function
truncate (page 166) is of type (function (number number) (values number
number»,aswellasoftype(function (integer (mod 8» integer).

(v a 1 ue s valuel-type value2-type ..•)
This type specifer is extremely restricted: it may be used only as the value-type in a
funct i on type specifier or in a the (page 123) declaration. It is used to specify
individual types when multiple values are involved. The &op t i on a', &res t, and &key
keywords may appear in the value-type list; they thereby indicate the parameter list of a
function that, when given to mu 1 t ; p , e - va' u e - call (page 104) along with the values,
would be suitable for receiving those values.

38 COMMON liSP REFERENCE MANUAL

4.6. Type Specifiers That Abbreviate

• The following type specifiers are, for the most part, abbreviations for other type specifiers that would be far
too verbose to write out explicitly (using, for example, memb e r).

(i n t e g e r low high)
This denotes the integers between low and high. The limits low and high must each be an
integer, a list of an integer, or unspecified. An integer is an inclusive limit, a list of an
integer is an exclusive limit, and * means that a limit does not exist and so effectively
denotes minus or plus infinity, respectively. The type f i xn um is simply a name for
(i nteger smallest largest) for implementation-dependent values of smallest and largest
(see most-negat i ve-fi xnum (page 179) and most-pos it; ve-fi x nurn (page
179». The type (integer 0 1) is so useful that it has the special name bi t.

(mod on) The set of non-negative integers less than n. This is equivalent to (integer 0 n-l) or
to (integer 0 (n».

(signed-byte s)
The set of integers that can be represented in two's-complement fonn in a byte of s bits.
This is equivalent to (integer _2s- 1 2s- 1_1). Simply signed-byte or
(s i gned -byte *) is the same as integer.

(uns i gned-byte s) ° °

The set of non-negative integers that can be represented in a byte of s bits. This is
equivalent to (mod 2s), that is, (integer 0 2s-1). Simply unSigned-byte or
(uns i gned-byte *) is the same as {i nteger 0 (», the set of non-negative
integers.

(rational row h~h)
This denotes the rationals between low and high. The limits low and high must each be a
rational, a list of a rational, or unspecified. A rational is an inclusive limit, a list of a
rational is an exclusive limit, and * means that a limit does not exist and so effectively
denotes minus or plus infinity, respectively.

(float low high)
The set of floating-point numbers between low and high. The limits low and high must
each be a floating-point number, a list of a floating-point number, or unspecified; a
floating-point number is an inclusive limit, a list of a floating-point number is an exclusive
limit, and * means that a limit does not exist and so effectively denotes minus or plus
infinity, respectively. .

In a similar m~ner one may use:
(short-float low high)
(single-float fuw high)
(doub 1 e-fl oat low high)
(l ong-fl oat low high)

In this case, if a limit is a floating-point number (or a list of one), it must be one of the
appropriate fOlmat

------------------------------,.---

1YPE SPECIFIERS

:i

39

(s tr i n g size)
This means the same as (array string-char (size»: the set of strings of the
indicated size.

(simple-string sue)
This means the same as (s imp 1 e-array stri ng-char (size»: the set of simple
strings of the indicated size.

(b it-vector size)
This means the same as (a r ray bit (size)): the set of bit-vectors of the indicated size.

(simple-bit-vector sue)
This means the same as {s imp 1 e - a r r ay bit (size)): the set of bit-vectors of the
indicated size.

4.7. Defining New Type Specifiers

New type specifiers can come into existence in two ways: First, defining a new structure type with
de f s t r ~ c t (page 245) automatically causes the name of the structure to be a new type specifier symbol.
Second, the de f t Y P e special form can be used to define new type-specifier abbreviations.

deftype name 'lambda-list {declaration I doc-string}* {fonn}* [Macro]

This is very similar to a defmacro (page 112) fonn: name is the symbol that identifies the type
specifier being defined, lambda-list is a lambda-list (and may contain &opt ional and &rest

tokens), and the forms constitute the body of the expander function. If we view a type specifier list
as a list containing the type specifier name and some argument forms, the argument forms
(unevaluated) are bound to the corresponding parameters in lambda-liSle Then the body forms are
evaluated as an implicit pro g n, and the value of the last form is interpreted as a new type specifier
for which the original specifier was an abbreviation.

deftype differs from defmacro in that if no initform is specified for an &opt i anal parameter,
the default value is ., not nil.

If the optional documentation string doc-string is present, then it is attached to the name as a
documentation string of type type; see documentat i on (page 338).

For example:
(deftype mod en) '(integer 0 (,n»)
{deftype list () '(or null cons»
{deftype square-matrix (&optional ~ype size)

"SQUARE-MATRIX includes all square two-dimensional arrays."
t{array ,type (,size ,size»)

(square-matrix short-float 7) means (array short-float (7 7»
(square-matrix bit) means (array bit (* *»

If the type name defined by deftype is used simply as a type specifier symbol, it is interpreted as a

40 COMMON USP REFERENCE MANUAL

type specifier list with no argument fonris. Thus, in the example above, square-matrix would

mean (a r r ay • (. .», the set of two-dimensional arrays. This would unfortunately fail to

convey the constraint that the two dimensions be the same; (square-matrix bit) has the

same problem. A better definition is:
(defun equidimensional (a)

(or « (array-rank a) 2)
(apply #'= (array-dimensions a»»

(deftype square-matrix (&optional type size)
'(and (array ,type (,size ,size»

(satisfies equidimensional»)

4.8. Type Conversion Function

coerce object result-type [Function]
The result-type must be a type specifier; the object is converted to an "equivalent" object of the

specified type. If the coercion cannot be performed then an error is signalled. In particular,

(coerce x 'n i 1) always signals an error. As a rule, if object is already of the specified type, as

determined- by type p (page 58), then it is simply returned. It is not generally possible to convert

any object to be of any type whatsoever; only certain conversions are permitted:

• Any sequence type may be converted to any other sequence type, provided that the new
sequence can contain all actual elements of the old sequence (it is an error if it cannot).
If the result-type is specified as simply array, for example, then (array t) is
assumed. A specialized type such as string or (vector (complex
s h 0 r t - flo at)) may be specified; of course, the result may be of either that type or
some more general type, as determined by the implementation. If the sequence is
already of the specified type, it may be returned without copying it; in this (coerce
type sequence) differs from (con cat e nat e type sequence). for the latter is required
to copy the argument sequence. In particular, if one specifies sequence, then the
argument may simply be returned, if it already is a sequence.

(coerce '(a b c) 'vector) => #(a b c)

• Some strings, symbols, and integers may be converted to characters. If object is a string
of length 1, then the sole element of the string is returned. If object is a symbol whose
print name is of length t then the sole element of the print name is returned. If object
isanintegern, then (int-char n) isretumed. See character (page 188).

(coerce "a" 'character) => #\a

• Any non-complex number can be converted to be a short-float, Single-float,
double-float, or long-float. If simply float is specified, and object is not
already a flo a t of some kind, then the object is converted to be a sin 9 1 e - flo a t.

(coerce a 'short-float) => O.OSO
(~oerce 3.5LO 'float) => 3.5LO
(coerce 7/2 'float) => 3.5

• Any number can be converted to be a complex number. If the number is not already
complex, then a zero imaginary part is provided by coercing the integer zero to the type

TYPE SPECIFIERS

of the given real part (If the given real part is rational, however, then the rule of
canonical representation for complex rationals will result in the immediate re
conversion of the result from type comp 1 ex back to type ra tiona 1.)

(coerce 4.5s0 'complex) => #C(4.5S0 O.OSO)
(coerce 7/2 'complex) => 7/2
(coerce #C(7/2 0) '(complex double-float»

=> #C(3.500 0.000)

• Any object may be coerced to type t.
(coerce x 't) <=> (identity x) <=> x

41

Coercions from floating-point numbers to rationals and from ratios to integers are purposely not
provided, because of rounding problems. The functions rat ion a 1 (page 165), rat ion ali z e,

floor (page 166), ceil in9, truncate, and round may be used for such purposes. Similarly,

coercions from characters to integers are purposely not provided; char-code (page 188) or

c h a r - ; n t (page 190) may be used explicitly to perform such conversions.

4.9. Determining the Type of an Object

type-of object [Function]
(type-of object) returns an implementation-dependent result: some type of which the object is
a member. Implementations are encouraged to return the most specific type that can be

conveniently computed and is likely to be useful to the uscr. If the argument is a user-defined

named structure created by de f s t r u c t then ty p e - 0 f will return the type name of that structure.

Because the result is implementation-dependent, it is usually better to use type-of of one

argument primarily for debugging purposes; however, there are a few situations where portable

code requires the use of type-of, such as when the result is to be given to the coerce (page

40) or map (page 197) function. On the other hand, often the typep (page 58) function or the

ty p e cas e construct is more appropriate for some purpose than ty p e - 0 f.
Compatibility note: In MACUSP this function is called ty pep. and anomalously so, for it is not a predicate .

. . -'1'

-------..... _ .. -._-_._--- ._-----_.

.>:.

42 COMMON USP REFERENCE MANUAL

Chapter 5

~rogram Structure

In the previous chapter the syntax was sketched for notating data objects in COMMON LISP. The same
syntax is used for notating programs, because all COMMON LISP programs have a representation as COMMON

LISP data objects.

5.1. Forms

The standard unit of interaction with a COMMON LISP 'implementation is the /onn, which is simply a data
object meant to be evaluated as a program to produce one or more values (which are also data objects). One
may request evaluation of any. data object, but only certain ones (such as symbols and lists) are meaningful
forms, while others (such as most arrays) are not. Examples of meaningful forms are 3, whose value is 3, and
(+ 3 4), whose value is 7. We write "3 => 3" and "(+ 3 4) => 7" to indicate these facts. ("=>" means
"~valuates to".)

Meaningful forms may be divided into three categories: self-evaluating forms, such as numbers; symbols,
which stand for variables; and lists. The lists in tum may be divided into three categories: special forms,
macro calls, and function calls. (Any· COMMON LISP data object not explicitly defined to be a valid form is
not a valid form, and attempting to evaluate such an object will cause an error to be signalled.)

5.1.1. Self-Evaluating Forms

All numbers, characters, strings, and bit-vectors are self-evaluating forms. When such an object is
evaluated, that object itself(or possibly' a copy in the case of numbers) is returned as the value of the form.
The empty list (), which is also the false value n i 1, is also a self-evaluating form: the value of n i 1 is n i 1 .
Keywords (symbols written with a leading colon) also evaluate to themselves: the value of : start is
: start.

5.1.2. Variables

Symbols are used as names of variables in COMMON LISP programs. When a symbol is evaluated as a form,
the value of the variable it names is produced. For example, after doing (setq items 3), which assigns
the value 3 to the variable named i terns, then items => 3. Variables can be assigned to, as by setq (page
70), or bound, as by 1 e t (page 85). Any program construct that binds a variable effectively saves the old
value of the variable and causes it to have a new value, and on exit from the construct the old value is

-43 -

... _--_. __ ... __ ._-_._- ._--_._-----_._- ---_. __ _._ ... _--_ ... _-------_._-_ ... _-----._ .. _----.-. __ ... _--_ ... _ ... __ ._--

44 COMMON USP REFERENCE MANUAL

reinstated.

There are actually two kinds of variables in COMMON LISP, called lexical (or stalic) variables and speciat(or
},[ynamic) variables. At any given time either or both kinds of variable with the same name may have a current

value. Which of the two kinds of variable is referred to when a symbol 'is evaluated depends on the context of

the evaluation. The general rule is that if the symbol occurs textually within a program construct that creates

a binding for a variable of the same name, then the reference is to the variable specified by the binding; if no

such program construct textually contains the reference, then it is taken to refer to the special variable of that

name.

The distinction between the two kinds of variable is one of scope and extent A lexically bound variable can

be referred to only by fonns occurring at any place textually within the program construct that binds the

variable. A dynamically bound (special) variable can be referred to at any time from the time the binding is .
made until the time evaluation of the construct that binds the variable terminates. Therefore lexical binding
of variables imposes a spatial limitation on occurrences of r~ferences (but no temporal limitation, for the

binding continues to exist as long as the possibility of reference remains). Conversely, dynamic binding of

variables imposes a temporal limitation on occurrences of references (but no spatial limitation). For more

infonnation on scope and extent, see Chapter 3.

The value a special variable has when there are currently ho bindings of that variable is called the global
value of the (special) variable. A global value can be given to a variable only by assignment, because a value

given by binding by definition is not global.

It is possible for a special variable to have no value at all, in which case it is said to be unbound. By default,

every global variable is unbound unless and until explicitly assigned a value, except for those global variables

defined by this document or by the implementation already to have values when the LISP system is first

staned. It is also possible to establish a binding of a special variable and then cause that binding to be

valueless by using the function makunbound (page 71). In this situation the variable is also said to be

"unbound", although this is a misnomer; precisely speakin~ it is bound but valueless. It is an error to refer to

a variable that is unbound.

Certain global variables are reserved as "named constants". They have a global value, and may not be

bound or assigned to. For example, the symbols t and n; 1 ~re reserved. One may not assign a value to tor

n; 1 , and one may not bind t or n; 1. The global value of t is always t, and the global value of n ; 1 is always

n; 1. Constant symbols defined by def con stant (page 53) also become reserved and may not be further

assigned to or bound (although they may be redefined, if necessary, by using de f con s tan t again).

5.1.3. Special Forms

If a list is to be evaluated as a form, the first step is to examine the first element of the list If the first
element is one of the symbols appearing in Table 5-1, then the list is called a special fonn. (This use of the

word "special" is unrelated to its use in the phrase "special variable".)

PROGRAM STRUCTURE

block (page 91)
catch (page 107)
compiler-let (page 86)
dec1 are (page 117)
f1 et (page 87)
funct i on (page 68)
go (page 102)
if (page 89)
1 abe 1 s (page 87)
1 et· . (page 86)
1 e t (page 85)
macro1 at (page 87)

mu1tiple-value-ca11
multiple-value-progl
progn
progv
quote
return-from
setq
tagbody
the
throw
unwind-protect

(The page numbers indicate where the definitions of these special forms appear.)

Table 5-1: Names of All COMMON LISP Special Forms

(page 104)
(page 104)
(page 84)
(page 87)
(page 68)
(page 92)
(page 70)
(page 100)
(page 123)
(page 108)
(page 107)

45

Special forms are generally environment and control constructs. Every special form has its own
idiosyncratic syntax. An example is the if special form: 66 (i f P (+ x 4) 5)" in COMMON LISP means
what "if p then x+4 else 5" would mean in ALGOL.

The evaluation of a special form nonnally produces a value or values, but it may instead call for a non-local ..
exit; see return-from (page 92), go (page 102). and throw (page 108).

The set of special forms is fix~d in COMMON LISP; no way is provided for the user to define more. The user .
can create new syntactic constructs, however, by defining macros.

The set of special forms in COMMON LISP is purposely kept very small, because any program-analyzing
program must have special knowledge about every type ,of special form. Such a program needs no special
knowledge about macros, because it is simple to expand the macro and operate on the resulting expansion.
(This is not to say that many such programs, particularly compilers, will not have such speci~ knowledge. A
compiler may be able to produce much better code if it recognizes such constructs as typecase and
mu 1 tip 1 e - val ue - bin d and gives them customized treatment)

An implementation is free to implement as a macro any construct described herein as being a special form..
Conversely, an implementation is free to implement as a special form any construct described herein as being
a macro, provided that an equivalent macro definition is also provided. The practical consequence is that the
predicates macro-funct i on (page 111) and spec i a 1 -form-p may both be true of the same symbol. It
is recommended that a program-analyzing program process a form that is a list whose car is a symbol as
follows:

1. If the program has particular knowledge about the symbol, process the form using special-purpose
code. All of the symbols listed in Table 5-1 should fall into this category. .

2. Otherwise, if macro-funct i on is true of the symbol, apply either macroexpand (page
116) or macroexpand-l, as appropriate, to the entire form and then start over .

.......... " _ ... -... _-_._----_.

46 COMMON USP REFERENCE MANUAL

3. Otherwise, assume it is a function call.

5.1.4. Macros

• If a fonn is a list and the first element is not the name of a special fonn, it may be the name of a macro; if'
so, the fonn is said to be a macro call. A macro is essentially a function from fonns to forms that will,. given a

call to that macro, compute a new form to be evaluated in place of the macro call. (This computation is
sometimes'referred to as macro expansion.) For example, the macro named return (page 92) will take a

fonn such as (return x) and from that'form compute a new form (return-from ni 1 x). We say

that the old form expands into the new form. The new form is then evaluated in place of the original form;

the .value of the new form is returned as the value of the original form.

There are a number of standard macros in COMMON LiSp, and the user can define more by using

defmacro (page 112).

Macros provided by a COMMON LISP implementation as described herein may expand into code that is not

portable among differing implementations. That is, a macro call may be implementation-independent

because the macro is defined in this document, but the expansion need not be.
Implementation note: Implementors are encouraged to implement the macros defined in this document. as far as is possible,
in such as way that the expansion will not cont:ain any implementation-dependent special forms, nor contain as forms data
objects that are not considered to be forms in CoMMON LIsp. The purpose of this restriction is to ensure that the expansion
can be processed by a program-analyzing program in an implementation-independent manner. There is no problem with a
macro expansion containing calls to implementation-dependent functions. This restriction is not a requirement of CoMMON

LIsp: it is recognized that certain complex macros may be able to expand into significantly more efficient code in certain
implementations by n!cing i.mplementation-dependent special forms in the macro expansion.

5.1.5. Function Calls
If a list is to be evaluated as a fonn and the first element is not a symbol that names a special fonn or macro,

then the list is assumed to be a function call. The first element of the list is taken to name a function. Any and

all remaining elements of the list are forms to be evaluated; one value is obtained from each fonn, and these

values become the arguments to the function. The function is then applied to the arguments. The functional

computation normally produces a value, but it may instead call for a non-local exit; see throw (page 108). A

function that does return may produce no value or several values; see va 1 ues (page 103). If and when the

function returns, whatever values it returns become the values of the function-call fonn.

For example, consider the evaluation of the form (+ 3 (* 4 5». The symbol + names the addition

function, not a special form or macro. Therefore the two fOIms 3 and (* 4 5) are evaluated to produce

arguments. The form 3 evaluates to 3, and the form (* 4 5) is a function call (to the multiplication

function). Therefore the forms 4 and 5 are evaluated, producing a"'guments 4 and 5 for the multiolication.

The multiplication function calculates the number 20 and returns it The values 3 and 20 are then given as

arguments to the addition function, which calculates and returns the number 23. Therefore we say (+ 3 (.

4 5» => 23.

------------------ -------

PROGRAM STRUCI1JRE 47

5.2. Functions

There are two ways to indicate a function to be used in a function call form. One is to use a symbol that
names the function. This use of symbols to name functions is completely independent of their use in naming
special and lexical variables. The other way is to use a lambda-expression, which is a list whose first element is
the symbol' ambda. A lambda-expression is not a form; it cannot be meaningfully evaluated. Lambda
expressions and symbols as names of functions can appear only as the first element of a function-call form, or
as the second element of the funct i on (page 68) special form.

·5.2.1. Named Functions

A name can be given to a function in one of two ways. A global name can be given to a function by using
the de fun (page 53) special form. A local name can be given to a function by using the f' e t (page 87) or
, abe' s (page 87) special form. When a function is named, a lambda-expression is effectively associated
with that name along with information about the entities that are lexically apparent at that point. If a symbol
appears as the first element of a function-call form, then it refers to the definition established by the
innermost f' e t or , abe' s construct that textually contains the reference, or if to the global definition (if
any) if there is no such containing construct

5.2.2. Lambda-Expressions

A lambda-expression is a list with the f~llowing syntax:
(' ambda lambda-list . body)

The first element must be the symbol' ambda. The second element must be a list It is called the lambda-list,
and specifies names for the parameters of the function. When. the function denoted by the lambda-expression
is applied to arguments, the arguments are matched with the parameters specified by the lambda-list The
body may then refer to the arguments by using the parameter names. The body consists of any number of
forms (possibly zero). These forms are evaluated in sequence, and the value(s) of the last form only are
returned as the value(s) of the application (the value n i' is returned if there are zero forms in the body).

The complete syntax of a lambda-expression is:

(' ambda ({var}*
[&0 p t ion a' {var I (var [initfonn [sva7fl) }*]
[&res t vati
[&key {var I ({var I (keyword var)} [init/onn [sva7fl)}*

[&a"ow-other-keysll
[&aux {var I (var [iniifonn])}*])

{declaration I documentation-string}*
({onn}*)

Each element of a lambda-list is either a parameter specifier or a lambda-list keyword; lambda-list keywords
begin with "&". (Note that lambda-list keywords are not keywords in the usual sense; they do not belong to

the keyword package. They are ordinary symbols whose name begins with an ampersand.)

In all cases a var must be a symbol, the name of a variable, and similarly for svar also; each keyword must be
a keyword symbol, such as": start". An initfonn may be any form.

- - - .. -- ----. __ ._---- ------_ .. _---..... ,,-_._-_.

48 COMMON USP REFERENCE MANUAL

A lambda-list has five parts, any or all of which may be empty:

• Specifiers for the required parameters. These are all the parameter specifiers. up to the first
lambda-list keyword; if there is' no such lambda-list keyworcL then all the specifiers are for
required parameters.

• Specifiers for optional parameters. If the lambda-list keyword &0 p t ion a 1 is present, the
optional parameter specifiers are those following the lambda-list keyword &opt ional up to the
next lambda-list keyword or the end of the list

• A specifier for a rest parameter. The lambda-list keyword &rest, if present, must be followed by
. a single rest parameter specifier, which in turn must be followed by another lambda-list keyword
or the end of the lambda-list.

• Specifiers for keyword parameters. If the lambda-list keyword &k ey is present, all specifiers up to
the next lambda-list keyword or the end of the list are keyword parameter specifiers. The keyword
parameter specifiers may optionally be followed by the lambda-list keyword
&allow-other-keys.

• Specifiers for aux variables. These are not really parameters. If the lambda-list keyword &aux is
present, all specifiers after it ~e auxiliary variable specifiers.

When the function represented by, the lambda-expression is applied to arguments, the arguments and
parameters are processed in order from left to right. In the simplest case, only required parameters are
present in the lambda-list: each is specified simply by a name var for the parameter variable. When the
function is applied, there must be exactly as many arguments as there are parameters, and each parameter is
bound to one argument. Here, and in general, the parameter is bound as a lexical variable unless a
declaration has been made that it should be a special binding (see decl are (page 117».

In the more general case, if there are n required parameters (n may be zero), there must be at least n

arguments, and the required parameters are bound to the first n arguments. The other parameters are then
processed using any remaining arguments.

If optional parameters are specified, then each one is processed as follows. If any unprocessed arguments
remain, then the parameter variable var is bound to the next remaining argument, just as for a required
parameter. If no arguments remain, however, then the initfonn part of the parameter specifier is evaluated,
and the parameter variable is bound to the resulting value (or to nil if no initfonn appears in the parameter
specifier). If another variable name svar appears in the specifier, it is bound to true if an argument was
available, and to false if no argument remained (and therefore initfonn had to be evaluated). The variable
svar is called a supplied-p parameter; it is not bound to an argument, but to a value indicating whether or not
an argument had been supplied for another parameter.

After all optional parameter specifiers have been processed, then there mayor may not be a rest parameter.
If there is a rest parameter, it is bound to a list of all as-yet-unprocessed arguments. (If no unprocessed
arguments remain, the rest parameter is bound to the empty list.) If.there is no r~st parameter and there are
no keyword parameters, then there should be no unprocessed arguments (it is an error if there are).

PROGRAM STRUCTURE 49

Next any keyword parameters are processed. For this purpose the same arguments are processed that would

be made into a list for a rest parameter. (Indeed, it is permitted to specify both &rest and &key; in this case

the arguments are used for both purposes. This is the only situation in which an argument is used in the

processing of more than one parameter specifier.) If&key is specified, there must remain an even number of

arguments; these are considered as pairs, the first argument in each pair being interpreted as a keyword name

and the second as the corresponding value. It is an error for the first object of each pair to be anything but a

keyword.
Rationale: This last restriction is imposed so that a compiler may issue warnings about certain malformed calls to functions
that take keyword arguments. It must be remembered that the arguments in a function call that evaluate to keywords are
just like any other arguments. and may be any evaluable forms. A compiler could not. without additional context, issue a
warning about the call

(fill seq item x y)

because in principle the variable x might have as its value a keyword such as : start. However, a compiler would be
justified in issuing a warning about the c:a1l

(fill seq item 0 10)
because the constant 0 is definitely not a keyword. Similarly, if in the first case the variable x had been declared to be of
type integer then type analysis could enable the compiler to justify a warning.

In each keyword parameter specifier must be a name var for the parameter variable. If an explicit keyword
is specified, that is the keyword name for the parameter. Otherwise the name var serves to indicate the

keyword name, in that a keyword with .the same name (in the keyword package) is used as the keyword.

Thus
(defun faa (&key radix (type 'integer» •..)

means exactly the sa..'!!e as
(defun faa (&key ((:radix radix» ((:type type) 'integer» ...)

The keyword parameter specifiers are, like all parameter specifiers, effectively processed from left to right

For each keyword parameter specifier, if there is an argument pair whose keyword name matches that

specifier's keyword name (that is, the names are eq), then the parameter variable for that specifier is bound to

the second item (the value) of that argument pair. Ifmore than one such argument pair matches, it is not an

error; the leftmost argument pair is used. If no such argument pair exists, then the initfonn for that specifier

is evaluated and the parameter variable is bound to that value (or to n i' if no initfonn was specified). The

variable svar is treated as for ordinary optional parameters: it is bound to true if there was a matching

argument pair, and to false otherwise.

It is an error if an argument pair has a keyword name not matched by any parameter specifier, unless at

least one of the following two conditions is met:

• &a' 1 ow - at her - key s was specified in the lambda-list

• Among the keyword argument pairs is a pair whose keyword is : a' , ow - at her - key s and
whose value is not ni 1.

If either condition obtains, then it is not an error for an argument pair to match no parameter specified, and

the argument pair is simply ignored (but such an argument pair is accessible through the &r est parameter if
one was specified). The purpose of these mechanisms is to allow sharing of argument lists among several

functions, and to allow either the caller or the called function to specify that such sharing may be taking place.

-_ ...•. _--- ... __ ._ _--- ._------- --------------_.

50 COMMON LISP REFERENCE MANUAL

After all parameter specifiers have been processed, the auxiliary variable specifiers (those following the

lambda-list keyword &aux) are processed from left to right. For each one the initform is evaluated and the

variable var bound to that value (or to nil if no initform was specified). (Nothing can be done with &aux

tariables that cannot be done with the special form 1 e t (page 85):
(lambda (x y &aux (a (car x» (b 2) c) ••.)

<=> (lambda (x y) (let «a (car x» (b 2) c) •.. »
Which to use is purely a matter of style.)

As a rule, whenever any initform is evaluated for any parameter specifier, that form may refer to any

parameter variable to the left of the specifier in which the initform appears, including any supplied-p

variables, and may rely on no other parameter variable having yet been bound (including its own parameter

variable).

Once the lambda-list has been processed, the forms in the body of the lambda-expression are executed.

These forms may refer to the arguments to the function by using the names of the parameters. On exit from

the function, either by a normal return of the function's value(s) or by a non-local exit, the parameter

bindings, whether lexical or special, are no longer in effect (but are not necessarily permanently discarded, for

a lexical bindit:lg can later be reinstated if a "closure" over that binding was created, perhaps using funct ion

(page 68), and saved before the exit occurred).

Examples of &0 p tiona 1 and &res t parameters:
((1 amb d a (a b) (+ a (* b 3») 4 5) => 19
«lambda (a &optional (b 2» (+ a (* b 3») 4 5) => 19
«lambda (a &optiona1 (b 2» (+ a (*. b 3») 4) => 10
«lambda (&optional (a2 b) (c 3 d) &rest x) (list a b c d x»)

=> (2 nil 3 nil nil)
«lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)) 6)

=> (6 t 3 nil nil)
«lambda (&optiona1 (a 2 b) (c 3 d) &rest x) (list a b c d x)) 6 3)

=> (6 t 3 t nil)
«lambda (&optiona1 (a 2 b) (c 3 d) &rest x) (list a b c d x))
6 3 8)

=> (6 t 3 t (8»
«lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))

6 3 8 9 10 11)
=> (6 t 3 t (8 9 10 11» .

Examples of&key parameters:
«lambda (a b &key c d) (list a b cd» 1 2) => (1 2 nil nil)
«lambda (ab &key c d) (list a b c d» 1 2 :c 6) => (1 2 6 nil)
«lambda (a b &key c d) (list a b c d» 1 2 :d 8) => (1 2 nil 8)
«lambda (a b &key c d) (list a b cd» 1 2 :c 6 :d 8) => (1 2 6 8)
«lambda (a b &key c d) (list a b c d» 1 2 :d 8 :c 6) => (1 2 6 8)
«lambda (a b &key c d) (list a b c d» :a 1 :d 8 :c 6) => (:a 168)
«lambda (a b &key c d) (list a b cd» :a :b :c :d)'

=> (: a : b :d nil)

Examples of mixtures:

--------_ _-----_ _ .. _---------_ ... ~---.

PROGRAM STRUCfURE

«lambda (a &optional (b 3) &rest x &key c (d a»
(list abc d x»

1) => (1 3 nil 1 (»

«lambda (a &optional (b 3) &rest x &key c (d a»
(list 'a b c d x»

1 Z) => (1 Z nil 1 ())

«lambda (a &optional (b 3) &rest x &key c (d a»
(list abc d x»

:c 7) => (:c 7 nil :c ())

«lambda (a &optional (b 3) &rest x &key c (d a})
(list abc d x)}

1 6 : c 7) => (1 6 7 1 (: c 7»

«lambda (a &optional (b 3) &rest x &key c (d a»
(list abc d x)}

1 6 : d 8) => (1 6 nil 8 (: d 8»

«lambda (a &optional (b 3) &rest x &key c (d a»
(list abc d x)}

1 6 : d 8 : c 9 : d 10) => (1 6 9 8 (: d 8 : c 9 : d 10»

51

All lambda-list keywords are permitted, but not terribly useful, in lambda-expressions appearing explicitly

as the first element of a function-call forni, as shown in the examples above. They are extremely useful,

however, in functions given global names by defun (page 53).

All symbols whose names begin with "&" are conventionally reserved for use as lambda-list keywords and

should not be used as variable names. Implementations of COMMON LISP are free to provide additional

lambda-list keywords.

lambda-list-keywords [Constant]

The value of 1 ambda-l; st-keywords is a list of all the lambda-list keywords used in the

implementation, including the additional ones used only by defmacro (page 112). It must

contain at least the symbols &opt ;onal, &rest, &key, &a 11 ow-other-keys, &aux, &body,

and&whole.

As an example of the use of&al 1 ow-other-keys and: al 1 ow-ether-keys, consider a function that

takes two keyword arguments of its own, and also accepts additional keyword arguments to be passed to

make-array (page 227):
(defun array-of-strings (str dims &rest keyword-pairs

&key (start 0) end &allow-other-keys)
(apply "make-array dims

:;nit;al-element (subseq str start end)
:allow-other-keys t
keyword-pairs»

This function takes a string and dimensioning information and returns an array of the speCified dimensions

----------_._-----_. ._-----_ .. _------_ _."_ ,, ---

52 COMMON USP REFERENCE MANUAL

each of whose elements is the specified string. However, : start and : end keyword arguments may be used
in the usual manner (see chapter 14) to specify that a substring of the given string should be used. In
addition, the presence of&a110w-other-keys in the lambda-list indicates that the caller may specify
additional keyword arguments; the &res t argument provides access to them. These additional keyword
arguments are fed to m a k e - a r ray. Now m a k e - a r ray nonnally does not allow the keywords : s tar t and
: end to be used, and it would be an error to specify such keyword arguments to ma k e - a r ray. However,
the presence in the call to make-array of the keyword argument: a l' ow-other-keys with a non-ni'
value causes any extraneous keyword arguments, including : s tar t and : end, to be acceptable and ignored.

1ambda-parameters-1imit [Constant]

The value of' ambda -parameters -1 imi t is a positive integer that is the upper exclusive bound
on the number of distinct parameter names that may appear in a single lambda-list. This bound
depends on the implementation,' .but will not be smaller than 50. (Implementors are enouraged to

make this limit as large as practicable without sacrificing performance.) See
cal' -arguments-l imit (page 84).

5.3. Top-Level Forms

The standard way for the user to interact with a COMMON LISP implementation is via what is called a
read-eval-print loop: the system repeatedly reads a'fonn from some input source (such as a keyboard or a disk
file), evaluates it, and then prints the value(s) to some output sink (such as a display screen or another disk
file). As a rule any form (evaluable data object) is acceptable. However, certain special forms are specifically
designed to be convenient for use as top-level fonns, as opposed to fonns embedded within other forms, as
" (+ 3 4)" is embedded within "(i f P (+ 3 4) 6) ". These top-level special forms may be used to

define globally named functions, to define macros, to make declarations, and to define global values for
special variables.

It is not illegal to use these forms at other than top level, but whether it is meaningful to do so depends on
context Compilers, for example, may not recognize these fOIms properly in other than top-level contexts.
(As a special case, however, if a progn (page 84) form appears at top level, then all forms within that progn
are considered by the compiler to be top-level forms.)

Compatibility note: In MAcuSP. a top-level pragn is considered to contain top-level forms only if the first form is
.. (quote camp i 1 e) n. This odd marker is unnecessary in CoMMON USP.

Macros are usually defined by using the special form defmacro (page 112). This facility is fairly
complicated, and is described in Chapter 8.

5.3.1. Defining Named Functions

PROGRAM STRUCfURE 53

defun name lambda-list {declaration I doc-string}* lfonn}* [Macro] .

Evaluating this special fonn causes the symbol name to be a global name for the function specified
by the lambda-expression

(1 ambda lambda-list {declaration}* lfonn}*) .

defined in the lexical environment in which the defun fonn was executed (because defun forms
nonnally appear at top level, this is nonnally the null lexical environment).

If the optional documentation string doc-string is present (ifnot followed by a declaration, it may be
present only if at least one form is also specified, as it is otherwise taken to be a form), then it is
attached to the name as a documentation string of type function; see documentation (page
338). It is an error if more than one doc-string is present

The forms constitute the body of the defined function; they are executed as an implicit pro g n.

The body of the defined function is implicitly enclosed in a block (page 91) construct whose
name is the same as the name of the function. Therefore retu rn -from (page 92) may be used to
exit from the function .

. Other implementation-dependent bookkeeping actions may be taken as weUby defun. The name
is returned as the value of the de fun form.

For example:
(defun discriminant (a b c)

(declare (number a b c»
"Compute the discriminant for a quadratic equation.

Given a, b, and c, the value b~2-4*a*c is calculated.
The quadratic equation a*xA2+b*x+c=O has real, multiple,
or complex roots depending on whether this calculated
value is positive, zero, or negative, respectively."

(- (* b b) (* 4 a c»)
=> discriminant
andnow (discriminant 1 2/3 -2) => 76/9

It is permissible to redefine a function (for example, to install a corrected version of an incorrect
definition!).

5.3.2. Declaring Global Variables and Named Constants

defvar name [initial-value [documentation]]

defparameter name initial-value [d?cumentation]

defconstant name initial-value [documentation]

de f v a r is the recommended way to declare the use of a special variable in a program.
(defvar variable)

[Macro]

[Macro]

[Macro]

proclaims variable to be spec i a 1 (see procl a im (page 119», and may perform other system-

-------------_ .. __ -.. _--_.--

54

•

COMMON USP REFERENCE MANUAL

dependent bookkeeping actions. If a second "argument" is supplied:
(de f v a r variable initial-value)

then variable is initialized to the result of evaluating the form initial-value unless it already has a
value. The initial-value form is not evaluated unless it is used; this is useful if it does something
expensive like creating a large data structure. The initialization is performed by assignment, and so
assigns a global value to the variable unless there are currently special bindings of that variable
(normally were should not be any).

defvar also provides a good place to put a comment describing the meaning of the variable
(whereas an ordinary spec i a 1 proclamation offers the temptation to declar~ several variables at
once and not have room to describe them all).

(defvar ·visible-windows· 0
"Number of windows at least partially visible on the screen")

defparameter is similar to defvar, but requires an initial-value form, and always evaluates it
and assigns the result to the variable. The semantic distinction is that defvar is intended to

declare a variabl.e changed by the program, whereas defparameter is intended to declare a
variable that is normally constant, but can be changed (possibly at run time), considered as a change
to the program. defparameter therefore does not indicate that the quantity never changes; in
particular. it does not license the ~ompiler to build assumptions about the value into programs
being compiled.

defconstant is like defparameter,but does assert that the value of the variable name is fixecL
and does license t.~e compiler to build assumptions about the value into programs being compiled.
It is an error if there are any special bindings of the variable at the time the defconstant form is
executed (but implementations mayor may not check for this).

Once a name has been declared by defconstant to be constant, any further assignment to or
binding of that special variable is an error. This is the case for such system-supplied constantS as t
(page 58) and mo s t - P 0 s ; t ; ve - fix n urn (page 179). A compiler may also choose to issue
warnings about bindings of the lexical variable of the same name.

For any of these constructs, the documentation should be a string. It is attached to the name of the
variable, parameter, or constant under the variable documentation type; see documentation
(page 338).

These constructs are normally used only as top-level forms.

5.3.3. Control of Time of Evaluation

eval-when ({situation}*) {fonn}* [Function]
The body of an eval-when form is processed as an implicit progn, but only in the situations
listed. A situation may be comp; 1 e, load, or eva 1.

eva 1 specifies that the interpreter should process the body. comp; 1 e specifies that the compiler
should evaluate the body at compile time in the compilation context. loa d specifies that the

PROGRAM STRUCTURE ss

compiler should arrange to evaluate the fonns in the body when the compiled file containing the

eval-when fonn is loaded.

The default interpretation is that top-level fonns are effectively processed in eval and load
situations. eva l-when is occasionally useful to get different effects. For example, if the compiler
is to be able to read a file properly that uses user-defined reader macro characters, it is necessary to

write
(eval-when (compile load eval)

(set-macro-character #\$ #'(lambda (stream char)
(declare (ignore char»
(list 'dollar (read stream»»)

._------_._---_._----.... __ .. _------

S6 COMMON USP REFERENCE MANUAL

Chapte~ 6

Predicates

A predicate is a function that tests for some condition involving its arguments and returns n i 1 if the
condition is false, or some non-n i 1 value if the condition is true. One may think of a predicate as producing
a Boolean value, where n i' stands for false and anything else stands for true. Conditional control structures
such as cond (page 88), if (page 89), when (page 89), and un' ess (page 90) test such Boolean values.
We say that a predicate is true when it returns a non-n;' value, and is false when it returns n;' ; that is, it is
true or false according to whether the condition being tested is true or false.

By convention, the names of predicates usually end in the letter "p" (which stands for upredicate").
COMMON LISP uses a uniform_ convention in hyphenating names of predicates. If the name of the predicate

is formed by adding a "p" to an existing "name, such as the name of a data type, a hyphen is placed before the
final "p" if and only if there is a hyphen in the existing name. For example, number begets numberp but
standard-char begets standard-char-p. On the other hand, if the name of a predicate is fonned by
adding a prefixing qualifier to the front of an existing predicate name, the two names are joined with a
hyphen and the presence or absence of a hyphen before the final "p" is not changed. For example, the
predicate s t r; n 9 - , e ssp has no hyphen before the "p" because is the string version of , e ssp (a MACLISP

function that has been renamed "<" in COMMON LISP). The name s t r ; n 9 - , e s s - p would incorrectly
imply that it is a predicate that tests for a kind of object called a "s t r i n 9 - , e s s", and the name
s t r i n9' es sp would connote a predicate that tests whether something has no strings (is "stringless")!

The control structures that test Boolean values only test for whether or not the value is n;', which is
considered to be false. Any other value is considered to be true. Often a predivate will return n i' if it "fails"
and some useful value when it "succeeds"; such a function can be used not only as a test but also for the
useful value provided in case of success. An example is member (page 217).

Ifno better non-n i' value is available for the purpose of indicating success, by convention the symbol t is
used as the "standard" non-false value.

6.1. Logical Values

- 57-

-._------,-_. ---

58

nil

t

COMMON USP REFERENCE MANUAL

[Constant]

The value of nil is always nil. This object represents the logical false value and also the empty
list It can also be written "()".

[Constant]

The value of t is always t.

6.2. Data Type Predicates

Perhaps the most important predicates in LISP are those that deal with data types; that is, given a data object
one can determine whether or not it belongs to a given type, or one can compare two type specifiers.

6.2.1. General Type Predicate

typep object type [Function]
ty pep is a predicate that is true if object is of type type, and is false otherwise. Note that an object
can be "of' more than one type, since one type can include another. The type may be any of the
type specifiers mentioned in Chapter 4 except that it may not be or contain a type specifier list
whose first element is ·fune t i on or val ues. A specifier of the form (s at is f i es In) is
handled simply by applying the function In to object (see fun e all (page 83»; the object is
considered to be of the specified type if the result is not nil.

subtypep type] type2 [Function]
The arguments must be type specifiers that are acceptable to typep (page 58). The two type
specifiers are compared; this predicate is true if type] is definitely a (not necessarily proper) subtype
of type2. If the result is n; 1, however, then type] mayor may not be a subtype of type2 (sometimes
it is impossible to tell, especially when sat; sf; e s type specifiers are involved). A second
returned value indicates the certainty of the result; if it is true, then the first value is an accurate
indication of the subtype relationship. Thus there are three possible result combinations:

t t
nil t
nil nil

type] is definitely a subtype of type2
type] is definitely not a subtype of type2
subtypep could not determine the relationship

6.2.2. Specific Data Type Predicates

The following ·predicates are for testing for individual data types.

PREDICATES 59

null object [Function] .
nul 1 is true if its argument is (), and otherwise is false. This is the same operation perfonned by
the function not (page 64); however, not is normally used to invert a Boolean value, while nul 1
is normally used to test for an empty list The programmer can therefore express intent by the
choice of function name.

(null x) <=> (typep x 'null) <=> (eq x 'C»~

symbol p object
s ymb 0 1 P is true if its argument is a symbol, and otherwise is false.

(symbo1p x) <=> (typep x 'symbol)

atom object

[Function]

[Function]
The predicate atom is true if its argument is not a cons, and otherwise is false. Note that (atom
, ()) is true, because () :: nil.

(atom x) <=> (typep x 'atom) <=> (not (typep x 'cons»

consp object [Function]
. The predicate con s p is true if its argument is a cons, and otherwise is false. Note that the empty

list is not aeons, so (consp 'C»~ <=> (consp 'nil) => nil.

1 is tp object

(consp x) <=> (typep x 'cons) <=> (not (typep x 'atom»
Compatibility note: Some l.lSP implementations call this function pa i rp or 1 is tp. The name pa i rp was
rejected for COMMON LISP because it emphasizes too strongly the dotted-pair notion rather than the usual usage
of conses in lists. On the other hand, 1 is tp too strongly implies that the cons is in fact part of a list. which
after all it might not be; moreover, () is a list, though not a cons. The name con s p seems to be the
appropriate compromise.

[Function]
1 i s t p is true if its argument is a cons or the empty list (), and otherwise is false. It does not check
for whether the list is a "true list" (one terminated by nil) or a "dotted list" (one terminated by a
non-null atOm).

(listp x) <=> (typep x 'list) <=> (typep x '(or cons nUll»

numberp object
numb e r p is true if its argument is any kind of number, and otherwise is false.

(numberp x) <=> (typep x 'number)

integerp object
i n t e 9 e r p is true if its argument is an integer, and otherwise is false.

(integerp x) <=> (typep x 'integer)

[Function]

[Function]

Compatibility Dote: In MAcusp this is called fix p. Users have been confused as to whether this meant
"integerp" or "fixnump", and so these names have been adopted here.

._-_._----- -------_._-- ----_._.-.. _ .. _._._._-_._---- _--_ .. __ -------

60 COMMON USP REFERENCE MANUAL

rat i ona 1 p object [Function]

. . rat i ona 1 p is true if its argument is a rational number (a ratio or an integer), and otherwise is
false.

(rationalp x) <=> (typep x 'rational)

fl oa tp object
fl oa tp is true if its argument is a floating-point number, and otherwise is false.

(floatp x) <=> (typep x 'float)

complexp object
c omp 1 ex p is true if its argument is a complex number, and otherwise is false.

(complexp x) <=> (typep x 'complex)

characterp object
c h a r act e r p is true if its argument is a character, and otherwise is false.

(characterp x) <=> (typep x 'character)

stri ngp object
s t r ; n 9 p is true if its argument is a" string, and otherwise is false.

(stringp x) <=> (typep x 'string)

bit-vector-p object
bi t-vector-p is true if its argument is a bit-vector, and otherwise is false.

(bit-vector-p x) <=> (typep x 'bit-vector)

vectorp object
ve c to r p is true if its argument is a vector, and otherwise is false.

(vectorp x) <=> (typep 'x 'vector)

simp 1 e-vector-p object
ve c tor p is true if its argument is a simple general vector, and otherwise is false.

(simple-vector-p x) <=> (typep x 'simple-vector) ,

simp 1 e- str i ng-p object
simp 1 e - s t r i n 9 - p is true if its argument is a simple string, and otherwise is false.

(simple-string-p xj <=> (typep x 'simple-string)

simp 1 e-bi t-vector-p object

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]
simp 1 e - bit -vector-p is true ifits argument is a simple bit-vector, and otherwise is false.

(simple-bit-vector-p x) <=> (typep x 'simple-bit-vector)

PREDICATES 61

arrayp object [Function]
arrayp is true if its argument is an array, and otherwise is false.

(arrayp x) <=> (typep x 'array)

packagep object [Function]
packagep is true if its argument is an package, and otherwise is false.

(packagep x) <=> (typep x 'package)

funct i onp object [Function]
fun c t ion p is true if its argument is suitable for applying to arguments, using for example the
funca 11 or app 1 y function. Otherwise funct i onp is false.

compiled-function-p object [Function]
c omp i 1 e d - fun c t ion - p is true if its argument is any compiled code object, and otherwise is

false.
(compi1ed-function-p x) <=> (typep x 'compiled-function)

commonp object [Function]
commonp is true if its argument is any common data type, and otherwise is false.

(commonp x) <=> (typep x 'common)

See also standard-char-p (page 184), string-char-p (page 184), streamp (page 263),
random-state-p (page 179), readtab1 ep (page 281), hash-tab1 e-p (page 224), and pathnamep
(page 318).

6.3. Equality Predicates .

COMMON LISP provides a spectrum of predicates for testing for equality of two objects: eq (the most
specific), e q 1, e qua 1, and e qua 1 p (the most general). e q and e qua 1 have the meanings traditional in
LISP. e q 1 was added because it is frequently needed, and e qua 1 p was added primarily to have a version of
e qua 1 that would ignore type differences when comparing numbers and case differences when comparing
characters. If two objects satisfy anyone of these equality predicates, then they also satisfy all those that are
more general.

eq x y [Function]
(e q x y) is trot! if and only if x and y are the same identical object (Implementationally, x and y

are usually e q if and only if they address the same identical memory location.)

It should be noted that things that print the same are not necessarily e q to each other. Symbols
with the same print name usually are e q to each other, because of the use of the i n t ern (page
142) function. However, numbers with the same value need not be eq, and two similar lists are
usually not eq.

-------_. -------_ ..•..... __ ._._•................ _-----

62

eql X Y

COMMON USP REFERENCE MANUAL

For example:
(eq 'a 'b) isfalse
(e q 'a 'a) is true
(e q 3 3) might be true or false, depending on the implementation
(e q 3 3. 0) is false
(e q #e (3 - 4) #e (3 - 4 » might be true or false, depending on the implementation
(eq #e(3 -4.0) #e(3 -4» isfalse
(eq (cons 'a 'b) (cons 'a 'c» isfalse
(eq (cons 'a 'b) (cons 'a 'b» isfalse
(setq x '(a • b» (eq x x) is true
(e q #\A #\A) might be true or false, depending on the implementation
(e q " F 0 a " " F a a ") is false
(eq "FDD" "foo") isfalse
Implementation note: eq simply compares the two pointers given it. so any kind of object that is represented in
an "immediate" fashion will indeed have like-valued instances satisfy eq. In some implementations. for
example. fixnums and characters happen to "work". However. no program should depend on this. as other
implementations of CoMMON l.JSP might not use an immediate representation for these data types.

[Function]
The eql predicate is true if its arguments are eq, or if they are numbers of the same type with the
sam~ value, or if they are character objects that represent the same character.

For example:
(eql 'a 'b) isfalse
(e q 1 'a 'a) is true
(e q 1 3 3) is true
(eq' 33.0) isfalse
(eql #e(3 -4) #e(3 -4» istrue.
(e q 1 # e (3 ~ 4 . 0) # e (3 - 4 » is false
{ e q 1 (e 0 n s 'a 'b) (e on s 'a 'c» is false
(eql (cons 'a 'b) (cons 'a 'b» isfalse
(set q x '(a . b» (e q 1 x x) is true
(eql #\A #\A) is true
(e q 1 " F 00 " " F 00 ") is false
(eql "FDD" "foo") is false

Normally (e q, 1 . 0 sOl. 0 dO) would be false, under the assumption that 1. 0 s 0 and 1. 0 d 0
are of distinct data types. However, implementations that do not provide four distinct floating
point formats are permitted to "collapse" the four formats into some smaller number of them; in
such an implementation (e q, 1 . 0 sOl. 0 dO) might be true. The predicate = (page 153) will
compare the values of two numbe~ even if'the numebrs are of different types.

equal x y [Function]
The equa 1 predicate is true if its .U"guments are similar (isomorpr.ic) objects. A rough rule of
thumb is that two objects are e qua' if and only if their printed representations are the same.

Numbers and characters are compared as for eql. Symbols are compared as for eq. This can
violate the rule of thumb about printed representations, but only in the case of two distinct symbols
with the same print name, and this does not ordinarily occur (only if unintemed symbols are
involved).

PREDICATES 63

Most objects that have components are e qua' if they are of the same type and corresponding
components are eq ua 1. This test is implemented in a recursive manner, and may fail to tenninate
for circular structures. For conses, equa' is defined recursively as the two cars being equa' and
the two cdrs being equa'.

Two arrays are e qua' only if they are e q, with one exception: strings and bit-vectors are
. compared element-by-element Upper-case and lower-case letters in strings are considered to be
distinct by equa 1.

Compatibility note: In Lisp Machine LIsp. equa 1 ignores the difference between upper and lower case in
strings. This violates the rule of thumb about printed representations. however. which is very useful. especially
to novices. It is also inconsistent with the treatment of single characters. which· in Lisp Machine uSP are
represented as fixnums.

Two pathname objects are equa' iff corresponding components (host, device, and so on) are
equivalent Whether or not case is considered equivalent in strings depends on the file name
conventions of the file system. The intent is that pathnames that are e qua' should be functionally
equivalent

For example:
(equa' 'a 'b) is false
(e qua 1 'a 'a) is true
(e qua' 3 3) is true
(e qua' 3 3. 0) is false
(e qua' # c (3 - 4) # c (3 - 4 » is true
(e qua' # c (3 - 4 . 0) # c (3 - 4 » is false
(e qua 1 (c 0 n s 'a 'b) (c 0 n s 'a 'c» is false
(e qua' (c 0 n s 'a 'b) (c 0 n s 'a 'b» is true
(set q x '(a . b» (e qua' x x) is true
(equal #\A #\A) is true
(equal "Foo" "Foo") istrue
(equal "FDO" "foo") is false

To compare a tree of conses, using e q , (or any other desired predicate) on the leaves, use
tree-equa 1 (page 208).

equa1p x y [Function]
Two objects are e qua 1 p if they are e qua 1 ; if they are characters and satisfy c h a r - e qua 1 (page
187), which ignores alphabetic case and certain other attributes of characters; if they are numbers
and have the same numerical value, even if they are of different types; or if they have components
that are all equa 1 p.

Objects that have components are e qua 1 p if they are' of the same type and corresponding
components are equa 1 p. This test is implemented in a recursive manner, and may fail to terminate
for circular structures. For conses, equa 1 p is defined recursively as the two car's being equa' p

and the two cdrs being e qua' p.

Two arrays are e qua 1 p if and only if they have the same number of dimensions, the dimensions
match, and the corresponding components are equa 1 p. The specializations need not match; for
example, a string and a general array that happens to contain the same characters will be equa' p

(though definitely not equa 1).

------ --------- -----_ -. __ ._ _ ... _ -._----

64 COMMON LISP REFERENCE MANUAL

Two symbols can be equal p only if they are eq, that is. the same identical object

For example:
(equa1p 'a 'b) isfalse
(e qua 1 p 'a 'a) is true
(e qua 1 p 3 3) is true
(e qua 1 p 3 3. 0) is true
(e qua 1 p # c (3 - 4) # c (3 - 4 » is true
(equa1p #c(3 -4.0) #c(3 -4» istrue
(e qua 1 p (c 0 n s 'a 'b) (c 0 n s 'a 'c» is false
(equa~ p (cons 'a 'b) (cons 'a 'b» is true
(set q x '(a . b» (e qua 1 p x x) is true
(equa1p #\A #\A) istrue
(e qua 1 p "F 0 0 " " F 00 ") is true
(equa1p "FOO" "foo") istrue

6.4. Logical Operators

COMMON LISP provides three operators on Boolean values: and, or, and not. Of these, and and or are
also control structures, because their arguments are evaluated conditionally. not necessarily examines its
single argument, and so is a simple function.

not x [Function]
not returns t if x is nil, and otherwise returns nil. It therefore inverts its argument, interpreted
as a Boolean value.

null (page 59) is the same as not; both functions are included for the sake of clarity. As a matter
of style, it is customary to use nu 11 to check whether something is the empty list, and to use not to

inven the sense of a logical value.

and {{onn}* [Macro]

(and fonnl fonn2 ...) evaluates each fonn, one at a time, from left to right. If any fonn

evaluates to nil, the value nil is immediately returned without evaluating the remainingfonns. If
every fonn but the last evaluates to a non-n i 1 value, an d returns whatever the last fonn returns.
Therefore in general and can be used both for logical operations, where nil stands for false and , ,
non-n i 1 values stand for true, and as a conditional expression.

For example:
(if (and (>= n 0)

« n (length a-simple-vector»
(eq (elt a-simple-vector n) 'fool)

(princ "Foo!"»
The above expression prints "Fool" if element n of a-simple-vector is the symbol foo,
provided also that n is indeed a valid index for a-s imp 1 e-vector. Because and guarantees
left-to-right testing of its parts, e 1 t is not called if n is out of range. (In this ex~ple writing

PREDICATES 65

(and (>= n 0)
« n (length a-simp1e-vector»
(eq (e1t a-simp1e-vector n) 'fool
(princ "Foo!"»

would accomplish the same thing; the difference is pur~ly stylistic.) Because of the guaranteed

left-to-right ordering, an d is like the and then operator in ADA, or what in some PAScAL-like

languages is called cand, rather than the and operator.

See also if (page 89) and wh en (page 89), which are sometimes stylistically more appropriate

than and for conditional purposes.

From the general definition, one can deduce that (and x) <=> x. Also, (and) evaluates to t,

which is an identity for this operation.

and can be defined in tenns of cond (page 88) as follows:

(and x y z ••• w) <=> (cond «not x) nil)
«not y) nil)
«not z) nil)

(t w»

or {fonn}* [Macro]

(0 r Jonni Jonn2 ...) evaluates each Jonn, one at a time, from left to right If any Jonn other

than the last evaluates to something other than nil, or immediately returns that non-n i 1 value

without evaluating the remaining Jonns. If every Jonn but the last evaluates to nil, or returns

whatever evaluation of the last of the Jonns returns. Therefore in general 0 r can be used both for

logical operations, where n i' stands for Jalse and non-n; 1 values stand for true, and as a

conditional expression. Because of the guaranteed left-to-right ordering, 0 r is like the or else

operator in ADA, or what in some PAScAL-like languages is called cor, rather than the or operator.

See also; f (page 89) and un' e s s (page 90), which are sometimes stylistically more appropriate

than 0 r for conditional purposes.

From the general definition, one can deduce that (0 r x) < = > x. Also, (0 r) evaluates to n ; , ,

which is the identity for this operation.

or can be defined in terms of con d (page 88) as follows:

(or x y z ... w) <=> (cond (x) (y) (z) •.• (t w»

- -----_._._----------_. ------- -_. __ ... _ -•.... __ ._-_._--_ ..

66 COMMON USP REFERENCE MANUAL

Chapter 7

Control Structure

LISP provides a variety of special structures for organizing programs. Some have to do with flow of control

(control structures), while others control access to variables (environment structures). Most of these features

are implemented either as special fonns or as macros (which typically expand into complex program

fragments involving special forms).

Function application is the primary method for construction of LIsp programs. Operations are written as

the application of a function to its arguments. Usually, LISP programs are written as a large collection of small

functions, each of which implements a simple operation. These functions operate by calling one another, and

so larger operations are defined in terms of smaller ones. LISP functions may call upon themselves

recursively, either directly or indirectly.

LISP, while more applicative in style than statement-o~ented, nevertheless provides many operations that

produce side-effects, and consequently requires constructs for controlling the sequencing of side-effects. The

construct progn (page 84), which is roughly equivalent to an ALGOL begin-end block with all its semicolons,

executes a number of forms sequentially, discarding the values of all but the last Many LISP control

constructs include sequencing implicitly, in which case they are said to provide an "implicit progn". Other

sequencing Constructs include prog 1 (page 84) and prog2 (page 85) ..

For looping, COMMON LISP provides the general iteration facility do (page 93), as well as a variety of

special-purpose iteration facilities for iterating or mapping over various data structures.

COMMON LISP provides the simple one-way conditionals wh e n and un 1 e s s, the simple two-way

conditional ; f, and the more general multi-way conditionals such as con d and cas e. The choice of which

form to use in any particular situation is a matter of taste and style.

Constructs for performing non-local exits with various seoping disciplines are provided: block (page 91),
return (page 92), catch (page 107), and throw (page 108).

The multiple-value constructs provide an efficient way for a function to return more than one value; see

va 1 ues (page 103).

- 67-

---- -..... --.-.-----.----.

68 COMMON LISP REFERENCE MANUAL

7.1. Constants and Variables

7.1.1. Reference
•
quote object [Special form]

(quote x) simply returns x. The object is not evaluated, and may be any LISP object whatsoever.
This construct allows any LISP object to be written as a constant value in a program.

For example:
(setq a 43)
(list a (cons a 3» => (43 (43 . 3»
(list (quote a) (quote (cons a 3» => (a (cons a 3»

Since quote fonns are so frequently useful but somewhat cumbersome to type, a standard
abbreviation is defined for them: any fonn preceded by a single quote (,) character is assumed to

have" (quo t e)" wrapped around it

For example:
{setq x '(the magic quote hack»

is nonnally interpreted by read (page 291) to mean
{setq x (quote (the magic quote hack»)

See section 22.1.3.

function In [Special fonn]

The value of funct i on is always the functional interpretation of fn; fn is interpreted as if it had
appeared in ·the functional position of a function invocation. In panicular, if fn is a symbol, the
functional value of the variable whose name is that symbol is returned. If fn is a lambda-expression,
then a "lexical closure" is retumecL that is, a function which when invoked will execute the body of
the lambda-expression in such a way as to observe the rules oflexical seoping properly.

Since fun c t ion f011Ils are so frequently useful (for passing functions as arguments to other
function) but somewhat cumbersome to type, a standard abbreviation is defined for them: any
fonn preceded by a sharp sign and then a single quote (#') is assumed to have "(funct ; on)"
wrapped around it

For example:
(remove-if #'numberp '(1 a b 3»

is normally interpreted by read (page 2~1) to mean
{remove-if (function numberp) '(1 a b 3»

See section 22.1.4.

symbol-value symbol [Function]
symbo'l-val ue returns the current value of the dynamic (special) variable named by symbol. An
error occurs if the symbol has no value; see boundp (page 69) and makunbound (page 71). Note
that constant symbols are really variables that cannot be changed, and so s ymb 0 1 - val u e may be

CONTROL STRUCTURE 69

used to get the value of a named constant In particular, s ymb 0 1 - val u e of a keyword will return
that keyword.

s ymb 0 1 - val u e cannot access the value of a lexical variable.

This function is particularly useful for implementing interpreters for languages embedded in LISP.

The corresponding assignment primitive is set (page 71); alternatively, symbo l-va 1 ue may be
used with set f (page 72) .

. symbol-funct ion symbol [Function]
s ymb 0 1 - fun c t ; 0 n returns the current global function definition named by symbol. An error
occurs if the symbol has no function definition; see fboundp (page 69). Note that the definition
may be a function, or may be an object representing a special fonn or macro. In the latter case,
however. attempting to invoke the object as a function will signal an error. Ifit is desired to process
macros, special forms, and functions equally well, as when writing an interpreter, it is best to test the
symbol with macro-funct; on (page Ill) and spec i a 1 -form-p (page 69) first, and then to

invoke the functional value only if these two tests both yield false.

s ymb 01 - fun c t ion cannot access the value of a lexical function name produced by f 1 e t (page
87) or 1 abe 1 s (page 87); it can access only the global function value.

This function·is particularly useful for implementing interpreters for languages embedded in LIsp.
The global function definition of a symbol may be altered by using set f (page 72) with
symbol-funct ion.

boundp symbol. [Function]
b 0 u n d p is true if the dynamic (special) variable named by symbol has a value; otherwise, it returns
n; l.

See also set (page 71) and makunbound (page 71).

fboundp symbol [Function]
fboundp is is true if the symbol has a global function definition. Note that fboundp is true when
the symbol names a special form or macro. macro-funct ion (page 111) and
spec i a 1 -form-p may be used to test for these cases.

See also symbol-funct i on (page 69) and fmakunbound (page 71).

spec; a 1 -for,n-p symbol [Function]
The function spec; a 1 -form-p takes a symbol. If the symbol globally names a special form
(example: quote (page 68», then a non-n; 1 value is returned, typically a function of
implementation-dependent nature that can be used to interpret a special fonn; otherwise n; 1 is

returned.

It is possible for both special-form-p and macro-function (page 111) to be true of a

70 COMMON USP REFERENCE MANUAL

symbo1. This is possible because an implementation is permitted to implement any macro also as a
special form for speed. On the other hand, the macro definition must be available for use by
programs that understand only the standard special forms listed in Table 5-1.

7.1.2. Assignment

setq {var fonn}* [Specialfonn]

The special form (setq varl fonnI var2 fonn2 ...) is the "simple variable assignment
statement" of Lisp. FirstJonnI is evaluated and the result is stored in the variable varl, thenfonn2
is evaluated and the result stored in var2, and so forth. The variables are represented as symbols, of
course, and are interpreted as referring to static or dynamic instances according to the usual rules,
so set q may be used for assignment of both lexical and special variables. set q returns the last
value assigned, that is, the result of the evaluation of its last argument As a boundary case, the
form (s e t q) is legal and returns nil. As a rule there must be an even number of argument
forms.

For example:
(setq x (+ 3 2 1) Y (cons x nil»

x is set to 6, y is set to . (6), and the set q returns (6). ,Note that the first assignment was
performed before the second form was evaluated, allowing that form to use the new value of x.

See also the description of set f (page 72), which is the "general assignment statement", capable of
assigning to variables, array elements, and other locations.

psetq {var fonn}* [Macro]

A psetq form is just like a setq form, except that the assignments happen in parallel; first all of
the forms are evaluated, and then the variables are set to the resulting values. The value of the
p set q form is n ; 1.

For example:
(setq a 1)
(setq b 2)
(psetq a b b a)
a => 2
b => 1

In this example, the values of a and b are exchanged by using parallel assignment. (If several
variables are to be assigntd to in parallel in the context of a loop, the do (page 93) construct may
be appropriate.)

CONTROL STRUCTURE 71

set symbol value [Function] .
set allows alteration of the value of a dynamic (special) variable. set causes the dynamic variable
named by symbol to take on value as its value. Only the value of the current dynamic binding is

altered; if there are no bindings in effect, the most global value is altered.

For example:
(set (if (eq a b) 'c 'd) 'fool

will either set c to foo or set d to foo, depending on the outcome of the test (eq a b).

set returns value as its result

set cannot alter the value of a local (lexically bound) variable. The special form set q (page 70) is
usually used for altering the values of variables (lexical or dynamic) in programs. set is
particularly useful for implementing interpreters for languages embedded in LISP. See also progv
(page 87), a construct that performs binding rather than assignment of dynamic variables.

makunbound symbol
frnakunbound symbol

[Function]
[Function]

rna k u n b 0 u n d causes the dynamic (special) variable named by symbol to become unbound (have no
. value). fmakunbound does the analogous thing for the global function definition named by
symbol.

For example:
(setq a 1)
a => 1
(makunbound 'a)
a = > causes an error
(defun foo (x) (+ x 1»
(foo 4) => 5
(fmakunbound 'fool
(f 00 4) => causes an error

Both functions return symbol as the result value.

7.2. Generalized Variables .

In LISP, a variable can remember one piece of da~ a LIsp object The main operations on a variable are to

recover that piece of da~ and to alter the variable to remember a new object; these operations are often
called access and update operations. The concept of variables named by symbols can be generalized to any
storage location that can remember one piece of da~ no matter how that location is named. Examples of
such storage locations are the car and cdr of a cons, elements of an array, and components of a structure.

For each kind of generalized variable, there are typically two functions that implement the conceptual
access and update operations. For a variable, merely mentioning the name of the variable accesses it, .while
the setq (page 70) special fonn can be used to update it The function car (page 207) accesses the carofa
cons, and the function rp 1 aca (page 215) updates it The function symbo 1 -va 1 ue (page 68) accesses the
dynamic value of a variable named by a given symbol, and the function set (page 71) updates it

72 COMMON USP REFERENCE MANUAL

Rather than thinking about two distinct functions that respectively access and update a storage location
somehow deduced from their arguments, we can instead simply think of a call to the access function with
given arguments as a name for the storage location. Thus, just as x may be considered a name for a storage
focation (a variable), so (c ar x) is a name for the car of some cons (which is in tum named by x). Now,
rather than having to remember two functions for each kind of generalized variable (having to remember, for
example, that r p 1 a c a corresponds to car), we adopt a uniform syntax for updating storage locations named
in this way, using the setf macro. This is analogous to the way we use the setq special form to convert the
name of a variable (which is also a form that accesses it) into a form that updates it The uniformity of this
approach may be seen from the following table:

Access function Update function Update using set f
x (setq x newvalue) (setf x newvalue)
(car x) (rplaca x newvalue) (setf (car x) newvalue)
(symbol-value x) (set x"newvalue) (setf (symbol-value x) newvalue)

set f is actually a macro that examines an access form and produces a call to the corresponding update
function.

Given the existence of setf in COMMON LISP, it is not necessary to have setq, rp 1 aca, and set as well;
they are redundant. They are retained because of their historical importance in LISP. However, most other
update functions (such as putprop, the update function for get (page 126» have been eliminated in the
expectation that set f be uniformly used in their place.

setf {place newvalue}* [Macro]

(set f place newvalue) takes a form place that when evaluated accesses a data object in some
location, . and "inverts" it to produce a corresponding form to update the location." A call to the
set f macro therefore expands into an update fonn that stores the result of evaluating the form
newvalue into the place referred to by the access-fonn.

If more than one place-newvalue pair is specified, the pairs are processed sequentially:
(set f placel newvaluel

place2 newvalue2)

placen newvaluen)
is precisely equivalent to

\

(progn (setf placel newvaluel)
(set f place2 newvalue2)

(set f placen newvaluen»
For consistency, it is legal to write (s e t f), which simply retu;ns n; 1.

The form place may be anyone of the following:

• The name ofa variable (either lexical or dynamic) .

• A function call form whose first element is the name of anyone of the following
functions:

-- --- .--~---

CONTROLSTRUCfURE

car (page 207) caaaar (page 208) cadddr (page 208)
cdr (page 207) cdaaar (page 208) cddddr (page 208)
caar (page 208) cadaar (page 208) first (page 209)
cdar (page 208) cddaar (page 208) second (page 209)
cadr (page 208) caadar (page 208) third (page 209)
cddr (page 208) cdadar (page 208) fourth (page 209)
caaar (page 208) caddar (page 208) fifth (page 209)
cdaar (page 208) cdddar (page 208) sixth (page 209)
cadar (page 208) caaadr (page 208) seventh (page 209)
cddar (page 208) cdaadr (page 208) eighth (page 209)
caadr (page 208) cadadr (page 208) ninth (page 209)
cdadr (page 208) cddadr (page 208) tenth (page 210)
caddr (page 208) caaddr (page 208) documentation (page 338)
cdddr (page 208) cdaddr (page 208) fill-pointer (page 234)
aref (page 230) getf (page 127) symbol-plist (page 127)
get (page 126) gethash (page 225) symbol-value (page 68)
svref (page 232) nth (page 209) symbol.-funct ion (page 69)
elt (page 195) pathname-plist (page 318)

• A function call form whose first element is the name of a selector function constructed
by defstruct (page 245).

• A function call form whose first element is the name of anyone of the following
functions, provided that the new value is of the specified type so that it can be used to
replace the specified "location" (which is in each of these cases not really a truly
generalIzed variab~e):

Function name Reguired tl:I!e
char (page 237) string-char
schar (page 237) string-char
bit (page 232) bit
sbit (page 232) bit
subseq (page 195) sequence

In the case of subseq, the replacement value must be a sequence whose elements may
be contained by the sequence argument to sub seq. (Note that this is not so stringent
as to require that the replacement value be a sequence of the same type as the sequence
of which the subsequence is specified.) If the length of the replacement value does not
equal the length of the subsequence to be replaced, then the shoner length determines
the number of elements to be stored, as for the function rep 1 ace (page 199).

• A function call form whose first element is the name of anyone of the following
functions. provided that the specified argument to that function is in turn a place form;
in this case the new place has stored back into it the result of applying the specified
"update" function (which is in each of these cases not a true update function):

Function name Argument that is a place
char-bi t (page 191) First
1 db (page 175) Second
mas k - fie 1 d (page 176) Second

Update function used
set-char-bit (page 191)
dpb (page 176)
depos i t-f ; e 1 d (page 176)

73

74 COMMON USP REFERENCE MANUAL

• A the (page 123) type declaration fonn, in which case the declaration is transferred to
the newvalue fonn, and the resulting setf form is analyzed. For example,

(setf (the integer (cadr x» (+ y 3»

is processed as if it were
(setf (cadr x) (the integer (+ y 3»)

• A call to ap ply where the first argument fonn is of the fonn #' name, that is,
(fun c t ion name), where name is the name of a function calls to which are
recognized as places by setf. Suppose that the user of setf with apply looks like
this:

(setf (apply #' name xl x2 ... xn rest)
The set f method for the function name must be such that

(set f (name zl z2 ... zm) zO)

expands into a store form
(storefn ziJ zi2 ••• zik zm)

That is, it must expand into a function call such that all arguments but the last may be
any permutation or subset of the new value zO and the arguments of the access form,
but the last argument of the storing call must be the same as the last argument of the
access call. See define-setf-method (page 81) for more details on accessing and
storing forms.

Given this, the set f -of-a p ply fonn shown above expands into

(apply #'storefn xiI xi2 ••• xik rest)
As an example, suppose that the variables in de xes contains a list of subscripts for a
multi-dimensional array foo whose rank ~ not known until run time. One may access
the indicated element of the array by writing

(apply #'areffoo indexes)

and one may alter the value of the indicated element to have the value of new val ue by
writing

(setf (apply #taref foo indexes) newvalue)

• A macro call, in which case set f expands the macro call and then analyzes the
resulting form.

• Any form for which a define-modify-macro (page 78), defsetf (page 78), or
defi ne-setf-method (page 81) dec:laration has been made.

set f carefully arranges to preserve the usualleft-to-right order in which the various subforms are
evaluated. On the other hand, -the exact expansion for any particular form is not guaranteed and
may even be implementation-dependent; all that is guaranteed is that the expansion of :\
set f -form will be an update form that works for that particular implementation, and that the
left-to-right evaluation of sub forms is preserved.

The ultimate result of evaluating a set f form is the value of newvalue. (Th~refore (s e t f (c a r
x) y) does not expand into precisely (r p 1 a c a x y), but into something more like

(let «G1 x) (G2 y» (rplaca G1 G2) G2)
the precise expansion being implementation-dependent}

CONTROL STRUcruRE 7S

The user can define new set f expansions by using de f set f (page 78).

pset f {place newva/ue}* [Macro]

p set f is like set f except that if more than one place-newvalue pair is specified then the
assignments' of new values to places is done in parallel. More precisely, all subforms that are to be
evaluated are evaluated from left to right; after all evaluations have been performed, all of the
assignments are performed.

psetf always returns ni 1.

sh iftf place {place}* newvalue [Macro]

Each place form may be any form acceptable as a generalized variable to setf (page 72). In the
form (s h i f t f place! p/ace2 ... placen newvalue), the values in place! through p/ac~n are
accessed and saved, and newvalue is evaluated, for a total of n+ 1 values in all. Values 2 through
n+ 1 are then stored into place! through placen, and value 1 (the original value of place!) is
returned. It is as if all the places form a shift register; the newvalue is shifted in from the right, all
values shift over to the left one. place, and the value shifted out of place! is returned.

For example: .
(setq x '(a be»
(shiftf (cadr x) 'z) => b

and now x => (a z c)
The effect of (s hi f t f place! place2 ... placen newvalue) is roughly equivalent to

(prog1 place!
(setf place! place2)
(set f place2 place3)

(set f placen newvalue»

except that the latter would evaluate any subforms of each place twice, while s hi f t f takes care to

evaluate them only once.

For example:
(setq n 0)

but

(setq x '(a bed»
(shiftf (nth (setq n (+ n 1» x) 'z) => b

and now x => (a zed)

(setq n 0)
(setq x '(a bed»
(prog1 (nth (setq n (+ n 1» x)

(setf (nth (setq n (+ n 1» x) 'z» => b
and now x => (a b z d) .

Moreover, for certain place forms s h i f t f may be significantly more efficient than the pro 9 1
version.

---_ .. -. __ _ .. -

76 COMMON LISP REFERENCE MANUAL

Rationale: shiftf and rotatef (below) have been included in COMMON LISP as generalizations of
two-argument versions formerly called swapf and exchf. The two-argument versions have been found to be
very useful, but the names were easily confused. The generalization to many argument forms and the change of
names were both inspired by the work of Suzuki [17], which indicates that use of these primitives can make
certain complex pointer-manipulation programs clearer and easier to prove correct

rotatef {place}* [Macro]

Each place fonn may be any fonn acceptable as a generalized variable to setf (page 72). In the
fonn (rotatef place! place2 ... placen), the values in place! through placen are accessed
and saved. Values 2 through n and value 1 are then stored into place! through placen. It is as if all
the places fonn an end-around shift register that is rotated one place to the left, with the value of
place! being shifted around the end to placen. Note that (rotatef place! place2) exchanges
the contents of place and place2.

The effect of (rotatef place! place2
(p set f place! place2

place2 place3

placen place!)

placen newvalue) is roughly equivalent to

except that the latter would evaluate any subfonns of each place twice, while rot a te f takes care to
evaluate them only once. Moreover, for cenain place fonns rot ate f may be significantly more
efficient

rotatef always returns ni'.

Other macros that manipulate generalized variables include getf (page 127), remf (page 127), incf
(page 156), decf (page 156). push (page 212), pop (page 213), assert (page 333), ctypecase (page

. 335), and ccase (page 336).

Macros that manipulate generalized variables must guarantee the "obvious" semantics: subforms of
generalized-variable references are evaluated exactly as many times as they appear in the source progr~ and
they are evaluated in exactly the same order as they appear in the source program.

In generalized-variable references such as shiftf, incf, push, and setf of ldb, the generalized
variables are both read and written in the same reference. Preserving the source-program order of evaluation
and the number of evaluations is particularly important

As an example of these semantic rules, in the generalized-variable reference (s e t f reference value) the
value to be stored must be evaluated after all the subfonns of the reference since it appears to the right of
them.

The expansion of these macros must consist of code that follows these rules or· has the same effect as such
code. This is accomplished by introducing temporary variables bound to the subfonns of the reference. As
an optimization in the implementation, temporary variables may be eliminated whenever it can be proven

CONTROL STRUCTURE 77

that this has no effect on the semantics of the program. For example, a constant need never be saved in a.
temporary variable. A variable, or any form that does not have side-effects, need not be saved in a temporary
variable if it can be proven that its value will not change within the scope of the generalized-variable
reference.

COMMON LISP provides built-in facilities to take care of these semantic complications and optimizations.
Since the required semantics can be guaranteed by these facilities, the user does not have to worry about
writing correct code for them, especially in complex cases. (Even experts can become confused and make
mistakes while writing this sort of code.)

Another reason for providing these built-in functions is that the optimizations that are appropriate will vary
from implementation to implementation. In some jmplementations most of the optimization is performed by

the compiler, while in others a simpler compiler is used and most of the optimization is performed in the
macros. The cost of binding a temporary variable relative to the cost of other Lisp operations may differ
greatly between one implementation and another, and some implementations may find it best never to
remove temporary variables except in the simplest cases.

A good. example of the issues involved can be seen in the following generalized-variable reference:
(incf (ldb byte-field variable»

This ought to expand into something like
(setq variable

(dpb (1+ (ldb byte~field variable»
byte-field
variable»

In this example expansion we have ignored the further complexity of returning the correct value, which is the
incremented byte, not the new value of v ar i ab 1 e. Note that the variable byte-f i e 1 d is evaluated twice,
and the variable v ar i ab 1 e is referred to twice on the "right-hand side" and once on the "left-hand side" of
the setf form.

Now consider this expression:
(incf (ldb (aref byte-fields (incf i»

(aref words i»)
It ought to expand into something like this:

(let «temp (incf i»)
(setf (aref words i) .

{dpb (1+ {ldb (aref byte-fields temp)
(aref words i»)

(aref byte-fields temp)
(aref w~rds i»»

Again we have ignored the complexity of returning the correct value.

The COMMON LIsp facilities provided to deal with these semantic issues include:

• Built-in macros such as set f and pus h that follow the semantic rules .

• The defi ne-modi fy-macro macro, which allows new generalized-variable manipulating

78 COMMON USP REFERENCE MANUAL

macros (of a cenain restricted kind) to be defined easily. It takes care of the semantic rules
automatically .

• The defsetf macro. which allows new types of generalized-variable references to be defined
easily. It takes care of the semantic rules automatically .

• The defi ne-setf-method macro and the get-setf-method function, which provide
access to the internal mechanisms when it is necessary to define a complicated new type of
generalized-variable reference or generalized-variable-manipulating macro.

def'i ne-modi fy-macro name lambda-list function [doc-string] [Macro]

Define a read-modify-write macro named name. An example of such a macro is in cf (page 156).
The first subform of the macro will be a generalized-variable reference. The fun c t ion is literally
the function to apply to the old contents of the generalized-variable to get the new contents; it is not
evaluated. lambda-list describes the remaining arguments for the function; these arguments come
from the remaining subforms of the macro after the generalized-variable reference. lambda-listmay
contain &optional and &rest markers. (The &key marker is not permitted here; &rest
suffices for the purposes of def i ne-mod i f y-mac ro.) doc-string is documentation for the macro
name being defined.

The expansion of adefi ne-modi fy-macro is equivalent to the following, except that it
generates code that follows the sem'antic rules outlined above.

(de f mac r 0 name (reference . lambda-list)
doc-string .
t (setf t reference

(function t reference ,argJ t arg2 ... »)

where argJ, arg2, ... , are the parameters appearing in lambda-list; appropriate provision is mag.e for
a &rest parameter.

As an example, in cf(page 156) could have been defined by:
(define-modify-macro incf (&optional (delta 1» +)

An example of a possibly useful macro that is not predefined in COMMON LISP is:
(define-modify-macro unionf (other-set &rest keywords) union)

defsetf access-fn {update-fn [doc-string] I
lambda-list (store-variable) {declaration I doc-string}* lfonn}*} [Macro]

This defines how to set f a generalized-variable reference of the form (access-fn .••). The
value of a generalized-variable reference can always be obtained simply by evaluating it, so
access-fn should be the name of a function or a macro.

The user of de f set f provides a description of how to store into the generalized-variable reference
and return the value that was stored (because setf is defined to return this value). The
implementation of defsetf takes care of ensuring that subforms of the reference ¥e evaluated

CONTROLSTRUCfURE 79

exactly once and in the proper left-to-right order. In order to do this, de f set f requires that
access-In be a function or a macro that evaluates its arguments, behaving like a function.
Furthermore, a setf of a call on access-In will also evaluate all of access-In's arguments; it cannot
treat any of them specially. This means that de f set f cannot be used to describe how to store into
a generalized variable that is a byte, such as (l db fie 1 d ref ere nee). To handle situations
that do not fit the restrictions imposed by de f set f, use de fin e - set f - me tho d (page 81),
which .gives the user additional control at the cost of increased complexity.

A defsetf declaration may take one of two forms. The simple form of defsetf is

(def set f access-In update-In [doc-string])
The update-In must name a function (or macro) that takes one more argument than access-In does.
When set f is given a place that is a callan access-In, it expands into a call on update-In that is
given all the arguments to access-fn and also, as its last argumen~ the new value (which must be
returned by update-fn as its value). For example, the effect of

(defsetf symbol-value set)

is built into the COMMON LISP system. This causes the form (setf (symbol-val ue foo)
fu) to expand into (set foo fu).

Note that
(defsetf car rplaca)

would be incorrec~ because rp 1 aca (page 215) does not return its last argument

The complex form of de f set f looks like
(defsetf access-fn lambda-list (store-variable) . body)

and resembles defmacro (page 112). The body must compute the expansion ofa setf ofa call

on access-fn.

lambda-list describes the arguments of access-fn. &optional, &rest, and &key markers are
permitted in lambda-list. Optional arguments may have defaults and "supplied-p" flags. The
store-variable describes the value to be stored into the generalized-variable reference.

Rationale: The store-variable is enclosed in parentheses to provide for a possible extension to multiple store
variables. receiving multiple values from the second subform of set f.

The body forms can be written as if the variables in the lambda-list were bound to subforms of the
calIon access-fn and the store-variable were bound to the second subform of setf. However, this
is not actually the case. During the evaluation of the body forms, these variables are bound to

names of temporary variables, g~nerated as ifby gensym (page 130) or gentemp (page 130), that
will be bound by the expansion of set f to the values of those sub forms. This permits the body
forms to be written without regard for order-of-evaluation issues. defsetf arranges for the
temporary variables to be optimized out of the final result in cases where that is possible. In other
words, an attempt is made by de f set f to generate the best code possible in a particular
implementation.

Note that the code generated by the body forms must include provision for returning the correct
value (the value of store-variable). This is left to the body forms rather than being handled by
de f set f because in many cases this value can be returned at no extra cost, by calling a function

---~--~---~------------

80

. ..

COMMON USP REFERENCE MANUAL

that simultaneously stores into the generalized variable and returns the correct value.

An example of the use of the complex fonn of defsetf:
(defsetf subseq (sequence start &optional end) (new-sequence)

'(progn (replace ,sequence ,new-sequence
:startl ,start :endl ,end)

,new-sequence)) .

. The underlying theory by which set f and related macros arrange to conform to the semantic rules given
above is that from any generalized-variable reference one may derive its "s e t f method", which describes
how to store into that reference and which subfonns of it are evaluated.

Compatibility note: To avoid confusion. it should be noted that the use of the word "method" here in connection with
set f has nothing to do with its use in Lisp Machine uSP in connection with message-passing and the Lisp Machine LIsp
"flavor system",

Given knowledge of the subforms of the reference, it is possible to avoid evaluating them multiple times or in
the wrong order. A set f method for a given access form can be expressed as five values:

• A list of temporary variables.

• A list of value forms (subforms of the given form) to whose values the temporary variables are to
be bound. These value forms must be evaluated in the order in which they appear in this list

• A second list of temporary variables, called store variables.

• A storingform.

• An accessing form.

The store variables are to be bound to the values of the form to be stored into the generalized variable. In
almost all cases only a single value is to be stored and there is only one store variable.

The storing form and th~ accessing form may contain references to the the temporary variables (and also, in
the case of the storing fonn, to the store variables). The accessing form returns the value of the generalized
variable. The storing fonn modifies the value of the generalized variable and guarantees to return the values
of the store variables as its values; these are the correct values for set f to return. (Again, in most cases there
is a single store variable and thus a single value to be returned.) The value returned by the accessing form is
(of course) affected by execution of the stori~g form, but otherwise either of these forms may be evaluated
any number of times, and therefore should be free of side effects (other than the storing action of the storing
form).

The temporary variables and the store variables are generated names, as if by gensym (page 130) or
gentemp (page 130), so that there is never any problem of name clashes among them, or between them and
other variables in the program. This is necessary tq make the special forms that do more than one set f in
parallel work properly; these are psetf, shiftf, and rotatef. Computation of the setf method must
always create new variable names; it may not return the same ones every time.

CONTROL STRUCTURE

Some examples of set f methods for particular forms:

• For a variable x:
()
()
(gOOOl)
(setq x gOOOl)
x

• For (car exp):
(g0002)
(exp)
(g0003)
(progn (rplaca g0002 g0003) g0003)
(car g0002)

• For (subseq seq s e):
(g0004 g0005 g0006)
(seq s e)
(g0007)
(progn (replace g0004 g0007 :start1 g0005 :endl g0006)

g0007)
(subseq g0004 g0005 .g0006)

defi ne-setf-method access-In lambda-list {declaration I doc-string}* {{onn}*

81

[Macro]

This defines how to set f a generalized-variable reference that is of the form (access-fn . ..). The

value of a generalized-variable reference can always be obtained simply by evaluating it, so

access-In should be the name of a function or a macro.

The lambda-list describes the subforms of the generalized-variable reference, as with defmacro

(page 112). The result of evaluating the fonns in the body must be five values representing the

setf method, as described above. Note that defi ne-setf-method differs from the complex

form of de f set f in that while the body is being executed the variables in lambda-list are bound to

parts of the generalized-variable reference, not to temporary variables that will be bound to the

values of such parts. In addition, define-setf-method does not have defsetf's restriction

that access-fn must be a function or a function-like macro; an arbitrary defmacro destructuring

pattern is permitted in lambda-list.

By definition there are no good small examples of defi ne-:setf-method, because the easy cases

can all be handled by defsetf. A typical use is to define the setf method for 1 db (page 175):

82 COMMON USP REFERENCE MANUAL

" , SElF method for the form (LOB bytespec int).
" , Recall that the int form must itself be suitable for SElF.

(define-setf-method ldb (bytespec int)
(multiple-value-bind (temps vals stores

store-form access-form)
(get-setf-method int) ;Get SElF method for into

(let ((btemp (gensym» ;lemp var for byte,specifier.
(store (gensym» ;lemp var for byte to store.
(itemp (first stores») ;lemp var for int to store.

" Return the SElF method for LOB as five, values.
(values (cons btemp temps) ;lemporary variables.

(cons bytespec vals) ;Value forms.
(list store) ;Store variables.
t(let ((,itemp (dpb ,store ,btemp ,access-form»)

,store-form
,store) ;Storing form.

t(ldb ,btemp ,access-form) ;Accessing form.
))))

get-setf-method form [Function]
get-setf-method returns five values, the satf method for fonn, which must be a generalized

variable reference. get - set f - me tho d takes care of error-checking and macro expansion and

guarantees to return exactly one store-variable.

As an example~an extremely simplified version of set f, allowing no more and no fewer than two
subfonns, containing no optimization to remove unnecessary variables, and not allowing storing of

multiple values, could be defined by:
(defmacro setf (reference value)

(multiple-value-bind (vars vals stores store-form access-form)
(get-setf-method reference)

(declare (ignored access-form»
t(let ,(mapcar #'list

(append ~ars stores)
(append vals (list value»)

,store-form»)

get-setf-method-mul t i pl e-val ue form [Function]
get-setf-method-multiple-value returns five values, the setf method for form, which

must be a generalized-variable refer~nce. This is the same as get - set f - me tho d except that it

does not check the number of store-variables; use this in cases that allow storing multiple values

into a generalized variable. There are no such cases in standard COMMON LISP, but this function is

provided to allow for possible extensions.

7.3. Function Invocation

The most primitive form for function invocation in LISP of course has no name; any list that has no other

interpretation as a macro call or special form is taken to be a function call. Other constructs are provided for

CONTROL STRUCTURE 83

less common but nevertheless frequently useful situations.

apply jUnction arg &rest more-args [Function]
This applies jUnction to a list of arguments. jUnction may be a compiled-code object, or a lambda
expression, or a symbol; in the latter case the global functioncy value of that symbol is used (but it is
illegal for the symbol to be the name of a macro or special fonn). The arguments for the jUnction
consist of the last argument to ap ply appended to the end of a list of all the other arguments to

ap ply but the function itself; it is as if all the arguments to ap ply except the jUnction were given
to 1 is t * (page 210) to create the argument list

For example:
(setq f '+) (apply f '(1 2» => 3
(setq f '-) (apply f '(1 2» => -1
(apply #'max 3 5 '(2 7 3» => 7
(apply 'cons '«+ 2 3) 4» =>

((+ 2 3) . 4) not (5 • 4)
(apply #'+ '(» => 0

After the jUnction argument there may be any number of individual arguments (possibly none)
followed by a list of all the rest of the arguments. If no individual arguments are specified and the
final list argument is empty, then the function receives no arguments. Note that if the function
takes keyword arguments, the keywords as well as the corresponding values must appear in the
argument list:

(apply #'(lambda (&key a b) (list a b» '(:b 3» => (nil 3)
This can be very useful in conjunction with the &a 11 ow-other-keys feature:

(defun foo (size &rest keys &key double &allow-other-keys)
(let «v (apply #'make-array :allow-other-keys t size keys»)

(if double (concatenate v v) v»)

(foo 4 :initial-contents '(a bed) :double t)
=> #(a bed abc d)

funcall In &rest arguments [Function]
(funcall In al a2 an) applies the functionln to the arguments aI, a2, ... , an. In may not
be a special form nor a macro; this would not be meaningful.

For example:
(cons 1 2) => (1 . 2)
(setq cons (symbol-function '+»
(funcall cons 1 2) => 3

The difference between fun c a" and an ordinary function call is that the function is obtained by
ordinary LISP evaluation rather than by the special interpretation of the function position that
normally occurs.

Compatibility Dote: This corresponds roughly to the INI'ERUSP primitive app 1 y •.

84 COMMON USP REFERENCE MANUAL

ca11-arguments-limit [Constant)

The value of ca 11-arguments -1 imi t is a positive integer that is the upper exclusive bound on
the number of arguments that may ~e passed to a function. This bound depends on the
implementation, but will not be smaller than 50. (Implementors are enouraged to make this limit as
large as practicable without sacrificing performance.) The value of ca 11-arguments-l imi t
must be as least as great as that of 1 amb d a - par ame t e r s -1 i mit (page 52). See also
mu1tip1e-va1ues-1 imit (page 103).

7.4.'SimpJe Sequencing

progn {fOnn}* [Special fonn)

The progn construct takes a number of fonns and evaluates them sequentially, in order, from left
to right The values of all the forms but the last are discarded; whatever the last form returns is
returned by the pro 9 n form. One says that all the forms but the last are evaluated for effect,
because their execution is useful only for the side effects caused, but the last form is executed for
value.

progn is the primitive control structure construct for ~'compound statements"; it is analogous to

begin-end blocks in ALGOL-like languages. Many LISP constructs are "implicit progn" forms, in
that as part of their syntax each allows many forms to be written that are to be evaluated
sequentially, discarding the results of all forms but the last, and returning the results of the last
form.

If the last form of the progn returns multiple values, then those multiple values are returned by the
pro 9 n form. If there are no forms for the pro 9 n, then the result is nil. These rules generally
hold for implicit progn forms as well.

prog 1 first {fonn}* [Macro]

pro 9 1 is similar to pro 9 n, but it returns the value of its first form. All the argument forms are
executed sequentially; the value the first form produces is saved while all the others are executed,
and is then returned.

pro 9 1 is most commonly used to evaluate an expression with side effects, and return a value that
must be computed before the side effects happen.

For example:
(progl (car x) (rplaca x 'fool)

alters the car of x to be foo and returns the old carofx.

pro 9 1 always returns a single value, even if the first form tries to return multiple values. A
consequence of this is that (p r 0 9 1 x) and (p r 0 9 n x) may behave differently if x can produce
multiple values. See mul t ipl e-val ue-progl (page 104).

CONTROL STRUCfURE 85

prog2 first second ifonn}* [Macro]

prog2 is similar to progl, but it returns the value of its second fonn. All the argument forms are
executed sequentially; the value of the second form is saved while all the other forms are executed,
and is then returned.

pro 9 2 is provided mostly for historical compatibility.
(prog2 abc ... z) <=> (progn a (progl b c ... z»

Occasionally it is desirable to perform one side effect, then a value-producing operation, then
another side effect: in such a peculiar case pro 9 2 is fairly perspicuous.

For example:
(prog2 (open-a-file) (compute-on-file) (close-the-file»

; value is that of compute-on-f i 1 e
prog2, like progl, always returns a single value, even if the second form tries to return multiple
values. A consequence of this is that (prog2 x y) and (p rogn x y) may behave'differently if
y can produce multiple values.

7.5. Environment ManipUlation

1 et ({var I (var value)}*) {declaration}* ifonn}* [Special fonn]

Ale t form can be used to execute a series of forms with specified variables bound to specified
values.

More precisely, the fonn
(1 et « var/ value/)

(var2 value2).

(vann valuem»
declaration 1
declaration2

declarationp
body/
body2

bodyn)

first evaluates the expressions value/, value2, and so on, in that order, saving the resulting values.
Then all of the variables varj are bound to the corresponding values in parallel; each binding will be
a local binding unless there is asp e cia 1 declaration to the contrary. The expressions bodyk are
then evaluated in order; the values of all but the last are discarded (that is, the body of ale t form
is an implicit progn). The 1 et form returns what evaluating bodyn produces (if the body is empty,
which is fairly useless, 1 e t returns nil as its value). The bindings of the variables disappear when
the 1 e t form is exited.

Instead of a list (varj valuej) one may write simply varj. In this case varj is initialized to n i 1. As a

86 COMMON USP REFERENCE MANUAL

matter of style, it is recommended that varj be written only when that variable will be stored into
(such as by se tq (page 70» before its first use. Ifit is important that the initial value is nil rather
than some undefined value, then it is clearer to write out (varj nil) (if the initial value is
intended to mean "false") or (varj '(» (if the initial value is intended to be an empty list).

Declarations may appear at the beginning of the body ofa 1 et. See dec1 are (page 117).

1 et· ({var I (var value)}*) {declaration}* {(onn}* [Special fonn]

1 e t· is similar to 1 e t (page 85), but the bindings of variables are performed sequentially rather
than in parallel. This allows the expression for the value of a variabl,e to refer to variables
previously bound in the 1 e t· form.

More precisely, the form:
(1 et· « varl valuel)

(var2 value2)

(vann valuem»
declarationl
declaration2

declarationp
bodyl
body2

bodyn)

first evaluates the expression valuel, then binds the variable varl to that value; then its evaluates
value2 and binds var2; and so on. The expressions bodyj are then evaluated in order; the values of
all but the last are discarded (that is, the body ofa let· form is an implicit progn). The let·
fonn returns the results of evaluating bodyn (if the body is empty, which is fairly useless, 1 e t *
returns nil as its value). The bindings of the variables disappear when the 1 e t * fonn is exited.

Instead of a list (varj valuej) one may write simply varj. In this case varj is initialized to nil. As a
matter of style, it is recommended that varj be written only when that variable will be stored into
(such as by set q (page 70» before its first use. If it is important that the initial value is nil rather
than some undefined value, then it is clearer to write out (varj nil) (if the initial value is
intended to mean "false") or (varj '(» (if the initial value is intended to be an empty list).

Declarations may appear at the beginning of the body of ale t *. See dec 1 are (page 117).

compiler-let ({var I (var value)}*) {declaration}* {fonn}* [Specialfonn]

When executed by the LISP interpreter, c omp i 1 e r -1 e t behaves exactly like 1 e t (page 85) with
all the variable bindings implicitly declared sp~c i a 1. When the compile~ processes this form,
however, no code is compiled for the bindings; instead, the processing of the body by the compiler
(including, in particular, the expansion of any macro calls within the body) is done with the special

variables bound to the indicated values in the execution context of the compiler. This is primarily

--- -----------

CONTROL STRUCfURE 87

useful for communication among complicated macros.

Declarations may appear at the beginning of the body ofa camp i 1 er-l et. See decl are (page
117).

progv symbols values {fonn}* [Special/onn]

p rag v is a special form that allows binding one or more dynamic variables whose names may be
determined at run time. The sequence of forms (an implicit p r og n) is evaluated with the dynamic
variables whose names are in the list symbols bound to corresponding values from the list values. (If
too few values are supplied. the remaining symbols are bound and then made to have no value; see
makunbound (page 71). If too many values are supplied, the excess values are ignored.) The
results of the pro 9 v form are those of the last /onn. The bindings of the dynamic variables are
undone on exit from the pro 9 v fOnD. The lists of symbols and values are computed quantities;
this is what makes progv different from, for example, let (page 85), where the variable names
are stated explicitly in the program text

pragv is particularly useful for writing interpreters for languages embedded in LISP; it provides a
handle on the mechanism for binding dynamic variables.

flet ({(name lambda-list {declaration I doc-string}* {fonn}*)}*) {fonn}* [Special/onn]

1 abe 1 s ({ (name lambda~list {declaration I doc-string}* lfonn} *)}*) {(onn}* [Special/onn]

macralet ({(name varlz'st {declaration I doc-string}* ({onn}*)}*) {fonn}* [Special/onn]

f let may be used to define locally named functions. Within the body of the f let fOnD, function
names matching those defined by the f let refer to the locally defined functions rather than to the
global function definitions of the' same name.

Any number of functions may be simultaneously defined. Each definition is similar in fonnat to a
defun (page 53) form: first a name, then a parameter list (which may contain &opti anal,

&r est, or &k e y parameters)" then optional declarations and documentation string, and finally a
body.

The lab e 1 s construct is identical in form to the f let construct It differs in that the scope of the
defined function names for ,fl et encompasses only the body, while for 1 abe 1 s it encompasses
the function definitions themselves. That is, 1 abe 1 s can be used to define mutually recursive
functions, but f let cannot This distinction is useful. Using f let one can locally redefine a
global function name, and the new definition can. refer to the global definition; the same
construction using lab e 1 s would not have that effect

88 COMMON USP REFERENCE MANUAL

(defun integer-power (n k) ;A hi~hly "bummed" integer
(declare (integer n» ; exponentiation routine.
(declare (type (integer 0 *) k»
(labels «exptO (x k a)

(declare (integer x a) (type (integer 0 *) k»
(cond «zerop k) a)

«evenp k) (exptl (* x x) (floor k 2) a»
(t (exptO (* x x) (floor k 2) (* x a»»)

(exptl (x k a)
(declare (integer x a) {type (integer 0 *) k»
(cond ({evenp k) {exptl (* x x) (floor k 2) a»

(t (exptO (* x x) (floor k 2) (* x a»»»
(exptO n I< 1»)

macrol et is similar in form to fl et, but defines local macros, using the same format used by
defmacro (page 112).

7.6. Conditionals

cond {{test ({onn}*)}* [Macro]

The cond special form takes a number (possibly zero) of clauses, which are lists of forms. Each
clause consists of a test followed by zero or more consequents.

For example:
{cond (test-/ consequent-/-/ consequent-/-2 •.•)

(test-2)
(test-3 consequent-3-/ .••)
. ..)

The first clause whose test evaluates to non-n i 1 is selected; all other clauses are ignored, and the
consequents of the selected clause are evaluated in order (as an implicit progn).

More specifically, cond processes its clauses in order from left to right For each clause, the test is

evaluated. If the result is n ; 1, con d advances to the next clause. Otherwise, the cdr of the clause is
treated as a list of. forms, or consequents, which are evaluated in order from left to right, as an
implicit progn. After evaluating the consequents, cond returns without inspecting any remaining
clauses. The con d special form returns the results of evaluating the last of the selected
consequents; if there were no consequents in the selected clause, then the single (and necessarily
non-null) value of the test is returned. If con d runs out of clauses (every test produced n; 1, and

. .
therefore no c~ause was selected), the value of the co n d form is nil.

If it is desired to select the last clause unconditionally if all others fail, the standard convention is to

use t for the test. As a matter of style, it is desirable to write a last clause" (t n i 1)" if the value of
the cond fonn is to be used for something. Similarly, it is in questionable taste to let the last clause
of a cond be a "singleton clause"; an explicit t should be provided. (Note moreover that (cond
. .. (x» may behave differently from (c 0 n d ... (t x» if x might produce multiple
values; the fonner always returns a single value, while the latter returns whatever values x returns.}

For example:

CONTROL STRUCTURE

(setq z (cond (a 'fool (b 'bar»)
(setq z (cond (a 'fool (b 'bar) (t nil»)
(cond (a b) (c d) (e»
(cond (a b) (c d) (t e»
(cond (a b) (c d) (t (values e»)
(cond (a b) (c»
(cond (a b) (t c»
(if a b c)

; Possibly confusing.
; Better.
: Possibly confusing.
; Better.
; Better (if one value needed).
: Possibly confusing.
; Better.
; Also better.

89

A LISP cond form may be compared to a continued if-then-elseif as found in many algebraic

progr~ming languages:

i f pred then [else]

(cond (p •••).
(q •.•)
(r ...)

(t ... »

roughly
corresponds

to

if p then ...
else if q then
else if r then

else

[Special fonn]

The if special form corresponds to the if-then-else construct found in most algebraic programming

. languages. Fi~t the form pred is evaluated. If the result is not nil, then the form then is selected;

otherwise the form else is selected. Whichever form is selected is then evaluated, and i f returns

whatever evaluation of the selected form returns.

(if pred then else) <=> (con d (pred then) (t else»
but i f is considered more readable in some situations.

The else form may.be omitted, in which case if the value of pred is nil then nothing is done and

the value of the if form is nil. If the value of the if form is important in this situation, then the

and (page 64) construct may be stylistically preferable, depending on the context If the value is
not important, but only the effect, then the when (page 89) construct may be stylistically

preferable.

when pred {{onn}· [Macro]

(when pred fonnI fonn2 ...) first evaluates pred. If the result is nil, then no fonn is

evaluated, and nil is returned. Otherwise the forms constitute an implicit progn, and so are

evaluated sequentially from left to right. and the value of the last one is return~d.
(when p a b c) <=> (and p (progn a be»
(when p a b e) <=> (cond (p a be»
(when p a b c) <=> (if P (progn a b e) 'nil)
(when p a b c) <=> (unless (not p) a b c)

As a matter of style, when is normally used to conditionally produce some side effects, and the

value of the when-form is normally not used. If the value is relevant, then and (page 64) or if

(page 89) may be stylistically more appropriate.

------_ ... _- ... " ,,- ----

90 COMMON USP REFERENCE MANUAL

un 1 ess pred {fonn}* [Macro]

(un·l e s s pred fonnl lorm2 ...) first evaluates pred. If the result is not nil, then the forms

are not evaluated, and ni 1 is returned. Otherwise the fonns constitute an implicit progn, and so
are evaluated sequentially from left to right, and the value of the last one is returned.

(unless p·a b c) <=> (cond «not p) a be»
(unless p a b c) <=> (if P nil (progn a be»
(unless p a b c) <=> (when (not p) a b c)

As a matter of sty Ie, un 1 e s s is nonnally used to conditionally produce some side effects, and the
value of the unless-fonn is normally not used. If the value is relevant, then.or (page 65) or if
(page 89) may be stylistically more appropriate.

case keyfonn {({({key}*) I key} {fonn}*)}* [Macro]

cas e is a conditional that chooses one of its clauses to execute by comparing a value to various
constants, which are typically keyword symbols, integers, or characters (but may be any objects). Its
form is as follows:

(case keyfonn
(keyUst-1 consequent-]-1 consequent-]-2 •.•)
(keyUst-2 consequent-2-/" •••)
(keyUst-3 consequent-3-1 •.•)
...)

Structurally case is much like cond (page 88), and it behaves like cond in selecting one clause
and then executing all consequents of that clause. It differs in the mechanism of clause selection.

The first thing case does is to evaluate.the fOIm keyfonn to produce an object called the key object.
Then case considers each of the clauses in tum. If key is in the keylist (that is, is eql to any item
in the keylist) of a clause, the consequents of that clause are evaluated as an implicit progn. and
cas e returns what was returned. by the last consequent (or nil if there are no consequents hi that
clause)~ If no clause is satisfied, cas e returns nil.

It is an error for the same key to appear in more than one clause.

Instead of a keylist, one may write one of the symbols t and othe rwi se. A clause with such a
symbol always succeeds, and must be the last clause. See also ecase (page 335) and cease
(page 336), each of which provides an implicit 0 the rw i s e clause to signal an error if no clause is
satisfied.

Compatibility note: The lisp Machine uSP caseq construct uses eq for the comparison. In lisp Machine
uSP case therefore works for fixnurns but not bignums. The MACUSP caseq construct simply prohibits the
use of bignums; indeed, it permits only fixnurns and symbols as clause keys. In the interest of hiding the
fixnum-bignum distinction, and for general language consistency, case uses eql in CoMMON lJsp,

If there is only one key for a clause, then that key may be written in place of a list of that key.
provided that no ambiguity results (the key should not be a cons or one of nil (which is confusable
with (), a list of no keys), t, or otherwi sa).

CONTROL STRUCTURE 91

typecase keyfonn {(type ({onn}*)}* [Macro]

typecase is a conditional that chooses one of its clauses by examining the type of an object Its
fonn is as follows:

(typecase keyfonn
(type-1 consequent-1-1 consequent-1-2 ...)
(type-2 consequent-2-1 ...)
(type-3 consequent-3-1 ...)
...)

Structurally typecase is much like cond (page 88) or case (page 90), and it behaves like them
in selecting one clause and then executing all consequents of that clause. It differs in the
mechanism of clause selection.

The first thing typecase does is to evaluate the fonn keyform to produce an object called the key
object Then typecase considers each of the clauses in tum. The first clause for which the key is
of that clause's specified type is selected. the consequents of this clause are evaluated as an implicit
progn, and typecase returns what was returned by the last consequent (or nil if there are no
consequents in that clause). Ifno clause is satisfied, typecase returns nil.

As for case (page 90), the symbol t or otherwi se may be written for type to indicate that the
clause should always be selected. See also etypecase (page 335) and ctypecase (page 335),
each of which provides an implicit otherwi se clause to signal an error if no clause is satisfied.

It is pern1issible for more than one clause to specify a given type, particularly if one is a subtype of
another; the earliest applicable clause is chosen ..

For example:
(typecase an-object

(string ...)
«array t))
«array bit) ...)
(array ..•) .
«or list number) ~ ..)
(t ... »

: This clause handles strings.
: This clause handles general arrays.
: This clause handles bit arrays.
; This handles all other arrays.
: This handles lists and numbers.
: This handles all other objects.

A COMMON LISP compiler may choose to issue a warning if a clause cannot be selected because it is
completely shadowed by earlier clauses.

7.7. Blocks and Exits

block name {fbnn}* [Special fonn]

The b 1 0 c k construct executes each fonn from left to right, returning whatever is returned by the
lastfonn. If, however, a return or return-from fonn is executed during the execution of some
fonn, then the results specified by the return or return-from are immediately returned as the
value of the block construct, and execution proceeds as if the block had tenninated nonnally. In
this block differs from progn (page 84); the latter has nothing to do with return.

-------_ __ ,., , .. -.. -...... _--- .. _._---_ ...

92 COMMON USP REFERENCE MANUAL

The name is not evaluated; it must be a symbol. The scope of the name is lexical; only are t urn or
return-from textually contained in some form can exit from the block. The extent of the name
is dynamic. Therefore it is only possible to exit from a given run-time incarnation of a block once,
either normally or by explicit return.

The defun (page 53) form implicitly puts a block around the body of the function defined; the
b lac k has the same name as the function. Therefore one may use ret urn - from to return
prematurely from a function defined by de fun.

The lexical scoping of the block name fully general, and has consequences that may be surprising to

users and implementors of other LIsp systems. For example, the return in the following example·
actually does "work" in COMMON LISP as one might expect:

(block loser
(catch 'stuff

(mapcar #'(lambda (x) (if (numberp x)
(hairyfun x)
(return-from loser nil»)

items»)
Depending on the situation, a return in COMMON LISP may not be simple. A-return can break
uP, catchers if necessary to get to the block in question. It is possible for a "closure" created by
fun c t ion for a lambda-expression to refer to a block name as long as the name is lexically
apparent

return-from name [result] [Special/ann]

return [result] [Macro]

return-from is used to return from a block or from such constructs as do and prog that
implicitly establish a bloclc. The name is not evaluated, and must be a symbol. A block
construct with the same name must lexically enclose the occurrence of return-from; whatever
the evaluation of result produces is immediately returned from the block. (If the result form is
omitted, it defaults to n i 1. _ As a matter of style, this form ought to be used to indicate that the
particular value returned doesn't matter.)

The return-from fonn itself never returns, and cannot have a value; it causes results to be
returned from a b lac k construct If the evaluation of result produces multiple values, those
multiple values are returned by the construct exited.

(return /onn) is identical in meaning to (return-from nil fonn); it returns from a block
named nil. As a rule, blocks established implicitly by iteration constructs such as do are named
n i 1 , so that ret urn will exit properly from such a construct

CONTROL STRUCTURE 93

7.8. Iteration

COMMON LISP provides a number of iteration constructs. The loop (page 93) construct provides a trivial
iteration facility; it is little more than a progn (page 84) with a branch from the bottom back to the top. The

do (page 93) and do - (page 93) constructs provide a general iteration facility for controlling the variation of
several variables on each cycle. For specialized iterations over the elements of a list or n consecutive integers,
dol ist (page 97) and dotimes (page 97) are provided. The·tagbody (page 100) construct is the most
general, permitting arbitrary go (page 102) statements within it. (The traditional prog (page 100) construct
is a synthesis of tagbody, block (page 91), and let (page 85}.) All of the iteration constructs permit
statically defined non-local exits in the form of the return-from (page 92) and return statements.

7.8.1. Indefinite Iteration

loop {fonn}- [Macro]

Eachfonn is evaluated in tum, from left to right When the lastfonn has been evaluated, then the
first fonn is evaluated again, and so on, in a never-ending cycle. The 1 00 p construct never returns
a value. Its execution must be tenninated explicitly, for example by us~g return (page 92) or
throw (page 108).

loop, like most iteration constructs, establishes an implicit block named ni l. Thus return may
be used to exit from a 1 00 p with specified results.

Rationale: This construct is included primarily as a primitive building block for more complicated iteration
macros that is perhaps more easily understood by a compiler than a full-blown tag body (page 1(0).

A loop construct has this meaning only if every fonn is non-atomic (a list). The case where one or
more than one fonn is a symbol is reserved for future extensions.

7.8.2. General iteration

do ({(var (init [step]])}-) (end-test {fonn}*) {declaration}- {tag I statement}* [Macro]

do- ({(var [init [step]])}-) (end-te~t lfonn}*) {declaration}* {tag I statement}* [Macro]

The do special form provides a generalized iteration facility, with an arbitrary number of "index
variables". These variables are bound within the iteration and stepped in parallel in specified ways.
They may be used both to generate successive values of interest (such as successive integers) or to
accumulate results. When an end condition is met, the iteration terminates with a specified value.

In general, a do loop looks like this:

94

(do « varl initl stepl)
(var2 init2 step2)

(vam initn stepn»
(end-test • result)
{declaration}·
• tagbody)

COMMON USP REFERENCE MANUAL

The first item in the fonn is a list of zero or more index-variable specifiers. Each index-variable
specifier is a list of the name of a variable var,· an initial value init (which defaults to ni 1 if it is

omitted) and a stepping form step. If step is omitted, the var is not changed by the do construct
between repetitions (though code within the do is free to alter the value of the variable by using
set q (page 70».

An index-variable specifier can also be just the name of a variable. In this case, the variable has an
initial value of n ; 1, and is not changed between repetitions.

Before the first iteration, all the init fonns are evalu~ted, and then each var is bound to the value of
its respective init. This is a binding, not an assignment; when the loop tenninates the old values of
those variables will be restored. Note that all of the init forms are evaluated before any var is

bound; hence init forms may refer to old values of the variables.

The second element of the do-form is a list of an end-testing predicate form end-test, and zero or
more forms, called the result forms .. This resembles a cond clause. At the beginning of each
iteration, after processing the variables, the end-test is evalua~ed. If the result is ni 1, execution
proceeds with the body of the do. If the result is not ni 1, the result forms are evaluated in order as
an-nnplicit progn (page 84), and then do returns. do returns the results of evaluating the last
result form. If there are no result fonns, the value of do is ni 1; note that this is not quite analogous
to the treatment of clauses in a con d (page 88) special form.

At the beginning of each iteration other than the first, the index variables are updated as follows.
First every step form is evaluated, from left to right. Then the resulting values are assigned (as with

p set q (page 70» to the respective index variables. Any variable that has no associated step form
is not affected. Because all of the step forms are evaluated before any of the variables are altered,
when a step form is evaluated it always has access to the old values of the index variables, even if
other step fonns precede it After this process, the end-test is evaluated as described above.

If the end-test of a do form is ni 1, the test will never succeed. Therefore this provides an idiom for
"do forever": the body of the do 'is executed repeatedly, stepping variables as usuaL of course.
(1be loop (page 93) construct performs a "do forever" that steps no variables.) The infinite loop
can be terminated bi the use of return (page 92), return-fr'om (page 92), go (page 102) to
an outer level, or throw (page 108).

For example:

CONTROL STRUCTURE

(do «j 0 (+ j 1»)
(nil)

(format t "-%Input -0:" j)
(let «item (read»)

(if (null item) (return)
(format t "-&Output -0:

; Do forever.

; Process items until n; 1 seen.
-5" j (process item»»)

95

The remainder of the do fonn constitutes an implicit tagbody (page 100). Tags may appear

within the body of a do loop for use by go (page 102) statements appearing in the body (but such

go statements may not appear in the variable specifiers, the end-test, or the result forms). When the

end of a do body is reached, the next iteration cycle (beginning with the evaluation of step forms)

occurs.

An implicit block (page 91) named nil surrounds the entire do form. A return (page

92) statement may be used at any point to exit the loop immediately.

decl are (page 117) forms may appear at the beginning ofa do body. They apply to code in the

do body, to the bindings of the do variables, to the step forms (but not the inil forms), to the

end-test, and to the result forms.
Compatibility note: "Old-style" MACUSP do loops, of the form (do var init step end-test . body). are not
supponed. They are obsolete, and are easily converted to a new-style do with the insertion of three pairs of
parentheses. In practice the compiler can catch nearly all instances of old-style do loops because they will not
have a legal fonnat anyway.

Here are some examples ofth~ use of do:

(do « i a (+ i 1) ; Sets every null element of a-vector to zero.
(n (array"';'dimension. a-vector 0»)

«= in»
(when (null (aref a-vector i»

(setf (aref a-vector i) 0»)

The construction
(do «x e (cdr x»

(oldx x x»
((nul 1 x»

body)

exploits parallel assignment to index variables. On the first iteration, the value of 01 dx is whatever

value x had before the do was entered. On succeeding iterations, 0 1 d x contains the value that x

had on the previous iteration.

Very often an iterative algot1thm can be most clearly expressed entirely ~ the step fonns of a do,.

and the body is empty.

For example:
(do «x foo (cdr x»

(y bar (cdr y»
(z t() (cons (f (car x) (car y» z»)

«or (null x) (null y»
(nreverse z»)

does the same thing as (m ape a r #' f f 0 0 bar). Note that the step computation for z' exploits

the fact that variables are stepped in parallel. Also, the body of the loop is empty. Finally, the use

of n rever se (page 196) to put an accumulated do loop result into the correct order is a standard

96 COMMON USP REFERENCE MANUAL

idiom.

Other examples:
(defun list-length (list)

(do {(x list (cdr x»
(j 0 (+ j 1»)

{ (en dp x) j»)

(defun list-reverse (list)
(do {(x list (cdr x»

(y t() (cons (car x) y»)
((en dp x) y»)

Note the use of endp (page 208) rather than null (page 59) to test for the end of a list in the

above two examples. This results in more robust code.

As an example of nested loops, suppose that en v holds a list of conses. The car of each cons is a list

of symbols, and the cdr of each cons is a list of equal length containing corresponding values. Such

a data structure is similar to an association list, but is divided into uframes"; the overall structure

resembles a rib-cage. A lookup function on such a data structure might be:
(defun ribcage-lookup (sym ribcage)

(do «r ribcage (cdr r»)
«null r) nil)

(do «s (caar r) (cdr s»
. (v (cdar r) (cdr v»)
«null s»

(when (eq (car s) sym)
(return-from ribcage-lookup (car v»»»

(Notice the use of indentation in the above example to set off the bodies of the do loops.)

A do loop may be explained in terms of the more primitive constructs block (page 91), return

(page 92), 1 et (page 85), loop (page 93), tagbody (page 100), and psetq (page 70) as

follows:
(block nil

(1 et « varl initl)
(var2 ini(2)

(vam initn»
{declaration}*
(loop (when end-test (return (progn . result»)

(tagbody . tagbody)
(psetq var] step]

var2 step2

vam stepn»»

do· is exactly like do except that the bindings and steppings of the variables are performed

sequentially rather than in paralle1. At the beginning each variable is bound to the value of its init
form before the init fonn for the next variable is evaluated. Similarly, between iterations each

variable is given the new value computed by its step fonn before the step form of the next variable is
evaluated. It is as if, in the above explanation, 1 e t were replaced by 1 e t· (page 86) and pse t q

were replaced by set q (page 70).

---.-... -- .---. --------_ ...

CONTROl. STRUCTURE 97

7.8.3. Sinlplc Iteration Constructs

The constructs do 1 is t and do time s perform a body of statements repeatedly. On each iteration a
specified variable is bound to an clement of interest that the body may examine. do 1 is t examines
successive elements of a list. and do time s examines integers from 0 to 11-1 for some specified positive
integer n.

The value of any of these constructs may be specified by an optional result form, which if omitted defaults
to the value nil.

The return (page 92) statement may be used to return immediately from a dol i st or dot imes form.
discarding any following iterations that might have been performed: in effect. a b 1 oek named nil
surrounds the constrllc.t The body of the loop is implicitly a tagbody (page 100) construct: it may contain
tags t('l serve as the targets of go (page 102) s~1tements. Declarations may appear before the body of the loop.

do 1 is t (var listfonn [resulifonll]) {declaration}* {tag I statement}* [Alacro]

do 1 is t provides straightforward iteration over the elements of a list First do lis t evaluates the
form listfonn, which should produce a list It then executes the body once for each clement in thc
list. in order, with the variable var bound to the clement. Then resultform (a s~ngle form, not an
implicit progn) is evaluated, and the result is the value of the dol i st form. (When the result/ann
is evaluated, the control variable var is still bound, and has the value nil.) If resultfann is omitted,
the result is nil.

For example:
(do1ist (x tea bed)) (prinl x) (prine II ")) => nil

after printing lOa bed "

An explicit re tu rn statement may be used to terminate the loop and return a specified value.

dot; me s (var count/onn [result/onn]) {declaration}* {tag I statement}* [i\tfacro]

do times provides straightforward iteration over a sequcnce of integers. The expression
(dot imes (var cOUlIt/onn result/orm) . progbody) evaluates the form count/onn, which

. should produce an integer. It then performs progbody once for each integer from zero (inclusive) to

COUllt (exclusive), in order, with the variable var bound to the integer; if the value of coullt/onn is
zero or negative, then the progbody is performed zero times. Finally. result/ann (a single form, not
an implicit progn) is evaluated, and the result is the value of the dot imes form. (When the
result/onn is evaluated, the control variable var is still bound, and I\a~ as its value the number of
times the b?dy was executed.) If resultfonn is omitted, the result is nil':

Altering the value of var in the body of the loop (by usini! ~~tS' C1"··.I' .. 70), for example) will have
unpredictable, possibly implementation-dependent reslll~. A L:J\ :'\!<'~' LISP compiler may choose
to issue a warning ifsuch a variable appears in a se.tq.

For example:

---~---------.. -----------------.-.--.... --- .. --.-.--.. _ _------

98 COMMON I.ISP RFFERFNCE MANUAL

(defun string-posq (char string &optional
(start 0)
(end (string-length string»)

(dotimes (k (- end start) nil)
(when (char= char (char string (+ start k»)

(retur'n k»»
An explicit return statement may be used to tenninate the loop and return a specified value.

See also do - symbo 1 s (page 144), do- ex tern a 1 - symbo 1 s (page 144), and do - a 11 - symbo 1 s (page
144).

7.8.4. 1VJapping

Mapping is a type of iteration in which a function is successively applied to pieces of one or more
sequences. The result of the iteration is a sequence containing the respective results of the function
applications .. There are several options for the way in which the pieces of the list are chosen and for what is
done with the results returned by the applications of the function.

The function map (page 197) may be used to map over any kind of sequence. The following functions
operate only on lists.

mapcar junction list &rest more-lists
maplist junction list &rest more-lists
mapc JUJlction list &rest more-lists
mapl jUllction list &rest more-lists

[Function]
[Function]
[Fullction]
[Function]

mapcan jUllction list &rest more-lists [Full c tion]
map con junction list &res t more-lists [Fullction]

For each these mapping functions, the first argument is a function and the rest must be lists. The
function must take as many arguments as there are lists.

mapcar operates on successive elements of the lists. First the function is applied to the car of each
list, then to the cadr of each list. and so on. (Ideally all the lists arc the same length; if not, the
iteration terminates when the shortest list runs out. and excess clements in other lists are ignored.)
The value returned by mapcar is a list of the results of the successive caUs to the function.

For example:
(mapcar #'abs '(3 -4 2 -5 -6» => (3 4 2 5 6)
(mapcar #'cons '(a b c) '(1 2 3» => «a. 1) (b . 2) (c . 3»

ma pl. i s t is like ma p car except that the function is applied to the list and successive cdr's of that
list rather than to successive elements of the list

For example:

CONTROl. STR UCrUR~

(maplist #'(lambda (x) (cons 'foo x»
'(a bed»

=> «foo a be d) (foo bed) (foo c d) (foo d»
(maplist #'(lambda (x) (if (member (car x) (cdr x» 0 1»)

'(a b a c d be»
=> (0 0 1 0 1 1 1)
; An entry is 1 iff the corresponding clement of the input

list was the last instance of that clement in the input list

99

mapl and mapc are like mapl ist and mapcar respectively. except that they do not accumulate
the resultc; of calling the function.

Comp:llihilily nole: In all IJSP systems since I.ISP 1.5. mapl has been called map. In the chapter on sequences
it is explained why this was a bad choice. IIere the name map is used ror the rar more userul generic sequence
mapper. in closer accordance to the computer science literature. especially the growing body or papers on
runctional programming.

These functions are used when the function is being called merely for its side-effects. rather than its
returned values. The value returned by map 1 or mapc is the second argument. that is. the first
sequence argument.

mapcan and mapcon are like mapcar and mapl ist respectively. except that they combine the
results of the function using nconc (page 212) instead ofl i st. That is.

(mapcon f xl ... xn)
<=> (apply #'nconc (maplist f xl ... xn»

and similarly for the relationship between mapcan and mapcar. Conceptually, these functions
allow the mapped function to return a variable number of items to be put into the output list. This
is particularly useful for effectively returning zero or one item:

(mapcan #'(lambda (x) (and (numberp x) (list x»)
'(a 1 b c 3 4 d 5»

=> (1 3 4 5)

In this case the function serves as a filter; this is a standard LISP idiom using mapcan. (The
function remove - i f - not (page 199) might have been useful in this particular context, however.}
Remember that nconc is a destructive operation, and therefore so are mapcan and mapcon; the
lists returned by the function are altered in order to concat~nate them.

Sometimes a do or a straightforward recursion is preferable to a mapping operation; however, the
mapping functions should be used wherever they naturally apply because this increases the clarity
of the code.

The functional argument to a mapping function must be acceptable to ap ply; it cannot be a macro
or the name of a special form. Of course, there is nothing wrong with using functions that have
&opt i ona 1 and &res t parameters.

7.S.S. The "Program Feature"

LISP implementations since LISP 1.5 have had what was orig~nally called "the program feature", as if it were
impossible to write, programs without it! The prog construct allows one to write in an ALGOL-like or
FORTRAN-like statement-oriented style, using go statements, which can refer to tags in the body of the prog.
Modern LISP programming style tends to use prog rather infrequently. The various iteration constructs, such
as do (page 93), have bodies with the characteristics ofa prog.

------------,,--""'- , .. '" " ... " ... ,'" .. , .. "",.,----------,

100 COMMON LISP REFERENCE MANUAL

p r og actual1y performs three distinct operations: it hinds local variables, it permits use of the re tu rn

statement. and it permite; use of the go statement. In COMMON LISP, these three operations have been ,

separated into three distinct constructs: 1 et (page 85), block (page 91). and tagbody (page 100). 'Ibese

• three constructe; may be used independently as building blocks for other types of constructs.

tagbody {lag I stalemellt}* [Special fomz]

The part of a p rog after the variable list is ca11ed the body. An item in the body may be a symbol

or an integer. in which case it is called a lag. or a list, in which case it is caned a statemellt.

r~ch clement of the body is processed from left to right. A tag is ignored: a statement is evaluated.

and its result') are discarded. If the end of the body is reached. the tagbody returns nil.

If (go tag) is evaluated, control ju mps to the part of the body labelled with the tag.
Compatihility note: The "computed go" feature ofMAcl.lsP is not supported. The syntax ofa computed go is
idiosyncratic, and the feature is'not supported by Lisp Machine LISP, ~II., or IN'l1!RLlsP.

The scope of the tags established by a tagbody is lexical. and the extent is dynamic. Once a

tagbody construct has been exited. it is no longer legal to go to a lag in its body. It is permissible

for a go to jump to a tagbody that is not the innermost tagbody construct containing that go;
the tags established by a tagbody will only shadow other tags of like name.

The lexical scoping of the go targets named by tags is fully general, and has consequences that may

be surprising to users and implementors of other LISP systems. For example, the go in the

following example actually does "work" in COMMON LISP as one might expect:
(tagbody

(catch 'stuff
(mapcar #'(lambda (x) (if (numberp xl

(hairyfun x)
(go lose»}

(return)
lose

items»

(error "I lost bigl"»

Depending on the situation, a go in COMMON LISP does not necessarily correspond to a simple

machine "jump" instruction! A go can break up catchers if necessary to get to the target. It is

possible for a "closure" created by funct i on for a lambda-expression to refer to a go target as
long as the tag is lexically apparent. See Chapter 3 for an elaborate example of this.

prog ({var I (var [init])}*) {declaration}* {tag I statement}* , [Macro]

p rog * ({ var I (var (in it» }*) {declaration}* {tag I statement}* [Macro]

A typical pro g looks like:

------------------------ --------

CONTROl. STRUCTURE

(prog (varl var2 (var3 init3) var4 (var5 illit5»
{ declaratioll} *

tag I

tag2

statement!

statement2
statement3
statement4

statement5

)

101

The list after the keyword prog is a set of specifications for binding \'arl, var2. etc., which are

temporary variables. bound locally to the p rog. This list is processed. exactly as the list in ale t

(page 85) statement: first all the inil fonns are evaluated from left to right (where nil is llsed for

any omitted illil form), and then the variables are all bound in parallel to the respective results. Any

declaratioll appearing in the prog is used as if appearing at the top of the let body.

The body of the prog is executed as if it were a tagbody (page 100) construct: the go (page

102) statement may be used to transfer control to a lag.

A prog implicitly establishes a block (page 91) named nil around the entire prog construct, so

that return (page 92) may be used at any time to exit from the prog construct

Here is a fine example of what can be done with prog:
(defun king-of-confusion (w)

(prog (x y z) ; Initialize x,y, z to nil
(setq y (car w) z (cdr w»

loop
(cond «null y) (return x»

«null z) (go err»)
rejoin

err

(setq x (cons (cons (car y) (car z» x»
(setq y (cdr y) z (cdr z»
(go loop)

(error "Mismatch - gleepl")
(setq z y)
(go rejoin»

which is accomplished somewhat more perspicuously by:
(defun prince-of-clarity (w)

(do «y (car w) (cdr y»
(z (cdr w) (cdr z»
(x 'C) (cons (cons (car y) (car z» x»)

«null y) x)
(when (null z)

(error "Mismatch - gleepl")
(setq z y»»

The prog construct may be explained in tenns of the simpler constructs block (page 91), 1 et

(page 85), and tagbody (page 100) as follows:

(prog variable-list {declaration}* • body)
<=> (b lock nil (' et variable-list {declaration}* (tagbody • body»)

.. __ , ... _.-..... ,- --------,

102

go tag

COM~tON LISP REFERENCE MANUAL

The prog* special form is almost the same as prog. The only difference is that the binding and

initialization of the temporary variables is done sequelltially. so that the illit fonll for each one can

use the valucs ofprcviolls ones. Thcrcfhre prog* is to prog as let* (pagc 86) is to let (page

85).

For example:

(prog* «y z) (x (car y))
(return x)

rcturns the car of thc value of z.

[Special Jonll]

The (go tag) special form is used to do a "go to" within a tagbody (pagc 100) construct. The

, lag must be a symbol or an intcger; the tag is not cvaluated. go transfcrs control to the point in the

body labellcd by a tag e q 1 to thc onc given. If therc is no such tag in the body. tllC bodies of

lexically containing tagbody co~structs (if any) are examined as well. It is an error if there is no

matching wg lexically visible to tlle point of the go.

The go form does not ever return a value.

As a matter of style, it is recommended that the user think twice before using a go. Most purposes

of go can be accomplished with one of the iteration primitives, nested conditional forms, or

return -from (page 92). If the use of go seems to be unavoidable. perhaps the control structure

implemented by go should be packaged up as a macro definition.

7.9. Multiple Values

Ordinarily the result of calling a LISP function is a single LISP object. Sometimes, however, it is convenicnt

for a function to compute several objects and return them. COMMON LISP provides a mechanism for handling

multiple values directly. This mechanism is cleaner and more efficie.nt than the usual tricks involving

returning a list of results or stashing results in global variables.

7.9.1. Constructs for l-Iandling Multiple Values

Normal1y multiple values are not used. Special forms are required both to produce multiple values and to

receive them. If the caller of a function does not request multiple values, but the called function produces

multiple values. then the first value is given to the caller and all others are discarded (and if the called

function produces zero values then the caller gets n; 1 as a value).

The primary primitive for producing multiple values is va' u e s (page 103), which takes any number of

arguments and returns that many values. If the last form in the body of a function is a va' u e s with three

arguments, then a call to that function will return three values. Other special forms also produce multiple

values, but they can be described in terms of val u e s. Some built-in COMMON LISP functions (such as

f 1 00 r (page 166» return multiple values; th<)se that do are so documented.

CONTROl. STRUCTURE 103

The special fhrms for recelvmg multiple values are multiple-value-l ist (page 104),
multiple-value-call (page 104). multiple-value-progl (page 104). multiple-value-bind

(page 104). and mu 1 tip 1 e -val ue - set q (page 105). These specify a fonn to evaluate and an indication of

where to put the values returned by that form.

va 1 ues &res t args
Returns all of its arguments. in order, as values.

For example:
(defun polar (x y)

(values (sqrt (+ (* x x) (* y y») (atan y x»)
(multiple-value-let (r theta) (polar 3.0 4.0)

(list r theta»
=> (5.0 0.9272952)

The expression (val ue s) returns zero values.

[Function]

Sometimes it is desirable to indicate explicitly that a function will return exactly one value. For

example. the function
(defun foo (x y)

(floor (+ x y) y»

will return two values because floor (page 166) returns two values. It may be that the second

value makes no sense. or that for efficiency reasons it is desired not to compute the second value.

The val u e s function is the standard way to indicate that only one value is to be returned:
(defun foo (x y)

(values (floor (+ x y) y»)

This works because v a 1 ue s returns exactly one value for each of its argument forms; as for any

function call, if any argument form to val u e s produces more than one value, all but the first are

discarded.

There is absolutely no way in COMMO!': LISP for a caller to distinguish between returning a single

value in the ordinary manner and returning exactly one "mult:ple' value". For example, the values

returned by the expressions (+ 1 2) and (val u e s (+ 1 2» are iden tical in every respect: the

single value 3.

multiple-values-limit [Constant]

The value of mul tip 1 e-va 1 ues-l imi t is a positive integer that is the upper exclusive bound

on the number of values that may be returned from a function. This bound depends on the

implementation. but will not be smaller than 20. (lmplementors are '!nouraged to make this limit as

large as practicable without sacrificing perfonnance.) See 1 ambda parameters-l im; t (page

52) and ca 11 -argumen ts -1 i mi t (page 84).

-... -. __ ._-_.,.,_._"._.- "'-._-,--"-,, .. _,-, ---------

104 COMMON LISP REFERENCE MANUAL

val u e s -1 is t list [Function]
Returns as multiple values all the clements of list.

For example:
(values-list (list a be» <=> (values a b c)

multiple-value-list fonn

mu 1 tip 1 e - val ue -1 is t evaluatesfi)f.,n, and returns a list of the multiple values it returned.

For example:
(multiple-value-list (floor -3 4» => (-1 1)

multiple-va1ue-ca11 fUIIC/ioll {{orm}* ['\/Jecial fiJnn]

mu1 tip 1 e-va 1 ue-ca 11 first evaluates/unction to obtain a function, and then evaluates ~11 of the

fonns. All the values of the jiJnns are gathered together (notjllst one value from each). and given as

arguments to the function. The result of mu 1 tip 1 e - val ue - call is whatever is returned by the

function.

For example:
(mu1tip1e-value-call #'+ (floor 5 3) (floor 7 3»

<=> (+ 1 2.2 1) => 6
(multiple-value-list/onn) <=> (multiple-value-call #'list form)

multiple-value-progl /onn {{onn}* [Special/onn]

mu 1 tip 1 e - val u e - pro 9 1 evaluates the first fonn and saves all the values produced by that form.

It then evaluates the other forms from left to right, discarding their values. The values produced by

the first/ann arc returned by multiple-value-prog1. See progl (page 84), which always

returns a single value.

multiple-value-bind ({var}*) values-/onn {declaration}* {fonn}* [Alaero]

The values-fonn is evaluated, and each of the variables var is bound to the respective value returned

by that form. If there are more variables than values returned, extra values of nil are given to the

remaining variables. If there are more values than variables, the excess values are simply discarded.

The variables are bound to the values over the execution of the forms, which make up an implicit

progn.
COnllnlibility note: This is compatible with L!sp Machine LIsp.

For example:
(multiple-value-bind (x) (floor 5 3) (list x» => (1)
(multiple-value-bind (x y) (floor 5 3) (list x y» => (1 2)
(multiple-value-bind (x y z) (floor 5 3) (list x y z»

=> (1 2 nil)

._----_ - . ---------

CONTROl. STR UCrUR~~ 105

multiple-value-setq variables form [A 'aero]

The variables must be a list of variables. The form is evaluated. and the variables are set (not
bound) to the values returned by that form. If there are more variables than values returned. extra
values of nil are assigned to the remaining variables. If there are more values than variables. the
excess values are simply discarded.

Compatibility note: In I.isp Machine LISP this L" called mu' tip' e- va' ue. °lbe added clarity of the name
mu' tip' e- va' ue- set q in CO~MON I.ISP was deemed worth the incompalibilily with I.isp Machine LISP.

mu 1 tip 1 e - val ue - s e tq always returns a single value. which is the first value returned by form.
or nil if jiJnll produces zero values.

7.9.2. Rules for Tail-Recursive Situations

It is often the case that the value of a special form is defined to be the value of one of its sub-forms. For
example, the value of a con d is the value of the last form in the selected clause. In most such cases, if the
sub-fonn produces multiple values, then the original form will also produce all of those values. This
passing-back of multiple values of course has no effect unless eventually one of the special forms for receiving
multiple values is reached.

To be explicit. multiple values can result from a special form under precisely these circumstances:

Evaluation and Application

• eva 1 (page 253) returns multiple values if the form given it to evaluate
produces multiple values.. '

• apply (page 83). funcall (page 83). and mul t ipl e-val ue-call
(page 104), pass back multiple values from the function applied or caned.

Implicit p rogn contexts
The special form progn (page 84) passes backs multiple values resulting from evaluation
of the last subfornl. Other situations referred to as "implicit p r og n", where several forms
are evaluated and the results of all bu the last form arc discarded. also pass back mUltiple
values from the last form. These situations include the body of a lambda-expression, in
particular those constructed by defun (page 53), defmacro. and deftype. Also
included arc bodies of the constnlcts eval-when (page 54). progv (page 87), let
(page 85). let* (page 86), when (page 89). unless (page 90). block
multiple-value-bind (page 104). and catch (page 107), as well as clauses in such
conditional constructs as case (page 90) and typecase (page 91).

Conditional constructs

• ; f (page 89) passes back multiple values from whichever sub form is selected
(the then form or the else form).

• and (page 64) and or (page 65) pass back multiple values from the last
subform, but not Jrom subforms other than the last

.-----..... -----. _._. ··.-..• _._. __ "'0_' ___ .

106 C0\1~'10N l.ISP REFERENCE MANUAl.

e cond (page 88) passes back multiple values from the last subform of the
implicit p r og n of the selected clause. I f. however, the clause selected is a
singleton clause. then only a single value (the non-n; 1 predicate value) is
returned. This is true even if the singleton clause is thc last clause of the condo
It is /lot penllitted to treat a final clause •. (x) .• as being the same as .. (t x)"
for this reason; the latter passes back multiple values from the form x.

Returning/rom a block
The bloc k (page 91) construct passes back multiple values from its last subform when it
exits normally. If return-from (page 92) (or return) is used to terminate the block
prematurely. then return-from passes back multiple values from its subform as the
valucs of the terminated bloc k. Other constructs that create implicit blocks. such as do
(page 93). dolist (page 97). dotimes (page 97). prog (page 100), and prog* (page
100). also pass back multiple values specified by return-from (or return (page 92».

In addition, do passes back mUltiple values from tlle last form of the exit clause, exactly as
if the exit clause were a cond clause. Similarly. do 1 is t and dot i me s pass back multiple
values from the resu!ljorlll if that is executed. These situations are all examples of implicit
uses of return-from.

Throwing out 0/ a catch
The ca tch (page I07) constnlct returns multiple values if tlle result form in a th row

, (page I08) exiting from such a catch produces mUltiple values.

AI iscellaneous silualions

emultiple-value-progl (page 104) passes back multiple values from its
first subform. However. prog 1 (page 84) always returns a single value.

e unwi nd-protect (page 107) returns multiple values if the form it protects
does.

Among special fonns that never pass back multiple values are se tq (page 70), mu 1 t; p 1 e- val ue - se tq

(page 105). and prog 1 (page 84). A good way to force only one value to be returned from a form x is to

wri tc (va' u e s x) .

The most important rule about multiple values is:
No matter how many values a form produces,

if the form is ~m argument form in a function call,
then eX~lctly ONE value (the first one) is used.

For example, if you write (cons (foo xl), then cons will receive exactly one argument (which is of

course an error), even if foo returns two values. To pass both values from foo to cons, one must use a

special form, such as (m u' t ; p' e - va' u e - c a" # I C <? n s (f 0 0 x». IIi an ordinary fu nction call, each
argument form produces exactly one argument; if such a form returns zero values, n;' is used for the

argument, and if more than one value, all but the first are discarded. Similarly, conditional constructs that tcst

the value of a fonn will use exactly one value (the first) from that fonn and discard the rest, or use ni' if zero

---------------- ---

CONTROl. STRUCTURE 107

values are returned.

7.10. Dynamic Non-local Exits

COMMON I.lSP provides a facility for exiting from a complex process in a non-local. dynamically scoped
manner. There are two classes of special forms for this purpose. called catch forms and throw forms. or simply
catches and throws. A catch form evaluates some subforms in such a way that. if a throw form is executed
during such evaluation. the evaluation is aborted at that point and the catch form immediately returns a value
specified by the throw. Unlike bloc k (page 91) and re tu r n (page 92). which allow for so exiting a bloc k
form from any point lexical1y within the body of the bloc k. the catch/throw mechanism works even if the
throw form is not textually within the body of the catch form. The throw need only occur within the extent
(time span) of the evaluation of the body of the catch. This is analogous to the distinction between
dynamically bound (special) variables and lexically bound (local) variables.

7.10.1. Catch Forms

catch lag lfonn}* [Special form]

The cat c h special form is the simplest catcher. The lag is evaluated first to produce an object that
names the catch; it may be any Lisp object. Thefonns are evaluated as an implicit progn, and the
results of the last form are returned. except that if during the evaluation of the fiJnl1S a throw should
be executed. such that the lag of the throw matches (is eq to) the lag of the catch, then the
evaluation of the f0I117s is aborted and the results specified by the throw are immediately returned
from the catch expression.

The tag is used to match up throws with catches. (catch 'foo fonn) will catch a (throw
'foo form) but not a (throw 'bar fonl1). It is an error if throw is done when there is no
suitable catch (or one of its variants) ready to catch it.

Catch tags are compared using e q, not e q 1 ; therefore numbers and characters should not be used
as catch tags.

Compatibility note: The name catch comes from MACLISP. but the syntax of catch in COMMON LIsp is
different The ~AcLISP syntax was (cat c h form tag). where the tag was not evaluated.

.
unwi nd-protect protected-form {cleanup-form}* [Special form]

Sometimes it is necessary to evaluate a form and make sure that certain side-effects take place after
the form is evaluated; a typical example is:

(progn (start-motor)
(drill-hole)
(stop-motor»

The non-local exit facility of Lisp creates a situation in which the above code won't work, however:
if d rill - h ole should do a throw to a catch that is outside of the p r og n form (perhaps because
the drill bit broke), then (stop-motor) wi!l never be evaluated (and the motor will presumably

108

.~

COMMON I.ISP REFERENCE MANUAL

be left funning). This is particularly likely if d rill - h ole causes a LIsp error and the user teBs the

error-handler to give up and abort the computation. (A possibly more practical example might be:
(prog2 (open-a-file)

(process-file)
(close-the-file»

where it is desired always to close the file when the computation is terminated for whatever reason.)

In order to allow the example hole-drilling program to work, it can be rewritten using

unw; nd-protect as follows:
(unwind-protect

(progn (start-motor)
(drill-hole»

(stop-motor»

If dr i ll-hol e docs a throw that attempts to quit out of the unwi nd-protect. then

(s to p - mo tor) will be executed.

As a general rule. un w; n d - pro t e c t guarantees to execute all the c1ealIup-!onns befofe exiting,

whether it terminates normally or is aborted by a throw of some kind. unwi nd-protect returns

whatever results from evaluation of the protected-form. and discards all the results from the

clean up-fo nns.

It should be emphasized that unwi nd-protect protects against all attempts to exit from the

protected form, including not only such "dynamic exit" facilities such as th row (page 108) but

also such "lexical exit" facilities as go (page 102) and ret urn - from (page 92). Consider this

situation:
(tagbody

(let «x 3»
(unwind-protect

out
...)

(if (numberp x) (go out»
(print x»)

When the go is executed, the call to p r i ntis executed first. anod then the transfer of control to the

tag out is completed.

7.10.2. Throw Forms

th row tag result [Specialfonn]

The th row special form is the only explicit thrower in COMMON LISP. (However, errors may cause

throws to occur also.) The tag is evaluated first to produce an object called the thro N tag. The most

recent outstanding catch whose tag matches the throw tag is exited. A cat c h matches only if the

catch tag is e q . to the throw tag.

In the process dynamic variable bindings are undone back to the point of the catch, and any

intervening unw; nd-protect cleunup code is executed. The result fonn is evaluated before the

unwinding process commences, and whatever results it produces are returned from the catch (or

CONTROl. STRUCrURE 109

given to the catch-jullction. if appropriate).

I f there is no outstanding catch whose tag matches the throw tag. no unwinding of the stack is
performed. and an error is signalled. When the error is signalled. the outstanding catches and the
dynamic variable bindings are those in force at the point of the. throw.

Implementation note: These requirements imply that throwing should typically make two passes over the
control stack. In the first pass it simply searches for a matching catch. In this search every catch must be
considered. but cvery unwind-protect should be ignored. On the second pass the stack is actually
unwound. one frame at a time. undoing dynamic bindings and outstanding unwind-protect constructs in
rcverse order of creation until the matching catch is reached.

Compatihility nole: The name throw comes from MAcLlsp, but the syntax of throw in COMMON LISP is
differenL The MACLIsp syntax was (throw form rag), where the rag was not evaluated.

110 COi\.IMON l.ISP REFERENCE MANUAL

-------------------------------------_ .. _._ .. _-----_.---- _. ---.- --------------- -------

Chapter 8

Macros

The COM~10N LIsp macro facility allows the user to define arbitrary functions that convert certain LISP

fonns into different fonns before evaluating or compiling them. This is done at the expression level. not at
the character-string level as in most other languages. Macros are important in the writing of good code: they
make it possible to write code that is clear and elegant at the user level, but that is converted to a more
complex or more efficient internal form for execution.

When eva 1 (page 253) is given a list whose car is a symbol. it looks for local definitions of that symbol (by
fl et (page 87).1 abel s (page 87). and macrol et (page 87»: if that fails. it looks for a global definition.
1 f the definition is a macro definition, then the original list is said to be a macro call. Associated with the
definition will be a function of one argument. called the expallsio~ junctioll. This function is called with the
entire macro can as its one argument: it must return some new LIsp fonn, called the expansion of the macro
call. This expansion is then evaluated in place of the original form.

When a function is being compiled, any macros it contains are expanded at compilation time. This means
that a macro definition must be seen by the compiler before the first use of the macro. Macros cannot be used
as functional arguments to such things as app 1 y (page 83), funca 11 (page 83), or map (page 197); in such
situations, the list representing the "?riginal macro call" does not exist, so the expansion function would not
know what to work on.

S.l. Defining Macros

macro-funct i on symbol [Function]
The argument must be a symbol. If the symbol has a global function definition that is a macro
definition, then the expansion function (a function of one argument. the macro-call form) is
returned. If the symbols has no global function definition, or has a definition as an ordinary
function or as a special form but not as a macro, then nil is returned. (The function
macroexpand (page 116) is the best way to invoke the expansion function.}

~t is possible for both macro-function and special -form-p (page 69) to be true of a
symbol. This is possible because an implementation is permitted to implement any macro also as a
special form for speed. On the other hand., the macro definition must be available for use by

-111-

112 COM:Y10N I.lSI' REFERENCE MANUAL

programs thalunderstand only the standard special forms listed in Table 5-1.

macro- funct i on cannot be lIsed to determine whether a symbol names a local1y defined macro
established by macrol et (page 87). Itcan examine only global definitions.

setf (page 72) may be lIsed with macro-function to instal1 a macro as a symbol's global
function definition:

(setf (macro-function symbol) In)

The vallie instal1ed must be a function that accepts one argument. the entire macro cal1. and
computes the expansion for that call. Performing this operation causdes the symbol to have only

that macro definition as its global function definition: any previous definition is lost. For example.
(setf (macro-function 'block) #'(lambda (x) ... »

would not calise bloc k to be defined as both a special fonn and as a macro. The definition of
bloc k as a special form would be lost. and the specified function would be ins~111ed as a macro
definition.

\de fmac r 0 name lambda-list {declaration I doc-string}* {form}* ["'aero]

defmacro is a macro-defining macro that, unlike macro. decomposes the calling form in a more
elegant and useful way. defmacro has essentially the same syntax as defun (page 53): name is
the symbol whose macro-definition we are creating. lambda-list is similar in fonn to a lambda-list.
and the Jonns constitute the body of the expander function. I f we view the macro call as a list
containing a flHiLtion name and some argument fonns. in effect the expander function and the list
of (unevaluated) argument forms is given to app 1 y (page 83). The parameter specifiers are
processed as for any lambda-expression. using the macro-call argument fonns as the arguments.
Then the body fonns are evaluated as an implicit p r og n. and the value of the last form is returned
as the expansion of the macro call.

If the optional documentation string doc-string is present (if not followed by a declaration, it may be
present only if at least one [omi is also specified, as it is otherwise taken to be a [ann), then it is
attached to the name as a documentation string of type function; see documentation (page
338).

Like the lambda-list in a defun, a defmacro lambda-list may contain the lambda-list keywords
&optional, &rest. &key. &allow-other-keys. and &aux. For &optional and &key
parameters, initialization forms and "supplied-p" parameters may be specified, just as for defun.
Two additional tokens are allowed in dejinacro variable lists only:

&body

&whole

This is identical in function to &res t, but it informs certain pretty-printing and
editing functions that the remainder of the form is treated as a body, and should
be indented accordingly. (Only one of &body or &res t may be used.)

This is followed by a single variable that is bound to the entire macro call fonn;
this is the same value that the single parameter in a macro definition form
would receive. &who 1 e and the following variable should appear first in the
lambda-list, before any other parameter or lambda-list keyword.

. _. __ ._ .. -----_._-----------------_. --_._---_._--------- ._--

MACROS 113

See 1 ambda-l i st-keywor'ds (page 51).

defmacro, unlike any other COMMON LIsp construct that has a lambda-list as part of its syntax,

provides an additional facility known as destnu:lurillg. Anywhere in the lambda-list where a

parameter name may appear. and where ordinary lambda-list syntax (as described in section 5.2.2)

does not otherwise allow a list. a lambda-list may nppear in plaGe of the parameter name. When

this is done. then the argument form that would match the parameter is treated as a (possibly

dotted) list. to be used as an argument forms list for satisfying the paremeters in the embedded

lambda-list. As an example. one could write the macro definition for do 1 is t (page 97) in this

manner:
(defmacro dolist «var listform &optional resultform)

&I'es t body)
...)

More examples of embedded lambda-lists in defmacro are shown below.

Another destructuring rule is that de fmac ro allows any lambda-list (whether top-level or

embedded) to be dotted. ending in a parameter name. This situation is treated exactly as if the

parameter name that ends the list had appeared preceded by &res t. For example, the definition

skeleton for do 1 is t shown above could instead have been written
(de~macro dolist «var listform &optional resultform)

. body)
...)

If the compiler encounters a defmacro. the new macro is added to the·compilation environment,

and a compiled form of the expansion function is also added to the output file so that the new

macro will be operative at runtime. If this is not the desired effect. the de fmac r 0 form can be

wrapped in an eva 1 -when (page 54) construct

See also ma c r ole t (page 87), which establishes macro definitions over a restricted l~xical scope.

Using defmacro, a definition for three-argument if in terms of cond would look like this:
(defmacro if (pred result else-result)

'(cond (,pred ,result)
(t ,else-result»)

(Note the use of the backquote facility in this definition. See section 22.1.3.) If the above form is executed by

the interpreter, it will cause the function definition of the symbol if to be a macro associated with which is a

one-argument expansion function roughly equivalent to:
(lambda (calling-form)

(list 'cond
(list (cadr calling-form) (caddr calling-form»
(list 't (cadddr calling-form»».

(The lambda-expression is produced by the macro construct. TIle calls to 1 i st arc the (hypothetical) result

of the backquote (,) macro character and its associated commas. The precise macro expansion function may

depend on the implementation, for example providing some degree of explicit error checking on the number

of argument forms in the macor call.)

Now, if e val encounters

-- .. -.-...... - --------------._--_._-_._--_ .. --........ --.----- _._---

114 COMMON I.ISP REFERENCE MANUAL

(if (null faa) bar (plus bar 3»

this will be expanded into
(cond «null faa) bar)

~
(t (plus bar 3»)

and e val tries again on this new form.

It should be clear that the backquote facility is very useful in writing macros. since the form to be returned

is normal1y a complex list structure. typically consisting of a mostly constant template with a few evaluated

forms here and there.

If if is to accept two or three arguments. with the e 1 s e - res u 1 t defaulting to nil. as in fact it does in

COMMO:\ LISP. the definition might look like this:

(defmacro if (pred result &optional (else-result 'nil»
'(cond (,pred ,result)

(t ,else-result»)

Destructuring is a very powerful facility that allows the defmacro lambda-list to express the stnlcture ofa

complicated macro-call syntax. If no lambda-list keywords appear. then the de fmac r a lambda-list is simply

a list. nested to some extent. containing parameter names at the leaves. The macro-call form must have the

same list structure. For example. consider this macro definition:
(defmacro halibut «mouth eye1 eye2)

Now consider this macro call:

«fin1 length1) (fin2 length2»
ta i 1)

(halibut (m (car eyes) (cdr eyes»·
«f1 (count-scales f1» (f2 (count-scales f2»)
my-favorite-tail)

This would cause the expansion function to receive the following values for its parameters:

Parameter Value
mouth m
eye1 (car eyes)
eye2 (cdr eyes)
fin1 f1
length1 (count-scales f1)
fin2 f2
length2 (count-scales f2)
tail my-favorite-tail

The following macro call would be in error, because there would be no argument form to match the

parameter 1 ength 1:

(halibut (m (car eyes) (cdr eyes»
«ft) (f2 (count-scales f2»)
my-favorite-tail)

The following macro call would be in error, because a symbol appears in the call where the structure of the

lambda-list requires a list:

(halibut my-favorite-head
«f1 (count-scales .f1» (f2 (count-scales f2»)
my-favorite-tail)

-----.. ----.- ..

MACROS l15

The fact that the value of the variable my-favori te-head might happen to be a list is irrelevant here. It is
the macro call itself whose structure must match that of the de fmac r 0 lambda-list.

The use of lambda-list keywords adds even greater flexibility. For example. suppose that it is convenient
within the expansion function for ha 1 i bu t to be able to refer to the list whose components are called
mouth. eye 1. and eye2 as head. One may write this:

(defmacro halibut «&whole head mouth eye1 eye2)
«finl lengthl) (fin2 length2»
ta i 1)

Now consider the same valid macro calt as before:
(halibut (m (car eyes) (cdr eyes»

«fl (count-scales fl» (f2 (count-scales f2»)
my-favorite-tail)

This would cause the expansion function to receive the same values for its parameters, and also a value for the
parameter head:

Parameter
head

Value
(m (car eyes) (cdr eyes»

The stipulation. that an embedded lambda-list is permitted only where ordinary lambda-list syntax would
permit a parameter name but not a list, is made to prevent ambiguity. For example, one may not write

(defmacro loser (x &optional (a b &rest c) &rest z)
· ..)

because ordinary lambda-list syntax does permit a list fol1owing &opt i on a 1; the list (a b &res t c)
would be interpreted as describing an optional parameter named a. whose default value is that of the form b.
with a supplied-p parameter named &r est (not legal), and an extraneous symbol c in the list (also not legal).
An almost correct way to express this is

(defmacro loser (x &optional «a b &rest c» &rest z)
· ..)

The extra set of parentheses removes the ambiguity. However, the definition is now incorrect because a
macro call such as (loser (car pool» would not provide any argument form for the lambda-list (a b
&rest c). and so the default value against which to match the lambda-list would be nil, because no
explicit default value was specified. This is in error because nil is an empty list; it does not have forms to
satisfy the parameters a and b. The fully correct definition would be either

(defmacro loser (x &optional «a b &rest c) '(nil nil» &rest z)
· ..)

or
(defmacro loser (x &optional «&optional a b &rest c» &rest z)

· ..)
. These differ slightly in that the first requires that if the macro call specifics a explicitly then it must also
specify b explicitly, whereas the second does not require this. That is,

(loser (car pool) «+ xI»)

would be a valid caU for the second definition but not for the first

-..... -•..... ------ , ,----

116 (,OMMO~ I.lSP RFI''FRENC'E MANUAL

8.2. Expnnding Macro Calls

macroexpand form &rest env [Functioll]
tnacroexpand-l f01711 &rest env [Function]

If fonn is a macro cal1, then macroexpand-l will expand the macro call ollce and return two
values: the expansion and t. If [omz is not a macro caB, then the two values furm and nil are
returned.

A. fonn is considered to be a macro caB only if it is a cons whose car is a symbol that names a macro.
The environment ellv is similar to that used within the evaluator: see • e val (page 254). Any local
macro definitions established within en\' by macrol et (page 87) will be considered. Ifonly form
is given as an argument, then the environment is effectively null, and only global macro definitions
(as established by defmacro (page 112» will be considered.

Macro expansion is carried out as follows. Once macroexpand-l has determined that a symbol
names a macro, it obtains the expansion function for that macro. The value of the variable
*macroexpand-hook· (page 116) is then cal1ed as a function of two arguments: the expansion
function and the form. The value returned from this call is taken to be the expansion of the macro
call. The initial value of *macroexpand-hook· is funca1l (page 83), and the net effect is to
invoke the expansion function, giving it the fonn as its single argument. (The purpose of
*macroexpand-hook· is to facilitate variolls techniques for improving interpretation speed by
caching macro expansions.).

ma c roe x pan d is similar to ma c roe x pan d -1. but repeatedly expands /ol1n until it is no longer a
macro call. (In effect. macroexpand simply calls macroexpand-l repeatedly until the second
value returned is nil.) A. second value oft or ni 1 is returned as for macroexpand-l, indicating
whether the original fonn was a macro call.

macroexpand-hook [Variable]

The value of *macroexpand-hook* is used as the expansion interface hook by
macroexpand-l (page 116).

Chapter 9

Declarations

Declarations allow you to specify extra information about your program to the LISP system. All
declarations are completely optional and correct declarations do not affect the meaning of a correct program,
with one exception: spec i a 1 declarations do affect the interpretation of variable bindings and references,
and so must be specified where appropriate. All other declarations are of an advisory nature. and may be used
by the I.lSP system to aid you by performing extra error checking or producing more efficient compiled code.
Declarations are also a good way to add documentation to a program.

Note that it is considered an error for a program to violate a declaration (such as a type declaration), but
an implementation is not required to detect such errors (though such detection. where feasible, is to be
encou~aged).

9.1. Declaration Syntax

decl are {dec!aralion-fonn}* [Special form]

A dec 1 are fonn is known as a declaration. Declarations may occur only at the beginning of the
bodies of certain special fotms; that is. a declaration may occur only as a statement of such a special
form, and all statements preceding it (if any) must also be decl are forms (or possibly
documentation strings, in some cases). Declarations may occur in lainbda-expressions, and in the
following forms:

defmacro (page 112)
defsetf (page 78)
deftype (page 39)
defun (page 53)
do * (page 93)
do-all-symbols
do-externa1-symbo1s
do-symbol s (page 144)
do (page 93)
doli s t (page 97)

dotimes
flet
labels
let*
let
(page 144)
(page 144)
mu1tip1e-va1ue-bind
prog*
prog

If a declaration is found anywhere else an error will be signalled

(page 97)
(page 87)
(page 87)
(page 86)
(page 85)
locally
macrolet
(page 104)
(page 100)
(page 100)

It is permissible for a macro call to expand into a declaration and be recognized as such, provided

-117 -

1I8 COMMON I.ISP REFFRENCE MANUAL

that the macro cal1 appears where a declaration may legitimately appear. (However. a macro can

may not appear in place of a declaratioll-/onn.)

Each declaration-Jonn is a list whose car is a symbol specifying the kind of declaration it is.

Declarations may be divided into two classes: those that concern. the bindings of variables, and

those that do not. (The s p e cia 1 declaration is the sole exception: it effectively falls into both

classes. as explained below.) Those that concern variable bindings apply only to the bindings made

by the form at the head of whose body they appear. For example, in
(defun foo (x)

(declare (type float x» ...
(let «x tal) ...)
...)

the type declaration applies only to the outer binding of x. and not to the binding made in the 1 e t.
Compatihility notc: This is different from MACI .ISP, in which type declarations are pervac;ive.

Declarations that do not concern themselves with variable bindings are pervasive. affecting all code

in the body of the special form. As an example of a pervasive declaration,
(defun foo (x y) (declare (notinline floor» ...)

advises that everywhere within the body of f 00 the function f 100 r should not be open-coded, but

called as an ollt-of-Iine subroutine.

Some special forms contain pieces of code that. properly speaking, are not part of the body of the

special form. Examples of this are initialization forms that provide values for bound variables, and

the result forms of iteration constructs. In all cases such additional code is within the scope of any

pervasive declarations appearing before the body of the special form. Non-pervasive declarations

have no effect on such code, except (of course) in t;hose situations where the code is defined to be

within the scope of the variables affected by sllch non-pervasive declarations.

For example:
(defun few (x &optional (y *print-circle*»

{declare (special *print-circle*»
...)

The reference to * p r i n t - c i r c 1 e * in the first line of this example is special because of the

declaration in the second line.

For example:
{defun nonsense (k x z)

{declare (type integer k»
{let {(j (foo k x»

(x (* k k»)
(declare (inline fool (special x z»
(foo x j z»)

In this rather non~ensical example, k is declared to be of type integer. The inl ine declaration

applies to the inner call to foo, but not to the one to whose value J i; bound, because that is code in

the binding part of the 1 et. The spec i a 1 declaration of x causes C:~ 1 et form to make a special

binding for x, and causes the reference to x in the body of the 1 e t to be a special reference.

However, the reference to x in the first call to foo is·a local reference~ not a special one. The

s pee; a 1 declaration of z causes the reference to z in the call to f a a to be a special reference; it

DECI ARATIONS 119

will not refer to the parameter to nonsense named z. because that parameter binding has not

been declared to be s pee i a 1. (The s pee i a 1 declaration of z docs not appear in the body of the

defun. but in an inner constructs. and therefore doe~ not affect the binding of the parameter.)
('oll1palihilily nole: In MAc.:I.ISP. dec 1 are docs nothing in interpreted code. and is defined to simply evaluate
all the argument forms in the compilation environment. In COMMON l.ISP, decl are docs useful things for
both interpreted code and compiled code, and therefore arbitrary forms are not permitted within it. The tricks
played in MAc.:I.ISP with dec 1 are are better done using eva l-when (page 54),

1 oca 11 y {declaration}* {jiJnn}* [AI aero]

This special fonn may be used to make local pervasive declarations where desired. It docs not bind

any variables. and so cannot be used me~ningfully for declarations of variable bindings. (Note that

the s pee i a 1 declaration may be used with 10 call y to pervasively affect references to (rather

than bindings of) variables.)

For example:
{locally (declare (inline floor) (notinline car cdr»

(declare (optimize space»
(floor (car x) (cdr y»)

pro c 1 aim declaration-form [Function]

The function proc 1 aim takes a declaratioll-Jonn as its argument and puts it into effect globally.

(Such a global declaration is called a proclamatioll.) Any variable names mnetioned are assumed to

refer to the dynamic values of the variable. Fur example, the proclamation
(proclaim '(type float tolerance»

once executed, specifies that the dynamic ·value of to 1 e r an ce should always be a floating-point

number. Similarly, any function names mentioned are assumed to refer to the global function

definition.

I\. proclamation constitutes a universal declaration, always in force unless locally shadowed.

For example:
(proclaim '(inline floor»

advises that floor should normally be open-coded in-line by the compiler (but in the situation
(defun foo (x y) (declare (notinline floor» ...)

it will be compiled out-of-line anyway in the body of foo, because of the shadowing local

declaration to that effect}.

I\.s a special case (so to speak), pro c 1 aim treats asp e c. i a 1 declaration-fonn as applying to all

bindings as well as to all references of the mentioned variables. For example, after
(proclaim '(special x»

then in a function definition such as

(defun example (x) .•.)

the parameter x will be bound as a special (dynamic) variable rather than as a lexical (static)

variable. This facility should be used with caution. The usual way to define a globally special

variable is with defv ar (page 53) or defp ar ame te r (page 53).

~

120 COMMON l.ISP REFERENCE MANUAL

9.2. Declar .. tioll Forms

Here is a list of valid declaration fOims for use in decl are. A construct is said to be "affected" by a
declaration if it occurs within the scope of a declaration.

s p e cia 1 (s p e cia 1 varl var2 ...) declares that all of tI1e variables named are to be considered
special. This declaration affects variable bindings. but also pervasively affects references.
All variable bindings affected are made to be dynamic bindings. and affected variable
references refer to the current dynamic binding rather than the current local binding .

type

type

. For example:

(defun hack (thing "'mod·)
(declare (special "'mod"'»
(hack1 (car thing»)

(defun hack1 (arg)
(declare (spe~ial "'mod·»

(if (atom arg) ·mod'"

; The binding of the parameter
; "'mod'" is visible to hack 1.
; but not that of th i ng.

; Declare references to "'mod '"
; within hack 1 to be special.

(cons (hack1 (car arg» (hack1 (cdr arg»»)

Note that it is conventional. though not required, to give special variables names that begin
and end with an asterisk.

This declaration does 110t pervasively affect bindings unless it occurs at top level (this latter
exception arising from convenience and compatibility with MACI.lsP). Inner bindings of a
variable iInpIicitly shadow a spec i a 1 declaration. and must be explicitly re-declared to be
special.

For example:

(dec 1 are (s p e cia 1 x» ; x is always special.
(defun example (x y)

(declare (special y»
(let «y 3»

(print (+ y (locally (declare (special y» y»)
(let «y 4» (declare (special. y» (foo x»»

In the contorted code above, the outennost and innermost bindings of yare special, and
therefore dynamically scoped. but the middle binding is lexically scoped. The two
argulTIents to + are different, one being the value (which is 3) of the lexically bound
variable y. and the other being the value of the special variable named y (a binding of
which happens, coincidentally, to lexically surround it at an outer level).

As a nile, use of s p e c ; a 1 declarations at top level should be avoided. The de f va r
(page 53) and defparameter macros are the conventional means for declaring special
variables in a program.

(type type var(var2 ...) affects only variable bindings, and declares that the
specified variables will take on values only of the specified type. In panicular, values
assigned to the variables by set q (page 70), as well as the initial values of the variables,
must be of the specified type.

(type varl var2 •..) is an abbreviation for (type type varl var2 ...) provided

DEClARATIONS

ftype

function

inline

notinline

121

that type is one of the symbols appearing in Table 4-1 (page 34).

(f ty pe type junction-name-! fimction-name- 2 ...) declares that the named functions
will be of the functional type type.

For example:
(declare (ftype (function (integer list) t) nth)

(ftype (function (number) float) sin cos»

Note that rules of lexical scoping are observed: if one of the functions mentioned has a
lexically apparent local definition (as made by fl et (page 87) or 1 abel s (page 87»,
then the declaration applies to that local definition and not to the global function
definition.

(fun c t i on name arglist result-type! result-type2 ...) is entirely equivalent to

(ftype (funct ion arglist result-type! result-type2 ...) name)

but may be more convenient for some purposes.

For example:
(declare (function nth (integer list) t)

(function sin (number) float)
(function cos (number) float»

The syntax mildly resembles that of de fun (page 53): a function name, then an argument
list, then a specification of results.

Note that rules of lexical scoping are observed: if one of the functions mentioned has a
Icxical1y apparent local definition (as made by fl et (page 87) or 1 abe 1 s (page 87»,
then the dcclaration applies to that local dcfinition and not to thc global function
definition.

(in line jUnction! jUllction2 ...) dcclares that it is desirable for the compiler to
open-code calls to the specified functions: that is, the code for a specificd function should
be integratcd into the calling routine, appearing "in linc", rathcr than a proccdure call
appearing there .. This may achieve extra specd at the expcnse of dcbuggability (calls to
functions compilcd in-linc cannot be traced, for example). This dcclaration is pervasive.
Remember that a compiler is free to ignore this dcclaration.

Note that rules of l~xical scoping are observed; if one of the functions mentioned has a
lexically apparent local definition (as made by f 1 et (page 87) or 1 abe 1 s (page 87».
then the declaration applies to that local definition and not to the glob~l1 function
definition.

(not i n line junctionl junction2 ...) declares that it is undesirable to compile the
specified functions in-line. This declaration is pervasive. Remember that a compiler is free
to ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions mentioned has a
lexically apparent local definition (as made by fl et (page 87) or 1 abel s (page 87»,
then the declaration applies to that local definition and not to the global function
definition.

122

ignore

optimize

COMMON l.1SP REFERENCE MANUAL

(i gnore varl \'ar2 ... varll) affects only variable bindings. and declares that the
bindings of the specified variables are never used. It is desirable for a compi1er to issue a
warning jf a variable so declared is ever referred to or is also declared special. or if a
variable is lexical. never referred to. and not declared to be ignored.

(opt imi ze (qualityl ,'alue/) (quality2 value2) ...) a~vises the compiler that each
quality should be given attention according to the specified corresponding value. A quality
is a symbol: standard qualities include speed (of the object code), space (both code size
and run-time space). safety (run-time error checking). and compilation-speed
(speed of the compilation process). Other qualities may he recognized by particular
implementations. A value should he a non-negative integer. normally in the range 0 to 3.
The value 0 means that the quality is totany unimportant. and 3 that the quality is
extremely important: 1 and 2 are intermediate values. with 1 the "normal" or Husual"
value. One may abbreviate H (qualify 3)" to simply" qualify". This declaration is
pervasive.

For example:
(defun often-used-subroutine (x y)

(declare (optimize (safety 2»)
(error-check x y)
(hairy-setup x)
(locally

;; This inner loop really needs to burn.
(declare (optimize speed»
(do «i 0 (+ i 1»

(z x (cdr z»)
«null z»

(declare (fixnum i»»)
dec 1 ar at ion (dec 1 ar at i on namei name2 ...) advises the compiler that each namej is a valid but

non-standard declaration name. The purpose of this is to ten one compiler not to issue
warnings for declarations meant for another compiler or other program processor. This
declaration may appear only at the top level of a file.

For example:
(declare (declaration author target-language

target-machine»
(declare (target-language ada)

(target-machine IBM-650»
(declare (author "Harry Tweeker"»

An implementation is free to support other (implementation-dependent) declaration forms as well. On the
other hand, a COMMON I JSP compiler is free to ignore entire classes of declaration forms (for example.
implementation-dependent declaration forms not supported by that compiler's implementation!). except for
the de c 1 ar a t i on declaration form. Compi1er implementors are encouraged. however. to program the
compiler to issue by default a warning if the compiler finds a declaration form of a kind it never uses. Such a
warning is required in any case if a declaration fonn is not one of those defined above and has not been
declared in a dec 1 a rat ion declaration.

.. _---------_. __ ._._ .. _ ... _. _ ... _. -'" --_._----._ .. __ ._---_._----_ ... _---

DECI,ARATIONS 123

9.3. Type Declaration for Forms

Frequently it is useful to declare that the value produced by the evaluation of some form will be of a
particular type. Using decl are one can declare the type of the value held by a bound variable. but there is
no easy way to declare the type of the value of an unnamed form. For this purpose the the special form is
defined: (the type form) means that the value of form is declared to be of type type.

the value-type fonn [Special fonn]

The farm is evaluated; whatever it produces is returned by the the form. In addition. it is an error
if what is produced by the form docs not conform to the data type specified by value-type (which is
not evaluated). (A given implementation mayor may not actually check for this error.
Implementations are encouraged to make an explicit error check when running interpretively.) In
effect. this declares that the user undertakes to guarantee that the values of the fonn will always be
of the specified type.

For example:

(the string (concatenate x y»
(the integer (+ x 3» .
(+ (the integer x) 3)
(the (complex rational) (* z 3»
(the (unsigned-byte 8) (logand x

; The result will be a string.
; The result of + will be an integer.
; The value of x will be an integer.

mask»
The val u e s type specifier may be used to indicate the types of multiple values:

(the (values integer integer) (floor x y»
(the (values string t)

(gethash the-key the-string-table»
Compatihility notc: This construct is borrowed from the INTERLISP DEC!. package: INTf.RLlsP. however. allows
an implicit pro 9 n after the type specifier rather than just a single form. The MAcLlsp fix n um- ide n t i ty
and flonum-identity constructs can be expressed as (the fixnum x) and (the single-float x) .

. _ _-_._---_ .. _. __ ._--

124 COMMON I .lSi> REFERENCE MANUAL

•....• ' ·4

;'

. ,
'-

Chapter 10

Synlbols

A LISP symbol is a data object that has three user-visible components:

• The pruperly lisl is a list that effectively provides each symbol with many modifiable named
components.

• The print name must be a string. which is the sequence of characters used to identify the symbol.
Symbols are of great use because a symbol can be located given its name (typed, say. on a
keyboard). It is ordin~ri1y not pennitted to alter a symbol's print name.

• The package cell must refer to a package object. A package is a data structure used to locate a
symbol given its name. A symbol is uniquely identified by its name only when considered relative
to a package. A symbol may appear in many packages, but it can be owned by at most one
package. The package cell points to the owner, if any.

A symbol may actually have other components as wen for use by the implementation. One of the more
important uses of symbols is as names for program variables; it is frequently desirable for the implementor to
use certain components of a symbol to implement the semantics of varia~les. See symbol-va 1 ue (page
68) and symbol-funct ion (page 69). However. there are several possible implementation strategies, and
so such possible components are not described here.

10.1. The Property List

Since its inception. LISP has associated with each symbol a kind of tabular data structure called a property
lisl (plisl for short). A property list contains zero or more entries: each entry associates with a symbol (called
the indicator) a LISP object (called the value or, sometimes, the properly). There are no duplications among
the indicators: a property-list may only have one property at a time with a given name. In this way, given a
symbol and an indicator (another symbol). an assoc~ated value can be retrieved.

A property list is very similar in purpose to an association list The difference is that a property list is an
object with a unique identity; the operations for adding and removing property-list entries are destructive
operations that alter the property-list rather than making a n~w one. Association lists, on the other hand, are
nonnally augmented non-destructively (without side effects), by adding new entries to the front (sec ac on s
(page 219) and pa i r' is (page 219)} .

-125 -

------_ _-_ .. .

126 COMMON I.ISP REFEREi':CF MANUAL

1\ property list is implemented as a memory cell contaiping a list with an even number (possibly zero) of

c1ement~. (Usually this memory cel1 is the property-list cell of a symbol. but any melTlOry cell acceptable to

setf (page 72) can be used ifgetf (page 127) and remf (page 127) are used.) Each pair of elements in

the list constitutes an entry; the first item is the indicator and the second is the value. Because property-list

functions are given the symbol and not the list itself. modifications to the property list can be recorded by

storing back into the property-list cell of the symbol.

When a symbol is created. its property list is initially empty. Properties are created by using ge t (page

126) within a set f (page 72) form.

COMMON Lisp does not use a symbol's property list as extensively as earlier LIsp implementations did.

l.ess-used data. such as compiler, debugging. and documentation infonnation. is kept on property lists in

COMMON LISP.

Compatibility note: 1n older Lisp implementations. the print name. value. and function definition of a symbol were kept on
its property list. 'Ibe value cell was introduced into MACI .ISP and INTFI{ l.lsP to speed up access to variables: similarly for the
print-name cell and function cell (MACLISP docs nOl use a function cell). Recent LISP implementations such a"i SPICE LISP.
Lisp Machine I.ISP. and ~IL have introduced all of these cells plus the package cell, !':one of the :\'tACI..!SP system property

names (expr. fexpr. macro. array. subr. , subr. fsubr. and in former times value and pname) exist in COMMON

LISP.

Compatibility nole: In COMMON LISP. the nolion of "disembodied property list" introduced in :\'tAcI.JsP is eliminated. It
tcnded to be used for rather kludgy things. and in Lisp Machine LIsp is often a'isociated with the use of locatives (to make it
"off by onc" for searching alternating keyword lists). In CO~~ON LISP spccial setf-likc property list functions are
introduced: get f (page 127) and remf (page 127).

get symbol indicator &0 p t ; 0 n a 1 defoult [Function]

gel searches the property list of symbol for an indicator e q to indicator. The first argument must be

a symbol. If-one is found. then the corresponding value is returned; otherwise default is returned.

If default is not specified, then nil is used for default. Note that there is no way to distinguish an

absent property from one whose value is default.

(get x y) <=> (getf (symbol-plist x) y)

Suppose that the property list of f 0 0 is (b art b a z 3 hun (}z "H u h ?"). Then, for example:
(get 'foo 'baz) => 3
(get 'foo 'hunoz) => "Huh?"
(get 'foo 'zoo) => nil

Compatibility nole: In MhCLISP. the first argument 10 get could be a list. in which case the cdr of the
list was treated as a so-called "disembodied property list". It could also be any other object. in which
case get would always return n;'. In COMMON LISP. it is an error to give anything but a symbol to' as
the first argument to get.

set f (page 72) may be used with ge t to create a new property-value pair, possibly replacing an

old pair with the same property name.

For example:
(get 'clyde 'species) => nil
(set f . (get 'c 1 Y de's p e c i e s) , e 1 e p han t) => e 1 e p han t
andnow (get 'clyde 'species} => elephant

SYMBOl,S 127

remprop s),mbul indicatur [Fullctioll]
This removes from symbul the property with an indicator eq to illdicator. by splicing it out of the
property list. It returns nil if no such property was found. or non-n i 1 if a property was found.

(remprop x y) <=> (remf (symbol-plist x) y)

For example:

If the property list offoo was
(color blue height 6.3 near-to bar)

then
(remprop 'foo 'height) => t

and foo's property list would have been altered to be
(color blue near-to bar)

symbol-pl ist symbol [Functiull]
This returns the list that contains the property pairs of symbul; the contents of the property list cell
are extracted and returned.

Note that using ge t on the result of symb 0 1 - P 1 is t does nut work. One must give the symbol
itself to ge t. or use the function ge t f (page 127).

set f (page 72) may be used with symb 0 1 - P 1 is t to destructively replace the entire property list
of a symbol. This is a relatively dangerous operation, as it may destroy important information that
the implementation may happen to store in property lists. Also, care must be taken that the new
property list is in fact a list of even length.

get f place indicatur &0 p t ion a 1 default [Function]
get f searches the property list stored in place for an indicator e q to indicatur. I f one is found. then
the corresponding value is returned; otherwise default is returned. If default is not specified, then
nil is used for default. Note that there is no way to distinguish an absent property from one whose
value is default. Often place is computed from a generalized variable acceptable to set f (page

,.":,,, - .~

72). See get (page 126).

set f (page 72) may be used with get f, in which case the place must indeed be acceptable as a
place to set f. The effect is to add a new property-value pair, or update an existing pair, in the

property list kept in the place.

r emf place indicator [Alacro]

This removes from the property list stored in place the prOIWfL'i. with an indicator e Q. to indicator,
by splicing it out of the property list. It returns n i 1 if flO such property was found, or t if a
property was found. The fonn place may be any gencr:!li~t.;d .":. ';able acceptable to set f (page
72). See remp rop (page 127).

.:

128 COMMON l.ISP REFERENCE MANUAL

get-properties place indicator-list [i'imctioll]

get-prope r ties is like get f (page 127). except that the second argument is a list of indicators.

get-propert i es searches the property list stored .in place for any of the indicators in

indicator-list. until it finds the first property in the property list whose indicator is one of the

elemenl<i of indicator-list. Normally place is computed from a generalized variable acceptable to

setf (page 72).

get-propert i es returns three values. If any prc)perty was found. then the first two values are

the indicator and value for the first property whose indicator was in indicator-lisl. and the third is

that tail of the property list whose car was the indicator (and whose cadr is therefore the value). If

no property was found. all three values are nil. Thus the third vallie serves as a flag indicating

success of failure. and also allows the search to he restarted after the property found if desired.

10.2. The Print Name

Every symbol has an associated string caned the print name. This string is used as the external

representation of the symbol: if the characters in the string are typed in to re ad (with suitable escape

conventions for certain characters). it is interpreted as a reference to that symbol (if it is interned); and if the

symbol is printed. p r i n t types out the print name. For more information. see the section on the reader (see

section 22.1.1, page 266) and prilller(see section 22.1.6. page 283).

symbol-name sym [Fullction]
This returns the print name of the symbol sym.

For example:
(symbol-name 'XYZ) => "XYZ"

It is an extremely bad idea to modify a string being used as the print name of a symbol. Such a

modification may confuse the function re ad (page 291) and the package system tremendously.

samepnamep syml sym2 [Function]
This predicate is true if the two symbols syml and sym2 have equal print names; that is. if their

printed representation is the same. Upper and lower case letters arc considered to be different.

If either or both of the arguments is a string instead of a symbol. then that string is used in place of

the print name. samepnamep is useful for,-among other things, determining whether two symbols

would be the same except that they are not in the same package.

For example:

(samepnamep 'xyz (make-symbol "XYZ")} istrue
(samepnamep 'xyz (make-symbol "WXY"» ·is false

SYMBOlS 129

10.3. Crcnting Synlbols

Symbols can be used in two rather different ways. An intcrned symbol is one that is indexed by its print
name in a catalog called a package. Every time anyone asks for a symbol with that print name. he gets the
same (eq) symbol. Every time input is read with the function read (p(lge 291). and that print name appears,
it is read as the same symbol. This property of symbols makes them appropriate to use as names for things
and as hooks on which to hang permanent data objects (using the property list. for example; it is no accident
that symbols are both the only LISP objects that are cataloged and the only I.lsP objects that have property
lists).

Interned symbols are normally created automatically; the first time someone (such as the function read)
asks the package system for a symbol with a given print name. that symbol is automatically created. The
function to use to ask for an interned symbol is intern (page 142). or one of the functions related to
intern.

Although interned symbols are the most commonly used, they will not be discussed further here. For more
information. see chapter PACKAG (page PACKAG).

An unillterlled symbol is a symbol used simply as a data object. with no special cataloging (it belongs to no
particular package). An uninterned symbol is printed as h#: " followed by its print name. The following arc
some functions for creating uninterned symbols.

make-symbol print-name [Function]
(mak e - symbo 1 print-name) creates a new uninterned symbol, whose print name is the string
print-name. The value and function bindings will be unbound and the property list will be empty.

The string actually installed in the symbol's print-name component may be the given string
print-name or may be a copy of it. at the implementation's discretion. The user should not assume
that (symbol-name (make-symbol x» is eq to x, but also should not alter a string once it
has been given as an argument to make-symbol.

Implementation note: An implementation might choose, for example, to copy the string to some read-only
area, in the expectation that it will never be altered.

Compatibility note: Lisp Machine LISP uses the second argument for an odd flag related to areas. It is unclear
what Nil. docs about this.

copy-symbol sym &opt ional copy-props [Function]
This returns a new uninterned symbol with the same print name as sym. If copy-props is non-n i 1,
then the initial value and function-definition of the new symbol will be the same as those of sym,
and the property list of the new symbol will be a copy of sym's. If copy-props is nil (the default),
then the new symbol will be unbound and undefined, and its property list will be empty.

--------------- _.- -._--,-.-_. __ . __ ._,---_._.- -----------_ .. _ .. --_ .. _ _ ... _ ... - .

130 COM~ON LISP REFERENCE MANUAL

gensym &optional X [Function]
gensym invents a print name. and creates a new symbol with that print name. It returns the new,
uninterned symbol.

The invented print name consists of a prefix (which defaults to ."G"). followed by the decimal
representation ofa number. The number is increased by one every time gensym is called.

If the argument x is present and is an integer, then x must be non-negative, and the internal counter
is set to x for future use: otherwise the internal counter is incremented. If x is a string, then that
string is made the default prefix for this and future calls to gensym. After handling the argument,
gensym creates a symbol as it would with no argument.

For example:
(gensym) => G7
(gensym "FOO-") => FOO-8
(gensym 32) => FOO-32
(gensym) => FOO-33
(gensym "GARBAGE-It) => GARBAGE-34

gensym is usually used to create a symbol that should not normally be seen by the user, and whose
print name is unimportant. except to allow easy distinction by eye between two such symbols. The
optional argument is rarely supplied. The name comes from "generate symbol", and the symbols
produced by it are often called "gensyms".

If it is crucial that no two generated symbols have the same print name (rather than merely being
distinct dam stnlctures), or if it is desirable for the generated symbols to be interned, then the
function gentamp (page 130) may be more appropriate to use.

gentemp &opt i ona 1 prefix package [Function]
gentemp. like gensym (page 130), creates and returns a new symbol. gentemp differs from
gensym in that it interns the symbol (see intern (page 142» in the package (which d~faults to
the current package; see *package* (page 140». gentemp guarantees the symbol will be a new
one not already existing in the package: it does this by using a counter as gensym docs, but if the
generated symbol is not really new then the process is repeated until a new one is created. There is
no provision for resetting the gentemp counter. Also, the prefix for gentemp is not remembered
from one call to the next: if prefix is omitted, the default prefix "T" is used.

symbol -package sym [Function]
Given a symbol sym. symbol-package returns the contents of the package cell of that symbol.
This will be a package object or n ; 1 .

keywordp symbol [Fullction]
The argument must be a symbol. The predicate keywordp is true if the symbol is a keyword (that
is, belongs to the keyword package). Keywords are those symbols that are written with a leading
colon. Every keyword is a constant, in the sense that it always evaluates to itself. See con s tan t p
(page 255).

Chapter 11

Packages

11.1. Overview

One problem with earlier I.ISP systems is the use of a single name space for all symbols. In large LISP

systems. with modules written by many different programmers. accidental name collisions become a serious
problem. COMMON LISP addresses this problem through the package system. derived from an earlier package
system developed for Lisp Machine LISP [19]. In addition to preventing name-space conflicts. the package
system makes the modular structure of large I .ISP systems more explicit

A package is a data structure that establishes a mapping from print names (strings) to symbols. The package
thus replaces the "oblisf' or "obarray" machinery of earlier LISP systems. At any given time one package is
current, and this package is used by the LISP reader in translating strings into symbols. The current package
is, by definition. the one that is the value of the global variable *p ackage"'. It is possible to refer to symbols
in packages other than the current one through the use of'package qualifiers in the printed representation of
the symbol. For example "foo: bar", when seen by the reader, refers to the symbol whose name is bar in
the package whose name is f 00.

The string-to-symbol mappings available in a given package are divided into two classes, external and
internal. We refer to the symbols accessible via these mappings as being external and internal symbols of the
package in question, though really it is the mappings that are different and not the symbols themselves.
Within a given package, a name refers to one symbol or to none; if it does refer to a symbol. then it is either
external or internal in that package. but not both.

External symbols are part of the package's public interface to other packages. These are supposed to be
chosen with some care and are advertised to users of the package. Internal symbols are for internal use only.
and these ~ymbols are normally hidden from other packages. Most symbols are created as internal symbols;
they become external only if they appear explicitly in an export ~ommand for the package.

A symbol may appear in many packages. It will always have the same name wherever it appears, but it may
be external in some packages and internal in others. On the other hand, the same name (string) may refer to
different symbols in different packages.

Nonnally, a symbol that appears in one or more pac~ages will be owned by one particular package, called

-131-

132 COMMON I.ISP REFERENCE MANUAl.

the home pa('kage of the symbol: that package is said to OWI1 the symbol. Every symbol has a component
called the package cell that contains a pointer to its home package. 1\ symbol that is owned by some package
is said to be interned. Some symbols are not owned by any package; such a symbol is said to be ullinterlled,
irlnd its package cell contains n; 1.

Packages may be built up in layers. From the point of view of a package's user. the package is a single
collection of mappings from strings into internal and external symbols. However. some of these mappings
may be established within the package itself. while other mappings arc inherited from other packages via the
use-package construct. (The mechanisms responsible for this inheritance are described below.) In what
follows, we will refer to a symbol as being accessible in a package if it can be referred to without a package
qualifier when that package is current. regardless of whether the mapping occurs within that package or via
inheritance. We will refer to a symbol as being present in a package if the mapping is in the package itself and
is not inherited from somewhere else.

1\ symbol is said to be interned in a package if it is available in that package and also is interned (that is.
owned. either by the same package or by some other package). Normal1y all the symbols available in a
package are in fact interned, but the terminology is useful when discussing the pathological case of an
available but uninterned symbol. I\s a verb. to intern a symbol in a package means to cause the symbol to be
interned in the package if it was not already; this process is performed by the function; n te rn (page 142).
To Ullin/ern a symbol from the package means to cause it to be not present, and additional1y to make the
symbol uninterned if the package was the symbol's home package; thi~ process is performed by the function
un i n tern (page 142).

11.2. Consistency Rules

Package-related bugs can be very subtle and confusing: things arc not what they appear to be. The
COM~Oi\ LISP package system is designed with a number of safety features to prevent most of the common
bugs that would otherwise occur in normal use. This may seem over-pr<?tcctive. but experience with earlier
package systems has shown that such safety features are needed.

In dealing with the package system, it is useful to keep in mind the following consistency rules, which
remain in force as long as the value of *.package* is not changed by the user or his code:

• Read-Read consistency: Reading the same print name always gets you the same (eq) symbol.

• Prilll- Read consistency: I\n interned symbol always prints as a sequence of characters that, when
read back in, yields the same (eq) symbol.

• Pn"nt-Print consistency: If two interned symbols are not eq, then their printed representations will
different sequences of characters.

These consistency rules remain true in spite of any amount of implicit interning caused by typing in LIsp
forms, loading files. etc. This has the important implication that, as long as the current package is not
changed, results are reproducible regardless of the order of loading files or the exact history of what symbols

--------_._._ .. __ •.. _---_ ... _ .. _--- -'._.'---

PACKAGES 133

were typed in when. The rules can only be violated by explicit action: changing the value of *package*,

forcing some action by continuing from an error, or calling one of the "dangerous" functions un intern
(page 142). shadow (page 143). or shadowing-import (page 143).

11.3. Package Nantes

r.:ach package has a name (a string) and perhaps some nicknames. These are assigned when the package is
created. though they can be changed later. A package's name should be something long and self-explanatory
like ed i tor; there might be a nickname that is shorter and easier to type, such as ed.

There is a single name space for packages. The function find-package (page 141) translates a package

name or nickname into the associated package. The function package-name (page 141) returns the name
of a package. The function package-n i cknames (page 141) returns a list of all nicknames for a package.
The function rename-package (page 141) removes a package's current name and nicknames and replaces
them with new ones specified by the user. Package renaming is occasionally useful when. for development
purposes. it is desirable to load two versions of a package into the same LISP. One can load the first version.
rename it, and then load the other version, without getting a lot of name conflicts.

When the I.lSP reader sees a qualified symbol, it handles the package-name part in the same way as the.
symbol part with respect to capitalization. Alphabetic characters in the package name are converted to upper
case unless preceded by the escape character .. \,. or unless the package name is surrounded by"'" characters.
The lookup done by the fi nd-package function is case-sensitive, like that done for symbols. Note that
.. , Faa,: ,Bar I" refers to a symbol whose name is "Bar" in a package whose name is "Foo". By contrast,
, F a a : Bar, refers to a seven-character symbol that has a colon in its name (as well as two upper-case letters
and four lower-case letters) and is interned in the current package. Following the convention used in this
manual for symbols, we will show ordinary package names as being in lower-case, even though the name
string is internally represented in upper case.

Most of the functions that require a package-name argument from the user accept either a symbol or a
string. If the user supplies a symbol. its print-name will be used. and this will already have undergone
case-conversion by the usual rules; if the user supplies a string, he must be careful to capitalize the string so as
to match exactly the string that names the package.

11.4. Translating Strings to Symbols

The value of the special variable *package* must always be a package object (not a name). This is
referred to as the curr~nl package.

When the LISP reader has, by parsing, obtained a string of charULL~l:;.tlWi.;<.:;;t~to name a symbol, that name

is looked up in the current package. This lookup may involve looking Ii: ·other packages whose external
symbols are inherited by the current package (see below). If the name is foulId, the corre~ponding symbol is
returned. If the name is not found (that is, there is no symbol of that name available in the current package),

..... _._--_ _--_ ... _- _ -._----_ ... _-. ----

134 COMMON LISP REFERENCE MANUAL

a new symbol is created for it and is placed in the current package as an internal symbol: moreover, the

current package becomes the owner (home package) of the symbol, and so the symbol becomes interned in

the current package. I f the name is later read again while this same package is current, the same symbol will

\.hen be found and returned. '

Often it is desirable to refer to an external symbol in some package other than 'the current one. This is done

through the use of a qualified l1ame. consisting of a package name. then a colon. then the name of the symbol.

This causes the symbol's name to be looked up in the specified package. rather than in the current one. For

example. "editor: buffer" refers to the external symbol named "buffer" available in the package

named 'Oed i tor", regardless of whether there is a symbol named "buffer" in the current package. If there

is no package named "editor". or if no symbol named "buffer" is available in "editor", or if

"buffer" is an internal symbol in "editor", the LISP reader will signal a correctable error to ask the user

what he really wants to do.

On rare occasions. a user may need to refer to an in te rn a 1 symbol of some package other than the

current one. It is illegal to do this with the colon qualifier, since accessing an internal symbol of some other

package is llsually a misL1ke. However, this operation is legal if you use "# : " as the separator in place of the

usual colon. If "editor#:buffer" is seen, the effect is exactly the same as reading "buffer" with

package temporarily rebound to the package whose name is "ed i tor". This special-purpose qualifier

should be used with caution.

The package named keyword contains all keyword symbols used by the LISP system itself and by user

written code. Such symbols must be easily accessible from any package, and name conflicts are not an issue

because these symbols are used only as labels and never to carry package-specific values or properties.

Because keyword symbols are used so frequently, COMMON LISP provides a special reader syntax for them.

Any symbol preceded by a colon but no package name (for example": foo") is added to (or looked up in)

the keyword package as an external symbol. The keyword package is also treated specially in that

whenever a symbol is added to the keyword package, the symbol always made external, and it is also

automatically declared to be a constant (see defconstant (page 53» and made to have itself as its value.

This is why every keyword evaluates to itself. As a matter of style, keywords should always be accessed using

the leading-colon convention; you should never import or inherit keywords into any other package. It is an

error to try to apply use-package to the keyword package.

,
Each symbol contains a package cell that is used to record the home package of the symbol, or nil if the

symbol is uninterned. This cell may be accessed by using the functio.n symbol-package (page 130).
When an inter.ned symbol is printed, if it is a symbol in the keyword package then it is printed with a

preceding colon; otherwise, if it is available (directly or by inheritanc.c) in the current pad"age, it is printed

without any qualification; otherwise. it is printed with the name of the home package as the qualifier, using

" : " as the separator if the symbol is external and "#: " if not

A symbol whose package slot contains nil (that is, has no horrie package) is printed preceded by "#: ft. It

is possible, by the use of import (page 143) and unintern (page 142), to create a symbol that has no

recorded home package, but that in fact is available in some package. The system does not check for this

PACKAGES 135

pathological case. and such symbols will always be printed preceded by "/1: ".

In summary. the following four uses of symbol qualifier syntax arc. defined:

foo:bar

foo#:bar

:bar

#:bar

When read. looks up "BAR" among the external symbols of the package named "Faa".
Printed when symbol bar is external in its 11(~me package foo and is not available in the
current package.

When read. interns "BAR" as if "Faa" were the current package. Printed when symbol
bar is internal in its home package foo and is not available in the current package.

When read. interns "BAR" as an external symbol in the keyword package, and make it
evaluate to itself. Printed when the home package of symbol bar is keyword.

When read, creates a new uninterned symbol named "BAR". Printed when the symbol
bar is uninterned (has no home package), even in the pathological case that bar is
uninterned but nevertheless somehow available in the current package.

;\11 other uses of colons within names of symbols arc not defined by COM~ON I.lSP, but are reserved for
implementation-dependent use; this includes names that end in a colon. contain two or more colons, or
consist of just a .colon .

. 11.5. Exporting and Importing Symbols

Symbols from one package may be made available in another package in two ways.

First, any individual symbol may be added to a package by use of the function import (page 143). The
fonn (import 'editor:buffer) takes the external symbol named buffer in the editor package
(this symbol was located when the form was read by the LISP reader) and adds it to the current package as an
internal symbol. The symbol is then present in the current P?ckage. The imported symbol is not
automatically exported from the current package, but if it is already present and external, that is not changed.
After the call to import it is possible to refer to buffer in the importing package without any qualifier.
The status of b u f fer in the package named e d ito r is unchanged. and e d ito r remains the home package
for this symbol. Once imp?rted, a symbol is present in the ·importing package and can be removed only by
calling un intern.

If the symbol is already present in the importing package, i mpo r t has no effect If a distinct symbol with
the name buff er is available in the importing package (directly or by inheritance) then a correctable error is
signalled, as described in section 11.6.

If the user really wants to do a shadowing import without getting an error, he should use the function
sh adowi n9- ; mpo rt (page 143). This inserts the symbol into the specified package as an internal symbol,
regardless of whether another symbol of the same name will be shadowed by this action. (A symbol is said to
be shadowed by another one in some package if the first symbol would have be available by inheritance if not

136 COM MON LISP REFER ENCE MANUAL

for the presence of the second symbol.) If a different symbol of the same nam~ is already present in the

package. that symbol will first be uninterned from the package (see un; n te r n (page 142». The new symbol

is added to the package's shadowing-symbols list. shadowing-import should be used with caution. It

thanges the state of the package system in such a way that the consistency niles do not hold across the change.

The second mechanism is provided by the function use-package (page 144). This causes a package to

inherit all of the external symbols of some other package. These symbols become available as internal
symbols of the using package. That is, they can be referred to without a qualifier while this package is

current. but they are not passed along to any other package that lIses this package. Note that use-package,

unlike i mpo r t, does not cause any new symbols to be present in the current package. but only makes them

available by inheritance. use-package checks carefully for name conflicts between the newly imported

symbols and those already available in the importing package. This is described in detail in section 11.6.

Typical1y a user, working by default in the us e r package, will load a number of packages into his LISP to

provide an augmented working en~ironment; then he will can use- package on each of these packages so

that he can easily access their external symbols.

unuse-package undoes the effects of a previous use-package. The external symbols of the used

package are no longer inherited. However, any symbols that have been imported into the using package

continue to be present in that package.

There is no way to inherit the i1l1ernal symbols of another package; to refer to an internal symbol, you must

either make that symbol's home package current, use a qualifier, or import that symbol into the current
l

package.

When in te r n or some other function wants to look up a symbol in a given package, it first looks for the

symbol among the external and internal symbols of the package itself; then it looks through the external

symbols of the used packages in some unspecified order. The order does not matter; according to the rules

for handling name conflicts (see below), if conflicting symbols appear in two or more packages inherited by

package X, a symbol of this name must also appear in X itself as a ~hadowing symbol. Of course,

implementations are free to choose other, more efficient ways of implementing this search, as long as the

user-visible behavior is equivalent to what is described here.

The function ex po rt (page 143) takes a symbol that is available in some specified package (directly or by

inheritance) and makes it an external symbol of that package. If the symbol is already available as an external

symbol in the package. e x po r t has no effect. If the symbol is directly present in the package as an internal

symbol, it is simply changed to external status. Ifit is available as an internal symbol via use-package, the

symbol is first imported into the package, then exported. (The symbol is then ~A·l~i'-.it in the specified package

whether or not the package continues to use package through which the svmbol wa~ I)riginally inherited.) If
the symbol is not available at all in the specified package, a correctable ~rror is signalled that, upon

continuing, asks the user whether the symbol should be imported ..

The function unexport (page 143) is provided mainly as a way to undo erroneous calls to export. It

· _----_ _-_._------- •. _-----_._---------_._.-----_. __ ._--... __ __ .-_. __ .. ------------------_._-----_._---._--.----_._---_ .. _._-_ .. _--------._-------_.-_._-

PACKAGES 137

works only on symbols that arc directly present in the current pack'lge. switching them hack to internal status.
If un export is given a symbol that is already available as an internal symhol in the current package, it docs
nothing; if it is given a symbol that is not available in the packa.ge at an. it signals an error.

11.6. Name Connicts

A fundamental invariant of the package system is that within one package any particular name can refer to
at most one symbol. A name conflict is said to occur when there is more than one candidate symbol and it is
not obvious which one to choose. If the system docs not always choose the same way. the read-read
consistency nile would be violated. For example. some programs or data might have been read in under a
certain mapping of the name to a symbol. If the mapping changes to a different symhol. and suhsequently
additional programs or data arc read. then the two programs will not access the same symbol even though
they use the same name. Even if the system did always choose the same way. a name conflict is likely to result
in a mapping from names to symbols different from what was expected by the user. causing programs to
execute incorrectly. Therefore. any time a name conflict is ahout to occur. an error is signalled. The user may
continue from the error and tell the package system how to resolve the conflict.

Note that if the same symbol is accessible to a package through more than one path. for instance as an
external of more than one package, or both through inheritance and through direct presence in the package,
there is no name conflict. Name conflicts occur only between distinct symbols with the same name.

The creator of a package can tell the system in advance how to resolve a name conflict through the use of
shadowing, Every package .has a list of shadowing symbols. A shadowing symbol takes precedence over any
other symbol of the same name that would otherwise be accessible to the package. A name conflict involving
a shadowing symbol is always resolved in favor of the shadowing symbol, without signalling an error (except
for one exception involving i mpo r t described below). The functions shadow (p~ge 143) and
shadowi ng-import (page 143) may be used to declare shadowing symbols.

Name conflicts are detected when they become possible, that is, when the package structure is altered.
There is no need to check for name conflicts during every name lookup.

The functions use-package, import. and export check for name conflicts. use-package (page
144) makes the external symbols of the package being used accessible to the using package; each of these
symbols is checked for name conflicts with the symbols already accessible. import (page 143) adds a single
symbol to the internals of a package. checking for a name conflict with an existing symbol either present in
the package or accessible to it. impo rt signals a name conflict error even if the conflict is with a shadowing
symbol, the rationale 'being that the user has given two explicit and inconsistent directives. export (page
143) makes a single symbol accessible to all the packages that use the package from which the symbol is
exported. All of these packages are checked for name conflicts: (export s p) docs (f i nd- symbo 1
(symbol -name s) q) for each package q in (package-~sed-by-1; st pl. Note that in the usual case
of an ex p 0 r t during the initial definition of a package, the result of pac k age - use d - by - 1 is t will be ni 1
and the name conflict checking will take negligible time.

. ._ _ .. - .-.... _-----_._._-_ .. _ ... _._- --_._-._--_._-_ ..

138 COM:\·10N-I.lSP REFERENCE MANUAL

The function in te rn (page 142). which is the one used most frequently by the I.ISP reader for looking lip

names of symbols. does not need to do any name-conflict checking, because it never creates a new symbol if

there is already an accessible symbol with the name given .

. ~
shadow and shadowing-import never signal a name-conflict error. because by calling these functions

the user has specified how any possible conflict is to be resolved. shadow does name-conflict checking to the

extent that it checks whether a distinct existing symbol with the specified name is accessible. and if so whether

it is directly present in the package or inherited: in the latter case a new symbol is created to shadow it.

shadowi n9- import does name-conflict checking to the extent that it checks whether a distinct existing

symbol with the same name is accessible: ifso it is shadowed by the new symbol. which implies that it must be

uninterned if it was directly present in the package.

unuse-package. unexport, and unintern (when the symbol being uninterned is not a shadowing

symbol) do not need to do any name-conflict checking, because they only remove symbols from a package:

they do not make any new symbols accessible.

Giving a shadowing symbol to un in te r n can uncover a name conflict that had previously been resolved

by the shadowing. If package A uses packages Band C, A contains a shadowing symbol x, and Band C each

contain external symbols named x, then removing the shadowing symbol x from A will reveal a name conflict

between b: x and c: x if those two symbols are distinct. In this case un intern will signal an error.

Aborting from a name-conflict error leaves the original symbol accessible. Package functions alway3 signal

name-conflict errors before making any change to the package structure. When multiple changes are to be

made, however. for example when export is given a list of symbols. it is pennissible for the implementation

to process each change separately, so that aborting from a name conflict caused by the second symbol in the

list will not unexport the first symbol in the list. However, aborting from a name conflict error caused by

export of a single symbol will not leave that symbol accessible to some packages and inaccessible to others;

with respect to each symbol processed, export behaves as ifit were as an atomic operation.

Continuing from a name-conflict error should offer the user a chance to resolve the name conflict in favor

of either of the candidates. The package structure should be altered to reflect the resolution of the name

conflict, via s hadowi ng - import, un intern, or unexport ..

A name conflict in use-package between a symbol directly present in the using package and an extern~l
symbol of the used package may be resolved in favor of the first symbol by making it a shadowing symbol, or

in favor of the second symbol by uninterning the first symbol from the using package. The latter resolution is

dangerolls if the symbol to be uninterneri is an external symbol of the using package since it will cease to be

an external symbol.

A name conflict in use-package between two external symbols inherited by the using package from

other packages inay be resolved in favor of either symbol by importing it into the using package and making it
a shadowing symbol.

--------------_ .. _----

PACKAGES 139

A name conflict in export between the symbol being exported and a symbol already present in a package
that would inherit the newly-exported symbol may be resolved in favor of the exported symbol by
unintcrning the other one, or in favor of the already-present symbol by making it a shadowing symbol.

A name conflict in export or unintern due to a package inheriting two distinct symbols with the same
namc from two other packages may be resolved in favor of either symbol by importing it into the using
package and making it a shadowing symbol. just as with use-package.

A name conflict in import between the symbol being imported and a symbol inherited from some other
package may be resolved in favor of the symbol being imported by making it a shadowing symbol. or in favor
of the symbol already accessible by not doing the import. A name conflict in import with a symbol
already present in the package may be resolved by uninterning that symbol, or by not doing the i mpo r t.

Good ~ser-interface style dictates that use-package and export, which can cause many name conflicts
simultaneously. first check for all of the name conflicts before presenting any of them to the user. The user
may then choose to resolve all of them wholesale, or to resolve each of them individually, the latter requiring
a lot of interaction but permitting different conflicts to be resolved different ways.

Implementations may offer other ways of resolving name conflicts. For instance. if the symbols that conflict
are not being used as obj~cts, but only as names for functions, it may be possible to "merge" the two symbols
by putting the function definition onto both symbols. References to either symbol for purposes of calling a
function woltld be equivalent. A similar merging operation can be done for variable values and for things
stored on the property list. In Lisp Machine LISP. for example, one can also fonvard the value, function, and
propcrty cells so that future changes to either symbol will propagate to the other one. Some other
implementations are able to do this with value cells, but not with property lists. Only the user can know
whether this way of resolving a name conflict is adequate. because it will work only if the use of two non-eq
symbols with the same name will not prevent the correct operation of his program. The value of offering
symbol-merging as a way of resolving name conflicts is that it can avoid ille need to throwaway the whole
LISP world, correct the package-definition forms that caused the error, and start over from scratch.

11. 7. Built-in Packages

At least the following packages are built into every COMMON LISP system:

lisp

user

keyword

The package named , i s p contains the primitives of the COMMON LISP system. Its
external symbols include all of the user-visible functions and global variables that are
present in the COMMON LISP system, such as car, cdr. * p ac k age *, etc. Almost all other
pac~ages will want to use 1 i s P so that these symbols will be available without
qualification.

The user package is, by defaul~ the current packag~ at fb:.' time a COMMON LISP system
stans up. This package uses the 1 i s p package.

This package contains all of the keywords used by built-In 'JI' user-defined LISP functions.

.. _._- ... __ ._._--------

140 COMMON J.lSP REFERENCE MANUAL

'Printed symbol representations that start with a colon are interpreted as referring to
symbols in this package. which are always e·xternal symbols. Al1 symbols in this package
are treated as constants that evaluate to themselves. so that the user can type : f 00 instead
of' : foo.

system This package name is reserved to the implementation. NOf!I1alty this is used to contain
names of implementation-dependent system-interface functions. This package uses 1 i sp
and has the nickname sys.

11.8. Package Systeln Functions and Variables

Some of the functions and variables below have been described earlier. but arc included here for
completeness.

It is up to each implementation"s compiler to ensure that ~hen a compiled file is loaded, alt of the symbols
in the file end up in the same packages that they would occupy if the LIsP source file were loaded. In most
compilers. this will be accomplished by treating certain package operations as though they are surrounded by
(eval-when (compile load) ...). (See eval-when (page 54).) These operations are
make-package. in-package. shadow. shadowing-import. export. unexport. use-package,
unuse-package. and import. To guarantee proper compilation in all COM;"10~ LISP implementations.
these functions should appear only at top-level within a file. As a matter of style. it is suggested that each file
contain only one package. and that all of the package setup forms appear near the start of the file.

Implementalion note: In the past. some LISP compilers have read the entire file into LISP before processing any of the forms.
Other compilers have arranged for the loader to do all of iLo;; intern operations before evaluating any of the top-level forms.
Neither of these techniques will work in a straightforward way in COMMON LISP because of the presence of multiple
packages.

For the functions described here, all optional arguments named package default to the current value of
package. Where a function takes an argument that is either a symbol or a list of symbols. an argument of
nil is treated as an empty list of symbols. Any argument described as a package name may be either a string
or a symbol. If a symbol is supplied, its print-name will be used as the package name; if a string is supplied,
the user must be take care to specify the same capitalization used in the package name. normally all-capitals.

package [Variable]

The value of this variable must be a package; this package is said to be the current package. The
initial value of *package* is the user package.

The function load (page 327) re!,inds *package* to its curren~ value. If some form in the file
changes the value of *package* during loading, the old value will be restored when the loading is
completed.

f .,
t

--- -- -------.------ ---- ---------------------_._----------------------------

PACKAGES 141

make-package package-name &key nicknames use [Function]
Creates and returns a new package with the specified package name. I\s described above, this
argument may be either a string or a symbol. The: nicknames argument must be a list of strings
to be used as alternative names for the package. Once again. the lIser may supply symbols in place
of the strings, in which case the print-names of the symbols are used. These names and nicknames
must not conflict with any existing package names; if they do, a correctable error is signalled.

The : use argument is a list of packages or the names (strings or symbols) of packages whose
external symbols are to be inherited by the new package. These packages must already exist. If not
supplied. : use defaults to a list of one package. the 1 i s p package.

in-package package-name &key nicknames use [Fullction]
The in-package function is intended to be placed at the start ofa file containing a subsystem that
is to be loaded into some package other than user. If there is not already a package named
package-name. this function ·is similar to make-package. except that after the new package is
created, *package* is set to it. This binding will remain in force until changed by the user
(perhaps with another in-package call), or until the *package* variable reverts to its old value
at the completion ofa load operation.

If there is an existing package whose name is package-name, the assumption is that the user is
re-Ioading a file after making some changes. 'Inc existing package is augmented to reflect any new
nicknames or new packages in the : use list (with the. usual error-checking) and *package* is
then set to this package.

find-package name [Function]
The name must be a string that is the name or nickname for a package. This argument may also be
a symbol, in which case the symbol's print name is used. The package with that name or nickname
is returned; if no such package exists, fin d - pac k age returns nil. The matching of names
observes case (as in s t r; ng = (page 238».

package-name package [Function]
The argument must be a package. This function r<;turns the string that names that package.

package-nicknames package [Function]
The argument must be a package. This function returns the list of nickname strings for that
package, not including the primary name.

rename-package package new-name &optional new-nicknames [Function]
The old name and all of the old nicknames of package are eliminated and are replaced by new-name
and new-;zicknames. The new-name argument is a string or symbol; the new-nicknames argument,
which defaults to nil, is a list of strings or symbols.

----------_ _._._----_._-

t

142 COMMON LISP REFERENCE MANUAL

package-use-l i st package [Function)
A list of other packages used by the argument package is returned.

package-used-by-l i st package [Function]
A list of other packages that use the argument package is returned.

package-shadow·ing-symbol s package [Function]
A list is returned of symbols that have been declared as shadowing symbols in this package by

shadow or shadowi ng- import. All symbols on this list are present in the specified package.

list-all-packages [Function]
This function returns a list of all packages that currently exist in the LISP system.

intern sIring &optional package [Function]
The package, which defaults to the current package. is searched for a symbol with the name

specified by the s t r i n 9 argument. TIlis search will include inherited symbols, as described in
section 1l.5. If a symbol with the specified name is found, it is returned. If no such symbol is

found. one is created and is installed in the current package as an internal symbol (as an external

symbol if the package is the keyword package); the current package becomes the home package of

the created symbol.

Two values 3rc returned. The first is the symbol that was found or created. The second value is

nil if no pre-existing symbol was found. and takes on one of three values if a symbol was found:

: in te rna 1 if the symbol was directly present in the package as an internal symbol. : ext ern a 1

if the symbol was directly 'present as an external symbol, or : i nher; ted if the symbol was

inherited via use-package (which implies that the symbol is internal).
Compatibility note: Conceptually, in t ern translates a string to a symbol. In MACLISP and several other
dialects of LISP, ; ntern can take either a string or a symbc>l!: ::"'~:!Tgument: in the latter case, the symbol's
print name is extracted and used as the string. I lowever, this leads to some confusing issues about what to do if
; ntern finds a symbol that is not eq to the argument symbol. To avoid such confusion, COMMON LISP require
the argument to be a string.

fin d - s ymb 0 1 string &0 p t ; 0 n a 1 package [Function)
This is identical to in te rn, but it never creates a new symbol. If a symbol with the specified name

is found in the current package. directly or by inheritance, the symbol found is returned as the first

value and the second value is as specified for intern. If the symbol is not available in the

specified package, both values are n; , .

unintern symbol &opt";onal package .:. ... :." [Function]
If the specified symbol is present in the specified p~-< .:.:'" -:t ~,. i'~'~:L\'I" ~;~ from this package, and also

from the package's shadowing-symbols list if it is pr{;~\!nt t1ll::"{~- Moreover, if package is the home

package for the symbol, the symbol is made to have no h;,:ne package. Note that in some

circumstances the symbol may continue to be available in the specified package by inheritance.

PACKAGES 143

un in te r n returns t if it actually removed a symbol. and nil otherwise.

unintern should be used with caution. It changes the state of the package system in such a way

that the consistency niles do not hold across the change.
Compalibility note: The equivalenl oflhis in MACLtSP is remob.

export symbols &optional package [Function]
The symbols argument should be a list of symbols, or possibly a single symbol. These symbols

become available as external symbols in package. See section 11.5 for details. expo r t returns t.

By convention. a can to export listing all exported symbols is placed near the start of a file to

advertise which of the symbols mentioned the file are intended to be used by other programs.

unexport symbols &optional package [Function]
rille argument should be a list of symbols. or possibly a single symbol. These symbols become

internal symbols in package. It is an error to unexport a symbol from the keyword package. See

section 11.5 for details. unexport returns t.

import symbols &optional package [Fullction]
The argument should be a list of symbols, or possibly a single symbol. These symbols become

internal symbols in package, and can therefore be referred to without having to usc qualified-name

(colon) syntax. impor t signals a correctable error if any of the imported symbols has the same

name as ;)Umc distinct symbol already available in the package. See section 11.5 for details.

import returns t.

shadowi ng- import symbols &opt i ona 1 package [Function]
This is like import, but it does not signal an error even if the importation of a symbol would shadow

some symbol already available in the package. In addition to being imported, the symbol is placed

on the shadowing-symbols list of package. See section 11.6 for details. shadowi ng-import

returns t.

shadowing-import should be used with caution. It changes the state of the package system in

such a way that the consistency rules do not hold across the change.

shadow symbols &optional package [Function]
The argument should be a list of symbols, or possibly a single symbol. The print-name of each

symbol is extracted, and the current package is searched for a symbol of that name. If such a

symbol is present in this package (directly, not by inheritance) then nothing is done. Otherwise, a

new symbol is created with this print name, and it is inserted in the current package as an internal

symbol. The symbol is also placed on the shadowing-symbols list of package. See section 11.6 for

details. shadow returns t.

shadow should be used with caution. It changes the state of the package system in such a way that

the consistency rules do not hold across the ch?nge.

144 COMMON LISP REFERENCE MANUAL

use-package packages-to-use &opt i on a 1 package [Fullctioll]
The packages-to-use argument should be a list of packages or package names. or possibly a single

package or package name. These packages arc added to the lise-list of package if they arc not there

already. ;\11 external symbols in the packages to usc become available in package as internal

symbols. See section 11.5 for details. It is an error to try to use the keyword package.

use-package returns t.

un use - package packages-to-unuse &opt i on a 1 package [Functioll]
The packages-to-unuse argument should be a list of packages or package names, or possibly a single

package or package name. These packages are removed from the usc-list of package.
un use - pac k age returns t.

find-a11-symbols string-or-symbol [Fullction]
f i nd- a 11- symbo 1 s searches every package in the LISP system for symbols whose print-name is

the specified string. and returns a list of such symbols. This search is case-sensitive. If the

argument is a symbol, its print-name supplies the string to be searched for.

do-symbol s (var [package] [result-fonn]) {declaration}* {tag I statement}* [Alacro]

do-symbol s provides straightforward iteration over the symbols of a package. The body is

performed once for each symbol available in the package, in no particular order, with the variable

var bound to the symbol. Then result/om1 (a single form. 110t an implicit progn) is evaluated, and

the result is the value of the do-symbol s -form. (When the result/ann is evaluated, the control

variable _var is still bound, and has the value n; 1.) If resultfonn is omitted. the result is n; 1.

return (page 92) may be used to terminate the iteration prematurely. If execution of the body

affects which symbols are contained in the package. other than possibly to remove the symbol

currently the value of var by using un; n t ern, the effects arc unpredictable.

do-external-symbol s (var [package] [result]) {declaration}* {tag I stmt}* [Macro]

do-externa1-symbo1s is just like do-symbol s, except that only the external symbols of the

specified package are scanned.

- do-a 11-symbo 1 s (var [result-fonn]) {declaration}* {tag I statement}* [A-facro]

This is similar to do-symbol s, but executes the body once for every symbol contained in every

package. (This will not process every symbol whatsoever, because a symbol not available in any

package will not be processed. Normally uninterned symbols are not available in any package.) It

is nol in general the case that each symbol is processed only once, because a symbol may appear in

many packages.

PACKAGES 145

11.9. l\lodulcs

A lIlodule is a COMMON I.lSP subsystem that is loaded from one or more files. A module is normally loaded

as a single unit. regardless of how many files are involved. A module may consist of one package or several

packages. The file-loading process is necessarily implementation-dependent, but COMMON LISP provides

some very simple portable machinery for naming modules. for keeping track of which modules have been

loaded, and for loading modules as a unit

··modules·· [Variable]

"[be variable ·modul es· is a list of names of the modules that have been loaded into the LISP

system so far. This list is used by the functions prov i de and requ ire.

prov i de module-name [Function]
require module-name &optional par/marne [Function]

Each module has a unique name (a string). The prov i de and requ ire functions accept either a

string or a symbol as the module-name argument. I f a symbol is provided, its print name is used as

the module name. If the module consists of a single package, it is customary for the package and

module names to be the same.

The p r ov ide function adds a new module name to the list of modules maintained in the variable

*modul es·, thereby indicating that the module in question has been loaded.

The requ i re function tests whether a module is already present (using a case-sensitive

comparison); if the module is not present, r e qui r e proceeds to load the appropriate file or set of

files. The path name argument, if present, is a single pathname or a list of path names whose files are

to be loaded in order, left to right. If the pathname argument is nil or is not provided, the system

will attempt to determine, in some system-dependent manner, which files to load. This· will

typically involve some central registry of module names anci" the associated file-lists.

11.10. An Example

Most users will want to load and use packages but will never need to build one. Often. a user will load a

number of packages into the use r package whenever he uses COMMON LISP. Most implementations will

provide some sort of "initialization file" mechanism to make such setup automatic when the LISP starts up.

•

146 COMMON I.ISP REFERENCE MANUAL

;;;; Lisp init file for I. Newton.

;;; Set up the USER package the way I like it .

(require 'calculus)
(use-package 'calculus)

;1 use CALCULUS a lot. Load it.
;Get easy access to its
; exported symbol s.,

(require 'newtonian-mechanics) ;Same thing for NEWTONIAN-MECHANICS.
(use-package 'newtonian-mechanics)

'" I just want a few thing from RELATIVITY.
;;; and other things conflict.
;;; Import only ~hat I need into the USER package.

(require 'relativity)
(import '(relativity:speed-of-light

relativity:ignore-small-errors»

" ,
" ,
" ,

These are worth loading, but I will use qualified names,
such as PHLOGISTON:MAKE-FIRE-BOTTLE, to get at any symbols
I might need from these packages.

(require 'phlogiston)
(require 'alchemy)

;;; End of Lisp init file for I. Newton.

When each of two files uses some symbols from the other, one must be careful to put the contents of the file

in the file in the proper order. Typically each file contains a single package that is a complete module. The

contents of such a file should include the following items, in order:

1. A call to pro v ide that announces the module name.

2. A call to i n - pac k age that establishes the package.

3. A call to shadow that establishes any local symbols that will shadow symbols that would
otherwise be inherited from packages that this package will use.

4. A call to ex p 0 r t that establishes all of this package's external symbols.

5. Any number of calls to requ i re to load other modules that the contents of this file might want
to use or refer to. (Because.the calls to re qu ire follow the calls to in - p ac k age, shadow, and
export,,it is possible for the packages that may be loaded to refer to external symbols in this
package.)

6. Any number of calls to use-package, to make external symbols from other packages available
in this package.

7. Any number of calls to import, to make symbols from other packages present in this package.

8. Finally, the definitions making up the contents of this package/module ..

- -----_._ .. -._._--------. _ ... _-------- -----_._- . __ ._-----_. __ .. _-------_._----. __ _._------------_._--------_._--_ ... - _._ .. -... _-_ .. _--- --_._--- ----------_._----_ ... _-----

I·

I
\.

'PACKAGES

The following mnemonic sentence may be helpful in remembering the proper order of these calls:

Put in seven extremely random user interface commands.

Each word of the sentence corresponds to one item in the above ordering:

Put
IN
Seven
EXtremely
Random
USEr
Interface
COmmands

Provide
IN-package
Shadow
EXport
Require
USE-package
Import
COntents of package/module

Note that the sentence says what it helps you to do.

147

Now, suppose that the p.h 109; s ton and a 1 cherny packages are single-file, single-package modules as

. described above. The phl 09; stan package needs to use the al cherny package, and the al cherny package
needs to use several external symbols from the ph 1 09; s ton package. The following definitions allow the
user to supply r e qui restatement for either of these modules, or for both of them in either order.

The a 1 cherny file:

. _ -._ .. _------------_. __ ._._-------

148 COMMON USP REFERENCE MANUAL

;;;; Alchemy functions, written and maintained by Merlin, Inc.

(provide 'alchemy)
(in-package 'alchemy)

" , There is nothing to shadow.

;The module is named ALCHEMY.
;So is the package.

'" Here is the external interface.

(export '(lead-to-gold gold-to-lead
antimony-to-zinc elixir-of-life»

;:; This package/module needs a function from
;;; the PHLOGISTON package/module.

(require 'phlogiston)

We don't frequently need most of the external symbols from
" , PHLOGISTON, so it's not worth doing a USE-PACKAGE on it.
'" We'll just use qualified names as needed. But we use
'" one function, MAKE-FIRE-BOTTLE, a lot, so import it.
'" It's external in PHLOGISTON, and so can be referred to
'" here using":" qual ified-name syntax.

(import '(phlogiston:make-fire-bottle»

;;; Now for the real contents of this file.

(defun lead· to· gold (x)
"Takes a quantity of lead and returns gold."
(when (> (phlogiston:heat-flow x) ;Using a qualified symbol.

3)
(make-fire-bottle x» ;Using an imported symbol.

(gild x»

; ;; And so on

The ph' og i ston file:

----------------- ---.

PACKAGES

;;_;; Phlogiston functions, by Thermofluidics, Ltd.

(provide 'phlogiston)
(in-package 'phlogiston)

, , , There is nothing to shadow.

;The module is named PHLOGISTON.
;50 is the package.

, , , Here is the external interface.

(export '(heat-flow cold-flow mix-fluids separate-fluids
burn make-fire-bottle»

;;; This file uses functions from the ALCHEMY package/module.

(require 'alchemy)

'" We use alchemy functions a lot, so use the package.
;;; This will allow symbols exported ,from the ALCHEMY package
;;; to be referred to here without the need for qualified names.

(use-package 'alchemy)

, ,., No calls to IMPORT are needed here.

, , , The real contents of this package/module.

(defun heat-flow (amount' x y)
"Make some amount of heat flow from x to y."
(when feeling-weak

(quaff (elixir-of-life») ;No qualifier needed.
(push-heat amount x y»

;;; And so on ...

149

For very large modules whose contents are spread over several files (the 1 i sp package is an example), it is
recommended that the author create the package and declare all of the shadows and external symbols in a
separate file, so that this can be loaded before anything that might use symbols from this package.

- - . -----------------_ ... __ .. _-_ _------------_._--_ ..•.. , ".""-"'--' _----_ _-_.-._ ..

150 COMMON USP REFERENCE MANUAL

Chapter 12

Numbers

COMMON LISP provides several different representations for numbers. These representations may be
divided into four categories: integers, ratios, floating-point numbers, and complex numbers. Many numeric
functions will accept any kind of number; they are generic. Those functions that accept only certain kinds of
numbers are so documented below.

In general, numbers in COMMON LISP are not true objects; eq cannot be counted upon to operate on them
reliably. In particular, it is possible that the expression

(let «x z) (y z» (eq x y»
may be false rather than true, if the value of z is a number.

Rationale: This odd breakdown of e q in the case of numbers allows the implementor enough design freedom to produce
exceptionally efficient numerical code on conventional architectures. MACLISP requires this freedom. for example. in order
to produce compiled numerical code equal in speed to FORTRAN. If not for this freedom, then at least for the sake of
compatibility. CoMMON LIsp makes this same restriction.

If two objects are to be compared for "identity", but either might be a number, then the predicate e q 1 (page
62) is probably appropriate; ifboth objects are known to be numbers, then = (page 153) may be preferable.

As a rule, computations with floating-point numbers are only approximate. The precision of a floating
point number is not necessarily correlated at all with the accuracy of that number. For instance,
3.142857142857142857 is a more precise approximation to 'IT than 3.14159, but the latter is more accurate. The
precision refers to the number of bits retained in the representation. When an operation combines a short
floating-point number with a long one, the result will be a long floating-point number. This rule is made to

ensure that as much accuracy as possible is preserved; however, it is by no means a guarantee. COMMON LISP

numerical routines do assume, however, that the accuracy of an argument does not exceed its precision.
Therefore when two small floating-point numbers are combined, the result will always be a small floating
point number. This assumption can be overridden by first explicitly converting a small floating-point number
to a larger representation. (COMMON LISP never converts automatically from a larger size to a smaller one in
an effort to save space.)

Rational computations cannot overflow in· the usual sense (though of course there may not be enough
storage to represent one), as integers and ratios may in principle be of any magnitude. Floating-point
computations may get exponent overflow or underflow; this is an error.

When rational and floating-point numbers are compared or combined by a numerical function, the rule of

-151-

.... _. __ ._•. _ _ .. _._. __ ._--

152 COMMON USP REFERENCE MANUAL

"floating-point contagion" is followed: when a rational meets a floating-point number, the rational is first
converted to a floating-point number of the same fonnat For functions such as + that take more than two
arguments it may be that pan of the operation is carried out exactly using rationals and then the rest is done

-using floating-point arithmetic.

For functions that are mathematically associative (and possibly commutative), a COMMON LIsp
implementation may process the arguments in any . manner consistent with associative (and possibly
commutative) rearrangement This does not affect the order in which the argument forms are evaluated, of
course; that is always left to right, as in all COMMON LISP function calls. What is left loose is the order in
which the argument values are processed. The point of all this is that implementations may differ in which
automatic coercions are applied because of differing orders of argument processing. As an example, consider
this expression:

(+ 1/3 2/3 1.000 1.0 1.0E-15)
One implementation might process the arguments from left to right, first adding 1/3 and 2/3 to get 1, then
converting that to a·double-precision floating-point number for combination with 1.000, then successively
converting and adding 1. 0 and 1 . 0 E -15. Another implementation might process the arguments from right
to left, first performing a single-precision floating-point addition of 1 . 0 and 1 . 0 E -15 (and probably losing
some accuracy in the process!), then converting the sum to double precision and adding 1.000, then
converting 2/3 to double-precision floating-point and adding it, and then converting 1/3 and adding that A
third implementation might first scan all the arguments, process all the rationals first to keep that part of the
computation exact, then find an argument of the largest floating-point format among all the arguments and
add that, and then add in all other arguments. converting each in tum, all this in a perhaps misguided attempt
to make the computation as accurate as possible. In any case, all three strategies are legitimate. The user can
or course control the order of processing explicitly by writing several calls; for example:

(+ (+ 1/3 2/3) (+ 1.000 1.0E-15) 1.0)
The user can also control all coercions simply by writing calls to coercion functions explicitly.

As a general rule, then, the type of the result of a numerical function is a floating-point number of the
largest format among all the floating-point arguments to the function; but if the arguments are all rational,
then the result is rational (except for functions that can produce mathematically irrational results, in which
case a single-format floating-point number may result).

There is a separate rule of complex contagion. As a rule, complex numbers never result unless one or more
of the arguments to a numerical function is complex. (Exceptions to this rule occur among the irrational and
transcendental functions.) When a non-complex number meets a complex number, the non-complex number
is first converted to a complex number by providing an imaginary part of o.

If any computation produces a result that is a ratio of two integers such that the denominator evenly divides
the numerator, then the result is immediately converted to the equivalent integer. This is called the rule of
rational canonicalization.

If the result of any computation would be a complex rational with a zero imaginary part, the result is
immediately converted to a non-complex rational number by taking the real part. This is called the rule of

-- ---------------------------------- -- ----------- ---------------------------------

NUMBERS 153

complex canonicalization. Note that this rule does not apply to complex numbers whose components are
floating-point numbers. Whereas #C (5 0) and 5 are not distinct values in COMMON LISP (they are always
eq 1), #C (5 . 0 0.0) and 0.0 are always distinct values in COMMON LISP (they are never eq 1, although
they are equa 1 p).

12.1. Predicates on Numbers

zerop number [Function]
This predicate is true if number is zero (either the integer zero, a floating~point zero, or a complex
zero), and is false otherwise. It is an error if the argument number is not a number.

plusp number [Function]
This predicate is true if number is strictly greater than zero, and is false otherwise. It is an error if
the argument number is not a non-complex number.

m; nusp number [Function]
This predicate is true if number is strictly less than zero; otherwise n; 1 is returned. It is an error if
the argument number is not a n.on-complex number.

odd p integer [Function]
This predicate is true if the argument integer is odd (not divisible by two), and otherwise is false. It
is an error if the argument is not an integer ..

evenp integer [Function]
This predicate is -true if the argument integer is even (divisible by two), and otherwise is false. It is
an error if the argument is not an integer.

See also the data-type predicates integerp (page 59), rat;onalp (page 60) floatp (page 60),
comp 1 exp (page 60), and numberp (page 59).

12.2. Comparisons on Numbers

All of the functions in this section require that their arguments be n:umbers; to call one with a non-number
is an error. Unless otherwise specified. each works on all types of numbers, automatically performing any
required coercions when arguments are of different types.

= number &rest more-numbers
1= number &rest more-numbers
< number &r est more-numbers
> number &rest more-numbers
< = number &r est more-numbers

- ---------------------- -------------

[Function]
[Function]
[Function]
[Function]
[Function]

--------------------------.----------------------_ ... -.. _-------------

154 COMMON US? REFERENCE MANUAL

>= number &res t more-numbers [Function)
These functions each take one or more arguments. If the sequence of arguments satisfies a certain
condition:

= all the same
/ = all different
< monotonically increasing
:> monotonically decreasing
<= monotonically nondecreasing
> = monotonically nonincreasing

then the predicate is true, and otherwise is false. Complex numbers may be compared using = and
1=, but the others require non-complex arguments.

For example:

(= 3 3) is !rUe
(= 3 5) is false
(= 3 3 3 3) is true
(= 3353) isfalse
(= 365 2) isfalse
(= 3 2 3) isfalse
« 3 5) is true
« 3 - 5) is false
« 3 3) is false
« 0 3 4 6 7) is true
« 0 3 4 4 6) is false
(> "T

it .,) ;,.. hot
.., .L.l UU""'

(> 4 3 2 1 0) is true
(> 4 3 3 2 0) isfalse
(> 4 3 1 2 0) is false
(= 3) is true
« 3) is true

(/= 3 3) isfalse
(I = 3 5) is true
(I = 3 3 3 3) is false
C I = 3 3 5 3) is false
(/ = 3 6 5 2) is true
(/ = 3 2 3) is false
«= 3 5) is true
(< = 3 - 5) is false
«= 3 3) is true
(< = 0 3 4 6 7) is true
«= 0 3 4 4 6) is true
(> = 4 3) is true
C> = 4 3 2 1 0) is true.
(>= 4 3 3 2 0) istrue
(>= 4 3 1 2 0) is false
(I = 3) is true
(< = 3) is true

With two arguments, these functions perform the usual arithmetic comparison tests. With three or
more arguments, they are useful for range checks.

For example:

«= 0 x 9)
« 0.0 x 1.0)
« -1 j (length s»
«= 0 j k (- (length

; true iff x is between 0 and 9, inclusive
; true iff x is between 0.0 and 1.0, exclusive
; true iff j is a valid index for s

s) 1)) ; true iff j and k are each valid
indices for s and also j~k

Numbers of different types may be compared with this functions. For example, (> 3. 0 0) is
true, as is (= 0 O. 0) .

Rationale: The "unequality" relation is called" /1:" rather than "<>" (the name used in PASCAL) for two
reasons. First, /. of more than two arguments is not the same as the a r of < and > of those same arguments.
Second, unequality is meaningful for complex numbers even though < and > are nol For both reasons it
would be misleading to associate unequality with the names of < and >.

Compatibility note: In COMMON LIsp, the comparison operations perfonn "mixed-mode" comparisons: (. 3
3.0) is true. In MACUSP, there must be exactly two arguments, and they must be either both fixnurns or both
floating-point numbers. To compare two numbers for numerical equality and type equality, use eql (page
62).

- ---------------------------------_._---

NUMBERS ISS

max number &res t more-numbers [Function] .
The arguments may be any non-complex numbers. max returns the argument that is greatest
(closest to positive infinity).

For example:
(max 1 3 2 -7) => 3
(max -2 3 0 7) => 7
(max 3) => 3
(max 3. 0 7 1) => 7 or 7. 0

If the arguments are a mixture of rationals and floating-point numbers, and the largest is a rational,
then the implementation is free to produce either that rational or its floating-point approximation.

mi n number &res t more-numbers [Function]
The arguments may be any non-complex numbers. m; n returns the argument that is least (closest
to negative infinity).

For example:
(max 1 3 2 -7) => -7
(max -2 3 0 7) => -2
(m; n 3) => 3
(min 3.0 7 1) => 1 or 1.0

If the arguments are a mixture of rationals and floating-point numbers, and the smallest is a
rational, then the implementation is free to produce either that rational or its floating-point
approximation.

12.3. Arithmetic Operatio~

All of the functions in this section require that their arguments be numbers; to call one with a non-number
is an error. Unless otherwise specified, each works' on all types of numbers, automatically performing any
required coercions when arguments are of different types.

+ &res t numbers [Function]
Returns the sum of the arguments. If there are no arguments, the result is 0, which is an identity
for this operation.

Compatibility note: While + is compatible with its use in lisp Machine uSP. it is incompatible with MAcLIsP.
which uses + for fixnum-only addition.

- number &r est more-numbers [Function]
The function -, when given one argument, returns the negative of that argument.

The function -, when given more than one argument, successively subtracts from the first argument
all the others, and returns the result For example, (- 3 4 5) => -6.

Compatibility note: While - is compatible with its use in Lisp Machine I.JSP. it is incompatible with MAcusp.
which uses - for fixnum-only subtraction. Also, - differs from difference as used in most I.Jsp systems in
the case of one argument

156 COMMON USP REFERENCE MANUAL

* &rest numbers [Function]
Returns the product of the arguments. If there are no arguments, the' result is 1, which is an
identity for this operation.

Compatibility note: While· is compatible with its use in Lisp Machine LIsp, it is incompatible with MAclISP,
which uses • for mnum-only multiplication.

I number &res t more-numbers [Function)
The function I, when given more than one argument, successively divides the first argument by all
the others, and returns the result

With one argument, I reciprocates the argument

I will produce a ratio if the mathematical quotient of two integers is not an exact integer.

For example:
(I 12 4) => 3
(I 13 4) => 13/4
(I -8) => -1/8
(I 3 4 5) => 3120

To divide one integer by another producing an integer result, use one of the functions floor,
ce i 1 i n9, truncate, or round (page 166).

If any argument is a floating-point number, rationalthen the rules of floating-point contagion apply.

1+ number
1- number

Compatibility note: What I does is totally unlike what the usual II or quo tie n t operator does. In most IISP
systems. quot ient behaves like I except when dividing integers. in which case it behaves like truncate
(page 166) of two arguments: this behavior is mathematically intractable. leading to such anomalies as

(quotient 1.0 2.0) -> 0.5 but (quotient 1 2) -> 0

In practice quo tie ntis used only when one is sure that both argument are integers, or when one is sure that
at least one argument is a floating-point number.' I is tractable for its purpose, and "works" for any numbers.
For "integer division", truncate (page 166), floor (page 166), ceil ing (page 166), and round (page
166) are available in CoMMON LIsp.

[Function]
[Function]

(1 + x) is the same as (+ xl).

(1- x) is the same as (- xl). Note that the short name may be confusing: (1- x) does not
mean 1-x; rather, it means x-I. .

Rationale: These are included primarily for compatibility with MAcusp and lisp Machine IISP.

Implementation note: Compiler writers are very strongly encouraged to ensure that (1 + x) and (+ x 1)
compile into identical code. and similarly for (1-, x) and (- x 1), to avoid pressure on a LIsp programmer
to write possibly less clear code for the sake of efficiency. This can easily be done as a source-language
transfonnation.

; n e f place [delta] [Macro]

deef place [delta] [Macro]

The number produced by the form delta is added to (i ncf) or subtracted from (deef) the number

NUMBERS 157

in the generalized variable named by place, and the sum is stored back into place and returned.
The fonn place may be any fonn acceptable as a generalized variable to set f (page 72). If delta is
not supplied, then the number in place is changed by 1.

For example:
(setq n 0)
(inef n) => 1 andnow n => 1
(deef n 3) => -2 andnow n => -2
(deef n -5) => 3 andnow n => 3
(deef n) => 2 andnow n => 2

The effect of (inc f place delta) is roughly equivalent to

(set f place (+ place delta»
except that the latter would evaluate any subforms of place twice, while in ef takes care to evaluate
them only once. Moreover, for certain place forms in ef may be significantly more efficient than
the set f version.

conjugate number [Function]
This returns the complex conjugate of number. The conjugate of a non-complex number is itself.
For a complex number z,

(conjugate z) <=> (complex (realpart z) (- (imagpart z»)

For example:
(conjugate #C(3/5 4/5» => #C(3/5 -4/5)
(conjugate #C{O.ODO -1.000» => #C(O.ODO 1.000)
(conjugate 3.1) => 3.1

g e d & res t integers [Function]
Returns the greatest common divisor of all the arguments, which must be integers. The result of
g e d is always a non-negative integer. If one argument is given, its absolute value is returned. If no
arguments are given, ged returns 0, which is an identity for 'this operation. For three or more
arguments,

(ged abc ... z) <=> (ged (ged a b) c •.• z)

For example:
(ged 91 -49) => 7
(ged 63 -42 35) => 7
(ged 5) => 5
(ged -4) => 4
(ged) => 0

lem integer &res t more-integers [Function]
This returns the least common multiple of its arguments, which must be integers. The result of 1 em
is always a non-negative integer. For two arguments that are not both zero,

'(lem a b) <=> (I (abs (* a b» (ged a b»
If one or both arguments are zero,

(lem a 0) <=> (lem 0 a) <=> 0

For one argument, 1 em returnS the absolute value of that argument For three or more arguments,

,._------_._._------- ------.-----------

158

-".
"j'

COMMON USP REFERENCE MANUAL

(lcm abc .•• z) <=> (lcm (lcm a b) c ••• z)

For example:
(lcm 14 35) => 70

Mathematically, (1 cm) should return infinity. Because COMMON LISP does not have a
representation for infinity, 1 cm, unlike 9 c d, always requires at least one argument

12.4. Irrational and Transcendental Functions

COMMON LISP provides no data type that can accurately represent irrational numerical values. The
functions in this section are described as if the results were mathematically accurate, but actually they all
produce floating-point approximations to the true mathematical result in the general case. In some places
mathematical identities are set forth that are intended to elucidate the meanings of the functions; however,
two mathematically identical expressions may be computationally different because of errors inherent :n the
floating-point approximation process.

When the arguments to a function in this section are all rational and the true mathematical result is also
(mathematically) rational. then unless otherwise noted an implementation is free to return either an accurate
result of type rat ion a 1 or a single-precision floating-point approximation.

Implementation note: There is a "floating-point cookbook" by Cody and Waite [4] that may a useful aid in implementing
the functions define din this section.

12.4.1~ Exponential and Logarithmic Functions

exp number [Function]
Returns e raised to the power number, where e is the base of the natural logarithms.

ex p t base-number power-number [Function]
Returns base-number raised to the power power-number. If the base-number is of type rat; 0 n a 1
and the power-number is an integer, the calculation will be exact and the result will be of type
rat; on a 1 ; otherwise a floating-point approximation may result

When power-number is 0 (a zero of type integer), then the result is always one, even if the
base-number is zero (of any type). More precisely,

(expt x 0) <=> (coerce 1 (type-of x»
If the power-number is a zero of any other data type, then the result is also one, except for two
things. First, it is an error if base-number is zero when the power-number is a zero not of type
integer. Set.ond, the rules of floating-point and complex contagion may have been applied, and so
the result may be of a different data type from that returned when power-number is the integer zero.

Note that (ex p t - 8 1/3) is not permitted to return - 2; while - 2 is indeed one of the cube roots
of -8, it is not the principal cube root, which is a complex number approximately equal to Ie (0 .5
1.73205).

NUMBERS 159

log number &opt iona1 base [Function]
Returns the logarithm of number in the base base, which defaults to e, the base of the natural
logarithms.

For example:
(log 8.0 2) => 3.0
(log 100.0 10) => 2.0

The result of (log 8 2) may be either 3 or 3.0, depending on the implementation.

sqrt number [Function]
Returns the principal square root of number. If the number is not complex but is negative, then the
result will be a complex number whose components are of the same type.

For example:
(sqrt 9.0) => 3.0
(sqrt -9.0) => Nc(O.O 3.0)

The result of (sqrt 9) may be either 3 or 3.0, depending on the implementation. The result of
(sqrt -9) may be either Nc(O 3) orNc(O.O 3.0).

i sqrt integer [Function]
Integer square-root: the argument must be a non-negative integer, and the result is the greatest.
integer less than or equal to the exact positive square root of the argument

For example:
(isqrt 9) => 3
(i sqrt 12) => 3
(isqrt 300) => 18

12.4.2. Trigonometric and Related Functions

abs number
Returns the absolute value of the argument

For a non-complex number,
(abs x) <=> (if (minusp x) (- x) x)

and the result is always of the same type as the argument

For a complex number z, the absolute value may be computed as

[Function]

(sqrt (+ (expt (rea1part z) 2) (expt (imagpart z) 2»}
Implementation note: The careful implementor will not use this formula directly for complex numbers with
floating-point parts, but wiH instead handle very large or very small exponents specially to avoid intermediate
overflow or underflow.

For example:
(abs Nc(3.0 -4.0» =>" 5.0

The result of (abs Ne (3 4» may be either 5 or 5.0, depending on the implementation.

160 COMMON USP REFERENCE MANUAL

phase number [Function]
The phase of a number is the angle part of its polar representation as a complex number. That is,

(phase x) <=> (atan (realpart x) (imagpart x»
The result is in radians, in the range -*IT (exclusive) to 'IT (inclusive). The phase of a positive
non-complex number is zero; that of a negative non-complex number is *IT. The phase of zero is
arbitrarily defined to be zero.

signum number [Function]
By definition,

(signum x) <=> (if (zerop x) x (I x (abs x»)
For a rational number, signum will return one of -1, 0, or 1 according to whether the number is
negative, zero, or positive. For a floating-point number, the result will be a floating-point number
of the same format. For a complex number z, (s i gnum z) is ,a complex number of the same
phase but with unit magnitude, unless z is a complex zero, in which case the result is z.

For example:
(signum 0)-=> 0
(signum -3.7l5) => -1.0l0
(signum 4/5) => 1
(signum #C(7.5 10.0» => #C(0.6 0.8)
(signum #C(O.O -14.7}) => #C(O.O -1.0)

For non-complex rational numbers, signum is a rational function, but it may be irrational for
complex arguments.

sin radians
cos radians
tan radians

[Function]
[Function]
[Function]

sin returns the sine of the argument, cos the cosine, and tan the tangent. The argument is in
radians. The argument may be complex.

cis radians [Function]
This computes i-radians. The name" c; s" means "cos + i sin", because dO = cos (J + i sin (J. The
argument is in radians, and may be any non-complex number. The result is a complex number
whose real part is the cosine of the argument, and whose imaginary part is the sine. Put another
way, the result is a complex number whose phase is the equal to the argument (mod 2 *IT) and whose
magnitude is unity.

Implementation note: Often it is cheaper to calculate the sine and cosine of a single angle together than to
perfonn two disjoint calculations.

as; n number [Function]
acos number [Function]

as; n returns the arcsine of the argument, and cos the arccosine. The result is in radians. The
argument may be complex.

--- ...• ...

NUMBERS 161

atan y &optional x [Function] .

pi

An arctangent is calculated and the result is returned in radians.

With two arguments y and x. neither argument may be complex. The result is the arctangent of the
quantity y/x. The signs of y and x are used to derive quadrant infonnation; moreover, x may be
zero provided y is not zero. The value of a t an is always between - '11 (exclusive) and '11 (inclusive).
The following table details various special cases.

Condition Cartesian locus
y = 0 x> 0 Positive x-axis
y> 0 x> 0 Quadrant I
y> 0 x = 0 . Positive y-axis
y> 0 x < 0 Quadrant II
y = 0 x < 0 Negative x-axis
y < 0 x < 0 Quadrant III
y < 0 x = 0 Negative y-axis'
y< 0 x> 0 Quadrant IV
y = 0 x = 0 Origin

Range of result
o

0< result < '11/2
'/T/2

'11/2 < result < '11

'11

-'11 < result < -'11/2
-'11/2

-",/2 < result < 0
error

For floating-point approximations, the < signs in the above table ought to be S signs, because of
rounding effects; if y is greater than zero but nevertheless very small, then the floating-point
approximation to '1112 might be a more accurate result than any other floating-point number. (For
that matter, when y = O. the exact value 'IT 12 cannot be produced anyway, but instead only an
approximation.)

With only one argument y, the argument may be complex. The result is the arctangent of y. For
non-complex arguments the result is non-complex and lies between -'11/2 and '1112 (both
exclusive).

Compatibility note: MAcLIsp has a function called atan whose range is from 0 to 2'IT. Almost every other
programming language (ANSI FORTRAN, IBM P'L/I, JNTERLIsp) has an arctangent function with range -:.'11' to ".

Usp Machine LIsP provides two functions, atan (compatible with MAcusp) and atan2 (compatible with
everyone else).

CoMMON LIsp makes at an the standard one with range -" to". Observe that this makes the one-argument
and two-argument versions of atan compatible in the sense that the branch cuts do not fall in different places,
which is probably why most languages use this definition. (An aside: the INTERLIsp one-argument function
arctan has a range from 0 to 'IT, while every other language in the world provides the range -,,/2 to ,,12!
Nevertheless, since INTERUSP uses the standard two-argument version, its branch cuts are inconsistent anyway.)

[Constant]

This global variable has as its value the best possible approximation to '11 in long floating-point
format

For example:
(defun sind (x) ; The argument is in degrees.

(sin (* x (/ (float pi x) 180»»
An approximation to '11 in some other precision can be obtained by writing (f loa t pix), where
x is a floating-point number of the desired precision; see f' 0 a t (page 165).

162 COMMON USP REFERENCE MANUAL

si n h number [Function]
cosh number [Function]
tanh number [Function]
as; n h number [Function]
acosh number [Function]
atanh number [Function]

These functions compute the hyperbolic sine, cosine, tangent, arcsine, arccosine, and arctangent
functions, which are mathematically defined as follows:

Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent
Hyperbolic arcsine
Hyperbolic arccosine
Hyperbolic arctangent

(~-e-~/2
(~+e-~/2

(~-e-~(eXXie-~
log (x+ 1+)
log (x+ (x+ 1)v'r-?-(x---:1~)/~(x-+"""'::'1~))
log «1 + x)v' I-Ii?)

Implementation note: These fonnulae are mathematically correct, assuming completely accurate computation.
They may be terrible methods for floating-point computation! Implementors should consult a good text on
numerical . analysis. The fonnulas given above are not necessarily the simplest ones for real-valued
computations, either: they are chosen to define the branch cuts in desirable ways for the complex case.

12.4.3. Branch Cuts, Principal Values, and Boundary Conditions in the Complex Plane

Many of the irrational and transcendental functions are multiply-defined in the complex domain; for
example, there are in general an infinite number of complex values for the logarithm function. In each such
case a principal value must be chosen for the function to return. In general, such values cannot be chosen so

. .
as to make the range continuous; lines of discontinuity called branch cuts must be defined.

COMMON LISP defines the branch cuts, principal values, and boundary conditions for the complex
functions following a proposal for complex functions in APL [14]. The contents of this section are borrowed
largely from that proposal.

. Compatibility note: The branch cuts defined here differ in a few very minor respects from those advanced by W. Kahan,
who considers not only the "usual" definitions but also the special modifications necessary for IEEE proposed floating-point
arithmetic. which has infinities and minus zero as explicit computational objects. For example, he proposes that
V -4+0; =2i, but V -4-0i = -2L

It may be that the differences between the APL proposal and Kahan's proposal will be ironed out. perhaps in 1983. If SO,

CoMMON LIsp will be changed as necessary to be compatible with these other groups. Any changes from the specification
below are likely to be quite minor.

sqrt The branch cut for square root lies along the negative real axis, continuous with quadrant
II. The range consists of the right half-plane, including the non-negative imaginary axis
and excluding the negative imaginary axis.

phase

log

The branch cut for the phase function lies along the negative real axis, continuous with
quadrant II. The range consists of that portion of the real axis between -'IT (exclusive) and
'IT (inclusive).

The branch cut for the logarithm function of one argument (natural logarithm) lies along
the negative real axis, continuous with quadrant II. The domain excludes the origin. For a

NUMBERS

exp

expt

as;n

acos

atan

163

complex number z= x+ y i, log z is defined to be (log Izl)+ i phase(z}. Therefore the range
of the one~argument logarithm function is that strip of the complex plane containing
numbers with imaginary parts between -'IT (exclusive) and 'IT (inclusive).

The two-argument logarithm function is defined as 10gb z= (log z)/(log b). This defines the
principal values precisely. The range of the two-argument logarithm function is the entire
complex plane. It is an error if z is zero. If z is nonzero and b is zero, the logarithm is taken
to be zero.

The simple exponential function has no branch cut

The two-argument exponential function is defined as bX = eX log b. This defines the
principal values precisely. The range of the two-argument exponential function is the
entire complex plane. Regarded as a function of x, with b fixed, there is no branch cut
Regarded as a function of b, with x fixed, there is, in general, a branch cut along the
negative real axis, continuous with quadrant II, and the domain excludes the origin. By
definition, 0° = 1. If b= 0 and the real pa.rt of x is strictly positive, then bX = O. For all other
values of x, Ox is an error.

The following definition for arcsine determines the range and branch cuts:

arcsin z= - Hog (i z+ Yl=7)
The branch cut for the arcsine function is in two pieces: one along the negative real axis to
the left of -1 (inclusive), continuous with quadrant II, and one along the positive real axis
to the right of 1 (inclusive), continuous with quadrant IV. The range is that strip of the
complex plane containing numbers whose real part is between - 'lT12 and 'lT/2. A number
with real part equal to - 'IT 12 is in the range iff its imaginary part is non-negative; a number'
with real part equal to 'lT12 is in the range iff its imaginary part is non-positive.

The following definition for arccosine determines the range and branch cuts:

arcco~ z= - i log (z+ i Yl=7)
or, which is equivalent,

arccos z=('lT12)-arcsin z

The branch cut for the arccosine function is in two pieces: one along the negative real axis
to the left of -1 (inclusive), continuous with quadrant II, and one along the positive real
axis to the right of 1 (inClusive), continuous with quadrant IV. This is the same branch cut
as for arcsine. The range is that strip of the complex plane containing numbers whose real
part is between 0 and 'IT. A number with real part equal to 0 is in the range iff its imaginary
part is non-negative; a number with real part equal to 'IT is in the range iff its imaginary part
is non-positive.

The following definition for (one-argument) arctangent determines the range and branch
cuts:

. arctan z= - i log «1 + i z) V 1/(1 + ZZ))

-------.-.- ... _------ ---_._--_._-------- ----_._---- ._---_ ... _-

164

as;nh

acosh

atanh

COMMON USP REFERENCE MANUAL

Beware of simplifying this fonn1tla; "obvious" simplifications are likely to alter the branch
cuts or the values on the branch cuts incorrectly. The branch cut for the arctangent
function is in two pieces: one along the positive imaginary axis above i (exclusive),
continuous with quadrant II, and one along the negative imaginary axis below - i
(exclusive)~ continuous with quadrant IV~ The points i and - i are excluded from the
domain. The range is that strip of the complex plane containing numbers whose real part
is between -'lT/2 and 'lT/2. A number with real part equal to -'lT/2 is in the range iff its
imaginary part is strictly positive; a number with real part equal to 'fT/2 is in the range iffits
imaginary part is strictly negative. Thus the range of arctangent is identical to that of
arcsine with the points - 'IT 12 and 'IT 12 excluded.

The following definition for the inverse hyperbolic sine determines the range and branch
cuts:

arcsinh z=log (x+V1+XZ)

The branch cut for the inverse hyperbolic sine function is in two pieces: one along the
positive imaginary axis above i (inclusive), continuous with quadrant I, and one along the
negative imaginary axis below - i (inclusive), continuous with quadrant III. The range is
that strip of the complex plane containing numbers whose imaginary part is between -'IT/2
and 'IT/2. A number with imaginary part equal to -'lT/2 is in the range iff its real part is
non-positive; a number with imaginary part equal to 'IT/2 is in the range iff its imaginary
part is non-negative.

The following definition for the inverse hyperbolic cosine detennines the range and brancb
cuts:

arccosh z= log (x+(x+ 1)'" (x-1)/(x+ 1))

The branch cut for the inverse hyperbolic cosine function lies along the real axis to the left
of 1 (inclusive), extending indefinitely along the negative real axis, continuous with
quadrant II and (between 0 and 1) with quadrant I. The range is that half-strip of the
complex plane containing numbers whose real part is non-negative and whose imaginary
part is between - 'IT (exclusive) and 'IT (inclusive). A number with real part zero is in the
range iff its imaginary part is between zero (inclusive) and 'IT (inclusive).

The following definition for the inverse hyperbolic tangent determines the range and
branch cuts:

arctanh z~log «1+x)v'1-1/XZ)

Beware of simplifying this formula; "obvious" simplifications are likely to alter the branch
cuts or the values on the branch cuts incorrectly. The branch cut for the inverse hyperbolic
tangent function is in two pieces: one along the negative real axis to the left of -1
(inclusive), continuous with quadrant III, and one along the positive real axis to the right of
1 (inclusive), continuous with quadrant I. The range is that strip of the complex plane
containing numbers whose imaginary part is between - 'IT 12 and 'IT/2. A number with
imaginary part equal to - 'IT /2 is in the range iff its real part is strictly negative; a number
with imaginary part equal to 'IT 12 is in the range iff its imaginary part is strictly positive.
Thus the range of arctangent is identical to that of arcsine with the points - 'IT i/2 and 'IT i/2

--------------- ---------- ------------------------

NUMBERS 165

excluded.

With these definitions. the following useful identities are obeyed throughout the applicable portion of the
complex domain, even on the branch cuts:

sin i z =isinh z
cos i z = cosh z
tan i z = i tanh z

sinh i z = i sin z
cosh i z = cos z

arcsin i z = i arcsinh z

12.5. Type Conversions and Component Extractions on Numbers

arctan i z = i arctanh z
arcsinh i z =. i arcsin z
arctanh i z = i arctan z -

While most arithmetic functions will operate on any kind of number. coercing types if necessary, the
fqllowing functions are provided to allow specific conversions of data types to be forced. when desired.

fl oa t number &opt i on a 1 other [Function]
Converts any non-complex number to a floating-point number. With no second argument, then if
number is already a floating-point number. it is returned, and otherwise a sin 9 1 e - f loa t is
produced. If the argument other is provided, then it must be a floating-point number, and number
is convened to the same format as other. See also coerce (page 40).

rational number [Function]
rat i on ali ze number [Function]

Each of these functions converts any non-complex number to be a rational number. If the
argument is already rational, that argument is returned. The two functions differ in their treattnent
of floating-point numbers.

rat ion a 1 assumes that the floating-point number is completely accurate, and returns a rational
number m~thematically equal to the precise value of the floating-point number.

rat ion ali z e assumes that the floating-point number is accurate only to the precision of the
floating-point representation. and may return any rational number for which the floating-point
number is the best available approximation of its fonnat; in doing this it attempts to keep both
numerator and denominator small.

It is always the case that
(float (rational x) x) <=> x

and
(float (rationalize x) x) <=> x

That is, rationalizing a floating-point number by either method and then converting it back to a
floating-point number of the same format produces the original number. What distinguishes the
two functions is that rat; on a 1 typically has a simple, inexpensive implementation, while
rat ion ali z e goes to more trouble to produce a result that is more pleasant to view and simpler
for some purposes to compute with.

- - ----- ----------

166 COMMON USP REFERENCE MANUAL

numerator rational [Function]
denomi nator rational [Function]

These functions take a rational number (an integer or ratio) and return as an integer the numerator
or denominator of the canonical reduced form of the rational. The numerator of an integer is that
integer, and the denominator of an integer is 1. Note that

(gcd (numerator x) (denominator x» => 1
The denominator will always be a strictly positive integer; the numerator may be any integer.

For example:
(numerator (/ 8 -6» => -4
(denominator (/ 8 -6» => 3

There is no fix function in COMMON LISP, because there are several interesting ways to convert non
integral values to integers. These are provided by the functions below, which perform not only type
conversion but also some non-trivial calculations.

floor number &optional divisor [Function]
ceil in9 number &optional divisor [Function]
truncate number &optional divisor [Function]
round number &optional divisor [Function]

In the simple, one-argument case, each of these functions converts its argument number (which
must not be complex) to be an integer. If the argument is already an integer, it is returned directly.
If the argument is a ratio or floating-point number, the functions use different algorithms for the
conversion.

floor converts its argument by truncating towards negative infinity; that is, the result is the largest
integer that is not larger than the argument

ce i 1 i ng converts its argument by truncating towards positive infinity; that is, the result is the
smallest integer that is not smaller than the argument

truncate converts its argument by truncating towards zero; that is, the result is the integer of the
same sign as the argument and which has the greatest integral magnitude not greater than that of
the argument

round converts its argument by rounding to the nearest integer; if number is exactly halfway
between two integers (that is, of the form inleger+O.5) then it is rounded to the one that is even
(divisible by two).

Here is a table showing what the four functions produce when given various arguments.

NUMBERS

- --- -- ------------- -----------------_ .. _---------------------------------- ---------------

167

Argument floor ceiling truncate round
2.6 2 3 2 3
2.5 2 3 2 2
2.4 2 3 2 2
0.7 0 1 0 1
0.3 0 1 0 0

-0.3 -1 0 0 0
-0.7 -1 0 0 -1
-2.4 -3 . -2 -2 -2
-2.5 -3 -2 -2 -2
-2.6 -3 -2 -2 -3

If a second argument divisor is supplied, then the result is the appropriate type of rounding or
truncation applied to the result of dividing the number by the divisor. For example, (floor 5 2)
= (floor (/ 5 2), but is potentially more efficient The divisor may be any non-complex
number. The one-argument case is exactly like the two-argument case where the second argument
is 1.

Each of the functions actually returns two values; the second result is the remainder, and may be
obtained using mu 1 t ; p 1 e - val u e - b ; n d (page 104) and related constructs. If any of these
functions is given two arguments x and y and produces results q and r, then tfy+ r= x. The
remainder r is an integer if both arguments are integers, is rational if both arguments are rational,
and is floating-point if either argument is floating-point (In the one-argument case the remainder
is a number of the same type as the argument.) The first result is always an integer.

Compatibility note: The names of the functions f1 oor. cei 1 i ng. truncate. and round are more accurate
th~ :l:.-r:es like fix that have heretofore been used in various LIsp systems. The names used here are
compatible with standard mathematical terminology (and with PUf, as it happens). In FORTRAN if i x means
truncate. ALGOL 68 provides round, and uses ent ier to mean fl oor. In MACUSP, fix and ifix both
mean fl oor (one is generic, the other flonum-in/fixnum-out). In INTERuSP, fix means truncate. In Usp
Machine uSP, fix means f1 oor and fixr means round. STANDARD LIsp provides a fi x function, but does
not accurately specify what it does exactly. The existing usage of the name fix is so confused that it seems best
to avoid it altogether.

The names and definitions given here have recently been adopted by Lisp Machine I..Jsp, and MAcl..JSP and Nn..
seem likely to follow suit

mod number divisor [Function]
rem number divisor [Function]

mod perfonns the operation floor (page 166) on its two arguments, and returns the second result
of floor as its only result Similarly, rem perfonns the operation t run c a.t e (page 166) on its
arguments, and returns the second re~ult of t run cat e as its only result

mod and rem are therefore the usual modulus and remainder functions when applied to two integer
arguments. In general, however, the arguments may be integers or floating-point numbers.

(mod 13 4) => 1 (rem 13 4) => 1
(mod -13 4) => 3 (rem -13 4) => -1
(mod 13 -4) => -3 (rem 13 -4) => 1
(mod -13 -4) => -1 (rem -13 -4) => -1
(mod 13.4 1) => 0.4 (rem 13.4 1) => 0.4
(mod -13.4 1) => 0.6 (rem -13.4 1) => -0.4

. - - - -------------------------. _. -_._------_ .. _---

168 COMMON USP REFERENCE MANUAL

ffloor number &opt ional divisor [Function]
f c e i 1 in 9 number &0 p t ion a 1 divisor [Function]
ftruncate number &opt ional divisor [Function]
fround number &opt ional divisor [Function]

These functions are just like floor, ce i 1 i ng, trun cate, and roun d, except that the result (the
first result of two) is always a floating-point number rather than an integer. It is roughly as if
ffloor gave its arguments to floor, and then applied float to the first result before passing
them both back. In practice, however, ffloor may be implemented much more efficiently.
Similar remarks apply to the other three functions. If the first argument is a floating-point number,
and the second agrument is not a floating-point number of shorter fonnat, then the first result will
be a floating-point number of the same type as the first argument

For example:
(ffloor -4.7) => -5.0 and 0.3
(ffloor 3.5dO) => 3.0dO and O.5dO

decode-float float
scal e-fl oat float integer
float-radix float
fl oat- sign float! &opt i onal float2
flo a t - dig its. float.
float-precision float
integer-decode-float float

The function decode-float takes a floating-point number and returns three values.

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]

The first value is a new floating-point number of the same format representing the significand; the
second value is an integer representing the exponent; and the third value is a floating-point number
of the same format indicating the sign. Let b be the radix for the floating-point representation; then
fl oa t-decode divides the argument by an integral power of b so as to bring its value between
lIb (i~clusive) and 1 (exclusive), and returns the quotient as the first value. If the argument is zero,
however, the result equals the absolute value of the argument (that is, if there is a negative zero, its
significand is considered to be a positive zero).

The second value of decode-float is the integer exponent e to which b must be raised to
produce the appropriate power for the division. If the argument is zero, any integer value may be
returned, provided that the identity shown below for s cal e - flo a t holds.

The third value of decode-float is a floating-point number, of the same fonnat as the argument,
whose absolute value is one and whcse sign matches that of the argument .

The function scal e-fl oat takes a floating-point number [(not necessarily between lib and 1)

and an integer k, and returns (* f (expt (float b 1) k». (The use of scale-float may
be much more efficient than using exponentiation and multiplication, and avoids intermediate
overflow and underflow if the final result is representable.)

Note that

NUMBERS

and

(multiple-value-bind (signif expon sign)
(decode-float 1)

(scale-float signif expon»
<=> (abs 1)

(multiple-value-bind (signif expon sign)
(decode-float 1)

(* (scale-float signif expon) sign»
<=> I

The function fl oa t-rad i x returns (as an integer) the radix b of the floating-point argument

169

. The function fl oa t-s i gn returns a floating-point number z such that z andfloatl have the same

sign and also such that z and float2 have the same absolute value. The argument float2 defaults to

the value of (flo at 1 float!); (f loa t - s i 9 n ,,) therefore always produces a 1. 0 or -1. 0

according to the sign of x. (Note that if an implementation has distinct representations for negative

zero and positive zero then (float-sign -0.0) => -1.0.)

The function flo a t - dig its returns. as a non-negative integer, the number of radix-b digits used

in the representation of its argument (including any implicit digits, such as a "hidden bit"). The

function fl oa t-p rec is i on returns, as a non-negative integer, the number of significant radix-b

digits present in the argument; if the argument is (a floating-point) zero, then the result is (an

integer) zero. For normalized floating-point numbers these two quantities will be the same, but the

precision will be less than the number of representation digits for a denormalized or zero number.

The function i n t e 9 e r - dec 0 d e - flo a t is similar to dec 0 de - flo a t but for its first value

returns. as an i n t e 9 e r, the significand scaled so as to be an in teger. For an argument f, this

integer will be strictly less than

(expt b (float-precision 1)
but no less than

(expt b (- (float-precision 1) 1»

except that if lis zero then the integer value will be zero.

The second value bears the same relationship to the first value as for dec 0 de - flo at:
(multiple-value-bind (signif expon sign)

(integer-decode-float 1)
(scale-float (float signif 1) expon»

<=> (abs 1)
Rationale: These functions allow the writing of machine-independent, or at least machine-parameterized.
floating-point software of reasonable efficiency.

comp 1 ex rea/part &opt i ana 1 imagpart [Function]
The arguments must be non-complex numbers; a number is returned that has rea/part as its real

part and imagpart as its imaginary part. If imagpart is not specified then (coerce 0 (type-of

rea/part» is effectively used (this definition has the effect that in this case the two parts will be

both rational or both floating-point numbers of the same format). Note that ifboth the rea/part and

imagpart are rational and the imagpart is zero, then the result just the rea/part because of the rule of

170 COMMON USP REFERENCE MANUAL

canonical representation for complex rationals. It follows that the result of comp 1 ex is not always
a complex number; it may be simply a rat; on a 1.

~eal part number [Function]
imagpart number [Function]

These return the real and imaginary parts of a complex number. If number is a non-complex
number, then real part returns its argument number and imagpart returns (coerce 0
(type-of number)} (this has the effect that the imaginary part of a rational isO and that of a
floating-point number is a floating-point zero of the same format).

12.6. Logical Operations on Numbers

Tht: logical operations in this section require integers as argumentS; it is an error to supply an non-integer as
an argument. The functions all treat integers as if they were represented in two's-complement notation.

Implementation note: Internally, of course, an implementation of COMMON LIsp mayor may not use a two's-complement
representation. All that is necessary is that the logical operations perfonn calculations so as to give this appearance to the
user.

The logical operations provide a convenient way to represent an infinite vector of bits. Let such a
conceptual vector be indexed by the non-negative integers. Then bit j is assigned a "weight" 'Jl. Assume that
only a finite number of bits are ones, or that only a finite number of bits are zeros. A vector with only a finite
number of one-bits is represented as the sum of the weights of the one-bits, a positive integer. A vector with
only a finite number of zero-bits is represented as -1 minus the sum of the weights of the zero-bits, a negative
integer.

This method of using integers to represent bit vectors can in tum be used to represent sets. Suppose that
some (possibly countably infinite) universe of discourse for sets is mapped into the non-negative integers.
Then a set can be represented as a bit vector; an element is in the set if the bit whose index corresponds to
that element is a one-bit. In this way all finite sets can be represented (by positive integers), as well as all sets
whose complements are finite (by negative integers). The functions 1 og i or, 1 ogand, and 1 ogxor defined
below then compute the union, intersection, and symmetric difference operations on sets represented in this
way.

10gior &rest integers [Function]
Returns the bit-wise logical inclusive or of its arguments. If no argument is given, then the result is
zero, which is an identity for this operation.

10gxor &res t integers [Function]
Returns the bit-wise logical exclusive or of its arguments. If no argument is given, then the result is
zero, which is an identity for this operation.

NUMBERS 171

logand &rest integers [Function]
Returns the bit-wise logical and of its arguments. If no argument is given, then the result is -1,

which is an identity for this operation.

logeqv &res t integers [Function]
Returns the bit-wise logical equivalence (also known as exclusive nor) of its arguments. If no
argument is given, then the result is -1, which is an identity for this operation.

lognand integer! integer2
lognor integer! integer2
logandc1 integer! integer2
logandc2 integer! integer2
logorc1 integer! integer2
log 0 r c 2 integerl integer2

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]

These are the other six non-trivial bit-wise logical operations on two arguments. Because they are
not associative, they take exactly two arguments rather than any non-negative number of
arguments.

(lognand nl n2) <=> (lognot (logand nl n2»
(lognor nl 112) <=> {lognot (log 0 r nl n2»

(logandc1 nl n2) <=> (logand (log not nl) n2)
(logandc2 nl n2) <=> (logand nl (lognot n2»
(logorc1 nl n2) <=> (logor (lognot nl) n2)
(logorc2 nl n2) <=> (logor nl (lognot n2»

The ten bit-wise logical operations on two integers are summarized in this table:

Argument 1 0 0 1 1
Argument 2 0 1 0 1 Oll.eration nam~

logand 0 0 0 1 and
logior 0 1 1 1 inclusive or
logxor 0 1 1 0 exclusive or
logeqv 1 0 0 1 equivalence (exclusive nor)
lognand 1 i 1 0 not-and
lognor 1 0 0 0 not-or
logandc1 0 1 0 0 and complement of arg1 with arg2
logandc2 0 0 1 0 and arg1 with complement of arg2
logorc1 1 1 0 1 or complement of argl with arg2
logorc2 1 0 1 1 or argl with complement of arg2

.. _ .. _._._----._--_ .. _.-... - _._-----------_.- ---------_._ _--_ ... _.-. __ .. _ __ ._-- _- _.-._--_._ •. _-_ .. __ .-•.... _ ---.............. _ .. _ .. _-_. __ . ---

172

boo 1 e op integerl integer2
boole-clr

boole-set

boole-l

boole-2

boole-cl

boole-c2

boole-and

boole-ior

boole-xor

boole-eqv

boole-nand

boole-nor

boole-andcl

boole-andc2

boole-orcl

boole-orc2

COMMON USP REFERENCE MANUAL

[Function]
[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

The function boo 1 e takes an opera~on op and two integers, and returns an integer produced by
perfonning the logical operation specified by op on the two integers. The precise values of the
sixteen variables are implementation-dependent, but they are suitable for use as the first argument
to bool e:

NUMBERS

--- ~--.-------.. -~--------------.-.----.- .. ---.--.

integer! 0 0 1 1
integer2 0 1 0 1 Or;.eration r;.erfonn~d

boole-clr 0 0 0 0 always 0
boole-set 1 1 1 1 always 1
boole-l 0 0 1 1 integer!
boole-2 0 1 0 1 integer2
boole-cl 1 1 0 0 complement of integer!
boole-c2 1 0 1 0 complement of integer2
boole-and 0 0 0 1 and
boole-ior 0 1 1 1 inclusive or
boole-xor 0 ·1 1 0 exclusive or
boole-eqv 1 0 0 1 equivalence (exclusive nor)
boole-nand 1 1 1 0 not-and
boole-nor 1 0 0 0 not-or
boole-andcl 0 1 0 0 and complement of integer! with integer2
boole-andc2 0 0 1 0 and integer] with complement of integer2
boole-orcl 1 1 0 1 or complement of integer] with integer2
boole-orc2 1 0 1 1 or integer] with complement of integer2

bool e can therefore compute all sixteen logical functions on two arguments. In general,
(boole boole-and x y) <=> (logand x y)

173

and the latter is more perspicuous. However, boo 1 e is useful when it is necessary to parameterize

a procedure so that it can use one of several logical operations.

lognot integer [Function]
Returns the bit-wise logical not of its argument· Every bit of the result is the complement of the

corresponding bit in the argument
(logbitp j (lognot x» <=> (not (logbitp j x»

1 ogtes t integer] integer2 [Function]
1 ogtes t is a predicate that is true if any of the bits designated by the 1's in integerl are 1's in
integer2.

(logtest x y) <=> (not (zerop (logand x y»)

1 ogb i tp index integer [Function]
logbitp is true if the bit in in~eger whose index is index (that is, its weight ~ 2inde~ is a one-bit;

otherwise it is false.

For example:

(log bit p 2 6) is true
(logbitp 0 6) isfalse
(logbitp k n) <=> (ldb-test (byte 1 k) n)

.. ------.. _---_. __ . __ ._-- .--~- ... _ ... --- -... -.. ~- •.. --.----------

174 COMMON USP REFERENCE MANUAL

as h integer count [Function]
Shifts integer arithmetically left by count bit positions if count is positive, or right -count bit

positions if count is negative. The sign of the result is always the same as the sign of integer.

Arithmetically, this operation performs the computationj1ooT(integer*2coun~.

Logically, this moves all of the bits in integer to the left, adding zero-bits at the bottom, or moves

them to the right, discarding bits. (In this context the question of what gets shifted in on the left is
irrelevant; integers, viewed as strings of bits, are "half-infinite", that is, conceptually extend

infinitely far to the left.)

For example:

(logbitp j (ash n k»
<=> (and (>= j k) {logbitp (- j k) n»

1 0 g c 0 u n t integer [Function]
The number of bits in integer is detennined and returned. If integer is positive, then 1 bits in its

binary representation are counted. If integer is negative, then the 0 bits in its two's-complement

binary representation are counted. The result is always a non-negative integer.

For example:

(logcount
(logcount
(logcount
(logcount

13) => 3
-13) => 2
30) '=> 4
-30)=> 4

The following identity always holds:

; Binary representation is ... 000 1101
; Binary representation is ... 1110011
; Binary representation is ... 0011110
; Binary representation is ... 1100010

(logcount x) <=> (1 ogcount (-. (+ xl»)

; n te ge r - 1 en gth integer
This function performs the computation

ceiling(log2(if integer< 0 then - integer else integer+ 1»

[Function]

This is useful in two different ways. First, if integer is non-negative, then its value can be

represented in unsigned binary form in a field whose width in bits is at least (i n t e 9 e r - 1 eng t h

integer). Second, regardless of the sign of integer, its value can be represented in signed binary

two's-complement form in a field whose width in bits is at least (+ (i nteger- 1 ength integer)
1) .

For example:
(integer-length 0) => 0
(integer-length 1) => 1
(integer-length 3) => 2
(integer-length 4) => 3
(integer-length 7) => 3
(integer-length -1) => 0
(integer-length -4) => 2
(integer-length -7) => 3
(integer-length -8) => 3

---------------.-------- -------------_._---------

NUMBERS

Compatibility note: This function is similar to the MACUSP function haul on g. One may define hau long as
(haulong x) <-> (integer-length (abs x»

175

12.7. Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of contiguous bits appearing
anywhere in an integer. Such a contiguous set of bits is called a byte. Here the term byte does not imply some
fixed number of bits (such as eight), but a field of arbitrary and user-specifiable width.

The byte-manipulation functions use objects called byte specifiers to designate a specific byte position
within an integer. The representation of a byte specifier is implementation-dependent; it is sufficient to know
that the function byte will construct one, and that the byte-manipulation functions will accept them. The
function byte accepts two integers representing the position and size of the byte, and returns a byte specifier.

Such a specifier designates a byte whose width is size, and whose bits have weights 2Position+size-l through
2position.

byte size position [Function]
byte takes two integers representing the size and position of a byte, and returns a byte specifier
suitable for use as an argument to byte-manipulation functions.

byte-s i ze bytespec
byte-pos it ion bytespec

[Function]
[Function]

Given a byte specifier, byte-size returns the size specified as an integer; byte-position
similarly returns the position.

For example:
(byte-size (byte j k» <=> j
(byte-position (byte j k» <=> k

1 db bytespec integer [Function]
bytespec specifies a byte of integer to be extracted. The result is returned as a positive integer.

For example:
(logbitp j (ldb (byte s p) n)

<=> (and « j s) (logbitp (+ j p) n»

The name of the function "1 d b '~ means "load byte".
Compatibility Dote: The MAcusp function h a i par t can be implemented in tenns of 1 db as follows:

(defun haipart (integer count)
(let «x (abs integer»)

(if (minusp count)
(ldb (byte (- count) 0) x)
(ldb (byte count (max 0 (- (integer-length x) n»)

x» »
set f (page 72) may be used with 1 db, provided that the argument integer is specified by a form
that is a place form acceptable to set f, to modify a byte within the integer that is stored in that
place. The effect is to perform-a dpb (page 176) operation and then store the result back into the

- ---,-------_._--

176 COMMON USP REFERENCE MANUAL

place.

1 db - te s t bytespec integer' [Function]
1 db - t est is a predicate that is true if any of the bits designated by the byte specifier bytespec are
1's in integer, that is, it is true if the designated field is non-zero.

(ldb-test bytespec n) <=> (not (zerop (ldb bytespec n»)

mask-field bytespec integer [Function]
This is similar to 1 db; however, the result contains the specified byte of integer in the position
specified by bytespec, rather than in position 0 as with 1 db. The result therefore agrees with integer
in the byte specified, but has zero bits everywhere else.

For example:
(1 db bs (ma s k - fie 1 d bs n» <=> (1 db bs n)
(logbitp j (mask-field (byte s p) n»

<=> (and (>= j p) « j s) (logbitp j n»
(mask-field fu n) <=> (logand n (dpb -1 fu 0»

set f (page 72) may be used with ma s k - fie 1 d, provided that the argument integer is specified
by a. form that is a place form acceptable to set f, to modify a byte within the integer that is stored
in that place. The effect is to perform a de p 0 sit - fie 1 d (page 176) operation and then store the
result back into the place.

d P b newbyte bytespec integer [Function]
Returns a number that is the same as integer except in the bits specified by bytespec. Let s be the
size specified by bytespec; then the low s bits of newbyte appear in the result in the byte specified by
bytespec. The integer newbyte is therefore interpreted as being right-justified, as if it were the result
of 1 db.

For example:
(logbitp j (dpb m (byte s p) n»

< = > ("i f (a n d (> = j p) « j (+ p s))
(logbitp (- j p) m)
(logbitp j n»

The name of the function "dpb" means "deposit byte".

depos i t-fiel d newbyte bytespec integer. [Function]
This function is to ma s k - fie 1 d as d p b is to 1 db. The result is an integer that contains the bits of
newbyte within the byte specified by bytespec, and elsewhere contains the bits of integer.

For example:
(logbitp j (dpb m (byte s p) n»

<=> (if (and (>= j p) « j (+ p s»)
(logbitp j m)
(logbitp j n»

NUMBERS

-_._----_ _------ - -----_.-.... _ .. _ ... - ._ .. _-_._ ... _ .. - ------_ .. _-_ ... -. __ ... __ ._---_ .. -------------

Implementation note: If the bytespec is a constant, one may of course construct.. at compile time. an equivalent
mask m. for example by computing (depos it-fiel d -1 bytespec 0). Given this mask Tn. one may then
compute

(depos it-fiel d newbyte bytespec integer)

by computing
(logor (logand newbyte m) (logand integer (lognot m»)

where the result of (1 ognot m) can of course also be computed at compile time. However. the following
expression (which I got indirectly from Knuth) may also be used. and may require fewer temporary registers in
some situations: -

(logxor integer (.1 ogand m (1 ogxor integer newbyte»)

A related. though possibly less useful. trick is that

(let «z (logand (logxor x y) m»)
(setq x (logxor z x»
(setq y (logxor z y»)

interchanges those bits of x and y for which the mask m is 1. and leaves alone those bits of x and y for which m
is O.

177

12.8. Random Numbers

random number &opt ional state [Function]
(random n) accepts a positive number n and returns a number of the same kind between zero

(inclusive) and n (exclusive) .. The number n may be an integer or a floating-point number. An

approximately unifo~ choice distribution is used: if n is an integer, each of the possible results

occurs with (approximate) probability lin. (The qualifier "approximate" is used because of

implementation considerations; in practice the deviation from unifonnity should be quite small.)

The argument slate must be an object of type random-state; it defaults to the value of the

variable *random-state*. This object is used to maintain the state of the pseudo-random

number generator, and is altered as a side effect of the random operation.
Compatibility note: random ofzero arguments as defined in MAcusp has been omitted because its value is too
implementation-dependent (limited by fixnum range).

Implementation note: In general. it is not adequate to define (random n) for integral n to be simply (mod
(r andom) n): this fails to be unifonnly distributed if n is larger than the largest number produced by
random. or even if n merely approaches this number. Assuming that the underlying mechanism produces
"random bits" (possibly in chunks such as fixnums). the best approach is to produce enough random bits to
construct an integer k some number d of bits larger than (i nteger-l ength n) (see integer-l ength
(page 174». and then compute (mod k n). The quantity dshould be at least 7. and preferably 10 or more.

To produce random floating-point numbers in the range [A. B). accepted practice (as determined by a quick
look through the Collected Algorithms from the ACM. particularly algorithms 133. 266. 294. and 370) is to
compute X*(B- A)+ A., where X is a floating-point number uniformly distributed over [0.0. 1.0) and computed
by calculating a random integer N in the range [0. M) (typically by a multiplicative-congru~tial or linear
congruential method mod M) and then setting X=NIM. See also [10]. If one takes M = 'i, where/is the
length of the significand of a floating-point number (and it is in fact common to choose M to be a power of
two). then this method is equivalent to the follOwing assembly-language-level procedure. Assume the
representation has no hidden bit Take a floating-point 0.5, and clobber its entire significand with random bits.
Normalize the result if necessary.

For example, on the PDP-10. assume that accumulator T is completely random (all 36 bits are random). Then
the code sequence

LSH T t -9 ; aear high 9 bits; low 27 are random.
FSC T, 128. ; Install exponent and normalize.

will produce in T a random floating-point number uniformly distributed over [0.0. 1.0). (I~ead of the LSH.

- _ .. _-_ ... _-----_ .. _-------- ----------. -------_ ".,'_

178 COMMON USP REFERENCE MANUAL

one could do "TLZ T, 777000; but if the 36 random bits came from a congruential random-number
generator, the high-order bits tend to be "more random t, than the low-order ones, and so the LSH would be a
bit better for uniform distribution. Ideally all the bits would be the result of high-quality randomness.)

With a hidden-bit representation, normalization is not a problem, but dealing with the hidden bit is. The
method can be adapted as follows. Take a floating-point 1.0 and clobber the explicit significand bits with
random bits: this produces a random floating-point number in the range [1.0, 2.0). Then simply subtract 1.0.
In effect. we let the hidden bit creep in and then subtract it away again.

For example, on the VAX, assume that register T is completely random (but a little less random than on the
PDP-IO, as it has only 32 random bits). Then the code sequence

. INSV I"X81.17. 19. T ; Install correct sign bit and exponent
SUB F I" F 1. 0 • T ; Subtract 1.0.

will produce in T a random floating-point number uniformly distributed over [0.0,1.0). Again, if the low-order
bits are not random enough, then "ROTL #7. T" should be performed first.

ImplementoTS may wish to consult reference [IS] for a discussion of some efficient methods of generating
pseudo-random numbers.

random-state [Variable]

This variable holds a data structure, an object of type random-state, that encodes the internal

state of the random-number generator that random uses by default. The nature of this data

structure is implementation-dependent It may be printed out and successfully read back in, but

mayor may not function correctly as a random-number state object in another implementation. A

call to random will perform a side effect on this data structure. Lambda-binding this variable to a

different random-number state object will correctly save and restore the old state object, of course.

make-random-state &optional state [Function]
This function returns a new object of type random~state,suitable for use as the value of the

variable *random-state*. If state is nil or omitted, random-state returns a copy of the

current random-number state object (the value of the variable *random-state*). If state is a

state object, a copy of that state object is returned. If state is t, then a new state object is retUrned

that has been "randomly" initialized by some means (such as by a time-of-day clock).
Rationale: COMMON LIsp purposely provides no way to initialize a random-state object from a user
specified "seed". The reason for this is that the number of bits of state information in a random-state
object may vary widely from one implementation to another, and there is no simple way to guarantee that any
user-specified seed value will be "random enough". Instead, the initialization of random-state objects is left
to the implementor in the case where the argument t is given to make-random-state.

To handle the' common situation of executing the same program many times in a reproducible manner. where
that program uses random, the following procedure may be used:

1. Evaluate (make-random-state t) to create a random-state object.

1 Write that object to a file. using p r ; n t (page 296), for later use.

3. Whenever the program is to be run, first use read (page 291) to create a copy of the random-state
object from the printed representation in the file. Then use the random-state object newly created
by the read operation to initialize the random-number generator for the program.

It is for the sake of this procedure for reproducible execution that implementations are required to provide a
read/print syntax for objects of type random-state.

NUMBERS 179

random-state-p object [Function] .
random-state-p is true if its argument is a random-state object, and otherwise is false.

(random-state-p x) <=> ·(typep x 'random-state)

12.9. Implementation Parameters

The values of the named constants defined in this section are implementation-dependent They may be

useful for parameterizing code in some situations.

most-positive-fixnum [Constant]

most-negative-fixnum [Constant]

The value of most-pos it i ve-fi xnum is that fixnum closest in value to positive infinity

provided by the implementation.

The value of most-negat i ve-fi xnum is that fixnum closest in value to negative infinity

.provided by the implementation.

most-positive-short-float [Constant]

least-posit1ve·short-float [Constant]

least-negative-short-float [Constant]

most-negative-short-float [Constant]

The value of mo s t - P 0 sit i ve - s h 0 r t - flo a t is that short-fonnat floating-point number closest

in value to positive infinity provided by the implementation.

The value of least-positive-short-float is that positive short-fonnat floating-point

number closest in value to zero provided by the implementation.

The value of 1 east-:-negat i ve-short-fl oat is that negative short-fonnat floating-point

number closest in value to zero provided by the implementation.

The value of mo s t - neg at i ve - s h 0 r t - flo a t is that short-fonnat floating-point number closest

in value to negative infinity provided by the implementation.

most-positive-single-float [Constant]

least-positive-single-float [Constant]

.'

j

180 COMMON USP REFERENCE MANUAL

least-negative-single-float [Constant]

~ost-negative-single-float [Constant]

most-positive-double-float [Constant]

least-positive-double-float [Constant}

least-negative-double-float [Constant]

most-negative-double-float [Constant]

most-positive-long-float [Constant]

least-positive-long-float [Constant]

least-negative-long-float [Constant]

most-negative-long-float [Constant]

These are analogous to the constants defined above for short-fonnat floating-point numbers.

short-float-epsilon [Constant]

single-float-epsilon [Constant]

double-float-epsilon [Constant]

long-float-epsilon [Constant]

These constants indicate, for each floating-point format, the smallest positive number e of that
fonnat such that

(not (= (float 1 e) (+ (float 1 e) e»)

short-float-negative-epsilon [Constant]

single-float-negative-epsilon [Constant]

double-float-negative-epsilon [Constant]

long-float-negative-epsilon [Constant]

---------------- ---------------- --- --------

NUMBERS 181

These constants indicate, for each floating-point fonnat, the smallest positive number e of that
format such that

(not (= (float 1 e) (- (float 1 'e) e»)

,----,---,-""--,-,---","",

182 COMMON USP REFERENCE MANUAL

Chapter 13

Characters

COMMON LISP provides a character data type; objects of this type represent printed symbols such as letters.

Every char~cter has three attributes: code. bits, and font. The code attribute is intended to distinguish
among the printed glyphs and formatting functions for characters. The bits attribute allows extra flags to be
associated with a character. The font attribute permits a specification of the style of the glyphs (such as
italics).

char-code-1imit [Constant]

The value of char-code-1 imi t is a non-negative integer that is the upper exclusive bound on
values produced by the function char -code (page 188), which returns the code component of a
given character; tha~ is, the values returned by char-code are non-negative and strictly less than
the value of ch ar -code-1 i mi t.

char-font-1imit [Constant]

The value of char-font-1 imi t is a non-negative integer that is the upper exclusive bound on
values produced by the function char-font (page 188), which returns the font component of a
given character; that is, the values returned by char-font are non-negative and strictly less than
the value of char-font-1 im·i t.

Implementation note: No COMMON LIsp implementation is required to support non-zero font attributes; if it
does not, then char-font-l imi t should be 1.

char-bits-1imit [Constant]

The value of c h a r - bit s -1 i mit is a non-negative integer that is the upper exclusive bound on
values produced by the function c h a r - bit s (page 188), which returns the bits component of a
given character; that is, the values returned by char-bi ts are non-negative and strictly less than
the value of char-b i ts -1 i mi t. Note that the value of ch ar-b its -1 imi t will be a power of
two.

-183 -

184 COMMON USP REFERENCE MANUAL

ImpJementation note: No COMMON USP implementation is required to support non-zero bits attributes; if it
does not, then char-bi ts -1 imi t should be 1.

13.1. Predicates on Characters

The predicate characterp (page 60) may be used to determine whether any LISP object is a character
object

standard-char-p char [Function]
The argument char must be a character object standard-char-p is true if the argument is a
"standard character", that is, one of the ninety-five ASCII printing characters or <return>. If the
argument is a non-standard character, then standard-char-p is false.

Note in particular that any character with a non-zero bits or font attribute is non-standard.

graphic-char-p char [Function] .
The argument char must be a character object. 9 r ap hi c - c h a r - p is true if the argument is a
"graphic" (printing) character, and false if it is a "non-graphic" (fonnatting or control) character.
Graphic characters have a standard. textual representation as a single glyph, such as "A" or "." or
"=". By convention, the space character is considered to be graphic. Of the standard characters (as
defined by standard-char-p). all but <return> are graphic. Ifan implementation provides any
of the semi-standard characters <backspace>, <tab>, <rubouo, <linefeed>, and <page>. they are not
graphic.

Graphic characters of font 0 may be assumed all to be of the same width when printed; programs
may depend on this for purposes of columnar fonnatting. Non-graphic characters and characters of
other fonts may be of varying widths.

Any character with a non-zero bits attribute is non-graphic.

string-char-p char [Function]
The argument char must be a character object s t r i n 9 - c h a r - p is true if char can be stored into

a string. and otherwise is false. Any character that satisfies s tan dar d - c h a r - p also satisfies
stri ng-char-p; others may also.

a1 pha-char-p char [Function]
The argument char must be a character object. a1 pha-char-p is true if the argument is an
alphabetic character, and otherwise is false.

If a character is alphabetic, then it is perforce graphic. Therefore any character with a non-zero bits
attribute cannot be alphabetic. Whether a character is alphabetic may depend on its font number.

Of the standard characters (as defined by standard-char-p), the letters "A" through "z" and
"a" through "z" are alphabetic.

CHARACTERS

upper-case-p char
lower-case-p char
both-case-p char

185

[Function] .
[Function]
[Function]

The argument char must be a character object. upper-case-p is true if the argument is an
upper-case (majuscule) character, and otherwise is false. 1 ower-case-p is true if the argument is
an lower-case (minuscule) character, and otherwise is false.

both-case-p is true if the argument is upper-case and there is a corresponding lower-case
character (which can be obtained using char-downcase (page 189», or if the argument is lower
case and there is a corresponding upper-case character . (which can be obtained using
char-up case (page 189».

If a character is either upper-case or lower-case, it is necessarily alphabetic. However, it is
permissible in theory for an alphabetic character to be neither uppercase nor lowercase (in a
non-Roman font, for example).

Of the standard characters (as defined by standard-char-p), the letters "A" through "Z" are
upper-case and "a" through "z" are lower-case.

di gi t-char-p char &opt i onal (radix 10..) [Function] .-
The argument char must be a character object, and radix must be a non-negative integer. If char is
not a digit of the radix specified by radix, then di gi t-char-p is false; otherwise it returns a···
non-negative integer that is the "weight" of char in that radix.

Digits are necessarily graphic characters.

Of the standard characters (as defined by s tan dar d - c h a r - p), the characters "0." through "9",
"A" through "Z", and "a" through "z" are digits. The weights of "0." through "9" are the integers
o through 9, and of "A" through "Z" (and also "an through "z") are 10 through 35.
dig i t - c h a r - p returns the weight for one of these digits if and only if its weight is strictly less
than radix . . Thus, for example, the digits for radix 16 are "0.123456 789ABCDEF".

Here is an example of the use of di gi t-char-p:
(defun convert-string-to-integer (str &optional (radix 10.»

"Given a digit string and optional radix, return an integer."
(do «j 0. (+ j i»

al phanumericp char

(n 0. (+ (~ n radix)
(or (digit-char-p (char str j) radlx)

(ferror "Bad radix--O digit: -C"
radix
(char str j»»»

{(= j (length str» n»)

[Function]
The argument char must be a character object. alp h an ume ric p is true if char is either alphabetic
or numeric. By definition,

(alphanumericp x) <=> (or (alpha-char-p x) (digit-char-p x»

186 COMMON USP REFERENCE MANUAL

Alphanumeric characters are therefore necessarily graphic (as defined by 9 rap h ; c - c h a r - p

(page 184».

Of the standard characters (as defined by s tan dar d - c h a r - p), the characters "0" through "9",
"A" through "Z", and "a" through "z" are alphanumeric.

char= character &rest more-characters [Function}
char/= character &rest more-characters [Function]
char< character &rest more-characters [Function]
char> character &rest more-characters [Function]
char<= character &rest more-characters [Function]
char>= character &rest more-characters [Function]

The arguments must all be character objects. These functions compare the objects using the
implementation-dependent total ordering on characters, in a manner analogous to numeric
comparisons by = (page 153) and related function.

The total ordering on characters is guaranteed to have the following properties:

• The standard alphanumeric characters'obey the following partial ordering:
A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z
a<b<c<d<e<f<g<h<i<j<k<1<m<n<o<p<q<r<s<t<u<v<w<x<y<z
O<1<2<3<4~5<6<7<8<9
either 9<A or Z<O
either 9<a or z<O

This implies that alphabetic ordering holds within each case (upper and lower), and that
the digits as a group are not interleaved with letters. However, the ordering or possible
interleaving of upper-case letters and lower-case letters is unspecified. (Note that both
the ASCII and the· EBCDIC character sets conform to this specification. As it happens,
neither ordering interleaves upper-case and lower-case letters: in the ASCII ordering,
9<A and Z<a, whereas in the EBCDIC ordering z<A and Z<O.)

• If two characters have the same bits and font attributes, then their ordering by c h a r < is
consistent with the numerical ordering by the predicate < (page 153) on their code
attributes.

• If two characters differ in any. attribute (code, bits, or font) then they are different

The total ordering is not necessarily the same as the total ordering on the integers produced by
applying ch ar - ; n t (page 190) t~ the characters (although it. is a reasonable implementation
technique to use that ordering).

While alphabetic characters of a given case must be properly ordered, they need not be contiguous;
thus (char<= #\a x *\z) is not a valid way of determining whether or not x is a lower-case
letter. That is why a separate 1ower-case-p (page 185) predicate is provided

For example:

i
t

CHARACTERS

(char= #\d #\d) is true
(char/= #\d #\d) is false
(char= #\d #\x) is false
(char/= #\d #\x) is true
(char= #\d #\0) is false
(char I = #\d #\0) is true
(char= #\d #\d #\d #\d) istrue
(char/= #\d #\d #\d #\d) is false
(char= #\d #\d #\x #\d) is false
(char/= #\d #\d #\x #\d) is false
(char= #\d #\y #\x #\c) is false
(char 1= #\d #\y #\x #\c) is true
(char= #\d #\c #\d) is false
(char/= #\d #\c #\d) is false
(char< #\d #\x) is true
(char<= #\d #\x) is true
(char<' #\d #\d) is false
(char<= #\d #\d) is true
(char< #\a #\e #\y #\z) istrue
(char<= #\ a #\e #\y #\z) is true
(char< #\a #\e #\e #\y) is false
(char<= #\a #\e #\e #\y) istrue
(char> #\e #\d) istrue
(char>= #\e #\d) .istrue
(char> #\d #\c #\b #\a) is true
(char>= #\d #\c #\b #\a) istrue
(char> #\d #\d #\c #\a) is false
(char>= #\d #\d #\c #\a) is true
(char> #\e #\d #\b #\c #\a) is false
(char>= #\e #\d #\b #\c #\a) is false
(char> #\z #\A) may be true or false
(char> #\Z #\a) may be true or false

187

There is no requirement that (e q c 1 c 2) be true merely because (c h a r = c 1 c 2) is true.
While eq may distinguish two character objects that char= does no~ it is distinguishing them not
as characte~ but in some sense on the basis of a lower-level implementation characteristic. (Of
course, if (eq cl c2) is true then one may expect (char= c 1 c2) to be true.) However, eql

(page 62) and equa 1 (page 62) compare character objects in the same way that ch ar= does.

char-equal character &rest more-characters [Function]
char-nat-equal character &rest more-characters [Function]
char-l essp character &rest more-characters [Function]
char-greaterp character &rest more-characters [Function]
c h a r - nat - 9 rea t e r p character &r est more-characters [Function]
char-nat-lessp character &rest more-characters [Function]

The predicate char-equa 1 is like char=, and similarly for the others, except according to a

different ordering such that differences of bits attributes and case are ignored, and font information
is taken into account in an implementation-dependent manner. For the standard characters, the
ordering is such that A=a, B=b, and so on, up to Z=z, and furthermore either 9<A or Z<O.

For example:

COMMON USP REFERENCE MANUAL

(char-equal #\A #\a) is true
(char= #\A #\a) is false
(char-equal #\A #\Contro1-A) istrue

The ordering may depend on the font information. For example, an implementation might decree
that (char-equal #\p #\p) be true, but that (char-equal #\p #\'IT) be false (where #\'11
is a lower-case "p" in some font). Assuming italics to be in font 1 and the Greek alphabet in font 2,
this is the same as saying that (char-equal #O\p #1 \p) may be true and at the same time
(char-equal #O\p #2\p) may be false.

13.2. Character Construction and Selection

charac~er object [Function]
The function character coerces its argument to he a character if possible; see coerce (page
40).

(character x) <=> (coerce x 'character)

char-code char [Function]
The 'argument char must be a character object char-code returns the code attribute of the
character object; this will be a non-negative integer less than the (normal) value of the variable
char-code-1 imi t (page 183).

char-b; ts char [Function]
The argument char must be a character object char-bits returns the bits attribute of the
character object;' this will be a non-negative integer less than the (normal) value of the variable
c h a r - b ; t s -1 i mit (page 183).

char-font char [Function]
The argument char must be a character object char-font returns the font attribute of the
character object; this will be a non-negative integer less than the (normal) value of the variable
char-font-l imi t (page 183).

cod e - c h a r code &0 p t ion a 1 (bits 0) <font 0) [Function]
All three arguments must be non"negative integers. If it is possible in the implementation to

construct a character object whose code attribute is code, whose bits attribute is bits, and whose font
attribute is font, then such an object is returned; otherwise nil is returned.

Foranyintegersc,b,andf,if(code-char c b 1) isnotnil then
(char-code (code-char c b 1) => c
(char-b; ts (code-char c b 1) => b
(char-font (code-char c b 1) => f

If the font and bits attributes of a character object x are zero, then it is the case that

(char= (code-char (char-code c» c) is true

---- _ .. _. __ ._-- .. - - ... _ .. _-----_.

CHARAcrERS 189

make-char char &optional (bits 0) (font 0) [Function)
The argument char must be a character, and bits and font must be non-negative integers. If it is
possible in the implementation to construct a character object whose code attribute is that of char,
whose bits attribute is bits, and whose font attribute is font, then such an object is returned;
otherwise nil is returned.

If bits and font are zero, then make-char cannot fail. This implies that for every character object
one can "tum off' its bits and font attributes.

13.3. Character Conversions

char-upcase char [Function)
char-downcase char [Function]

The argument char must be a character object char-up case attempts to convert its argument to

an upper-case equivalent; char-down case attempts to convert to lower case.

char-upcase returns a character object with the same font and'bits attributes as char, but with
possibly a different code attribute. If the code is different from char's, then the predicate
lower-case-p (page 185) is true of char, and upper-case-p (page 185) is true of the result
character. Moreover, if (char= (char-upcase x) x) is not true, then it is true that

(char= (c~ar-downcase (char-upcase x» x)

Similarly, char-downcase returns a character object with the same font and bits attributes as
char, but with possibly a different code attribute. If the code is different from char's, then the
predicate upper-case-p (page 185) is true of char, and lower-case-p (page 185) is true of
the result character. Moreover, if (char= (char-downcase x) x) is not true, then it is true
that

(char= (char-upcase (char-downcase x» x)
Note that the action of char-upcase and char-downcase may depend on the bits and font
attribute of the character. In particular, they have no effect on a character with a non-zero bits
attribute, because such characters are by definition not alphabetic. See alp h a - c h a r - p (page
184).

di gi t-char weight &opt; ona 1 (radix 10.) (bits 0) (font 0) [Function]
All arguments must be integers. dig; t - c h a r determines whether or not it is possible to construct
a character object whose bits attribute is bits, whose font attribute is font, and whose code is such
that the result character has the weight weight when considered as a digit of the radix radix (see the
predicate di gi t-char-p (page 185». It returns such a character if that is possible, and
otherwise returns n i 1.

d; 9 i t - c h a r cannot return n i 1 if bits and font are zero, radix is between 2 and 36 inclusive, and
weight is non-negative and less than radix.

If more than one character object can encode such a weight in the given radix, one shall be chosen

._ .. _----_.-._ ... _ .. __ .-.. --- -------- --_._---... _-_ .. _ _----- ._-------

190 COMMON USP REFERENCE MANUAL

consistently by any given implementation; moreover, among the standard characters upper-case
letters are preferred to lower-case letters.

For example:
(digit-char 7) => #\7
(digit-char 12) => nil
(digit-char 12 16) => #\C ;not #\c
(digit-char 6 2) => nil
(digit-char 1 2) => #\1

char- i nt char [Function]
The argument char must be a character object c h a r - i n t returns a non-negative integer encoding
the character object

If the font and bits attributes of char are zero, then ch ar - i n t returns the same integer
char-code would. Also,

(char= cl c2) <=> (= (char-int cl) (char-int c2»

for characters c 1 and c2.

This function is provided primarily for the purpose of hashing characters.

in t - ch ar integer [Function]
The argument must be a non-negative integer. in t - c h a r returns a character object c such that
(c h a r - i n t c) is equal to integer, if possible; otherwise i n t - c h a r returns false.

char-name char [Function]
The argument char must be a character object ' If the character has a name, then that name (a
symbol) is returned; otherwise nil is returned. All characters that have zero font and bits
attributes and that are non-graphic (do not satisfy the predicate g rap hi c - c h a r - p (page 184»

have names. Graphic characters mayor may not have names.

The standard characters <return> and <space) have the respective names return and space. The
optional characters <tab), <page), <rubouO, <1inefeed), and <backspace) have the respective names
tab, page, rubout, 1 i nefeed, and backspace.

Characters that have names can be notated as "#\" followed by the name. (See section 22.1.4.)
Although the name may be written in any case, it is considered stylish to capitalize it thus:
"#\Sp ace".

c h a r - n arne will only locate "simple" character names; it will not construct names such as

"Contro l-Space" on the basis of the character's bits attribute.

name-char sym [Function]
The argument s ym must be a symbol. If the symbol is the name of a character object, that object is
returned; otherwise nil is returned.

CHARACTERS 191

13.4. Character Control-Bit Functions

COMMON LISP provides explicit names for four bits of the bits attribute: Control, Meta, Hyper, and Super.
The following defi~itions are provided for manipulating these. Each COMMON LISP implementation provides

these functions for compatibility, even ifit does not support any or all of the bits named below.

char-contro1-bit [Constant]

char-meta-bit [Constant]

char-super-bit [Constant]

char-hyper-bit [Constant]

The values of these named constants are the "weights" (as integers) for the four nam,ed control bits.

The weight of the control bit is 1; of the meta bit, 2; of the super bit, 4; and of the hyper bit, 8.

If a given implementation of COMMON LISP does not support a particular bit, then the
'corresponding variable is zero instead.

char-bit char name [Function]
c h a r - bit takes a character object char and the name of a bit. and returns non-nil if the bit of

that name is set in char, or nil if the bit is not set in char. Valid values for name are

implementation-dependent. but typically are : con tro 1, : meta, : hyper, and : super.

For example:

(char-bit #\Contro1-X :control) => troe
set f (page 72) may be used with c h a r - bit, provided that the argument char is specified by a

form that is a place form acceptable to set f, to modify a bit of the character stored in that place.
The effect is to perform a set-char-bit (page 191) operation and then store the result back

into the place.

set-char-b it char name newvalue [Function]
c h a r - bit takes a character object char, the name of a bit, and a flag. A character is returned that

is just like char except that the named bit is set or reset according to .whether newvalue is non-n i 1

or nil. Valid values for name are implementation-dependent, but typically are : con t r 0 1,

:meta, :hyper,and :super.

For example:
(set-char-bit #\X :contro1 t) => #\Contro1-X
(set-char-bit #\Contro1-X :contro1 t) => #\Control-X
(set-char-bit #\Control-X :contro1 nil) => *\X

.. -.......... _-_ .. _ _- ------_. -_._

192 COMMON USP REFERENCE MANUAL

--------------------. ---
h

Chapter 14

Sequences

The type sequence encompasses both lists and vectors (one-dimensional arrays). ,While these are
different data structures with different structural propenies leading to different algorithmic uses, they do have
a common propeny: each contains an ordered set of elements. Note that nil is considered to be a sequence,
of length zero.

There are some operations that are useful on both lists and arrays because they deal with ordered sets of
elements. One may ask the number of elements, reverse the ordering, extract a subsequence, and so on. For
such purposes COMMON LISP provides a set of generic functions on sequences:

elt reverse map remove
length nreverse some remove-duplicates
subseq concatenate every delete
copy-seq position notany delete-duplicates
fill find notevery substitute
replace sort reduce nsubstitute
count merge search mismatch

Some of these operations come in more than one version. Such versions are indicated by adding a suffix (or,
occasionally, a prefix) to the basic name of the operation. In addition, many operations accept one or more
optional keyword arguments that can mo.dify the operation in various ways.

If the operation requires testing sequence elements according to some criterion, then the criterion may be
specified in one of two ways. The basic operation accepts an item, and elements are tested for being e q 1 to

that item. (A test other than eql can be specified by the : test or : test-not keyword.) The variants
formed by adding "-if" and "-if-not" to the basic operation name do not take an item, but instead a
one-argument predicate, and elements are tested for satisfying or not satisfying the predicate. As an example,

(remove item sequence)
returns a copy of sequence from which all elements e q 1 to item have been removed;

(remove item sequence : tes tilt equa 1)
returns a copy of sequence from which all elements e qua 1 to item have been removed;

(remove- i flit numberp sequence)
returns a copy of sequence from which all numbers have been removed.

If an operation tests elements of a sequence in any manner, the keyword argument : key t if not ni 1 t
should be a function of one argument that will extract from an element the part to be tested in place of the

-193 -
---------- .. ----- --- _._._---,_._--_._-,---

194 COMMON LISP REFERENCE MANUAL

whole element. For example, the effect of the MACLISP expression (assq item seq) could:be obtained .

by

(find item sequence :test "eq :key "car)

7bis searches for the first element of sequence whose car is e q to item.

For some operations it can be useful to specify the direction in which the sequence is conceptually

processed. In this case the basic operation normally processes the sequence in the forward direction, and

processing in the reverse direction is indicated by a non-n i 1 value for the keyword argument: from-end.

(The processing order specified by the : from-end is purely conceptual. Depending on the object to be

processed and on the implementation, the actual processing order may be different. For this reason a

user-supplied test function should be free of side effects.)

Many operations allow the specification of a subsequence to be operated upon. ·Such operations have

keyword arguments called: start and : end. These arguments should be integer indices into the sequence,

with starl~end (it is an error if start> end). They indicate the subsequence starting with and including element
start and up to but excluding element end. The length of the subsequence is therefore end- start. If start is

omitted it defaults to zero, and if end is omitted or nil it defaults to the length of the sequence; therefore if
both are omitted the entire sequence is processed by default. For the most part, subsequence specification is

permitted purely for the sake of efficiency; one can simply call sub seq instead to extract the subsequence
before operating on it. Note, however, that operations that calculate indices return indices into the original

sequence, not into the subsequence:
(position '\b "foobar" :start 2 :end 5) => 3
(position #'b (subseq "foobar" 2 5» => 1

If two sequences are involved, then the keyword arguments :startl, :endl, :start2, and :end2 are

used to specify separate subsequences for each sequence.

For some functions, notably remove and del ete, the keyword argument: count is used to specify how

many occurrences of the item should be affected. If this is nil or is not supplied, all matching items are

affected.

In the following function descriptions, an element x of a sequence "satisfies the test" if any of the following

holds:

• A basic function was called, testfn was specified by the keyword : t est, and (f un c a 1 1 testfn
item (keyfn x» is true. .

• A basic function was called, testfn was specified by the keyword : t est - not, and (f u n c a 11
testln item (keyfn x» is false.

• An "- i f" function was called, and (fun call predicate (keyfn x» is true.

• An "- i f - not" function was called, and (fun c a 11 predicate (keyfn x» is false.

In each case keyfn is the value of the : key keyword argument (the default being the identity function). See,

for example, remove (page 199).

--- - ----- -- -----

SEQUENCES 195

In the following function descriptions, two elements x and y taken from sequences "match" if either of the
following holds:

• testfn was specified by the keyword : t est, and (f un c a 11 testfn (keyfn x) (keyfn y» is
true .

• testfn was specificd by the keyword : t est - not, and (f u n c a 11 testfn (keyfn x) (keyfn
y)) is false.

See, for example, search (page 203);

As a rule, whenever a sequence function must construct and return a new vector, it always returns a simple
vector (see section 2.5).

14.1. Simple Sequence Functions

e 1 t sequence index [Function]
This returns the element of sequence specificd by index, which must be a non-negative integer less
than the length of the sequence as returned by 1 ength (page 196). The first element ofa sequence
has index o.

(Note that e 1 t observes the fill pointer in those vectors that have fill pointers. The array-specific
function aref (page 230) may be used to access vector elements that are beyond the vector's fill
pointer.)

set f (page 72) may be used with e 1 t to destructively replace a sequence element with a new
value.

subseq sequence start &opt iona1 end [Function]
This returns the subsequence of sequence specified by start and end. subseq always allocates a
new sequence for a result; it never shares storage with an old sequence. The result subsequence is
always of the same type as the argument sequence.

set f (page 72) may be used with sub seq to destructively replace a subsequence with a sequence
of new values; see also rep 1 ace (page 199).

copy-seq sequence [Function]
A copy is made of the argument sequence; the result is equa 1 to the argument but not eq to it

(copy-seq x) <=> (subseq x 0)

but the name copy-seq is more perspicuous when applicable.

196 COMMON USP REFERENCE MANUAL

1 ength sequence [Function]
The number of elements in sequence is returned as a non-negative integer. If the sequence is a
vector with a fill pointer, the "active length" as specified by the fill pointer is returned. See section
17.6 (page 234).

reverse sequence [Function]
The result is a new sequence of the same kind as sequence, containing the same elements but in
reverse order. The argument is not modified

nreverse sequence [Function]
The result is a sequence containing the same elements ac; sequence but in reverse order. The
argument may be destroyed and re-used to produce the result The result mayor may not be e q to
the argument, so it is usually wise to say something like {s e t q x (n rever sex)), because
simply (n rever sex) is not guaranteed to leave a reversed value in x.

make-sequence type size &key : initial-element [Function]
This returns a sequence of type type and of length size, each of whose elements has been initialized
to the : in it i a 1 -e 1 emen t ar~ment. If specified, the : in i t i a 1 -e 1 emen t argument must be
an object that can be an element of a sequence of type type.

For example:
{make-sequence '(vector double-float) 100

:initial-element IdO)

If an : in; t i a 1 - e 1 eme n t argument is not specified, then the sequence will be initialized in an
implementation-dependent way.

14.2. Concatenating, Mapping, and Reducing Sequences

concatenate result-type &rest sequences [Function]
The result is a new sequence that contains all the elements of all the sequences in order. All of the
sequences are copied from; the result does not share any structure with any of the argument
sequences (in this con cat en ate differs from a p pen d). The type of the result is specified by
result-type, which must be a SUbtype of seq u e n c e, as for the function co e r c e (page 40). It must
be possible for every element of the argument sequences to be an element of a sequence of type
result-type.

If only one sequence argument is provided, and it has the type specified by result-type,
concatenate is required to copy the argument rather than simply returning it If a copy is not
required, but only possible type-conversion, then the coerce (page 40) function may be
appropriate.

---•.. _----_._------_._--------- -

SEQUENCES 197

map result-type junction sequence &r es t more-sequences [Function]
The function must take as many arguments as there are sequences provided; at least one sequence
must be provided. The result of rna p is a sequence such that element j is the result of applying
function to element j of each of the argument sequences. The result sequence is as long as the
shortest of the input sequences.

If the function h~ side-effects, it can count on being called first on all the elements numbered 0,
then on all those numbered 1, and so on.

The type of the result sequence is specified by the argument result-type, as for the function coerce
(page 40). In addition, one may specify nil for the result type, meaning that no result sequence is
to be produced; in this case the function is invoked only for effect, and map returns nil. This gives

J. an effect similar to that of rna p c (page 98).
Compatibility note: In MAcLIsp, lisp Machine LIsp. INTERLIsp, and indeed even LIsp 1.5, the function map
has always meant a non-value-reruming version. However. standard computer science literature, and in
particular the recent wave of papers on "functional programming". have come to use map to mean what in the
past LIsp people have called mapcar. To simplify th.ings henceforth. COMMON LIsp follows current usage, and
what was formerly called map is named map 1 (page 98) in COMMON IIsP,

For example:
(map 'list #'- '(1 2 3 4» => (-1 -2 -3 -4)
(map 'string

#'(lambda (i) (if (oddp x) #\1 #\0»
'(123 4»

=> "1010"

some predicate sequence &rest more-sequences [Function]
every predicate sequence &rest more-sequences [Function]
notany predicate sequence &rest more-sequences [Function]
notevery predicate sequence &rest more-sequences (Function]

These are all predicates. The predicate must take as many arguments as there are sequences
provided. The predicate is first applied to the elements with index 0 in each of the sequences, and
possibly then to the elements with index 1, and so on, until a termination criterion is met or the end
of the shortest of the sequences is reached.

If the predicate has side-effects, it can count on being called first on all the elements numbered 0,
then on all those numbered 1, and so on.

some returns as soon as any invocation of predicate returns a non-n i 1 value; some returns that
value. If the end of a sequence is reached, s orne returns n i 1. Thus, considered as a predicate, it is
true if some invocation of predicate is true.

eve r y returns n i 1 as soon as any invocation of predicate returns n i 1. If the end of a sequence is
reached, every returns a non-n i 1 value. Thus, considered as a predicate, it is true if every
invocation of predicate is true.

not any returns n i 1 as soon as any invocation of predicate returns a non-n; 1 value. If the end of
a sequence is reached, notany returns a non-n i 1 value. Thus. considered as a predicate, it is true
if no invocation of predicate is true.

198 COMMON LISP REFERENCE MANUAL

notevery returns a non-n i 1 value as soon as any invocation of predicate returns nil. If the end
of a sequence is reached, not eve r y returns nil. Thus, considered as a predicate, it is true if not
every invocation of predicate is true.

Compatibility note: The order of the arguments here is not compatible with INTERuSP and Usp Machine LIsp.
This is to stress the similarity of these functions to map. The functions are therefore extended here to functions
of more than one argument. and multiple sequences.

reduce jUnction sequence &key :from-end :start :end :initial-value [Function]
The reduce function combines all the elements of a sequence using a binary operation; for
example, using + one can add up all the elements.

The specified subsequence of the sequence is combined or "reduced" using the jUnction, which .
must accept two arguments. The reduction is left-associative, unless the : from-end argument is
true (it defaults to nil), in which case it is right-associative. If an : i nit i a 1 - val u e argument is ~'
given, it is logically placed before the subsequence (after it if : from-end is true) and included in
the reduction operation.

If the specified subsequence contains exactly one element and no : in i t i a 1 - val ue is given, then
that element is returned and the jUnction is not called. If the specified subsequence is empty and an
: i n i t·i a 1 - val u e is given, then the : i nit i a 1 - val u e is returned and the jUnction is not called.

If the specified subsequence is empty and no : in it i a 1 - val ue is given, then the jUnction is
called with zero arguments, and red u c e returns whatever the function does. (This is the only case
where the jUnction is called with· other than two arguments.)

For example:
(reduce #'+ '(1 23 4» => 10
(reduce#'- '(1 2 3 4) <=> (- (- (- 1 2) 3) 4) => -8
(reduce #'- '(1234) :from-end t) ; Alternating sum.

<=> (- 1 (- 2 (- 3 4») => -2
(reduce #'+ 'C»~ => 0
(reduce #'+ '(3» => 3
(reduce #'+ '(fool) => foo
(reduce #'list '(1 2 3 4» => «(1 2) 3) 4)
(reduce #'list '(1 2 3 4) :from-end t) => (1 (2 (3 4»)
(reduce #'list '(1 2 3 4) :initial-value 'fool

=> ««foo 1) 2) 3) 4)
(reduce #'list '(1 23 4)

:from-end t :initial-value 'fool
=> (1 (2 (3 (4 fo~»»

1f the jUnction produces side effects, the order of the calls to the jUnction can be correctly predicted
from the reduction ordering demonstrated above.

The name "reduce" for this function is borrowed from APL.

SEQUENCES 199

14.3. Modifying Sequences

fill sequence item &key :start :end [Function]
The sequence is destructively modified by replacing the elements of the subsequence specified by

the : s tar t and : end parameters with the item. The item may be any LISP object, but must be a

suitable element for the sequence. The item is stored into all specified components of the sequence,
beginning at the one specified by the : s ta'rt index (which defaults to zero), and up to but not

including the one specified by the : end index (which defaults to the length of the sequence).

fill returns the modified sequence.

For example:
(setq x (vector 'a 'b 'c 'd 'e» => #(a b c d e)
(fill x 'z :start 1 :end 3) => #(a z z d e)

and now x => /I (a z z de)
(fill x 'p) => /I(p P P P p)

and now x => /I (p p p p p)

replace sequence] sequence2 &key :startl :endl :start2 :end2 [Function]
The sequence sequence] is destructively modified by copying successive elements into it from

sequence2. The elements of sequence2 must be of a type that may be stored into sequence]. The

subsequence of sequence2 speCified by : s tar t 2 and : end 2 is copied into the subsequence of

sequence] specified by : s tar t 1 and : end 1. (The arguments : s tar t 1 and : s tar t 2 default to

zero. The arguments : end 1 and : end 2 default to nil, meaning the end of the appropriate

sequence.) If these subsequences are not of the same length. then the shorter length detennines

how many elements are copied; the extra elements near the end of the longer subsequence are not

involved in the operation. The number of elements copied may be expressed as:
(min (- end] startl) (- end2 start2»

The value returned by rep 1 ace is the modified sequencel.

If sequence] and sequence2 are the same object and the region being modified overlaps with the

region being copied from, then it is as if the entire source region were copied to another place and

only then copied back into the target region.

remove item sequence &key : from-end : tes t : test-not : start : end

:count :key

remove- if test sequence &key : from-end : start : end : count : key

remove-if-not test sequence &key :from-end :start :end :count :key

[Function]

[Function]
[Function]

The result is a sequence of the same kind as the argument sequence that has the same elements

except that those in the subsequence delimited by : start and : end and satisfying the test (see

above) have been removed. This is a nondestructive operation; the result is a copy of the input

sequence, save that some elements are not copied.

The : co un t argument, if supplied, limits the number of elements removed; if more than : co u n t

elements satisfy the test, only the leftmost : co u n t such elements are removed.

200 COMMON USP REFERENCE MANUAL

. A non-nil : f r om- end specification matters only when the : co un t argument is provided; in
that case only the righunost : co un t elements satisfying the test are removed.

For example:
(remove 4 '(1 2 4 1 3 4 5» => (1 2 1 3 5)
(remove 4 '(1 2 4 1 3 4 5) :count 1) => (1 2 1 3 4 5)
(remove 4 '(1 2 4 1 3 4 5) :count 1 :from-end t)

=> (1 2 4 1 3 5)
(remove 3 '(1 2 4 1 3 4 5) :test I'»~ => (4 3 4 5)
(remove-if #'oddp '(1 2 4 1 3 4 5» => (2 4 4)
(remove-if #'evenp '(1 2 4 1 3 4 5) :count 1 :from-end t)

=> (1 2 4 1 3 5)

The result of remove may share with the argument sequence; a list result may share a tail with an
input list, and the result may be e q to the input sequence if no elements need to be removed.

delete item sequence &key :from-end :test :test-not :start :end

:count :key

[Function]

de 1 ete- i f test sequence &key : from-end : start : erid : count : key

delete-if-not test sequence &key :from-end :start :end :count :key

[Function]
[Function]

This is the destructive counterpan to remove. The result is a sequence of the same kind as the·

argument sequence that has the same elements except that those in the subsequence delimited by

: start and: end and satisfying the test (see above) have been deleted. This is a destructive

operation. The argument sequence may be destroyed and used to construct the result; however, the

result mayor may not be eq to sequence.

The : count argument, if suppliecL limits the number of elements deleted; if more than : count

elements satisfy the test, only the leftmost: count such are deleted.

A non-n i 1 : from-end specification matters only when the : count argument is provided; in
that case only the rightmost : co u n t elements satisfying the test are deleted.

For example:
(delete 4 '(1 2 4 1 3 4 5» => (1 2 1 3 5)
(delete 4 '(1 2 4 1 3 4 5) :count 1) => (1 2 1 3 4 5)
(delete 4 '(1 2 4 1 3 4 5) :count 1 :from-end t)

=> (1 2 4 1 3 5)
(delete 3 '(12 4 13 4 5) :test I'»~ => (4 345)
(delete-if #'oddp '(1 2 4 1 3 4 5» => (2 4 4)
(delete-if #'evenp '(1 2 4 1 3 4 5) :count 1 :from-end t)

=> (1 2 4 1 3 5)
Compatibility note: In MACLISP, the del e t e function uses an e qua 1 comparison rather than e q 1, which is
the default test for del e t e in CoMMON USP. Where in MAcusp one would write (d e 1 e t e x y) one must
in CoMMONuspwrite (delete x y :test "equal).

remove-dupl i cates sequence &key : from-end : test : test-not

:start :end :key

del ete-dupl i cates sequence &key : from-end : test : test-not

:start :end :key

[Function]

[Function]

The elements of sequence are compared pairwise, ~d if any two match then the one occurring

SEQUENCES 201

earlier in the sequence is discarded (but if the : from-end argument is true then the one later in .
the sequence is discarded). The result is a sequence of the same kind as the argument sequence
with enough elements removed so that no two of the remaining elements match.

r emo v e - d u P 1 i c a te s is the non-destructive version of this operation. The result of
r emo v e - d u P 1 i cat e s may share with the argument sequence; a list result may share a tail with an
input list., and the result may be eq to the input sequence ifno elements need to be removed.

del ete-dupl i cates may destroy the argument sequence.

Some examples:
(remove-duplicates '(a b c b d de» => (a c b d e)
(remove-duplicates '(a b c b d d e) :from-end t) => (a b c d e)
(remove-duplicates '«foo #\a) (bar #\%) (baz #\A»

:test #'char-equal :key #'cadr)
=> «bar #\%) (baz #\A»

(remove-duplicates '«foo #\a) (bar #\%) (baz #\A»
:test #'char-equal :key #'cadr :from-end t)

=> «foo #\a) (bar #\%»

These functions are useful for converting a sequence into a canonical form suitable for representing
a set.

substitute newitem olditem sequence &key :from-end :test :test-not
:start :end :count :key

substitute-if newitem test sequence &key :from-end :start :end
:count :key

subst i tute- if-not newitem test sequence &key : from-end : start : end
:count :key

[Function]

[Function]

[Function]

The result is a sequence of the same kind as the argument sequence that has the same elements
except that those in the subsequence delimited by : s tart and : end and satisfying the test (see
above) have been replaced by newitem. This is a nondestructive operation; the result is a copy of
the input sequence, save that some elements are changed.

The : count argument., if supplied, limits the number of elements altered; if more than : count
elements satisfy the test., only the leftmost : co u n t such are replaced.

A non-n i 1 : from-end specification matters only when the : count ar~ment is provided; in

that case only the rightmost : co U n t elements satisfying the test are removed.

For example:
(substitute 9 4 '(1 2 4 1 3 4 5» => (1 2 9 1 3 9 5)
(substitute 9 4 '(1 2 4 1 3 4 5) :count 1) => (1 2 9 1 3 4 5)
(substitute 9 4 '(1 2 4 1 3 4 5) :count 1 :from-end t)

=> (1 2 4 1 3 9 5)
(substitute 9 3 '(1 2 4 1 3 4 5) :test #'» => (9 9 4 9 3 4 5)
(substitute-if 9 #'oddp '(1 2 4 1 3 4 5» => (9 2 4 9 9 4 9)
(substitute-if 9 #'evenp '(1 2 4 1 3 4 5) :count 1 :from-end t)

=> (1 2 4 1 3 9 5) .
The result of sub s t ; t ute may share with the argument sequence; a list result may share a tail

_ _._---------_ .. _------

202 COMMON USP REFERENCE MANUAL

with an input list, and the result may be eq to the input sequence if no elements need to be

changed.

nsubstitute newitem· oldi/em sequence &key :from-end :test :test-not

:start :end :count :key

nsubstitute-if newitem test sequence &key :from-end :start :end

:count :key

nsubstitute-if-not newitem test sequence &key :from-end : start :end

[Function]

[Function]

[Function]
:count :key

This is the destructive counterpart to sub s tit ute. The result is a sequence of the same kind as

the argument sequence that has the same elements except that those in the subsequence delimited

by : start and : end and satisfying the test (see above) have been replaced by newitem. This is a

destructive operation. The argument sequence may be destroyed and used to construct the result;

however, the result mayor may not be e q to sequence.

14.4. Searching Sequences for Items

find item sequence &key :from-end :~est :test-not :start :end :key

find-if test sequence &key' :from-end :start :end :key

find-if-not test sequence &key' :from-end :start :end :key

[Function]
[Function]
[Function]

If the sequence contains an element satisfying the test, then the leftmost such element is returned;

otherwise nil is returned.

If : start and : end keyword arguments are given, only the specified subsequence of sequence is
searched..

If a non-n i 1 : from-end keyword argument is specified, then the result is the rightmost element

satisfying the test

position item sequence &key :from-end :test :test-not :start :end :key [Function]
position-if test sequence &key :from'-end :start :end :key [Function]
position-if-not test sequence &key' :from-end :start :end :key [Function]

If the sequence contains an element satisfying the test, then the index within the sequence of the

leftmost such element is returned as a non-negative integer; otherwise nil is returned.

If : s tar t and : end keyword arguments are given, only the specified subsequence of sequence is
searched. However, the index returned is relative to the entire sequence, not to the subsequence.

If a non-n i 1 : from-end keyword argument is specified, then the result is the index of the

rightmost element satisfying the test (The index returned, however, is an index from the left-hand

end, as usual.:)

---- -------------------------

SEQUENCES

count item sequence &key :from-end :test :test-not :start :end :key
count-if test sequence &key :from-end :start :end :key
count-if-not test sequence &key :from-end :start :end :key

203

[Function]
[Function]
[Function]

The result is always a non-negative integer, the number of elements in the specified subsequence of
sequence satisfying the test (see above).

The : from-end argument does not affect the result returned: it is accepted purely for
compatibility with other sequence functions.

m; smatch sequencel sequence2 &key : from-end : test : tes t-not : key [Function]
:startl :start2 :endl :end2

The specified subsequences of sequencel and sequence2 are compared element-wise. If they are of
equal length and match in every element, the result is nil. Otherwise, the result is a non-negative
integer, the index within sequencel of the leftmost position at which they fail to match; or, if one is
shorter than and a matching prefix of the other, the index within sequencel beyond the last position
tested is returned.

If a non-n i 1 : from-end keyword argument is given, then one plus the index of the rightmost
position in which the sequences differ is returned. In effect, the (sub)sequences are aligned at their
right-hand ends; then, the last elements are compared, the penultimate elements, and so on. The
index returned is again an index into sequencel.

search sequencei sequence2 &key : from-end : test : test-not : key [Function]
:startl :start2 :endl :endZ

A search is conducted for a subsequence of sequence2 that element-wise matches sequencel. If
there is no such subsequence, the result is nil; if there is, the result is the index into sequence2 of
the leftmost element of the leftmost such matching subsequence.

Ifa non-n;l :from-end keyword argument is given, the index of the leftmost element of the
rightmost matching subsequence is returned.

The implementation may choose to search the sequence in any order; there is no guarantee on the
number of times the test is made. For example, search with a non-n i 1 : from-end argument
might actually search a list from left to right instead of from right to left (but in either case would
return the rightmost matching subsequence, of course). Therefore it is a good idea for a user
supplied predicate be free of side-effects.

14.5. Sorting and Merging

sort sequence predicate &key : key [Function]
stable-sort sequence predicate &key :key [Function]

The sequence is destructively sorted according to an ordering determined by the predicate. The
predicate should take two arguments, and return non-n i 1 if and only if the first argument is strictly
less than the second (in some appropriate sense). If the first argument is greater than or equal to the

204 COMMON llSP REFERENCE MANUAL

second (in the appropriate sense), then the predicate should return ni 1.

The so r t function determines the relationship between two elements by giving keys extracted
from the elements to the predicate. The : key argument, when applied to an element, should
return the key for that element The : key argument defaults to the identity function, thereby
making the element itselfbe the key.

The : key function should not have any side effects. A useful example of a : key function would
be a component selector function for a de f s t rue t (page 245) structure, for sorting a sequence of
structures.

(sort a p : key s)
< = > (s 0 r t a #' (1 am b d a (x y) (p (s x) (s y»»

While the above two expressions are equivalent, the first may be more efficient in some
implementations for certain types of arguments. For example, an implementation may choose to
apply s to each item just once, putting the resulting keys into a separate table, and then sort the
parallel tables, as opposed to applying s to an item every time just before applying the predicate.

If the : key and predicate functions always return, then the sorting operation will always tenninate,
producing a sequence containing the same elements as the original sequence (that is, the result is a
permutation of sequence). This is guaranteed even if the predicate does not really consistently
represent a total order (in which case the elements will be scrambled in some unpredictable way,
but no element will be lost). If the : key function consistently returns meaningful keys, and the
predicate does reflect some total ordering criterion on those keys, then the elements of the result
sequence will be properly sorted according to that ordering.

The sorting operation perfonned by so r t is not guaranteed stable. Elements considered equal by
the predicate mayor may not stay in their original order. (The predicate is assumed to consider two
elements x and y to be equal if (f u n call predicate x y) and (f u n c a 11 predicate y x) are
both false.) The function stabl e-sort guarantees stability, but may be slower than sort in
some situations.

The sorting operation may be destructive in all cases. In the case of an array argument, this is
accomplished by permuting the elements in place.. In the case of a . list, the list is destru~tively
reordered in the same manner as for n rever s e (page 196). Thus if the argument should not be
destroyed, the user must sort a copy of the argument

Should execution of the : key function or the predicate cause an error, the state of the list or array
being sorted' is undefined. However, if the error is corrected the sort will, of course, proceed
correctly.

Note that since sorting requires many comparisons, and thus many calls to the predicate, sorting will
be much faster if the predicate is a compiled function rather than interpreted.

For example:
(setq foovector (sort foovector #'string-1essp :key #'car»

Iffoovector contained these items before the sort:

---._---_.-._-_._.-..... _--_ .. _-_ .. __ .. _._--- ._-- -_ .. _

SEQUENCES

("Tokens" "The Lion Sleeps Tonight")
("Carpenters" "Close to You")
("Rolling Stones" "Brown Sugar")
("Beach Boys" "I Get Around")
("Beatles" "I Want to Hold Your Hand")

then after the sort foovector would contain:
("Beach Boys" "I Get Around")
("Beatles" "I Want to Hold Your Hand")
("Carpenters" "Close to You")
("Rolling Stones" "Brown Sugar")
("Tokens" "The Lion Sleeps Tonight")

merge result-type sequence] sequence2 predicate &key : key

205

[Function]
The sequences sequence] and sequence2 are destructively merged according to an ordering
determined by the predicate. The result is a sequence of type result-type, which must be a subtype
of sequence, as for the function coerce (page 40). The predicate should take two arguments,
and return non-n i 1 if and only if the first argument is strictly less than the second (in some
appropriate sense). If the first argument is greater than or equal to the second (in the appropriate
sense). then the predicate should return nil.

The me r g e function determi~es the relationship between two elements by giving keys extracted
from the elements to the predicate. The : key function. when applied to an element. should return
the key for that element; the : key function defaults to the identity function. thereby making the
element itselfbe the key.

The : key function should not have any side effects. A useful example of a : key function would
be a component selector function for a de f s t r u c t (page 245) structure, for merging a sequence
of structures.

If the : key and predicate functions always return. then the merging operation will always
terminate. The result of merging two sequences x and y is a new sequence z. such that the length of
z is the sum of the lengths of x and y. and z contains the all the elements of x and y. If xl and x2
are two elements of x, and xl precedes x2 in x, then xl precedes x2 in z. and similarly for elements
of y. In short, z is an interleaving of x and y.

Moreover, if x and y were correctly sorted according to the predicate. then z will also be correctly
sorted. If x or y is not so sorted, then z will not be sorted, but will nevertheless be an interleaving of
x andy.

The merging operation is guaranteed stable; if two or more elements are considered equal by the
predicate, then the elements from sequence] will precede those from sequence2 in the result

For example:
(me r g e '(1 3 4 6 7) '(2 5 8) # ' <) .=> (1 2 3 4 ? 6 7 8)

.... , .• ,••..• " .. '.", ... _ ··_.M."·.,,,. -, _ ... _-- --- ... __ ._-... _--- ----------_._---._ ... _----------- ---_ ... --. . .. _.-. --_._._-..... -_ __ ._---- ---_._-_ .. _---. __ ... _----- ---

206 COMMON USP REFERENCE MANUAL

· -_ ... _._---- -_ ... _--_._._--_ .. _ .. _ .. __ ._ .•. _._-._---_._------_ ... -_ .. _----_ .. _._-_ .. __ .. -.--.-_ ... __ ._-------_ .. _ _-_._--------_._._----_._._- ---------------- .. __ .- ---_._----_ ... _---_ .. - .'- - _-------._---_._----- ---. ..:.

Chapter 15

Manipulating List Structure

A cons, or dotted pair, is a compound data object having two components, called the car and cdr. Each
component may be any LISP object A list is a chain of conses linked by cdr fields; the chain is tenninated by
some atom (a non-cons object). An ordinary list is tenninated by n; 1, the empty list (also written" () "). A
list whose cd~chain is tenninated by some non-n ; 1 atom is called a dotted list.

The recommended predicate for testing for the end of a list is end p (page 208).

15.1. Conses

car x

cdr x

[Function]
Returns the car of x, which must be a cons or () ; that is, x must satisfy the predicate 1 ; s t p (page
59). By definition, the car of () is (). If the cons is regarded as the first cons of a list, then c a I'
returns the first element of the list

For example:
(car t(a be» => a

See f; rs t (page 209). The car of a cons may be altered by using r p 1 a c a (page 215) or set f
(page 72) ..

[Function]
Returns the cdr of x, which must be a cons or () ; that is, x must satisfy the predicate 1 ; s t p (page
59). By definition, the cdr of () is (). If the cons is regarded as the first cons of a list, then cdr
returns the rest of the list, which is a list with all elements but the first of the original list

For example:
(cdr t(a be» => (b c)

See rest (page 210). The cdr of a cons may be altered Ly using rp 1 acd (page 215) or setf
(page 72).

- 207-

208 COMMON LISP REFERENCE MANUAL

e ... r X [Function]
All of the compositions of up to four cars and cdrs are defined as functions in their own right. The
names of these functions begin with "e" and end with "r", and in between is a sequence of "a" and
"d" letters corresponding to the composition performed by the function.

For example:
(cd dad r x) is the same as (e d r (c d r (c a r (e d r x»»

If the argument is regarded as a list, then cadr returns the second element of the list, caddr the
third, and cad d d r the fourth. If the first element of a list is a list, then c a a r is the first element of
the sublist, cdar is the rest of that sublist, and cadar is the second element of the sublist; and so
on.

As a matter of style, it is often preferable to define a function or macro to access part of a
complicated data structure, rather than to use a long car / cdr string:

(defmaero lambda-vars (lambda-exp) '(eadr ,lambda-exp»
; then use 1 amb d a - v a r s everywhere instead of cad r

See also de f s t rue t (page 245), which will automatically define new record data types and access
functions for instances of them.

Any of these functions may be used to specify a place for set f (page 72).

cons x y

con s is the primitive function to create a new cons, whose car is x and whose cdr is y.

For example:
(cons 'a 'b) => (a . b)
(cons 'a (cons 'b (cons 'e'(»» => (a b c)
(cons 'a '(b cd» => (a bed)

[Function]

con s may be thought of as creating a cons, or as adding a new element to the front of a list

tree-equal x y &key :test :test-not [Function]
This is a predicate that is true if x and yare isomorphic trees with identical leaves; that is, if x and y

are atoms that satisfy the test (by default e q l), or if they are both conses and their cars are
tree-equal and their cdrs are tree-equal. Thus tree-equal recursively compares conses
(but not any other objects that have components). See equa 1 (page 62), which does recursively
compare certain other structured objects, such as strings.

15.2. Lists

endp object [Function]
The predicate end p is the recommended way to test for the end of a list It is false of conses, true of
n ; 1 , and an error for all other arguments.

Implementation note: Implementations are encouraged to signal an error, especially in the interpreter, for a
non-list argument The endp function is defined so as to allow compiled code to perform simply an atom
check or a null check if speed is more important than safety.

MANIPULATING UST STRUCTURE 209

, ist-length list [Function]

list-length returns, as an integer, the length of list. list-length differs from length
(page 196) when the list is circular; 1 eng t h may fail to return, whereas 1 i s t -1 eng t h will return

ni 1.
For example:

(list-length 'C»~ => 0
(list-length tea b cd» => 4
(list-length tea (b c) d» => 3
(list-length tea b c d e f g) 4) => 4
(let «x (list ta b c»)

(rp1acd (last x) x)
(list-length x» => nil

1 i st-1 ength could be implemented by:
(defun list-length (x)

(do «n 0 (+ n 2»
(y x (cddr y»
(z x (cdr z»)

(n i 1)
(when (endp y) (return n»
(when (endp (cdr y» {return (+ n 1»)
{when (and (eq y z) (> nO» (return nil»»

See 1 eng th (page 196), which will return the length of any sequence.

nth n list [Function]
(nth n list) feLurns the n'th element of list, where the zeroth element is the car of the list n must
be a non-negative integer. If the length of the list is not greater than n, then the result is (), that is,
nil. (TIlis is consistent with the idea that the car and cdr of () are each ().)

For example:
(nth 0 t{foo bar gack» => foo
{nth 1 '(foo bar gack» => bar
{nth 3 '(foo bar gack» => ()

Compatibility Dote: This is not the same as the INTERUSP function called nth, which is similar to but not
exactly the same as the COMMON LISP function nth cdr. This definition of nth is compatible with Lisp
Machine l.JSP and NIL. Also, some people have used macros and functions called nth of their own in their old
MAcLIsp programs, which may not work the same way.

nth may be used to specify a place to setf (page 72); when nth is used in this way, the argument

n must ,be less than the length of the list.

fi rst list
second list
th i rd list
fourth list
fifth list
si xth list
seventh list
ei ghth list
ninth list

[Function]
[Function]
[Function]
[Function]
[Function)
[Function)
[Function]
[Function]
[Function)

210 COMMON USP REFERENCE MANUAL

tenth list [Function]
These functions are sometimes convenient for accessing particular elements of a list fir s t is the
same.as car (page 207): second is the same as cadr; and so on. Note that the ordinal
numbering used here is one-origin, as opposed to the zero-origin numbering used by nth (page
209):

(fifth x) <=> (nth 4 x)

set f (page 72) may be used with each of these functions to store into the indicated position of a
list

rest list

rest means the same as cdr, but mnemonically complements fi rst.

nthcdr n list

(n thcdr n list) performs the cdr operation n times on list, and returns the result

For example:
{nthcdr 0 '(a b c» => (a b c)
{nthcdr 2 '(a b c» => (c)
(nthcdr 4 '(a b c» => ()

In other words, it returns the n'th cdr of the list

[Function]

[Function]

Compatibility note: This is similar to the INTERLlsP function nth, except that the INTERUSP function is
one-based instead of zero-based. .

{car (nthcdr n x» <=> (nth n x)

1 ast list
1 as t returns the last cons (not the last element!) of list. If list is (), it returns ().
For example:

{setq x '(a b cd»
(last x) => (d)
(rplacd (last x) '(e f»
x => '(a b c d e f)
{last '(a b c .d» => (c . d)

1 i st &rest args

1 i s t constructs and returns a list of its arguments.
For example:

(list 3 4 'a (car '(b. c» (+ 6 -2» => (3 4 a b 4)

[Function]

. [Function]

1 i st· arg &rest others [Function]
1 i st· is like 1 ; s t except that the last cons of the constructed list is "dotted". The last argument
to 1 i st· is used as the cdr of the last cons constructed; this need not be an atom. If it is not an
atom, then the effect is to add several new elements to the front of a list

For example:

-------- ---- --------

MANIPULATING UST STRUCfURE

(1 ; st· 'a 'b 'e 'd) => (a be. d)
This is like
(cons 'a (cons 'b (cons 'e 'd»)
Also:
(list· 'a 'b 'e 'Cd e f» => (a bed e f)
(list· x) <=> x

make-list size &key :initial-element

211

[Function]
This creates and returns a list containing size elements, each of which is initialized to the

: in it i a 1 - e 1 erne n t argument (which defaults to nil). size should be a non-negative integer.

For example:
(make-list 5) => (nil nil nil nil nil)
(make-list 3 :initial-element 'rah) => (rah rah rah)

append &rest lists [Function] .
The arguments to a p pen d are lists. The result is a list that is the concatenation of th~ arguments.

The arguments are not destroyed.

For example:
(append '(a b c) '(d e f) '() '(g» => (a bed e f g)

Note that append copies the .top-Ievellist structure of each of its arguments except the last The

function con cat e n ~ t e (page 196) can perfonn a similar operation, but always copies all its

arguments. See also neone (page 212), which is like append but destroys all arguments but the

last

The last argument actually need not be a list, but may be any LISP object, which becomes the tail
end of the constructed list For example, (append '(a b c) 'd) => (a be. d).

(a p pen d x '(» is an idiom once frequently used to copy the list x, but the copy -1 ; s t

function is more appropriate to this task.

'copy-l1st list [Function]
Returns a list that is e qua 1 to list, but not e q. Only the top level of list-structure is copied; that is,

eopy-l ; s t copies in the cdr direction but not in the car direction. If the list is "dotted", that is,
(cdr (1 as t list» is a non-n i 1 atom, this will be true of the returned list also. See also

copy-seq (page 195) and copy.-tree (page 212).

cop Y - a 1 ; s t list [Function]
cop y - ali s t is for copying association lists. The top level of list structure of list is copied, just as

eopy-l is t does. In addition, each element of list that is a cons is replaced in the copy by a new

cons with the same car and cdr.

212 COMMON LISP REFERENCE MANUAL

copy-tree object [Function]
cop y - t r e e is for copying trees of conses. The argument object may be any LISP object. If it is not

a cons, it is returned; otherwise the result is a new cons of the results of calling copy - t r e e on the

car and cdr of the argument In other words, all conses in the tree are copied recursively, stopping

only when non-conses are encountered. Circularities and the sharing of substructure are not
preserved.

revappend x y [Function]
(revappend x y) is exactly the same as (append (reverse x) y) except that it is
potentially more efficient Both x ~nd y should be lists. The argument x is copied, not destroyed.

Compare this with nrecon c (page 212), which destroys its first argument

nconc &rest lists [Function]
nconc takes lists as arguments. It returns a list that is the arguments concatenated together. The

arguments are changed, rather than copied. (Compare this with append (page 211), which copies

arguments rather than destroying them.)

For example:
(setq x '(a be»
(setq y 'Cd e f»
(nconc x y) => (a bed e f)
x => (a bed e f)

Note, in the example,that the value ofx is now different, since its last cons has been rpl acd'd to

the value of y. If one were then to evaluate (n con c x y) again, it would yield a piece of

"circular" list structure, whose printed representation would be (a b c d e f d e f d e f

...), repeating forever; if the * p r in t - c ire 1 e * (page 287) switch were non-n i 1 , it would be

printed as (a be. #1 = (d e f . #1#».

nrecanc x y [Function]
(nreconc x y) is exactly the same as (nconc (nreverse x) y) except that it is potentially

more efficient Both x and y should be lists. The argument x is destroyed. Compare this with

revappend (page 212),

pus h item place [Macro]

The form place should be the name of a generalized variable containing a list; item may refer to any

LISP object The item is con sed onto the front of the list, and the augmented list is stored back into

place and returned. The form place may be any form acceptable as a generalized variable to setf

(page 72), If the list held in place is viewed as a push-down stack, then pus h pushes an element

onto the top of the stack.

For example:
(setq x '(a (b c) d»
(pus h 5 (cad r x» => (5 be) and now x => (a (5 be) d)

The effect of (pus h item place) is roughly equivalent to

MANIPULATING UST STRUCTURE 213

(setf place (cons item place»
except that the latter would evaluate any subfonns of place twice, while push takes care to evaluate
them only once. Moreover, for certain place forms pus h may be significantly more efficient than
the set f version.

push new item place [Macro]

The fonn place should be the name of a generalized variable containing a list; item may refer to any
LISP object If the item is not already a member of the list (as determined by comparisons using the
: t est predicate, which defaults to e q 1), then the item is consed onto the front of the list, and the
augmented list is stored back into place and returned; otherwise the unaugmented list is returned.
The form place may be any form acceptable as a generalized variable to set f (page 72). If the list
held in place is viewed as a set, then pus h new adjoins an element to the set; see ad j 0 i n (page
217).

The keyword arguments to pus h new follow the conventions for the generic sequence functions.
See Chapter 14.

pushnew returns n i'.
For example:

(setq x '(a (b c) d»
(pushnew 5 (cadr x» => (5 b c)
(pushnew 'b (cadr 'x» => (5 b c)

and now x => (a (5 b c) d)
and x is unchanged

The effect of (push~ew item place : test p) is roughly equivalent to

(set f place (a d j 0 i n item place : t est p»
except that the latter would evaluate any subforms of place twice, while pushnew takes care to
evaluate them only once. Moreover, for certain place forms pus h n ew may be significantly more
efficient than the set f version.

pop place [Macro]

The form place should be the name of a generalized variable containing a list The result of pop is
the car of the contents of place, and as a side-effect the cdr of the contents is stored back into
place. The form place may be any form acceptable as a gener~ized variable to set f (page 72). If
the list held in place is viewed as a push-down stack, then pop pops an element from the top of the
stack and returns it

For example:
(setq stack t(a be»
(pop stack) => a andnow stack => (b c)

The effect of (pop place) is roughly equivalent to

(progl (car place) (setf place (cdr place»)
except that the latter would evaluate any subforms of place thrice, while pop takes care to evaluate
them only once. Moreover, for certain place fonns pop may be significantly more efficient than the
set f version.

214 COMMON USP REFERENCE MANUAL

but1ast list &optiona1 n [Function]
This creates and returns a list with the same elements as list, excepting the last 11 elements. n

defaults to 1. The argument is not destroyed. If the list ~as fewer than n elements, then () is
returned.

For example:
(but1ast '(a bed» => (a b c)
(but1ast '«a b) (c d») => «a b»
(bu~last '(a» => ()
(but1ast nil) => () "

The name is from the phrase "all elements but the last".

nbut1ast list &optiona1 n [Function]
This is the destructive version of but 1 as t; it changes the cdr of the cons n + 1 from the end of the
list to nil. n defaults to 1. If the list has fewer than n elements, then n but 1 as t returns (), and
the argument is not modified. (Therefore one normally writes (setq a (nbut 1 ast a» rather
than simply (n but 1 ast a).)

For example:
(setq faa '(a bed»
(nbut1ast faa) => (a b c)
foo => (a b c)
(nbut1ast '(a» => ()
(nbut1ast 'ni1")=> ()

1 d i ff list sublist [Function]
list should be a list, and sublist should be a sublist of list, that is, one of the conses that make up list.
1 d i ff (meaning "list difference") will return a new list, whose elements are those elements of list
that appear before sublist. If sublist is not a tail of list, then a copy of the entire list is returned. The
argument list is not destroyed.

For example:
(setq x '(a bed e»
(setq y (cdddr x» => (d e)
(ldiff x y) => (a b c)
but
(1 d; ff '(abc d) '(.c d» => (a bed)
since the sublist was not eq to any part of the list

15.3. Alteration of List Structure

The functions r p 1 a c a and r p 1 a cd may be used to make alterations in already-existing list structure; that
is, to change the cars and cdrs of existing conses. One may also use setf (page 72) in conjunction with car
and cdr (page 207).

The structure is not copied but is physically altered; hence caution should be exercised when using these
functions, as strange side-effects can occur if portions of list structure become shared. The nco n c (page
212), nreverse (page 196), nreconc (page 212), and nbut 1 as t (page 214) functions, already

----------_._------------._--_._._------ -------_. __ ._--------------------_._------_ .. _--_._---- --------------_. -----

MANIPULATING UST STRUCTURE 215

described, have the same propeny, as do certain of the generic sequence functions such as de 1 e te (page
200). However, they are normally not used for this side-effect; rather, the list-structure modification is purely
for efficiency and compatible non-modifying functions are provided.

rp 1 aca x y [Function]
(r p 1 a c a x y) changes the car of x to y and returns (the modified) x. x must be a cons, but y may
be any Lisp object

For example:
(setq 9 '(a be»
(rplaca (cdr g) 'd) => (d c)
Now 9 => (a d c)

rp 1 acd x y [Function]
(r p 1 a cd x y) changes the cdr of x to y and returns (the modified) x. x must be a cons, but y may
be any Lisp object

For example:
(setq x t(a be»
(rplacd x'd) => (a • d)
Now x => (a . d)

15.4. Substitution of Expressions

A number of functions are provided for performing substitutions within a tree. All take a tree and a
description of old sub-expressions to be replaced by new ones. They come in non-destructive and destructive
varieties, and specify substitution either by two arguments or by an association list

The naming conventions for these functions and for their keyword arguments generally follow the
conventions for the generic sequence functions. See Chapter 14.

subst new old t~e &key :test :test-not :key
sub s t - i f predicate new tree &k ey : key
subst-if-not predicate new tree &key :key

[Function]
[Function]
[Function]

(subst new old tree) makes a copy of tree, substituting new for every subtree or leaf of tree ,
(whether the subtree or leafis a car or a cdr or its parent) such that old and the subtree or leaf satisfy
the test It returns the modified copy of tree. The original tree is unchanged, but the result tree may
share with parts of the argument tree.

Compatibility note: In MAcLIsp, subst is guaranteed not to share with the tree argument, and the idiom
(subs t nil nil x) was used to copy a tree x. In CoMMON LIsp, the function copy- tree (page
212) should be used to copy a tree, as the sub s t idiom will not work.

For example:

------------------_._-------_. __ ._. __ " .. ,-" ,"""." .. , , .,""

216 COMMON USP REFERENCE MANUAL

(subst ·tempest 'hurricane
·(shakespeare wrote (the hurricane»)

=> (shakespeare wrote (the tempest»
(subst 'foo 'nil '{shakespeare wrote (twelfth night»)

=> (shakespeare wrote (twelfth night . fool . fool
(subst '(a. cons) '(old. pair)

'({old. spice) ({old. shoes) old. pair) (old. pair»
:test #'equa1)

=> ({old. spice) {(old. shoes) a . cons) (a . cons»

This function is not destructive; that·is, it does not change the car or cdr of any already-existing list

structure. One possible definition of sub s t:
(defun subst (old new tree &rest x &key test test-not key)

{cond «satisfies-the-test old tree :test test
:test-not test-not :key key)

new)
«atom tree) tree)
(t (let «a (apply #'subst old new (car tree) x»

(d (apply #tsubst old new (cdr tree) x»)
(if (and (eq a (car tree» (eq d (cdr tree»)

tree
(cons a d»»»

See alsosubst i tute (page 201), which substitutes for top-level elements ofa sequence.

nsubst new old tree &key :test :test-not :key
nsubst-if predicate new tree &key : key
nsubst-if-not predicate new tree &key :key

[Function]
[Function]
[Function]

n sub s t is a destructive version of sub st. The list structure of tree is altered by destructively

replacing with new each leaf of the tree such that old and the leaf satisfy the test

subl is aUst tree &key :test :test-not :key [Function]
sub 1 is makes substitutions for symbols in a tree (a structure of conses). The first argument to

sub lis is an association list The second argument is the tree in which substitutions are to be
made, as for sub s t (page 215). sub lis looks at all leaves in the tree; if a leaf appears as a key in
the association list (that is, the key and the leaf satisfy the test), it is replaced by the object it is
associated with. This operation is non-destructive. In effect, sub 1 i s can perfonn several sub s t
operations simultaneously.

For example:
(sub lis ' ((x . 100) (z . z p r ; me))

'(plus x (minus 9 z x p) 4»
=> (plus 100 (minus g zprime 100 p) 4)

nsubl is aUst tree &key :test :test-not :key

n sub lis is like sub 1 ; s but destructively modifies the relevant leaves of the tree.
[Function]

MANIPULATING UST STRUCfURE 217

15.5. Using Lists as Sets

COMMON LISP includes functions that allow a list of items to be treated as a set. There are functions to add,
remove, and search for items in a list, based on various criteria. There are also set union, intersection, and
difference functions.

The naming conventions for these functions and for their keyword arguments generally follow the
conventions for the generic sequence fu~ctions. See Chapter 14.

·member item list &key :test :test-not :key
member- i f predicate list &key : key
member-if-not predicate liSI &key :ke,y

[Function]
[Function]
[Function]

The list is searched for an element that satisfies the test. If none is found, nil is returned;
otherwise, the tail of list beg~nning with the first element that satisfied the test is returned. The list
is searched on the top level only. These functions are suitable for use as predicates.

For example:
(member 'snerd '(a bed» => nil
(member-if #'numberp '(a #\Space 5/3 fool) => (5/3 faa)
(member 'a '(g (a y) cad e a f» => (a d e a f)

Note, in the last example, that the value returned by member is eq to the portion of the list
beginning with a. Thus rpl aca on the result of member may be used, if you first check to make
sure member did not return nil, to alter the found list element

See also fin d (page 202) and po sit ion (page 202).
Compatibility note: In MAcLIsp. the member function uses an equal comparison rather than eql, which is
the default test for member in COMMON LIsp. Where in MAcLIsp one would write (member x y) one must
in CoMMON USP write (member x y : test #' equal). With two arguments, the CoMMON LIsp function
member is equivalent to the MAcLIsp function memq.

t ail p sublist list [Function]
This predicate is true if sub list is a sub list of liSI (Le., one of the conses that makes up list).
Otherwise it is false. Another way to look at this is that ta; 1 p is true if (nthcdr n list) is
sublist, for some value of n. See 1 d iff (page 214).

adjoin item list &key : test : test-not : key [Function]
adj a i n is used to add an element to a set, provided that it is not already a member. The equality
test defaults to eq 1.

(adjoin item list) <=> (if (member item list) list (cons item list»
See push new (page 213).

union listl list2 &key :test :test-not :key
nun i on listl list2 &key : tes t : tes t-not : key

[Function]
[Function]

un; on takes two lists and returns a new list containing everything that is an element of either of the
lists. If there is a duplication between two lists, only one of the duplicate instances will be in the

218 COMMON USP REFERENCE MANUAL

result If either of the arguments has duplicate entries within it, the redundant entries mayor may

not appear in the result

For example:
(union '(a b c) '(f a d» => (a b c f d)

There is no guarantee that the order of elements in the result will reflect the ordering of the

arguments in any particular way. The implementation is therefore free to use any of a variety o(

strategies.

nun ion is the destructive version of un ion. It performs the same operation, but may destroy the

argument lists, using their cells to construct the result

intersection listl list2 &key :test :test-not :key

nintersection listl list2 &key :test :test-not :key

[Function]
[Function]

in te r sect ion takes two lists and returns a new list containing everything that is an element of

both argument lists. If either list has duplicate entries, the redundant entries mayor may not

appear in the result

Forex~ple:

(intersection '(a b c) '(f a d» => (~)

There is no guarantee that the order of elements in the result will reflect the ordering of the

arguments in any particular way. The implementation is therefore free to use any of a variety of

strategies.

n inter sect i on is the destructive version of intersect i on. It performs the same operation,

but may destroy listl using its cells to construct the result (The argument list2 is not destroyed.)

set-difference listllist2 &key :test :test-not :key

nset-difference list 1 lisl2 &key :test :test-not :key

[Function]
[Function]

set-di fference returns a list of elements of listl that do not appear in list2. This operation is
not destructive.

nset-difference is the destructive version of set-difference. This operation may destroy

listl.

set-exclusive-or listl list2 &key :test :test-not :key [Function]
nset-excl us i ve-or listl liSl2 &key : t~st : test-not : key [Function]

set-excl us i ve-or returns a list of elements that appear in exactly one of listl and list2. This

operation is not destructive.

n set - e xc 1 us i ve - 0 r is the destructive version of set - ex c 1 us i ve - 0 r . Both lists may be

destroyed in producing the result

MANIPULATING UST STRUCTURE 219

subsetp list! Iist2 &key :test : test-not : key [Function] .
sub set p is a predicate that is true iff every element of Iistl appears in Iist2.

15.6. Association Lists

An association list, or a-Iist, is a data structure used very frequently in LISP. An a-list is a list of pairs
(conses); each pair is an association. The carofa pair is called the key, and the cdr is called the datum.

An advantage of the a-list representation is that an a-list can be incrementally augmented simply by adding
new entries to the front Moreover, because the searching function ass 0 c (page 220) searches the a-list in
order, new entries can "shadow" old entries. If an a-list. is viewed as a mapping from keys to data, then the
mapping can be not only augmented but also altered in a non-destructive manner by adding new entries to

the front of the a-list

Sometimes an a-list represents a bijective mapping, and it is desirable to retrieve a key given a datum. For
this purpose the "reverse" searching function rassoc (page 220) is provided. Other variants of a-list
searches can be constructed using the function fin d (page 202) or memb e r (page 217).

It is permissible to let nil be an element of an a-list in place of a pair. Such an element is not considered to

be a pair, but is simply passed over when the a-list is searched by as soc (page 220).

aeon s key datum a-list [Function]
a can s constructs a new association list by adding the pair (key . datum) to the old a-list.

(aeons x y a) <=> (cons (cons x y) a)

pa i r 1 is keys data &opt i ana 1 a-list [Function]
p a; r 1 i s takes two lists and makes an association list that associates elements of the first list to

corresponding elements of the second list It is an error if the two lists keys and data are not of the
same length. If the optional argument a-liSI is provided, then the new pairs are added to the front
of it

The new pairs may appear in the resulting a-list in any order; in particular, either forwards or
backwards order is permitted. Therefore the result of the call

(pairlis '(one two) '(12) '«three. 3) (four. 19»)

might be
«one. 1) (two. 2) (three. 3) (four. 19»

but could equally well be
«two. 2) (one. 1) (three. 3) (four. 19»

.. _. __ _ __ ._--------

220 COMMON USP REFERENCE MANUAL

assoc item a-list &key : test : test-not [Function]
assoc- i f predicate a-list [Function]
assoc-if-not predicate a-list [Function]
• Each of these searches the association list a-list. The value is the first pair in the a-list such that the

car of the pair satisfies the test, or nil if there is none such.

For example:
(assoc 'r '«a. b) (c . d) .(r . x) (s . y) (r . z»)

=> (r. x)
(assoc 'goo '«faa. bar) (zoo. goo») => nil
(assoc '2 '«1 a b c) (2 b c d) (-7 x y z»} => (2 b c d)

It is possible to rp 1 acd the result of as soc provided that it is not nil, if your intention is to

"update" the "table" that was as soc's second argument. (However, it is often better to update an
a-list by adding new pairs to the front, rather than altering old pairs.)

For example:
(set q val u.e s '((x . 1 0 O) (Y . 20 0) (z . 50}})
(assoc ,y values) => (y . 200)
(rplacd (assoc 'y values) 201)
(assoc 'y values) => (y . 201) now

A typical trick is to say (cdr (a s soc x y)}. Because the cdr of nil is guaranteed to be n; 1,

this yields nil if no pair is found o~ if a pair is found whose cdr is nil. This is useful if n ; 1 serves
its usual role as a "default value".

The two expressions
(assuc iiem list : test In)

and
(find item list :test In :I<ey. #'car)

are equivalent in meaning with one important exception: if n; 1 appears in the a-list in place of a
pair, and the item being searched for is nil, find will blithely compute the car of the nil in the
a-list, find that it is equal to the item, and return nil, whereas as soc will ignore the nil in the
a-list and continue to search for an actual pair (cons) whose car is nil. See f; n d (page 202) and
pas i t i on (page 202).

Compatibility note: In MAcLIsp. the ass 0 c function uses an e qua 1 comparison rather than e q 1. which is the
default test for assoc in CoMMON LIsp. Where in MAcLIsp one would write (assoc x y) one must in
COMMON LIsp write (assoc x y : test #' equa 1). With two arguments. the CoMMON LIsp function
assoc is equivalent to the MAcLIsp function assq.

rassoc item a-list &I<ey : test : test-not [Function]
rassoc-if predicate a-list [Function]
rassoc-if-not predicate a-list [Function]

r ass 0 c is the reverse form of ass 0 c; it searches for a pair whose cdr satisfies the test, rather than
the car. If the a-list is considered to be a mapping, then r ass a c treats the a-list as representing the
in verse mapping.

For example:
(rassoc 'a '«(a. b) (b . c) (c . a) (z . a») => (c • a)

The expressions

MANIPULATING UST STRUCfURE 221

(rassoc item Iisl :test fn)

and

(find item lisl :test In :key #'cdr)
are equivalent in meaning, except when the item is n i' and n i' appears in place of a pair in the
a-list See the discussion of the function ass 0 c (page 220).

222 COMMON LISP REFERENCE MANUAL

.' ·n

--------------------------.. _------------------_.

Chapter 16

. Hash Tables

A hash table is a LISP object that can efficiently map a given LISP object to another LISP object Each hash
table has a set of entries, each of which associates a particular key with a particular value. The basic functions
that deal with hash tables can create entries, delete entries, and find the value that is associated with a given
key. Finding the value is very fast even if there are many entries, because hashing is used; this is an important
advantage of hash tables over property lists.

A given hash table can only associate one value with a given key; if you try to add a second value it will
replace the first. Also, adding a value to a hash table is a destructive operation; the hash table is modified. By
contras~ association lists can be.augmented non-destructively.

Hash tables come in three kinds, the difference being whether the keys are compared with eq, eql, or
equa 1. In other words, there are hash tables that hash on Lisp objects (using eq or eq 1) and there are hash
tables that hash on tree structure (using equa 1).

Hash tables are created with the function rna k e - has h - tab 1 e, which takes various options, including
which kind of hash table to make (the default being the eq 1 kind). To look up a key and find the associated
value, use gethash. New entries are added to hash tables using setf (page 72) with gethash. To
remove an entry, use r e mh ash. Here is a simple example.

{setq a (make-hash-table»
{setf (gethash 'color a) 'brown)
{setf (gethash 'name a) 'fred)
(gethash 'color a) => brown
(gethash 'name a) => fred
(gethash 'pointy a) => nil

In this example, the symbols color and name are being used as keys, and the symbols brown and fred
are being used as the associated values. Th~ hash table has two items in i~ one of which associates from
color to brown, and the other of which associates from name to fred.

Keys do not have to be symbols; they can be any LISP object. Likewise values can be any LISP object.

When a hash table is first created, it has a size, which is the maximum number of entries it can hold.
Usually the actual capacity of the table is somewhat less, since the hashing is not perfectly collision-free. With

- 223-

-----------_. __ ._._ _ _ ... _-_ ... __ . __ --........ -......... _._._ ... _ _._--_ .. _._._ ... _ .. _ .. _ -... _ _ _

224 COMMON USP REFERENCE MANUAL

the maximum possible bad luck, the capacity could be very much less, but this rarely happens. If so many
entries are added that the capacity is exceeded, the hash table will automatically grow, and the entries will be
rehashed (new hash values will be recomputed, and everything will be rearranged so that the fast hash lookup
still works). This is transparent to the caller; it all happens automatically.

Compatibility note: This hash table facility is compatible with lisp Machine LIsp. It is similar to the hasharray facility of
INTERLIsp, and some of the function names are the same. However. it is not compatible with INTERLISP. The exact details

and the order of arguments are designed to be consistent with the rest of MAcLISP rather than with INTERLISP. For instance,
the order of arguments to maphash is different, there is no "system hash table", and there is not the INTERLIsp restriction
that keys and values may not be n ; 1.

16.1. Hash Table Functions

This section documents the functions for hash tables, which use objects as keys and associate other objects
with them.

make-hash-table &key :test :size :rehash-size :rehash-threshold [Function]
This function creates and returns a new hash table. The : te s t argument detennines how keys are
compared; it must be one of the three values #' eq, #' eql, or #' equal, or one of the three
symbols eq, eql, or equa 1. Ifno test is specified, eql is assumed.

The : s ; z e argument sets the initial size of the hash table, in entries. (The actual size may be
rounded up from the size' you specify to the next "good" size, for example to make it a prime
number.) You won't necessarily be able to store precisely this many entries into the table before it
overflows and becomes bigger, but this argument does serve as a hint to the implementation of
approximately how many entries you intend to store. .

The : r e has h - s ; z e argument specifies how much to increase the size of the hash table when it
becomes full. This can be an integer greater than zero, which is the number of entries to add, or it
can be a floating-point number greater than one, which is the ratio of the new size to the old size.
The default value for this argument is implementation-dependent

The : r e has h - t h res h old argument specifies how full the hash table can get before it must
grow. This can be an integer greater than zero and less than the rehash-size (in which case it will be
scaled whenever the table is grown), or it can be a floating-point number between zero and one.
The default value for this argument is implementation-dependent

For example:
(make-hash-table :rehash-size 1.5

:s;ze (* numbe~-of-widgets 43»

hash-tabl e-p object
has h - tab 1 e - p is true if its argument is a hash table, and otherwise is false.

(hash-table-p x) <=> (typep x 'hash-t~ble)

[Function]

HASH TABLES 225

ge th as h key hash-table &opt i ona 1 default [Function] .
Find the entry in hash-table whose key is key, and return the associated value. If there is no such
entry, return default, which is nil ifnot specified .

. 9 e t has h actually returns two values, the second being a predicate value that is true if an entry was
found, and false if no entry was found.

set f (page 72) may be used with 9 e t has h to make new ·entries in a hash table. In this context,
the default argument should not be specified to gethash. If an entry with the specified key
already exists, it is removed before the new entry is added.

rernh as h key hash-table [Function]
Remove any entry for key in hash-table. This is a predicate that is true if there was an entry or false
if there was not

maphash jUnction hash-table [Function]
For each entry in hash-table, calI jUnction on two arguments: the key of the entry and the value of
the entry. If entries are added to or deleted from the hash table while a rna p has h is in progress, the

'results are unpredictable, with one exception: if the jUnction calls rernh as h to remove the entry
currently being processed by the jUnction, or performs a set f (page 72) of geth ash on that entry
to change the associated value, ~en those operations wiII have the intended effect

For example:
;; Alter every entry in MY-HASH-TABLE, replacing the value with
;; its square root. Entries with negative values are removed.
(rnaphash #'(larnbda (key val)

(if (minusp val)
(remhash val rny-hash-table)
(setf (gethash key my-hash-table)

(sqrt val»»
my-hash-table)

map h as h returns nil.

cl rhash hash-table
Remove all the entries from hash-table. Returns the hash table itself.

hash -tab 1 e-count hash-table

[Function]

[Function]
This returns the number of entries in the hash-table. When a hash table is first created or has been
cleared, the number of entries is zero.

16.2. Primitive Hash Function

-------, --------_ .. _._._------------------

226 COMMON USP REFERENCE MANUAL

sxhash object. [Function]
sxhash computes a hash code for an object, and returns the hash code as a non-negative fixnum.
Apropertyofsxhashisthat(equal xy)implies(= (sxhash x) (sxhash y».
The manner in which the hash code is computed is implementation-dependent, but is independent
of the particular "incarnation" or "core image". Hash values may be written out to files, for
example, and read in again into an instance of the same implementation.

Chapter 17

Arrays

An array is an object with components arranged according to a rectilinear coordinate system. Arrays in
COMMON LISP may have any number of dimensions, including zero. (A zero-dimensional array has exactly
one element) Every COMMON LISP implementation must support arrays with up to at least 7 dimensions.
Each dimension is a non-negative integer; if any dimension .of an array is zero, the array has no elements.

An array may be a general array, meaning each element may be any LISP object, or it may be a specialized
a"ay, meaning that each element must be of a given restricted type.

One-dimensional arrays are called vectors. General vectors may contain any LISP object Vectors whose
elements are restricted to type s t r i n 9 - c h a r are called strings. Vectors whose elements are restricted to

type bit are called bit-vectors.

17.1. Array Creation

make-array dimensions &key :e1ement-type :initia1-e1ement [Function]
:initial-contents :adjustab1e :fil1-pointer
:disp1aced-to :displaced-index-offset

This is the primitive function for making arrays. The dimensions argument should be a list of
non-negative integers that are to be the dimensions of the array; the length of the list will be the
dimensionality of the array. Each dimension must be smaller than array-dimension-1 imit
(page 230), and the product of all the dimensions must be smaller than
a r r ay - tot a 1 - s i z e -1 i mit (page 230). Note that if dimensions is nil then a zero
dimensional array is created. For convenience when making a one-dimensional array, the single
dimension may be provided as an integer rather than a list of one integer.

An implementation of COMMON LISP may impose a limit on the rank of an array, but this limit may
not be smaller than 7. Therefore, any COMMON LISP program may assume the use of arrays of rank

7 or less. The implementation-dependent limit on array rank is reflected in ar ray - r an k -1 i mit
(page 230).

The keyword arguments for make-array are as follows:

:element-type

- 227-

... _._-..... _ -------------------_._---

228 COMMON LISP REFERENCE MANUAL

This argument should be the name of the type of the elements of the array; an
array is constructed of the most specialized type that can nevertheless
accommodate elements of the given type. The type t specifies a general array,
one whose elements may be any LISP object; this is the default type.

:initial-e1ement
This argument may be used to initialize each element of the array. The value
must be of the type specified by the : e 1 eme n t - ty p e argument If the
: i nit i a 1 - e 1 eme n t option is omitted, the initial values of the array elements
are undefined (unless the : initial-contents or : displ aced-to option
is used). The: in it i a 1 - e 1 eme n t option may not be used with the
: in it i al-contents or : di spl aced-to option.

:initial-contents
This argument may be used to initialize the contents of the array. The value is a
nested structure of sequences. If the array is zero-dimensional, then the value
specifies the· single element Otherwise, the value must be a sequence whose
length is equal to the first dimension; each element must be a nested structure
for an array whose dimensions are the remaining dimensions, and so on.

For example:
(make-array '(4 2 3) :initial-contents

'«(a b c) (1 2 3»
«d e f) (3 1 2»
«9 h i) (2 3 1»
«j k 1) (0 0 0»»

The numbers of levels in the structure must equal the rank of the array. Each
leaf of the nested structure must be of the type specified by the : type option.
If the : i nit i a 1 - con ten t s option is omitted, the initial values of the array
elements are undefined (unless the : in it; a 1 - e 1 erne n t or : dis place d - to
option is used). The :; nit; a 1 - con ten t s option may not be used with the
: i nit i a 1 - e 1 e me n t or : dis P 1 ace d - to option.

: adj us tab 1 e This argumen~ if specified and not n; 1, indicates that it must be possible to
alter the array's size dynamically after it is created. This argument defaults to
ni 1.

:fi11-pointer
This argument specifies that the array should have a fill pointer. If this option is
specified and not nil, the array must be one-dimensional. The value is used to
initialize the fill pointer for the array. If the value t is specified, the length of the
array is used; otherwise the value must be an integer between 0 (inclusive) and
the length of the array (inclusive). This argument defaults to nil.

:disp1aced-to .
This argumen~ if specified and not nil, specifies that the array will be a
displaced array. The argument must then be an array; make-array will create
an indirect or shared array that shares its contents with the specified array. In this
case the :disp1aced-index-offset option may be useful. The
:disp1aced-to option may not be used with the :initia1-e1ement or
: initial -contents option. This argument defaults to nil.

:disp1aced-index-offset

ARRAYS 229

This argument may be used only in conjunction with the di s P 1 ace d - t 0

option. It must be a non-negative integer (it defaults to zero); it is made to be
the index-offset of the created shared array.

When an array A is given as the :displaced-to argument to make-array
when creating array B, then array B is said to be displaced to array A. Now the
total number of elements in an array, called the tOlal size of the array, is
calculated as the product of all the dimensions (see array-total-~ize
(page 231». It is required that the total size of A be no smaller than the sum of
the total . size of B plus the offset n specified by the
: dis P 1 ace d - i n d e x - 0 f f set argument. The. effect of displacing is that array
B does not have any elements of its own, but instead m"aps accesses to itself into
accesses to array A. The mapping treats both arrays as if they were one
dimensional by taking the elements in row-major order, and then maps an access
to element k of array B to an access to element k+ n of array A.

If m.ake-array is called with the :adjustable, :fill-pointer, and :displaced-to
arguments each either unspecified for nil, then the resulting array is guaranteed to be a simple
array. (See section 2.5.)

Here are some examples of the use of make-array:
;; Create a one-dimensional array of five elements.
(make-array 5) "

;; Create a two-dimensional array, 3 by 4, with four-bit elements.
(make-array '(3 4)· :element-type '(mod 16»

;; Create an array of single-floats.
(make-array 5 :element-type 'Single-float»
;; Making a shared array.
(setq a (make-array '(4 3»)
(setq b (make-array 8 ':displaced-to a

':displaced-index-offset
, , Now it is the case that:

(aref b 0) <=> (aref a 0 2)
(aref b 1) <=> (aref a 1 0)
(aref b 2) <=> (aref a 1 1)
(aref b 3) <=> (aref a 1 2)
(aref b 4) <=> (aref a 2 0)
(aref b 5) <=> (aref a 2 1)
(aref b 6) <=> (aref a 2 2)
(aref b 7) <=> (aref a 3 0)

2»

The last example depends on the fact that arrays are, in effect, stored in row-major order for
purposes of sharing. Put another way, the indices for the elements of an array are ordered
lexicographically.

Compatibility Dote: Both Lisp Machine LIsp, as described ~ reference [19], and FORTRAN [1. 2] store arrays in
column-major order.

----_._--_.-.•.. _.- _ _ .. _ _ __ ... -------_._-------------

230 COMMON USP REFERENCE MANUAL

array-rank-limit [Constant]

The value of array-rank-l imit is a positive integer that is the upper exclusive bound on the
rank of an array. This bound depends on the implementation, but will not be smaller than 8;
therefore every COMMON LIsp implementation supports arrays whose rank is betwen 0 and 7
(inclusive). (Implementors are enouraged to make this limit as large as practicable without
sacrificing performance.)

array-dimension-limit [Constant]

The value of a r r ay - d; me n s ion -1 i mit is a positive integer that is the upper exclusive bound
on each individual dimension of an array. This bound depends on the implementation, but will not
be smaller than 1024. (Implementors are enouraged to make this limit as large as practicable
without sacrificing performance.)

array-tota1-size-limit [Constant]

The value of a r r ay - to tal - s i z e -1 i mit is a positive integer that is the upper exclusive bound
on the total number of elements in 'an array. This bound depends on the implementation, but will
not be smaller than 1024. (lmplementors are enouraged to make this limit as large as practicable
without sacrificing performance.)

vector &rest objects [Function]
The function ve c tor is a convenient means for creating a simple general vector with specified
initial contents. It is analogous to the function 1 i st.

(v e c tor a1 az •.. a)
<=> (make-arrayn(list n) :e1ement-type t

:initia1-contents (list a1 az .•• an»

17.2. Array Access

aref array &rest subscripts [Function] ,
This accesses and returns the element of array specified by the subscripts. The number of subscripts
must equal the rank of the array, and each subscript must be a non-negative integer less than the
corresponding array dimension.

aref is unusual among the functions that operate on arrays in that it completely ignores fill
pointers. are f can access without error any array element, whether active or not. The generic
sequence function e 1 t (page 195), however, observes the fill pointer; accessing an element beyond
the fill pointer with e 1 t is an error.

set f (page 72) may be used with are f to destructively replace an array element with a new value.

--_ .. _--_._---------_._-------_ ... _- ... _- --_._---_._------------------------------------_._-----.. ------- ------

ARRAYS 231

17.3. Array Information

array-e 1 emen t-type array [Function]
array-el ement-type returns a type specifier for the. set of objects that can be stored in the
array. This set may be larger than the set requested when the array was created; for example, the
result of

(array-element-type (make-array 5 :element-type '(mod 5»)
could be (mod 5), (mod 8), fi xnum, t, or any other type of which (mod 5) is a subtype. See
subtypep (page 58).

array-rank array [Function]
Returns the number of dimensions (axes) of array. This will be a non-negative integer. See
array- rank-l imi t (page 230).

Compatibility note: In Lisp Machine LIsp this is called array-II-d ims. This name causes problems in
MAcuSP because of the II character. The problem is better avoided.

array-dimension array axis-number [Function]
. The length of dimension number axis-number of the array is returned. array may be any kind of
array, and axis-number should be a non-negative integer less than the rank of array. If the array is a
vector with a fill pointer, ar r ay - dime n s ion returns the total size of the vector, including inactive
elements, not the size indicated: by the fill pointer. (The fu~ction 1 ength (page 196) will return
the size indicated by the fill pointer.)

Compatibility note: This is similar to the Lisp Machine LIsp function array-dimension-n~ but takes its
arguments in the other order, and is zero-origin for consistency instead of one-origin. In Lisp Machine LIsp
(a r r ay - d ; me n s ; 0 n - nO) returns the length of the array leader.

array-dimensions array [Function]
a r r ay - dime n s ion s returns a list whose elements are the dimensions of array.

array-total-size array [Function]
a r r ay - tot a 1 - s i z e returns the total number of elements in the array, calculated as the product
of all the dimensions.

(array-total-size x)
<=> (apply H'~ (array-dimensions x»
<=> (reduce H'· (array-dimensions x) :initial-value 1)

Note that the total size of a zero-dimensional array is 1. The total size of a one-dimensional array is
calculated without regard for any fill pointer.

array- i n-bounds-p array &rest subscripts [Function]
This predicate checks whether the subscripts are all legal subscripts for array, and is true if they are;
otherwise it is false. The subscripts must be integers. The number of subscripts supplied must equal
the rank of the array. Like aref, ar ray- i n-bounds-p ignores fill pointers.

----_._ .•... __ ._ .. __• _-_ .. _-.------ -.--- -_ ••................ _._--_._ _-

232 COMMON USP REFERENCE MANUAL

array-row-major-index array &rest subscripts [Function]
This function takes an array and valid subscripts for the array, and returns a single non-negative
integer less than the total size of the array that identifies the accessed element in the row-major
ordering of the elements. The number of subscripts supplied must equal the rank of the array.
Each subscript must be a non-negative integer less than the corresponding array dimension. Like
aref, array- row-major- index ignores fill pointers.

A possible definition of array-row-major- index, with no error-checking:
(defun array-row-major-index (a &rest subscripts)

(apply #'+ (maplist #'(lambda (x y)
(* (car x) (apply #t* (cdr y»»

subscripts
(array-dimensions a»»

For a·one-dimensional array, the result of array-row-major- index always equals the supplied
subscript

17.4. Access Function for Simple Vectors

svref simple-vector index [Function]
The first argument must be a simple general vector, that is, an object of type simp 1 e - va c to r.

The element of the simple-vector specified by the integer index is returned. The index must be
non-negative and less than the length of the vector.

setf (page 72) may be used with svref to destructively replace a simple-vector element with a
new value.

s v ref is identical to are f (page 230) except that it requires its first argument to be a simple
vector. In some implementations of COMMON LISP svref may be faster than aref in situations
where it is applicable. See also schar (page 237) and sb i t (page 232).

17.5. Functions on Arrays of Bits

bit bit-array &rest subscripts [Function]
sbit simple-bit-array &rest subscripts [Function]

bi t is exactly like aref (page 230) but requires an array of bits, that is, one of type (array

bit). The result will always be 0 or 1.

sb i t is like bit but additionally requires that the first argument be a simple array (see section 2.s).

Note that bit and s bit, unlike c h a r (page 237) and s c h a r (page 237), allow the first argument
to be an array of any rank.

set f (page 72) may be used with bit or s bit to destructively replace a bit-array element with a
new value.

bit and sb i t are identical to aref (page 230) except for the more specific type requirements on

------ ------------------- ------------------ -- --------------------------------

ARRAYS

bit-and

bit-ior

bit-xor

bit-eqv

233

the first argument In some implementations of COMMON LISP bi t may be faster than aref in
situations where it is applicable, and s bit may similarly be faster than bit.

bit-array] bit-array-2 &opt i onal result-bit-array
bit-array] bit-array-2 &opt i onal result-bit-array
bit-array] bil-array-2 &optional result-bit-array
bit-array] bil-array-2 &opt i onal result-bit-array

bi t-nand bit-array] bit-array2 &opt i onal result-bit-array

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]

bit-nor bit-array] bil-array2 &opt i on al result-bit-array
b i t- andcl bit-array] bit-array2 &opt i on a 1 result-bit-array
bit-andc2 bit-array] bit-array2 &optional result-bit-array
b i t-orc 1 bit-array] bit-array2 &opt i onal result-bit-array
bit-orc2 bit-array] bit-array2 &optional result-bit-array

These functions perfonn bit-wise logical operations on bit-arrays. All of the arguments to any of

these functions must be bit-arrays of the same rank and dimensions. The result is a bit-array of

matching rank and dimensions, such that any given bit of the result is produced by operating on

corresponding bits from each of the arguments.

If the third argument is nil or omitted, a new array is created to contain the result If the third

argument is a bit-array, the result is destructively placed into that array. If the third argument is t,
then the first argument is also used as the third argument; that is, the result is placed back in the _

first array.

The following table indicates what the result bit is for each operation as a function of the two --

corresponding argument bits.

argumentl 0 0 1 1
argument2 0 1 0 1 Operation name

bit-and 0 0 0 1 and
bit-ior 0 1 1 1 inclusive or
bit-xor 0 1 1 0 exclusive or
bit-eqv 1 0 0 1 equivalence (exclusive nor)
bit-nand 1 1 1 0 not-and
bit-nor 1 0 0 0 not-or
bit-andcl 0 1 0 0 and complement of argument! with argument2
bit-andc2 0 0 1 0 and argumenll with complement of argument2
bit-orcl 1 1 0 1 or complement of argumentl with argument2
bit-orc2 1 O· 1 1 or argumentl with complement of argument2

For example:
(bit-and #*1100 #*1010) => #*1000
(bit-xor #*1100 #*1010) => #*0110
(bit-andcl #*1100 #*1010) => #*0100

See 10gand (page 171) and related functions.

- ------------------------_._--_ .. _----------_.----------_._-----

234 COMMON USP REFERENCE MANUAL

bit-not bit-array &optional result-bit-array [Function]
The first argument must be an array of bits. A bit-array of matching rank and dimensions is

returned that contains a copy of the argument with all the bits inverted. See lognot (page 173).

If the second argument is n i 1 or omitted, a new array is created to contain the result If the second
argument is a bit-array. the result is destructively placed into that array. If the second argument is
t, then the first argument is also used as the second argument; that is, the result is placed back in
the first array.

17.6. Fill Pointers

Several functions for manipulating a fill pointer are provided in COMMON LISP to make it easy to

incrementally fill in the contents of a vector, and more generally to allow efficient varying of the length of a
vector. For example, a string with a fill pointer has most of the characteristics of a PL/I varying string.

The fill pointer is a non-negative integer no larger than the total number of elements in the vector (as
returned by array-dimens ion (page 231»; it is the number of "active" or "filled-in" elements in the
vector. The fi~l pointer constitutes the "active length" of the vector; all vector elements whose index is less
than the fill pointer are active, and the others are inactive. Nearly all functions that operate on the contents of
a vector will operate only on the active elements. An important exception is aref (page 230), which can be
used to access any vector element whether in the active region of the vector or not. It is important to note that
vector elements not in the active region are still 'considered part of the vector.

Implementation note: An implication of this rule is that yector elements outside the active region may not be
garbage-collected.

Only vectors (one-dimensional arrays) may have fill pointers; multi-dimensional arrays may not (Note,
however, that one can create a multi-dimensional array that is displaced to a vector that has a fill pointer.)

array-has-fi11-po;~ter-p a"ay [Function]
The argument must be an array. array-has -fi ll-po i nter-p returns t if the array has a fill
pointer, and otherwise returtls n i 1. Note that ar r ay- has -f ; 11- po; n te r- p always returns
n ; 1 if the array is not one-dimensional.

f i 11 - poi n te r vector [Function]
The fill pointer of veetoris returned. It is an error if the vee/or does not have a fill pointer.

se t f (page 72) may be used with f; 11 -po i n te r to change the fill pointer of a vector. The fill
pointer of a vector must always be an integer between zero and the size of the vector (inclusive).

vector-push new-element vector [Function]
vector must be a one-dimensional array that has a fill pointer, and new-element may be any object
vector-push attempts to store new-element in the element of the vector designated by the fill
pointer, and increase the fill pointer by one. If the fill pointer does not designate an element of the

ARRAYS 235

vector (specifically, when it gets too big), it is unaffected and vector-push returns nil.
Otherwise, the store and increment take place and vector-push returns thefonnervalue of the
fill pointer (one less than the one it leaves in the vector); thus the value of vector-push is the
index of the new element pushed.

vector-push-extend new-element vector &optional extension [Function]
vector -push -ex tend is just like vector -push except that if the fill pointer gets too large, the
vector is extended (using adjust-array (page 235» so that it can contain more elements; it
never "fails" the way vector- push does, and so never returns nil. The optional argument
extension, which must be a positive integer, is the minimum number of elements to be added to the
vector if it must be extended.

vector-pop vector [Function]
vector must be a one-dimensional array that has a fill pointer. If the fill pointer is zero,
ve c tor - pop signals an error. Otherwise the fill pointer is decreased by one, and the vector
element designated by the new value of the fill pointer is returned.

17.7. Changing the Dimensions of ~ Array

adjust-array array new-dimensions &key :element-type : initial-element [Functionl
:initia1-contents :fil1-pointer
:displaced-to :displaced-index-offset

adjust-array takes an array and a number of other arguments as for make-array (page 227).
The number of dimensions specified by new-dimensions must equal the rank of array.

adjust-array returns an array of the same type and rank as array, with the specified
new-dimensions. In effect, the array argument itself is modified to conform to the new
specifications. but this may be achieved either by modifying the array or by creating a new array
and modifying the array argument to be displaced to the new array.

In the simplest case, one specifies only the new-dimensions and possibly an : in i t i a 1 - e 1 erne n t
argument. Those elements of array that are still in bounds appear in the new array. The elements
of the new array that are not in the bounds of array are initialized to the : in i t i a 1 - e 1 erne n t; if
this argument is not provided, then the initial contents of any new elements are undefined.

If: el ement-type is specified, then array must be such that it could have been originally created
with that type; otherwise an error is signalled. Specifying: e1 ement-type to adjust-array
serves only to require such an error check.

If : i nit i a 1 - con ten t s or : dis p 1 ace d - to is specified, then it is treated as for rna k e - a r ray.
In this case none of the original contents of array appears in the new array.

If : fill - poi n t e r is specified, the fill pointer of the array is reset as specified. An error is
signalled if array had no fill pointer already .

. _-------_ _-- --.... _ _ _ .. _._._._-----

236 COMMON USP REFERENCE MANUAL

adjust-array may, depending on the implementation and the arguments, simply alter the given

array or create and return a new one. In the latter case the given array will be altered so as to be

displaced to the new array and have the given new dimensions.

It is not pennitted to call ad jus t - a r rayon an array that was not created with the

: adj us tab 1 e option.

If adjust-array is applied to an array that is displaced to another array x, then afterwards

neither array nor the returned result is displaced to x unless such displacement is explicitly re

specified in the call to adjust-array.

Example: suppose that the 4-by-4 array m has the following contents:
alpha beta gamma delta
epsilon zeta eta theta
iota kappa lambda mu "
nu xi omicron pi

Then the result of
(adjust-array m '(3 5) : in it i a 1-e"1 ement • baz)

is a 3-by-5 array with contents
alpha beta gamma delta baz
epsilon zeta eta theta baz
iota kappa lambda mu baz

Note that if array °a is created displaced to array b and subsequently array b is given to

adjust-array, array a will still be displaced to array b; the effects of this displacement and the

rule of row-major storage order must be taken into account

Chapter 18

Strings

A string is a specialized kind of vector (one-dimensional array) whose elements are characters. Specifically,
the type string is identical to the type (vector string-char), which in tum is the same as (array
string-char (*»

As a rule, any string-specific function whose name begins with the prefix "s t I' i n g" will accept a symbol
instead of a string as an argument provided that the operation never modifies that argument; the print name of
the symbol is used. In this respect the string-specific sequence operations are not simply specializations. of
generic versions; the generic sequence operations described in Chapter 14 never accept symbols as sequences.
This slight inelegance is permitted in COMMON LISP in the name of pragmatic utility. One may get the effect
of having a generic sequence function op~rate on either symbols or strings by applying the coercion function
stri ng (page 241) to any argument whose data type is in doubt

Also, there is a slight non-parallelism in the names of string functions. Where the suffixes e qua 1 p and
e q 1 would be more appropriate. for historical compatibility the suffixes e qua 1 and = are used instead to
indicate case-insensitive and case-sensitive character comparison, respectively.

Any LISP object may be tested for being a string by the predicate s t I' i n g p (page 60).

Note that strings. like all vectors, may have fill pointers (though such strings are not necessarily simple).
String operations generally operate only on the active portion of the string (below the fill pointer). See
f i 1 1 - poi n tel' (page 234) and related functions.

IS. 1. -String Access

c h a I' string index
schar simple-string index

[Function]
[Function]

The given index must be a non-negative integer less than the length of string, which must be a
string. The character at position index of the string is returned as a character object (This character
will necessarily satisfy the predicate s t I' in g - ch ar - p (page 184).) . As with all sequences in

COMMON LISP, indexing is zero-origin.

For example:

- 237-

- --------------- ---------------------------- ----- - ------------ -- .. ---------------- -------

238 COMMON USP REFERENCE MANUAL

(char "Floob-Boober-Bab-Boober-Bubs" 0) => *'F
(char "Floob-Boober-Bab-Boober-Bubs" 1) => *'l

See aref (page 230) and el t (page 195). In effect,
(char s j) <=> (aref (the string s) j)

set f (page 72) may be used with c h a r to destructively replace a character within a string.

For char, the string may be any string; for schar, it must be a simple string. In some
implementations of COMMON LISP the function schar may be faster than char when it is
applicable.

18.2. String Comparison

The naming conventions for these functions and for their keyword arguments generally f~l1ow the
conventions for the generic sequence functions. See Chapter 14.

string= string/ string2 &key :start1 :end1 :start2 :end2 [Funcdj,JJn]

s t r in 9 = compares two strings, and is true if they are the same (corresponding characters are
identical) but is false if they are not The function e qua 1 (page 62) calls s t r i n 9 = if applied to

two strings.

The keyword arguments": start1 and : start2 are the places in" the strings to staIt the
comparison. The arguments : end 1 and : end 2 are the places in the" strings to stop comparing;
comparison stops just before the position specified by a limit The start arguments default to zero
(beginning of string), and the end arguments (if either· omitted or nil) default to the lengths of the
strings (end of string), so that by default the entirety of each string is examined. These arguments
are provided so that substrings can be compared efficiently.

s t r i n 9 = is necessarily false if the (sub)strings being compared are of unequal length; that is, if
(not (= (- end1 start1) (- end2 start2»)

is true then s t r i n g = is false.

For example:
(string= "faa" "faa") istrue
(string= "faa" "Faa") is false
(string= "foo" "bar"-) is false
(string= "together" "frog" :start1 1 :end1 3 :start2 2)

is true

string-equal string/ string2 &key :start1 :end1 :start2 :end2 [Function]

s t r i n 9 - e qua 1 is just like s t r ; n 9 = except that differences in case are ignored; two characters
are considered to be the same if char-equa 1 (page 187) is true of them.

For example:

(s t r i n 9 - e qua 1 " f 00" " F 00") is true

-----------------------------,.--------------
' ..

'STRINGS 239

string< string! string2 &key :startl :end1 :start2 :end2
string> string! string2 &key :startl :end1 :start2 :end2
string<= string! string2 &key :startl :endl :start2 :end2
string>= string! string2 &key :startl :endl :start2 :end2
str i ngl = siring! string2 &key : start 1 : end1 : s tart2 : end2

[Function]
[Function]
[Function]
[Function]
[Function]

The two string arguments are compared lexicographically, and the result is nil unless string! is
(less than, greater than, less than or equal to, greater than or equal to, not equal to) string2,
respectively. If the condition is satisfied, however, then the result is the index within the strings of
the first character position at which the strings fail to match; put another way, the result is the
length of the longest common prefix of the strings.

A string a is less than a string b if in the first position in which they differ the character of a is less
than the corresponding character of b according to the function c h a r < (page 186), or if string a is
a proper prefix of string b (of shorter length and matching in all the characters of a).

The keyword arguments : S tar t 1 and : s t a,r t 2 are the places in the strings to start the
comparison. The keyword arguments : end 1 and : end 2 places in the strings to stop comparing;
comparison stops just before the position specified by a limit The "start" arguments default to zero
(beginning of string), and the "end" arguments (if either omitted or nil) default to the lengths of
the strings (end of string), so that by default the entirety of each string is examined. These
arguments are provided so that substrings can be compared efficiently. The index returned in case
of a mismatch is an index into string!.

string-1essp string! string2 &key :startl :end1 :start2 :end2
string-greaterp string! string2 &key :startl :endl :start2 :end2
string-not-greaterp Siring] string2 &key :startl :endl :start2 :end2
string-not-lessp string! string2 &key :startl :end1 :start2 :end2
string-not-equal string] string2 &key :startl :end1 :start2 :end2

[Function]
[Function]
[Function]
[Function]
[Function]

These are exactly like str i ng<, str i ng>, str i ng<=, str i ng>=, and str i ngl =, respectively,
except that distinctions between upper-case and lower-case letters are ignored. It is as if

c h a r -1 e ssp (page 187) were used instead of c h a r < (page 186) for comparing characters.

18.3. String Construction and Manipulation

make-string size &key :initia1-e1ement [Function]
This returns a string of length size, each of whose characters has been initialized to the
: in it i a 1 '-e 1 ement argument If an : in it i a 1-e 1 ement argument is not specified, then the
string will be initialized in an implementation-dependent way.

Implementation note: It may be convenient to initialize the string to null characters. or to spaces. or to garbage
("whatever was there'").

A string is really just a one-dimensional array of "string characters" (that is, those characters that are
members of type s t r i n 9 - c h a r), More complex character arrays may be constructed using the
function make-array (page 227).

240 COMMON USP REFERENCE MANUAL

s t r in g - t rim character-bag string [Function]
string-left-trim character-bag string [Function]
str i ng-r i ght-tr im character-bag string [Function]
~

s t r i n g - t rim returns a substring of string, with all characters in character-bag stripped off the
beginning and end. The function s t r i n 9 -1 eft - t rim is similar, but strips characters off only
the beginning; s t r i n 9 - rig h t - t rim strips off only the end. The argument character-bag may
be any sequence containing characters.

For example:
(string-trim '(#\Space #\Tab #\Return) " garbanzo beans

") => "garbanzo beans"
(string-trim" (*)" " (*three (silly) words*) ")

=> "three (silly) words"
(string-left-trim" (*)" " (*three (silly) words*) ")

=> "three (silly) words*) "
(string-right-trim " (*)" " (*three (silly) words*) ")

=> " (*three (silly) words"
If no characters need to be trimmed from the string, then either the argument string itself or a copy
of it may be returned, at the discretion of the implementation.

string-upcase string &key :start :end
string-downcase string &key :start :end
string-capital ize string &key :start :end

[Function]
[Function]
[Function]

s t r i n 9 - up cas e returns a string just like string with all lower-case alphabetic characters replaced
by the corresponding upper-case characters. More precisely, each character of the result string is
produced by applying the function char-upcase (page 189) to the corresponding character of
string.

stri ng-downcase is similar, except that upper-case characters are converted to lower-case
characters (using char-downcase (page 189».

The keyword arguments : s tar t and : end delimit the portion of the string to be affected. The
result is always of the same length as string, however.

The argument is not destroyed. However, if no characters in the argument require conversion, the
result may be either the argument or a copy of it, at the implementation's discretion.

For example:
(string-upcase "Dr. Livingston, I presume?")

=> "DR. LIVINGSTON, I PRESUME?"
(string-downcase "Dr. Livingston, I presume?")

=> "dr. livingston, i presum~?"

(string-upcase "Dr. Livingston, I presume?" :start 6 :end 10)
=> "Dr. LiVINGston, I presume?"

s t r i n g - cap ita 1 ; z e produces a copy of string such that every word (subsequence of case
modifiable characters or digits delimited by non-ease-modifiable non-digits) has its first character, if
case-modifiable, in upper-case and any other case-modifiable characters in lower-case.

For example:

STRINGS

(string-capitalize" hello ") => " Hello"
(string-capitalize

"occlUDeD cASEmenTs FOreSTAll iNADVertent DEFenestraTION")

241

=> "Occluded Casements Forestall Inadvertent Defenestration"
(string-capitalize 'kludgy-hash-search) => "Kludgy-Hash-Search"
(s t r i n g - cap ita 1 i z e "DO N ' T ! ") = > " Don'T! " ; not "Don't I "
(string-capitalize "pipe 13a, fooI6c") => "Pipe 13a, Fool6c"

nstring-upcase string &key : st~rt : end [Function]
nstr ing-downcase string &key : start : end [Function]
nstring-capitalize string &key :start :end [Function]

These functions are just like string-upcase, string-downcase, and

s t r i n 9 - cap; tal i z e (page 240), but destructively modify the argument string by altering case

modifiable characters as necessary.

The keyword arguments : s tar t and : end delimit the portion of the string to be affected. The

argument string is returned as the result .

18.4. Type Conversions on Strings

s tr i ng x [Function]
Most of the string functions effectively apply s t r; n 9 to such of their arguments as are supposed to

be strings. If x is a string, it is returned. If x is a symbol, its print name is returned. In any other

situation, an error is signalled.

To convert a sequence of characters to a string, use coerce (page 40). (Note that (coerce x

, s t r ; n g) will not succeed if x is a symbol. Conversely, s t r i n 9 will not convert a list or other

sequence to be a string.)

To get the string representation of a number or any other LISP object, use p r i n 1- to - s t r i n 9

(page 297), p r ; n c - to - s t r i n 9 (page 297), or forma t (page 298) .

. _. __ _ .. _-_ .. _----_._._-----_ _ ... _----------------._--.... __ _ _------_._ .. __ .. _--_ _--_._. __ .. _ __ ._._.- --------_._--

242 COMMON USP REFERENCE MANUAL

Chapter 19

Structures

COMMON LISP provides a facility for creating named record structures with named components. In effect,
the user can define a new data type; every data structure of that type has components with specified names.
Constructor, access, and assignment constructs are automatically defined when the data type is defined.

This chapter is divided into two parts. The first part discusses the basics of the structure facility, which is
very simple and allows the user to take advantage of the type-checking, modularity, and convenience of
user-defined record data types. The second pan discusses a number of specialized features of the facility that
have advanced applications. These features are completely optional, and you needn't even know they exist in
order to take advantage of the basics.

Rationale: It is imponant not to scare the . novice away from defstruct with a multiplicity of features. The basic idea is
very simple. and we should encourage its use by providing a very simple description. The hairy stuff, including all options,
is shoved to the end of the chapter.

19.1. Introduction to Structures

The structure facility is embodied in the de f s t r u c t macro, which allows the user to create and use
aggregate datatypes with named elements. These are like "structures" in PL/I, or "records" in PASCAL.

As an example, assume you are writing a LISP program that deals with space ships in a two-dimensional
plane. In your program, you need to represent a space ship by a LISP object of some kind. The interesting
things about a space ship, as far as your program is concerned, are its position (represented as x and y

coordinates), velocity (represented as components along the x and yaxes), and mass.

A ship might therefore be represented as a record structure with five components: x-position, y-position,
x-velocity, y-velocity, and mass. This structure could in tum be implemented as a LISP object in a number of
ways. It could be a list of five elements; the x-position could be the car, the y-position the cadr, and so on.
Equally well it could be a vector of five elements: the x-position could be element 0, the y-position element 1,
and so on. The problem with either of these representations is that the components occupy places in the
object that are quite arbitrary and hard to remember. Someone looking at (cadddr sh ; p 1 lor
(v ref s h ; p 1 3) in a piece of code might find it difficult to detennine that thiS is accessing the y-velocity
component of s h ; P 1. Moreover, if the representation of a ship should have to be changed, it would be very
difficult to find all the places in the code to be changed to match (not all occurrences of cadddr are intended

- 243-

._-----_._ .. _............ , .. , .. ', ', , , _ ... " ... " ,,,,,"' .. _ _-

244 COMMON USP REFERENCE MANUAL

to extract the y-velocity from a ship).

Ideally components of record structures should have names. One would like to write something like
(ship-y-velocity ship1) insteadof{cadddr ship1). One would also like a more mnemonic way

to create a ship than this:
(list 0 0 0 0 0)

Indeed, one would like s rri p to be a new data type, just like other LISP data types, that one could test with

typep (page 58), for example. The defstruct facility provides all of this.

defstruct itself is a macro that defines a structure. For the space ship example one might define the

structure by saying:
(defstruct ship

x-position
y-position
x-velocity
y-velocity
mass)

This declares that every s hip is an object with five named components. The evaluation of this fonn does
several things:

• It defines s hip - x - po sit ion to be a function of one argument, a ship, that returns the
x-position of the ship; s hip -:- y - po sit ion and the other components are given similar function
definitions. These functions are called the access junctions, as they are used to access elements of
the structure.

• The symbol s h ; P becomes the name of a data type, of which instances of ships are elements.
This name becomes acceptable to typep (page 58). for example; (typep x 'sh i p) is true iff
x is a ship. Moreover, all ships are instances of the type structure, because sh i p is a subtype
of structure.

• A function named s hip - P of one argument is defined; it is a predicate that is true if its argument
. is a ship, and is false otherwise.

• A function called make - s hip is defined that, when invoked, will create a data structure with five
components. suitable for use with the access functions. Thus executing

{setq ship2 (mak~-ship»

sets s h ; P 2 to a newly~created s hip object One can specify the initial values of any desired
component in the call to mak e - s hip in this way:

{setq ship2 (make-ship :mass *default-ship~mass*
:x-position 0
:y-position 0»

This constructs a new ship and initializes three of its components. This function is called the
constructor jUnction, because it constructs a new structure.

• One may use set f to alter the components of ash; p:
{setf (ship-x-position ship2) 100)

This alters the x-position of ship2 to be 100. This works because de f s t r u c t behaves as if it
generates an appropriate defsetf (page 78) fonn for each access function.

STRUCfURES 245

This simple example illustrates the power of de f s t r u c t to provide abstract record structures in a

convenient manner. de f s t r u c t has many other features as well for specialized purposes.

19.2. How to Use Defstruct

defstruct name-and-options [doc-string] {slot-description} +

Defines a record-structure data type. A general call to defs truct looks like this:

(defstruct (name option-l option-2 •••)
doc-string
slot-description-l
slot-description-2
...)

[Macro]

name must be a symbol; it becomes the name of a new data type consisting of all instances of the

structure. The function typep (page 58) will ~ccept and use this name as appropriate.

Usually no options are needed at all. If no options are specified, then one may write simply name
instead of (name) after the word defstruct. The syntax of options and the options provided are

discussed in section 19.5 (page 247).

If the optional documentation string doc-string is present, then it is attached to the name: as a

documentation string of type structure; see documentat i on (page 338).

Each slo!-descrfp!ion-j is of the form

(slot-name defauIt-init
slot-option-name-l slot-option-value-l
slot-opt ion-name-2 slot-option-value-2
...)

Each slot-name must be a symbol; an access function is defined for each slot. Ifno options and no

default-init are specified, then one may write simply slot-name instead of (slot-name) as the slot

description. The default-init is a form that is evaluated each time a structure is to be constructed;

the value is used as the initial value of the slot If no default-init is specified, then the initial

contents of the slot are undefined and implementation-dependent The available slot-options are

described in Section 19.4.
Compatibility note: Slot-options are not currently provided in Lisp Machine LIsp, but this is an upward
compatible extension.

. .
Besides defining an access function for each slot, defstruct arranges for setf to work properly

on such access functions, defines a predicate named name- p, and defines a constructor function

named rna k e - name. All names of automatically created functions are interned in whatever

package is current at the time the defstruct declaration is processed (see *package* I (page

140». Also, all such functions may be declared; n 1 ; ne at the discretion of the implementation to

improve efficiency; if you do not want some function declared in'; n e, follow the de f s t r u c t

fonn with a not; n 1 i n e declaration to overrride any automatic i n 1 ; n e declaration.

---._-----_ _. __ •... _._._ .. __ ._ _ __ .. _ .. _ •.....

246 COMMON USP REFERENCE MANUAL

19.3. Using the Automatically Defined Constructor Function

After you have defined a new structure with defstruct, you can create instances of this structure by

.using the constructor function. By default, de f s t r u c t defines this function automaticany. For a structure

named foo, the constructor function is nonnally named make-foo; you can specify a different name by
giving it as the argument to the : constructor (page 248) option, or specify that you don~t want a normal

constructor function at all by using nil as the argument (in which case one or more "by-position"

constructors should be requested; see section 19.6 (page 251».

A call to a constructor function, in general~ has the form

(name-ofconstructor-jUnction
slot- keyword-] form-]
slot-keyword-2 form-2
...)

All arguments are keyword arguments. Each slot-keyword should be a keyword whose name matches the

name of a slot of the structure (defstruct determines the possible keywords simply by interning each

slot-name in the keyword package). All the keywords and forms are evaluated. In short, it is just as if the

constructor function took all its arguments as &key parameters. For example, the example sh i p structure

shown in section 19.1 has a constructor function that takes arguments roughly as if its definition were
(defun make-ship (&key x-position y-position

x-velocity y-velocity mass)
...)

If slot-keyword-j names a slot, then that element of the created structure will be initialized to the value of
form-j. If no slot-keyword-jf form-) pair is present for a gIven slot, then the slot will be initialized by evaluating

the default-init form specified for that slot in.the call to defstruct. (In other words, the initialization

specified in the defstruct defers to any specified in a call to the constructor function.) If the default

initialization form is used, it is evaluated at construction time, but in the lexical environment of the

de f s t r u c t form in which it appeared. If the de f s t r u c t itself also did not specify any initialization, the

element's initial value is undefined. You should always specify the initialization, either in the defstruct or

in the call to the constructor function, if you care about the initial value of the slot
Compatibility note: The lisp Machine LIsp documentation is slightly unclear about when the initialization specified in the
de f s t r u c t form gets evaluated: at de f s t rue t evaluation time, or at constructor time? The code reveals that it is at
constructor time, which causes problems with referential transparency with respect to lexical variables (which currently
don't exist officially in Lisp Machine LIsp anyway). The above remark concerning the lexical environment in effect requires
that the initialization form is treated as a thunk; it is evaluated at constructor time, but in the environment where it was
written (the defstruct environment). MoSt of the time this makes no difference anyway, as the initialization form is
typically a quoted constant or refers only to special variables. The requirement is imposed here for uniformity, and to
ensure that what look like special variable references in the initialization form are in fact always treated as such.

Each initialization form specified for a de f s t r u c t component, when used by the constructor function for

an otherwise unspecified component, is re-evaluated on every call to the constructor function. It is as if the

initialization forms were used as init forms for the keyword parameters of the constructor function. For

example, if the form (g en sym) were used as an initialization form, either in the constructor-function call or

as the default initialization fonn in the de f s t rue t declaration, then every call to the constructor function

would call 9 ens ym once to generate a new symbo1.

._--- -----.-----~-.

STRUCTURES 247

19.4. de f s t rue t Slot-Options

Each slot-description in a defstruct form may specify one or more slot-options. A slot-option consists of
a pair of a keyword and a value (which is not a form to be evaluated, but the value itself).

For example:
(defstruct ship

(x-position 0.0 :type short-float)
(y-position 0.0 :type short-float)
(x-velocity 0.0 :type short-float)
(y-velocity 0.0 :type short-float)
(mass *default-ship-mass· :type short-float :read-only t»

This specifies that each slot will always contain a short-format floating-point number, and that the last slot
may not be altered once a ship is constructed.

The available slot-options are:

: type The option : type type specifies that the contents of the slot will always be of the
specified data type. This is entirely analogous to the declaration of a variable or function;
indeed, it effectively declares the result type of the access function. An implementation
mayor may not choose to check the type of the new object when initializing or assigning to
a slot Note that the ~gument form type is not evaluated.

: rea d - 0 n 1 y The option : rea d - 0 n 1 y x, where x is not nil, specifies that this slot may not be
altered; it will always contain the value specified at construction time. set f (page
72) will not accept the access function for this slot If x is nil, this slot-option has no
effect Note that the argument form x is not evaluated.

19.5. Options to defstruct

The preceding description of de f s t r u c t is all that the average user will need (or want) to know in order
to use structures. The remainder of this chapter discusses more complex features of the de f s t r u c t facility.

This section explains each of the options that can be given to def s truct. As with slot-options, a
de f s t r u c t option may be either a keyword or a list of a keyword and arguments for that keyword.

:conc-name This provides for automatic prefixing of names of access functions. It is conventional to
begin the names of all the access functions of a structure with a specific prefix, the name of
the structure followed by a hyphen. This is the default behavior.

The argument to the : conc-name option specifies an alternate prefix to be used. (If a
hyphen is to be used as a separator. it must be specified as part of the prefix.) If nil is
specified as an argument, then no prefix is used; then the names of the access functions are
the same as the slot names, and it is up to the user to name the slots reasonably.

Note that no matter what is specified for: conc-name, with a constructor function one
uses slot keywords that match the slot names, with no prefix attached. On the other hand,
one uses the access-fu~ction name when using setf. Here is an example:

..... _--_ _ ,,--_._---_._-_ .. _--------

248

:type

COMMON USP REFERENCE MANUAL

(defstruct door knob-color width material)
(setq my-door (make-door :knob-color 'r~d :width 5.0»
(door-width my-door) ==> 5.0
(setf (door-width my-door) 43.7)
(door-width my-door)-=> 43.7

The : type option specifies what kind of LISP object will be used to implement the
structure. It takes one argument, which must be one of the types en.umerated below.

Specifying this option has the effect of forcing a specific representation, and of forcing the
components to be stored in successive elements of the specified representation.

Nonnally this option is not specified, in which case the structure is represented in an
implementation-dependent manner, and the : name d option is assumed unless : un name d
is explicitly specified.

vector Use a general vector, storing components as vector elements. This is
nonnally : named. The first component is vector element 1 if the
structure is : named, and element 0 ifit is : unnamed.

(vecto r elemenJ-type)

list

A specialized vector may be used, in which case every component must
be of a type that can be stored in such a vector. The first component is
vector element 1 if the structure is : named, and element 0 if it is
:unnamsd.

Use a list A structure of this type cannot be distinguished by typep,
even if the : named option is used. By default this is : unnamed. The
first component the cadr if the structure is : named, and the car if it is
:unnamed.

: named The : named option specifies that the structure is "named"; this option takes no argument
A named structure has an associated predicate for detennining whether a given LISP object
is a structure of that name. Some named structures in addition can be distinguished by the
predicate typep (page 58). If neither: named nor: unnamed is specified, then the
default depends on the : type option.

: un name d The : un name d option specifies that the structure is not named; this option takes no
argument. The "type" ofan unnamed structure can never be distinguished by typep.

: constructor This option takes one argument, a symbol. which specifies the name of the constructor
function. If the argument is not provided or if the option itself is not provided, the name
of the constructor is produced by concatenating the string "make-" and the name of the
structure, putting the name in whatever package is current at the time the de f s t rue t
declaration is processed (see ·package· (page 140». If the argument is provided and is
nil, no constructor function is defined.

This option actually has a more general syntax that is explained in section 19.6 (page 251).

STRUCTURES

:predicate

:include

---_ .. _-... ------

249

This option takes one argument, which specifies the name of the type predicate. If the
argument is not provided or if the option itself is not provided. the name of the predicate is
made by concatenating the name of the structure to the string "- p " , putting the name in
whatever package is current at the time the de f s t rue t declaration is processed (see
package (page 140)). If the argument is provided and is nil, no predicate is defined.
A predicate can be defined only if the structure is : named (page 248).

This option is used for building a new structure definition as an extension of an old
structure definition .. As an example, suppose you have a structure called person that
looks like this:

(defstruct person name age sex)
Now suppose you want to make a new structure to represent an astronaut Since astronauts
are people too. you would like them to also have the attributes of name, age. and sex, and
you would like LISP functions that operate on per son structures to operat~ just as well on
astronaut structures. You can do this by defining astronaut with the : include
option, as follows:

(defstruct (astronaut (:include person)
(:conc-narne 'astro-»

helmet-size
(favorite-beverage 'tang»

The : inc 1 u d e option causes the structure being defined to have the same slots as the
included structure, in such a way that the access functions for the included structure will
also work on the structure being defined. In this example, an as tronaut will therefore
have five slots: the three defined in person, and the two defmed in astronaut itself.
The access functions defined by the per son structure can be applied to instances of the
astronaut structure. and they will work correctly. Moreover, astronaut will have its
own access functions for components defined by the person structure. The following
examples illustrate how you can use as t ron aut structures:

(setq x (make-astronaut :name 'buzz
:age 45.
:sex t
:helmet-size 17.5»

(person-name x) => buzz
(astro-name x) => buzz
(astro-favorite-beverage x) => tang

The difference between the access functions person-name and astro-name is that
person-name may be correctly applied to any person, including an astronaut, while
astro-name may be correctly applied only to an astronaut. (An implementation may
or may not check for incorrect use of access functions.)

The argument to the : ; n c 1 u de option is required, and must be the name of some
previously defined structure. The included structure must be of the same : type as this
structure. The structure name of the including structure definition becomes the name of a
data type, of course; moreover, it becomes a subtype of the included structure. In the
above example, astronaut is a subtype of person; hence

(typep (make-astronaut) 'person)

-------------_._--"

250 COMMON USP REFERENCE MANUAL

is true, indicating that all operations on persons will work on astronauts.

The following is an advanced feature of the : inc 1 u d e option. Sometimes, when one
structure includes another, the default values or slot-options for the slots that came from
the included structure are not what you want. The new structure can specify default values
or slot-options for the included slots different from those the included structure specifies,
by giving the : i ncl ude option as:

(: include name slot-description-] slot-descnption-2 ...)
Each slot-descriplion-j must have a sial-name or slol-keyword that is the same as that of
some slot in the included structure. If slot-descriplion-jhas no default-init, then in the new
structure the slot will have no initial value. Otherwise its initial value form will be replaced
by the default-iniL in slot-descriplion-j. A normally writable slot may be made read-only. If
a slot is read-only in the included structure, then it must also be so in the including
structure. If a type is specified for a slot, it must be the same as, or a subtype of, the type
specified in the included structure. If it is a strict subtype, the implementation mayor may
not choose to error-check assignments.

For example, if we had wanted to define astronaut so that the default age for an
astronaut is 45, then we could have said:

(defstruct (astronaut (:include person (age 45»)
helmet-size,
(favorite-beverage 'tang»

:print-function
This option may be used only with : name d structures. The argument to this option
should evaluate to a function of three arguments to be used to print structures of this type.
When a structure of this type is to be printed, the function is called on the structure to be
printed, a stream to print to, and an integer indicating the current depth (to be compared
against * p r i n t - 1 eve 1 * (page 288». The printing function should observe the values of
such printer-control variables as *pri nt-escape* (page 287) and ·pri nt-pre:tty·
(page 287).

:initial-offset

:eval-when

This allows you to tell de f s t r u c t to skip over a certain number of slots before it starts
allocating the slots described in the body. This option requires an argument, a non
negative integer, which is the number of slots you want defstruct to skip. To make use
of this option requires that you have some familiarity with how de f s t r u c t is
implementing your structure; otherwise, you will be unable to make use of the slots that
def s tr uct has left unused.

Normally the functions defined by defs truct are defined at eval time, compile time,
and load time. This option allows the user to control this behavior. The argument to the
: eval-when option is just like the list that is the first subfonn of an eval -when (page
54) special fonn. For example,

(:eval-when (eval compile»
will cause the functions to be defined only when the code is running interpreted or inside
the compiler.

STRUCTURES 251

19.6. By-position Constructor Functions

If the :constructor (page 248) option is given as (:constructor name' argUst), then instead of

making a keyword driven constructor function, de f s t r u c t defines a "positional" constructor function,

taking arguments whose meaning is determined by the argument's position rather than by a keyword. The

argUst is used to describe what the arguments to the constructor will be. In the simplest case something like

(: constructor make-foo (a b c» defines make-foo to be a three-argument constructor function

whose arguments are used to initialize the slots named a, b, and c.

In addition, the keywords &0 p t ion a 1, & res t, and & a u x are recognized in the argument list They work

. in the way you might expect, but there are a few fine points worthy of explanation.

For example:
{:constructor create-foo

{a &optional b (c 'sea) &rest d &aux e (f 'eff»)

This defines create-foo to be a constructor of one or more arguments. The first argument is used to
initialize the a slot. The second argument is used to initialize the b slot. If there isn't any second argument,

then the default value given in the body of the defstruct (if given) is used instead. The third argument is
used to initialize the c slot If there isn't any third argument, then the symbol sea is used instead. Any

arguments following the third argument are collected into a list and used to initialize the d slot If there are

three or fewer arguments, then n; 1 is placed in the d slot The e slot is not initialized; its initial value is
undefined. Finally, the f slot is initialized to contain the symbol eff.

The actions taken in the b and e cases were carefully chosen to allow the user to specify all possible

behaviors. Note that the &aux "variables" can be used to completely override the default initializations given

in the body.

With this definition, one can write
(create-foo 1 2)

instead of
(make-foo :a 1 :b 2)

and of course create-foo provides defaulting different from thatofmake-foo.

It is permissible to use the : constructor option more than once, so that you can define several different

constructor functions, each taking different parameters.

Because a constructor of this type operates fur Order of Arguments, it is sometimes known as a BOA

constructor.

_ .. _ .•. _---_ ... - ----. ---- ------ ----. __ .. _---_., . .,,._--

252 . COMMON USP REFERENCE MANUAL

Chapter 20

The Evaluator

20.1. Run-Time Evaluation of Forms

eval fonn [Function]
The fonn is evaluated in the current dynamic environment and a null lexical environment.

Whatever results from the evaluation is returned from the call to e val.

Note that when you write a call to e val two levels of evaluation occur on the argument fonn you

write. First the argument fOIm is evaluated, as for arguments to any function, by the usual

argument evaluation mechanism (which involves an implicit use of eva 1). Then the argument is
passed to the e val function, where another evaluation occurs.

For example:
(aval (list 'cdr (car '«quote (a . b» c»» => b

The argument form (1 i s t 'e d r (c a r '((quo t e (a . b» c») is evaluated in the usual

way to produce the argument (c d r (q u 0 t e (a . b))); this is then given to e val because

e val is being called explicitly, and e va' evaluates its argument (e d r (quo t e (a . b) » to

produce b.

If all that is required for some application is to obtain the current dynamic value of a given symbol,

the function symb 0 1 - val u e (page 68) may be more efficient than e va 1.

evalhool< [Variable]

applyhool< [Variable]

If the value of *eva 1 hool< * is not n i 1, then eva 1 behaves in a special way. The non-n; 1 value

of *eval hool<* should be a function that takes arguments according to a lambda-list that looks

like (fonn &r est env); this is called the eval hook jUnction. When a fonn is to be evaluated (any

form at all, even a number or a symbol), whether implicitly or via an explicit call to e val, no

attempt is made to evaluate the fOIm. Instead, the hook function is invoked, and p~sed the fonn to

be evaluated as its first argument The hook function is then responsible for evaluating the fonn;

whatever is returned by the hook function is assumed to be the result of evaluating the form.

The variable * a p ply h 00 I< * -is similar to * e va 1 h 00 k *, but is used when a function is about to be

- 253-

254 COMMON USP REFERENCE MANUAL

applied to arguments. If the value of * a p ply h 00 k * is not nil, then e val behaves in a special

way. The non-n i 1 value of * app 1 yh ook * should be a function that takes arguments according to

a lambda-list that looks like (jUnction args &res t env); this is called the apply hook jUnction.
When a function is about to be applied to a list of arguments. no attempt is made to apply the

function. InsteacL the hook function is invokecL and passed the function and the list of arguments

as its first and second arguments. The hook function is then responsible for evaluating the form;

whatever is returned by the hook function is assumed to be the result of evaluating the fonn. The

apply hook function is used only for application of ordinary functions within e val. It is not used

for applications via appl y (page 83) or funcall (page 83), for applications by such functions as

map (page 197) or reduce (page 198), or for invocation of macro-expansion functions by either

eval or macroexpand (page 116).

The other arguments passed to either kind of hook function contain information about the lexical

environment in an impl~mentation-dependent format These arguments are suitable for the

functions *eval (page.254), eval hook (page 254), and applyhook (page 254).

When either kind of hook function is invoked, both *evalhook* and *applyhook* are

rebound to the, value nil around the invocation of the hook function. This is so that the hook

function will not be invoked recursively on evaluations and applications that occur in the course of

executing the code of the hook function. The hook function may find useful the functions

eval hook (page 254) and applyhook (page 254) for performing recursive evaluations and

applications.

The hook feature is provided as an aid to debugging. The s t e p (page 340) facility is implemented

around this hook.

If a non-local exit causes a throw back to the top level of LISP, perhaps because an error could not

be corrected, then *evalhook* and *applyhook* are automatically reset to nil, as a safety

feature.

*eval fonn &rest env [Function]
This function is just like eva 1 , but treats env as a specification of the lexical environment in which

to evaluate the fonn. The format of env is implementation-dependent, and may be required to

consist of a certain number of arguments, but anything that is passed to a hook function because of

the * e val h 0 0 k * feature will be acceptable.

Note that if a hook function simply talls * e val to evaluate the form, an endless loop may occur,

because * e val will invoke the hook function on its argument if * e val h 0 0 k * is not nil. See

e val h 0 0 k (page 254).

eva 1 hook fonn evalhookfn applyhookfn &res t env [Function)
applyhook jUnction args evalhookfn applyhookfn &rest env [Function)

The functions evalhook and applyhook are provided to make it easier to exploit the hook

feature.

TI-lE EVALUATOR 255

In the case of eval hook, the fonn is evaluated. The the case of appl yhook, the jUnction is·.
applied to the list of arguments args. In either case, the variable *eva 1 hook * is bound to

evalhookfn and * a p ply h 0 0 k * is bound to applyhookfn around the operation, and furthermore the

env arguments are used as the lexical environment, as for *eva 1 (page 254). The check for a hook

function is bypassed for the evaluation of the fonn itself (for e val h 0 0 k) or for the application of

the function to the args itself (for ap p 1 yhook), but not for subsidiary evaluations and applications.

such as evaluations ofsubfonns. It is this one-shot bypass that makes eva 1 hook and app 1 yhook

so useful.

Here is an example of a very simple tracing routine that uses just the eval hook feature:
(defvar *hooklevel* 0)

(defun hook (x)
(let «*evalhook* 'eval-hook-function»

(eval x»)

(defun eval-hook-function (form &rest env)
(let «*hooklevel* (+ *hooklevel* 1»)

(format trace-output "-%-V@TForm: -S"
(* *hooklevel* 2) form)

(let «values (multiple-value-list
(apply #'evalhook

form
#'eval-hook-function
nil
env»»

(format trace-output "-X-V@TValue:-{-S -)"
(* *hooklevel* 2) values)

(values-list values»»

Using these routines, one might see the following interaction:
(hook '(cons (floor *base* 2) 'b»

Form: (CONS (FLOOR *BASE* 2) (QUOTE B»
Form: (FLOOR *BASE* 3)

Form: *BASE *
Value:. 10
Form: 3
Value: 3

Value: 3 1
Form: (QUOTE B)
Value: B

Value: (3 . B)
(3 • B)

constantp object [Function]
If the predicate cons tan tp is true of an object, then that object always evaluates to the same

thing; it is a constant. This includes self-evaluating objects such as numbers, characters, strings,

bit-vectors,·and keywords, as well as all constant symbols declared by d·efconstant (page 53),
such as nil (page 58), t (page 58), and pi (page 161). In addition, a list whose car is quote,

such as (quo t e f 0 0) , is considered to be a constant

- - .. _-_. __ ._-----_.- --_. --•.... - ... __ _-----------

256 COMMON USP REFERENCE MANUAL

Ifconstantp is false ofan object, then that object might or might not always evaluate to the same
thing.

to.2. The Top· Level Loop

NOI1Ilally one interacts with LISP through a "top level read-eval-pri nt loop", so called because it is the
highest level of control and consists of an endless loop that reads an expression, evaluates it, and prints the·
results. One has an effect on the state of the LISP system only by invoking actions that have side effects.

The precise nature of the top-level loop for COMMON LISP is purposely not specified rigorously here, so that
implementors can experiment to improve the user interface. For example, an implementor may choose to

require line-at-a-time input. or may provide a fancy editor or complex graphics-display interface. An
implementor may choose to prompt explicitly for input, or may choose (as MACLISP does) not to clutter up
the transcript with prompts.

The top-level loop is required to trap all throws and recover gracefully. It is also required to print all values
resulting from evaluation of a fonn, perhaps on separate lines. If a fOI1Il returns zero values, as little as
possible should be printed.

The following variables are maintained by the top-level loop as a limited safety net, in case the user forgets
to save an interesting input expression or output value. (Note that the names of some of these variables
violate the convention that names of global variables begin and end with an asterisk.) These are intended
primarily for user interaction, which is why they have short names. Use of these variables should be avoided
in programs.

+

++

+++

[Variable]

[Variable]

[Variable]

While a fOI1Il is being evaluated by the top-level loop, the variable + is bound to the previous form
read by the loot>. The variable ++ holds the previous value of + (that is, the fonn evaluated two
interactions ago), and +++ holds the previous value of ++.

[Variable]

While a fonn is being evaluated by the top-level loop, the variable - is bound to the form itself; that

is, it is the value about to be given to + once this interaction is done.

"- -_._-_ ..• _---- ---_.

THE EVALUATOR 257

•

••

•••

I

II

III

[Variable]

[Variable]

[Variable]

While a form is being evaluated by the top-level loop, the variable • is bound to the result printed
at the end of the last time through the loop; that is, it is the value produced by evaluating the form
in +. If several values were produced, • contains the first value only (or nil if zero values were
produced). The variable •• holds the previous value of * (that is, the result printed two

interactions ago), and * * * holds the previous value of * • .

If the evaluation of + was aborted for some reason, * will have the value nil; this is so that + and
* , ++ and * * , and +++ and * * * will be correspond properly.

[Variable]

[Variable]

[Variable]

While a form is being evaluated by the top-level loop, the variable I is bound to a list of the results
printed at the end of the last time through the loop; that is, it is a list of all values produced by
evaluating the form in +. The value of· should' always be equal to the car of the value of I. The
variable / / holds the previous value of / (that is, the results printed two interactions ago), and I I I
holds the previous value of I I.

If the evaluation of + was aborted for some reason, I will have the value nil; this is so that + and
I, ++ and I I, and +++ and 1/1 will be correspond properly .

.. --_._---_._----_._._----_._--------------_._---.

258 COMMON USP REFERENCE MANUAL

•

Chapter 21

Streams

Streams are objects that serve as sources or sinks of data. Character streams produce or absorb characters;
binary streams produce or absorb integers. The normal action of a COMMON LISP system is to read characters
from a character input stre~ parse the characters as representations of COMMON LISP data objects, evaluate

. each object (as a form) as it is reacL and print representations of the results of evaluation to an output
character stream.

Typically streams are connected to files or to an interactive terminal. Streams, being LISP objects, serve as
the ambassadors of external devices by which input/output is accomplished.

A stream may be input-only, output-only, or bidirectional. What operations may be performed on a stream .
depends on which of the three types of stream it is.

21.1. Standard Streams

There are several variables whose values are streams used by many functions in the LISP system. These
variables and their uses are listed here. By convention, variables that are expected to hold a stream capable of
input have names ending with "-i nput", and similarly "-output" for output streams. Those expected to

hold a bidirectional stream have names ending with "- i 0".

standard-input [Variable]

In the normal' LISP top-level loop, input is read from * s tan dar d - i n put * (that is, whatever
stream is the value of the global variable * stan dar d - i n put *). Many input functions, including
read (page 291) and read-char (page 293), take a stream argument that defaults to

standard-input.

standard-output [Variable]

In the normal LIsp top-level loop, output is sent to *standard-output* (that is, whatever
stream is the value of the global variable * s tan dar d - 0 u t put *). Many output functions,
including p r in t (page 296) and wr it e - c h a r (page 297), take a stream argument that defaults

- 259-

-_._._--_.---_._-_ ... _---_ .• _.- ---~. -------_._ .. _._-_._--_ _•........ _. __ .-. __ ._---_ .. _-•..•..

260 COMMON USP REFERENCE MANUAL

to ·s tandard-output·.

·error-output· • [Variable]

The value of ·error-output· is a stream to which error messages should be sent Normally this

is the same as ·standard-output·, but ·standard-output· might be bound to a file and

• err 0 r - 0 u t put· left going to the terminal or a separate file of error messages.

·query-io· [Variable]

The value of·query-;o· is a stream to be used when asking questions of the user. The question

should be output to this stream, and the answer read from it When the normal input to a program

may be coming from a file, questions such as "Do you really want to delete all of the files in your

directory??" should be sent directly to the user, and the answer should come from the user, not

from the data file. ·query- i o· is used by such functions as yes-or-no-p (page 312).

·debug-io· [Variable]

The value of • deb u 9 - i o· is a stream to be used for interactive debugging purposes. This is often

the same as the value of • que r y - i o· (page 260), but need not be.

·terminal-io· [Variable]

The value of • term ina 1 - i o· is ordinarily the stream that connects to the user's console.
Typically, writing to this stream would cause the output to appear on a display screen, for example,

and reading from the stream would accept input from a keyboard. It is intended that standard

input functions such as read (page 291) and read-char (page 293), when used with the console

stream, would cause "echoing" of the input into the output side of the stream. (The means by

which this is accomplished is of course highly implementation-dependent)

·trace-output· [Variable]

The value of ·trace-output· is the stream on which the trace (page 339) function prints its

output

·standard-i nput·, ·standard-output·, ·error-output·, ·trace-output·, and

• que r y - i o· are initially bound to synonym streams that pass all operations on to the stream that is the

value of ·terminal -io·. (See make-synonym-stream (page 261).) Thus any operations perfOlmed

on those streams will go to the terminal.

No user program should ever change the value of ·termi nal -; 0·. A program that wants (for example)

to divert output to a file should do so by binding the value of ·standard-output·; that way error

STREAMS 261

messages sent to *error-output* can still get to the user by going through *term; nal -io*, which is.
usually what is desired.

21.2. Creating New Streams

Perhaps the most important constructs for creating new streams are those that open files; see
wi th -open -f i 1 e (page 325) and open (page 322). The following functions construct streams without
reference to a file system.

make-synonym-stream ~ool [Function]
make-synonym-stream creates and returns a "synonym stream". Any operations on the new
stream will be performed on the stream that is then the value of the dynamic variable named by the
symbol. If the value of the variable should change or be bound, then the synonym stream will
operate on the new stream.

make-broadcast-s tream &rest streams [Function]
Returns a stream that only works in the output direction. Any output sent to this stream will be
sent to all of the streams given. The set of operations that may be performed on the new stream is
the intersection of those for the given streams. The results returned by a stream operation are the
values returned by the last stream in streams; the results of performing the operation on all
preceding streams are discarded.

make-concatenated-stream &rest streams [Function]
Returns a stream that only works in the input direction. Input is taken from the first of the streams
until it reaches end-of-file; then that stream is discarded, and input is taken from the next of the
streams, and so on. If no arguments are given, the result is a stream with no content; any input
attempt will result in end-of-file.

make -two-way- stream input-stream output-stream [Function]
Returns a bidirectional stream that gets its input from input-stream and sends its output to

output-stream.

make-echo-s tream input-stream output-stream [Function]
Returns a bidirectional stream that gets its input from input-stream and sends its output to

output-stream. In addition, all input taken from input-stream is echoed to output-stream.

make-string-input-stream string &optional start end [Function]
Returns an input stream that will supply, in order, the characters in the substring of string delimited
by start and end, and then signal en&·of-file.

------------------_ _--._--- ... _-_ _---_._._.-... _---_._-

262 COMMON USP REFERENCE MANUAL

make-string-output-stream &optional line-length [Function]

~

Returns an output stream that will accumulate all output given it for the benefit of the function
get-output-stream-string.

get -output - s tream- s tr i ng string-output-stream [Function]
Given a stream produced by make-stri ng-output-stream, this returns a string containing all
the characters output to the stream so far. The stream is then reset; thus each call too

get - 0 u t put - s t ream - s t r i n 9 gets only the characters since the last such call (or the creation of
the stream, if no such previous call has been made).

wi th-open-stream (var stream) {declaration}* lfonn}* [Macro]

The form stream is evaluated and must produce a stream. The vanable var is bound with the stream
as its value, and then the forms of the body are executed. The stream is automatically closed on exit
from the wit h - 0 pen - s t ream form, no matter whether the exit is nonnal or abnormal. The
stream should be regarded as having dynamic extent

with-input-from-string (var string {keyword value}*) {declaration}* {(onn}* [Macro]

The body is executed as an implicit progn with the variable varbound to a character input stream
that supplies successive characters from the value of the fonn string.
wi th- i nput-from-str i n9 returns the results from the lastfonn of the body.

The input stream is automatically closed on exit from the wi th- i nput-from-s tr i ng form, no
matter whether the exit is nonnal or abnormal. The stream should be regarded as having dynamic
extent

The following keyword options may be used:

: index

:start

:end

For example:

The fonn after the : index keyword should be a place acceptable to setf. If
the with-input-from-string fonn is exited normally, then the place will
have stored into it the index into the string indicating the first character not read
(the length of the string if all characters were used). The place is not updated as
reading progresses, but only at the end of the operation.

The : start keyword takes an argument indicating, in the manner usual for
sequence functions, the beginning of a substring of string to be used.

The : end keyword takes an argument indicating, in the manner usual for
sequence functions, the end of a substring of string to be used.

(with-input-from-string (s "Animal Cr~ckers" :index j :start 6)
(read s» => crackers

As a side effect, the variable j is set to 15.

The : start and: index keywords may both specify the same variable, which is a PQinter within

STREAMS 263

the string to be advanced, perhaps repeatedly by some containing loop.

wi th-output-to-stri n9 (var [string]) {declaration}* {form}· [Macro]

The body is executed as an implicit progn with the variable var bound to a character output
stream. All output to that stream is saved in a string. If no string argument is provided, then the
value of wi th-output-from-stri n9 is a string containing all the collected output. If string is
specified, it must be a string with a fill pointer, the output is incrementally appended to the string
(see vector-push (page 234»; in this case wi th-output-to-stri n9 returns the results
from the last/orm of the body.

The output stream is automatically closed on exit from the wi th-output-from-stri n9 form,
no matter whether the exit is normal or abnormal. The stream should be regarded as having
dynamic extent.

21.3. Operations on Streams

This section contains discussion of only those operations· that are common to all streams. Input and output
is rather complicated, and is discussed separately in Chapter 22. The interface between streams and the file
system is discussed in Chapter 23.

s treamp object
s t r e amp is true if its argument is a stream, and otherwise is false.

(streamp x) <=> (typep x 'stream)

[Function]

input-stream-p stream [Function]
This predicate is true if its argument (a stream) can handle input operations, and otherwise is false.

output-stream-p stream [Function]
This predicate is true if its argument (a stream) can handle output operations, and otherwise is false.

stream-el ement-type stream [Function]
A type specifier is returned to indicate what objects may be read from or written to the stream.
Streams created by open (page 322) will have an element type restricted to a subset of
character or integer, but in principle a stream may conduct transactions using any LIsp
objects.

close stream &key : abort [Function]
The stream is closed. No further input/output operations may be performed on it However,
certain inquiry operations may still be performed, and it is permissible to close an already-closed
stream.

_ _ .. _ .. _. __ .. _ _ .. _-_. -------_ ... _._-._._._--_.

264 COMMON USP REFERENCE MANUAL

If the : abort parameter is not n; 1 (it defaults to n; 1), it indicates an abnonnal tennination of
the use of the stream. An attempt is made to clean up any side effects of having created the stream
in the first place. For example, if the stream perfonns output to a file, the file is deleted and any
previously existing file is not superseded.

Chapter 22

Input/Output

22.1., Printed Representation of LISP Objects

LISP objects are not normally thought of as being text strings; they have very different properties from text
strings as a consequence of their internal representation. However, to make it possible to get at and talk about
LISP objects, LISP provides a representation of objects in the form of printed text; this is called the printed
representation, which is used for input/output purposes and in the examples throughout this manual.
Functions such as p r i n t (page 296) take a LISP object and send the characters of its printed representation
to a stream. The collection of routines ~at does this is known as the (LISP) printer. The re ad function takes
characters from a stream, interprets them as a printed representation of a LISP object, builds a corresponding
object, and returns it; the collection of routines that does this is called the (LISP) reader.

Ideally, one could print a LISP object and then read the printed representation back in, and so obtain the
same identical object. In practice this is difficult, and for some purposes not even desirable. Instead, reading
a printed representation produces an object that is (with obscure technical exceptions) e qua' (page 62) to

the originally printed object

Most LISP objects have more than one possible printed representation. For example, the integer twenty
seven can be written in any of these ways:

27 27. #033 #xlB #bllOll #.(. 3 3 3)
A list of two symbols A and B can be printed in many,' many ways:

(A B) (a b) (a b) (\A I B I)
(I \AI

B
)

The last example, which is spread over three lines, may be ugly, but it is legitimate. In general, wherever
whitespace is pennissible in a printed representation, any number of spaces, tab characters, and newlines may
appear.

When p r i n t produces a printed representation, it must choose arbitrarily from among many possible
printed representations. It attempts to choose one that is readable. There are a number of global variables
that can be used to control the actions of p r ; nt, and a number of different printing functions.

This section describes in detail what is the standard printed representation for any Lisp object, and also

- 265-

266 COMMON LISP REFERENCE MANUAL

describes how rea d operates.

22.1.1. What the rea d Function Accepts

• The purPose of the LISP reader is to accept characters, interpret them as the printed representation of a LISP

object, and· construct and return such an object The reader cannot accept everything that the printer
produces; for example, the printed representations of compiled code objects cannot be read in. However, the
reader has many features that are not used by the output of the printer at all, such as comments, alternative
representations, and convenient abbreviations for frequently-used unwieldy constructs. The reader is also
parameterized in such a way that it can be used as a lexical pnalyzer for a more general user-written parser.

When the reader is invoked, it reads a character from the input stream and dispatches according to the
attributes of that character. Every character that can appear in the input stream can have one of the following
attributes: whitespace, constituent, escape character, or macro character. In addition, a macro character may
be terminating or non-terminating (of tokens).

Supposing that the first character has been read; call it "x". The reader then performs the following
actions:

• If x is a whitespace character, then discard it and start over, reading another character.

• If x is a macro character, then execute· the function associated with that character. The function
may return zero values or one value (see va 1 ues (page 103». If one value is returned, that
object is returned by the reader. If zero values are returned. the reader starts anew, reading a
character from the input stream and dispatching. The function may of course read characters
from the input stream; if it does, it will see those characters. following the macro character.

• If x is an escape character, then read the next character and pretend it is a constituent, ignoring its
usual syntax. Drop into the following case.

• If x is a constituent, then it begins an extended token, representing a symbol or a number. The
reader reads more characters, accumulating them until a whitespace character or a macro character
that is tenninating is found, or until end-of-file is reached. However, whenever an escape
character is found during the accumulation, the character after that is treated as a pure constituent
and also accumulated, no matter what its usual syntax is. Similarly, any non-terminating macro
character is simply accumulated as if it were a constituent Call the eventually found terminating
macro character or whiles pace character "y". All characters beginning with x up to but not
including y form a single extended to~en. (If end-of-file was encountered, the characters
beginning with x up to the end of the file form the extended token.) This token is then
interpreted as a number if possible, and otherwise as a symbol. The number or symbol is then
returned by the reader.

Compatibility note: What MAcLIsp calls a "single character object" (tokens of type single) are not provided for explicitly in
CoMMON LIsp. They can be viewed as simply a kind of macro character. That is, the effect of (setsyntax '$ 'single
nil) in MAcusp can be achieved in CoMMON LIsp by

(set-macro-character 'S "(lambda (stream char)
(declare (ignore stream char»
'$»

-------------_____________________________ 0 _______________ _

INPUT /01ITPUf

<tab> whites pace
<space> whitespace

constituent*
" terminating macro character
non-temlinating macro character
$ constituent
%
&

0'

(
)

*
+

constituent
constituent
terminating macro character
terminating macro character
terminating macro character
constituent
constituent
terminating macro character
constituent
constituent

/ constituent
o constituent
1 constituent
2 constituent
3 constituent
4 constituent
5 constituent
6 constituent
7 constituent
8 constituent
9 constituent

constituent
terminating macro character

< constituent
= constituent
> constituent
? constituent*
<backspace> constituent

<page> whitespace
@ constituent
A constituent
B constituent
C constituent
o constituent
E constituent
F constituent

- G constituent
H constituent
I constituent
J constituent
K constituent
L constituent
M constituent
N constituent
o constituent
P constituent
Q constituent
R constituent
S constituent

o T constituent
. U constituent
V constituent
W constituent
X constituent
Y constituent
Z constituent
[constituent*
\ escape character
] constituent*

constituent
constituent

<linefeed> whitespace

267

<return> whitespace
temtinating macro character

a constituent
b constituent
c constituent
d constituent
e constituent
f constituent
9 constituent
h constituent
; constituent
j constituent
k constituent
1 constituent
m constituent
n constituent
o constituent
p constituent
q constituent
r constituent
s constituent
t constituent
u constituent
v constituent
w constituent
x constituent
y constituent
z constituent
{ constituent*
I terminating macro character
} constituent*

constituent
<rub out> constituent

• The characters marked with an asterisk are initially oonstituents. but are reserved to the user for use as macro characters or for any other
desired purpose.

Table 22-1: Standard Character Syntax Attributes

268 COMMON USP REFERENCE MANUAL

The characters of the standard character set initially have the attributes shown in Table 22-1. Note that the
square brackets, braces, question mar~ and exclamation point (that is, "[", "J", "r" "} ", "1", and "!") are
qormally defined to be constituents, but are not used for any purpose in standard COMMON LISP syntax and
do not occur in the names of built-in COMMON LISP functions or variables. These characters are explicitly
reserved to the user, primarily for use as macro characters if desired.

number:: = integer 1 ratio I floating-paint-number
integer::= [sign] {digit} + [.J
ratio :: = [sign] {digit} + I {digit} +
floating-point-number:: = [sign] {digit}* . {digit} + [exponent]

J [sign] {digit} + [. {digit}*] exponent
sign ::= + 1-
digit:: = 0 11 1 2 1 3 1 4 1 5 1 6 I 7 I 8 1 9
exponent:: = exponent-marker [sign] {digit} +
exponent-marker:: = e 1 s 1 f I d 11 1 b lEI s 1 F 1 D I L I 8

The notation "{x}·" means zero or more OCQ1rrences of "x", the notation "{xl + .. means one or more occurrences of "x", and the
notation "[x]" means zero or one occurrences oCMr'.

Table 22-2: Syntax of Numbers

22.1.2. Parsing of Numbers and Symbols

When an extended token is read, it is interpreted as a number or symbol. As a rule, letters not preceded by
escape characters are converted to upper case. If the token can be interpreted as a number according to the
BNF syntax in Table 22-2, then a number object of the appropriate type is constructed and returned. It should
be noted that in a given implementation it may be that not all tokens conforming to the syntax for numbers
can actually be converted into number objects. For example, specifying too large or too small an exponent for
a floating-point number may make the number impossible to represent in the implementation. Similarly, a
ratio' with denominator zero (such as "-3 51 0 00") cannot be represented in any implementation. The
exponent markers "b" and "8" are undefined, but are reserved for future extension of the floating-point type.
In any such circumstance where a token with the syntax of a number cannot be converted to an internal
number object, an error is signalled. (On the other hand, an error cannot be signalled for specifying too many
significant digits for a floating-point number.)

There is actually one exception to the syntax of numbers described in Table 22-2. The radix used for
reading integers and ratios is normally decimal. However, this radix is actually determined by the value of the
variable *read-base* (page 269), whose initial value is 10. *read-base* may take on any integral
value between 2 and 36; let this value be n. Then a token x is interpreted as an integer or ratio in base n if it
could be properly so interpreted in the syntax "#nRx". So, for example, if the value of *read-base* is 16,
then the printed representation

(a small face in a bad place)

would be interpreted as if the following representation had been read with *read-base* set to ten:
(10 small 64206 in 10 2989 place)

--- ---- ---------------------------------- -------------------------

INPUT IOUTPUT 269

because four of the seven tokens in the list can be interpreted as hexadecimal numbers. This facility ~
intended to be used in reading files of data that for some reason contain numbers not in decimal radix; it may
also be used for reading programs written in LISP dialects (such as MACLISP) whose default number radix is
not decimal. Non-decimal constants in COMMON LISP programs or portable COMMON LIsp data files should
be written using NO, NX, N8, or #nR syntax.

Note that a token representing a number may not contain any escape ch~racters. An escape character robs
the following character of all syntactic qualities, forcing it to be strictly alphabetic.

If the token consists solely of dots (with no escape characters), then an error is signalled, except in one
circumstance: if the token is a single dot, and occurs in a situation appropriate to "dotted list" syntax, then it is
accepted as a part of such syntax. (Signalling an error catches not only misplaced dots in dotted list syntax,
but also lists that were truncated by * p r ; n t -, eng t h * (page 288) cutoff.)

In all other cases the token is construed to be the name of a symbol. If there are any package markers
(colons) in the token, they divide the token into pieces used to control creation of the symbol. The cases
where there are two or more colons, or where a colon appears at the end of the token, presently do not mean
anything in COMMON LISP and are reserved for future use; see chapter PACKAG (page PACKAG). If there
is a single non-final colon, it divides the token into two parts. The first part specifies a package. A null first
part indicates the keyword package; otherwise it is interpreted as the name of a symbol in the current
package, and that symbol must name a package. The second part is the name of the symbol.

If a symbol token contains no package markers, then· the entire token is the name of the symbol. The
symbol is looked up in the default package; see *package* (page 140).

The interpretation -of standard characters within extended tokens is -shown in Table 22-3. These
interpretations can be used, of course, only for characters defined to be constituent characters. For characters .
of type whitespace, macro character, or escape character, the interpretations in Table 22-3 are effectively
shadowed. (The interpretation of "superdigits" is relevant to the reading of rational numbers in a radix
greater than ten.)

read-base [Variable]

The value of *read-base* ~ontrols the interpretation of tokens by read (page 291) as being
integers or ratios. Its value is the radix in which integers and ratios are to be read; the value may be
any integer from 2 to 36 (inclusive), and is nonnally 10 (decimal radix). Its value affects only the
reading of integers and ratios. In particular, floating-point numbers are always read in decimal
radix. The value of * rea d - bas e * does not affect the radix for numbers whose radix is explicitly
indicated by NO, NX, #8, or NnR syntax.

Compatibility note: This variable corresponds to the variable called; base in MAcLIsP. and to the function
called r ad i x in INTERLIsP.

- - -----------------------------. . __ ._--------------------_._-----_._--._-_ ... -._--.

270 COMMON USP REFERENCE MANUAL

<tab> alphabetic • { alphabetic
'linefeed> alphabetic • I alphabetic •
<page> alphabetic • } alphabetic
<return> alphabetic • alphabetic •
<space) alphabetic • @ alphabetic
I alphabetic A,a alphabetic, superdigit

" alphabetic • B,b alphabetic, superdigit, reserved exponent
alphabetic • e,c alphabetic, superdigit
$ alphabetic D,d alphabetic, superdigit, double-float exponent
% alphabetic E,e alphabetic, supcrdigit, float exponent
& alphabetic F, f alphabetic, superdigit, single-float exponent

alphabetic • G,g alphabetic, superdigit
(alphabetic • H,h alphabetic, superdigit
) alphabetic • I. i alphabetic, superdigit
• alphabetic J.j alphabetic, superdigit
+ alphabetic, plus sign K,k alphabetic, superdigit

alphabetic • L, , alphabetic, superdigit, long-float ~xponent
alphabetic, minus sign M,m alphabetic, superdigit
alphabetic, dot, decimal point N,n alphabetic, superdigit

I alphabetic, ratio marker 0,0 alphabetic, superdigit
0 digit P,p alphabetic, superdigit
1 digit Q,q alphabetic, superdigit
2 digit R,r alphabetic, superdigit
3 digit 5,s alphabetic, superdigit, short-float exponent
,4 digit T,t alphabetic, superdigit
:5 digit U,U alphabetic, superdigit
t6 digit V, v alphabetic, superdigit
7 digit W,W alphabetic, superdigit
~ digit X,X alphabetic, superdigit
9 digit Y,y alphabetic, superdigit

package m~ker Z,Z alphabetic, superdigit
alphabetic • [alphabetic

< alphabetic \ alphabetic •
= alphabetic] alphabetic
> alphabetic alphabetic
? alphabetic alphabetic
<rub out> alphabetic alphabetic
<backspace> alphabetic

• The interpretations in this table apply only to characters detennined to have the constituent attribute. Entries marked with an asterisk

are nonnally shadowed because the indicated characters have whitespace, macro character, or escape character syntax~

Table 22-3: Standard Constituent Character Attributes

------- -------------------------- -------------

INPUT /OUfPUf 271

22.1.3. Macro Characters

If the reader encounters a macro character, then the function associated with that macro character is called,

and may produce an object to be returned. This function may read following characters in the stream in

whatever syntax it likes (it may even call read recursively) and returns the object represented by that syntax.

Macro characters may not be recognized, of course, when read as part of other special syntaxes (such as for

strings).

The reader is therefore organized into two parts: the basic dispatch loop, which also distinguishes symbols

and numbers, and the collection of macro characters. Any character can be reprogrammed as a macro

character; this is a means by which the reader can be extended. The macro characters nonnally defined are:

. (The left parenthesis character initiates reading of a pair or list. The function read (page 291) is called
recursively· to read successive objects, until a right parenthesis is found to be next in the input stream. A
list of the objects read is returned. Thus

(a b c)

is read as a list of three objects (the symbols a, b, and c). The right parenthesis need not follow the
printed representation of the last object immediately; whitespace characters may precede it. This can be
useful for putting one object on each line and making it easy to add new objects:

(defun traffic-light (color)
(case color

(green)
(red (stop»
(amber (accel erate» ; Insert more colors after this line.
))

It may be that no objects precede the right parenthesis, as in "()" or " () "; this reads as a list of zero
objects (the empty list).

If a token is read between objects that is just a dot" . ". not preceded by an escape character, then exactly
one more object must follow (possibly followed by whitespace), and then the right parenthesis:

(a be. d)

This means that the cdr of the last pair in the list is not nil, but rather the object whose representation
followed the dot. The above example might have been the result of evaluating

(cons 'a (cons 'b (cons 'c 'd») => (a be. d)
Similarly, we have

(cons 'znets 'wolq-zorbitan) => (znets . wolq-zorbitan)
It is permissible for the object following the dot to be a list:

(a bed . (e f . (g))) is the same as (a bed e f g)
but this is a non-standard form that p r i n t will never produce~

The right-parenthesis character is part of various constructs (such as the syntax for lists) using the
left-parenthesis character, and is invalid except when used in such a construct

The single-quote (accent acute) character provides an abbreviation to make it easier to put constants in
programs. 'foo reads the same as (quote foo): a list of the symbol quote andfoo.

Semicolon is used to write comments. The semicolon and all characters up to and including the next
<return> character are ignored. Thus a comment can be put at the end of any line without affecting the

272

"

COMMON LISP REFERENCE MANUAL

reader (except that semicolon, being a macro character and therefore a delimiter, will terminate a token,
and so cannot be put in the middle of a number or symbol).

For example:
;;;; COMMENT-EXAMPLE and related nonsense.
tt, This function is useless except to demonstrate comments.
;;; Notice that there are several kinds of comments.

(defun comment-example (x y) :X is anything; Y is an a-list.
(cond «listp x) x) ;If X is a list, use that.

;; X is now not a list. There are two other cases.
«symbolp x)
;: Look up a symbol in the a-list.
(cdr (assoc x y») :Remember, (cdr nil) is nil.

tt Do this when all else fails:
(t (cons x ;Add x to a default list.

t ((li s P t) ; LISP i s okay.
(fortran nil) ;FORTRAN is not.
(pl/i -500) ;Note that you can put comments in
(ada .001) ; "data" as well as in "programs".
;; COBOL??
(teco -1.0e9»»»

This example illustrates a few conventions for comments in common use. Comments may begin with
one to four semicolons.

• Single-semicolon comments are all aligned to the same column at the right; usually each
comments about only the line it is on. Occasionally two or three contain a single sentence
together; this is indicated by indenting all but the first by a space.

• Double-semicolon comments are aligned to the level of indentation of the code. A space
follows the two semicolons. Usually each describes the state of the program at that point, or
describes the section that follows.

• Triple-semicolon comments are aligned to the left margin. Usually they are not used within
function defmitions, but precede them in large blocks.

• Quadruple-semicolon comments are interpreted as subheadings.

Compatibility note: These conventions arose among users ofMAcuSP. and have been found to be very useful. The
conventions are conveniently exploited by certain software tools, such as the EMACS editor and the ATSIGN listing
program developed at MIT. .

The double-quote character begins the printed representation of a string. Characters are read from the
input stream and accumulated until another double-quote is encountered, except that if an escape
character is seen, it is discarded, the next character is accumulated, and accumulation continues. When a
matching double-quote is seen, all the accumulated characters up to but not including the matching
double-quote are made into a simple string and returned.

The vertical-bar character begins one printed representation of a symbol. Characters are read from the
input stream and accumulated until another vertical-bar is encountered, except that if an escape
character is seen, it is discarded, the next character is accumulated, and accumulation continues. When a
matching vertical-bar is seen, all the accumulated characters up to but not including the matching
vertical-bar are made into a symbol and returned. In this syntax, no characters are ever converted to

INPUT/OUTPUT 273

upper case; the name of the symbol is precisely those characters between the venical bars (allowing for
any escape characters).

The backquote (accent grave) character makes it easier to write programs to construct complex data
structures by using a template.As an example, writing

'{cond {(numberp ,x) ,@y) (t (print ,x) ,@y»

is roughly equivalent to writing
{list 'cond

{cons (list 'numberp x) y)
{list· 't (list 'print x) y»

The general idea is that the backquote is followed by a template, a picture of a data structure to be built
This template is copied, except that within the template commas can appear. Where a comma occurs,
the form following the comma is to be evaluated to produce an object to be insened at that point
Assume b has the value 3, for example, then evaluating the fonn denoted by '" (a b ,b ,(+ b 1)
b) " produces the result (a b 3 4 b).

If a comma is immediately followed by an at-sign ("@"), then the form following the at-sign is evaluated
to produce a list of objects. These objects are then "spliced" into place in the template. For example, if
x has the value (a be), then

'(x ,x ,@x foo ,(cadr x) bar ,(cdr x) baz ,@(cdr x»
=> (x (a b c) abc foo b bar (b c) baz b c)

The backquote syntax can be summarized formally as follows. For each of several situations in which
backquote can be used, a possible interpretation of that situation as an equivalent fonn is given. Note
that the form is equivalent only in the sense that when it is evaluated it will calculate the correct result
An implementation is quite free to interpret backquote in any way such that a backquoted fonn, when
evaluated, will produce a result e qua 1 to that produced by the interpretation shown here.

• 'basic is the same as ' basic, that is, (quote basic), for any form basic that is not a list or a
general vector.

• ' ,fonn is the same as fonn, for any fonn, provided that the representation of fonn does not
begin with "@" or" .". (A similar caveat holds for all occurrences of a form after a comma)

• ' ,@fonn is an error.

• '(xl x2 x3 •.• xn . atom) maybe interpreted to mean (append xl x2 ~ •.•
m (q uo te atom», where the underscore indicates a transformation of an xj as follows:

o fbnn is interpreted as (1 i s t 'fonn), which contains a backquoted fonn that must
then be further interpreted.

o . fbnn is interpreted as (1 i s t fonn).

o • @fbnn is interpreted simply asfonn.

• t (xl x2 x3 .•. xn) may be interpreted to mean the same as the backquoted fonn t (xl
x2 x3 .•• xn . nil), thereby reducing it to the previous case.

• t (xl x2 x3 ••. xn • ,fonn) may be interpreted to mean (append J1. x2 ~
m fonn), where the underscore indicates a transformation of an xj as above.

------------------ -----

274 COMMON USP REFERENCE MANUAL

• ' (xl x2 x3 .•• xn • , @form) is an error .

• 'II(xl x2 x3 ... xn) may be interpreted to mean (make-array (1 i st n)
:initial-contents '(xl x2 x3 .•. xn».

No other uses of comma are pennitted; in particular, it may not appear within the IIA or IS syntax.

Anywhere" t @" may be used, the syntax" , . " may be used instead to indicate that it is permissible to
destroy the list produced by the form following the " t • tt; this may permit more efficient code, using
nconc (page 212) instead of append (page 211), for example.

If the backquote syntax is nested, the innermost backquoted form should be expanded first. This means
,that if several commas occur in a row, the leftmost one belongs to the innermost backquote.

Once again, it is emphasized that an implementation is free to interpret a backquoted form as any form
that. when evaluated, will produce a result that is e qua 1 to the result implIed by the above definition.
In particular, no guarantees are made as to whether the constructed copy of the template will or will not
share list structure with the template itself. As an example, the above definition implies that

, ((,a b) ,c ,@d)

will be interpreted as if it were
(append (list (append (list a) (list 'b) 'nil» (list c) d 'nil)

but it could also be legitimately interpreted to mean any of the following:
(append (list (append (list a) (list 'b») (list c) d)
(append (list (append (list a) '(b») (list c) d)
(append (list (cons a '(b») (list c) d)
(list· (cons a '(b» c d)
(list· (cons a (list 'b» c d)
(list· (cons a '(b» c (copy-list d»

(There is no good reason why copy -1 ; s t should be performed, but it is not prohibited.)

The comma character is part of the backquote syntax and is invalid if used other than inside the body of
a backquote construction as described above.

II The sharp-sign character is a dispatching macro character. It reads an optional digit string and then one
more character. and uses that character to select a function to run as a macro-character function.

The sharp-sign character also happens to be a non-terminating macro character. This is completely
independent of the fact that it is a dispatching macro character; it is a coincidence that the only standard
dispatching macro character in COMMON LISP is also the only standard non-terminating macro character.
The sharp-sign character is a non-terminating macro character in COMMON LISP primarily for the sake of
the infix "II:" syntax for referring to the internal symbols of a package, as described in chapter
PACKAG.

See the next section for predefined sharp-sign mac:o characters.

22.1.4. Sharp-Sign Abbreviations

The standard syntax includes fonns introduced by a sharp sign ("II"). These take ~e general form of a
sharp sign, a second character that identifies the syntax, and following arguments in some form. If the second

character is a letter, then case is not important; 110 and 110 are considered to be equivalent, for example.

------- ---_.

INPUT/OUTPUT 275

Certain sharp-sign forms allow an unsigned decimal number to appear between the sharp sign and the

second character; some other forms even require it

The currently-defined sharp-sign constructs are described below and summarized in Table 22-4; more are

likely to be added in the future. However, the constructs "#!", "#?", "#[", "#]", "#{", and U#}" are

explicitly reserved for the user and will never be defined by the COMMON LISP standard.

#\ #\x reads in as a character object that represents the character x. Also, #\name reads in as the
character object whose name is name. Note that the backslash U\" allows this construct to be parsed
easily by EMAcs-like editors.

In the single-character case, the character x must be followed by a non-constituent character, lest a
name appear to follow the "#\ n, A good model of what happens is that after U#\" is read, the reader
backs up over the "\" and then reads an extended token, treating the initial "\" as an escape
character (whether it really is or not in the current readtable),

Upper-case and lower-case letters are distinguished after "#\ "; "#\A" and U#\ a" denote different
character objects, Any character works after #\, even those that are normally special to read, such
as parentheses. Non-printing characters may be used after #\, although for them names are
generally preferred.

#\name reads in as a character object whose name is name (actually, whose name is
(string-upcase name); therefore the syntax is case-insensitive). The following names are
standard across all implementations:

return

space

The ·carriage return or newline character.

The space or blank character.

The following names are semi-standard; if an implementation supports them, they should be used for
the described characters and no others.

The rubout or delete character. rubout

page

tab

backspace

linefeed

The formfeed or page-separator character.

The tabulate character.

The backspace character.

The line feed character.

The name should have the syntax of a symbol.

When the LISP printer types out the name of a special character, it uses the same table as the #\
reader; therefore any character name you see typed out is acceptable as input (in that
implementation). Standard names are always preferred over non-standard names for printing.

The following convention is used in implementations that support non-zero bits attributes for
character objects. If a name after #\ is longer than one character and has a hyphen in it, then it may
be split into the two parts preceding and following the first hyphen; the first part (actually,
s t r; n g - u pc a s e of the first part) may then be interpreted as the name or initial of a bit, and the
second part as the name of the character (which may in tum contain a hyphen and be subject to
further splitting).

For example:

#\Control-Space
#\C-M-Return

#\Control-Meta-Tab
#\H-S-M-C-Rubout

-----------._ .. --------------_. _ __ ._-----_ .. ---_.-

276

#<tab> signals error
,<space> signals error
! undefined*
#" undefined
reference to label
#$ undefined
#% undefined
#& undefined
#' functi on abbreviation
(general vector
) signals error
#* bit-vector
#+ read-time conditional
, load-time evaluation
#- read-time conditional
. read-time evaluation
/ undefined
#0 (infix argument)
#1 (infix argument)
#2 (infix argument)
#3 (infix argument)
#4 (infix argument)
#5 (infix argument)
#6 (infix argument)
#7 (infix argument)
#8 (infix argument)
#9 (infix argument)
: uninterned symbol
; undefined
#< signals error
#= labels LISP object
#> undefined
#1 undefined*
#<backspace> undefined

#<page) signals error
#@ undefined
#A array
#B binary rational
#e complex number
#0 . undefined
#E undefined
F undefined
#G undefined
#H undefined
#1 undefined
#J undefined
#K undefined
#L undefined
#M undefined
#N undefined
#0 octal rational
#P undefined
#Q undefined
#R radix-n rational
#5 structure
#T undefined
#U undefined
#V undefined
#W undefined
#X hexadecimal rational
#Y undefined
#Z undefined
#[undefined*
#\ named character
#] undefined*
#,. undefined
_ undefined
#<linefeed> signals error

COMMON USP REFERENCE MANUAL

#<return> signals error
t undefined
#a array
#b binary rational
#c complex number
#d undefined
#e undefined
#f undefined
#9 undefined
#h undefined
; undefined
j undefined
#k undefined
1 undefined
#m undefined
#n undefined
#0 octal rational
#p undefined
#q undefined
#r radix-n rational
s structure
#t undefined
#u undefined
#v undefined
#w undefined
x hexadecimal rational
#y undefined
#z undefined
#{ undefined*
I balanced comment
#} undefined*
#- undefined
#<rubout> undefined

• The combinations marked by an asterisk are explicitly reserved to the user and will never be defined by CoMMON LIsp.

Table 22-4: Standard Sharp-Sign Macro Character Syntax

INPlIT IOUfPUf 277

If the character name consists of a single character, then that character is used. Another "\" may be .
necessary to quote the character.

#\Control-%
#\Control-\a

#\Control-Meta-\"
#\Meta->

If an unsigned decimal integer appears between the "#" and "\", it is interpreted as a font number,
to become the char-font (page 188) of the character object

#t #'[00 is an abbreviation for (function [00). [00 may be the printed representation of any LISP

object This abbreviation may be remembered by analogy with the ' macro-character, since the
fun c t ; 0 nand quo t especial fonns are similar in fonn.

(A series of representations of objects enclosed by "# (" and ")" is read as a simple general vector of
those objects. This is analogous to the notation for lists.

If an unsigned decimal integer appears between the u#" and U (", it specifies explicitly the length of
the vector. In that case, it is an error if too many objects are specified before the closing")", and if
too few are specified the last one is used to fill all remaining elements of the vector.

For example:
#(a b c c c c)
#6(a b c c c c)
#6(a b c)
#6(a b c c)

all mean the same thing: a vector oflength 6 with elements a, b, and four instances of c.

#* A series of binary digits (0 and i) preceded by u#*" is read as a simple bit-vector containing those
bits, the leftmost bit in the series being bit 0 of the bit-vector.

If an unsigned decimal integer appears between the u#" and "*", it specifies explicitly the length of
the vector. In that case, it is an error if too many bits are specified, and if too few are specified the
last one is used to fill all remaining elements of the bit-vector.

For example:
#*101111
#6*101111
#6*101
#6*1011

all mean the same thing: a vector oflength 6 with elements 1, 0, 1, 1, 1, and 1.

#: # :foo requires faa to have the syntax of an unqualified symbol name· (no embedded colons). It
denotes an uninterned symbol whose name is faa. Every time this syntax is e~countered a different
unintemed symbol is created.

. # .[00 is read as the object resulting from the evaluation of the LISP object represented by [00, which
may be the printed representation of any LISP object. The evaluation is done during the re ad
process, when the "#. " construct is encountered. This, therefore, perfonns a "read-time" evaluation
offoo. By contrast, "# I "(see below) perfonns a "load-time" evaluation.

Both "#. " and "#, " allow you to include, in an expression being read, an C?bject that does not have a
convenient printed representation; instead of writing a representation for the object, you write an
expression that will compule the object

278 COMMON USP REFERENCE MANUAL

• # .foo is read as the object resulting from the evaluation of the LISP object represented by foo, which
may be the printed representation of any LISP object. The evaluation is done during the read
process, unless the compiler is doing the reading, in which case it is arranged that foo will be
evaluated when the file of compiled code is loaded. This, therefore, perfonns a "load-time"
evaluation of foo. By contrast, #. (see above) perfonns a "read-time" evaluation. In a sense, #. is
like specifying (eval load) to eval-when (page 54), while #. is more like specifying (eval
compi 1 e). It makes no difference when loading interpreted code, but when code is to be compiled,
#. specifies compile-time evaluation and #. specifies load-time evaluation.

#8 #brational reads rational in binary (radix 2). For example, #Bll0l <=> 13, and #bl0l/ll <=>
5/3.

#0 #orational reads rational in octal (radix 8). For example, #037/15 <=> 31/13, and #0777 <=>
511.

#X #xrational reads rational in hexadecimal (radix 16). The digits above 9 are the letters A through F
(the lower-case letters a through f are also acceptable). For example, #x FOO <=> 3840.

#nR #radixrrational reads rational in radix radix. radix must consist of only digits, and it is read in
decimal; its value must be between 2 and 36 (inclusive).

For example, #3 r 102 is another wax of writing 11, and #11R32 is another way of writing 35. For
radices larger than 10, letters of the alphabet are used in order for the digits after 9.

InA The syntax #nAobject constructs an n-dimensional array, using object as the value of the
: in; ti a 1-con ten ts argument to make-array (page 227).

For example, "#2A«0 1 5) (foo 2 (hot dog»)"representsa2-by-3matrix:
015

foo 2 (hot dog)

#S The syntax #s (name slotl value] slot2 value2 ...) denotes a structure. This is legal only if
name is the name of a structure already defined by defs truct (page 245), and if the structure has a
standard constructor macro, which it nonnally will. Let em stand for the name of this constructor
macro; then this syntax is equivalent to

. (cm slotl 'value! slot2 t value2 •.•)

That is, the constructor macro is called, with the specified slots having the specified values (note that
one does not write quote-marks in the #S syntax). Whatever object the constructor macro returns is
returned by the #S syntax.

#n= The syntax #n=object reads as whatever LISP object has object as its printed representation. However,
that object is labelled by n, a required unsigned decimal integer, for possible reference by the syntax
#n# (below). The scope of the label is the expression being read by the outennost call to read.
Within this expression the same label may not appear twice.

nil The syntax #n#, where n is a required unsigned decimal integer, serves as a reference to some object
labelled by IIn=; that is, #n# represents a pointer to the same identical (eq) object labelled by IIn=.
This permits notation of structures with shared or circular substructure. For example, a structure
created in the variable y by this code:

--------------------------- ._-------_._---------

INPUT/OUTPUT

{setq x (l ist 'p 'q»
(setq y (list (list 'a 'b) x 'faa x»
{rplacd (last y) (cdr y»

could be represented in this way:
«a b) . #1=(#2=(p q) foo #.2# . #1#»

279

Without this notation, but with * p r i n t -1 eng t h * (page 288) set to 10, the structure would print
in this way:

«a b) (p q) faa (p q) (p q) faa (p q) (p q) faa (p q) ...)

A reference #Il# may only occur after a label #n=; forward references are not pennitted.

#+ The #+ syntax provides a read-time conditionalization facility. The general syntax is u#+feature
fonnu

• If feature is ""true", then this syntax represents a LISP object whose printed representation is
fonn. If feature is "false", then this syntax is effectively whitespace; it is as if it did not appear.

The feature should be the printed representation of a symbol or list If feature is a symbol, then it is
true if and only if it is a member of the list that is the value of the global variable * f eat u r as *
(page 345).

Compatibility note: MAcLIsp uses the s tat u s special' form for this purpose, and lisp Machine l.JSP duplicates
s tat us essentially only for the sake of (s tat us f eat u res). The use of a variable allows one to bind the
features list. for example when compiling.

Otherwise. feature should be a boolean expression composed of and, or, and not operators on
(recursive) feature expressions. .

For example, suppose that in implementation A the features spice and perq are true, and in
implementation B the feature 1 i s pm is true. Then the expressions on the left below are read the
same as those on the right in implementation A:

(cons #+spice "Spice" #+lispm "Lispm" x)
(setq a '(1 2 #+perq 43 #+(not perq) 27»
(let «a 3) #+(or spice lispm) (b 3»

(foo a»

In implementation B, however, they are read in this way:
(cons #+spice "Spice" #+lispm "Lispm" x)
(setq a '(1 2 #+perq 43 #+(not perq) 27»
(let «a 3) #+(or spice lispm) (b 3»

(foo a»

(cons "Spica" x)
(setq a '(l 2 43»
(let «a 3) (b 3»

(foo a»

(cons "Lispm" x)
(setq a '(1 2 27»
{let «a 3) (b 3»

(foo a»

The #+ construction must be used judiciously if unreadable code is not to result The user should
make a careful choice between read-time conditionalization and run-time conditionalization.

#- I-feature fonnisequivalentto#+(not feature) fonn.

I # I . . . I # is treated as a comment by the reader, just as everything from a semicolon to the next
<return> is treated as a comment. Anything may appear in the comment, except that it must be
balanced with respect to other occurrences of Uti I" and" I #". Except for this nesting rule, the
comment may contain any characters whatsoever.

The main purpose of this construct is to allow "commenting out" of blocks of code or data. The
balancing rule allows such blocks to contain pieces already so commented out In this respect the
I ... I # syntax of COMMON LISP differs from the / * ... * / comment syntax used by PUI and c.

#< This is not legal reader syntax. It is used in the printed representation of objects that cannot be read
back in. Attempting to read a #< will cause an error. (More precisely, it is legal syntax, but the

-----_._------------_._--_._--_._-

280 COMMON LISP REFERENCE MANUAL

macro-character function for it signals an error.)

#<space>, #<tab>, #<return>, #<page>
A # followed by a standard whitespace character is not legal reader syntax. This is so that
abbreviated fonns produced via *pri nt-1 eve 1* (page 288) cutoff will not read in again; this
serves as a safeguard against losing information. (More precisely, it is legal syntax, but the macro
character function for it signals an error.)

#) This is not legal reader syntax. This is so that abbreviated fonns produced via * p r ; n t -1 eve 1 *
(page 288) cutoff will not read in again; this serves as a safeguard against losing information. (More
precisely, it is legal syntax, but the macro-character function for it signals an error.)

22.1.5. The Readtable

Previous sections have described the standard syntax accepted by the read function. This section discusses
the advanced topic of altering the standard syntax, either to provide extended syntax for LISP objects or to aid
the writing of other parsers.

There is a data structure called the readtable that is used to control the reader. It contains infonnation about
the syntax of each character equivalent to that in Table 22-1. Initially it is set up exactly as in Table 22-1 to
give the standard COMMON LISP meanings to all the characters, but the user can change the meanings of
characters to alter and customize the syntax of characters. It is also possible to have several readtables
describing different syntaxes and to switch frorq one to another by binding the variable * rea d tab 1 e * .

Even if an implementation supports characters with non-zero bits and font attributes, it need not (but may)
allow for such characters to have syntax descriptions in the readtable. However, every character of type
s t r i n 9 - c h a r must be represented in the readtable.

readtable [Variable]

The value of *readtabl e* is the current readtable. The initial value of this is a readtable set up
for standard COMMON LISP syntax. You can bind this variable to temporarily change the readtable
being used.

To program the reader for a different syn~x, a set of functions are provided for manipul~ting readtables.
Normally, you should begin with a copy of the standard COMMON LISP readtable and then customize the
individual characters within that copy.

copy-readtab1e &optiona1 from-readtable to-readtable [Function]
A copy is made of from-readtable, which defaults to the current readtable (the value of the global
variable *readtable*). If from-readtable is unsupplied or nil, then a copy of a standard
COMMON LISP readtable is made; for example,

(setq *readtable* (copy-readtab1e»
will restore the input syntax to standard COMMON LISP syntax, even if the original readtable has

-'
:.;.

INPUT/OUTPUT 281

been clobbered (assuming it is not so badly clobbered that you cannot type in the above
expression!).

If to-readtable is unsupplied or n; 1, a fresh copy is made. Otherwise to-readtable must be a
readtable, which is clobbered with the copy.

readtablep object
readtab 1 ep is true if its argument is a readtable, and otherwise is false .

. (readtablep x) <=> (typep x 'readtable)

set-syntax-from-char to-char from-char &opt;ona1 to-readtable fro~-readtable

[Function]

[Function]
Makes the syntax of to-char in to- readtable be the same as the syntax of from-char in from- readtable.
The to- readtable defaults to the current readtable (the value of the global variable * rea d tab 1 e *
(page 280», andfrom-readtable defaults to n; 1, meaning to use the syntaxes from the standard LISP

readtable.

Only attributes as shown in Table 22-1 are copied; moreover, if a macro character is copied, the
macro definition function is copied also. However, attributes as shown in Table 22-3 are not
copied; they are "hard-wired" into the extended-token parser. For example, if the definition of"S"
is copied to "*", then "*" will become a constituent, but will be simply alphabetic and cannot be
used as an exponent indicator for shon-format floating-point number syntax.

It "works" to copy a macro definition from a character such as "I" to another character; the
standard definition for" I " looks for another character that is the same as the character that invoked
it It doesn't "work" to copy the definition of" (" to "{", for example; it can be done, but it lets
one write lists in the form "{ abc) ", not" {a be}", because ~e definition always looks for a
closing ")". See the function read-del ;m;ted-l ;st (page 292), which is useful in this
connection.

set-macro-character char jUnction &optiona1 non-terminating-p readtable
get-macro-character char &opt ;ona1 readtable

[Function]
[Function]

set-macro-character causes char to be a macro character that when seen by read causes
jUnction to be called. If non-terminating-p is not n; 1 (it defaults to n; 1), then it will be a
non-terminating macro character: it may be embedded within extended tokens.
set-macro-character returns t.

get-macro-character returns the function associated with char, and as a second value returns
the non-terminating-p flag; it returns n; 1 if char does not have macro-character syntax. In each
case, readtable defaults to the current readtable.

jUnction is called with two arguments, stream and char. The stream is the input stream, and char is
the macro-character itself. In the simplest case, junction may return a LIsp object This object is
taken to be that whose printed representation was the macro character and any following characters
read by the junction. As an example, a plausible definition of the standard single-quote character
is:

._------- -------_ __ -

282

(defun single-quote-reader (stream char)
(declare (ignore char»
(list 'quote (read stream nil nil t»)

COMMON LISP REFERENCE MANUAL

(set-macro-character '\' #'single-quote-reader)

(Note that t is specified for the recursive-p argument to read; see section 22.2.1.) The function

reads an object following the single-quote and returns a list of the symbol quo t e and that object

The char argument is ignored.

The function may choose instead to return zero values (for example, by using (val ues) as the

return expression). In this case the macro character and whatever it may have read contribute

, nothing to the object being read. As an example, here is a plausible definition for the standard

semicolon (comment) character:
(defun semicolon-reader (stream char)

(declare (ignore char»
;; First swallow the rest of the current input line.
(do () «char= (read-char stream nil nil t) #\Return»)
;; Return zero values.
(values»

(set-macro-character ,\; "semicolon-reader)

(Note that t is specified for the recursive-p argument to read-char; see section 22.2.1.) The

jUnction should not have any side-effects other than on the stream. Front ends (such as editors and

rubout handlers) to the reader may cause jUnction to be called repeatedly during the reading of a

single expression in which the macro character only appears once, because of backtracking and

restaning of the rea d operation.

make-di spatch-macro-character char &opt ional non-terminating-p readtable [Function]
This causes the character char to be a dispatching macro character in readtable (which defaults to

the current readtable). If non-terminating-p is not nil (it defaults to nil), then it wilL be a

non-terminating macro character: it may be embedded within extended tokens.

make-d i spatch-macro-character returns t.

Initially every character in the dispatch table has a character-macro function that signals an error.

Use set-di spatch-macro-character to define entries in the dispatch table.

set-di spatch-macro-character disp-char sub-char jUnction &opt ional readtable
get-di spatch-macro-character disp-char sub-char &opt ional read table

[Function]
[Function]

set-di spatch-macro-character causes jUnction to be called when the disp-charfollowed by

sub-char is read. The readtable defaults to the current readtable. The arguments and return values

for jUnction are the same as for normal macro characters, documented above under

set-macro-character (page 281), except that jUnction gets sub-char as its second argument,

and also receives a third argument that is the non-negative integer whose decimal representation

appeared between disp-char and sub-char, or nil if there was none.

The sub-char may not be one of the ten decimal digits; they are always reserved for specifying an

infix. integer argument Moreover, if sub-char is a lower-case character (see lowe r - cas e - p (page

INPUT IOtITPUf 283

185», its upper-case equivalent is used instead. (This is how the rule is enforced that the case of a .
dispatch sub-character doesn't matter.)

set-di spatch-macro-character returns t.

get-di spatch-macro-character returns the macro-character function for sub-char under
disp-char, or ni 1 if there is no fucntion associated with sub-char.

If the sub-char is one of the ten decimal digits, get-dispatch-macro-character always
returns nil. If sub-char is a lower-~ase character, its upper-case equivalent is used instead.

For either function, an error is signalled if the specified disp-char is not in fact a dispatch character
in the specified readtable. It is necessary to use make-d; spatch-macro-ch aracter (page
282) to set up the dispatch character before specifying its sub-characters.

As an example, suppose one would like #$foo to be read as if it were (doll a r s foo). One might
say:

(defun sharp-dollar-reader (stream subchar arg)
(declare (ignore subchar arg»
(list 'dollars (read stream»)

(set-dispatch-macro-character #\# #\$ #'sharp-dollar-reader)

Compatibility note: This macro-character mechanism is different from those in MAcLIsp. INTER LIsp. and Usp Machine
LIsp. Recently LIsp systems have implemented very general readers, even readers so programmable that they can parse
arbitrary compiled BNF grammars. Unfortunately. these readers can be complicated to use. This design is an attempt to
make the reader as simple as possible to understand. use. and implement Splicing macros have been eliminated: a recent
informal poll indicates that no one uses them to produce other than zero or one value. The ability to access parts of the
object preceding the macro character have been eliminated. The MACllsP single-character-object feature has been
eliminated, because it is seldom used and trivially obtainable by defining a macro.

The user is encouraged to Wm off most macro characters. tum others into single-character-object macros. and then use
read purely as a lexical analyzer on top of which to build a parser. It is unnecessary, however, to cater to more complex
lexical analysis or parsing than that needed for CoMMON 1.Jsp.

22.1.6. What the p r i n t Function Produces

The COMMON LISP printer is controlled by a number of special variables. These are referred to in passing
in the following discussion, and are documented fully at the end of this section.

How an expression is printed depends on its data type, as described in the following paragraphs.

Integers. If appropriate, a radix specifier may be printed; see the variable • p r i n t - r ad i x· (page 287).
If an integer is negative, a minus sign is printed and then the absolute value of the integer is printed.
Non-negative integers are printed in the radix specified by the variable • p r i n t - bas e· (page 287) in the
usual positional notation, most significant digit first The number zero is represented by the single digit 0,
and never has a sign. A decimal point may then be printed.

Ratios. If appropriate, a radix specifier may be printed; see the variable • p r i n t - r ad i x· (page 287). If
the ratio is negative, a minus sign is printed. Then the absolute value of the numerator is printed, as for an
integer; then a "I"; then the d~nominator. The numerator and denominator are both printed in the radix

----------- ---_._---_ ... _---_ ... _--_ _._. _._-_ ... __ .. _.------

284 COMMON USP REFERENCE MANUAL

specified by the variable *print-base* (page 287); they are obtained as if by the numerator (page
166) and denom; nator (page 166) functions, and so ratios are always printed in lowest form.

Floating-point numbers. Floating point numbers are printed in one of two ways. If the floating point
number is between 10-3 (inclusive)'and 107 (exclusive), it may be print~d as the integer part of the number,
then a decimal point, followed by the fractional part of the number; there is always at least one digit on each
side of the decimal point. If the format of the number does not match that specified by the variable
read-defau1 t-f1 oat-format (page 291), then the exponent marker for that format and the digit
"0" are also printed. For example, the base of the natural logarithms as a short-format floating-point number
might be printed as "2. 7182850". ' .

Outside of the range 10-3 to 107, a floating-point number will be printed in "computerized scientific
notation". The representation of the number is scaled to be between 1 (inclusive) and 10 (exclusive) and then
printed, with one digit before the decimal point and at least one digit after the decimal point Next the
exponent marker for the fonnat is printed, except that if the fonnat of the number matches that specified by
the variable *read-defau1 t-fl oat-format* (page 291), then the exponent marker "E" is used.
Finally, the power often by which the fraction must be multiplied to equal the original number is printed as a
decimal integer. For example, Avogadro's number as a short-format floating-point number might be printed
as "6.02523".

Characters. When * p r ; n t - esc ape * (page 287) is nil, a character prints as itself; it is sent directly to

~e output stream. When * p r in t - e s cap e * is not n i " then #\ syntax is used. For example, the printed
representation of the character #\A with control and meta bits on would be "#\CONTROL -META-A", and
that of#\a with control and meta bits on would be "#\CONTROL -META-\a". .

Symbols. When *print-escape* (page 287) is nil, only the characters of the print name of the
symbol are output (but the case in which to print any upper-case characters in the print name is controlled by
the variable * p r i n t - cas e * (page 288».

When * p r i n t - esc ape * is not nil, backslashes "\" and vertical bars " I" are included as required. In
particular, backslash or vertical-bar syntax is used when the name of the symbol would be otherwise treated
by the reader as a number. The case in which to print any upper-case characters in the print name is
controlled by the variable *print-case*. Package prefixes may be printed (using colon ":" syntax) if
necessary (see below). As a special case, nil may sometimes be printed as "()" instead, when
print-escape and *print-pre1:ty* are both not nil.

The rules for package qualifiers are as follows. When the symbol is printed, if it is in the keyword package
then it is printed with a preceding colon; otherwise, if it is present in the current package, it is printed without
any qualification; otherwise, it is printed with qualification. See *package* (page 140).

A symbol that is unintemed (has no home package) is printed preceded by un:" if the variable
* p r ; n t - ge n sym* (page 288) is non-n i 1; if it is nil, then the symbol is printed without a prefix, as if it
were in the current package.

INPUT IOUfPUT

Implementation note: Because the "II:" syntax does not intern the following symbol, it is necessary to use circular-list
syntax if • p r i n t - c i r c 1 e· (page 287) is not nil and the same unintemed symbol appears several times in an expression
to be printed. For example. the result of

(let «x (make-symbol "Faa"») (list x x»

285

would be printed as "(II:foo lI:foo)" if ·print-circ1e· were nil. but as "(1I1-II:foo 111#)" if
• p r i n t - c i r c 1 e· were Dot n 11.

The case in which symbols are printed is controlled by the variable • p r ; n t - cas e· (page 288).

Strings. The characters of the string are output in order. If·print-e.scape· (page 287) is not nil, a

double quote "n" is output beforehand and afterward, and all and double quotes and escape characters are

preceded by "\". The printing of strings is not affected by ·pr; nt-array· (page 289). If the string has a

fill pointer, then only those characters below the fill pointer are printed.

Conses. Wherever possible, list notation is preferred over dot notation. Therefore the following algorithm

is used:

1. Print an open parenthesis "(".
2. Print the car of the cons.
3. If the cdr is a cons, make it the current cons, print a space, and go to step 2.
4. If the cdr is not null, print a space, a dot" . ", a space, and the cdr.
5. Print a close parenthesis'~)".

This form of printing is clearer than showing each individual cons cell. Although the' two expressions below

are equivalent, and the reader will accept either one and produce the same data structure, the printer will

always print such a data structure in the second form.
(a . (b . «c. (d . nil» . (e . nil»»
(a b (c d) e)

The printing of conses is affected by the variables • p r i n t - 1 eve 1· (page 288) and • p r i n t - 1 eng t h·
(page 288).

Bit-vectors. A bit-vector is printed as "#." followed by the bits of the bit-vector in order. If

• p r; n t - ar r ay· (page 289) is n; 1, however, then the bit-vector is printed in a format (using "#<") that is
concise but not readable. If the bit-vector has a fill pointer, then only those bits below the fill pointer are

printed.

Vectors. Any vector other than a string 9r bit-vector is printed using general-vector syntax; this means that

information about specialized vector representations will be lost The printed representation of a zero-length

vector is "#()". The printed representation of a non-zero-Iength vector begins with "#(". Following that is
printed the first element of the vector. If there are any other elements, they are printed in tum, with a space

printed before each additional element A close parenthesis")" after the last element terminates the printed

representation of the vector. The printing of vectors is affected by the variables • p r i n t - 1 eve 1· (page

288) and • p r; n t -1 e r) 9 t h· (page 288). If the vector has a fill pointer, then only those elements below the

.1 fill pointer are printed.
~-

If • p r; n t - a r r ay· (page 289) is nil, however, then the vector is not printed as described above, but in a

._-_._---_ _--.. _--_._------_._-..". ------------_ .. _ ... __•.... _-_._ .. __ _ .. -..................•........... _ .. _ -.. - -.... _._-_._----------

286 COMMON USP REFERENCE MANUAL

fonnat (using "#<") that is concise but not readable.

Arrays. Nonnally any array other than a vector is printed using "#nA" fonnat Let n be the rank of the

kay. Then "#tt is printed, then n as a decimal integer, then "A", then n open parentheses. Next the elements

are scanned in row-major order. Imagine the array indices being enumerated in odometer fashion, recalling

that the dimensions are numbered from 0 to n-l. Every time the index for dimension j is incremented, the

following actions are taken:

1. Ifj<n-l, then print a close parenthesis.

2~ If incrementing the index for dimension j caused it to equal dimension j, reset that index to zero
and increment dimension j-l (thereby perfonning these three steps recursively), unless j=O, in
which case simply tenninate the entire algorithm. If incrementing the index for dimension j did
not cause it to equal dimension j, then print a space.

3. Ifj<n-l, then print an open parenthesis.

This causes the contents to be printed in a format suitable for the :initial-contents argument to

make - a r ray (page 227). The lists effectively printed by this procedure are subject to· p r i n t - 1 eve 1 •

(page 288) and *p r i nt - 1 ength * (page 288). If·p r i nt - ar ray· (page 289) is nil, however, then the

array is printed in a fonnat (using "#<") that is concise but not readable.

Random-states. COMMON LIsp does not specify a specific syntax for printing objects of type

random-state. However, every implementation must arrange to print a random-state object in such a way

that, within the same implementation of COMMON LISP, the function read (page 291) can construct from

the printed representation a copy of the random-state object as if the copy had been made by

make-random-state (page 178).

Structures defined by defstruct (page 245) are printed under the control of the : print-function

option to defstruct.

Any other types are printed in an implementation-dependent manner. It is recommended that printed

representations of all such objects begin with the characters "#<" and end with ">" so that the reader will

catch such objects and not permit them to be read under nonnal circumstances.

When debugging or when frequently dealing with large or deep objects at toplevel, the user may wish to

restrict the printer from printing large amounts of infonnation. The variables • p r i n t -1 eve 1· and

* p r i n t -1 eng t h· allow the user to control how deep the printer will print, and how many elements at a

given level the printer will print Thus the user can see enough of the object to identify it without having to

wade through the entire expression.

I

INPUT IOUTPUT 287

print-escape [Variable]

When this flag is ni 1, then escape characters are not output when an expression is printed. In
particular, a symbol is printed by simply printing the characters of its print name. The function
p r inc (page 296) effectively binds * p r i n t - esc ape * to nil.

When this flag is not nil, then an attempt is made to print an expression in such a way that it can
be read again to produce an e qua 1 structure. The function p r ; n 1 (page 296) effectively binds
print-escape to t.

Compatibility Dote: This flag controls what was called slashification in MAcusp.

The initial value of this variable is t.

print-pretty [Variable] .

When this flag is nil, then only a small amount of whitespace is output when printing an
expression, as described below.

When this flag is not nil. then the printer will endeavor to insert extra whitespace where
appropriate to make the expression more readable.

print-circle [Variable]

When this flag is nil (the default), then the printing process proceeds by recursive descent; an
attempt to print a circular structure may lead to looping behavior and failure to terminate.

When this flag is not nil, then the printer will endeavor to detect cycles in the structure to be
printed, and to use #n= and 'lin'll syntax to indicate the circularities.

.*print-base* [Variable]

The value of * p r ; n t - bas e * detennines in what radix the printer will print rationals. This may
be any integer from 2 to 36, inclusive; the default value is 10 (decimal radix). For radices above
10, letters of the alphabet are used to represent digits above "9".

Compatibility Dote: MAcLisp calls this variable base. and its default value is 8, not 10.

In both MACLISP and COMMON LISP, floating-point numbers are always printed in decimal, no
matter what the value of *pri nt-base·.

·print-radix· [Variable]

If the variable • p r in t - r a d i x· is non-n i 1, the printer will print a radix specifier to indicate the
radix in which it is printing a rational number. To prevent confusion of the letter "0" and the digit
"0", and of the letter "8" with the digit "8", the radix specifier is always printed using lower-case

letters. For example, if the current base is twenty-four (decimal), the decimal int~ger twenty-three

288 COMMON USP REFERENCE MANUAL

would print as "#24rN". If ·pri nt-base· is 2, 8, or 16, then the radix specifier used is #b, #0,

or Ix. For integers, base ten is indicated by a trailing decimal point, instead of using a leading
radix specifier; for ratios, u# lOr" is used. The default value of • p r i n t - r ad i x· is nil.

·print-case· [Variable)

The read (page 291) function normally converts lower-case letters appearing in symbols to upper
case, so that internally print names normally contain only upper-case characters. However, users
may prefer to see output in lower case or mixed case. This variable controls the case (upper or
lower) in which to print any upper-case characters in the names of symbols when vertical-bar syntax
is not used. The value of ·pri nt-case· should be one of the keywords: upcase, : downcase,
or : cap i ta 1 i ze; the initial value is : upcase.

Lower-case characters in the internal print name are always printed in lower case, and are preceded
by an escape character. Upper-case characters in the internal print name are printed in upper case,
lower case, or in mixed case so as to capitalize words~ according to the value of • p r i n t - cas e·.
The convention for what constitutes a "word" is the same as for the function
s t r i n 9 - cap ita 1 i z e (page 240).

·print-gensym· [Variable)

The • p r i n t - 9 ens ym· variable controls whether the prefix "#:" is printed before symbols that
have no home package. The prefix is printed if the variable is not nil. The initial value of
·print-gensym· is t.

·print-1eve1· [Variable]

·print-1ength· [Variable)

The • p r i n t -1 eve 1· variable controls how many levels deep a nested data object will print If
·print-level· is nil (the initial value), then no control is exercised. Otherwise the value
should be an integer, indicating the maximum level to be printed. An object to be printed is at level
0; its components (as of a list or vector) are at level 1; and so on. If an object to be recursively
printed has components and is at a l~vel equal or greater to the value of • p r i n t -1 eve 1 ., then
the object is printed as simply "#" ..

The • p r i n t -1 eng t h· variable controls how many eleme~ts at a given level are printed. A value
of nil (the initial value) indicates that there be no limit to the number of components printed.
Otherwise the value of • p r i n t -1 eng t h· should be an integer. Should the number of elements
of a data object exceed the value • p r i n t -1 eng t h·, the printer will print three dots " ••. " in
place of those elements beyond the number specified by • p r i n t -1 eng t h·. (In the case of a
dotted list, if the list contains exactly as many elements as the value of * p r i n t -1 eng t h • t and in
addition has the non-null atom terminating it, that terminating atom is printed, rather than printing

INPUT IOUfPUT 289

" ")
• p r i n t -1 eve' • and • p r i n t - , eng t h· affect the printing not only of lists, but also of vectors,
arrays, and any other object printed with a list-like syntax. They do not affect the printing of
symbols, strings, and bit-vectors.

The LISP reader will nonnally signal an error when reading an expression that has been abbreviated
becaue of level or length limits. This is because the u#" dispatch character nonnally signals an erro
when followed by whitespace or") ", and because" ... " is defined to be an illegal token, as are all
tokens consisting entirely of periods (other than the single dot used in dot notation).

As an example, here are the ways the object
(if (member x items) (+ (car x) 3) '(foo . #(a bed "Baz"»)

would be printed for various values of • p r i n t - , eve' • = v and • p r i n t - , eng t h • = n.
v n Output
01#
1 1 (if ...)
1 2 (if # ...)
1 3 (if # # ...)
1 4 (i f # # #)
2 1 (if .•.)
2 2 (if (member x ...) ...)
2 3 (if (member x items) (+ # 3) ...)
3 2 (if (member ~ ...) ...)
3 3 (if (member x items) (+ (car x) 3) ...)
3 4 (if (member x items) (+ (car x) 3) '(foo . #(a bed ... »)

·print-array· [Variable]

If p r ; n t - a r r ay is n; " then the contents of arrays other than strings are never printed. Instead,
arrays are printed in a concise fonn using "#<" that gives enough infonnation for the user to be
able to identify the array, but does not include the entire array contents. If p r i n t - a r r ay is not
n i', non-string arrays are printed using "#(", "#.", or "#nA" syntax. The initial value of
·pr; nt- array· is t.·

22.2. Input FunctionS

22.2.1. Input from ASCII Streams

Many input functions take optional arguments called input-stream, eoferrorp, and eofvalue. The
input-stream argument is the stream from which to obtain input; if unsupplied or n i 1 it defaults to the value
of the special variable ·standard-input· (page 259). One ~ay also specify t as a stream, meaning the

value of the special variable • term ina' - ; 0 • (page 260).

The eoferrorp argument controls what happens if input is from a file (or any other input source that has a
definite end) and the end of the file is reached. If eoferrorp is true (the default), an error will be signalled at
end of file.· If it is false, then no error is signalled, and instead the function returns eo/-value.

290 COMMON USP REFERENCE MANUAL

Functions such as re ad (page 291) that read an "object" rather than a single character will always signal an
error, regardless of eoferrorp, if the file ends in the middle of an object. For example, if a file does not
contain enough right parentheses to balance the left parentheses in it. read will complain. Ifa file ends in a
iymbol or a number immediately followed by end-of-file, read will read the symbol or number successfully
and when called again will see the end-of-file and only then act according to eoferrorp. Similarly, the
function read-l ine (page 293) will successfully read the last line ofa file even if that line is terminated by
end-of-file rather than the newline character. If a file contains ignorable text at the end, such as blank lines
and comments, rea d will not consider it to end in the middle of an object

Many input functions also take an argument called recursive-po If specified and not· nil, this argument
specifies that this call is not a "top-level" call to read, but an imbedded call, typically from the function for a
macro-character. It is important to distinguish such recursive calls for three reasons.

First, when end-of-file is encountered, the action taken is controlled by the eoferrorp and eofvalue of the
most recent outstanding top-level call to an input function; the eoferrorp and eofvalue of any "recursive"
calls are ignored. If the eoferrorp for that top-level call is false, then the eofvalue is returned from that
top-level call, effectively throwing out of any recursive calls.

Second, a top-level call establishes the cont~xt within which the #n= and #n# syntax is seoped. Consider,
for example, the expression

(cons '#3=(p q r) '(x y . #3#»
If the single-quote macro-character were defined in this way:

(set-macro-character
#\'
#'{lambda (stream char)

{declare (ignored char»
{list 'quote (read stream»»

then the expression could not be read properly, because there would be no way to know when re ad is called
recursively by the first occurrence of"'" that the label #3 = would be referred to later in the containing
expression; there is no way to know because read could not know that it was called by a macro-character
function rather than from "top level". The correct way to define the single-quote macro character uses the
recursive-p argument:

{set-macro-character
#\'
#'{lambda (stream char)

{declare (ignored char»
{list 'quote (read stream nil nil t»»

Third, a recursive call does not alter whether the reading process is to preserve whitespace or not (as
determined by whether the top-level call was to read or read-preserving-whitespace). Suppose
again that single-quote had the first, incorrect, macro-character definition shown above. Then a call to
rea d - pre s e r v i n g - w hit e spa c e that read the expression "t f 00 b a z "would fail to preserve the space
character following the symbol "foo" because the single-quote macro-character function calls read, not
read-preserving-whitespace, to read the following expression (in this case "foo"). The correct
definition, which passes the value t for the recursive-p argument to read, allows the top-level call to

INPUT IOUTPUT 291

detennine whether whitespace is preserved.

read &opt ional input-stream eo/e"orp eo/value recursive-p [Function]
re ad reads in the printed representation of a LISP object from input-stream, builds a corresponding
LIsp object, and returns the object. The details are explained above.

read-defau1t-float-format [Variable]

The value of this variable must be a type specifier symbol for a specific floating-point fonnat; these
include short - float. sing 1 e -float, doub 1 e -fl oa t, long -f loa t, and may include
implementation-specific types as well. The default value is sin 9 1 e - f 1 oa t.

* rea d - d e fa u 1 t - flo a t - form a t * indicates the floating-point fonnat to be used for reading
floating-point numbers that have no exponent marker or have "e" or '£E" for an exponent marker.
(Other exponent markers explicitly prescribe the floating-point fonnat to be used.) The printer also
uses this variable to guide the choice of exponent markers when printing floating-point numbers.

read-preserving-whitespace &optional in-stream eo/en-orp eo/value recursive-p [Function]
Certain printed representations given to read, notably those of symbols and numbers, require a
delimiting character after them. (Lists do not, because the close parenthesis marks the end of the
list) Nonnally re ad will throwaway the delimiting character if it is a white-space character, but
will preserve it (using un re ad - ch ar (page 293)) if the character is syntactically meaningful, since
it may be the start of the next expression.

The function rea d - pre s e r v i n 9 - w h ; t e spa c e is provided for some specialized situations
where it is desirable to determine precisely what character tenninated the extended token.

As an example, consider this macro-character definition:
(defun slash-reader (stream char)

(declare (ignore char»
(do «path (list (read-preserving-whitespace stream»

(cons (progn (read-char stream nil nil t)
(read-preserving-whitespace

stream nil nil t»
path»)

«not (char= (peek-char nil stream nil nil t) #\/»
(cons 'pathname (nreverse path»»)

(set-macro-character #\1 H'slash-reader)
(This is actually a rather dangerous definition to make, because expressions such as (I x 3) will
no longer be read properly. The ability to reprogram the reader syntax is very powerful and must
be used with caution. This redefinition of" Itt is shown here purely for the sake of example.)

Consider now calling read on this expression:
(zyedh lusr/games/zork lusr/games/boggle) -

The "Itt macro reads objects separated by more "Itt characters; thus lusr/games/zork is
intended to read as (pathname usr games zork). The, entire example expression should

292 COMMON USP REFERENCE MANUAL

therefore be read as
(zyedh (pathname usr games zork) (pathname usr games boggle»

However, if read had been used instead of read-preserving-whitespace, then after the
reading of the symbol zork, the following space would be discardecL and then the next call to
peek-char would see the following "I", and the loop would continue, producing this
interpretation:

(zyedh (pathname usr games zork usr games boggle»

On the other hancL there are times when whitespace should be discarded. If one has a command
interpreter that takes single-character commands, but occasionally reads a LISP object, then if the
whitespace after a symbol were not discarded it might be interpreted as a command some time later
after the symbol had been read.

read-del imited-l ist char &opt ional input-stream recursive-p [Function]
This reads objects from stream until the next character after an object's representation (ignoring
whitespace characters) is char. (The char should not have whitespace syntax in the current
readtable.) A list of the objects read is returned.

This. function is particularly useful for defining new macro-characters. Suppose one were to want
"#{ abc ... z}" to read as a list of all pairs of the elements a, b, c, ... , z; for example:

#{ p q z a} reads as ((p q) (p z) (p a) (q z) (q a) (z a»

This can be done by specifying a macro-character definition for "#{" that does two things: read in
all the items up to the "}", and construct the pairs. rea d - de 1 ; mit e d -1 i s t performs the first

task.
(defun sharp-leftbrace-reader (stream char arg)

(declare (ignore char arg»
(mapcon #'(lambda (x)

(map car #' (1 am b d a (y) (1 i s t (c a r . x) y» (c d r x»)
(read-delimited-list #') stream t»)

(set-dispatch-macro-character #,# #\{
. #'sharp-leftbrace-reader)

(set-ma~ro-character #') (get-macro-character #') »
(Note that t is specified for the recursive-p argument) In this example, it is necessary to give a
definition to the character "}" as well to prevent it from being a constituent Giving it the same
definition as the character ") " has the twin benefit of making it recognizable to

rea d - del i mit e d -1 i stand making it illegal for use in any other context (that is, attempting to

read a stray"}" will signal an error).

Note that read-del imi ted-l i st does not take an eoferrorp (or eofvalue) argument The
reason for this is that it is always an error to tit end-of-file during the operation of
read-delimited-list.

.

INPUT /OUTPUf 293

read-1 ine &optiona1 input-stream recursive-p [Function)
re ad -1 i ne reads in a line of text, tenninated by the implementation's usual way for indicating
end-of-line (typically a <return> character). It returns the line as a character string (without the
<return> character). This function is usually used to get a line of input from the user. A second
returned value is a flag that is false if the line was terminated nonnally, or true if end-of-file
tenninated the (non-empty) line. See wr i te-1 i ne (page 297).

read-char &opt ional input-stream eoferrorp eofvalue recursive-p [Function)
re ad - char inputs one character from input-stream and returns it as a character object

un re ad - ch ar character &opt i on a 1 input-stream [Function]
un rea d - c h a r puts the character onto the front of input-stream. The character must be the same
character that was most recently read from the input-stream. The input-stream "backs up" over this
character; when a character is next read from input-stream, it will be the specified character,
followed by the previous contents of input-stream. un read-char returns nil.

One may only apply un rea d - c h a r to the character most recently read from input-stream;
moreover, one may not invoke unread-char twice consecutively without an intervening
read-char operation. The r~su1t is that one may back up only by one character, and one may not
insert any characters into the input stream that were not already there.

Rationale: This is not intended to be a general mechanism. but rather an efficient mechanism for allowing the
LIsp reader and other parsers to perform one-character lookahead in the input stream. This protocol admits a
wid~ variety of efficient implementations. such as simply decrementing a buffer pointer. To have to specify the
character in the call to unread-char is admittedly redundant, since at any given time there is only one
character that may be legally specified. The redundancy is intentional. again to give the implementation
latitude.

peek -char &opt iona1 peek-type input-stream eoferrorp eofvalue recursive-p .{Function]
What pee k - c h a r does depends on the peek-type, which defaults to nil. With a peek-type of
nil, pee k - c h a r returns the next character to be read from input-stream, without actually
removing it from the input stream. The next time input is done from input-stream the character will
still be there. It is as if one had called read-ch ar and then un read-char in succession.

If peek-type is t, then pee k - c h a r skips over whitespace characters, and then perfonns the peeking
operation on the next character. This is useful for fmding the (possible) beginning of the next
printed representation of a Lisp object As above, the last character (the one that starts an object) is
not removed from the input stream.

If peek-type is a character object, then peek -char skips over input characters until a character that
is c h a r = (page 186) to that object is found; that character is left in the input stream.

listen &optional input-stream [Function)
The predicate 1 i sten is true if there is a character immediately available from input-stream, and is
false if not This is particularly useful when the stream obtains characters from an interactive device
such as a keyboard; a call to read-char (page 293) would simply wait until a character was

---_._._----_ .. _,_ ... _ .. _._- .

294 COMMON USP REFERENCE MANUAL

available, but 1 i s ten can sense whether or not input is available and allow the program to decide

whether or not to attempt input On a non-interactive stream, the general rule is that 1 i sten is
true except when at end-of-file.

read-char-no-hang &optional input-stream eoferrorp eoJ-value recursive-p [Function]
This function is exactly like read-char (page 293), except that if it would be necessary to wait in
order to get a character (as from a keyboard), nil is immediately returned without waiting. This
allows one efficiently to check for input being available and get the input if it is. This is different

from the 1 i sten (page 293) op~ration in two ways. First, read-char-no-hang potentially
actually reads a character, while 1 i sten never inputs a character. Second, 1 i sten does not
distinguish between end-of-file and no input being available, while read-char-no-hang does

make that distinction, returning eofvalue at end-of-file (or signalling an error if no eofvalue was
given), but always returning nil if no input is available.

clear-input &optional input-stream [Function]
This clears any buffered input associated with input-stream. It is primarily useful for clearing
type-ahead from keyboards when some kind of asynchronous error has occurred. If this operation
doesn't make sense for the stream involved, then clear-input does nothing. clear-input
returns ni 1.

read-from-string SIring &optional eoferrorp eofvalue &key :start :end [Function]
:preserve-whitespace

The characters of string are given successively to the LISP reader, and the LISP object built by the
reader is returned. Macro characters and so on will all take effect

The arguments : S tar t and : end delimit a substring of string beginning at the character indexed
by : s tart and up to but not including the character indexed by : end. By default: s tart is 0

(the beginning of the string) and : end is (1 en gth string). This is as for other string functions.

The flag: preserve-wh i tespace, if provided and not n; 1, indicates that the operation should
preserve whitespace as for read-preserv i ng-wh i tespace (page 291). It defaults to nil.

The arguments eoferrorp and eofvalue control the action if the end of the (sub)string is reached
before the operation is completed, as with other reading functions; reaching the end of the string is

treated as any other end-of-file event

read-from-stri ng returns two values; the first is the object read and the second is the index of

th~ first character in the string not read. If the e:ltire string was read, this will be either the length of
the string or one greater than the length of the string. The parameter: preserve-wh i tespace
may affect this second value.

For example:

(read-from-string "(a b c)") => (a b c) and 7

INPUT /OUfPUT 295

parse-integer string &key :start :end :radix :junk-a110wed [Function]
This function examines the substring of string delimited by : s tar t and : end (which default to

the beginning and end of the string). It skips over whitespace characters and then attempts to parse
an integer. The : r ad i x parameter defaults to 10, and must be an integer between 2 and 36.

If junk-allowed is not nil, then the first value returned is the integer parsed, or nil if no
syntactically correct integer was seen.

If : j un k - a 11 owe d is nil (the default), then the entire substring is scanned. The returned value

is the number parsed. An error is signalled if the substring does not consist entirely of, the
representation of a number, possibly surrounded on either side by whitespace characters.

In either case, the second value is the index into the string of the delimiter that terminated the
parse, or the index beyond the substring if the parse terminated at the end of the substring (as will
always be the case if junk-allowed is false).

Note that parse- integer does not recognize the syntactic radix-specifier prefixes #0, #B, IX,

and #nR, nor does it recognize a trailing decimal point. It permits only an optional sign ("+" or
"-") followed by a non-empty sequence of digits in the specified radix.

22.2.2. Input from Binary Streams

read-byte binary-Input-stream &optiona1 eoferrorp eofvalue [Function]
read-byte reads one byte from the binary-input-stream and returns it in the form ofan integer.

read-bi nary-object type binary-input-stream &opt i ona1 eoferrorp eofvalue [Function]
read-b i nary-object reads an object of the specified type from the binary-input-stream. The
object is ~sumed to be encoded in the manner used by wr i te-b i nary-obj ect (page 298); the
object is guaranteed to be read properly only if the exact same type is specified to

read-bi~ary-object as was specified to write-binary-object to originally encode the
object, and if the : type (page OPEN-TYPE-KWD) option for the input stream matches that for
the output stream given to wr i te-b i nary-object.

The eoferrorp and eofvalue options apply only if the binary-input-stream is at the end of file before
the operation is begun. If the type requires more than one byte to be read and end-of-file is
encountered before enough bytes have been read, an error is signalled.

22.3. Output Functions

22.3.1. Output to ASQI Streams

These functions all take an optional argument called output-stream, which is where to send the output If
unsupplied or nil, output-stream defaults to the value of the variable *s tandard-output * (page 259). If

- it is t, the value of the variable * term ina 1 - i 0 * (page 260) is used.

----- .. _------------------._-------------------------------------- ----------_._--------_._--_._--._. --------------------

296 COMMON USP REFERENCE MANUAL

write object &key :stream :escape :radix :base
:circle :pretty :level :length

[Function]

:case :gensym :array
The printed representation of object is written to the output stream specified by : stream, which
defaults to the value of * standard-output * (page 259)~ ,

The other keyword arguments specify values used to control the generation of the printed
representation. Each defaults to the value of the corresponding global variable: see
·print-escape* (page 287); *print-radix* (page 287), *print-base* (page 287),
print-circle (page 287), *print-pretty* (page 287), *print-level* (page 288),
print-length (page 288), *print-case* (page 288), *print-gensym* (page 288),

and * p r i n t - a r r ay * (page 289). (This is the means by which these variables affect printing
operations: supplying default values for the wr i te function.) Note that the printing of symbols is

also af:ected by the value of the variable *package* (page 140).

wr; te returns object.

p r i n 1 object &0 p t ion a 1 output-stream
print object &optional output-stream
pprint object &optional output-stream
princ object &optional output-stream

[Function]
[Function]
[Function]
[Function]

pr i n 1 outputs the printed representation of object to output-stream, using escape characters. As a
rule, the output from p r i n 1 is suitable for input to the function re ad (page 291). p r i n 1 returns
object.

(p r ; n 1 object output-stream)
<~> (write object :stream output-stream :prinescape t)

p r i ntis just like p r i n 1 except that the printed representation of object is preceded by a newline
(see terpri (page 297»and followed by a <space>. print returns object.

p p r i ntis just like p r ; n t except that the trailing space is omitted, and the object is printed with
the * p r ; n t - pre t ty * (page 287) flag non-n i 1 to produce "pretty" output p p r in t returns no
values (that is, it returns what the expression (val ues) returns: zero values).

p r inc is just like p r ; n 1 except 'that the output has no escape characters. A symbol is printed as
simply the characters of its print name; a string is printed without surrounding double-quotes; and
there may be differences for other data types as well. The general rule is that output from p r inc is
intended to look good to people, while output from p r i n l' is intended to be acceptable to the
function read (page 291). pr i nc returns object.

(p r inc object output-stream)
<=> (write object :stream output-stream :prinescape nil)

Compatibility note: In MAcLIsp, these three functions return t, not the argument object.

INPUT IOUTPUT 297

write-to-string object &key :escape :radix :base [Function]
:circle :pretty :leve1 :length

:case :gensym :array

p r i n 1- to- s t r i n 9 object [Function]
pr i n c- to- s tr i n 9 object [Function]

The object is effectively printed, as ifby write (page 296), prin1 (page 296), or princ (page

296), and the characters that would be output are made into a string, which is returned.

write-char character &optiona1 output-stream
wr i te-char outputs the character to output-stream, and returns nil.

write-string string &optiona1 output-stream &key :start :end

write-line string &optional output-stream &key :start :end

[Function]

[Function]
[Function]

wr i te-s tr i ng writes the characters of the specified' substring of string to the output-stream. The

: s tart and : end parameters delimit a substring of string in the usual manner (see chapter 14).
write-l ine does the same thing, but then outputs a newline afterwards. (See read-1 ine

(page 293).) In either case, the string is returned (not the substring delimited by : s tart and

:end).

In some implementations these may be significantly more efficient than an explicit loop using

write-char.

terpri &optional output-stream
fresh-l ine &optiona1 output-stream

[Function]
[Function]

t e r p r i outputs a newline to output-stream; this may be simply a carriage-return character, a

retum-linefeed sequence, or whatever else is appropriate for the stream. te rp r i returns nil.

fresh-l ine is similar to terpri, but outputs a newline only if the stream is not already at the

start of a line. (If for some reason this cannot be determined, then a newline is output anyway.)

This guarantees that the stream will be on a "fresh line" while consuming as little vertical distance

as possible. f res h -1 in e is a (side-effecting) predicate that is true if it output a newline, and

otherwise false.

finish-output &optiona1 output-stream [Function]
force-output &opt iona1 output-stream [Function]
cl ear-output &opt i ona 1 output-stream [Function]

Some streams may be implemented in an asynchronous or buffered manner. The function

fi ni sh-output attempts to ensure that all output sent to output-stream has reached its

destination, and only then returns nil. for c e - 0 u t put initiates the emptying of any internal

buffers, but returns nil without waiting for completion or acknowledgement

The function c1 ear-output, on the other hand, attempts to abort any outstanding output

operation in progress, to allow as little output as possible to continue to the destination. This is

298 COMMON USP REFERENCE MANUAL

useful, for example, to abort a lengthy output to the terminal when an asynchronous error occurs.
c 1 ear - 0 u t put returns n i 1.

The precise actions of all three of these operations are implementation-dependent

The function forma t (page 298) is very useful for producing nicely formatted text, producing good
looking messages, and so on. format can generate a string or output to a stream.

22.3.2. Output to Binary Streams

wr ; te- byte integer binary-output-stream [Function]
wr i te-byte writes one byte, the value of integer. It is an error if integer is not of the type
specified as the : type argument to open (page 322) when the stream was created.

wr i te-b i nar y-object object type binary-output-stream [Function]
The object is encoded as a stream of bytes and written to the binary-output-stream. The object must
be of the type specified by type. The encoding used may depend on the : e 1 e me n t - ty p e (page
323) of the stream and on the specified type. For example, the integer 126 may be encoded in
different ways depending on whether the type specified is i n t e 9 e r or (by t e 8) .

The type specified must be one of the following types or a subtype of one: number, character,
or (array x) where x is a subtype of integer or character.

The encoding is implementation-dependent However, the function rea d - bin a r y - 0 b j e c t
(page 295) may be used in the same implementation to read back an object encoded by
w r i t e - b ; n a r y - 0 b j e ct. (These functions are intended to provide efficient storage of data in an
implementation-depdent format)

22.4. Formatted Output

forma t destination control-string &r est arguments [Function]
format is used to produce formatted output. format outputs the characters of control-string,
except that a tilde ("-") introduces a directive. The character after the tilde, possibly preceded by ,
prefix parameters and modifiers, specifies what kind of formatting is desired. Most directives use
one or more elements of arguments to create their output; the typical directive puts the next
element of arguments into the output, formatted in some special way.

The output is sent to destination. If destination is nil, a string is created that contains the output;
this string is returned as the value of the call to format. I~ all other cases format returns nil,
performing output to destination as a side effect If destination is a stream, the output is sent to it
If destination is t, the output is sent to the stream that is the value of the variable
standard-output (page 259). If destination is a string with a fill pointer, then in effect the
output characters are added to the end of the string as ifby use of vector-push (page 234).

INPUT /OUfPUT 299

A forma t directive consists of a tilde ("-"), optional prefix parameters separated by commas, optional .
colon (": ") and atsign ("@") modifiers, and a single character indicating what kind of directive this is. The
alphabetic case of the directive character is ignored. The prefix parameters are generally decimal numbers,
but sometimes are characters. Examples of control strings:

"-S"
"-3,4:@s"

"-,4S"

; This is an S directive with no parameters or modifiers.
; This is an S directive with two parameters, 3 and 4,
: and both the colon and atsign flags.
; Here the first prefix parameter is omitted and takes

on its default value, while the second parameter is 4.

The forma t function includes some extremely complicated and specialized features. It is not necessary to
understand all or even most of its features to use format effectively. The beginner should skip over
anything in the following documentation that is not immediately useful or clear. The more sophisticated
features are there for the convenience of programs with complicated formatting requirements.

Sometimes a prefix parameter is used to specify a character, for instance the padding character in a right- or
left-justifying operation. In this case a single quote (" , ") followed by the desired character may be used as
a prefix parameter. For example, you can use "-5, 'Od" to print a in integer in decimal radix in five columns
with leading zeros, or "-5, '* d" to get leading asterisks.

In place of a prefix parameter to a directive, you can put the letter "V", which takes an argument from
arguments as a parameter to the directive. Normally this should be an integer or character object, as
appropriate. Tnis feaLUre allows variable column-widths and the like. If the argument used by a V parameter
is nil, the effect is as if the parameter had been omitted. You may also use the character u#" in place of a
parameter; it represents the number of arguments remaining to be processed.

Here are some relatively simple examples to give you the general flavor of how format is used.
(format nil "foo") => "foo"
(setq x 5)
(format nil "The answer is -D." x) => "The answer is 5."
(format nil "The answer is -3~.'' x) => "The answer is 5."
(format nil "The answer is -3,'00." x) => "The answer is 005."
(format nil "The answer is -:0." (expt 47 x»

=> "The answer is 229,345,007."
(setq y "elephant")
(format nil "Look at the -A!" y) => "Look at the elephan~l"
(format nil "Type -:C to -A."

(set-char-bit #'0 :contro1 t)
"delete all your files")

=> "Type Contro1-0 to delete all your files."
(setq n 3)
(format nil "-0 item-:P found." n) => "3 items found."
(format nil "-R dog-:[s are-; is-] here." n (= n 1»

=> "three dogs are here."
(format nil "-R dog-:*-[-l; is-:;s are-] here." n)

=> "three dogs are here."
(format nil "Here -[-I;is-:;are-] -:*-R pupp-:@P." n)

=> "Here are three puppies."

300 COMMON USP REFERENCE MANUAL

The directives will now be described. The tenn arg in general refers to the next item of the set of arguments
to be processed. The word or phrase at the beginning of each description is a mnemonic word for the
directive .
..
- A Ascii. An arg, any LISP object, is printed without escape characters (as by p r; n c (page 296». In

particular, if arg is a string, its characters will be output verbatim. If arg is nil it will be printed as
"n; 1"; the colon modifier (-: A) will cause an arg of ni 1 to be printed as "() ", but if arg is a
composite structure such as a list or vector any contained occurrences of nil will still be printed as
"n;l".

-mineolA inserts spaces on the right. if necessary, to make the width at least mineol columns. The @

modifier causes the spaces to be inserted on the left rather than the right

-mincol, ·colinc , minpad, padcharA is the full fonn of -A, which allows elaborate control of the
padding. The string is padded on the right with at least minpad copies of padehar; padding
characters are then inserted coline characters at a time until the total width is at least minco!. The
defaults are 0 for minco/ and millpad, 1 for coline, and the space character for padci,ar.

-S S-expression. This is just like -A, but arg is printed with escape characters (as by pr i n 1 (page
296) rather than princ). The output is therefore suitable for input to read (page 291). -S
accepts all the arguments and modifiers that -A does.

-0 Decimal. An arg, which should be an integer, is printed in decimal radix. -0 will never put a
decimal point after the number.

-minco/D uses a column width of mincol; spaces are inserted on the left if the number requires
fewer than minco! columns for its digits and sign. If the number doesn't fit in minco! columns,
additional colUmns are used as needed.

- mineol ,padeharO uses padehar as the pad character instead of space.

If arg is not an integer, it is printed in -A fonnat and decimal base.

The @ modifier causes the number's sign to be printed always; the default is to print it only if the
number is negative. The : modifier causes commas to be printed between groups of three digits;
the third prefix parameter may be used to change the character used as the comma. Thus the most
general form of O is -minco/ ,padchar, eommaeha1O.

-B Binary. This is just like -0 but prints in binary radix (radix 2) instead of decimal. The full fOIm is
therefore -minco/ ,padehar, eommaeharB.

-0 Octal. This is just like -0 but prints in octal radix (radix 8) instead of decimal. The full form is
therefore -minco/ ,padehar, eommaeharO.

-x Hexadecimal. This is just like -0 but prints in hexadecimal radix (radix 16) instead of decimal.
The full form is therefore -mineo/, padehar, eommaeharX.

-R Radix. -nR prints arg in radix n. The modifier flags and any remaining parameters are used as for
the -0 directive. Indeed, -0 is the same as -lOR. The full fonn here is therefore
-radix, minco! ,padehar, eommaeharR.

If no arguments are given to -R, then an entirely different interpretation is given. The argument
should be an integer; suppose it is 4.

INPUT /OUfPUT 301

• -R prints arg as a cardinal English number: "f 0 u r".

• - : R prints arg as an ordinal English number: "f 0 u r t h " .

• -@R prints arg as a Roman numeral: "IV".

• - : @ R prints arg as an old Roman numeral: "I I I Itt.

-P Plural. If arg is not eq 1 to the integer 1, a lower-case "s" is printed; if arg is e q 1 to 1, nothing is
printed. (Notice that if arg is a floating-point 1.0, the "s" is printed.)

- : P does the same thing, after doing a - : • to back up one argument; that is, it prints a lower-case
"s" if the last argument was not 1. This is useful after printing a number using -D.

-@P prints "y" if the argument is 1, or "ies" if it is not -:@P does the same thing, but backs up
first

(format nil "-0 tr-:@P/-O win-:P" 7 1) => "7 tries/l win"
(format nil "-0 tr~:@P/-O win-:P" 1 0) => "1 try/O wins"
(format nil "-0 tr-:@P/-O win-:P" 1 3) => "1 try/3 wiris"

-C Character. The next arg should be a character; it is printed according to the modifier flags.

-C prints the character in an implementation-dependent abbreviated format This format should
be culturally compatible with the host environment

- : C spells out the names of the control bits, and represents non-printing characters by their names:
"Control-Meta-F", "Control-Return", "Space". This is a "pretty" format for printing
characters.

- : @C prints what - : C would, and then if the character requires unusual shift keys on the keyboard
to type it, this fact is mentioned: "c 0 n t r 0 1 - a (Top - F) ". This is the fonnat used for telling the
user about a key he is expected to type, for instance in prompt messages. The precise output may
depend not only on the implementation, but on the particular I/O devices in use.

-@C prints the character in a way that the LISP reader can understand, using "#\" syntax.
Rationale: In some implementations the -5 directive would accomplish this also, but the -c directive is
compatible with l.Jsp dialects that do not have a character data type.

-F Fixed-formatfloating-point. The next argis printed as a floating-point number.

The full form is -w, d, k, overflowchar, padcharF. The parameter w is the width of the field to be
printed; d is the number of digits to print after the decimal point; k is a scale factor that defaults to
zero.

Exactly w characters will be output. First leading copies of the character padchar (which defaults to
a space) are printed, if necessary to pad the field on the left If the arg is negative, then a minus sign
"-" is printed; if the arg is not negative, then a plus sign U+" is printed if and only if the @ modifier
was specified. Then a sequence of digits, containing a single embedded decimal point" .", is
printed; this represents the magnitude of the value of arg times 10k, rounded to d fractional digits.
(When rounding up and rounding down would produce printed values equidistant from the scaled
value of arg, then the implementation is free to use either one. For example, printing the argument
6 . 375 using the format - 4 , 2 F may correctly produce either" 6 . 3 7" or "6 . 3 8".) Leading zeros
are not permitted, except that a single zero digit is output before the decimal point if the printed
value is less than one, except that this single zero digit is not output after all if w= d+ 1.

--- ------_ ..• __ .. _.- ------------------_.

302 COMMON USP REFERENCE MANUAL

If it isirnpossible to print the value in the required format in a field of width w, then one of two
actions is taken. If the parameter overflowchar is specified, then w copies of that parameter are·
printed instead of printing the scaled value of argo If the overflowchar parameter is omitted, then
the scaled value is printed using more than wcharacters, as many more as may be needed.

If the w parameter is omitted, then the field is of variable width. In effect a value is chosen for w in
such a way that no leading pad characters need to be printed and exactly d characters will follow the
decimal point. For example, the directive - , 2 F will print exactly two digits after the decimal point
and as many as necessary before the decimal point

If the parameter d is omitted, then there is no constraint on the number of digits to appear after the
decimal point. A value is chosen for d in such a way that as many digits as possible may be printed
subject to the width constraint imposed by the parameter wand the constraint that no trailing zero
digits may appear in the fraction, except that if the fraction to be printed is zero then a single zero
digit should appear after the decimal point, if permitted by the width constraint

Ifboth wand d are omitted. then the effect is to print the value using ordinary free-format output as
performed by p r i n 1 (page 296).

If arg is a rational number, then it is coerced to be as; ng1 e-fl oat and then printed. If arg is a
complex number or some non-numeric object, then it is printed using the format directive -11-0,
thereby printing it in decimal radix and a minimum field width of W.

Ex~ples:

(defun foo (x)
(format nil "-6,2FI-6,2,l,'*FI-6,2,.'7FI-6FI-.2FI-F"

x x x x x x»
(foo 3.14159) => "3.141 31.421 3.1413.141613.1413.14159"
(foo -3.14159) => " -3.141-31.421 -3.141-3.1421-3.141-3.14159"
(foo 100.0) => "100.001···~·*1100.001100.001100.001100.0"
(foo 1234.0) => "1234.001······177777711234.011234.0011234.0"
(foo 0.006) =>" 0.011 0.061 0.011 0.00610.0110.006"
Compatibility note: The -F directive is similar to the "Fw. tI' edit desaiptor in FORTRAN.

The presence or absence of the @ modifier corresponds to the effect of the FORTRAN 55 or 5P edit desaiptor;
nothing in COMMON LIsp corresponds to the FORTRAN 5 edit descriptor.

The scale factor specified by the parameter k corresponds to the scale factor k specified by the FORTRAN kP edit
descriptor. .

In FORTRAN the leading zero that precedes the decimal point when the printed value is less than one is optional;
in COMMON LIsp the implementation is required to print that zero digit

In CoMMON LIsp, the wand dparameters are optional; in FORTRAN they are required.

In COMMON LIsp, the pad character and overflow character are user-specifiable; in FORTRAN they are always
space and asterisk, respectively.

A FORTRAN implementation is prohibited from printing a representation of negative zero; COMMON I.Jsp

permits the printing of such a representation when appropriate.

In MAcLIsp and liSp Machine LIsp, the -F format directive takes a single parameter, the number of digits to
use in the printed representation. This incompatibility between CoMMON LIsp and MAcLIsp was mtroduced for
the sake of cultural compatibility with FORTRAN.

-E Exponential floating-point. The next arg is printed as a floating-point number in exponential
notation.

The full form is -w, d, e, k, overflowchar, padehar ,exponenteharE. The parameter w is the width
of the field to be printed; d is the number of digits to print after the decimal point; e is the number
of digits to use when printing the exponent (default value 2); k is a scale factor that defaults to one

INPUT/OUTPUT 303

(not zero).

Exactly w characters will be output. First leading copies of the character padehar (which defaults to
a space) are printed, if necessary to pad the field on the left. If the arg is negative, then a minus sign
"-" is printed; if the arg is not negative, then a plus sign U+" is printed if and only if the @ modifier
was specified. Then a sequence of digits, containing a'single embedded decimal point". ", is
printed. The form of this sequence of digits depends on the scale factor k. If k is zero, then d digits
are printed after the decimal point, and a single zero digit appears before the decimal point if the
total field width will permit it If k is positive, then it must be strictly less than d+ 2; k significant
digits are printed before the decimal point, and d- k+ 1 digits are printed after the decimal point
If k is negative, then it must be strictly greater than - d; - k zeros are printed before the decimal
point, and d+ k significant digits are printed after the decimal point. The printed fraction must be
properly rounded. (When rounding up and rounding down would produce printed values
equidistant from the scaled value of arg, then the implementation is free to use either one. For
example, printing the argument 637.5 using the format -S, 2E may correctly produce either
"€. 37E+02" or "6 .3SE+02")

Following the digit sequence, the exponent is printed. First the character parameter exponentehar
is printed; if this parameter is omitted, then the exponent marker that p r i n 1 (page 296) would use
is printed, as detennined from the type of the floating-point number and the current value of
• read-def au1 t -f1 oat -forma t· (page 291). Next either a plus sign "+" or a minus sign "-"
is printed, followed by e digits representing the power of ten by which the printed fraction must be
multiplied to properly represent the rounded value of argo

If it is impossible to print the value in the required format in a field of width w, possibly because k
is too large or too small, or because the exponent cannot be printed in e character positions, then
one of two actions is taken. If the parameter overflowchar is specified, then w copies of that
parameter are printed instead of printing the scaled value of argo If the overflowehar parameter is
omitted, then the scaled value is printed using more than w characters, as many more as may be
needed; if the problem is that d is too small for the specified k, or that e is too small, then a larger
value is used for d or e as may be needed.

If the w parameter is omitted, then the field is of variable width. In effect a value is chosen for win
such a way that no leading pad characters need to be printed.

If the parameter d is omitted, then there is no constraint on the number of digits to appear. A value
is chosen for d in such a way that as many digits as possible may be printed subject to the width
constraint imposed by the parameter w, the constraint of the scale factor k, and the constraint that
no trailing zero digits may appear in the fraction, except that if the fraction to be printed is zero
then a single zero digit should appear after the decimal point

Ifboth wand dare omitted, then the effect is to print the value using ordinary free-format output as
performed by p r i n 1 (page 296).

If arg is a rational number, then it is coerced to be a sin 9 1 e - flo a t and then printed. If arg is a
complex number or some non-numeric object, then it is printed using the fonnat directive -we,
thereby printing it in decimal radix and a minimum field width of w.

Examples:

._--_ .. _-_._-_._.-._ ... _-------_ .• _----.. _-_ ..• _ ... _ ... _-.-.. -_._ ... _ .. _ _ ..••.. _ __ _-_._. __ .. __ ._._-_ _._-_._--_._--_._.

304 COMMON USP REFERENCE MANUAL

{defun faa (x)
(format nil "-9,2,1" '·EI-g,3, ,2, '?" '$EI-9,2E"

x x x»
(faa 3.14159) =>" 3.14E+01 31.4$-011 3.14E+00"
(faa -3.14159) => " -3.14E+01-31.4$-011-3.14E+00"
(faa 1000.0) =>" 1.00E+31 10.0$+021 1.00E+03"
(faa 1.0E13) => "·········1 10.0$+121 1.00E+13"
(faa 1.0L120) => "·········I?????????ll.00E+120"
Compatibility Dote: The -E directive is similar to the "Ew. cr' and "Ew. dEe" edit descriptors in FORTRAN.

The presence or absence of the @ modifier corresponds to the effect of the FORTRAN SS or S P edit descriptor:
nothing in COMMON LISP oorresponds to the FORTRAN S edit descriptor.

The scale factor specified by the parameter k corresponds to the scale factor k specified by the FORTRAN kP edit
descriptor: note. however. that the default value for k is one in CoMMON LIsp, as opposed to the default value
of zero in FORTRAN. (On the other hand, note that a scale factor of one is used for FORTRAN list-directed output.
which is roughly equivalent to using -E with the w, d, e, and ove1jlowcharparameters omitted)

In CoMMON LIsp, the wand d parameters are optional: in FORTRAN they are required

In FORTRAN, omitting e causes the exponent to be printed using either two or three digits, and if three digits are
required. then the exponent marker is omitted; in COMMON LIsp the exponent marker may never be omitted.

In COMMON LIsp. the pad character and overflow character are user-specifiable; in FORTRAN they are always
space and asterisk, respectively. '

A FORTRAN implementation is prohibited from printing a representation of negative zero; CoMMON LIsP
permits the printing of such a representation when appropriate.

In MAcLIsp and Lisp Machine LIsp, the -E format directive takes a single parameter, the number of digits to
use in the printed representation .. This incompatibility between COMMON LIsp and MAcLIsp was introduced for
the sake of cultural compatibility with FORTRAN.

-G General floating-point. The next arg is printed as a floating-point number in either fixed-format or
exponential notation as appropriate.

The full form is - w t d t e. k, overf/owehar, padehar, exponenteharb. The format in which to print
arg depends on the magnitude (absolute value) of the argo Let n be an integer such that
lOn-lsarg<lOn. Let ee equal e+ 2, or 4 if e is omitted. Let ww equal w- ee, or ni 1 if w is omitted.
If d is omitted, then let q be the number of digits needed to print arg with no loss of information
and without leading or trailing zeros; then let d equal (max q (m ; n n 7». Let dd equal d- n.

If Os dds d, then arg is printed as ifby the format directives

-ww, dd, ,overf/owehar,padcharF-eeT

Note that the scale factor k is not passed to the - F directive. For all other values of dd, arg is
printed as if by the format directive

-WW t dd, ee, kk, overf/owehar t padehar, exponenteharE

In either case, an @ modifier is specified to the -F or -E directive if and only if one was specified to
the -G directive.

Examples:

INPUf /OUTPUf

(defun foo (x)
(format nil "-9 t 2, 1, t I *G 1-9 13 I 12, '? I , '$G 1-9 I 2G"

x x x))
(foo 0.0314159) => " 3.14E- 2131.42$-031 3.14E-02"
(foo 0.314159) => " 0.31 10.314 1 0.31 "
(foo 3.14159) => " 3.1 1 3.14 1 3.1 "
(foo 31.4159) => " 31. 1 31.4 1 31. "
(foo 314.159) => " 3.14E+21 314. 1 3.14E+02"
(foo 3141.59) => " 3.14E+3131.42$+021 3.14E+03"
(foo 3.14L120) => "*********I?????????13.14E+120"
(foo 3.14L1200) => "*********I?????????13.14E+1200"
Compatibility note: The -G directive is similar to the "Gw. tI' edit descriptor in FORTRAN.

The COMMON LIsp rules for deciding between the use of -F and -E are compatible with the rules used by
FORTRAN, but have been ex. tended to cover the cases where w or d is omitted or where e is specified.

In MAcLIsp and lisp Machine LIsp. the -G format directive is equivalent to the COMMON LIsp -@* directive.
This incompatibility between CoMMON LIsp and MAcLIsp was introduced for the sake of cultural compatibility
with FORTRAN.

305

-$ Dollars floating-point. The next arg is printed as a floating-point number in fixed-format notation.
This format is particularly convenient for printing a value as dollars and cents.

The full form is - d, n I W t padchar$. The parameter d is the number of digits to print after the
decimal point (default value 2); n is the minimum number of digits to print before the decimal
point (default value 1); W is the minimum total width of the field to be printed.

First padding and the sign are output. If the arg is negative, then a minus sign" -" is printed; if the
arg is not negative, then a plus sign "+" is printed if and only if the @ modifier was specified. If the
: modifier is used, the sign appears before any padding, and otherwise after the padding. If w is
specified and the number of other characters to' be output is less than w, then copies of pad char
(which defaults to a space) are output to make the total field width equal w. Then n digits are
printed for the integer pan of arg, with leading zeros if necssary; then a decimal point; then d digits
of fraction, properly rounded.

-% Outputs a newline (see terpri (page 297». -n% outputs n newlines. No arg is used. Simply
putting a newline in the control string would work, but -% is often used because it makes the
control string look nicer in the middle of a LISP program.

-& Unless the stream knows that it is already at the beginning of a line, this outputs a newline (see
fresh-l ine (page 297». -n& calls fresh-l ine and then outputs n-l newlines. -0& does
nothing.

-I Outputs a page separator character, if possible. - n 1 does this n times. 1 is vertical bar, not capital
I.

Tilde. Outputs a tilde. - n- outputs n tildes.

-<retum>Tilde immediately followed by a <return> ignores the <return> and any following non-<return>
whitespace. With a :, the <return> is ignored but any following whitespa~e is left in place. With an
@, the <return> is left in place but any following whitespace is ignored. This directive is typically
used when a format control string is too long to fit nicely into one line of the program:

306

_.

-it

COMMON LISP REFERENCE MANUAL

(defun pet-rock-warning (rock friend amount)
(unless (equalp rock fr.iend)

(format t "-&Warning! Your pet rock -A just -
bit your friend -A,-% and
-:[he-;she-] is suing you for $-O!"

rock friend (femalep friend) amount»)
(pet-rock-warning "Fred" "Susan" 500) prin~:
Warning: Your pet rock Fred just bit your friend Susan,

and she is suing you for $500!

-T Tabulate. Spaces over to a given column. -colnum, colincT will output sufficient spaces to move
the cursor to column colllum. If the cursor is already at or beyond column colnum. it will output
spaces to move it to column colnum+k*colinc. for the smallest positive integer k possible, unless
coline is zero, in which case no spaces are output if the cursor is already at or beyond column
colnum. colnum and coline default to 1.

If for some reason the current cvlumn position cannot be determined or set, any -T operation will
Simply output two spaces. When forma t is creating a string, -T will work, assuming that the first
character in the string is at the left margin (column 0).

-@T performs relative tabulation. - colrel ,colinc@T outpu~ colrel spaces, and then outpu~ the
smallest non-negative number of additional spaces necessary to move the cursor to a column that is
a multiple of coline. For example, the directive -3, 8@T outputs three spaces and then moves the
cursor to a "standard multiple-of-eight tab stop" ifnot at one already. If the current output column
cannot be determined, however, then coline is ignored, and exactly colrel spaces are output

.-. The next arg is ignored. -n~ ignores the next n arguments.

-:. "ignores backwards"; that is, it backs up in the list of arguments so that the argument last
processed will be processed again. - n : • backs up n arguments.

When within a -{construct (see below), the ignoring (in either direction) is relative to the list of
arguments being processed by the iteration.

This is a "relative goto"; for an "absolute goto", see -G.

-G Goto. Goes to the nth arg, where 0 means the first one; n defaults to 0, so -G goes back to the first
argo Directives after a - nG will take arguments in sequence beginning with the one gone to.

Wheri within a - { construct, the "goto" is relative to the list of arguments being processed by the
iteration.

This is an "absolute goto"; for a "r~lative goto", see --.

-1 Indirection. The next arg must be a string; it is processed as part of the control string as if it had
appeared in place of the -1 construct

As a rather sophisticated example, the format function itself, as implemented at one time in Lisp
Machine LISP, used a routine internal to the format package called format-error to signal
error messages; format-error in turn used ferror, which used format recursively. Now
format-error took a string and arguments, just like format, but also printed the control string
to format (which at this point was available in the global variable ·ctl-string-) and a little
arrow showing where in the processing of the control string the error occurred. The variable
- c t 1 - in de x - pointed one character after the place of the error.

INPUT/OUTPUT 307

(defun format-error (string &rest args)
(ferror nil "-11-%-V@T~-%-3@T\"-A\"-%"

'string args (+ ctl-index 3) ctl-string»

('The character set used in the Lisp Machine LISP implementation contains a down-arrow character
"~", which is not a standard COMMON LISP character.) This first processed the given string and
arguments using -1, then output a newline, tabbed a variable amount for printing the down-arrow,
and printed the control string between double-quotes. The effect was something like this:

(format t "The item is a -[Foo-;Bar-;Loser-]." 'quux)
»ERROR: The argument to the FORMAT "-[" command

must be a number .
.&.

"The item is a -[Foo-;Bar-;Loser-]."

The format directives after this point are much more complicated than the foregoing; they constitute

"control structures" that can perform case conversion, conditional selection, iteration, justification, and non

local exits. Used with restraint, they can perform powerful,tasks. Used with wild abandon, they can produce

completely unreadable and unmaintainable code.

The case-conversion, conditional, iteration, and justification constructs can contain other formatting

constructs by bracketing them. These constructs must nest properly with respect to each other. For example,

it is not legitimate to put the start of a case-conversion construct in each arm of a conditional and the end of

the case-conversion construct outside the conditional:

; Illegal!

One might expect this to produce either" abcDE FMNO" or "gh i JKLMNO", depending on whether x is false

or true, but in fact the construction is illegal because the - [... -; ... -] and - (... -) constructs are not

properly nested.

The processing indirection caused by the - 1 directive is also a kind of nesting for the purposes of this rule

of proper nesting. It is not pennitted to start a bracketing construct within a string processed under control of

a - 1 directive and end the construct at some point after the - 1 construct in the string containing that

construct, or vice versa. For example, this situation is illegal:

(format nil "-1ghi-)" "abc-@(def") ; Illegal!

One might expect it to produce "abcDEFGHI", but in fact the construction is illegal because the -1 and

- (. . . -) constructs are not properly nested.

-(sIr) Case conversion. The contained control string sIr is processed, and what it produces is
subject to case conversion. With no flags, all case-modifiable characters are forced to lower
case. - : (capitalizes all words, as if by s t r i n g - cap ita 1 i z e (page 240). -@ (

capitalizes just the first word, and forces the rest to lower case. - : @ (forces all case
modifiable characters to upper case.

For example:

. - . -, •.. _---_."----....... -..... ,_ ... ",_ _ _ - .• , ... _-------.. --... _----------_._ ... ,--_._-._----_._-----,--------_. __ _-_ .. _ ... _ .. - .. _ ... _--..... _ ... _-_ .•.. _---_ ... __ -

308 COMMON USP REFERENCE MANUAL

(format nil "-@R -(-@R-)" 14 14) => "XIV xiv"
(defun f (n) (format nil "-@(-R-) error~:P detected." n»
(f 0) => "Zero errors detected."
(f 1) => "One error detected."
(f 23) => "Twenty-three errors detected."

-[st1O-; strl- ; ••. -; stm-]

-.
t

Conditional expression. This is a set of control strings, called clauses, one of which is
chosen and used. The clauses are separated by -; and the construct is terminated by -].
For example,

"-[Siamese-;Manx-;Persian-] Cat"

The argth clause is selected, where the first clause is number O. If a prefix parameter is
given (as -n[), then the parameter is used instead of an argument (this is useful only if the
parameter is specified by "#"). If arg is out of range then no clause is selected. After the
selected alternative has been processed, the control string continues after the -].

- [strO- ; strl- ; ... - ; strn-: ; defaulr] has a default case. If the last "- ;" used to separate
clauses is instead ",.;.: ;", then the last clause is an "else" clause, which is performed if no
other clause is selected. For example:

"-[Siamese-;Manx-;Persian-:;A11ey-] Cat"

-: [false-; t1Ue-] selects the false control string if arg is nil, and selects the t1Ue control
string otherwise.

-@[t1Ue-] tests the argument If it is not nil, then the argument is not used up by the
-@[command, but remains as the next one to be processed, and the one clause t1Ue is
processed. If the arg is nil, then the argument is used up, and the clause is not processed.
The clause therefore should normally use exactly one argument. and may expect it to be
non-n i 1. For example:

(setq *print-1eve1* nil *print-1ength* 5)
(format nil

"-@[print level = -O-]-@[print length = -0-]"
print-level *print-1ength*)

=> "print length = 5"

The combination of -[and # is useful, for example, for dealing with English conventions
for printing lists:

(setq faa "Items:-#[none-; -S-; -S and -
-S-:;-@{-#[-I; and-] -S-A,-}-].")

(format nil faa)
=> "Items: none."

(format nil fo~ 'fool
=> "Items: FOO."

(format nil faa 'foo' 'bar)
=> "Items: FOO and BAR."

(format nil faa 'faa 'bar 'baz)
=> "Items: FOO, BAR, and BAZ."

(format nil faa 'faa 'bar 'baz 'quux)
=> "Items: FOO, BAR, BAZ, and QUUX."

Separates clauses in -[and -<constructions. It is undefined elsewhere.

Terminates a -[. It is undefined elsewhere.

INPUT/OUTPUT 309

-,{ str} Iteration. This is an iteration construct The argument should be a list, which is used as a
set of arguments as if for a recursive call to format. The string sIr is used repeatedly as
the control string. Each iteration can absorb as many elements of the list as it likes as
arguments; if SIr uses up two arguments by itself, then two elements of the list will get used
up each time around the loop. If before any iteration step the list is empty, then the
iteration is terminated. Also, if a prefix parameter n is given, then there will be at most n
repetitions of processing of str. Finally, the -,. directive can be used to terminate the
iteration prematurely.

Here are some simple examples:

(format nil "The winners are:-{ -S-}."
'(fred harry jill»

=> "The winners are: FRED HARRY JILL."
(format nil "Pairs:-{ <-S,-S>-}." '(a 1 b 2 c 3»

=> "Pairs: <A,l> <B,2> <C,3>."

- : {str} is similar. but the argument should be a list of sublists. At each repetition step
one sublist is used as the set of arguments for processing sIr; on the next repetition a new
sublist is used, whether or not all of the last sublist had been processed. Example:

(format nil "Pairs:-:{ <-S,-S>-}."
'«a 1) (b 2) (c 3»)

=> "Pairs: <A,l> <B,2> <C,3>."

-@{str} is similar to -{str}, but instead of using one argument that is a list., all the
remaining arguments are used as the list of arguments for the iteration. Example:

(format nil "Pairs:-@{ <-S,-S>-}."
'a 1 'b 2 'c 3)

=> "Pairs: <A,l> <B,2> <C,3>."

-:@{str} combines the features of -: {st,.-} and -@{str}. All the remaInmg
arguments are used, and each one must be a list On each iteration the next argument is
used as a list of arguments to sIr. Example:

(format nil "Pairs:-:@{ <-S,-S>-}."
'(a 1) '(b 2) '(c 3»

=> "Pairs: <A,l> <B,2> <C,3>."

Terminating the repetition construct with -:} instead of -} forces str to be processed at
least once even if the initial list of arguments is null (however, it will not override an
explicit prefix parameter of zero).

If sIr is empty, then an argument is used as sIr. It must be a string, and precedes any
arguments processed by the iteration. As an example, the following are equivalent:

(funcal'* "format stream string arguments)
(format stream "-1{-:}" string arguments)

This will use s t r i n g as a formatting string. The -1 { says it will be processed at most
once, and the -:} says it will be processed at least once. Therefore it is processed exactly
once, using arguments as the arguments. This case may be handled more clearly by the
-? directive, but this general feature of-{ is more powerful than -1.

Terminates a - {. It is undefined elsewhere.

- mincol , coline, minpad, padchar<str>
Justification. This justifies the text produced by processing str within a field at least mincol

310 COMMON USP REFERENCE MANUAL

columns wide. sIr may be divided up into segments with -;, in which case the spacing is
evenly divided between the text segments.

With no modifiers, the leftmost text segment is left justified in the field, and the rightmost
text segment right justified; if there is only one, as a special case, it is right justified. The :
modifier causes spacing to be introduced before the first text segment; the @ modifier
causes spacing to be added after the last The minpad parameter (default 0) is the
minimum number of padding characters to be output between each ~egment The padding
character is specified by padehar. which defaults to the space character. If the total width
needed to satisfy these constraints is greater than minco!, then the width used is
mineo!+k*eolinc for the smallest possible non-negative integer value k; coline defaults to
1, and minco! defaults to o.
Examples:

(format nil "-10<foo-;bar->") => "foo bar"
(format nil "-10:<foo-;bar->") => " foo bar"
(format nil "-10:@<foo-;bar->") => " foo bar"
(format nil "-10<foobar->") =>" foobar"
(format nil "-10:<foobar->") =>" foobar"
(format nil "-10@<foobar->") => "foobar "
(format nil "-10:@<foobar->") => " foobar "

Note that SIr may include format directives. All the clauses in sIr are processed in order;
it is the resulting pieces of text that are justified.

The -,.. directive may be used to terminate processing of the clauses prematurely, in which
case only the completely processed clauses are justified.

If the first clause of a -<is terminated with -: ; instead of - ;, then it is used in a special
way. Ali of the clauses are processed (subject to -,.., of course), but the first one is not used
in performing the spacing and padding. When the padded result has been determined,
then if it will fit on the current line of output, it is output, and the text for the first clause is
discarded. If, however, the padded text will not fit on the current line, then the text
segment for the first clause is output before the padded text. The first clause ought to
contain a newline (such as a -% directive). The first clause is always processed, and so any
arguments it refers to will be used; the decision is whether to use the resulting segment of
text, not whether to process the first clause. If the - : ; has a prefix parameter n, then the
padded text must fit on the current line with n character positions to spare to avoid
outputting the first clause's text. For example, the control string

"-%;; -{-<-%;; -1:; -S->-A,-}.-%"
can be used to print a list of items separated by commas, without breaking items over line
boundaries, and beginning each line with";; ft. The prefix parameter 1 in -1: ;
accounts for the width of the comma that will follow the justified item if it is not the last
element in the list, or the period if it is. If -: ; has a second prefix parameter, then it is
used as the width of the line, thus overriding the natural line width of the output stream.
To make the preceding example use a line width of 50, one would write

"-%;; -{-<-%;; -1,50:; -S->-",-}.-%"

If the second argument is not specified, then format uses the line width of the output
stream. If this cannot be determined (for example, when producing a string result), then
forma t uses 72 as the line length.

Terminates a ~ <. It is undefined elsewhere.

INPUT/OUTPUT 311

Up and out. This is an escape construct If there are no more arguments remaining to be .
processed, then the immediately enclosing - { or - < construct is terminated. If there is no
such enclosing construct, then the entire formatting operation is terminated. In the - <
case, the formatting is performed, but no more segments are processed before doing the
justification. The -" should appear only at the beginning of a -<clause, because it aborts
the entire clause it appears in (as well as all following clauses). -" may appear anywhere in
a -{construct

(setq donestr "Oone.-" -0 warning-:P.-" -0 error-:P.")
(format nil donestr) => "Done."
(format nil donestr 3) => "Done. 3 warnings."
(format nil' donestr 1 5) => "Done. 1 warning. 5 errors."

If a prefix parameter is given, then termination occurs if the parameter is zero. (Hence-'"
is equivalent to -n".) If two parameters are given, termination occurs if they are equal. If
three are given, tennination occurs if the second is between the other two in ascending
order. Of course, this is useless if all the prefix parameters are constants; at least one of
them should be a n or a V parameter.

If -,.. is used within a -: { construct, then it merely terminates the current iteration step
(beCause in the standard case it tests for remaining arguments of the current step only); the
next iteration step commences immediately. To terminate the entire iteration process, use
-.'"
If -,.. appears within a control string being processed under the control of a -1 directive,
but not within any -{or - < construct within that string, then the string being processed
will be terminated, thereby ending processing of the -? directive, and processing then
continues within the string containing the -1 directive at the point following that directive.

If -" appears within a -[or -(construct, then all the commands up to the -,.. are
properly selected or case-converted, the -[or - (processing is terminated, and the
outward search continues for a - { or - < construct to be terminated. For example:

(setq te11str "-@(-@[-R-]-'" -A.-)")
(format nil te'lstr 23) => "Twenty-three."
(format nil te'lstr nil "losers") => "Losers."
(format nil te11str 23 "losers") => "Twenty-three losers."

Here are some examples of the use of-" within a -< construct

(format nil "-15<-S-;-"-S-;-"'-S->" 'fool
=> " FOD"

(format nil "-15<-S-;-"'-S-;-"-S->" 'foo 'bar)
=> "FDD BAR"

(format nil "-15<-S-;-"-S-;-"-S->" 'foo 'bar 'baz)
=> "FDD BAR BAZ"

Compatibility note: The -Q directive and user-defined directives have been omitted here, as well as control lists (as opposed
to strings), which are rumored to be changing in meaning.

22.5. Querying the User

The following functions provide a convenient and consistent interface for asking questions of the user.
~ Questions are printed and the answers are read using the stream • que r y - i 0 • (page 260), which normally is

synonymous with * term ina 1 - i 0 * (page 260) but can be rebound to another stream for special

---- -- - ----------- ----- -"-,------,-,,

312 COMMON USP REFERENCE MANUAL

applications.

~-or-n-p &optiona1 message stream [Function]
This predicate is for asking the user a question whose answer is either "yes" or "no". It types out
message (if supplied and not nil), reads an answer in some implementation-dependent manner

. (intended to be short and simple, like reading a 'single character such as "V"" or "N"), and is true if
the answer was "yes" or false if the answer was "no".

If the message argument is supplied and not nil, it will be printed on a fresh line (see
f res h -1 ; n e (page 297». Otherwise it is assumed that a message has already been printed. If
you wanta question mark at the end of the message~ you must put it there yourself; y-or-n-p will
not add it However, the message should not contain an explanatory note such as "(V or N) ",
because the nature of the interface provided for y - 0 r - n - p by a given implementation might not
involve typing a character on a keyboard; y-or-n- p will provide such a note if appropriate.

stream defaults to the value of the global variable *query- i 0* (page 260).

An example:
(y-or-n-p "Cannot establish connection. Retry?")

y - 0 r - n - p should only be used for questions that the user knows are coming. If the user is
unlikely to anticipate the. question, or if the consequences of the answer might be grave and
irreparable, then y - 0 r - n - p should not be used, because the user might type ahead and thereby
accidentally afiswcr the question. For such questions as "Shall I delete all of your files?", it is better
to use yes-or-no-p.

yes-or-no-p &optional message stream [Function]
This predicate, like y - 0 r - n - p, is for asking the user a question whose answer is either "Yes" or
"No". It types out message (if supplied and not nil), attracts the user's attention, and reads a reply
in some implementation-dependent manner. It is intended that the reply require the user to take
more action than just a single keystroke, such as typing the full word "yes" or "no" followed by a
<return>.

If the message argument is supplie~ it will be printed on a fresh line (see fresh-l ine (page
297». Otherwise the caller is assumed to have printed the message already. If you want a question
mark at the end of the message, you must put it there yourself; yes-or-no-p will not add it
However, the message should not contain an explanatory note such as "(Ves or No)", because
the nature of the interface provided for yes-or-no-p by a given implementation might not
involve typing the reply on a keyboard; yes - 0 r - n 0 - p will provide such a note if appropriate.

stream defaults to the value of the global variable • que r y - i o· (page 260).

To allow the user to answer a yes-or-no question with a single character, use y-or-n-p.
yes - 0 r - n 0 - p should be used for unanticipated or momentous questions; this is why it attracts
attention and why it requires a multiple-action sequence to answer it

Chapter 23

File System Interface

A frequent use of streams is to communicate with a file system to which groups of data (files) can be written
and from which files can be retrieved.

COMMON LISP defines a standard interface for dealing wi~ such a file system. This interface is designed to

be simple and general enough to accommodate the facilities provided by "typical" operating system
environments within which COMMON LISP is likely to be implemented. The goal is to make COMMON LIsp
programs that perform only simple operations on files reasonably portable.

To this end COMMON LISP assumes that files are named, that given a name one can construct a stream
connected to a file of that name, and that the names can be fit into a certain canonical, implementation
independent form called a pathname.

Facilities are provided for manipulating pathnames, for creating streams connected to files, and for
manipulating the file system through pathnames and streams.

23.1. File Names

COMMON LISP programs need to use names to designate files. The main difficulty in dealing with names of
files is that different file systems have different naming formats for files. For example, here is a table of
several file systems (actually, operating systems that provide file systems) and what the "same" file name
might look like for each one:

System
TOPS-20
TOPS-IO
ITS

MULTICS
TENEX
VAX VMS

UNIX

File name
<LISPIO>FORMAT.FASL.13
FORMAT.FAS[l,4]
LISPIO;FORMAT FASL
>udd>LispIO>format.fasl
<LISPIO>FORMAT.FASL;13
[LISPIO]FORMAT.FAS;13
lusr/lispio/format.fasl

It would be impossible for each program that deals with file names to know about each different file name
format that exists; a new COMMON LISP implementation might use a format different from any of its
predecessors. Therefore COMMON LISP provides two ways to represent file names: namestrings, which are

- 313-

_. _. - ---_. __ .. _._----_._--_._--_._._ ... _----_._- .•. _. __ .. _.-_._--- ----------------_._-_._----_._-_ .. _--.. __ . __ __ ._.- .. _ __ ._ .. _ _-_._---. __ .. __ .. _-----

314 COMMON USP REFERENCE MANUAL

strings in the implementation-dependent form customary for the file system, and palhnames, which are
special data objects that represent file names in an implementation-independent way. Functions are provided
to convert between these two representations, and all manipulations of files can be expressed in machine
tndependent terms by using pathnames.

In order to allow COMMON LIsp programs to operate in a network environment that may have more than
one kind of file system, the pathname facility allows a file name to specify which file system is to be used. In
this context, each file system is called a hoSI, in keeping with the usual networking tenninology.

23.1.1. Pathnames

All file systems dealt with by COMMON LISP are forced into a common framework, in which files are named
by a LISP data object of type pathname.

A pathname always has six components, described below. These components are the common interface
that allows programs to work the same way with different file systems; the mapping of the patbname
components into the concepts peculiar to each file system is taken care of by the COMMON LIsp
implementation.

host

device

directory

name

type

version

The name of the file system on which the file resides.

Corresponds to the 4'device" or "file structure" concept in many host file systems: the
name of a (logical or physical) device containing files.

Corresponds to the "directory" concept·in many host file systems: the name of a group of
related files (typically those belonging to a single user or project).

The name of a group of files that can be thought of as conceptually the "same" file.

Corresponds to the "filetype" or "extension" concept in many host file systems. This says
what kind of file this is. Files with the same name but different type are usually related in
some specific way, such as one being a source file, another the compiled form of that
source, and a third the listing of errors messages from the compiler.

Corresponds to the "version number" concept in many host file systems. Typically this is a
number that is incremented every time the file is modified.

In addition, every pathname object has a property list on which additional infonnation may be stored and
accessed using get f (page U7).

Note that a pathname is not necessarily the name of a specific file. Rather, it is a specification (possibly
only a partial specification) of how to access a file. A patbname need not correspond to any file that actually
exists, and more than one pathname can refer to the same file. For example, the pathn~e with a version of
"newest" may refer to the same file as a pathname with the same components except a certain number as the
version. Indeed, a patbname with version "newest" may refer to different files as time passes, because the
meaning of such a pathname depends on the state of the file system. In file systems with such facilities as

-- -------------------.------ -- - -----------------------_ .. _-_._-- --_._._--_._------

HLESYSTEMINTERFACE 315

"links", multiple file names, logical devices, and so on, two pathnames that look quite different may tum out
to address the same file. To access a file given a pathname one must do a file system operation such as open

(page 322).

Two important operations involving pathnames are parsing and merging. Parsing is the conversion of a
namestring (which might be something supplied interactively by the user when asked to supply the name ofa
file) into a pathname object. This operation is implementation-dependent. because the fonnat of name strings
is implementation-dependent Merging takes a pathname with missing components and supplies values for
those components from a source of defaults.

Not all of the components of a pathname need to be specified. If a component of a pathname is missing, its
value is n i ,. Before the file system interface can do anything interesting with a file, such as opening the file,
all the missing components of a pathname must be filled in (typically from a set of defaults). Pathnames with
missing components may used internally for vario~s purposes; in particular, parsing a namestring that does
not specify certain components will result in a pathname with missing components.

A component of a pathname can also be the keyword : wi' d. This is only useful when the pathname is
being used with a directory-manipulating operation, where it means that the pathname component matches
anything. The printed representation of a pathname typically designates : wi' d by an asterisk; however, this
is host-dependent

What values are allowed for components of a pathname depends, in general, on the pathname's' host.
However, in order for pathnames to be usable in a system-independent way certain global conventions are
adhered to. These conventions are stronger for the type and version than for the other components, since the
type and version are explicitly manipulated by many programs, while the other components are usually
treated as something supplied by the user that just needs to be remembered and copied from place to place.

The type is always a string or n i' or : wi' d. Many programs that deal with files have an idea of what type
they want to use.

The version is either a positive integer or a special symbol. The meanings of n i' and : wi' d have been
explained above. The keyword : n ewe s t refers to the largest version number that already exists in the file
system when reading a file, or that number plus one when writing a new file. The keyword : 0' des t refers
to the smallest version number that exists. Some COMMON LISP implementations may choose to define other
special version symbols, such as : ins t a' , ed, for example, if the file system for that implementation will
support them.

The host may be a string, indicating a file system, or a list of strings, of which the first names the file system
and the rest may be used for such a purpose as inter-network routing.

f The device, directory, and name also can each be a string (with host-dependent rules on allowed characters
and length) or a list of strings (in which case such a component is said to be structured). Structured
components are used to handle such file system features as hierarchical directories. COMMON LISP programs

----------------.----- - --- ------------ - ---- ------ ----. -- - .. - -

316 COMMON LISP REFERENCE MANUAL

do not need to know about structured components unless they do host-dependent operations. Specifyinp a
string as a pathname component for a host that requires a structured value will cause conversion of the string
to the appropriate form. Specifying a structured component for a host that does not provide for that
cbmponent to be structured causes conversion to a string by the simple expedient of taking the first element
of the list and ignoring the rest

Some host file systems have features that do not fit into this pathname model. For instance, directories
might be accessible as files. there might be complicated structure in the directories or names, or there might
be relative directories, such as the "<" syntax in MULTICS or the special " .. " file name of UNIX. Such
features are not allowed for by the standard COMMON LISP file system interface. An implementation is free to

accommodate such features in its pathname representation and provide a parser that can process such
specifications in namestrings; such features are then likely to work within that single implementation.
However, note that once your program depends explicitly on any such features, it will not be portable.

23.1.2. Pathname Functions

These functions are what programs use to parse and default file names that have been typed in or otherwise
supplied by the user.

As a rule, any argument called pathname may actually be a pathname, a string or symbol, or a stream, and
any argument called defaults maybe a pathname, a string or symbol, or a stream.

In the examples, it is assumed that the host named CMUC runs the TOPS-20 operating system, and therefore
uses TOPS-20 file system syntax; furthermore, an explicit host name is indicated by following it with a double
colon. Remember, however, that namestring syntax is implementation-dependent, and this syntax is used
purely for the sake of examples.

pathname thing [Function]
The pathname function converts its argument to be a pathname. The argument may be a
pathname, a string or symbol, or a stream.

truename thing [Function]
The truename function converts thing to be a pathname, and then endeavors to discover the "true
name" of the file associated with that pathname within the file system. The truename function
may be used to account for any file-name translations performed by the file system, as opposed to

logical-pathname translations performed by .cOMMON LISP (see transl ated-pathname (page
321».

For example, suppose that "DOC:" is a TOPS-20 logical device name that is translated by the TOPS-20

file system to be "PS : <DOCUMENT ATION>".
{setq file (open "CMUC::DOC:DUMPER.HLP"»
{namestring (pathname file» => "CMUC::DOC:DUMPER.HLP"
{namestring (truename file»

=> "CMUC::PS:<DOCUMENTATION>DUMPER.HLP.13"

--------------------------------------- -----------------------

ALE SYSTEM INTERFACE 317

111 Query: If the file is_not found, should truename signal an error, return nil, or just quietly return an
untranslated pathname?

parse - names tr in 9 thing &opt; 0 na 1 convention defoults break-characters start end [Function]
This turns thing into a pathname. The thing is usually a string (that is, a namestring), but it may be
a symbol (in which case the print name is used) or a path name or stream (in which case no parsing
is need~d, but an error check may be 'made for matching hosts).

This function does not do defaulting of pathname components; it only does parsing. The
convention and defaults arguments are present because in some implementations it may be that a
namestring can only be parsed with reference to a particular file name syntax of several available in

the implementation. If convention is non-n i 1, it must be a string naming the file name syntax
(using a host name will indicate that the conventions peculiar to that host should be used if that is
meaningful), or a list of strings, of which the first is used. If convention is n i' then the host name is
extracted from the default pathname in defaults and used to detennine -the syntax convention. The
defaults argument defaults to the value of *defaul t-pa thname-def au' ts * (page 320).

For a string (or symbol) argument, parse-namestri ng parses a file name within it in the range
. delimited by start and end (which are integer indices into string. defaulting to the beginning and
end of the string). Parsing is tenninated upon reaching the end of the specified substring or upon
reaching a character in break-characters, which may be a string or a list of characters; this defaults
to an empty set of characters.

Two values are returned by par s e - n arne s t r in g. If the parsing is successful. then the first value
is a pathname object for the parsed file name, and otherwise the first value is n i 1. The second
value is an integer, the index into string one beyond the last character processed. This will be equal
to end if processing was tenninated by hitting the end of the substring; it will be the index of a
break character if such was the reason for tennination; it will be the index of an illegal character if
that was what caused processing to (unsuccessfully) terminate. If thing is not a string or symbol,
then start (which defaults to zero in any case) is always returned as the second value.

Parsing an empty string always succeeds, producing a pathname with all components (except the
host) equal to n; 1.

Note that if convention is specified and not n; 1, and thing contains a manifest host name, an error
is signalled if the conventions do not match.

merge-pathnarnes pathname &optional defaults defoult-version [Function]
This is the function that mC'st programs should call to process a file name supplied by the user. It
fills in unspecified components of pathname from the defaults, and returns a new pathname.
pathname may be a pathname, string, or symbol. The returned value will always be a pathname.

defaults defaults to the value of *def au' t-pathname-defau' ts· (page 320). default-version
defaults to : newest.

The rules for merging can be rather complicated in some situations; they are described in detail in

318 COMMON USP REFERENCE MANUAL

section 23.1.3 (page 319). An approximate rule of thumb is simply that any components missing in
the pathname are filled in from the defaults.

For example:
(merge-pathname-defaults "CMUC::FORMAT"

"CMUC: :PS:<LISPIO>.FASL")
=> a pathname object that re-expressed as a namestring would be

"CMUC::PS:<LISPIO>FORMAT.FASL.O"

make-pathname &key :host :device :directory :name [Function]
:type :version :defaults

Given some components, make-pathname constructs and returns a pathname. Missing
components default to n i " except the host (all pathnames must have a host). The : def au 1 ts
option specifies what defaults to get the host from if the : h 0 s t option is nil ~or not specified;
however, no other components are supplied from the : de fa u 1 t s . The default value of the
: defaul ts option is the value of *defaul t-pathname-defaul ts* (page 320). All other
keywords specify components for the pathname.

Whenever a pathname is constructed, whether by make-pathname or some other function, the
components may be canonicalized if appropriate. For example, if a file system is insensitive to case,
then alphabetic characters may be forced to upper case or lower case by the implementation.

pathnamep object
This predicate is true if object is a pathname, and otherwise is false.

(pathr.amep x) <=> (typep x 'pathname)

[Function]

pathname-host pathname [Function]
pathname-dev i ce pathname [Function]
pathname-d; rectory pathname [Function]
pathname-name pathname [Function]
pathname-type pathname [Function]
pathname-version pathname [Function]

These return the components of the argument pathname, which may be a pathname, string, or
symbol. The returned values can be strings, special symbols, or lists of strings in the case of
structured components. The type will always be a string or a symbol. The version will always be a
number or a symbo1.

pathname-pl i st pathnamr [Function]
This returns the property list of the argument pathname, which may be a pathname, string, or
symbol (see symbol-pl ist (page 127».

The property list may be altered by using set f (page 72) with pat h name - p' is t. Usually this is
best done by using get f (page 127) as well so as to store a single property-value pair:

(setf (getf (pathname-pl ist pathname) property} newvalue)

ALE SYSTEM INTERFACE 319

name s t r i n 9 pathname [Function]
f; 1 e - name s t r i n 9 pathname [Function]
di rectory-namestr i ng pathname [Function]
ho s t - name st r i n 9 pathname [Function]
enough-namestring path name &optianal defaults [Function]

The pathname argument may be a namelist, a namestring, or a stream that is or was open to a file.
The name represented by pathname is returned as a namelist in canonical form.

If pathname is a stream, the name returned represents the name used to open the file, which may
not be the actual name of the file (see truename (page 316)}.

----_. __ .

name s t r i n 9 returns the full form of the pathname as a string. f i 1 e - name s t r i n 9 returns a
string representing just the name, type, and version components of the pathname; the result of
di rectory-names tr i ng represents just the directory-name portion; and hos t-n ames tr; ng
returns a string for just the host-name portion. Note that a valid namestring cannot necessarily be .
constructed simply by concatenating some of the three shoner strings in some order.

enough-narnestr; og takes another argument, defaults. It returns an abbreviated namestring
that is just sufficient to identify the file named by pathname when considered relative to the defaults
(which defaults to the value of ~def au 1 t-pa thnarne-def aul ts * (page 320». That is,

(merge-pathnarne-defaul ts (enough -narnestr; ng pathname defaults)
defaults)

<=> (p ar se - path n arne pathname)

user-homed; r-pathn arne &opt; ana 1 host [Function]
Returns a pathname for the user's "home directory" on host, which defaults in some appropriate
implementation-dependent manner. The concept of "home directory" is itself somewhat
implementation-dependent, but from the point of view of COMMON LISP it is the directory where
the user keeps personal files such as initialization files and mail. This function returns a pathname
without any name, type, or version component (those components are all n ; 1).

in i t-f i 1 e-pathnarne program-name &opt i onal host [Function]
Returns the patbname of the user's init file for the program program-name (a string), on the host,
which defaults in some appropriate implementation-dependent manner. Programs that load init
files containing user customizations call this function to detennine where to look for the file, so that
they need not know the separate· init file name conventions of each host operating system.

23.1.3. Defaults and Merging

Defaulting of pathname components is done by filling in components taken from another pathname; this
filling-in is called merging. This is especially useful for cases such as a program that has an input file and an
output file, and asks the user for the name of both, letting the unsupplied components of one name default
from the other. Unspecified components of the output pathname will come from the input pathname, except
that the type should default not to the type of the input but to the appropriate default type for output from
this program.

320 COMMON LISP REFERENCE MANUAL

The pathname merging operation takes as input a given pathname, a defaults pathname, a default type, and
a default version, and returns a new pathname. Basically, the missing components in the given pathname are
filled in from the defaults pathname, except that if no type is specified the default type is used, and if no
-fersion is specified the default version is used. Programs that have a default type for the files they manipulate
usually will supply it to the merging operation. The default version is. usually : new est; if no version is
specified the newest version in existence should be used. The default type and version can be ni 1, to

preserve the information that they were missing in the input pathname.

The full details of the merging rules are as follows. First, if the given pathname explicitly specifies a host
and 90es not supply a device, then the device will be the default file device for that host. Next, if the given
pathname does not specify a host, device, directory, or name, each such component is copied from the
defaults.

The merging rules for the type and version are more complicated, and depend on whether the pathname
specifies a name. If the pathname doesn't specify a name, then the type and version, if not provided, will
come from the defaults, just like the other components. However, if the pathname does specify a name, then
the type and version are not affected by the defaults. The reason for this is that the type and version "belong
to" some other filename, and are unlikely to have anything to do with the new one. Finally, if this process
leaves the type or version missing, the default type or default version is used (these were inputs to the merging
operation).

The effect of all this is that if the user supplies just a name, the host, device, and directory will come from
the defaults, but the type and version will come from the default type and default version arguments to the
merging operation. If the user supplies nothing, or just a directory, the name, type, and version will come
over from the defaults together. If the host's file name syntax provides a way to input a type or version
without a name, the user can let the name default but supply a different type or version than the one in the
defaults.

·def~ult-pathname-defaults· [Variable]

This is the default pathname-defaults pathname; if any pathname primitive that needs a set of
defaults is not given one, it uses this one. As a general rule, however, each program should have its
own pathname defaults rather than using this onel

See also ·1 oad-pathname-defaul ts· (page 328).

23.1.4. Logical Pathnames

Logical pathnames, unlike ordinary pathnames, do not correspond to any particular file server. Like every
pathname, however, a logical pathname must have a host, in this case called a "logical" host. Every logical
pathname can be translated into a corresponding "actual" pathname; there is a mapping from logical hosts
into actual hosts used to effect this translation.

ALE SYSTEM INTERFACE 321

The reason for having logical pathnames is to make it easy to keep bodies of software on more than one file
system. A program may need to have a suite of files at its disposal, but different file systems may have
different conventions about what directories may be used to store such files. Ideally, it should be easy to write
a program in such a way that it will work correctly no matter which site it is run at This is easily done by
writing the program to use a logical name; this logical name can then be provided with a customized
translation for each implementation, thereby centralizing the implementation dependency.

Here is how translation is done. For each logical host, there is a mapping that takes a directory name and
produces a corresponding actual host name, device name, and directory name. To translate a logical
·pathname, the system finds the mapping for that pathname's host and looks up that pathname's directory in
the mapping. If the directory is found, a new pathname is created whose host is the actual host, and whose
device and directory names come from the mapping. The other components of the new pathname taken from
the old pathname. There is also, for each logical host, a "default device". If the directory is not found in the
mapping, then the new pathname will have the same directory name as the old one, and its device will be the
default device for the logical host

This means that when you invent a new logical device for a certain set of files, you also make up a set of
logical directory names. one for each of the directories that the set of files is stored in. Now when you create
the mappings at particular sites, you can choose any actual host for the files to reside on, and for each of your
logical directory names, you. c~ specify the actual directory name to use on the actual host. This gives you
flexibility in setting up your directory names; if you used a logical directory name called f red and you want
to move your set of files to a new file server that already has a directory called f red, being used by someone
else, you can translate fred to some other name and so avoid getting in the way of the existing directory.
Furthermore, you can set up your directories on each host to conform to the local naming conventions of that
host

add-1 09; ca 1- pa thn arne-hos t logicaJ-host actual-host defoult-device translations [Function]
This creates a new logical host named logicaJ-host. Its corresponding actual host (that is, the host to

which it will forward most operations) is named by actual-host. logical-host and actual-host should
both be strings. The default-device should be a string naming the default device for the logical host
The translations should be a list of translation specifications. Each translation specification should
be a list of two items. The first should be a string naming a directory for the logical host The
second is a pathname (or string, symbol, or stream) whose device component and directory
component provide the translation for the logical directory.

trans1 ated-pathnarne pathname [Function]
This converts a logical path name to an actual pathname. If the pathname already refers to an actual
host rather than to a logical host, the argument is simply returned.

322 COMMON USP REFERENCE MANUAL

back -transl ated-pathname /ogica/-pathname actua/-pathname [Function]
This converts an actual pathname to a logical pathname. actua/-pathname should be a pathname
whose host is the actual host corresponding to the logical host of /ogica/-pathname. This returns a
patbname whose host is the logical host and whose translation (as by trans 1 ated-pathname
(page 321» is actua/-pathname.

An example of how this would be used is in connection with truenames. Given a stream s that was
obtained by opening a logical pathname,

(pathname s)
returns the logical pathname that was opened;

(truename s)
returns the true name of the file that is open, which of course is a pathname on the actual host To
get this in the fonn of a logical pathname, one would do

(back-translated-pathname (pathname s) (truename s»
If the argument logical-pathname is actually an actual pathname, then the argument
aClual-pathname is simply returned. Thus the above" example will work no matter what kind of
pathname was opened to create the stream.

The namestring corresponding to a logical pathname is, like all namestrings, of implementation-dependent
fonnat As a rule, however, there is no way to specify a device; parsing a logical-pathname string always
returns a pathname whose device component is nil.

23.2. Opening and Closing Flles

When a file is opened, a stream object is constructed to serve as the file system's ambassador to the LIsp
environment; operations on the stream are reflected by operations on the file in the file system. The act of
closing the file (actually, the stream) ends the association; the transaction with the file system is terminated,
and input! output may no longer be performed on the stream. The stream function c los e (page 263) may
be used to close a file; the functions described below may be used to open them. The basic operation is
open, but wi th -open -f i 1 e is usually more convenient for most applications.

open filename &key :direction :element-type [Function]
:if-exists :;f-does-not-exist

Returns a stream that is connected to the file specified by filename. The keyword arguments specify
what kind of stream to produce and"how to handle errors:

:direction This argument specifies whether the stream should handle input, output, or
both.

:input

:output

:io

:probe

The result will be an input stream. This is the default

The result will be an output stream.

The result will be a bidirectional stream.

" The result will be a no-directional stream (in effect, the stream

HLESYSTb~INTERFACE

:element-type

323

is created and then closed). This is useful for determining .
whether a file exists without actually setting up a complete
stream.

This argument specifics the type of the unit of transaction for the stream. As a
rule, anything that can be recognized as being a finite subtype of character or
in te ge r is acceptable. In particular, the following types are recognized:

string-char The unit of transaction is a string-character. The functions
read-char (page 293) and/or wr i te-char (page
297) may be used on the stream. This is the default

character The unit of transaction is any character, not just a string
character. The functions read-char (page 293) and/or
wr i te- char (page 297) may be used on the stream.

standard-char
The unit of transaction is a standard character. The functions
read-char (page 293) and/or wr i te-char (page
297) may be used on the stream. This option may be used to
guarantee that no non-standard character will be read from an
input source.

(unsigned-byte n)

unsigned-byte

The unit of transaction is an unsigned byte (a non-negative
integer) of size n. The functions read-byte (page
295) and/or wr i te-byte (page 298) may be used on the
stream.

The unit of transaction is an unsigned byte (a non-negative
integer); the size of the byte is determined by the file system.
The functions re ad -byte (page 295) and/or wr i te- byte
(page 298) may be used on the stream.

(signed-byte n)
The unit of transaction is a signed byte of size n. The
functions read-byte (page 295) and/or wr i te-byte
(page 298) may be used on the stream.

signed-byte The unit of transaction is a signed byte of size n. the size of
the byte is determined by the file system. The functions
read-byte (page 295) and/or wr i te-byte (page
298) may be used on the stream.

bi t The unit of transaction is a bit (values 0 and 1). The
functions read-byte (page 295) and/or write-byte
(page 298) may be used on the stream.

(mod n) The unit of transaction is a non-negative integer less than n.
The functions read-byte (page 295) and/or write-byte
(page 298) may be used on the stream.

324

:if-exists

:default

COMMON LISP REFERENCE MANUAL

The unit of transaction is to be detennined by the file system,
based on the file it finds. The type can be detennined by
using the function stream-el ement-type (page 263).

This argument specifies the action to be taken if the : di rect i on is : output
or : ; 0 and a file of the specified name already exists. If the direction is : input
or : p robe, this argument is ignored.

:error Signal an error. This is the default when the version
component of the filename is not: newes t.

: new-vers i on Create a new file with the same file name, but with a larger
version number. This is the default when the version
component of the filename is : newest.

:rename Rename the existing file to some other name, and then create
a new file with the specified name.

:rename-and-delete
Rename the existing file to some other name and then delete
it (but don't expunge it, on those systems that distinguish
deletion from expunging). Then create a new file with the
specified name.

: 0 v e rw r ; t e The existing file is used, and output operations on the stream
will destructively modify the file. If the : d ; r e c t ion is : i 0,

the file is opened in a bidirectional mode that allows both
reading and writing. The file pointer is initially positioned at
the beginning of the file; however, the file is not truncated
back to length zero when it is opened. This mode is most
useful when the f i 1 e - po sit ion (page 326) function can
be used on the stream.

: append The existing file is used, and output operations on the stream
will destructively modify the file. The file pointer is initially
positioned at the end of the file. If the : d ire c t ion is : ; 0,

the file is opened in a bidirectional mode that allows both
. reading and writing.

: supersede Supersede the existing file. If possible, the implementation
should arrange not to destroy the old file until the new stream
is closed, against the possibility that the stream will be closed
in "abort" mode. This differs from: new-vel's ion in that
: sup e I' sed e creates a new file with the same name as the
old one, rather than a file name with a higher version number.

nil Do not create a file or even a stream. Instead, simply return
nil to indicate failure.

:if-does-not-exist
This argument specifies the action to be taken if a file of the specified name does
not already exist

:error Signal an error. This is the default if the : d ire c t ion is

ALESYS~~INTERFACE 325

: i n put, or if the : if - e xis t s argument is : 0 v e rw r i t e
or : append.

:create Create an empty file with the specified name, and then
proceed as if it had already existed. This is the default if the
:direction is :output or :io, and the :if-exists
argument is anything but: ove rwr i te or : append.

nil Do not create a file or even a stream. Instead, simply return
nil to indicate failure. This is the default if the
:direction is :probe.

When the caller is finished with the stream, it should close the file by using the c los e (page
263) function. The wi th -open -f i' e (page 325) special form does this automatically, and so is
preferred for most purposes. open should be used only when the control structure of the program
necessitates opening and closing of a file in some way more complex than provided by
wit h - 0 pen - f i 1 e. It is suggested that any program that uses 0 pen directly should use the
special form un win d - pro t e c t (page 107) to close the file if an abnormal exit occurs.

with-open-fi1e (stream filename {options}*) {declaration}* lfonn}* [Macro]

with-open-fi1e evaluates thefonnsofthe body (an implicit progn) with the variable stream

bound to a stream that reads or writes the file named by the value of filename. The options are
evaluated, and are used as keyword arguments to the function 0 pen (page 322).

When control leaves the body, either nonna1ly or abnonnally (such as by use of th row (page
108», the file is automatically closed. If a new output file is being written, and control leaves
abnormally, the file is aborted and the file system is left, so far as possible, as if the file had never
been opened. Because wi th-open-f;' e always closes the file, even when an error exit is taken,
it is preferred over 0 pen for most applications.

filename is the name of the file to be opened; it may be a string, a pathname, or a stream.

For example:
(with-~pen-fi1e (ifi1e name :direction :input)

(with-open-fi1e (ofi1e (merge-pathname-defau1ts ifi1e
nil

:direction :output
:if-exists :supersede)

(transduce-file ifi1e ofi1e»)

"out")

Implementation note: While with-open -f ; 1 e tries to automatically close the stream on exit from the construct. for
robustness it is helpful if the garbage collector can detect discarded streams and automatically close them.

. .

326 COMMON LISP REFERENCE MANUAL

23.3. Renaming, Deleting, and Other Operations

Compatibility note: The MAcLIsp/Lisp Machine LIsp names renamef, del etef, etc., are explicitly avoided here because
they are not sufficiently mnemonic and because the trailing-f convention conflicts with a similar convention for fOImS

related to set f (page 72).

rename-file file new-name [Function)
file can be a filename or a stream that is open to a file. The specified file is renamed to new-name
(which must be a filename), rename-fi 1 e returns t.

It is an error to specify a filename containing a : wi 1 d component

del e t e - f i 1 e file [Function)
file can be a filename or a stream that is open to a file. The specified file is deleted. de 1 e te - f i 1 e
returns t.

It is an error to specify a filename containing a : wi 1 d component

probe-f i 1 e filename [Function)
This predicate is false if there is no file named filename, and otherwise returns a filename that is the
true name of the file (which may be different from filename because of file links, version numbers,
or other artifacts of the file system; see truenarne (page 316».

file-creation-date file [Function]
file can be a filename or a stream that is open to a file. This returns the creation date of the file as
an integer in universal time format (see section 25.4.l), or nil if this cannot be determined.

f i 1 e - aut h 0 r file [Function)
file can be a filename or a stream that is open to a file. This returns the name of the author of the
file as a string, or nil if this cannot be determined.

f i 1 e - p 0 sit ion file-stream &0 p t ion a 1 position [Function)
f i 1 e - p 0 sit; 0 n returns or sets the current position within a random-access file.

(f i 1 e - p 0 sit ion file-stream) returns a non-negative integer indicating the .current position
within the file-stream, or nil if this cannot be determined. Normally, the position is zero when the
stream is first created. The position is measured in units of the : e 1 erne n t - ty p e specified when
the file was opened (see open (page 322».

(file-position file-stream position) sets the position within file-stream to be position. The
position may be an integer, or n i' for the beginning of the stream, or t for the end of the stream.
If the integer is too large, an error is signalled (the f i , e -1 eng th (page 327) function returns the
length beyond which f i 1 e -pos i t i on may not access). With two arguments, fi 1 e-pos ; ti on
is a (side-effecting) predicate that is true if it actually performed the operation, or false if it could
not (for example, because the file is not random-access).

ALE SYSTEM INTERFACE 327

fi 1 e-l ength file-stream [Function]
file-stream must be a stream that is open to a file. The length of the file is returned as a non

negative integer, or nil if the length cannot be detennined. The length is measured in units of the

: el ement-type specified when the file was opened (see open (page 322}).

23.4. Loading Files

To load a file is to read through the file, evaluating each fonn in it Programs are typically stored in files;

the expressions in the file are mostly special fonns such as defun (page 53), defmacro (page 112), and

de f va r (page 53), which define the functions and variables of the program.

Loading a compiled ("fasload") file is simj.1ar, except that the file does. not contain text, but rather pre

digested expressions created by the compiler that can be loaded more quickly.

load &optional filename &key :verbose:print : if-does-not-exist [Function]
:set-default-pathname

This function loads the file named by filename into the Lisp environment It is assumed that a text

(character file) can be automatically distinguished from an object (binary) file by some appropriate

implementation-dependent means, possibly by the file type. If the filename does not explicitly

specify a type, and both text and object types of the file are available in the file system, load

should try to select the more appropriate file by some implementation-dependent means.

If the first argument is a stream rather than a pathname, then load determines what kind of stream

it is and loads directly from the stream.

The : verbose argument (which defaults to the value of·, oad-verbose· (page 328)), if true,

pennits , oad to print a message in the fonn of a comment to ·standard-output* (page

259) indicating what file is being loaded and other useful information.

The : p r i n t argument (default nil), if true, causes the value of each expression loaded to be

printed to ·s tandard-output * (page 259). Ifa binary file is being loaded, then wh~t is printed

may not reflect precisely the contents of the source file, but nevertheless some infonnation will be

printed, including the name of each function loaded.

If a file is successfully loaded, 1 oa d always returns a non-n i 1 value. If: i f - doe s - not - e xis t

is specified and is nil, load just returns nil rather than signalling an error if the file does not

exist

load maintains a default filename in the variable *1 oad-pathname-defaul ts* (page 328),

used to default missing components of the filename argument; thus (loa d) will load the same file

previously loaded. (The function comp i 1 e - f i 1 e (page 338) also uses and sets these pathname

defaults.} The: set-pathname-defaul ts argument (which defaults to the value of

load-set-pathname-defaults), if true, causes load to update

1 oad-pathname-defaul ts from its first argument

----_. - ------------ ---------------- ------_ .. _---_._--- ---

328 COMMON USP REFERENCE MANUAL

load-verbose [Variable]

This variable provides the default for the : verbose argument to load (page 327). Its initial

value is implementation-dependent

load-set-default-pathname [Variable]

This variable provides the default for the : set-defaul t-pathname argument to load (page

327). Its initial value is implementation-dependent

See also *comp i 1 e-f i 1 e-set-defaul t-pathname* (page 338).

*load-pathname-defaults· [Variable]

This is the pathname-defaults pathname for the load (page 327) and comp; 1 e-f i 1 e (page

338) functions. Other functions may share these defaults if they deem that to be an appropriate

user interface.

23.5. Accessing Directories

di rectory pathname &key [Function]
A list of pathnames is returned, one for each file in the file system that matches the given pathname.
For each such file, the truename (page 316) for that file appears in the result list If no file

matches the palhname, it is not an error; d ire c tor y simply returns nil. the list of no results.

Keywords such as : wi 1 d and : n ewe s t may be used in : pat h n arne to indicate the search space.

It is anticipated that an implementation may need to provide additional parameters to control the

directory search. Therefore d; r e c tor y is specified to take additional keyword arguments, even

though COMMON LISP itself does not specify any particular keywords. so that implementations may

experiment with extensions.

Chapter 24

Errors

24.1. Handling Errors

When an error is signalled, either explicitly by calling one of the functions documented in this section, or
implicitly by the LISP system. it is handled in an implementation-dependent way. It is expected that each
implementation of COMMON LISP will provide an interactive debugger that prints the error message, along
with suitable contextual information such as which function detected the error. The user may interact with
the debugger to examine or modify the state of the program in various ways, including abandoning the
current computation ("aborting to top level") and continuing from the error. What "continuing" means
depends on how the error is signalled; the details of this are specified below for each error signalling function.

An implementation may also choose to provide means (such as the errset special form in MACLISP) for a
program to trap all errors and prevent the debugger from stepping in for certain errors.

Rationale: Error-handling of adequate flexibility and power for all systems written in COMMON LIsp appears to require a
complex error classification system. Experience with several error-handling systems in such dialects as MAcLIsp and Lisp
Machine LIsp indicates that further experimentation is needed in this area: it is too early to define a standard error-handling
mechanism. Therefore CoMMON LISP provides standard ways to signal errors, but no standard ways to handle errors. Of
course a complete LIsp system requires error-handling mechanisms, but many useful ponable programs do not require
them. It is expected that a future revision of COMMON LIsp will address the problem of ponable error-handling
mechanisms.

Compatibility Dote:' What is here called "continuing", Lisp Machine LIsp calls "proceeding" from an error.

24.2. General Error Signalling Functions

The functions in this section provide various mechanisms for signalling warnings, breaks, continuable

errors, and fatal errors.

In each case the caller specifies an error message (a string) that may be processed (and perhaps displayed to

the user) by the error-handling mechanism. All messages are constructed by applying the function format

(page 298) to the quantities nil ,format-string, and all the args to produce a string.

An error message string should not contain a <return> character or other newli.ne indicator at either the
I

beginning or end, and should not contain any sort of herald indicating that it is an error. The system will take

care of these according to whatever its preferred style may be.

- 329-

------_ .. __ ... -. __ ._--- ---------.-----

330 COMMON USP REFERENCE MANUAL

Conventionally, error messages are complete English sentences, ending with a period. Newlines in the
middle of long messages are acceptable. There should be no indentation after a newline in the middle of an
frror message. The error message need not mention the name of the function that signals the error; it is
assumed that the debugger will make this information available.

Implementation note: If the debugger in a panicular implementation displays error messages indented from the prevailing
left margin (for example, indented by seven spaces because they are prefixed by the herald "Error: "), then the debugger
should take care of inserting the appropriate indentation into a multi-line error message. Similarly, a debugger that prefixes
error messages with semicolons so that they appear to be comments should take care of inserting a semicolon at the
beginning of each line in a multi-line error message. These rules are suggested because, even within a single
implementation, there may be more than one program that presents error messages to the user, and they may use different
styles of presentation. The caBer of error cannot anticipate all such possible styles, and so it is incumbent upon the
presenter of the message to make any necessary adjustments.

COMMON LISP does not specify the manner in which error messages and other messages are displayed. For
:the purposes of exposition, a fairly simple style of textual presentation will be used in the examples in this
chapter. The character ">" is used to represent the command prompt symbol for a debugger.

error format-string &rest args [Function]
This function signals a fatal error. It is impossible to continue from this kind of error; thus err 0 r
will never return to its caller.

The debugger printout in the following example is typical of what an implementation might print
when error is called. Suppose that the symbol emergency-shutdown has no property named
command.

(defun command-dispatch (cmd)
(let «fn (get cmd 'command»)

(if (not (null fn»
(funcall fn»
(error "The command -S is unrecognized." cmd»»

(command-dispatch 'emergency-shutdown)
Error: The command EMERGENCY-SHUTDOWN is unrecognized.
Error signalled by function COMMAND-DISPATCH.
>
Compatibility note: Lisp Machine LIsp calls this function fer r 0 r. MACUSP has a function named err 0 r that
takes different arguments and can signal either a fatal or a continuable error.

cerror continue-format-string error-format-string &rest args [Function]
cerror is used to signal co~tinuable errors. 'Like error, it signals an error and en~ers the
debugger. However, c err 0 r allows the program to be continued from the debugger after
resolving the error.

If the program is continued after encountering the error, cerror returns nil. The code that
follows the call to cerror will then be executed. This code should correct the problem, perhaps
by accepting a new value from the user if a variable was invalid.

If the code that corrects the problem interacts with the program's user, it should make sure the error
has really been corrected before continuing. One way to do this is to put the call to cerror and

ERRORS

-_ .. __ _---_ _--_._ _--------

331

the correction code in a loop, checking each time to see if the error has heen corrected before
tenninating the loop.

The continue-fonnat-string argument, like the e"o~fonnat-slring argument, is given as a control
string to format (page 298) along with the args to construct a message string. The error message
string is used in the same way that error uses it The continue message string should describe the
effect of continuing. The intent is that this message can be displayed as an aid to the user in
deciding whether and how to continue. For example, it might be used by an interactive debugger
as part of the documentation of its "continue" command.

The content of the continue message should adhere to the rules of style for errors messages. It
should not include any statement of how the "continue" command is given, since this may be
different for each debugger. (It is up to the debugger to supply this information according to its
own particular style of presentation and user interaction.)

Here is an example where the caller of c err 0 r , if continued, fixes the problem without any further
user interaction:

(let «nvals (list-length vals»)
(unless (= nvals 3)

(cond «< nvals 3)
(cerrnr "Assume missing values are zero."

"Too few values in -5;-%
three are required, -
but -R -:[were-;was-] supplied."

nvals (= nvals 1»
(setq vals (append vals (subseq '(0 0 0) nvals 3»»

(t (cerror "Ignore all values after the first three."
"Too many values in -S;-%
three are required, -
but -R were supplied."
nvals)

(setq vals (subseq vals 0 3»»»
If val s were the list (- 47), the interaction might look like this:

Error: Too few values in (-47);
three are required, but one was supplied.

Error signalled by function EXAMPLE.
If continued: Assume missing values are zero.
>

In this example, a loop is used to ensure that a test is satisfied. (This example could be written more
succinctly using assert (page 333) or check-type, which indeed supply such loops.)

(do ()
«known-wordp word) word)

(cerror "You will be prompted for a replacement word."
"-5 is an unknown word (possibly misspelled)."
word)

(format t "-&New word: ")
(setq word (read»)

In complex cases where the e"o~fonnat-string uses some of the args and the continue-fonnat-string
uses others, it may be necessary to use the format directives -. and -

332

•

COMMON USP REFERENCE MANUAL

to skip over unwanted arguments in one or both of the format control strings.
Compatibility note: The Usp Machine LIsp function f s ; 9 n a' is similar to this, but returns : no - act; 0 n
rather than ni " and fails to distinguish between the error message and the continue message.

warn /onnal-slring &res t args [Function]
warn prints an error message, but nonnally doesn't go into the debugger. (However, this may be
controlled by the variable ·break -on-warn i ngs* (page 332). warn returns ni 1.

This function would be just the same as forma t (page 298) with the output directed to the stream
in *error-output* (page 260), except that warn may perfonn various implementation
dependent formatting and other actions. For example, an implementation of warn should take
care of advancing to a fresh line before and after the error message and perhaps supplying the name
of the function that called warn.

Compatibility note: The lisp Machine LIsp function cemp ; 1 er: warn is an approximate equivalent to this.

break-on-warnings [Variable]

If *b reak -on -warn i ngs· is not nil, then the function warn behaves like break. It prints its
message and the goes to the debugger or break loop. Continuing causes warn to return nil. This
flag is intended primarily for use when the user is debugging programs that issue warnings; in
"production" use the value of *break -on-warn ings* should be n i 1.

break &opt i on a 1 /onnal-slring &res t args [Function]
break prints the message and goes directly into the debugger, without allowing any possibility of
interception by programmed error-handling facilities. (Right now there aren't any error-handling
facilities defined in COMMON LISP, but there might be in particular implementations, and there will
be some defined by COMMON LISP in the future.) When continued, b rea k returns nil. It is
permissible to call break with no arguments; a suitable default message will be provided.

b rea k is presumed to be used as a way of inserting temporary debugging "breakpoints" in a
program, not as a way of signalling errors; it is expected that continuing from a b rea k will not
trigger any unusual recovery action. For this reason break does not take the additional format
control-string argument that c err 0 r takes. This and the lack of any possibility of interception by
programmed error-handling are the only program-visible differences between break and cerror
(page 330). The interactive debugger may choose to display them differently; for instance, a
c err 0 r message might be prefixed with the herald "E r r 0 r : "and a b rea k message with
"Break: ft. This depends on the user-interface style of the particular implementation. A
particular implementation may choose, according to its own style and needs, when break is called
to go into a debugger different from the one used for handling errors. For example, it might go into
an ordinary "read-eval-print" loop identical to the top-level one except for the provision of a
"continue" command that causes break to return ni 1.

ERRORS

Compatibility note: In MACUSP. break is a special form (FEXPR) that takes two optional arguments. The first
is a symbol (it would be a string if MAcLIsp had strings), which is not evaluated. The second is evaluated to
produce a truth value specifying whether break should break (true) or return immediately (false). In
CoMMON LIsp one makes a call to break conditional by putting it inside a conditional form such as when
(page 89) or un 1 e s s (page 90).

333

24.3. Specialized Error-Signalling Forms and Macros

c h e c k - ty p e place typespec &0 p t i o'n a 1 string [Macro]

check-type signals an error if the contents of place are not of the desired type. If the user
continues from this error, he will be asked for a new value, and c h e c k - typ e will store it in place
and start over, checking the type of the new value and signalling another error if it is still not of the
desired type. Sub forms of place may be evaluated multiple times, because of the implicit loop
generated. check - type returns nil.

The place must be a generalized variable reference acceptable to set f (page 72). The typespec
must be a type specifier; it is not evaluated. The string should be an English description of the type,
starting with an indefinite article ("a" or "an"); it is not evaluated. If string is not suppliecL it is
computed automatically from, typespec. (The optional string argument is allowed because some .
applications of check-type may require a more specific description of what is wanted than can
be generated automatically from the type specifier.)

The error message will mention p 1 ace, its ~ontents, and the desired type.
Implementation note: An implementation may choose to generate a somewhat differently worded error
message if it recognizes that place is of a particular form, such as begin one of the arguments to the function
that called check-type.

Examples:
(setq aardvarks '(sam harry fred»
(check-type aardvarks (vector integer»
Error: The value of AARDVARKS, (SAM HARRY FRED),

is not a vector of integers.

(setq naards 'fo~)
(check-type naards (integer 0 *) "a positive integer")
Error: The value of NARRDS, FOO, is not a positive integer.
Compatibility note: In lisp Machine LIsp the equivalent facility is called check. -arg-type.

assert test-form {place}* [string {arg}*] [Macro]

ass e r t signals an error if the value of test-form is nil. Continuing from this error ,will allow the
user to alter the values of some variables, and assert will then start over, evaluating test-form
again. assert returns ni 1.

test-form is any form. Each place (there may be any number of them, or none) must be a
generalized-variable reference acceptable to se t f (page 72). These should be variables on which

334 COMMON USP REFERENCE MANUAL

test-fonn depends, whose values may sensibly be changed by the user in attempting to correct the

error. Subforms of each place are only evaluated if an error is signalled, and may be re-evaluated if

the error is re-signalled (after continuing without actually fixing the problem). The string is an
error message string and is not evaluated. (In this lack of evaluation assert differs from such

functions as error (page 330) and cerror (page 330). In the syntax of assert, the error

message string serves to separate the places from the args.) The args are forms evaluated only if an
error is signalled, and re-evaluated if the error is signalled again.

The function. format (page 298) is applied in the usual way to string and args to produce the

actual error message. If string is omitted (and therefore also the args), a default error message is
used.

Implementation note: The debugger need not include the test-form and places should not be included in the
error message, but oUght to make them available for the user's perusal. If the user gives the "continue"
command, he should be presented with the opportunity to alter the values of any or all of the references. The
details of this depend on the implementation's sty Ie of user interface. of course.

Examples:
(assert (valve-closed-p v1»

(assert (valve-closed-p v1)"Live steam is escaping!")

(assert (valve-closed-p vi) (valve-manual-control v1)
"Live steam is escapingl")

;; Note here that the user is invited to change BASE,
;; but not the bounds MINBASE and MAXBASE.
(assert «= minbase base maxbase) base

"Ba~e -0 is not in the range [-0, -0]"
base minbase maxbase)

" Note here that it is probably not desirable to include the
" entire contents of the two matrices in the error message.
" It is reasonable to assume that the debugger will give
" the user access to the values of the places A and B.
(assert (= (array-dimension a 1)

(array-dimension b 0»)
a b
"Cannot multiply a -O-by--O matrix -

and a -O-by--O matrix."
(array-dimension a 0)
(array-dimension a 1)
(array-dimension b 0)
(array-dimension b 1»

24.4. Special Forms for Exhaustive Case Analysis

The syntax for etypecase and ctypecase is the same as for typecase (page 91), except that no

otherwi se clause is permitted. Similarly, the syntax for ecase and ccase is the same as for case (page

90) except for the otherwi sa clause.

ERRORS 335

etypecase and ecase are similar to typecase and case, respectively, but signal a non-continuable.
error rather than returning n ; 1 if no clause is selected.

c t y p e cas e and c cas e are similarly similar, but signal a continuable error if no clause is selected.

etypecase keyform {(type {form}·)}· [Macro]

This control construct is similar to typecase (page 91), but no explicit otherwi se or t clause is
pennitfed. Ifno clause is satisfied, etypecase signals an error with a message constructed from
the clauses. It is not pennissible to continue from this error. To supply his own error message, the
user should use typecase with an otherwi se clause containing a call to error. The name of
this function stands for "exhaustive type case" or "error-checking type case".

For example:
(setq x 1/3)
(etypecase x

(integer x)
(symbol (symbol-value x»)

Error: The value of X, 1/3, is neither
. ·an integer nor a symbol.

>

ctypecase keyp/ace {(type {form}·)}· [Macro]

This control construct is similar to typecase (page 91), but no explicit otherwi se or t clause is
pennitted. The keyp/ace must be a generalized variable reference acceptable to set f. If no clause
is satisfied, ctypecase signals an error with a message constructed from the clauses. Continuing
from this error causes ctypecase to accept a new value from the user, store it into keyp/ace, and
start over, making the type tests again. Subforms of keyp/ace may be evaluated multiple times. The
name of thi~ function stands for "continuable exhaustive type case".

ecase keyfonn {({({key}*) r key} {form}·)}* [Macro]

This control construct is similar to cas e (page 90), but no explicit 0 the rw i s e or t clause is
pennitted. If no clause is satisfied, e cas e signals an error with a message .constructed from the
clauses. It is not pennissible to continue from this error. To supply an error message, the user
should use case with an otherwi se clause containing a call to error. The name of this
function stands for "exhaustive case" or "error-checking case".

For example:

--_ _._._._ .. _-------•.. __ ._.-.... __ _ _------

336

(setq X 1/3)
(ecase X

(alp h a (f 00))

(omega (bar»
«zeta phi) (baz»)

Error: The value of X, 1/3, is not
ALPHA, OMEGA, ZETA, or PHI.

COMMON USP REFERENCE MANUAL

cease keyplace {({({key}*) I key} (fonn}*)}* [Macro]

This control construct is similar to case (page 90), but no explicit otherwi se or t clause is
pennitted. The keyplace must be a generalized variable reference acceptable to set f. If no clause
is satisfiecL cease signals an error with a message constructed from the clauses. Continuing from
this error causes cease to accept a new value from the user, store it into keyplace. and start over,
making the clause tests again. Subfonns of key place may be evaluated multiple times. The name of
this function stands for "continuable exhaustive case".

Rationale: The special fOImS etypecase. ctypecase. ecase. and cease are included in COMMON LIsp, even though a
user could write them himself using the other standard facilities provided. because it is likely that many users will want
these. COMMON LIsp therefore provides a standard consistent set rather than allowing a variety of incompatible dialects to
develop.

In addition. experience has shown that some LIsp programmers are too lazy to put in an appropriate otherwi se clause
into every case (page 90) statement to check for cases they didn't anticipate. even if they would agree that it will probably
hun them later. If an otherwi se clause can be included very easily, by adding one character to the name of the construct.
it is perhaps more !ike!~1 L~at programmers will take the trouble to do it

The .. e" versions do nothing more than supply automatically-generated 0 the rw ; s e clauses, but the .. e" versions require
some thought to be implemented correctly; it is especially important that these be provided by the system so users don't
have to puzzle them out on their own. Individual implementations may be able to do a better job of supponing these special
fOImS, using their own idiosyncratic facilities, than can be done using the error-signalling facilities defined by COMMON USP.

------------_.

Chapter 25

Miscellaneous Features

25.1. The Compiler

The compiler is a program that may make code run faster, by translating programs into an implementation
dependent fonn that can be executed more efficiently by the computer. Most of the time you can write
programs without worrying about the compiler; compiling' a file of code should produce an equivalent but
more efficient program. When doing more esoteric things, one may need to think carefully about what
happens at "compile time" and what happens at "load time". Then the difference between the syntaxes u# • "

and u#, "becomes imponant, and the eva 1 -when (page 54) construct becomes particularly useful.

Most declarations are not used by the COMMON LISP interpreter; they may be used to give advice to the
compiler. The compiler may attempt to check your advice and warn you if it is inconsistent

Unlike most other LISP dialects, COMMON LISP recognizes s pee i a 1 declarations in interpreted code as
well as compiled code. This potential source of incompatibility between interpreted and compiled code is
thereby eliminated in COMMON LISP.

The internal workings of a compiler will of course be highly implementation-dependent The following
functions provide a standard interface to the compiler, however.

c omp i 1 e name &0 p t ion a 1 definition [Function]
If definition is supplied, it should be a lambda-expression, the interpreted function to be compiled.
If it is not supplied, then name should be a symbol with a definition thal is a lambda-expression;
that definition is compiled and the resulting compiled code is put back into the symbol as its
function definition.

The definition is compiled and a compiled-function object produced. If name is a non-n i 1 symbol,
then the compiled-function object is installed as the global function definition of the symbol and
the symbol is returned. If name is nil, then the compi1~d-function object itself is returned.

For example:

- 337-

------_ ... __ •...•..... _•........ _ ... _ .. __ ..

338

(defun foo ...) => foo
(compile 'foo) => foo

; Now f 0 0 runs faster.

COMMON LISP REFERENCE MANUAL

; A function definition.
; Compile it

(compile nil '(lambda (a b c) (- (* b b) (* 4 a c»»
=> a compiled function of three arguments that computes b2-4ac

comp i 1 e-f il e &opt i ooal input-path name &key : output-f i 1 e [Function]
:set-default-pathoame

The input-pathname must be a valid file specifier, such as a pathname. The defaults for
input-filename are taken from the variable *1 oad-pathname-defaul ts* (page 328). The file
should be a LISP source file; its contents are compiled and written as a binary object (" F AS L tt) file.

The : 0 u t put - f i 1 e argument may be used to specify an output pathname; it defaults in a
manner appropriate to the implementation's file system conventions.

If the :set-default-pathname argument is true, then compile-file will set
load-pathoame-defaults (page 328) in such a way that (load) wi11load the newly
compiled file and (comp i 1 e-f i 1 e) will recompile the source for that file.

compile-flle-set-default-pathname [Variable]

This variable provides the default for the : set-defaul t-pathoame argument to

c omp i 1 e - f i 1 e (page 338). Its initial value is implementation-dependent

dis as s emb 1 e name-or-compiled-junction [Function]
The argument should be either a function object, a lambda-expression, or a symbol with a function
definition. If the relevant function is not a compiled function, it is first compiled. In any case, the
compiled code is then "reverse-assembled" and printed out in a symbolic fonnat. This is primarily
useful for debugging the compiler, but also often of use to the novice who wishes to understand the
workings of compiled code.

Implementation note: Implementors are encouraged to make the output readable, preferably with helpful
comments.

25.2. Documentation

A simple facility is provided for attaching strings to symbols for the purpose of on-line documentation.
Rather than using the property list of the symbol, a separate ful1ction doc ume n tat i 00 is provided so that
implementations can optimize the storage of documentation strings.

documeotati on symbol doc-type [Function]
This function returns the documentation string of type doc- type for· the symbol, or 0; 1 if none
exists. Both arguments must be symbols. Some kinds of documentation are provided automatically
by certain COMMON LISP constructs if the user writes an optional documentation string within
them:

MISCELLANEOUS FEATURES

Construct
defvar (page 53)
defparameter (page 53)
defconstant (page 53)
defun (page 53)
defmacro (page 112)
defstruct (page245)
deftype (page 39)
defsetf (page78)

Documentation Type
variable
variable
variable
function
function
structure
type
setf

339

In addition, names of special fonns may also have fun c t ion documentation. (Macros and special
forms are not really functions. of course, but it is convenient to group them with functions for
documentation purposes.)

setf (page 72) may be used with documentat i on to update documentation infonnation.

25.3. Debugging Tools

The utilities described in this section are sufficiently complex and sufficiently dependent on the host
environment that their complete definition necessarily belongs to either the yellow pages or the red pages.
However, they are also sufficiently useful as to warrant mention here, to ensure that every implementation
provides some version of them,. however clever or however simple.

trace {jUnction-name}* [Macro]

untrace {jUnction-name}* [Macro]

Invoking trace with one or more function names (symbols) causes the functions named to be
"traced". Henceforth. whenever such a function is invoked, infonnation about the call, the
arguments passed, and the eventually returned values, if any, will be printed to the stream that is
the value of*trace-output* (page 260).

For example:
(trace fft gcd chase-pacman)

If a function call is open-coded (possibly as a result of an ; n' i ne declaration), then such a call may
not produce trace output

Invoking untrace with one or more function names will. cause those functions not to be traced
any more.

Tracing an already-traced function, or untracing a function not currently being traced, should
produce no hannful effects, but may produce a warning message.

Calling t r ace with no argument forms will return a list of functions currently being traced.

Calling un t rae e with no argument foons will cause all currently traced functions to be no longer
traced.

---_ ... _. __ ... _-........ _._" .. " .. __ .• _".-

340 COMMON USP REFERENCE MANUAL

trace and untrace may also accept additional implementation-dependent argument formats.
The format of the trace output is implementation-dependent

step form [Macro]

This evaluates form, and returns what form returns. However, the user is allowed to interactively
"single-step" through the evaluation of form, at least through those evaluation steps that are
performed interpretively. The nature of the interaction is implementation-dependent However,
implementations are encouraged to respond to the typing of the character "1" by providing help
including a list of commands. .

time form [Macro]

This evaluates form, and returns what form returns. However, as a side effect, various timing data
and other information is printed to the stream that is the value of * t r ace - 0 u t put * (page 260).
The nature and fonnat of the printed infonnation is implementation-dependent However,
implementations are encouraged to provide such information as elapsed real time, machine run
time, storage management statistics, and so on.

Compatibility note: This facility is inspired by the INTERLIsp facility of the same name. Note that the
MAcLIsP/Lisp Machine LIsp function time does something else entirely, namely return a quantity indicating

relative elapsed real time.

descri be object [Function]
describe prints, to the stream in the variable· *standard-output* (page 259), information
about the object. Sometimes it will describe something that it finds inside something else; such
recursive descriptions are indented appropriately . For instance, des c rib e of a symbol will exhibit
the symbol's value, its definition, and each of its properties. des c rib e of a floating-point number
will exhibit its internal representation in a way that is useful for tracking down roundoff errors and
the like. The nature and format of the output is implementation-dependent

des c rib e always returns its argument

; nspect object [Function]
ins pee t is an interactive version of des c rib e. The nature of the interaction is implementation
dependent, but the purpose of ; n s pee t is to make it easy to wander through a data structure,
examining and modifying parts of it Implementations are encouraged to respond to the typing of
the character "1" by providing help, including a list of commands.

room &opt ; onal x [Function]
room prints, to the stream in the variable • s tan dar d - 0 u t put • (page 259), infonnation about
the state of internal storage and its management. This might include descriptions of the amount of
memory in use and the degree of memory compaction, possibly broken down by internal data type
if that is appropriate. The nature and format of the printed information is implementation-

MISCELLANEOUS FEATURES 341

dependent The intent is to provide infonnation that may help a user to tune his program to a .
particular implementation.

(room nil) prints out a minimal amount of infonnation. (room t) prints out a maximal
amount of infonnation. Simply (r oom) prints out an intennediate amount of infonnation that is
likely to be usefu1.

ed &optiona1 x [Function]
If the implementation provides a resident editor, this function should invoke it

(e d) or (e d nil) simply enters the editor, leaving you in the same state as the last time you were
in the editor.

(e d pathname) edits the contents of the file specified by pathname. The pathname may be an
actual pathname or a string.

(e d symbol) tries to let you edit the text for the function named symbol. The means by which the
function text is obtained is implementation-dependent; it might involve searching the file system,
or pretty-printing resident interpreted code, for example.

d rib b 1 e &0 p t ion a 1 pathname [Function]
(dri bb 1 e pathname) rebinds ·s tandard - input * (page 259) and *s tandard-output *
(page 259), andlor takes other appropriate action, so as to send a record of the input/output
interaction to a file named by pathname. The primary purpose of this is to create a readable record
of an interactive session.

(d rib b 1 e) tenninates the recording of input and output and closes the dribble file.

apropos string &optiona1 package
ap ropos -1 is t string &opt i on a 1 package

[Function]
[Function]

(apropos· string) tries to find all available symbols whose print names contain string as a
substring. (A symbol may be supplied for the string, in which case the print name of the symbol is
used.) Whenever apropos finds a symbol, it prints out the symbol's name; in addition,
infonnation about the function definition and dynamic value of the symbol, if any, is printed. If
package is specified and not nil, then only symbols available in that package are examined;
otherwise "all" packages are searched, as ifby do-a11-symbo1 s (page 144). Because a symbol
may be available by way of more than one inheritance path, apropos may print infonnation about
the same symbol more than once. The information is printed to the stream that is the value of
standard-output (page 259). apropos returns no values (that is, it returns what the
expression (val ue s) returns: zero values).

apropos -1; s t performs the same search that apropos does, but prints nothing. It returns a list
of the symbols whose print names contain string as a substring.

342 COMMON LISP REFERENCE MANUAL

25.4. Environment Inquiries

25.4.1. Time Functions
.. Time is represented in three different ways in COMMON LISP: Decoded Time, Universal Time, and
Internal Time. The first two representations are used primarily to represent "real" (calendar) time, and are
precise only to the second. Internal Time is used primarily to represent measurements of "computer" time
(such as run time), ~d is precise to some implementation-dependent fraction of a second, as specified by
i nterna 1 -t ime-un i ts-per-second (page 343). Decoded Time format is used only for absolute time
indications. Universal Time and Internal Time formats are used for both absolute and relative times.

Decoded Time format represents time of day as a number of components:

• Second: an integer between 0 and 59, inclusive.

• Minute: an integer between 0 and 59, inclusive.

• Hour: an integer between 0 and 23, inclusive.

• Date: an integer between 1 and 31, inclusive (the upper limit actually depends.on the month and
year, of course).

• Month: an integer between 1 and 12, inclusive; 1 means January, 12 means December.

• Year: an integer indicating the year A.D. However, if this integer is between 0 and 99, the
"obvious" year is used; more precisely, that year is assumed that is equal to the integer modulo
100 and within fifty years of the current year (inclusive backwards and exclusive forwards). Thus,
in the year 1978, year 28 is 1928 but year 27 is 2027. (Functions that return time in this format
always return a full year number.)

Compatibility note: This is incompatible with the Lisp Machine LIsp definition in two -ways. First, in Lisp
Machine LISP a year between 0 and 99 always has 1900 added to it Second. in Lisp Machine LIsp time
functions return the abbreviated year number between 0 and 99, rather than the full year number. The
incompatibility is prompted by the imminent arrival of the tweny-first century. Note that (rno d year 100)
always reliably converts a year number to the abbreviated form. while the inverse conversion can be very
difficult

• Day-ofweek: an integer betwen 0 and 6,inc1usive; 0 means Monday, 1 means Tuesday, and so on,
and 6 means Sunday.

• Daylight-savings-time-p: a flag that, ifnot n i 1, indicates that daylight savings time is in effect

• Time-zone: an integer specified as the number of hours west of GMT (Greenwich Mean Time).
For example, in M~sachusetts the time-zone is 5, and in California it is 8. Any adjustment for
daylight savings time is separate from this.

Universal Time represents time as a single integer. For relative time purposes, this is a number of seconds.
For absolute time, this is the number of seconds since midnight, January 1, 1900 GMT. Thus the time 1 is
00:00:01 (that is, 12:00:01 AM) on January 1, 1900 GMT. Similarly, the time 239829UOI corresponds to time
00:00:01 on January 1, 1976 GMT. Recall that the year 1900 was not a leap year; for the . purposes of

MISCELLANEOUS FEATURES 343

COMMON LISP, a year is a leap year if and only if its number is divisible by 4, except that years divisible by
100 are not leap years, except that years divisible by 400 are leap years. Therefore the year 2000 will be a leap
year. (Note that the -,'leap seconds" that are sporadically insened by the world's official timekeepers as an
additional correction are ignored by COMMON LISP.) Universal Time fonnat is used as a standard time
representation within the ARPANET; see [8].

Internal Time also represents time as a single integer, in terms of an implementation-dependent unit
Relative time is measured as a number of these units. Absolute time is relative to an arbitrary time base,
typically the time at which the system began running.

get-decoded-time [Function]
The CJ,lrrent time is returned in Decoded Time format Nine values are returned: second, minute,
hour, date, month, year, day-ofweek, daylight-savings-time-p, and time-zone.

Compatibility note: In lisp Machine LIsp the time-zone is not currently returned.. Consider. however. the use
of CoMMON LIsp in some mobile vehicle. It is entirely plausible that the time-zone might change from time to

time.

get-universal-time [Function]
The current time of day is returned as a single integer in Universal Time fonnat

decode-un i vers a l-t i me universal-time &opt i on al time-zone [Function]
The time specified by universal-lime in Universal Time format is converted to Decoded Time
fonnat. Nine values are returned: second, minute, hour, date, month, year, day-of week,
daylight-savings-time-p, and time-zone.

Compatibility note: In Lisp Machine LIsp the time-zone is not currently returned.. Consider. however. the use
of CoMMON LIsp in some mobile vehicle. It is entirely plau~ible that the time-zone might change from time to
time.

The time-zone argument defaults to the current time-zone.

encode-universal-time second minute hour date month year &optional time-zone [Function]
The time specified by the given components of Decoded Time fonnat is encoded into Universal
Time format and returned. If you don't specify time-zone, it defaults to the current time-zone
adjusted for daylight savings time. If you provide time-zone explicitly, no adjustment for daylight
savings time is performed.

internal-time-units-per-second [Constant]

This value is an iIJteger, the implementation-dependent number of internal time units in a second.
(The internal time unit must be chosen so that one second is an integral multiple of it)

Rationale: The reason for allowing the internal time units to be implementation-dependent is so that
get-internal-run-time (page 344) and get-internal-run-time (page 344) can execute with
minimum overhead. The idea is that it should be very likely that a mnum will suffice as the returned value
from these functions. This probability can be tuned to the implementation by trading off the speed of the
machine against the word size. Any particular unit will be inappropriate for some implementations: a
microsecond is too long for a' very fast machine such as an S-l. while a much smaller unit would force many

---------------._----_._---

344 COMMON USP REFERENCE MANUAL

implementations to return bignums for most calls to get-internal-time, rendering that function less
useful for accurate timing measurements.

{Jet-internal-run-time [Function]
The current run time is returned as a single integer in Internal Time format. The precise meaning

of this quantity is implementation-dependent; it may measure real time, run time, CPU cycles, or

some other quantity. The intent is that the difference between the values of two calls to this

function be the amount of time between the two calls during which the computational effort was

expended on behalf of the executing program.

get-internal-rea1-time [Function]
The current time is returned as a single integer in Internal Time format This time is relative to an

arbitrary time base, but the difference between the values of two calls to this function will be the

amount of elapsed real time between the two calls, measured in the units defined by

i nterna l-t ime-un i ts-per-second (page 343).

sl eep seconds [Function]
(s lee p n) causes execution to cease and become dormant for approximately n seconds of real
time, whereupon execution is resumed. The argument may be any non-negative non-complex

number. s 1 e e p returns n ; 1 .

25.4.2. Other Environment Inquiries

For any of the following functions, if no appropriate and relevant result can be produced, nil is returned

instead of a string.
Rationale: These inquiry facilities are functions rather than variables against the possibility that a CoMMON LIsp process
might migrate from machine to machine. This need not happen in a distributed environment: consider, for example,
dumping a core image file containing a compiler and then shipping it to another site.

1; sp- imp1 ementat i o·n-type [Function]
A string is returned that identifies the generic name of the particular COMMON LIsp
implementation. Examples: "S pic eLI S P ", "Z eta 1 i s P " .

1 i sp- imp 1 ementat ; on-version [Function]
A string is returned that identifies· the version of the particular COMMON LISP implementation; this

information should be of use to maintainers of the implementation. Examples: "1192", "53. 7

with complex numbers","1746.9A, NEWIO 53, ETHER 5.3".

mach i ne-type [Function]
A string is returned that identifies the generic name of the computer hardware on which COMMON,

LISP is running. Examples: "DEC PDP-l0", "DEC VAX-It/780".

MISCELLANEOUS FEA TURFS 345

mach i ne-ver s ion [Function)
A string is returned that identifies the version of the computer hardware on which COMMON LISP is

running. Example: "KL10, microcode 9".

machine-instance [Function)
A string is returned that identifies the particular instance of the computer hardware on which

COMMON LISP is running; this might be a local nickname, for example, and/or a serial 'number.
Examples: "MIT-MC", "eMU GP-VAX".

, software-type [Function)
A string is returned that identifies the generic name of any relevant supporting software. Examples:
"Spice", "TOPS-20", "ITS".

software-vers i on [Function]
A string is returned that identifies the version of any relevant supporting software; this infonnation

should be of use to maintainers of the implementation.

short-site-name

long-site-name

A string is returned that identifies the physical location of the computer hardware.
short names: "MIT AI Lab", "CMU-CSO". Examples of long names:

"MIT Artificial Intelligence Laboratory"
"Massachuset ts Inst i tute' of Technology
Artificial Intelligence Laboratory"
"Carnegie-Mellon University Computer Science Department"

See also user-homedi r-pathname (page 319) and in i t-f i 1 e -pathname (page 319).

features

[Function]
[Function)

Examples of

[Variable)

The value of the variable *features* should be a list of symbols that name "features" provided

by the implementation. Most such names will be implementation-specific; typically a name for the

implementation will be included. One standard feature name is i e e e - flo a tin g - poi nt, which

should be present if and only if full IEEE proposed floating-point arithmetic [9] is supported.

The value of this variable is used by the #+ and #- reader syntax; see page 279.

25.5. Identity Function

'-------_ .. _--_ .. _---------------- --------------

346 COMMON USP REFERENCE MANUAL

; den t ; ty object [Function]
, The object is returned as the value of; dent i ty. This function is useful primarily as an argument

to other functions.

,

References
[1] ANSI X3J3 Committee.

Draft Proposed American National Standard FORTRAN.
ACM SIGPLAN Notices 11(3), March, 1976.

[2] American National Standard Programming Language FORTRAN
ANSI X3.9-1978 edition, American National Standards Institute, Inc., New York, New York, 1978.

[3] Brooks, Rodney A.; Gabriel. Richard P.; and Steele, Guy L. Jr.
An Optimizing Compiler for Lexically Scoped LISP.
In Proceedings of the 1982 Symposium on Compiler Construction, pages 261-275. ACM SIGPLAN,

Boston, June, 1982.
Proceedings published as ACM SIGPLAN Notices 17,6 (June 1982).

[4] Cody, William 1., Jr., and Waite, William.
Software AI anual for the Elementary Functions.
Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

[5] Coonen, Jerome T.
An Implementation Guide to a Proposed Standard for Floating-Point Arithmetic.
Computer 13(1):68-79, January, 1980.
Errata for this paper appeared as [6].

[6] Coonen, Jerome T.
Errata for 'An Implementation Guide to a Proposed Standard for Floating-Point Arithmetic'.
Computer 14(3):62, March, 1981.
These are eff"L4 for [5].

[7] Fateman, Richard J.
Reply to an Editorial.
ACM SIGSAJvI Bulletin 25:9-11, March, 1973.

[8] Harrenstien, Kenneth L
Time Server.
Request for Comments (RFC) 738 (NIC 42218), ARPANET Network Working Group, October, 1977.
Available from the ARPANET Network Information Center.

[9] IEEE Computer Society Standard Committee, Microprocessor Standards Subcommittee, Floating
Point Working Group.
A Proposed Standard for Binary Floating-Point Arithmetic.
Computer 14(3):51-62, March, 1981.

[10] Knuth, Donald E.
The Art of Computer Programming. Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, Massachusetts, 1969.

[11] Marti, 1.; Hearn, A.C.; Griss, M.L.; and Griss, C.
Standard LISP Report.
SIGPLAN Notices 14(10):48-68, October, 1979.

- 347-

348 COMMON LISP REFERENCE MANUAL

(12) , Moon, David.
MacL1SP Reference Alanual, Revision O.
M.~.T. Project MAC, Cambridge, Massachusetts, April 1974 .

..
(13) Moore, 1. Strother II.

The InterLISP Virtual Machine Specification.
Technical Report CSL 76-5, Xerox Palo Alto Research Center, Palo Alto, California, September, 1976.

(14) Penfield, Paul, Jr.
Principal Values and Branch Cuts in Complex APL.
In APL 81 Conference Proceedings, pages 248-256. ACM SIGAPL, San Francisco, September, 1981.
Proceedings published as APL Quote Quad 12, 1 (September 1981).

[IS) Reiser, John F.
Analysis of Additive Random Number Generators.
Technical Report STAN-CS-77-601, Stanford University Computer Science Department, March, 1977.

[16] Steele, Guy Lewis Jr., and Sussman, Gerald Jay.
The Revised Report on SCHEME: A Dialect of LISP.
AI Memo 452, Massachusetts Institute of Technology Artificial Intelligence Laboratory, Cambridge,

Massachusetts, January, 1978.

(17) Suzuki, Norihisa.
Analysis of Pointer 'Rotation'.
Communications of the ACM25(5):330-335, May, 1982.

[18] Teitelrnan, Warren, et al.
interLISP Reference Manual
Xerox Palo Alto Research Center, Palo Alto, California, 1978.
Third revision.

[19] Weinreb, Daniel, and Moon, David.
LISP Alachine Manual, Fourth Edition.
Massachusetts Institute of Technology Artificial Intelligence Laboratory, Cambridge, Massachusetts,

July 1981.

Common Lisp Summary

sample-function a~} arg2 &optional a~3 mt4

·sample-variable-

sample-constant

sample-special-form [name] ({var}-) {fonn}+

sampl e-macro var {tag I statement}-

deftype name lambda-list {declaration I doc-string}- {fonn}

coerce object resull-type

type-of object

lambda-list-keywords

lambda-parameters-limit

defun name lambda-list {declaration I doc-string}- {{onn}

defvar name [initial-value [documentationll

defparameter name initial-value [documentation]

defconstant name initial-value [documentation]

eval-when ({situation}-) {{onn}-

nil

t

typep object type

subtypep type} rype2

nu 11 object

. symbo 1 p object

atom object

consp object

1 is tp object

numberp object

i ntegerp object

rat ion alp object

fl oatp object

camp 1 exp object

characterp object

stringp object

bi t-vector-p object

vectorp object

simp 1 e-vector-p object

simpl e-string-p object

simp 1 e-b i t-vector-p object

arrayp object

packagep object

funct ionp object

compiled-function-p object

commonp object

- 349-

[Function]

[Variable]

[Constant]

[Special fonn]

[Macro]

[Macro]

[Function]

[Function]

[Constant]

[Constant]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function)

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

350

eq x y

eql x y

equal x y

'qualp x y

not x

and {form}

or {fonn}

quote object

funct ion In
symb.o l-v a 1 ue symbol

symbol-function ~ool

boundp symbol

fboundp symbol

spec i a 1 -f orm-p ~ool

setq {var lonn}-

psetq {vaT lorm}-

set symbol value

makunbound ~bol

fmakunbound symbol

setf {place newvalue}-

psetf {place newvalue}

shiftf place {place}- newvalue

rotatef {place}-

def i ne-mod ify-macro name lambda-list junction [doc-string]

defsetf access-In {update-In [doc-string] I
lambda-list (store-variable) {declaration I doc-string}- {fonn}*}

define-setf-method access-jn lambda-list {declaration I doc-string}- Vonn}

get-setf-method lorm

get-setf-method-multiple-value form

apply junction arg &rest more-args

funcall In &rest arguments

call-arguments-limit

progn {{onn}*

prog 1 first {form}-

prog2 first second Uorm}-

let ({var I (var value)}*) {declaration}- {{onn}-

let- {{vaT I (vaT value)}*) {declaration}- Vonn}

compiler-let {{var I (var value)}-) {declaration}- {form}*

progv symbols values {fonn}-

f1 et {{(name lambda-list {declaration I doc-string}- (form}*)}-) {form}-

1 abe 1 s ({ (name lambda-list {declaration I doc-string}* (fonn}-)}·) {fonn}·

macro 1 et {{(name varlist {declaration I doc-string}· {fonn}-)}-) {fonn}·

cond {(test {form}·)}-

COMMON USP REFERENCE MANUAL

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Macro]

[Special form]

[Special /onn]

[Function]

[Function]

[Function]

[Function]

[Function]

[Special /onn]

[Macro]

[Function]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Special fonn]

[Macro]

[Macro]

[Special fonn]

[Specialfonn]

[Special/onn]

[Special fonn]

[Special fonn]

[Special fonn]

[Special fonn]

[Macro]

COMMON USP SUMMARY

if pred then [else]

when pred {form}·

unless pred {form}·

case keyform {({({key}·) I key} (form}·)}·

typecase keyform {(type (form}·)}·

block name {form}·

return-from name [remit]

return [result]

loop {form}·

_do ({(var [init [step]])}*) (end-test (form}·) {declaration}- {tag I statement}·

do * ({ (var [init [step]»}·) (end-test (fonn}·) {declaration}- {tag I statement}·

do 1 is t (var list/onn [result/onn]) {declaration}· {tag I statement}·

dot imes (var count/onn [result/onn]) {declaration}· {tag I statement}·

mapcar function list &rest more-lists

map 1 is t function list &res t more-lists

mapc function list &res t more-lists

ma p 1 function list & res t more-lists

mapcan function list &rest more-lists

mapcon function list &rest more-lists

tagbody {tag I statement}*

prog ({var I (var [init])}-) {declaration}· {tag I statement}·

prog* ({var I (var [init])}·) {declaration}- {tag I statement}·

go tag

values &rest args

multiple-values-limit

values"'list list

multiple-value-list fonn

mu 1 tip 1 e-va 1 ue-ca 11 function {form}·

multiple-value-progl fonn {form}·

mu 1 tip 1 e-va 1 ue-b i nd ({var}·) values-fonn {declaration}· {fonn}·

mul t ipl e-val ue-setq variables form

catch tag {form}-

unwind-protect protected-/orm {cleanu~/orm}·

throw tag result

macro-funct ion symbol

defmacro name lambda-list {declaration I doc-string}- {form}·

macroexpand form &rest mv

macroexpand-l form &rest env

·macroexpand-hook-

decl are {declaration-Iorm}-

locally {declaration}· {form}-

procl aim declaration-Iorm

the value-type form

--------------_._---_ .. - ... _----

351

[Speciallorm]

[Macro]

[Macro]

[Macro]

[Macro]

[Speciallorm]

[Special form]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Special form]

[Macro]

[Macro]

[Special form]

[Function]

[Constant]

[Function]

[Macro]

[Special form]

[Special form]

[Macro]

[Macro]

[Special/orm]

[Special form]

[Speciallorm]

[Function]

[Macro]

[Function]

[Function]

[Variable]

[Special form]

[Macro]

[Function]

[Speciallorm]

352

get symbol indicato; &optional default

remprop symbol indicator

symbol-pl i st symbol

g.e t f pll1ce indicator &0 p t ion a 1 default

r emf pll1ce indicator

get-propert ies place indicato,..list

symbol-name sym

samepnamep symJ ~

make-symbol prin~~e

copy-symbol ~m &optional coP.rprops

gensym &optional x

gentemp &optional prefix package

symbol-package sym

keywordp symbol

package

make-package package-name &key nicknames use

in-package package-name &key nicknames use

find-package name

package-name package

package-nicknames package

rename-package package new-name &optiona1 nevrnicknames

package-use-1ist package

package-used-by-1ist package

package-shadowing-symbols package

1ist-all-packages

intern SIring &optional 'package

find-symbol SIring &optiona1 package

unintern ~mbol &optional package

export ~mbols &opt i ona 1 package

unexport ~mbols &optiona1 package

import symbols &optional package

shadowing-import symbols &optional package

shadow ~mbols &optional package

use-package packages-to-use &optiona1 package'

unuse-package packages-to-unuse &optiona1 package

fin d - a 11 - s ymb 01 s string-o,.. symbol

do-symbol s (var [package] [result-/onn]) {declaration}- {tag I statement}

do-ex terna1-symbo 1 s (var [package] [result» {declaration}- {tag I Slml}

do-a 11-symbo 1 s (var [result-fonn)) {declaration}- {tag I statement}-

provide module-~e

require module-name &optiona1 pathname

zerop number

COMMON USP REFERENCE MANUAL

[Function]

[Function]

[Function]

[Function]

[Macro]

,[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Variable]

[Function]

[Function]

[Function]

COMMON USP SUMMARY

P 1 usp number

mi nusp number

odd p integer

evenp integer

II number &rest more-numbers

/- number &rest more-numbers

< number & res t more-numbers

> number &rest more-numbers

< - number & res t more-numbers

>- number &rest more-numbers

max number &rest more-numbers

mi n number &rest more-numbers

+ &rest numbers

- number &rest more-numbers

• &res t numbers

/ number &rest more-numbers

1+ number

1- number

inc f place [delta]

decf place [delta]

conjugate number

gcd &rest integers

1 em integer &rest more-integers

exp number

expt base-number powe~number

log number &optional base

sqrt number

is q rt integer

abs number

phase number

signum number

s in radians

cos radillns

tan radillns

cis radillns

asin number

acos number

atan y &optiona1 x

pi

sinh number

cosh number

tanh number

asinh number

353

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

• [Function]

[Function]

[Function]

[Function]

[Function]

[Function]

• (Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constan~

[Function]

[Function]

[Function]

[Function]

354

acosh number

atanh number

float number &optional other •
rat ional number

rational ize number

numerator rational

denominator rational

fl oor number &opt ional divisor

ceil ing number &optional divisor

truncate number &optional divisor

round number &optional divisor

mo d number divisor

r em number divisor

ffloor number &optional divisor

fceil ing number &optional divisor

ftruncate number &optional divisor

"fround number &optional divisor

decode-float float

sca 1 e-fl oat float integer

fl oat-rad i x float

float-sign floatl &optional floaa

float-digits float

float-precision float

integer-decode-float float

(complex realparr &optional imllgparr

trea 1 part number

imagpart number

logior &rest integers

logxor &rest integers

logand &rest integers

logeqv &rest integers

lognand integer 1 integer2

lognar integerl integer2

logandcl integerl integer2

logandc2 integerl integer2

logorcl integerl integer2

logorc2 integerl integer2

boole op integerl integer2

boole-clr

boole-set

boole-l

boole-2

boole-cl

COMMON USP REFERENCE MANUAL

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function1

[Function]

[Function]

[Function]

[Function]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

COMMON USP SUMMARY

boole-c2

boole-and

boole-ior

boole-xor

boole-eqv

boole-nand

boole-nor

boole-ande1

boole-ande2

boole-ore1

boole-orc2

lognot integer

logtest integerl integer2

log b it P index integer

as h integer count

logcount integer

integer-length integer

byte size position

byte-size bytespec

byte-pos it i on bytespec

1 db bytespec integer

1 db - t est bytespec integer

masK-field bytespec integer

d p b newbyte bytespec integer

deposit-field newbyte bytespec integer

random number &opt ional state

-random-state-

make-random-state &optional SUUe

random-state-p object

most-positive-fixnum

most-negative-fixnum

most-positive-short-float

least-positive-shont-float

least-negative-short-float

most-negative-short-float

most-positive-single-float

least-positive-single-float

least-negative-single-float

most-negative-single-float

most-positive-double-float

least-positive-double-float

least-negative-double-float

most-negative-double-float

.. _-_ _ ... _.-.. __ .. -------------_ ... __ .. __ ._---

---.. --.-.. ~-- --

355

[Constant]

[Constant)

[Constant)

[Constant)

[Constant)

[Constant)

[Constant)

[Constant)

[Constant)

[Constant)

[Constant]

[Function)

[Function)

[Function)

[Function)

[Function)

[Function]

[Function)

[Function)

[Function)

[Function)

[Function]

[Function)

[Function)

[Function]

[Function)

[Variable]

[Function)

[Function)

[Constan~

[Constant)

[Constant)

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

356

most-positive-long-float

least-positive-long-float

least-negative-long-float

~st-negative-long-float

short-float-epsilon

single-float-epsilon

double-float-epsilon

long-float-epsilon

short-float-negative-epsilon

single-float-negative-epsilon

double-float-negative-e~silon

long-float-negative-epsilon

char-code-limit

char-font-limit

char-bits-limit

standard-char-p ~r

graphic-char-p emu
string-char-p emu
alpha-char-p emu
upper-case-p emu
lower-case-p emu
both-case-p char

digit-char-p char &optional (radix 10.)

alphanumericp emu
char- character &rest more-characters

char /= character &rest more-characters

char< character &rest more-characters

char> character &rest more-characters

char<:= character &rest more-characters

char>- character &rest more-characters

char-equal character &rest more-characters

char-nat-equal character &rest more-characters,

char-lessp character &rest more-characters

char-greaterp character &rest more-characters

char-not-greaterp character &rest more-characters

char-not-l essp character &rest more-characters

character object

char-code char

char-bits char

char-font char

code-char code &optional (bits 0) (font 0)

make-char char &opt i ana 1 (bits 0) (font 0)

char-upcase cmu

COMMON USP REFERENCE MANUAL

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Function]

[Function]

[Function]

IF unction]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

COMMON USP SUMMARY

char-downcase char

digit-char weight &optional (radix 10.) (bits 0) (font 0)

char-int char

int-char integer

char-name char

name-char sym

char-control-bit

char-meta-bit

char-super-bit

char-hyper-bit

char-bit char name

set-char-bit char name newvaIue

e 1 t sequence index

subseq sequence stan &optional end

copy-seq sequence

1 ength sequence

reverse sequence

nreverse sequence

make-sequence ~pe nze &key :initial-element

concatenate result-type &rest sequences

map result-type function sequence & res t more-sequences

some predicate sequence &rest more-sequences

every predicate sequence &rest more-sequences

not any predicate sequence & res t more-sequences

notevery predicate sequence &rest more-sequences

reduce junction sequence &key :from-end :start :end :initial-value

fi 11 sequence item &key : start :end

repl ace sequence} sequence2 &key : start! : end! : start2 : end2

remove item sequence &key : from-end : test : test-not : start : end

:count :key

remove-if test sequence &key :from-end :start :end :count :key

remove-if-not test sequence &key :from-end :start :end :count :key

delete item sequence &key :from-end :test :test.,not :start :end

:count :key

delete-if test sequence &key :from-end :start :end :count :key

del ete-if-not test sequence &key : from-end : start : end : count : key

remove-dupl icates sequence &key : from-end : test : test-not

:start :end :key

delete-dupl icates sequence &key : from-end : test : test-not

:start :end :key

subst itute newitem old item sequence &key : from-end : test : test-not

:start :end :count :key

substitute-if newitem test sequence &key :from-end :start :end

357

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Constant] .

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

358 COMMON LISP REFERENCE MANUAL

:count :key

substitute-if-not newitem test sequence &key :from-end :start :end

:count :key

~subst i tute newitem olditem sequence &key : from-end : test : test-not

:start :end :count :key

nsubst i tute-if newitem test sequence &key : from-end : start : end

:count :key

nsubst i tute- if-not newitem test sequence &key : from-end : start : end

:count :key

find item sequence &key :from-end : test : test-not : start : end : key

find';'if test sequence &key :from-end :start :end :key

fi nd-if-not test sequence &key : from-end : start : end : key

position item sequence &key :from-end :test :test-not :start :end :key

pos i t ion- if test sequence &key : from-end : start : end : key

position-if-not test sequence &key :from-end :start :end :key

count item sequence &key : from-end : test : test-not : start : end : key

count-if test sequence &key :from-end :start :end :key

count-if-not Jest sequence &key : from-end : start : end : key

mi smatch sequence} sequence2 &key : from-end : test : test-not : key

:startl :start2 :endl :end2

search sequence} sequence2 &key :from-end :te"st :test-not :key

:startl :start2 :endl :end2

sort sequence predicate &key : key

stable-sort sequence predicate &key :key

me r ge result-type sequence} sequence2 predicate &key : key

car x

cdr x

c ... r x

cons x y

tree-equal x y &key :test :test-not

endp object

list-length list

nth n list

fi rst list

second list

third list

fourth list

fifth list

sixth list

seventh list

eighth list

ninth list

tenth list

[Function]

[Function]

[Function]

[Function)

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function)

[Function)

[Function]

[Function)

[Function}

[Function]

[Function]

[Function}

[Function]

[Function}

[Function}

[Function]

[Function]

[Function]

[Function]

[Function}

[Function]

COMMON USP SUMMARY

rest list

nth cdr n list

last list

list &rest args

1 is t· arg &res t others

make-list size &key :initial-element

append &rest lists

copy-list list

copy-al ist list

. copy-tree object

rev append x y

nconc &rest lists

nreconc x y

pus h item place

pushnew item place

pop place

but 1 ast list &opt ional n

nbutlast list &optional n

, d if f list sublist

rplaca xy

rplacd xy

subst new old tree &key :test :test-not :key

subst-if predicate new tree &key : key

subst-if-not predicate new tree &key :key

nsubst new old tree &key : test : test-not : key

nsubst-if predicate new tree &key :key

nsubst-if-not predicate new tree &key :key

sublis alist tree &key :test :test-not :key

ilsubl is alist tree &key : test : test-not : key

member item list &key : test : test-not ~key

member-if predicate list &key :key

member-if-not predicate list &key : key

t ail p sublist list

adjoin item list &key :test :test-not :key

union listllist2 &key :test :test-not :key

nunion listl list2 &key :test :test-not :key

intersection listl list2 &key :test :test-not :key

nintersection listI list2 &key :test :test-not :key

set-difference listl listl &key : test : test-not : key

nset-difference listl lisa &key :test :test-not :key

set-excl us i ve-or listl listl &key : tes t : test-not : k.ey

nset-excl us ive-or listl listl &key : test : test-not : key

subsetp listl list2 &key : tes t : test-not : key

._--------- --------_ .. _,._,-_._ .. __ .,._--_ .. _-

359

(Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

360 COMMON USP REFERENCE MANUAL

aeons key datum a-list

pa i r 1 is keys data &op tiona 1 a-list

as soc item a-list &key : test : test-not

As soe- i f predicate a-list

assoe-if-not predicate a-list

rassoe uem a-list &key :test :test-not

rassoe-if predicate a-list

rassoc-if-not predicate a-list

make-hash-table &key :test :size :rehash-size :rehash-threshold

hash,-tabl e-p object

gethash key hash-table &optional default

remhash key hash-table

maphash junction hash-table

el rhash hash-table

hash-tabl e-eount hash-table

sxhash object

make-array dimensions &key :element-type : initial-element

:initial-eontents :adjustable :fill-pointer

:displaced-to :displaced-index-offset

array-rank-limit

array-dimension-limit

array-total-size-limit

vector &rest objects

aref array &rest subscripts

array-element-type ~

array-rank array

array-dimension array axis-number

array-dimensions array

array-total-size array

array-in-bounds-p array &rest subscripts

array-row-major-index array &rest subscripts

svref simple-vector index

bi t bit-array &r est subscripts

sb i t simple-bit-array &rest subscripts

bit-and bit-array] bit-array-2 &optional result-bit-array

bit-ior bit-array] bit-array-2 &optional result-bit-~

bit-xor bit-array] bit-array-2 &optional result-bit-array

bit-eqv bit-array] bit-array-2 &optional result-bit-~

bi t-nand bit-array] bit-array2 &opt iona 1 result-bit-array

bit-nor bit-array] bit-array2 &optional result-bit-~

bit-andel bit-array] bit-array2 &optional result-bit-~

bit - andc2 bit-array] bit-array2 &op t i on a 1 result-bit-array

bi t-orel bit-array] bit-array2 &opt iona 1 result-bit-array

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

COMMON USP SUMMARY

b i t-orc2 bit-amzy! bit-array2 &opt iona 1 result-bit-array

bit-not bit-array &optional result-bit-array

array-has-fill-pointer-p array

fi ll-pointer vector

vector-push nevrelement vector

vector-push-ex tend nevrelement vector &opt i ona 1 extension

vector-pop vector

.... _-_._-.----- .. _ _--_._._._-

adjust-array array new-dimensions &key :element-type : initial-element

:initial-contents :fill-pointer

:displaced-to :displaced-index-offset

char string index

s c h a r simple-string index

string- string! string2 &key :startl :endl :start2 :end2

string-equal string! string2 &key :startl :endl :start2 :end2

string< string! string2 &key :startl :endl :start2 :end2

string> string! string2 &key :startl :endl :start2 :end2

string<- string! string2 &key :startl :endl :start2 :end2

string>-.string! string2 &key :startl :endl :start2 :end2

string/- string! string2 &key :startl :endl :start2 :end2

string-lessp string} string2 &key :startl :endl :start2 :end2

string-greaterp stringl string2 &key :startl :endl :start2 :end2

string-not-great.erp stringl string2 &key :startl :endl :start2 :end2

string-not-lessp string! string2 &key :startl :endl :start2 :end2

string-not-equal stringl string2 &key :startl :endl :start2 :end2

make-string size &key :initial-element

string-trim character-bag string

stri ng-1 eft-trim character-bag string

str i ng-ri ght-tr im character-bag string

string-upcase string &key :start :end

string-downcase string &key :sta~t :end

string-capitalize string &key :start :end

nstring-upcase string &key :start :end

nstring-downcase string &key :start :end

nstring-capitalize string &key :start ·:end

string x

defs truct name-anti-options [doc-string] {slot-description} +
eval form

·evalhook·

·applyhook·

·eva 1 form &rest env

eva1 hook form evalhookfn applyhookjn &rest env

applyhook jUnction args evalhookfn applyhoolcfn &rest en,

constantp object

._----------_ _--_ .•.. __ ... -.-----_._-------_ .. _

361

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function)

[Function]

[Function]

[Function)

[Function)

[Function] ,

[Function]

[Function)

[Macro)

[Function)

[Variable]

[Variable]

[Function]

[Function]

[Function]

[Function]

362 COMMON USP REFERENCE MANUAL

+

++

+++ •

I

II

III .

*standard-input

*standard-output

*error-output

query-io

*debug-io

termina1-io

trace-output

make-synonym-stream symbol

make-broadcast-stream &rest ~r~

make-concatenated-stream &rest ~~

make-two-way-stream input-stream output-stream

make-echo-stream input-stream output-stream

make-s tr i ng- i nput-s tream string &opt i ona1 ~art end

make-string-output-stream &optional lin~kngth

get -outp u t - s tream- s t r in 9 string-out put-stream

with-open-stream (var stream) {declaration}- {form}*

with-input-from-string (var string {keyword value}-) {declaration}- {form}

wi th-output-to-s tr i n9 (var [string]) {declaration}- {form}*

s t r e amp object

input-stream-p ~

output-stream-p stream

stream-e1ement-type ~eam

close stream &key :abort

*read-base-

*readtable-

copy-readtable &optional)rom-readwbk t~~tabk

readtabl ep object

set-syntax-from-char to-char)rom-char &opt ional to-readtable)rom-reoIiwble

set-macro-character char jUnction &opt ional non-terminating-p readtllble

get-macro-character char &optional readtllble

make-dispatch-macro-character char &opt ional non-terminating-p readtable

set-di spa tch-macro-.character disp-char sub-char jUnction &opt i ona 1 ~tIlble

get-dispatch-macro-character disp-char sub-char &optional readtable

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable)

[Variable).

[Variable]

[Variable)
I

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable)

[Variable]

[Variable]

[Function]

[Function]

[Function)

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

COMMON USP SUMMARY

·print-escape

·print-pretty

·print-circle

-print-base

·print-radix

·print-case

·print-gensym*

*print-level·

·print-length

·print-array·

read &opt i ona 1 input-stream etJferrorp eofva!ue recursive-p

read-default-float-format

read-preserving-whitespace &optional in-stream etJferrorp etJfvalue recursive-p

read-del imited-l ist char &optional input-stream recursive-p

read-l i ne &op tiona 1 input-stream recursive-p

read-char &optional input-stream eoferrorp etJfvalue recursive-p

un re ad -c h ar character &op tiona 1 input-stream

peek -char &op tiona 1 peek-type input-stream etJferrorp eofvalue recursive-p

listen &optional mput-stream

read-char-no-hang &opt i ana 1 input-stream eoferrorp eofvalue recursive-p

clear-input &optional mput-stream

read-from-str i ng string &opt ional etJferrorp eofvalue &key : start : end

:preserve-whitespace

parse-integer string &key :start :end :radix :junk-allowed

read-byte binary-inpur-stream &opt i ana 1 eoferrorp eofvalue

re ad - b i na r y-ob j ec t type binary-in put-stream &op t i on a 1 etJferrorp eofvaIue

write object &key : stream : escape : radix : base

:circle :pretty :level :length

:case :gensym :array

pr i n1 object &opt i ona 1 outpUt-stream

p r i n t object &0 p t ion a 1 outpUt-stream

ppr i nt object &opt i ana 1 outpUt-stream

pr i nc object &opt i ona 1 output-stream

write-to-string object &key :escape :radix :base

prinl-to-string object

princ-to-string object

:circle :pretty :level :length

:case :gensym :array

write-char character &optional outpUt-stream

write-string string &optional output-stream &key :start :end

write-l ine string &optional output-stream &key. :start :end

terpri &optional output-stream

fresh-l i ne &opt i ana 1 output-Strel1m

.... _ .. _--_ .. , .,,_ _ .•.. ,." ... " ...•...... _----------.... " _

363

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

364 COMMON USP REFERENCE MANUAL

finish-output &optional output-stream

force-output &optional output-stream

clear-output &opt iona 1 output-stream
• wr i te-byte integer binary-output-stream

w r i t e - bin a r y - 0 b j e c t object type binary-output-stream

forma t destination control-string &rest arguments

y-or-n-p &optional message stream

yes-or-no-p &optional message stream

pathname thing

truename thing

parse-namestring thing &optional convention defaults break-characters start end

me r 9 e - pat h name s pathname &0 p t ion a 1 defaults default-version

make-pathname &key :host :device :directory :name

:type :version :defaults

pathnamep object

pathname-host pathname

pathname-device pathname

pathname-di re.ctory pathname

pathname-name pathname

pathname-type pathname

pathname-version pathname

pathname-pl i st pathname

namestr ing pathname

file-namestring pathname

d i rectory-namestring pathname

host-namestring pathname

enough-namestring pathname &opt ional defaults

user-homedir-pathname &optional host

init-file-pathname program-~e &optional host

default-pathname-defaults

add-l ogi ca l-pathname-host logical-host actual-host dejQull-device translations

trans 1 ated-pathname pathname

back-trans 1 ated-pathname logical-path~e actual-pathname

open filename &key :direction :element-type

:if-exists :if-does-not-exist

wi th-open-fi 1 e (stream filename {options}·) {declaration}· {fonn}·

rename-fi 1 e file n~name

delete-file jile

probe-file Jik~e

file-creation-date Jik

file-author Jile

file-position Jile-stream &optional position

file-length Jile-stream

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

COMMON USP SUMMARY

load &optional fikname &key :verbose :print :if-does-not-exist

:set-default-pathname

load-verbose

*load-set-default-pathname·

load-pathname-defaults

directory pathname &key

err 0 r format-string & res t args

cerror continue-fo·rmat-string erro~format-string &rest args

warn format-string &rest args

*break-on-warnings-

break &opt ional format-string &rest args

check-type place typespec &optional string

assert test-form {place}- [string {arg}-]

etypecase keyform {(type (form}-)}

ctypecase key place {(type (form}·)}*

ecase keyform {({({key}*) I key} (form}*)}*

ccase key place {({({key}*) I key} {form}*)}*

compile name &optional definition

compile-file &optional input-pathname &.key :output-file

:set-default-pathname

·compile-file-set-default-pathname

d i sas semb 1 e name-o~compiled-Junction

documentat ion symbol doc-type

trace {jUnction-name}*

untrace {jUnction-name}*

step form

time form

describe object

inspect object

room &optional x

ed &optional x

dribble &optional pathname

apropos string &optional pac/cage

apropos-list string &optional pac/cage

get-decoded-time

get-universal-time

decode-un i versa l-t ime universal-time &opt ional time-zone

encode-universa l-t ime second minute hour date month year &opt ional time-zone

internal-time-units-per-second

get-internal-run-time

get-internal-real-time

sleep seconds

lisp-implementation-type

365

[Function]

[Variable]

[Variable]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Function]

[Function]

[Function]

[Function]

366

lisp-implementation-version

machine-type

machine-version

~achine-instance

software-type

software-version

short-site-name

long-site-name

-features-

; dent ity object

(End of COMMON USP summary.)

COMMON USP REFERENCE MANUAL

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

COMMON USP SUMMARY 367

Index

•
--- -_ .. _ ... __ ._-----_._---

368 COMMON USP REFERENCE MANUAL

Index of Concepts

as a substitution table
Compatibility note 11. 20. 34. 35. 41. 52. 59. 63, 80. 83. 90. 95. 99. 100. compared to hash table

104. lOS, 107, 109. 118. 119. 123. 126. 129. 142, 143, 154. 155.Atom
156. 161. 162. 167. 175. 177. 197. 198. 200. 209, 210, 215, 217. predicate 59
220. 224. 229. 231. 245. 246. 266. 269. 272. 279. 283, 287, 296,
302. 304. 305. 311. 326. 329, 330. 332. 333. 340. 342, 343 Bignum 11

Implementation note 12, 13, 15, 20, 29. 46, 62. 109, 129, 140, 156. 158,Bit string
159. 160, 162, 170, 177, 183. 184, 208. 234. 239. 285. 325. 330. infinite 170
333, 334, 338 integer represention

Query 317 Bit-vector
Rationale 21. 26. 49, 76. 79, 93, 151, 154, 156. 169, 178. 243. 293, 301, predicate 60

329, 336, 343, 344 Byte 175
-ex (new line) fonnat directive 305 Byte specifiers 175
-& (fresh line) format directive 305
- ((case conversion) format directive 307 c 279
-.. (ignore argument) format directive 306 Car 19,207
- < (justification) format directive 309 Catch 107
-<return> (ignore whitespace) format directive 305 Cdr 19, '2D7
-7 (indirection) format directive 306 Olaracter
-- (Tilde) format directive 305 predicate 60
-[(conditional) format directive 308 Olaracter syntax 275
- A (loop escape) fonnat directive 310 Oeanup handler 107
- A (Ascii) format directive 300 Comments 271
-6 (Bina')') format directive 300 Common data type
-C (Character) format directive 301 predicate 61
-0 (Decimal) fonnat directive 300 Compiled function
-E (Exponenrialfloaling-point) format directive 302 predicate 61
- F (Fixed-format floating-point) fonnat directive 301 Complex number
-6 (Dollars) format directive 305 predicate 60
-6 (Generalfloating-point) format directive 304 Conditional
-6 (GolD argument) format directive 306 and 64
-0 (Ocral) format directive 300 or 65
-P (Plural) format directive 301 during read 279
-R (Radix) format directive 300 Cons 19,71J7
-S (S-expression) format directive 300 predicate 59

216
223

170

-r (Tabulate) fonnat directive 306 Constructor function 244
- X (heXadecimal) format directive 300
- { (iteration) format directive 308
-I (new page) format directive 305
" macro character 272
macro character 274
• macro character 271

macro character 271
macro character 271
macro character 274
macro character 271

• macro character 273
macro dwacter 272

A-list 219
Access functions 244
ADA 11,65
~L 28,45,99,167
APL '2D, 162, 198
Array 20

predicate 61
Association list 96, 219

Control structure 67

Data type
predicates

Declaration
58

declaration 122
function Ul
function type 121
ignore 122
inline 121
notinline ill
optimize 122
special l'2fJ
type l'2fJ

Declaration declaration U2
Declarations 117
Defstruct 243
Denominator 12
Destructuring 113
Device (pathname component)
Directory (pathname component)

- 369-

314
314

370

Displaced array 228
Dotted list 207
Dynamic exit 107

impty list
predicate 59

Environment structure 67
Extent 27

False
when a predicate is 57

Fill pointer 234
FlXnum 11
Floating-point number 13

predicate 60
Flow of control 67
Formatted output 298
FORTRAN 2,11.15,99.161,167.302,304.305
Function

predicate 61
Function declaration 121
Function type declaration 121

General array 127

Hash table 223. 226
predicate 224

Home directory 319
Host (path name component) 314

COMMON USP REFERENCE MANUAL

120. 123. 126. 142. 143, 151, 154. ISS, 156, 161. 167, 175. 177.
193, 197, 200. 209. 215. 217. 220, 224. 231, 256. 266. 269. 272,
279.283.287.296.302.304.305.326.329.330.333.340

Macro character 271
Mapping 98
Merging

of pathnames 315
sorted sequences 205

Multiple values 102.
returned by read-from-string 294

Name (pathname component) 314
Naming conventions

predicates 57
NIL 1,100.126.129.167.209
Non-local exit 107
Notinline declaration 121
Number 151

floating-point 13
predicate 59

Numerator 12

Optimize declaration 122

Package
predicate 61

Package cell 125
Parsing 271

of pathnames 315
PASCAL 24. 65. 154

Ignore declaration 122 PUl 15,161.167.234.279
Implicit progn 67.85,86.87.88.89.90.94 Plist 125
Index offset 129 Position
Indicator 125 of a byte 175
Indirect array 228 Predicate 57
Init file 319 Predicates
Inline declaration l2l true and false 57
Integer 11 Print name 125. 128. 237

predicate 59 coercion to string 241
INTERUSP 1,2, 3,11.34. 35. 83. 100. ill,126, 161, 167, 197. 198, 209.Printed representation 265

210. 224, 269. 283, 340 Printer 265. 283
Iteration 93 Proclamation 119

Property 125
Keywords Property list 125

for de f s t rue t slot-descriptions 247 compared to association list 125
compared to hash table 223

USP 1.5 99. 197
lisp Machine usp I, 2, 11. 20, 63. 80, 90, 100. 104. 105. 126, 129. 131.Querying the user 311

139. 155, 156, 161, 167. 197. 198. 209. 224, 229. 231, 245. 246,Quote character 271
279. 283. 302. 304. 305. 306, 307, 326. 329, 330. 332, 333. 340.
342, 343 Random-state

list 19. W predicate 179
predicate 59 Rank 20

See also dotted list Ratio 12
list syntax 271 Rational 12
Logical operators predicate 60

on nil and non-n i 1 values 64 Reader 265. 266
Logical patbnames 320 Readtable 280

predicate 281
MAcusp 1.2, 11, 20.21.41,52, 57.59.90.95.100.107.109. 118. 119. Record structure 243

INDEX OF CONCEPTS

S-1 LIsp 1.2
SOIEME 1
Scope 27
Set

list representation 217
Sets

bit-vector representation 170
infinite 170
integer representation 170

Shadowing 28
Shared array 228
Sharp-sign macro characters 274
Simple bit-vector

predicate 60
Simple string

predicate 60
Size

ofa byte 175
Sorting 203
Special declaration 120
Specialized array 227
SPICE LIsp 1. U6
STANDARD LIsp 2, 167
String 237

predicate 60
String syntax 272
Structure 243
Structured pathname components 315
Substitution 2lS
Symbol 9. 125

coercion to a string 237
coercion to string 241
predicate 59

Symbol syntax 272

Throw 107
Tree 20
True
. when a predicate is 57
Type (pathname component) 314
Type declaration 120
Type specifiers 33

Unwind protection 107

Vector
predicate 60

Version (pathname component) 314

Yes-or-no functions 311

...... _--... _--_ .. _ __ ._ .. _-_._ .. _._---------------

371

372 COMMON LISP REFERENCE MANUAL

Index of Variables

••• 257
•• 257
• 257
··modules·· 145
+++ 2S6
++ 2S6
+ 256

256
III 257
/I 257
I 257

A
·applyhook· ~

B
·break-on-warn ings· 332.332

C
·compile-file-set-default-pathname* 328.338

D
*debug-io· 260
default-pathname-defaults

E
-error-output- 260.332
-evalhook· 253

F
*features· 279.345

G

H

I

J

K

L
load-pathname-defaults
load-set-default-pathname
load-verbose 327.328

M
·macroexpand-hook· 116.116

N

o

p

317.318.319.320

320.327,328,338
328

·package* 130.140.245.248.249.269.284.296
·print-array· 285.286.289.296

.,.,.,.,.,.,_ , ... __ ... _--_. __ .. _---------

·print-base*
print-case
-print-circle*
-print-escape*
-print-gensym*
print-length
-print-level*
print-pretty
-print-radix*

Q

283.287.296
284.285.288.296

212.285.287.296
250.284.285.287.296
284.288.296
269.279.285.286.288.296

250.280.285.286.288.296
250.287.296

283.287.296

-query-io* 260.260.311.312

R
*random-state- 178
-read-base* 268.269
*read-default-float-format- l4. 284. 291.303
-readtable* 280.281

S
·sample-variable
standard-input
*standard-output-

T

4
259.289.341
259.295.296.298.32~340.341

termina 1- io 260.289.295.311
-trace-output* 260.339.340

u

v

w

x

y

z

- 373-

· .~

374 COMMON LISP REFERENCE MANUAL

Index of Constants

A
array-dimension-l imit 227,230
array-rank-l imit 227.230,231
array-total-size-l imit 227,230

B
boole-l 172
boole-2 172
boole-and 172
boole-andcl 172
boole-andc2 172
boole-cl 172
boole-c2 172
boole-clr 172
boole-eqv 172
boole-ior 172
boole-nand 172
boo 1 e-nor 172
boo 1 e-orcl 172
boo 1 e-orc2 172
boole-set 172
boole-xor 172

C
ca ll-arguments-l imi t 52,84.103
char-bits-l imit 17,183,188
char-code-l imit 183.188
char-contro1-bit 191
char-font-l imit 16,183,188
char-hyper-bit 191
char-meta-bit 191
char-super-bit 191

D
double-float-epsi1on ISO
double-float-negative-epsi1on ISO

E

F

G

H

I
i nterna1-t ime-units-per-second 3 .. ~2, 343,344

J

K

L
1 ambda-1 i st-keywords 51.112
1 ambda-parameters-l imi t 52, 84,103
1east-negative-doub1e-float ISO

least-negative-long-float 180
least-negative-short-float 179
least-negative-single-float 179
least-positive-double-float ISO
least-positive-long-float ISO
least-positive-short-float 179
least-positive-single-float 179
long-float-epsilon 180
long-float-negative-epsilon ISO

M
most-negative-double-float ISO
most-negat i ve-fixnum 11,38.179
most-negative-1ong-float 180
most-negative-short-float 179
most-negative-single-float 180
most-positive-double-float 180
most-pos i t i ve-fi xnum 11,38,54,179
most-positive-long-f1oat 180
most-positive-short-float 179
most-positive-single-f1oat 179
multiple-values-limit 84,103

N
nil 3,30,58,255

0

P
pi 30.161,255

Q

R

S
sample-constant 4
short-float-epsilon ISO
short-f1oat-negative-epsi1on ISO
single-float-epsilon 180
single-f1oat-negative-epsi1on ISO

T
t 54,58,255

U

V

W

X

Y

Z

- 375-

376 COMMON USP REFERENCE MANUAL

Index of Key\vords

A
:abort

for close 263
:adjustable

for make-array 228
:append

for if-ex is ts option to open 324
:array

for write 296
fur write-to-string ~

B
:base

for write 296
for write-to-stri ng 297

C
:case

for wr i te 296
for write-to-string 297

:circle
for wri te 296
for write-to-string 297

:conc-name
for defstruct 247

:constructor
for defstruct 240.240.231

:count
for delete 200
for delete-if 200
for delete-if-not 200
for nsubst itute 202
for nsubstitute-if 202
for nsubstitute-if-not
for remove 199
for remove-if 199
for remove-if-not 199
for subst i tute 201
for substitute-if 201

202

for substitute-if-not 201
:create

for if-does-not-exist optionto open 325

D
:default

for type option to open
:defaults

for make-path name 318
:device

for make-path name 318
:direction

for open 322
:directory

for make-pathname 318
:displaced-index-offset

for adjust-array 235

._---_._-_. ._-" ----_._-

3n

for make-array 228
:displaced-to

fur adjust-array n5
fur make-array 228

E
:element-type

for adjust-array n5
for make-array 227
for open 298.3n

:endl
for mismatch 203
for rep 1 ace 199
for search 203
for s t r i n 9 - e qua 1 ns
for string-greaterp 239
for string-lessp n9
for string-nat-equal n9
for string-not-greaterp n9
for string-not-lessp n9
for s tr i ng'- n9
for s t r i n 9 < n9
for string<- n9
for string- ns
for s tri ng> n9
for string>- n9

:end2
for mi smatch 203
for replace 199
for search 203
for string-equal ns
for string-greaterp n9
for string-lessp. n9
for string-nat-equal n9
for string-not-greaterp n9
for string-not-lessp 239
for string'- n9
for string< n9
for string<- n9
for string- ns
for string> n9
for string>- n9

:end

- 377-

for count 203
for count-if 203
for count-if-not 203
for delete 200
for delete-duplicates
for delete-if 200
for delete-if-not 200
for fi 11 199
for find 202
for find-if 202
for find-if-not 202

200

for nstring-capitalize 241
for nstring-downcase 241
for nstring-upcase 241

... " _-------------_ •. _-------------

378

for nsubstitute 202
for nsubstitute-if 202
for nsubstitute-if-not 202
for parse-i nteger 29S

• for po sit ion 202
for po sit ion - i f 202
for position-if-not 202
for read-from-string 294
for reduce 198
for remove 199
for remove-duplicates 200
for remove-if 199
for remove-if-not 199
for string-capitalize 240
for string-downcase 240
for string-upcase 240
for subs t itute 201
for substitute-if 201
for substitute-if-not 201
for write-line 297
for wri te-str i ng 297
for with-input-from-string 262

:error
for if-does-not-exist option to open 324
for if-exists optionto open 324

:escape
for wr i te 296
for write-to-string 297

:eval-when
for defstruct 2SO

F
:fill-pointer

for adjust-array 23S
for make-array 228

:from-end
for count 203
for count-if 203
for count-if-not 203
for delete 200
for delete-duplicates 200
for delete-if 200
for delete-if-not 200
for find 202
for find-if 202
for find-if-not 202
for mismatch 203
for nsubstitute 202
for nsubstitute-if 202
for nsubstitute-if-not 202
for pos i t ion 202
for pos i t ion- if 202
for position-if-not 202
for reduce 198
for remove 199
for remove-duplicates 200
for remove- i f 199
for remove-if-not 199
for search 203
for substitute 201

COMMON USP REFERENCE MANUAL

for substitute-if 201
for substitute-if-not 201

G
:gensym

for write 296
for write-to-string 297

H
:host

for make-pathname 318

I
:if-does-not-exist

for load 327
for open 324

:if-exists
for open 324

:include
for defstruct 26.249

: inde.x
for with-input-from-string 262

:initial-contents
for adjust-array 23S
for make-array. 228

:initial-element
for adjust-array , 23S'
for make-l ist III
for make-sequence 196
for make-string 239
for make-array 228

:initial-offset
for "defstruct 2SO

:initial-value
for reduce 198

:input
fur direction optionto open 322

:io
for direction optionto open 322

J
: junk-allowed

fur parse-integer 29S

K
:key

for adjoin 217
for count 203
for count-if 203
for count-if-not 203
for delete 200
for delete-duplicates
for delete-if 200
for delete-if-not 200
for find 202
for fin d - i f 202
for find-if-not 202
for intersection llS
for. member ll7
for member-if 217

200

INDEX OF KEYWORDS

for member-if-not 217
for merge 205
for mi smatch 203
for nintersection 21S
for nset-difference liS
for nset-excl usive-or liS
for nsubl is 216
for nsubst 216
for nsubst-if li6
for nsubst-if-not 216
for nsubs t itute 202
for nsubstitute-if 202
for nsubstitute-if-not 202
for nun ion li7
for position 202
for position-if 202
for pos i t ion- H-not 202
for remove 199
for remove-duplicates 200
for remove-if 199
for remove-H-not 199
for search 203
for set-dHference liS
for set-exclusive-or liS
for sort 203
for stable-sort 203
for sublis 216
for subsetp 219
for subst 2lS
for subst-H 2lS
for subst-if-not 2lS
for substitute 201
for substitute-if 201
for substitute-if-not 201
for union li7

L
: length

for write 296
for write-to-string 297

: 1 eve 1
for wr i te 296
fur write-to-string ~

M

N
Iname

for make-pathname 31S
:named

for defstruct 248.249
:new-version

for if-exists optionto open 324

o
:output-file

fur compile-file 33S
:output

for direction optionto open 322
:overwrite

for if-ex i s ts option to open

p
:predicate

for defstruct 248
:preserve-whitespace

for read-from-string 294
:pretty

for write 296
for write-to-string 297

:print-function
for defs truct 24.250

:print
for load 327

:probe
for direction option to open

Q

R
:radix

for parse-integer 295
for wri te 296
for write-to-string 297

:read-only

324

322

for defstruct slot-descriptions 247
:rehash-size

for make-hash-table 224
:rehash-threshold

for make-hash-table 224
:rename-and-delete

for if - e xis t s option to 0 pen 324
:rename

for H-exists option to open 324

S
:set-default-pathname

for compile-file 338
for load 327

:size
for make-hash-table 224

:startl
for mi smatch 203
for rep 1 ace 199
for search 203
for string-equal 238
for string-greaterp 239
for string-lessp 239
for string-not-equal 239
for string-not-greaterp 239
for string-not-lessp 239
for string'- 239
for string< 239
for string<- 239
for string- 238
for string> 239
for string>- 239

:start2
for mi smatch 203
for rep 1 ace 199

379

380

for search 203
for string-equal 23S
for string-greaterp 239
for s t r i n 9 -1 e ssp 239
for s tr i ng-not-equa 1 239

• for s tr i ng-not-greaterp 239
for string-not-lessp 239
for string/- 239
for string< 239
for string<- 239
for s tri ng- 23S
for string> 239
for string>- 239

:start
for· count 203
for count-if 203
for count-if-not 203
for delete 200
for delete-duplicates 200
for delete-if 200
for delete-if-not 200
for fi 11 199
for find 202
for find-if 202
for fi nd-if-not 202
for nstring-capitalize 241
for nstring-downcase 241
for ns tr i ng-upcase 241
for nsubstitute 202
for nsubs t i tute- if 202
for nsubstitute-if-not 202
for parse-integer 29S
for po sit ion 202
for pos it ion-i f 202
for pos i t i on- if-not 202
for read-from-string 294
for reduce 19S
for remove 199
for remove-duplicates 200
for .remove-if 199
for remove-if-not 199
fur string-capitalize 240
for string-downcase 240
for string-upcase 240
for subs t itute 201
for substitute-if 201
for substitute-if-not 201
for write-line 297
for write-string ~
for with-input-from-string 262

:stream
for write 296

:supersede
for if-exists option to open 324

T
:test-not

for adjoin
for assoc
for count

217
220
203

COMMON USP REFERENCE MANUAL

for del ete 200
for delete-duplicates 200
for find 202
for intersection
for member 217
for mismatch 203

llS

21S fur nintersaction
for nset-difference 218
for nset-exclusive-or 21S
for n sub 1 i s ll6
for nsubst 216
for nsubs t i tute 202
for nun i on ll7
for po sit ion 202
for rassoc 220
for remove 199
for remove.-dupl icates
for search 203
for set-difference
for set-exclusive-or
for sub 1 i s 216
for subsetp 219
for subst 215
for substitute 201
for tree-equal 20S
for union 217

:test
for adjoin 217
for assoc 220
for count 203
for delete 200

200

21S
21S

for delete-duplicates 200
for find 202
for intersection llS
fur make-hash-table 224
for member 217
for mi smatch 203
for nintersect ion llS
for nset-difference llS
for nset-excl us ive-or 21S
for nsub 1 is 216
for nsubst 216
for nsubst i tute 202
for nun i on 217
for pos i t ion' 202
for rassoc 220
for remove 199
for remove-duplicates
for search 203
for set-difference
for set-exclusive-or
for sub 1 i s 216
for subsetp 219
for subst 2lS
for substitute 201
for tree-equal 20S
for union 217

:type

200

llS
llS

for make-pathname 31S
for de f s t r u c t slot-descriptions 247

INDEX OF KEYWORDS

for defstruct 248
for open 295

U
:unnamed

for defstruct 248

V
:verbose

for load 327
:version

for make-pathname 318

w

x
y

z

----------------- --

--,,'-,--,-,-,------- ,------"'" .. "'-,---,-------,,------ ---, --------_._-_.-

381

382 COMMON USP REFERENCE MANUAL

Index of Functions, Macros, and Special Forms

- 156
-eval 116.254,254,255
+ 1SS

155
/- 153
/ 156
1+ 156
1- 156
<- 153
< 153,186

62,151,153,186
>- 153
> 153

A
abs 159
aeons 125,219
acos 160
acosh 162
add-logical-pathname-host 321
adjoin 213,217
adj ust-array 235,235
al pha-char-p 184,189
alphanumericp 185
an d 35, 64, 89, 105
append 211,212,274
app 1 y 24.83,105,111,112,254
app 1 yhook 254,254
apropos-list ~1

apropos ~1

aref 21,73,195,230,232,234,238
array-dimension 231,234
array-dimensions 231
array-element-type 36.231
array-has-fill-pointer-p !W
array-i n-bounds-p 231
array-rank 231
array-row-major-index 232
array-total-s ize 229,231
arrayp 61
ash 174
asi n 160
asinh 162
assert 76,331,333
assoc-if-not no
assoc-if 220
assoc 219,220.221
atan 161
atanh 162
atom 20,59

B
back-translated-pathname 322
bi t-and 233
bit-andcl m
bi t-andc2 233
bi t-eqv 233

------ ._-'------- -._ .. _---_ .. _. __ .. _._----

bit-ior 233
bit-nand 233
bit-nor 233
bi t-not 234
bit-orcl m
bit-orc2 233
bit-vector-p 60
bi t-xor 233
bit 73,232
block 29,30,44,53,67,91,93,95,96,100,101,106,107
boole 172
both-case-p 185
boundp 68,69
break 332
butlast 214
byte-pos it ion 175
byte-s ize 175
byte 175

c
c ... r 208
caaaar 72,208
caaadr 73,208
caaar 73.208
caadar 73,208
caaddr 73,208
caadr 73,208
caar 73,208
cadaar 73,208
cadadr 73,208
cadar 73,208
caddar 73,208
cadddr 72,208
caddr 73,208
cadr 73,208
car 71,72,207,210
case 90,91,105,334,335,336
catch 29.44,67,105,106,107
cease 76,90,336
cdaaar 73,208
cdaadr 73,208
cdaar 73,208
cdadar 73,208
cdaddr 73,208
cdadr 73,208
cdar 73,208
cddaar 73,208
cddadr 73,208
cddar 73.208
cdddar 73,208
cddddr 73,208
cdddr 73,208
cddr 73,208
cdr 73,207,214
ceiling 156,166
cerror 4,330,332,334
char-bit 73,191

- 383-

384

char-bits 183,188
char-code 41,183,188
char-downcase 185,189,240
lhar-equa 1 63,187,238
char-font 183,188,277
char-greaterp 187
char-int 41,186,190
char-l essp 187,239
char-name 190
char-not-equal 187
char-not-greaterp 187
char-not-lessp 187
char-up case 185,189,240
charI- 186
char<- 186
char< 186,239
char- 186,293
char>- 186
char> 186
char 73,232,137
character 40,188
characterp 60,184
check-type 333
cis 160
clear-input 294
clear-output 297
close 263,322,325
cl rhash 225
code-char 188
coerce 40,41,165,188,196,197,205,241
commonp 61
comp i 1 e-f i 1 e 327,328,338,338
compile 337
compiled-function-p 61
comp i 1 er-l et 44,86
comp 1 ex 16,37, 169
comp 1 exp 60,153
concatenate 196,211
cond 57,65,88,90,91,94,105
conjugate 157
cons 37,208
consp 59
constantp 130,255
copy-alist 211
copy-list 211
copy-readtable UW
,copy-seq 195,211
copy-symbol 129
copy-tree 211,212,215
cos 160
cosh 162
count-if-not W3
count-if W3
count W3
ctypecase 76,91. 33S

D
decf 76.156
decl are 9.44,48,86.87,95.117
decode-float 168

COMMON USP REFERENCE MANUAL

decode-universal-time ~
defconstant 44,53,134,255,339
define-modify-macro U,78
define-setf-method 74,79,81
defmacro 39,46,51,52, 79,81,88,112,116,117.327.339
defparameter 53,119.339
defsetf 74,78.117,244,339
defstruct 10,24.26,33,39,73,204.205,208.245.278,286,339
deftype 34,39.117,339
defun 24.47,51,53,87,92,105.112,117,121,327.339
defvar 53,119,120,327.339
delete-duplicates 200
delete-file 326
delete-if-not 200
delete-if 200
de 1 ete 200.214
denomi nator 166,284
deposit-field 73.176,176
descri be 340
digit-char-p 185,189
dig i ~-char 189
directory-namestring 319
directory 328
disassemble 338
do· 93,93.117
do-all-symbol s 98.117.144.341
do-external-symbol s 98,117,144
do-symbol s 98.117,144
do 30.67, 70. 93.93,99,106.117
documentat ion 39,53,54.73,112,245,338
dol ist 93,97,106.113.117
dot imes 93.97.106.117
dpb 73,175,176
dribbl e 341

E
ecase 90.335
ed 341
eighth 73,209
e 1 t 73, 195,230.238
encode-universal-time ~
endp 20. 96. 207,208
enough-namestring 319
eq 61

compared to equal 61
eq 1 34,62,151.154,187
equal 62,187.208.238.265
equal p 63
error 4,330.334
etypecase 91,335
eva l-whe n 54, 105. 113, 119, 140, 250, 278. 331
eval 105,111,253
eva 1 hook 254, 254
evenp 153
every 197
exp 158
export 136.137.143
expt 158

F

INDEX OF FUNCfIONS, MACROS, AND SPECIAL FORMS

fboundp 69.69
fcei1ing 168
ffloor 168
fifth 73.209
file-author 326
file-creation-date 326
file-length 326.327
fi1e-namestring 319
fi 1 e-pos i t ion 324.326
fi 11-po inter 73,234,237
fi 11 199
find-al1-symbo1s 144
fi nd- if-not 202
find-if 202
fi nd-pack age 133,141
find-symbol 142
find 202,217.219.220
finish-output 297
fi rst 73,207.209
f1 et 44.47,69,87.111,117,121
float-digits 168
float-precision 168
float-radix 13.168
f1 oat-s i gn 168
f1 oat 161,165
f1 oatp 60,153
f1 oor 41.102. 103, 156.166. 167
fmakunbound 69.71
force-output 297
forma t 241.298.298.329,331.332,314
fourth 71,209
fresh-line 297.305,312
fround 168
ftruncate 168
funca 11 24,58,83.105,111,116,254
funct ion 30,44.47.50,68
functionp 61

G
gcd 157
gensym 79,80,130,130
gentemp 79,80.130.130
get-decoded-time 343
get-dispatch-macro-character 282
get-internal-rea1-time 344
get-internal-run-time 34~344

get-macro-character 281
get-output-stream-string 262
get-properties 128
get-setf-method-mu1tiple-va1ue 82
get-setf-method 82
get-universa1-time 343
get 72.73,126.126,127
getf 73.76,126.127,127.128,314,118
gethash 73,225
go 30.44,45,93,94,95,9~101. 102.108
graphi c-char-p 184,186,190

H
hash-tab1e-count 225

.. - -.-_._-_ .. _._._-----------,

hash-tab1e-p
host-namestring

I
i dent i ty 346

61.224
319

if 44,57. 65, 89, 89, 90. lOS
imagpart 170
import 134,115.137,143
in-package 141
incf 76,7B,156
ini t-file-pathname 319.145
input-stream-p ua
inspect 340
int-char 190
integer-decode-float 168
integer-1 ength 174,177
integerp 59,153
intern 61,129,130.112.117.142
intersection 218
isqrt 159

J

K
keywor dp 130

L
1 abel s 44.47,69,87,111.117.121
1 ast 210
1 em 157
1 db-test 176
1 db 73, B1.175
1diff 214,217
1 ength 195,1%,209,231
1 e t· 44, 86, 96, 102, 105,117

385

let 2~43,44,50,85,86,8~93,96,100,101.102,l05.117

1isp-implementation-type 344
lisp-implementation-version 344
1 is t • 83, 210
1ist-a11-packages 142
list-length 209
1 i st 210
1 is ten 293,294
1 i stp 59.207
load 140.327,328
1 oca 11 y 117,119
log 159
10gand 171,233
logandcl 171
10gandc2 171
10gbitp 173
10gcount 174
logeqv 171
10gior 170
lognand 171
lognor 171
10gnot 173.234
10gorcl 171
10gorc2 171
logtest 173

------_. __ ._---_._._---

'386

logxor 170
long-site-name 34S
loop 93,93,94,96
lower-case-p 185,186,189,282 •

M
machine-instance 34S
machine-type 344
maohine-version 34S
macro-funct ion 45,69,111
macroexpand-l 116,116
macroexpand· 45,111,116,254
macrol et 44,87,111,112,113,116,117
make':'array 35,36,51,227,235,239,278,286
make-broadcast-stream 261
make-char 189
make-concatenated-stream 261
make-dispatch-macro-character 282.283
make-echo-stream 261
make-hash-table 224
make-l ist 211
make-package 141
make-path name 318
make-random-state 178,286
make-sequence 196 .
make-string-input-stream 261
make-string-output-stream 262
make-string 239
make-symbol 129
make-synonym-stream 260,261
make-two-way-stream 261
makunbound 44,68,69,71,87
map 41, 98,111,197.254
mapc 98.197
map can 98
mapcar 98
map con 98
maphash 225
mapl 98,197
maplist 98
mask-fiel d 73,176
max 155
member-if-not 217
member-i f 217
member 57.217.219
merge-pathnames 317
merge 205
min 155
mi nusp 153
mi smatch 203
mod 167
multiple-value-bind
multiple-value-call
multiple-value-list
multiple-value-progl
multiple-value-setq

N
name-char 190
namestring 319

103,104,105,11~167

3~44,103,I04,105

102,104
44,84,103,104,106

103.105.106

COMMON LISP REFERENCE MANUAL

nbutlast 214,214
nconc 99,211,212,214,274
nintersection 218
ninth 73.209
not 59,64
notany 197
notevery 197
nreconc 212,212.214
nreverse 95.196,204,214
nset-difference 218
nset-exclusive-or 218
nstring-capitalize 241
nstring-downcase 241
nstring-upcase 241
nsubl is 216
nsubst-if-not 216
nsubst-if 216
nsubst 216
nsubstitute-if-not 202
nsubstitute-if 202
nsubstitute 202
nth 73.209,210
nthcdr 210
null 59,64,96
numberp 59,153
numerator 166,283
nunion 217

o
oddp 153
open 23,261,263,298,315,322,325.326,327
'0 r 65. 90. 105
output-stream-p 263

p
package-name 133.141
package-n i cknames 133,141
package-shadowing-symbols 142
package-use-list 142
package-used-by-list 142
packagep 61
pairlis 125.219
parse-integer 295
parse-namestring 317
pathname-device 318
pathname-directory 318
pathname-host 318
pathname-name 318
pathname-pl ist. 73.318
pathname-type 318
pathname-version 318
pathname 316
pathnamep 61.318
peek-char 293
phase 160
plusp 153
pop 76.213
position-if-not 202
position-if 202
pos i t i on 35.202.217.220

INDEX OF RJNCfIONS, MACROS, AND SPECIAL FORMS

pprint 296
pr i n l-to-str i n9 241,297
prinl 12,287,296,297,300,302,303
pr i nc-to-str i ng 241,297
princ 287,296,297,300
P r i n t 178,259, 265, 296
probe-f i 1 e 326
proclaim 53,119
prog* 100,106,117
progl 67,84,104,106
prog2 67,85
prog 30,93,100,106,117
progn 44,52,67,84,91,93,94,105

. progv 44,71,87,105
provide 145
psetf 75
psetq 70,94,96
push 76,212
pushnew 213,217

revappend 212,212
reverse 196
room 340
rotatef 76
round 156,166
rplaca 71,79,207,215
rplacd ·207,215

S
samepnamep 128
sample-function 4
sample-macro 6
sample-special-form 6
sb it 73,232,232
scale-float 168
schar 73,232,237
search 195,203
second 73,209
set-char-bit 73,191,191
set-difference 218

Q ~et-dispatch-macro-character 282
quote 44,68,69 set-exel us ive-or 218

set-macro-character 281,282
R set-syntax-from-ehar 281

random-state-p 61,179 set 69,71,71

387

random 177 setf 69,70,72,75,76.112,126,127.128.157,175,176,191,195,207,
rassoc-if-not 220 208,209,210,212,213,214,223,225,230,232,234,238,247,
rassoc-if 220 318.326,333,339
rassoc 219,220 setq 43,44,70,71,86,94,96,97,106,120
rational 41,165 seventh 73,209
rational ize 165 shadow 133,137,143
rational p 60,153 shadowing-import 133,135,137,143
read-binary-object 295,298 shiftf 75
read-byte 295,323 short-site-name 345
read-char-no-hang 294 signum 160
read-char 259,260,293,293,294,323 simple-bit-vector-p 60
read-delimited-list 281,292 simple-string-p 60
read-from-string 294 simple-vector-p 60
read-l i ne 290,293,297 sin 160
read-preserving-whitespace 291, 294 sinh 162
read ~JO,2J,68,J28,J29,178,259,260,269,271,286,288,289,291,si xth 73,209

296, 300 sleep 344
readtab 1 ep 61,281 software-type 345
real part 170 software-version 345
reduce 198,254 some 197
rem 167 sort 203
remf 76,126,127 special-form-p 69,69,111
remhash 225 sqrt 159
remove-dupl icates 200 stable-sort 203
remove- if-not 99,199 standard-char-p 61,184
remove-if 199 step 254,340
remove 194,199 stream-el ement-type 263,324
remprop 127.127 streamp 61,263
rename-fi 1 e 326 string-capi ta 1 ize 240,241,288.307
rename-package 133,141 string-char-p 61,184,237
replace 73,195,199 string-downease 240
require 145 string-equal 238
rest 207,210 string-greaterp 239
return-from 6,30,44,45,53,92,93,94,102,106,108 s,tring-l eft-trim 240
return 46,67,92,93,94,95,96,97,101.106,107,144 string-l essp 239

._---_ .. _._-." _ _--..•....... ._---_._ •... _---_ ...•.....

388

string-not-equal 239
string-not-greaterp 239
string-not-lessp 239
\tring-right-trim ~
string-trim 240
string-upcase ~
string/- 239
string<- 239
string< 239
string- /41,238
string>- 239
string> 239
s t r i ~ 9 237. 241
str i ngp 60,237
subl is 216
subseq 73,195
subsetp 219
subst-if-not 215
sub s t - i f 215
subst 215,216
substitute-if-not 201
substitute-if 201
substitute 201,216
subtypep 58,231
svref 73,232.
sxhash 226
symbol-function 24,69,69,73,125
symbol-name 128
symbol-pac~age 130,134
symbol-pl ist 73,127,318
symbol-va 1 ue 68,71,73,125.253
symbolp 59

T
tagbody 30,44,93,95,96,97,100,100,101,102
tai 1 p 217
tan 160
tanh 162
tenth 73,209
terpri 296,297,305
the 37, 44, 73, 123
thi rd 73,209 .
throw 29,44,45,46,67,93,94,106,108,108,325
time 340
trace 260,339
transl ated-pathname 316,321.322
tree-equa 1 63,208
truename 316,319,326,328
truncate 37,156,166,167
type-of 9.41
typecase 91.105.334.335
typep 9.35.3~40,41.58.58.244.245.248

U
unexport 136.143
unintern 132.133.134.136.142
union 217
un 1 ess 57.65,90,105.333
unread-char 291.293
untrace 339

COMMON USP REFERENCE MANUAL

unuse-package 144
unwind-protect 29,44,106,107,325
upper-case-p 185,189
use-package 136,137,144
user-homedir-pathname 319.345

V
values-list 104
va 1 ues 46,67,102.103,266
vector-pop 235
vector-push-extend 235
vector-push 234,263,298
vector 230
vectorp 60

W
warn 332
when 57,65,89,89,105,333
with-input-from-string 262
with-open-file 28.261,325,325
with-open-stream 262
with-output-to-string 263
wr ite-b in ar y-ob j ec t 295,298.
write-byte 298,323
wr ite-char 259,297,323
write-l ine 293,297
write-string 297
write-to-string 297
wr i te 296,297

x

y
y-or-n-p 312
yes-or-no-p 260.312

Z
zerop 153

._--_ ... _._ - -

INDEX OF FUNCIlONS. MACROS. AND SPEOAL FORMS 389

--------------_._------

390 COMMON USP REFERENCE MANUAL

	CLtL-Excelsior0001_a
	CLtL-Excelsior0001_b
	CLtL-Excelsior0002_a
	CLtL-Excelsior0002_b
	CLtL-Excelsior0003_a
	CLtL-Excelsior0003_b
	CLtL-Excelsior0004_a
	CLtL-Excelsior0004_b
	CLtL-Excelsior0005_a
	CLtL-Excelsior0005_b
	CLtL-Excelsior0006_a
	CLtL-Excelsior0006_b
	CLtL-Excelsior0007_a
	CLtL-Excelsior0007_b
	CLtL-Excelsior0008_a
	CLtL-Excelsior0008_b
	CLtL-Excelsior0009_a
	CLtL-Excelsior0009_b
	CLtL-Excelsior0010_a
	CLtL-Excelsior0010_b
	CLtL-Excelsior0011_a
	CLtL-Excelsior0011_b
	CLtL-Excelsior0012_a
	CLtL-Excelsior0012_b
	CLtL-Excelsior0013_a
	CLtL-Excelsior0013_b
	CLtL-Excelsior0014_a
	CLtL-Excelsior0014_b
	CLtL-Excelsior0015_a
	CLtL-Excelsior0015_b
	CLtL-Excelsior0016_a
	CLtL-Excelsior0016_b
	CLtL-Excelsior0017_a
	CLtL-Excelsior0017_b
	CLtL-Excelsior0018_a
	CLtL-Excelsior0018_b
	CLtL-Excelsior0019_a
	CLtL-Excelsior0019_b
	CLtL-Excelsior0020_a
	CLtL-Excelsior0020_b
	CLtL-Excelsior0021_a
	CLtL-Excelsior0021_b
	CLtL-Excelsior0022_a
	CLtL-Excelsior0022_b
	CLtL-Excelsior0023_a
	CLtL-Excelsior0023_b
	CLtL-Excelsior0024_a
	CLtL-Excelsior0024_b
	CLtL-Excelsior0025_a
	CLtL-Excelsior0025_b
	CLtL-Excelsior0026_a
	CLtL-Excelsior0026_b
	CLtL-Excelsior0027_a
	CLtL-Excelsior0027_b
	CLtL-Excelsior0028_a
	CLtL-Excelsior0028_b
	CLtL-Excelsior0029_a
	CLtL-Excelsior0029_b
	CLtL-Excelsior0030_a
	CLtL-Excelsior0030_b
	CLtL-Excelsior0031_a
	CLtL-Excelsior0031_b
	CLtL-Excelsior0032_a
	CLtL-Excelsior0032_b
	CLtL-Excelsior0033_a
	CLtL-Excelsior0033_b
	CLtL-Excelsior0034_a
	CLtL-Excelsior0034_b
	CLtL-Excelsior0035_a
	CLtL-Excelsior0035_b
	CLtL-Excelsior0036_a
	CLtL-Excelsior0036_b
	CLtL-Excelsior0037_a
	CLtL-Excelsior0037_b
	CLtL-Excelsior0038_a
	CLtL-Excelsior0038_b
	CLtL-Excelsior0039_a
	CLtL-Excelsior0039_b
	CLtL-Excelsior0040_a
	CLtL-Excelsior0040_b
	CLtL-Excelsior0041_a
	CLtL-Excelsior0041_b
	CLtL-Excelsior0042_a
	CLtL-Excelsior0042_b
	CLtL-Excelsior0043_a
	CLtL-Excelsior0043_b
	CLtL-Excelsior0044_a
	CLtL-Excelsior0044_b
	CLtL-Excelsior0045_a
	CLtL-Excelsior0045_b
	CLtL-Excelsior0046_a
	CLtL-Excelsior0046_b
	CLtL-Excelsior0047_a
	CLtL-Excelsior0047_b
	CLtL-Excelsior0048_a
	CLtL-Excelsior0048_b
	CLtL-Excelsior0049_a
	CLtL-Excelsior0049_b
	CLtL-Excelsior0050_a
	CLtL-Excelsior0050_b
	CLtL-Excelsior0051_a
	CLtL-Excelsior0051_b
	CLtL-Excelsior0052_a
	CLtL-Excelsior0052_b
	CLtL-Excelsior0053_a
	CLtL-Excelsior0053_b
	CLtL-Excelsior0054_a
	CLtL-Excelsior0054_b
	CLtL-Excelsior0055_a
	CLtL-Excelsior0055_b
	CLtL-Excelsior0056_a
	CLtL-Excelsior0056_b
	CLtL-Excelsior0057_a
	CLtL-Excelsior0057_b
	CLtL-Excelsior0058_a
	CLtL-Excelsior0058_b
	CLtL-Excelsior0059_a
	CLtL-Excelsior0059_b
	CLtL-Excelsior0060_a
	CLtL-Excelsior0060_b
	CLtL-Excelsior0061_a
	CLtL-Excelsior0061_b
	CLtL-Excelsior0062_a
	CLtL-Excelsior0062_b
	CLtL-Excelsior0063_a
	CLtL-Excelsior0063_b
	CLtL-Excelsior0064_a
	CLtL-Excelsior0064_b
	CLtL-Excelsior0065_a
	CLtL-Excelsior0065_b
	CLtL-Excelsior0066_a
	CLtL-Excelsior0066_b
	CLtL-Excelsior0067_a
	CLtL-Excelsior0067_b
	CLtL-Excelsior0068_a
	CLtL-Excelsior0068_b
	CLtL-Excelsior0069_a
	CLtL-Excelsior0069_b
	CLtL-Excelsior0070_a
	CLtL-Excelsior0070_b
	CLtL-Excelsior0071_a
	CLtL-Excelsior0071_b
	CLtL-Excelsior0072_a
	CLtL-Excelsior0072_b
	CLtL-Excelsior0073_a
	CLtL-Excelsior0073_b
	CLtL-Excelsior0074_a
	CLtL-Excelsior0074_b
	CLtL-Excelsior0075_a
	CLtL-Excelsior0075_b
	CLtL-Excelsior0076_a
	CLtL-Excelsior0076_b
	CLtL-Excelsior0077_a
	CLtL-Excelsior0077_b
	CLtL-Excelsior0078_a
	CLtL-Excelsior0078_b
	CLtL-Excelsior0079_a
	CLtL-Excelsior0079_b
	CLtL-Excelsior0080_a
	CLtL-Excelsior0080_b
	CLtL-Excelsior0081_a
	CLtL-Excelsior0081_b
	CLtL-Excelsior0082_a
	CLtL-Excelsior0082_b
	CLtL-Excelsior0083_a
	CLtL-Excelsior0083_b
	CLtL-Excelsior0084_a
	CLtL-Excelsior0084_b
	CLtL-Excelsior0085_a
	CLtL-Excelsior0085_b
	CLtL-Excelsior0086_a
	CLtL-Excelsior0086_b
	CLtL-Excelsior0087_a
	CLtL-Excelsior0087_b
	CLtL-Excelsior0088_a
	CLtL-Excelsior0088_b
	CLtL-Excelsior0089_a
	CLtL-Excelsior0089_b
	CLtL-Excelsior0090_a
	CLtL-Excelsior0090_b
	CLtL-Excelsior0091_a
	CLtL-Excelsior0091_b
	CLtL-Excelsior0092_a
	CLtL-Excelsior0092_b
	CLtL-Excelsior0093_a
	CLtL-Excelsior0093_b
	CLtL-Excelsior0094_a
	CLtL-Excelsior0094_b
	CLtL-Excelsior0095_a
	CLtL-Excelsior0095_b
	CLtL-Excelsior0096_a
	CLtL-Excelsior0096_b
	CLtL-Excelsior0097_a
	CLtL-Excelsior0097_b
	CLtL-Excelsior0098_a
	CLtL-Excelsior0098_b
	CLtL-Excelsior0099_a
	CLtL-Excelsior0099_b
	CLtL-Excelsior0100_a
	CLtL-Excelsior0100_b
	CLtL-Excelsior0101_a
	CLtL-Excelsior0101_b
	CLtL-Excelsior0102_a
	CLtL-Excelsior0102_b
	CLtL-Excelsior0103_a
	CLtL-Excelsior0103_b
	CLtL-Excelsior0104_a
	CLtL-Excelsior0104_b
	CLtL-Excelsior0105_a
	CLtL-Excelsior0105_b
	CLtL-Excelsior0106_a
	CLtL-Excelsior0106_b
	CLtL-Excelsior0107_a
	CLtL-Excelsior0107_b
	CLtL-Excelsior0108_a
	CLtL-Excelsior0108_b
	CLtL-Excelsior0109_a
	CLtL-Excelsior0109_b
	CLtL-Excelsior0110_a
	CLtL-Excelsior0110_b
	CLtL-Excelsior0111_a
	CLtL-Excelsior0111_b
	CLtL-Excelsior0112_a
	CLtL-Excelsior0112_b
	CLtL-Excelsior0113_a
	CLtL-Excelsior0113_b
	CLtL-Excelsior0114_a
	CLtL-Excelsior0114_b
	CLtL-Excelsior0115_a
	CLtL-Excelsior0115_b
	CLtL-Excelsior0116_a
	CLtL-Excelsior0116_b
	CLtL-Excelsior0117_a
	CLtL-Excelsior0117_b
	CLtL-Excelsior0118_a
	CLtL-Excelsior0118_b
	CLtL-Excelsior0119_a
	CLtL-Excelsior0119_b
	CLtL-Excelsior0120_a
	CLtL-Excelsior0120_b
	CLtL-Excelsior0121_a
	CLtL-Excelsior0121_b
	CLtL-Excelsior0122_a
	CLtL-Excelsior0122_b
	CLtL-Excelsior0123_a
	CLtL-Excelsior0123_b
	CLtL-Excelsior0124_a
	CLtL-Excelsior0124_b
	CLtL-Excelsior0125_a
	CLtL-Excelsior0125_b
	CLtL-Excelsior0126_a
	CLtL-Excelsior0126_b
	CLtL-Excelsior0127_a
	CLtL-Excelsior0127_b
	CLtL-Excelsior0128_a
	CLtL-Excelsior0128_b
	CLtL-Excelsior0129_a
	CLtL-Excelsior0129_b
	CLtL-Excelsior0130_a
	CLtL-Excelsior0130_b
	CLtL-Excelsior0131_a
	CLtL-Excelsior0131_b
	CLtL-Excelsior0132_a
	CLtL-Excelsior0132_b
	CLtL-Excelsior0133_a
	CLtL-Excelsior0133_b
	CLtL-Excelsior0134_a
	CLtL-Excelsior0134_b
	CLtL-Excelsior0135_a
	CLtL-Excelsior0135_b
	CLtL-Excelsior0136_a
	CLtL-Excelsior0136_b
	CLtL-Excelsior0137_a
	CLtL-Excelsior0137_b
	CLtL-Excelsior0138_a
	CLtL-Excelsior0138_b
	CLtL-Excelsior0139_a
	CLtL-Excelsior0139_b
	CLtL-Excelsior0140_a
	CLtL-Excelsior0140_b
	CLtL-Excelsior0141_a
	CLtL-Excelsior0141_b
	CLtL-Excelsior0142_a
	CLtL-Excelsior0142_b
	CLtL-Excelsior0143_a
	CLtL-Excelsior0143_b
	CLtL-Excelsior0144_a
	CLtL-Excelsior0144_b
	CLtL-Excelsior0145_a
	CLtL-Excelsior0145_b
	CLtL-Excelsior0146_a
	CLtL-Excelsior0146_b
	CLtL-Excelsior0147_a
	CLtL-Excelsior0147_b
	CLtL-Excelsior0148_a
	CLtL-Excelsior0148_b
	CLtL-Excelsior0149_a
	CLtL-Excelsior0149_b
	CLtL-Excelsior0150_a
	CLtL-Excelsior0150_b
	CLtL-Excelsior0151_a
	CLtL-Excelsior0151_b
	CLtL-Excelsior0152_a
	CLtL-Excelsior0152_b
	CLtL-Excelsior0153_a
	CLtL-Excelsior0153_b
	CLtL-Excelsior0154_a
	CLtL-Excelsior0154_b
	CLtL-Excelsior0155_a
	CLtL-Excelsior0155_b
	CLtL-Excelsior0156_a
	CLtL-Excelsior0156_b
	CLtL-Excelsior0157_a
	CLtL-Excelsior0157_b
	CLtL-Excelsior0158_a
	CLtL-Excelsior0158_b
	CLtL-Excelsior0159_a
	CLtL-Excelsior0159_b
	CLtL-Excelsior0160_a
	CLtL-Excelsior0160_b
	CLtL-Excelsior0161_a
	CLtL-Excelsior0161_b
	CLtL-Excelsior0162_a
	CLtL-Excelsior0162_b
	CLtL-Excelsior0163_a
	CLtL-Excelsior0163_b
	CLtL-Excelsior0164_a
	CLtL-Excelsior0164_b
	CLtL-Excelsior0165_a
	CLtL-Excelsior0165_b
	CLtL-Excelsior0166_a
	CLtL-Excelsior0166_b
	CLtL-Excelsior0167_a
	CLtL-Excelsior0167_b
	CLtL-Excelsior0168_a
	CLtL-Excelsior0168_b
	CLtL-Excelsior0169_a
	CLtL-Excelsior0169_b
	CLtL-Excelsior0170_a
	CLtL-Excelsior0170_b
	CLtL-Excelsior0171_a
	CLtL-Excelsior0171_b
	CLtL-Excelsior0172_a
	CLtL-Excelsior0172_b
	CLtL-Excelsior0173_a
	CLtL-Excelsior0173_b
	CLtL-Excelsior0174_a
	CLtL-Excelsior0174_b
	CLtL-Excelsior0175_a
	CLtL-Excelsior0175_b
	CLtL-Excelsior0176_a
	CLtL-Excelsior0176_b
	CLtL-Excelsior0177_a
	CLtL-Excelsior0177_b
	CLtL-Excelsior0178_a
	CLtL-Excelsior0178_b
	CLtL-Excelsior0179_a
	CLtL-Excelsior0179_b
	CLtL-Excelsior0180_a
	CLtL-Excelsior0180_b
	CLtL-Excelsior0181_a
	CLtL-Excelsior0181_b
	CLtL-Excelsior0182_a
	CLtL-Excelsior0182_b
	CLtL-Excelsior0183_a
	CLtL-Excelsior0183_b
	CLtL-Excelsior0184_a
	CLtL-Excelsior0184_b
	CLtL-Excelsior0185_a
	CLtL-Excelsior0185_b
	CLtL-Excelsior0186_a
	CLtL-Excelsior0186_b
	CLtL-Excelsior0187_a
	CLtL-Excelsior0187_b
	CLtL-Excelsior0188_a
	CLtL-Excelsior0188_b
	CLtL-Excelsior0189_a
	CLtL-Excelsior0189_b
	CLtL-Excelsior0190_a
	CLtL-Excelsior0190_b
	CLtL-Excelsior0191_a
	CLtL-Excelsior0191_b
	CLtL-Excelsior0192_a
	CLtL-Excelsior0192_b
	CLtL-Excelsior0193_a
	CLtL-Excelsior0193_b
	CLtL-Excelsior0194_a
	CLtL-Excelsior0194_b
	CLtL-Excelsior0195_a
	CLtL-Excelsior0195_b
	CLtL-Excelsior0196_a
	CLtL-Excelsior0196_b
	CLtL-Excelsior0197_a
	CLtL-Excelsior0197_b
	CLtL-Excelsior0198_a
	CLtL-Excelsior0198_b
	CLtL-Excelsior0199_a
	CLtL-Excelsior0199_b
	CLtL-Excelsior0200_a
	CLtL-Excelsior0200_b
	CLtL-Excelsior0201_a
	CLtL-Excelsior0201_b

